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Instructions

The aim of this work is to research existing methods for lossy audio compression and to apply non-negative
matrix factorization (NMF) in order to improve the compression ratio without a noticeable loss in quality.
Therefore, the goals are as following:
1) Become familiar with state of the art digital audio encoding and compression methods [1].
2) Become familiar with non-negative matrix factorization, its properties and applications in digital audio
processing [2][3].
3) Design and implement a proof of concept audio codec utilizing NMF for audio compression, or extend an
existing codec with this functionality [4].
4) Find a suitable method for measuring perceived audio quality.
5) Measure the resulting audio quality and compare the quality and compression ratio to existing solutions.
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May 8, 2019





Acknowledgements

I would like to thank my supervisor for always being quick to consult any
arising issues. My thanks also go to my family and friends for supporting me
throughout the entire time of my studies.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 8, 2019 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
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Abstrakt

Algoritmus nezáporného rozkladu matic byl úspěsně použit pro mnoho r̊uzných
problémů, které souviśı s analýzou velkého množstv́ı dat a z nich plynoućıch
souvislost́ı. Využ́ıvá se např. pro rozpoznáváńı obličej̊u, separaci signál̊u či
kompresi obrázk̊u.

Ćılem této práce je prozkoumat možné využit́ı nezáporného rozkladu matic
pro ztrátovou kompresi zvuku. Bude naprogramován referenčńı kodér a dekodér
zvuku využ́ıvajićı NMF, a s ńım budou potom provedeny r̊uzné experimenty.
Výsledky budou změřeny a srovnány v̊uči existuj́ıćım nástroj̊um pro kompresi
zvuku.

Kĺıčová slova ztrátová komprese, zvuk, komprese dat, nmf, kódováńı

Abstract

Non-negative matrix factorization has been successfully applied in various
scenarios involving analysis of large chunks of data and finding patterns in
them for later use. It’s used to perform things such as face recognition, source
separation or image compression among others.

The purpose of this thesis is to research possible uses of non-negative
matrix factorization in the problem of lossy audio compression. A reference
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audio encoder and decoder using NMF will be implemented and various ex-
periments using this encoder will be conducted. The results will be measured
and compared to existing audio compressing solutions.

Keywords lossy compression, audio, data compression, nmf, encoding
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Chapter 1
Introduction

In today’s age of smartphones and other portable electronic devices capable
of connecting to the internet, nearly everyone has access to a huge library of
various media, including music and other audio. However, to transmit or store
all of this data in its raw uncompressed form, a large amount of bandwidth
and storage would be required. It is for that reason that we must employ some
sort of compression.

Lossy audio codecs such as MP3, AAC, AC3, Vorbis, Opus etc. have been
prevalent in this field as they are capable of compressing an audio signal into
even a tenth of its size, without a perceivable difference in quality (to our ears,
at least).

As such, this thesis will look into using Non-negative matrix factorization
as a possible method for lossy compression of audio. It has been employed
before for audio analysis, but works describing its applications for compression
of audio specifically are limited.

First, we will have a look at what even is digital audio and important terms
surrounding it. We will explore how it works, how is it recorded and stored
in a computer and also what concerns go into analysing and compressing it.

Then, in chapter 3, non-negative matrix factorization is defined and de-
scribed. We will talk about what it is, what is it realistically used for, how to
use and implement it, and lastly its applications in the field of digital audio.

After that, we finally get to data compression. State of the art lossy
audio codecs will be examined along with some lossless encodings that will be
necessary later. Existing research into audio compression using NMF will also
be summarized.

In chapters 5 and 6, I design and implement an NMF encoder and decoder
(called ANMF). There are three different variants depending on what’s being
compressed - ANMF-RAW for encoding raw audio, and ANMF-MDCT along
with ANMF-STFT for encoding properly pre-processed audio. The file struc-
ture along with all the implementational details including used libraries will
be described in great detail.
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1. Introduction

And finally, we take the implementation and evaluate the results. Using
GstPEAQ as an objective measuring method, we compare our implementation
to some of the reference codecs, namely MP3 and Opus, and draw conclusions
from the results.
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Chapter 2
Digital audio

Sound as we know it can be defined as a physical wave travelling through air or
another means. [1] It can be measured as change in air pressure surrounding
an object. Once we have this electrical representation of the wave, we can
convert it back and consequently play using speakers.

In the real world, these sound waves are generally composed of many differ-
ent kinds of waves, with differing frequencies and amplitudes. The human ear
can tell the difference between high (whistling) and low frequencies (drums),
and knowledge of this will be useful later when we are discussing audio en-
coding.

Please see Table 2.1 for the notation used throughout this thesis.

2.1 Important terms

In this section several terms used throughout this thesis will be described.

2.1.1 Sampling

Sampling in this context refers to the way we convert an analogue signal into
a digital one. When we use something like a microphone, what’s happening
is that it measures the pressure waves generated by the sound around it at
regular intervals. The result of this operation is the amplitude of the wave, or
the size of the vibration at that point in time.

To obtain an actual usable sound wave of various frequencies and ampli-
tudes, we will need many samples - generally tens of thousands per second.
The rate at which we collect these samples is called the sampling rate, denoted
Fs.
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2. Digital audio

Figure 2.1: An example of an audio signal represented in PCM form.

2.1.2 Nyquist frequency

It is proven that we can fully represent an arbitrary signal x(t) by its samples
xn [2], but there are some conditions to this. If we don’t sample a given signal
enough times per second, there might be frequencies high enough that our
sampler won’t be able to record them correctly.

This is called the Sampling Theorem and the idea is that we can only
accurately record all the frequencies in a signal if our sampling rate Fs is at
least twice as large as the largest frequency contained in the signal Fmax. [3]

In essence, a continuous signal can only be fully represented by its samples
if:

Fs ≥ 2Fmax (2.1)

Looking at it from another angle, it also means that given a sampling rate
Fs, the highest frequency we can record is equal to Fs

2 , and that is what’s
called the Nyquist frequency or Nyquist limit.
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2.1. Important terms

Table 2.1: Digital audio notation

t symbol representing a time value in seconds
τ symbol representing a ”slow” time, time index with a lower resolution than t
ξ symbol representing a frequency value in hertz
Fs symbol representing a sampling rate of an audio signal
z symbol representing a complex number

φ(z) symbol representing the phase of a complex number
|z| symbol representing the magnitude of a complex number

Q(x) function representing a uniform quantizer
∆ symbol representing the step size of a uniform quantizer

F (x) function representing µ-law compression
x(t) function representing the amplitude of a continuous signal at a time t
xn sequence representing the amplitude of a discrete signal indexed by n

w(t) continuous windowing function at a time t
wn discrete windowing function indexed by n

X(ξ) function representing the frequency component of a signal for a frequency ξ
S(ξ) the Fourier transform of a continuous signal
Sk the discrete Fourier transform of a discrete signal

S(τ, ξ) the short-time Fourier transform of a continuous signal
Sk,ξ the discrete short-time Fourier transform of a discrete signal
Mk the Modified discrete cosine transform of a discrete signal

2.1.3 Quantization

Quantization is a process where we restrict a large set of values, possibly
continuous, into a smaller set, generally discrete. Each of the values from the
smaller set represents a quantization level, and has a range of values that fall
into it.

For example, when we sample an analogue signal, what we get back is
the amplitude represented by a voltage, which can be considered a set of
infinitely many real numbers. In order to use these values on our computers
for digital processing, these voltages must first be quantized. [2] An example of
a common choice would be signed 16-bit PCM, where each sample is converted
to an integer between −215 = −32768 and 215 − 1 = 32767, representing the
quantized amplitude for the given sample.

Quantization is also common in digital audio processing when we already
have discrete values, e.g. when quantizing MDCT values (described later) in
order to further reduce the range and allow for more efficient compression.

There are two kinds of quantization: uniform and non-uniform. The main
difference between them is that when using uniform quantization, the quanti-
zation levels are uniformly spaced, i.e. the difference between any two quan-
tized values is the same when the value is converted to the original range,
whereas with non-uniform quantization the difference between different levels
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2. Digital audio

may vary.

2.1.3.1 Uniform quantization

The practical part uses uniform quantization extensively, therefore it’s impor-
tant to mention some extra details surrounding it.

In a uniform quantizer, there is a step size, denoted ∆, which is the value
difference between two successive quantization levels.

We differentiate between a mid-rise quantizer and a mid-tread quantizer.
The main difference between them is how they handle quantization of the area
around 0. [4]

If we imagine quantization in the form of a staircase function, then in
a mid-rise quantizer the ”rise” of the stairs is the part that crosses the 0
point, whereas in a mid-tread quantizer it’s the ”flat” part of the staircase-
like function (that one treads on), hence the naming.

In practice, in the context of a uniform quantizer, this means that a mid-
rise quantizer (as opposed to a mid-tread quantizer) does not have a value to
represent the zero value of the given range, but instead has the zero value as
a classification threshold.

A mid-tread quantizer is defined as:

Qt(x) = ∆ ·
⌊
x

∆ + 1
2

⌋
(2.2)

A mid-rise quantizer is defined as:

Qr(x) = ∆ ·
(⌊

x

∆

⌋
+ 1

2

)
(2.3)

2.1.3.2 µ-law companding

The algorithm called µ-law (or mu-law) companding employs non-uniform
quantization in order to reduce the quantization error and required bandwidth
of a signal transmitting system. In practice it is mostly used in telephony and
other applications that deal with a limited dynamic range.

Companding is combined from the words compression and expanding. Com-
pression because the non-uniform quantization reduces the amount of bits
needed to encode the peak amplitudes, and expanding on the other end to
cancel the effect of the non-uniform compressor. There is one more interme-
diate step between them, specifically uniform quantization of the compressed
signal. [5]

It has several important effects:

• the larger values get a bit smaller by getting rid of the least significant
bits

• the lower values become higher due to conversion to a logarithmic scale
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2.1. Important terms

• some perceptible noise is masked due to boosting of the intended signal

µ-law compression is defined as: [6]

F (x) = sgn(x) ln(1 + µ|x|)
ln(1 + µ) for −1 ≤ x ≤ 1 (2.4)

And the inverse function for expanding:

F−1(y) = sgn(y)
( 1
µ

)
((1 + µ)|y| − 1) for −1 ≤ y ≤ 1 (2.5)

Where µ is the compression parameter. The higher the value of µ, the
higher a companded value F (x) will be in average, and this increase will be
more noticeable for lower x.

2.1.4 Windowing

A windowing function wn is a function that is equal to 0 outside of some chosen
interval, where its value is defined by an expression. It is generally symmet-
rical, though this is not a rule. Windowing functions are often applied to
audio signals by multiplying them with the windowing function before further
processing to avoid various artifacts.

There is no one ”best window”, there’s usually a trade off, for example a
window used to prevent aliasing will lower the accuracy of frequency identi-
fication (as is the case in the Hann window). [2] In fact, most modern audio
codecs use different kinds of windows depending on the musical characteristics
of the current block and the ones that follow. [7]

2.1.4.1 Rectangular window

The rectangular window is the simplest one, as it does not modify the original
signal at all, and as such is often used to represent e.g. a part of a periodic
signal. It’s equivalent to:

wRn = 1 (2.6)

2.1.4.2 Hann window

A Hann window is a simple sine-based window, defined as:

wHn = sin2
(
πn

N

)
(2.7)

This window is what we’ll be using most of the time with the short-time
Fourier transform.
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2. Digital audio

Figure 2.2: An example of windowing: a sine function windowed by MLT.

2.1.4.3 Modulated lapped transform

Modulated lapped transform (MLT) is another sine-based window, used for
example in the MP3 codec. It has a comparatively low computational com-
plexity and is simple to implement. [8] It’s defined as:

wMn = sin
[
π

2N

(
n+ 1

2

)]
(2.8)

It is what we will be using with the MDCT due to its simplicity of imple-
mentation compared to the results it provides.

2.1.4.4 Kaiser-Bessel derived window

The Kaiser-Bessel-derived window (KBD) is designed to be used with the
modified discrete cosine transform (MDCT), and is used for example in the
AC-3 codec. It’s defined as follows [2]:
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2.1. Important terms

wDn =



√∑n

i=0 wi∑N
2

i=0 wi

if 0 ≤ n < N
2√∑N−1−n

i=0 wi∑N
2

i=0 wi

if N
2 ≤ n < N − 1

0 otherwise

(2.9)

2.1.5 Transient

A transient is a high amplitude sound with a short duration. It’s significant
because during block-based audio encoding, if a transient occurs on the border
between two blocks it may cause what’s called pre-echo - essentially a type of
artifact where a sound is being heard before it should occur.

To mitigate artifacts caused by transients, it’s important to use proper
windowing.

2.1.6 Aliasing

Aliasing is a type of artifact that occurs when the sampling rate is too low. Due
to the way sampling works, frequencies above the Nyquist limit are mirrored
to lower frequencies, creating a noticeable distortion. [2]

This can be eliminated by either choosing an appropriately higher sampling
rate, or by passing the signal through a low-pass filter to eliminate the higher
frequency content that would cause aliasing.

2.1.7 Spectral leakage

As we will see later, the Fourier transform (and other Fourier-related trans-
forms) effectively projects the signal into infinity, as if it was a periodic signal.
If we apply the transform to an unmodified signal, it’s similar to using a rect-
angular window on a periodic function, where the signal ends abruptly at the
edges. This in turn leads to spectral leakage - the resulting Fourier transform
will produce non-zero values even for frequencies that aren’t contained in the
original signal at all.

The way to combat spectral leakage is again, by using proper windowing.
By smoothing out the function using a window so that it approaches 0 along
the edges of the signal, we can mitigate some spectral leakage, although not
all of it.

2.1.8 Scalloping

A phenomena that occurs when using a discrete Fourier (or Fourier-related)
transform. Since the frequencies are split into ranges rather than exact values,

9



2. Digital audio

Figure 2.3: An example of a sine function’s spectral leakage after application
of a rectangular window. Image by Walter Dvorak published under the CC
BY 3.0 license.

it’s possible that a single frequency may fall into two adjacent bins, providing
inaccurate frequency content readings.

To deal with scalloping, a large enough block size in relation to the sam-
pling rate must be chosen to lower the ranges of the bins.

2.2 Digital audio representation

Most commonly, the amount of air pressure is sampled many times a second
and after being processed this information is stored as a discrete-time signal
using numerical representations - this is what’s known as a digital audio signal.
This entire process is called digital audio encoding.

By sampling the audio signal, we will potentially be losing out on some
information, but given a high enough sampling rate, the result will be imper-
ceptible to the human ear. For general purpose audio and music, the standard
sampling rate is 48 kHz, alternatively 44.1 kHz from the compact disk era.

Once we have our digital signal, there are two distinct kinds of ways we
can represent, or, encode it. Both of them have many different data models
for encoding [1], but in this work I am only going to focus on the most relevant
ones.

2.2.1 Time domain representation

In the time domain, the signal is simply represented as a function of time,
where t is the time and x(t) is the raw amplitude, or air pressure, at that
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2.2. Digital audio representation

point. [2]
This is the most straightforward representation since it directly correlates

to how the signal is being captured in the first place. However, as we will
see later, this format is not ideal for storing audio data with any sort of
compression.

2.2.1.1 PCM

In the time domain, the most basic encoding we can use is PCM (Pulse Code
Modulation). After sampling a signal at uniform intervals, the discrete values
are quantized; that is, each range of values is assigned a symbol in (usually)
binary code.

For example using 16-bit signed PCM, each sample will be represented as
a 16-bit signed integer, or in the case of multiple channels, N 16-bit signed
integers, where N is the amount of channels.

PCM serves as a good base for what we are going to talk about next -
Frequency domain representation and encoding.

2.2.2 Frequency domain representation

While it’s simple to understand and work with for the computer with sam-
ples in the form of a sequence of amplitudes, it’s difficult to run any sort of
meaningful analysis on such data. To better grasp the structure of the audio
we’re working with, it would be helpful to be able to decompose it into its basic
building blocks, so to speak. And that’s where frequency based representation
comes in.

The goal here is to represent the signal as not a function of time, but
rather a function of frequency X(ξ). That is, instead of having a simple
sequence of amplitudes, we will have information about the magnitude for
each component from a set of frequency ranges. This description alone is
generally more compact than the PCM representation [2] on top of providing
us with useful information about the signal, so it will serve as a good entry
point to our compression schemes.

2.2.2.1 Fourier transform

Fourier transform is the first and arguably the most used tool for converting
a signal from a function of time x(t) into a function of frequency X(ξ).

It is based on the Fourier series, which is essentially a representation of a
periodic function as the linear combination of sines and cosines. [9] However,
the main difference is that our function need not be periodic.

The Fourier transform of a continuous signal x is defined as: [10]

S(ξ) =
∫ ∞
−∞

x(t)e−2πitξdt (2.10)

11
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If we inspect the formula, we can notice that Fourier transform essentially
projects our signal into infinity - this wouldn’t be a problem if it was a periodic
signal, but sampled audio is generally constrained by time. To prevent spectral
leakage as a result, we must window the signal before processing it. [11]

The output is a complex number, which provides us with the means to
find the magnitude and phase offset for the sinusoid of each frequency ξ.

The Fourier transform can also be inverted, providing us with an easy way
to obtain the original signal back from its frequency components. The inverse
transform is defined as:

x(t) =
∫ ∞
−∞

S(ξ)e2πitξdξ (2.11)

However, seeing as our samples are discretely sampled, we will need to
modify our transform accordingly.

The discrete Fourier transform of a discrete signal x0, x1, ..., xN−1 is: [?]

Sk =
N−1∑
n=0

xne
−2πikn/N (2.12)

And our inverse is:

xn = 1
N

N−1∑
k=0

Ske
2πikn/N (2.13)

In the discrete form, rather than finding the frequency content for a specific
frequency ξ, we find the content of the k-th frequency bin. Since we have fewer
values to work with, the frequency range is quantized to a degree and each bin
contains an uniformly sized range of frequencies rather than a specific one.

The way that works is as following: if we for example run the discrete
Fourier transform on 1152 samples recorded with a sampling rate Fs = 44100,
we will end up with 1152 frequency bins, each containing the amplitude of a
frequency range Fs

N = 44100
1152 ≈ 38 Hz. However, due to the Nyquist limit, the

only useful frequencies are up until Fs
2 = 44100

2 = 22050 Hz, and so we only
need to be concerned with the first half of the bins, i.e. 1152

2 = 576 bins, as
the latter half mirrors the first and does not contain any useful information.

Due to the nature of this process, if we run the Fourier transform on our
whole signal, we will only be able to analyse it as a whole. That means we
won’t be able to tell which parts of for example a song are quiet or if there
are any parts with very high frequencies - we lose our temporal data.

To alleviate this problem, we can run Fourier transform on smaller chunks
of the signal, analyse them separately and later join them back into the original
signal. That is the essence of the Short-time Fourier transform.
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2.2.2.2 Short-time Fourier transform

When using Short-time Fourier transform, or STFT for short, we first split
the signal into smaller segments of equal size and then run Fourier transform
on those separately. As such, our output can be projected into two dimensions
- specifically a frequency spectrum as a function of time, a spectrogram.

Figure 2.4: An example of an audio spectrogram for the signal from Figure
2.1.

Doing it this way will let us see how the frequency components change
over time instead of taking the spectrum of the entire signal.

As with regular Fourier transform, we’ll need to window each segment of
the signal, but there is a caveat. Since we have windowed segments, we may
be losing some information at the edge of each segment leading to artifacts,
and furthermore we may be losing information about transients. To solve this,
we’ll need to introduce overlapping windows - however, having an overlap will
increase the amount of coefficients required.

The continuous version is defined as: [?]

S(τ, ξ) =
∫ ∞
−∞

x(t)w(t− τ)e−2πitξdt (2.14)

where w is the window function.
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But again, as we have discrete samples, we will need to use a discrete
short-time Fourier transform, specifically:

Sk,ξ =
∞∑

n=−∞
xnwn−ke

−2πiξn (2.15)

And similarly to the regular Fourier Transform, short-time Fourier Trans-
form is also invertible. [12]

STFT is commonly used for audio analysis (e.g. for generating spectro-
grams) but in this case it will be used as a means for our NMF compression.

2.2.2.3 Modified discrete cosine transform

Modified discrete cosine transform, or MDCT for short, has become the dom-
inant means of lossy high-quality audio coding. [13]

It is what’s known as a lapped transform. This means that when trans-
forming a block into its MDCT coefficients, the basis function overlaps the
block’s boundaries. [14] In practice, what this means is that while we have
blocks with overlapping windows as in the short-time Fourier transform, the
number of coefficients remains the same as without while retaining the relevant
properties.

As the name suggests, MDCT is based on the Discrete cosine transform
[15], namely DCT-IV, where the main difference is the addition of lapping
mentioned above. The type then specifies the boundary conditions, to deter-
mine what values the transform should have for points outside the original
range.

What makes MDCT simpler to work with compared to Fourier transform
is that not only do we not need more coefficients despite overlapping, they
are also real numbers as opposed to complex numbers, lowering the amount
of bytes necessary to store them.

It is a linear function f : R2N → RN , defined as: [16]

Mk =
N−1∑
n=0

xn cos
{

(2n+ 1 + N
2 )(2k + 1)π

2N

}
(2.16)

for k = 0, 1, . . . , N2 − 1.
It is assumed that x(n) is already windowed by an appropriate windowing

function w.
MDCT is also invertible, and its inversion is defined as:

x̄n =
N
2 −1∑
k=0

Mk cos
{

(2n+ 1 + N
2 )(2k + 1)π

2N

}
(2.17)
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for n = 0, 1, . . . , N − 1.
It’s important to note that the inverted transformed sequence x̄n by itself

does not correspond to the original signal xn [17]. To achieve perfect invert-
ibility, we must add subsequent overlapping blocks of the inverted MDCT
(IMDCT). This method is called time domain aliasing cancellation [18], or
TDAC for short. As the name suggests, it mainly helps remove artifacts on
the boundaries between transform blocks.

2.3 Psychoacoustics

Apart from time-frequency representations being generally more compact,
they also give us the ability to analyse, isolate or modify the frequency compo-
sition of a given signal. This comprises a large chunk of the audio compressing
process.

The field of psychoacoustics studies sound perception - that is, how our
ears work and how we perceive different kinds of sounds. There are many
different characteristics to sound that need to be taken into account for a
proper psychoacoustic analysis [19], split into several categories, namely:

tonal includes pitch, timbre, melody harmony

dynamic based on loudness

temporal involves time, duration, tempo and rhythm

qualitative represents harmonic constitution of the tone

For music, it’s important to balance these four qualities appropriately.
For compression, the most important qualities for us in scope of this work are
going to be tonal (pitch) and dynamic (loudness).

2.3.1 Pitch

Pitch is a characteristic that comes from a frequency. The difference between
the two is that pitch is our subjective perception of the tone whereas a fre-
quency is an objective measure. Despite this fact, pitch is often quantified as
a frequency using Hertz as its unit.

The lower bound of human hearing is around 20 Hz whereas the upper
bound is most commonly cited as 20 000 Hz, or 20 kHz. [20] In a laboratory
environment, people have been found to hear as low as 12 Hz. As people
age, our hearing gets progressively worse and a healthy adult younger than 40
years can generally perceive frequencies only up to 15 kHz. [19]

The human ear is capable of distinguishing different frequencies fairly ac-
curately, though accuracy gets lower with increasing frequency. It’s easier
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for our ears to tell a difference between 500 Hz and 520 Hz compared to the
difference between 5000 Hz and 5020 Hz. [21]

Furthermore, if we hear two different tones simultaneously, but their fre-
quencies are close enough to one another, we may perceive them as a combi-
nation of tones rather than separate tones. Frequency ranges, or bands, where
this phenomenon happens, are called critical bands. [22] It’s also possible for
one tone to mask the other entirely, and then we get what’s called auditory
masking. [23]

Based on the knowledge of the existence of these critical bands, it’s possible
to devise a system that specifies the range of each band in human hearing.
One such scale that is commonly used is called the Bark scale.

2.3.1.1 Bark scale

The Bark scale ranges from 1 to 24 Barks, where each Bark corresponds to a
single critical band of human hearing. [24] The perceived difference in pitch
between each band should be the same, despite the scale not growing linearly
in terms of frequency ranges. Specifically, until around 500 Hz, the scale is
roughly linear, but above that it has a more logarithmic growth. [25]

The Bark scale is commonly used as reference for audio encoding codecs, as
we will see later. Knowledge of these critical bands allows for more educated
byte allocation during the quantization process when compressing a frequency
domain representation.

Figure 2.5: The Bark scale. Image by ”Swpb” licensed under CC BY-SA 4.0.
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2.3. Psychoacoustics

2.3.2 Loudness

What people often decide as loudness is really called sound pressure level and
it’s measured in decibels (dB), however it has some shortcomings when it
comes to psychoacoustic analysis.

It is defined as following: [26]

Lp = 20 log10

(
p

p0

)
dB (2.18)

where p is a sound’s sound pressure and p0 is a reference sound pressure,
also called the threshold of human hearing.

While this metric is very popular, it doesn’t account for the fact that
different frequencies have a different perceived loudness for a person’s ears.
[19] There is a lot of research in recent years into how different frequencies
impact our perception and hearing [27], but that is out of scope of this work.
For more information about the exact definitions of loudness, refer to [19].

2.3.3 Auditory masking

As mentioned above, when it comes to audio masking, and therefore audio
compression, we must not only take into account the critical bands as per e.g.
the Bark scale, but also their intensity.

For example a lower frequency sound may mask one of a higher frequency,
but the other way around does not apply. [23] Modern audio encoders take
this into account and using this knowledge are able to eliminate sounds that
exist in the original signal, but are not perceivable by humans.

There are two important different kinds of masking effects - simultaneous
masking and temporal masking. [7]

Simultaneous masking is what I have hinted at above - when there are
two sounds within the same critical band, the dominant one may mask other
frequencies within the same band. This can be compensated to a degree by
increasing the volume of the masked sound.

Temporal masking does not occur in the frequency domain, but the time
domain. The essence is that a stronger tonal component may mask a weaker
one if they appear within a small window of time in succession.
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Figure 2.6: A hypothetical example of how a masker can shift the hearing
threshold of a signal by 16 dB. Image created by Alan De Smet and published
in the public domain.
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Chapter 3
Non-negative matrix

factorization

In today’s age of big data, machine learning and various other fields, it’s
important to have ways to quickly analyse these datasets and ideally find
patterns within. Non-negative matrix factorization is one of the paradigms
suitable for that task.

In layman’s terms, what NMF does is that when we are given a large set
of data, for example a matrix representing books and their review scores from
people, we can extract certain hidden ”features” from it using NMF, in this
case representing e.g. various genres (basis matrix) and how prominent they
are in a given book (weight matrix). And then, using these two matrices, we
are able to estimate or even predict what kind of books a user would like -
this is a simple example of a possible recommendation algorithm.

3.1 Linear dimensionality reduction

Non-negative matrix factorization, or NMF, falls under linear dimensional-
ity reduction techniques. These are used widely for noise filtering, feature
selection or compression, among others.

LDR can be defined as following: [28]

xj ≈
r∑

k=1
wkhj(k) for some weights hj ∈ Rr (3.1)

where given a data set of size n, we define xj ∈ Rp for 1 ≤ j ≤ n,
r < min(p, n), and wk ∈ Rp for 1 ≤ k ≤ r.

What this effectively means is that we represent p-dimensional data points
in a r-dimensional linear subspace, with basis elements wk and data coor-
dinates given by vectors hj . LDR defined in this manner is equivalent to
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3. Non-negative matrix factorization

low-rank matrix approximation, which is the essence of non-negative matrix
factorization.

3.2 NMF definition

Non-negative matrix factorization solves the following NP-hard [29] problem:
Given a non-negative matrix V , find non-negative matrix factors W and

H such that:

V ≈WH (3.2)

That is, given a set of multivariate n-dimensional data vectors, we place
these vectors in the columns of a n × m matrix V , where m is the amount
of examples we have. We then approximately factorize this matrix into two
different matrices: a n × r matrix W and a r ×m matrix H. We generally
choose r < min(n,m) (though this is not required) so that the two matrices
are smaller than the original matrix V , essentially compressing it. [30] The
variable r is usually referred to as the rank of the approximation.

3.3 Classification

NMF is as of currently still a relevant research topic, and has been explored by
researchers from many different fields including mathematicians, statisticians,
computer scientists or biologists. Given the wide range of use, over time it lead
to different variations and additional constraints on the algorithms. Therefore,
a taxonomy system was proposed in [29], outlined below.

Figure 3.1: The NMF classification as per [29].

3.3.1 Basic NMF

This is the basic model which only enforces non-negativity, and which all the
following ones build upon.

However, due to its unconstrained nature, without any other constraints
there are many possible solutions which may lead to the algorithm’s perfor-
mance to vary. Further constraints outlined below help in the search of unique
solutions and optimizing for specific scenarios.
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3.3.2 Constrained NMF (CNMF)

Constrained NMF imposes additional constraints on the resulting matrices,
namely:

Sparse NMF SPNMF, sparseness constraint

Orthogonal NMF ONMF, orthogonality constraint

Discriminant NMF DNMF, couples discriminant information along with
the decomposition

NMF on manifold MNMF, preserves local topological properties

3.3.3 Structured NMF (SNMF)

Structured NMF modifies standard factorization formulations:

Weighed NMF WNMF, attaches weights to different elements relative to
their importance

Convolutive NMF CVNMF, considers time-frequency domain factorization

Non-negative Matrix Trifactorization NMTF, decomposes the data into
three matrices

3.3.4 Generalized NMF (GNMF)

Generalized NMF can be considered a broader variant of Basic NMF, where
conventional data types or factorization modes may be replaced with some-
thing different. It’s split as follows:

Semi-NMF relaxes the non-negativity constraint on a specific factor matrix

Non-negative Tensor Factorization NTF, generalizes the model to higher
dimensional tensors

Non-negative Matrix-set Factorization NMSF, extends the data sets from
matrices to matrix-sets

Kernel NMF KNMF, non-linear model of NMF
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3.4 Properties

The additional constraint of non-negativity is important, as results show that
it leads to a natural higher sparseness in both the basis matrix (W ) and
the encoding matrix (H). Additionally, non-negativity leads to a parts-based
representation, which is similar to how our brains are presumed to work,
basically combining parts in an additive manner to form a whole instead of
subtracting. [31] This sparseness makes it even easier to further compress the
resulting matrices, saving us more space.

However this isn’t without any downsides. While the concept of adding
parts together seems to make a lot of sense, there is an issue. Since NMF
employs a holistic approach, the additive parts learned by it in an unsuper-
vised mode only considers features on a global level, and does not allow for
representation of spatially localized features. [32]

So while on paper NMF might seem better than PCA or SVD for a parts-
based representation, it only comes at a cost of increased complexity, and
since both PCA and SVD have a more compact spectrum than NMF, we
must consider if this is worth the trade-off. [29]

3.5 Algorithms

For the purposes of this thesis, we will only consider algorithms for Basic
NMF. While NMF has been widely used in sound analysis etc. as we’ll see
below, its use for audio compression specifically is rare and there are limited
resources to provide insight into utilizing possible constraints, therefore we
will only be using the standard version.

Finding a decomposition of a matrix V into matrices W and H is an
NP-hard problem, and as such, the resulting matrices are generally only ap-
proximated over a number of iterations of an optimization algorithm. What
this means in practice is that it’s likely a result we’ll find is sub-optimal or a
local minimum.

3.5.1 Cost function

When using iterative updates, in each step of the process we need to evaluate
the quality of the approximation. The function that does this is called the
cost function, or objective function.

There are two simple commonly used functions. Firstly, we can use squared
Euclidean distance: [33]

||A−B||2 =
∑
ij

(Aij −Bij)2 (3.3)

This is lower bounded by 0, which it only is equal to if A = B.
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Another metric we can use is based on Kullback-Leibler divergence, and
is defined as such: [30]

D(A||B) =
∑
ij

(
Aij log Aij

Bij
−Aij +Bij

)
(3.4)

3.5.2 Update rules

With the cost function in place, we now need a function to apply each iteration
to try and minimize the value of the cost function. It has been found that a
good compromise between speed and ease of implementation is to use what’s
called multiplicative update rules. [30] Despite being over 15 years old, they
are still very commonly used exactly for this reason.

For non-increasing Euclidean distance ||V −WH||, if W and H are at a
stationary point of distance, we may use these rules:

Haµ ← Haµ
(W TV )aµ

(W TWH)aµ
(3.5)

Wia ←Wia
(V HT )ia

(WHHT )ia
(3.6)

And for non-increasing divergence D(V ||WH), if W and H are at a sta-
tionary point of divergence, we can use this:

Haµ ← Haµ

∑
iWiaViµ/(WH)iµ∑

kWka
(3.7)

Wia ←Wia

∑
µHaµViµ/(WH)iµ∑

vHav
(3.8)

3.5.3 Initialization

Before we can use our update rules to iteratively optimize the cost function,
we need some initial value to initialize the matrices W and H to, first. In
practice, different initializations generally yield different solutions, so it may
be worth considering. [34]

The most basic way of initialization is to simply initialize the matrices
with random values. This generally works decently but you somewhat lose
out on controlling the composition of the matrices. A small way to improve
this is to generate random matrices a couple times and pick the one with the
lowest cost function value, but the issue remains.

As per [34], there are tons of different ways to initialize the matrices,
usually relating to constraints on the matrices, e.g. initialize H in such a way
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that none of the values are above a certain threshold etc. But given the low
amount of research on audio compression using NMF, it’s difficult to gauge
which of these might work better for audio than others, and as such this work
will not elaborate on different ones further.

3.6 Use in digital audio processing

In digital audio, Non-negative matrix factorization is mostly used as a tool for
analysis rather than compression. The ability to extract hidden features from
a given signal is useful for certain things.

For example NMF sees use in audio separation tasks. [35] The gist of this
lies in first creating a spectrogram of the signal using STFT and then using
NMF decomposition to isolate different kinds of sounds or instruments from
it, roughly represented by the basis matrix.

Another example of use is musical transcription. [10] The idea here is
to process an input signal via STFT, further filtering and NMF, to isolate
individual notes from e.g. a piano piece.

Both of these methods have seen some success, but as we will see later,
applying NMF to compression rather than analysis is not a simple task and
might not even be worth it.
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Chapter 4
Data compression

Compression can be split into two kinds - lossy and lossless. Using ”lossless” in
the context of audio is a bit misleading, since sampling itself is a lossy process,
but using a high enough sampling rate, we will not notice any difference, so
sampled audio without any lossy compression will be our baseline.

For audio, lossless compression generally means taking some form of digital
audio representation and losslessly compressing this data. This will preserve
the signal in its entirety with a reduced bit-rate. However, due to size of such
audio (an audio CD could only fit about 80 minutes of such music sampled at
44.1 kHz), it’s become more common to use a lossy format.

Lossy compression implies that there will be loss of data, and while this
is true, thanks to the application of various psychoacoustic principles size of
audio can be greatly reduced without altering human perception, leading to
vastly smaller bit-rates for no real cost.

This work focuses on lossy audio compression, therefore only lossy codecs
will be considered for comparison.

4.1 Lossy audio compression

4.1.1 State of the art

Due to its qualities of efficiently compacting energy and mitigating artifacts
at block boundaries, MDCT is the most commonly used transformation in
modern lossy audio coding, and is employed in the most popular audio formats
including MP3, Opus, Vorbis or AAC.

In this section, I will elaborate on some of the more popular ones to get an
idea of what considerations go into writing a modern audio codec. They are
also the ones that will be used for comparison with my own encoding scheme.
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Figure 4.1: The MP3 encoding scheme, simplified.

4.1.1.1 MP3

MP3, or MPEG-1 Layer III has been standardized in 1991 and has since
become widespread throughout a multitude of electronic devices as the de-
facto standard for music storage. Its simplified encoding scheme can be seen
in Figure 4.1.

It’s a very powerful compression/decompression scheme capable of reduc-
ing the bit-rate of an audio stream by up to a factor of 12 without any notice-
able (to humans) quality degradation. In other words, to transmit CD quality
audio, it needs a bitrate of 128 kbps. [7]

The core of MP3 compression is the Modified discrete cosine transform.
The signal represented in its PCM form is first split into 32 subbands using an
analysis polyphase filterbank, and each of those is further split into 18 MDCT
bins, so overall we end up with 576 MDCT frequency bins per frame.

These bins are then sorted into 22 scalefactor bands, which roughly corre-
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late to the 24 bands of human hearing. The point of these bands is that you
may individually scale each of them up or down depending on how much preci-
sion you need for that specific frequency range. This usually done by dividing
and rounding the values in the band, losing a certain amount of information;
this process will be reversed during decoding.

The signal is also analyzed using the Fourier transformation, which gives
us frequency information for the signal in the same frame, and we can use this
information to determine how much to scale each scalefactor band - e.g. if
there’s some weak sound that will be masked by another, we can assign the
band it’s in lower precision, saving data. [36]

Once we have the scaled and quantized data, we use the Huffman encod-
ing to losslessly compress these values, and format this output into the final
bitstream, encoding our audio.

4.1.1.2 Opus (CELT)

The Opus codec has been standardized fairly recently, in 2012 [37] compared to
other widespread audio codecs. Opus was created from two core technologies
- Skype’s SILK codec based on linear prediction, and Xiph.Org’s CELT codec,
based on the MDCT. [38]

As a result, Opus is capable of performing in three different modes:

SILK used for speech signals

CELT used for high-bitrate speech and music

Hybrid both SILK and CELT used simultaneously

This thesis will mainly focus on Opus CELT due to it being more general
purpose than SILK, which will make it easier to use for comparison with a
NMF-based codec. SILK uses a technique known as Linear predictive coding,
whose complexity and difficulty of implementation exceeds the scope of this
work.

Opus is designed with real-time constraints in mind, that is, for example
network music performances which require very low delays. Despite that,
however, its compression is comparable to codecs with higher delays intended
for streaming or storage. This makes it a good candidate to test against in
this work, alongside MP3.

CELT (Constrained Energy Lapped Transform) is based on MDCT similar
to MP3, but the main difference is that Opus uses specifically sized bands with
ranges similar to the Bark scale in order to preserve the spectral envelope of
the signal.

Similar to MP3, Opus CELT works on the basis of quantizing MDCT coef-
ficients, but utilizes various kinds of prediction and focuses more on handling
transients, and is much more complex in general. Through various optimiza-
tions Opus achieves similar results but at a reduced bitrate.
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4. Data compression

Figure 4.2: This figure attempts to summarize the results of a collection of
listening tests, comparing various lossy audio codecs. Image attributed to
Jean-Marc Valin and licensed under CC BY 3.0.

4.1.2 Compression using NMF

This section is separate from the state of the art, as NMF is not really used
for audio compression in practice. There is one notable example that will be
covered and to an extent implemented here, for more details refer to [39].

The proposed method uses a metric previously formulated in [40] called
noise-to-mask ratio, or NMR for short. They successfully apply this metric
onto non-negative matrix factorization, establishing a custom cost function to
represent NMR and also propose update rules based on Euclidean distance
for minimizing this cost function.

Results showed that NMR performed better than other, more general cost
functions. Audio compressed using NMF + NMR had better perceptual qual-
ity and managed to encode signals with lots of transient sounds in better
quality. However, NMR in its current form is part of a proprietary algorithm
known as PEAQ [41], and while the standard is public, it is under-specified
and a conforming implementation is not available, so this work will not use it.

This modified NMF is then used in what the paper refers to as object-based
audio coding, and the principle is fairly simple to understand. Instead of using
MDCT for conversion to the frequency domain, they use STFT, obtaining the
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4.2. Lossless data compression

frequency spectrum as a set of complex values. They then take the magnitude
and phase of each of these complex values to obtain the magnitude spectrogram
and phase information.

The magnitude spectrogram is then compressed using NMF (+NMR)
among other things, whereas the phase information is entropy encoded sepa-
rately and does not utilize NMF at all.

The conclusion is that while object-based audio coding done this way
achieves reasonable bit-rate and quality on the magnitude spectrogram, it
is difficult to efficiently encode the phase information and as such the bit-rate
of this approach proved to be too high to be usable in practice compared to
other, more common, MDCT based methods.

4.2 Lossless data compression

Despite focusing on lossy compression, there are some parts in this work that
will be compressed losslessly. Specifically, certain coefficients will be com-
pressed using Huffman coding, so it’s important to define that first.

4.2.1 Huffman coding

Huffman code refers to an optimal prefix coding scheme often employed for
lossless compression. It’s used to compress a message that only consists of
members from a finite, known beforehand set of symbols. [42]

The goal is to create a dictionary that maps each value to a sequence of
bits, where none of the sequences is a prefix of another one, which means that
there are no ambiguities when decoding a Huffman encoded message, and we
do not need to store any information about where one code begins and where
it ends.

The main characteristic of a Huffman code is that the more frequent a
symbol is, the shorter code it will be assigned. So in the case of a system
where a certain symbol is very frequent, a message consisting of mostly those
symbols will be compressed greatly, with no loss of data.

Algorithm 1 describes the compression process, at the end of which we
obtain a Huffman tree. By traversing this tree from the root and assigning
every left child a 0 and every right child a 1 and concatenating these bits as
we reach the symbols in the leafs, we obtain the Huffman code for the given
symbol. The asymptotic complexity of this algorithm is O(n logn), essentially
we needO(logn) time to determine the highest priority in the queue, and there
are O(n) iterations.

Often, the dictionary itself has to be encoded as well, but as the frequencies
are roughly the same for each audio file, the tree can be fixed directly into the
implementation.
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Input: a list of symbols and their probabilities
Output: a Huffman tree
queue ← new PriorityQueue();
foreach item x in input do

node ← new Node();
node.symbol ← x.symbol;
node.prob ← x.probability;
node.leftChild, node.rightChild ← null;
queue.enqueue(node, node.prob);

end
while queue.length > 1 do

node1 ← queue.dequeue();
node2 ← queue.dequeue();
newNode ← new Node();
newNode.leftChild ← node1;
newNode.rightChild ← node2;
newNode.prob ← node1.prob + node2.prob;
queue.enqueue(newNode, newNode.prob);

end
Algorithm 1: Huffman code compression
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Chapter 5
Design

In this chapter I will give an overview of how this audio codec will be designed,
and explaining the various decisions I made along the way.

I have decided to call this new codec ANMF (stands for Audio-NMF),
using files with the extension .anmfx, where x represents the compression
method. It will be implemented as a command line utility.

There are currently three different ANMF formats that you can choose
from, and their main difference is which audio representation is being com-
pressed by NMF. They are as follows:

ANMF-RAW denoted by r, compresses the signal in PCM form (time do-
main)

ANMF-MDCT denoted by m, compresses the signal transformed with MDCT
(frequency domain)

ANMF-STFT denoted by s, compresses the signal transformed with STFT
(frequency domain)

5.1 WAVE file

WAVE, WAV or Waveform audio is a file format for storing digitized audio,
created as a joint design by the Microsoft Corporation and the IBM Corpora-
tion. They are built on top of the chunk-based RIFF format. For details on
the specific structure of a WAVE file please refer to [43].

It stores raw uncompressed audio samples in PCM format along with some
metadata and will serve as both the standard input and output to the ANMF
codec. Most commonly used formats can be converted to and from WAV as
well and thus it will serve as a good baseline.

Samples in this format can be represented by different datatypes, I chose
16-bit signed integers, i.e. each sample’s amplitude is represented by a whole
number between −32768 and 32767. The sample rate can vary, but a good
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standard value the experiments will use is 44.1 kHz, which corresponds to
audio CD quality.

5.2 ANMF File structure

The base container for the compressed ANMF file is the same no matter which
encoding method you use. The bytes are saved in little endian byte order.

Please refer to Table 5.1 and each encoding method’s table for the specific
file structure. The first eleven bytes are mostly set in stone other than the
method specification, but after that it varies greatly.

Table 5.1: ANMF file structure
Bytes Data type Description

0-3 char[] identifier string ”ANMF”
4 char method used, can be ’S’, ’R’ or ’M’

5-6 uint16 # of channels
7-10 uint32 sample rate
11-? enc data encoded data depending on the method

When serializing matrices to a file, the structure in Table 5.2 will be used,
denoted by a ”matrix(dt)” datatype in the following tables, where dt stands
for the datatype used for the matrix elements.

Table 5.2: Serialized matrix structure
Bytes (relative) Data type Description

0-3 uint32 amount of rows in the matrix
4-7 uint32 amount of columns in the matrix

8-(8 + x− 1) dt row-wise values of the matrix, x = rows ∗ columns

There’s also one more kind of matrix, a matrix using Huffman encoded
quantized values. This will be denoted by a ”quant matrix” datatype. For its
specification please see Table 5.3.

Table 5.3: Serialized quantized matrix structure

Bytes (relative) Data type Description
0-3 uint32 amount of rows in the matrix
4-7 uint32 length L of the Huffman encoded byte stream

8-(8 + L− 1) byte[] Huffman encoded byte stream representing the matrix
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5.3 Encoder

The encoder is responsible for taking a raw audio file and encoding the data
within, producing a compressed version of the original. Please refer to Figure
5.1 for a visual representation of the process.

Figure 5.1: A high level overview of the ANMF audio encoder.

Next, each format’s encoding process will be outlined (third step in the
figure). If the audio file has multiple channels, this process is repeated on each
channel separately.

5.3.1 ANMF-RAW

Figure 5.2: The encoding scheme for ANMF-RAW.

ANMF-RAW works on the principle of applying NMF directly to the PCM
audio samples xn. However, the samples are initially an array of 16-bit signed
integers, and as such, they need to be processed first before NMF can be used.

A chunk shape is specified to determine how many rows and columns each
matrix will have before NMF. We choose a target matrix shape of 1152× 200
to match the amount of samples per frame in the other methods.The sample
array is then padded with zeroes to ensure there are enough elements at the
end of the array to ensure every matrix can have the same shape and number
of elements. The amount of padding must be written to the output so that
we know the length of the original array when decoding.

Once the array is padded, we iterate over the samples and split them into
equal chunks of size rows ∗ columns. This array is then ”folded” to produce a
matrix of the desired shape. We then obtain a matrix of signed integers, so in
order to be able to use NMF, we first need to get rid of all the negative values.
To do that, we increment each chunk by the absolute value of its smallest
element, guaranteeing that the lowest value in the matrix is ≥ 0.

Once we have this matrix, we proceed by applying basic random-initialized
Euclidean-based NMF on it, obtaining the basis matrix W and coefficient
matrix H. Lastly, for each chunk, we write the value we incremented the
matrix by, and the two decomposition matrices.
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Table 5.4: ANMF-RAW data structure
Bytes (relative) Data type Description

0-3 uint32 amount of zeroes used to pad the samples
4-7 uint32 amount of chunks
8-? data chunk[] NMF-compressed data chunks (refer to Table 5.5)

Table 5.5: ANMF-RAW structure of each data chunk
Bytes (relative) Data type Description

0-7 float64 absolute value that the matrix was incremented by
8-? matrix(float32) matrix W
?-? matrix(float32) matrix H

Figure 5.3: The encoding scheme for ANMF-MDCT.

5.3.2 ANMF-MDCT

In ANMF-MDCT, as the name suggests, the PCM input will be transformed
using MDCT as per Section 2.2.2.3. Since this is a lapped transform, each
transformed block will have a 50% overlap with the following block. We choose
a frame size of 2N = 1152 and split the signal into blocks of that size, thus
each block will contain N = 576 coefficients from its own block, and another
576 from the following one.

The decision to have a block size of N = 576 stems from the fact that this
will give us the same amount of frequency resolution that e.g. MP3 uses (as
seen in Section 4.1.1.1), which proved to be enough for human hearing.

As before, we first pad the signal at the end with zeroes to align it to the
desired block size. To prevent loss of data in the first and the last block due
to the overlapping, we further pad the signal by an array of zeroes, equal in
size to the size of a block, that is N zeroes both at the beginning and the end
of the signal.

Then, we apply a windowing function on each block to bring the values
near the edges closer to 0 to help mitigate spectral leakage. We use the MLT
window wMn as defined in Section 2.1.4.3.

Finally, we apply the MDCT on each of the windowed blocks and obtain
a matrix of MDCT coefficients in the form of real numbers.

This matrix is then split into smaller chunks. For example, if the MDCT
matrix contains 576 rows and 1100 columns, we might split it into submatrices
sized 576× 200, with the last one being 576× 100, as no padding is necessary
here. This amount of chunks is written to the output. We increment the
MDCT matrix by its lowest value to get rid of negative values. Basic random-
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initialized Euclidean-based NMF is then ran on each of the chunks separately
and the decomposition matrices serialized.

Table 5.6: ANMF-MDCT data structure
Bytes (relative) Data type Description

0-3 uint32 amount of zeroes used to pad the samples
4-7 uint32 amount of MDCT submatrix chunks
8-? data chunk[] NMF-compressed MDCT chunks (refer to Table 5.7)

Table 5.7: ANMF-MDCT structure of each data chunk
Bytes (relative) Data type Description

0-7 float64 absolute value that the matrix was incremented by
8-? matrix(float32) matrix W
?-? matrix(float32) matrix H

5.3.3 ANMF-STFT

The design of ANMF-STFT is based on the solution suggested in [39] with
some changes along with only utilizing open source solutions.

Like with ANMF-MDCT, we choose a frame size of N = 1152, leading to
a frequency resolution of 576 bins. We begin by properly padding the signal
to N so that it’s possible to be split into equal parts. We then use STFT with
50% overlap and a block size of N , which means we end up with twice the
coefficients compared to MDCT, but this is not a major issue.

During STFT, we must again window each block, leading to overlapping
windows. We use the Hann window wHn for this (as defined in Section 2.1.4.2).

Once STFT is finished, we end up with a matrix of Fourier transform
coefficients in the form of complex numbers. Trying to apply NMF on the
complex numbers directly would yield similar results to ANMF-MDCT, so we
have to approach this differently.

If we visualise the complex valued elements in the complex plane, we can
instead represent each element z as two separate values:

magnitude also called the modulus, geometrically it’s the distance from 0

phase also called the argument, geometrically it’s the angle from the real axis

To obtain the phase φ of a complex number z = x + iy, we can use the
following formula:

φ(z) = arg(z) = arctan2(y, x) (5.1)
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Figure 5.4: The encoding scheme for ANMF-STFT.

And to obtain the magnitude |z| of the complex number:

|z| =
√
x2 + y2 (5.2)

By calculating the magnitude and phase of every element in the STFT ma-
trix individually, we obtain the magnitude spectrogram and the phase spec-
trogram respectively. We now need to encode both of them individually.

For the phase matrix, my experiments showed that applying NMF on it
leads to a very noticeable loss in quality, so instead I opted for a different
solution that ultimately ends up saving more space than NMF would.

The phase matrix contains values ranging from −π to π. These values are
uniformly quantized into 8 levels (np = 3 bits) as per Section 2.1.3.1. Due to
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the relative frequency of the boundary values −π and π, a mid-tread quantizer
is used. The frequency of each quantization level is visible in Figure 5.5.

Using these frequencies, we are able to then construct a Huffman coding
table (refer to Section 4.2.1) and use it to losslessly encode the quantized phase
matrix using at most 4 bits per value.

Figure 5.5: Frequency of each quantization level in the phase spectrogram.
Data taken from the average of all the example audio files.

The magnitude spectrogram is where we actually use NMF. As it is effec-
tively a matrix of signal amplitudes, it’s less prone to noticeable quality loss
if the values deviate a little. We split the magnitude matrix column-wise into
smaller submatrices, e.g. chunk size = 500.

For each submatrix we then increment it by its lowest value to get rid of
negative values and then run basic random-initialized Euclidean-based NMF,
obtaining the weight matrix W and coefficient matrix H.

For the next step, we apply µ-law compression to both the decomposition
matrices, as defined in Section 2.1.3.2. In order to be able to do that, we first
scale both matrices to the range [0, 1]. We do this by applying the following
formula to all elements in both matrices:

M ′ij = Mij −min(M)
|max(M)−min(M)| (5.3)
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To restore the original scale later, we need to save both the minimum and
maximum value, otherwise they will be lost in the non-uniform quantization.

For the µ-law compression, we experiment with the value of µ later, but a
good start is µW = 104 and µH = 105. We do this because we want to lower
the amount of bits needed to represent each value, without losing the values
near zero - that would lead to a large loss of quality, or in some cases, loss of
the signal itself.

In the weight matrix, we then convert the compressed values into 32-bit
unsigned integers, as going to values below that proved to cause loss of signal
data, and this integer matrix is then serialized into the file.

However, in the case of the coefficient matrix H, we can go a lot further.
We use a uniform quantizer with 32 levels (nh = 5 bits) and we opt for a
mid-tread quantizer again, as we want to be able to reconstruct a value of 0,
i.e. feature not present.

Similarly to the phase matrix, we take these quantized values and look at
their frequencies. The results of this analysis are visible on Figure 5.6.

Figure 5.6: Frequency of each quantization level in the decomposed coefficients
matrix of the magnitude spectrogram. Data taken from the average of all the
example audio files.

Using this information, we can construct another Huffman coding table,
separate for this matrix. As we can see, even despite the µ-law compression,
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a lot of values still fall to a quantized value of 0.
In a Huffman table from these frequencies, we then assemble the shortest

code to the value 0, i.e. we only need 1 bit. The longest code in a table
constructed this way for 32 levels of quantization will only require 11 bits.
Overall, we save a lot of space saving the matrix this way as opposed to
storing the values as 32-bit floats or integers.

Table 5.8: ANMF-STFT data structure
Bytes (relative) Data type Description

0-3 uint32 amount of zeroes used to pad the samples
4-7 uint32 amount of STFT submatrix chunks
8-? quant matrix quantized phase matrix
?-? data chunk[] NMF-compressed magnitude chunks (refer to Table 5.9)

Table 5.9: ANMF-STFT structure of each magnitude submatrix

Bytes (relative) Data type Description
0-7 float64 absolute value that the matrix was incremented by
8-15 float64 minimum value before scaling to [0, 1]
16-23 float64 maximum value before scaling to [0, 1]
24-? matrix(uint32) µ-law compressed matrix W
?-? quant matrix quantized µ-law compressed matrix H

5.4 Decoder

Similar to the encoder, the decoder simply reverses the encoding process as
seen in Figure 5.7. As this process is fairly straightforward for each of the
methods, it won’t be elaborated on further.

Figure 5.7: A high level overview of the ANMF audio decoder.
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Chapter 6
Implementation

This chapter explains the specific details of implementing the audio codec
outlined in the previous chapter.

The codec was implemented entirely using Python 3 (x64) [44] and the
source code is available both as part of this thesis and on my personal GitHub
profile found at https://github.com/argoneuscze/AudioNMF.

The codec could be roughly split into three parts:

Command line utility the command line interface (CLI), interacts with the
user

Audio library a set of classes and functions responsible for reading/writing
audio files

Compression library a set of classes and functions responsible for encoding
and decoding ANMF files

6.1 Used 3rd party libraries

The codec uses several libraries for things where a tried and tested method is
both faster and more reliable than implementing my own. A brief description
of each of them follows.

6.1.1 click

The Click [45] library lets you create command line interfaces in a descriptive
manner without having to manually read user input. This helps prevent errors
regarding unexpected parameters and such. It also automatically generates
the help message describing the various options and arguments, all of which
makes it suitable for a project like this.

41

https://github.com/argoneuscze/AudioNMF


6. Implementation

6.1.2 pytest

pytest [46] is a framework for writing and executing tests in Python. To
ensure certain functions work correctly and give expected results, several unit
tests have been written.

6.1.3 dahuffman

To create Huffman trees and use Huffman coding, a library called dahuffman
[47] was utilized.

It determines the frequencies either from a dictionary containing value→
frequency pairs, or it infers them automatically from existing data (as per
Section 4.2.1). Once the frequencies are determined, the library is capable of
losslessly encoding and decoding arbitrary data containing the symbols from
the Huffman tree into a serializable byte array.

If needed, the Huffman table including the exact code for each symbol can
be printed to validate it works correctly.

A wrapper class was made around this library called HuffmanCoder, to
facilitate easier usage and to be able to easily separate different coders using
varying dictionaries. It has convenience methods encode_int_matrix and
decode_int_matrix.

When encoding using the encoding method, it flattens the matrix into an
array, then dahuffman encodes the array using the associated Huffman table,
and finally the function returns both the bytes and the amount of rows in the
original matrix.

Decoding does the reverse - it takes these bytes and the amount of rows,
decodes the bytes into an array of values, and then re-shapes the array into
the original matrix.

6.1.4 SciPy

SciPy [48] is short for Scientific Python and as the name suggests, this library
provides the bulk of the mathematical support for the implementation.

SciPy as a whole is more of a stack, or software ecosystem, containing var-
ious sub-libraries (covered below). However, the SciPy library itself provides
some algorithms which are used as described later.

6.1.4.1 NumPy

NumPy [49] is part of the SciPy stack and its most important feature for us is
that it provides us with an easy way to create and manipulate N-dimensional
array objects. In our case, for the most part it’s 2D matrices.

It has a friendly syntax and all the core functions for creating matrices,
mapping functions over them, multiplying them etc., all of which are very
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important. It also supports complex numbers and operations on them seam-
lessly.

Even though it is a Python library, a lot of its performance critical parts
are written in lower level languages such as C and are optimized for complex
calculations.

NumPy is heavily utilized in this work, as the problem of NMF mostly
concerns 2D matrices and NumPy is ideal for working with those.

6.1.4.2 Matplotlib

Matplotlib [50] is also part of the SciPy stack and it’s best described as a
Python plotting library, capable of producing various (primarily 2D) plots and
diagrams from data.

As it’s closely integrated with SciPy, it can natively plot data structures
created by e.g. NumPy without any boilerplate code necessary.

Matplotlib is responsible for most of the diagrams visible in this thesis.

6.2 Command line utility

The command line part of the program (and the entry point) was created
using the Click library.

The CLI lets you specify which kind of compression you want to use, be-
tween ANMF-RAW, ANMF-MDCT and ANMF-STFT, defaulting to ANMF-
STFT. When decompressing, it automatically determines the compression
type from the file’s extension.

The bulk of the work of the command line utility is to pass the input file’s
handle to the audio library and obtain a reference to the parsed audio data.
This data is then passed to the compression library along with a reference to
the output file handle, and once the target file is compressed or decompressed,
the program returns.

6.3 Audio library

The audio library is capable of reading samples from audio files, or creating
audio files from samples, in both cases the only supported format right now
is 16-bit signed PCM WAV.

To facilitate reading and writing WAV files, I use the methods contained in
the scipy.io.wavfile namespace, specifically scipy.io.wavfile.read and
scipy.io.wavfile.write.

When a WAV file is read, its raw samples and metadata are stored in an
internal class called AudioData. This class can then either call the compression
library to save it as a compressed ANMF file, or it may call into SciPy again
to save it into a WAV file.
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6.4 Compression library

The compression library is a collection of three classes:

NMFCompressorRaw class responsible for compressing and decompressing
ANMF-RAW data

NMFCompressorMDCT class responsible for compressing and decompress-
ing ANMF-MDCT data

NMFCompressorSTFT class responsible for compressing and decompress-
ing ANMF-STFT data

Each of those has two functions: compress(audio_data, file_handle)
and decompress(file_handle, audio_data). For compression, it reads the
audio data and writes it to the target file. For decompression, it reads the raw
data from the file and creates a new AudioData object, updating the reference
with the decompressed data.

The encoding process has already been described in Section 5.3, so I will
only include specific implementation details here. For the decoding process,
just as before, it’s doing the same, but inverse operations in the same order,
so it will not be elaborated on in detail.

Unless mentioned otherwise, all matrix operations are implemented using
NumPy and its associated data structures and functions. Writing data to file is
done using the struct.pack function from the native Python library. During
decoding, when the audio data is finalized, it must be converted back to a
signed 16-bit integer, so that it can be saved to a WAV file.

6.4.1 Utility functions

To avoid code repetition, a lot of functionality is shared between the vari-
ous methods using different helper functions. The most important ones are
described below.

6.4.1.1 Matrix (de)serialization

There are two core functions for matrix serialization and deserialization to/from
a file:

• serialize_matrix(fd, matrix, dtype=’f’)

• deserialize_matrix(fd, dtype=’f’)

For serialization, the input matrix is taken and converted to the target
datatype, by default using a 32-bit float, but this can be changed by the caller0.
Then, two 32-bit unsigned integers are written representing the amount of rows
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and columns in the matrix. After that, the matrix is flattened row-wise and
each value is written to the file individually.

Deserialization works on the same principle. First we need to read the
amount of rows and columns, and then read rows×columns×sizeof(datatype)
bytes to obtain a data array, which is then re-shaped to the original matrix
and returned.

6.4.1.2 Array padding

If we want to run some transformation on an array of values, we may need
the array’s length to be divisible by a certain number, to be able to split it
into equal parts.

There is a utility function for this with the signature array_pad(array, n),
where array is the array we want to pad and n is the number whose multiple
the array’s length should be.

We first find the necessary padding by calculating padding = −length(array)
mod n and then add that amount of zeroes to the end of the array, returning
both the new array and the amount of padding. The padded zeroes need to be
removed again during decoding, otherwise we’ll end up with a different signal
than the original.

There is a variant of this function for convenience called array_pad_split(array, n),
which does the same as the former, but also splits the array into n-sized
chunks, returning a list of the new subarrays and the padding at the end.

6.4.1.3 Matrix splitting

Similarly to the previous functions, there are times where have a matrix and
we want to split it into smaller matrices. There is a function for this called
matrix_split(matrix, n).

It takes an input matrix x × y, and splits it into
⌊
x
n

⌋
submatrices, each

sized n× y. There is no padding necessary in this case.

6.4.1.4 Range scaling

There are a few instances where a value (or more often, an entire matrix of
values) needs to be scaled within a certain range, e.g. for µ-law companding.

The design part already describes a simple equation to scale a range of
values to the [0, 1] range (Equation 5.3), but the actual implementation allows
scaling from an arbitrary range to an arbitrary range. This function is called
is scale_val and you can see its code in Listing 6.1.
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Listing 6.1: Function for scaling value ranges
def s c a l e v a l (x , old min , old max , new min , new max ) :

o ld range = abs ( old max − old min )
new range = abs (new max − new min )
va l = ( ( ( x − old min ) / o ld range ) ∗ new range ) + new min
return va l

6.4.1.5 Uniform quantization

In ANMF-STFT, it’s often needed to uniformly quantize a range of values
into N levels. To make this easier, a special class UniformQuantizer was
implemented. It has three parameters:

min val the minimum value in the range

max val the maximum value in the range

levels the desired amount of quantization levels

Internally, it uses a mid-tread quantizer as defined in Equation 2.2. Rather
than returning the quantized value itself, it returns an index in the range
[0, levels− 1].

This means, that given a UniformQuantizer and an index of a quantized
value, it can trivially determine the actual quantized value x as:

x = min val + index · step (6.1)

Where step is defined as:

step = max val −min val
levels− 1 (6.2)

It has two methods: quantize_value(value) and dequantize_index(index),
depending on what you want to do.

6.4.1.6 NMF helpers

This set of functions helps use NMF by doing any processing necessary both
before and after and serves as a sort of interface between the codec and NMF.
It includes three functions:

• nmf_matrix(matrix, max_iter, rank)

• nmf_matrix_original(W, H, min_val)
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• increment_by_min(matrix)

increment_by_min takes an input matrix, findsmin val = |min(matrix)|,
and increments every element in the matrix by min val, ensuring that the
matrix does not contain any negative values.

nmf_matrix takes an input matrix, applies increment_by_min on it and
then calls NMF, obtaining the weight and coefficient matrices. It then re-
turns both of those matrices along with the minimum value it was initially
incremented by.

nmf_matrix_original takes the decomposition matrices W and H along
with the minimum value min val, multiplies the two matrices and subtracts
min val from each element of the new matrix, to ensure the original range of
values is preserved. It then returns the final approximated matrix.

6.4.2 NMF implementation

Basic NMF has been implemented in a class called NMF. It’s a basic implemen-
tation for approximating a matrix V as a product of two matrices WH.

The class constructor takes six different arguments:

1. input matrix

2. maximum number of iterations

3. approximation rank

4. initialization function

5. cost function

6. update function

There are a few important functions:

• The validate() ensures that the input matrix does not contain any
negative values, raising an exception otherwise.

• Cost function evaluation is done by the eval_cost() function.

• factorize() stands at the core of the class as it does the actual factor-
ization, returning the factors W and H. Please refer to Listing 6.2 for
the source code.

In its default settings, it uses the Euclidean cost function (Equation 3.3)
and Euclidean updates (Equation 3.5), with the initial elements of W and H
being randomly initialized from the range [0,max(V )].
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Listing 6.2: Python code for the factorize function
def f a c t o r i z e ( s e l f ) :

s e l f . i n i t i a l i z e ( s e l f )
l a s t c o s t = None
for i in range ( s e l f . max i ter ) :

s e l f . update ( s e l f )
co s t = s e l f . e v a l c o s t ( s e l f )
i f co s t == l a s t c o s t :
break

l a s t c o s t = cos t
return s e l f .W, s e l f .H

6.4.3 ANMF-RAW

In my implementation of the ANMF-RAW method, there are three parameters
that can be changed:

CHUNK SHAPE a 2-tuple containing the number of rows and columns
that specifies the shape of each chunk before NMF is applied

NMF MAX ITER maximum number of iterations of NMF before the al-
gorithm is stopped

NMF RANK target rank of the NMF approximation

If CHUNK_SHAPE is set to None, the entire array will be turned into a square
matrix of dimensions

⌈√
N
⌉
×
⌈√

N
⌉
, where N is the amount of samples in the

audio signal for the given channel. However, this generally leads to a huge loss
in quality and it is therefore recommended to always specify a shape tuple.

I use the utility function array_pad_split to first split the samples into
equal parts of size corresponding to the shape of the desired matrix. Then,
each of these parts is re-shaped into the proper shape using numpy.reshape,
and the values are converted from signed 16-bit integer to a signed 32-bit
integer to be able to increment the values in it. The amount of chunks along
with the extra padding at the end is then written to the output.

For each submatrix from the original sample array, we apply NMF using
the utility function nmf_matrix to calculate the NMF, and then write the
minimum value to the file along with the serialized matrices W and H.

6.4.4 ANMF-MDCT

ANMF-MDCT uses the following parameters:

FRAME SIZE how many samples a frame should contain, determines fre-
quency resolution, must be an even number
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NMF CHUNK SIZE number that specifies the number of frames in each
submatrix before NMF is applied

NMF MAX ITER maximum number of iterations of NMF before the al-
gorithm is stopped

NMF RANK target rank of the NMF approximation

As no easy to use library was available, I had to implement MDCT on my
own.

The signal needs to first be padded to block size using array_pad. Before
we can apply MDCT, the signal is windowed using the MLT window, i.e. in
every frame of size N = FRAME SIZE, we apply Equation 2.8 to every
sample.

In the implementation, there are two different algorithms for calculat-
ing the MDCT of the input signal. One is called mdct_slow and the other
mdct_fast.

The slow variant is a direct implementation of Equation 2.16 with the
inverse following Equation 2.17. Unfortunately, as the name suggests, it is
rather slow for use in production and only served as a reference for unit testing
the fast algorithm.

The fast variant instead relies on two things:

1. MDCT can be directly derived from a Discrete cosine transform (DCT)
[16]

2. DCT can be calculated quickly with the help of fast Fourier transform
(FFT) [51]

Specifically, MDCT can be derived from a type 4 DCT (DCT-IV). We
take each block of FRAME SIZE samples and split it into four equal parts
(a, b, c, d). Then, due to the boundary conditions, the MDCT of this block
is equal to a DCT-IV of the inputs (−cR − d, a − bR), where xR refers to x
in reverse order. To calculate the DCT-IV of the resulting array, we use the
function scipy.fftpack.dct(input, type=4). We normalize the resulting
array by dividing every element in it by 2, making its output equal to the slow
algorithm. The function finishes by returning the MDCT coefficient matrix
along with the length of padding at the end of the array.

Once we have our MDCT, the resulting MDCT matrix is split using
matrix_split(mdct, NMF_CHUNK_SIZE). We write the length of the padding
followed by the amount of the split submatrices as 32-bit unsigned integers.

Then, for each MDCT submatrix, we apply the utility function nmf_matrix,
write the minimum value and then serialize both the matrices.

The decoding process is fairly straightforward other than inverting the
MDCT, so that will be described next.
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If we want to get the inverse MDCT (IMDCT), it gets a bit tricky. We first
run inverse DCT-IV by using scipy.fftpack.idct(input, type=4), giving
us back the array in the form of (−cR−d, a− bR), which we need to turn back
into (a, b, c, d). By cleverly inverting, reversing and concatenating these sub-
arrays, we are able to obtain an array in the form of (a−bR, b−aR, c+dR, d+cR)
(notice that some of the values are redundant). We apply the window again
and multiply all the elements by two (to cancel out the division in the MDCT)
and obtain nearly the original array. As the final step, we need to cancel out
the ”extra” values such as −bR. To do that, we take two adjacent overlapping
blocks and add them together, leaving us with the original array (a, b, c, d).

6.4.5 ANMF-STFT

ANMF-STFT uses the same parameters as ANMF-MDCT and some addi-
tional ones:

FRAME SIZE how many samples a frame should contain, determines fre-
quency resolution, must be an even number

NMF CHUNK SIZE number that specifies the number of frames in each
submatrix before NMF is applied

NMF MAX ITER maximum number of iterations of NMF before the al-
gorithm is stopped

NMF RANK target rank of the NMF approximation

MU LAW W parameter µ for µ-law companding of the weight matrix W

MU LAW H parameter µ for µ-law companding of the coefficient matrix H

SciPy contains a function for the entire STFT calculation, called scipy.signal.stft.
It handles windowing, overlapping and padding by itself, so it is very handy.

At its core, it uses the fast Fourier transform [52]. We choose an overlap of
50% by putting the number of data points per segment to FRAME SIZE and
the number of overlapping points to FRAME SIZE

2 . For the window function,
we choose the Hann window (Section 2.1.4.2).

Before further processing, the output STFT matrix is transposed (for
the shape to be consistent with the matrix from MDCT), and then we find
the phase matrix and the magnitude matrix by calling numpy.angle and
numpy.absolute, respectively, on every element of the matrix.

The magnitude matrix is split into chunks of size NMF CHUNK SIZE
using matrix_split, while the phase matrix is quantized using a UniformQuantizer
in range [−π, π] with 8 quantization levels and this matrix of quantized values
is then Huffman encoded.
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Several things are then written to the file in order: the amount of mag-
nitude submatrices (uint32), number of rows in the phase matrix (uint32),
length of the Huffman encoded phase matrix (uint32) and the Huffman en-
coded phase matrix bytes themselves.

The magnitude submatrices are then processed in order. First we use basic
NMF via nmf_matrix, then scale both the decomposition matrices to the [0, 1]
range using scale_val, and then µ-law compress both using their respective
MU LAW [W |H] parameter as per Equation 2.4.

For matrix W , we use scaleval to scale it to range [0, 232] and change its
datatype to unsigned 32-bit integers.

In the case of matrix H, it is uniformly quantized in the range [0, 1] with
32 quantization levels, and then similar to the phase matrix, it’s Huffman
encoded using its associated Huffman table.

Then, for each submatrix, in order, we write to the file: the value we
need to subtract after multiplying WH (float64), the original minimum and
maximum of the matrix before it was scaled to [0, 1] (float64), the scaled 32-bit
integer matrix W using serialize_matrix, and finally the encoded matrix
H in the same manner as the phase matrix.

When decoding, the process is again the same but in reverse order. To
invert the STFT, we call scipy.signal.istft using the same parameters as
before. It estimates the original signal by using the algorithm described in
[53]. For this algorithm to work properly and attain perfect reconstruction of
the original signal, the COLA constraint (Constant OverLap Add) [54] must
be met. Using a Hann window at 50% overlap guarantees the satisfaction of
this constraint.
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Chapter 7
Evaluation

In this section you will find an evaluation of the different algorithms, including
experiments with various parameters for them and comparison to existing
solutions from Section 4.1.1.

7.1 Methodology

Audio compression quality is most often evaluated using a series of listening
tests (such as the one pictured in Figure 4.2). However, due to a lack of
resources to conduct such a thing, a different method must be used - although
they are generally not as accurate.

One of the most used methods for objectively evaluating perceptible audio
quality is PEAQ [41], however its specifications are insufficient, and its imple-
mentations proprietary. The exact algorithm and parameters aren’t known
for the most part. It comes in two variants:

PEAQ Basic intended for real-time use

PEAQ Advanced a more comprehensive model, intended for non real-time
use

Even though neither of these is directly available, luckily, there are a few
open-source alternatives that try to implement similar algorithms, with their
quality measured by comparing their output to PEAQ, and by proxy, to lis-
tening tests.

One of the more prominent open-source solutions is GstPEAQ, which ac-
cording to its paper [55] performs better than the other implementations. So
while it does not conform to the PEAQ recommendation directly, its results
are within an acceptable margin and thus this thesis will use GstPEAQ for
quality evaluation.
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7.2 GstPEAQ

GstPEAQ is a plugin for GStreamer [56] (a pipeline-based multimedia frame-
work) and its source code is freely available at [57]. It implements both the
Basic and Advanced mode of PEAQ as specified in [41], however as the stan-
dard is under-specified, educated guesses must be taken at points.

It’s also important to mention that I could not get the Advanced mode
to work without errors, and as such testing will be performed in Basic mode
only.

And just like PEAQ, the algorithm’s main output is a value known as Ob-
jective Difference Grade (ODG), which evaluates the perceptible impairment
(quality difference) between the provided audio and the reference audio. It
uses various psychoacoustic ”features” of the signal to determine the grade,
the details of which won’t be covered here - please refer to either paper for
specifics.

The ODG scale contains real values from 0 to −4, ranging from impercep-
tible difference to very annoying for the human ear. Please refer to Table 7.1
to see the full scale.

Table 7.1: PEAQ - Objective Difference Grade table

ODG Impairment description
0.0 Imperceptible
−1.0 Perceptible, but not annoying
−2.0 Slightly annoying
−3.0 Annoying
−4.0 Very annoying

7.3 Evaluating results

In this section we will experiment with various parameters for all the encoding
methods, find a good compromise between bitrate and ODG, and then com-
pare those results to the reference codings (MP3, Opus) at similar bitrates.

The evaluating process will work in these steps:

1. compress example WAV file using ANMF

2. decompress ANMF back to a WAV file

3. measure ODG between old and new WAV file

In the case of MP3 or Opus files, they will be decoded to WAV for com-
parison. These scripts were run on a computer using Windows 10 x64, Intel
Core i5 4670k @ 4.2 GHz and 16 GB RAM DDR3.
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7.3.1 Audio examples

There’s a total of four example audio files in WAV format that will be used
for testing. Please refer to Table 7.2 for a list. All of the examples are
∼ 5 − 10 second excerpts from audio files using 44.1 kHz sampling rate and
16-bit signed integer samples. These files can be found in the examples folder
of the implementation.

Table 7.2: List of tested audio files
ID File name Description
00 piano16t.wav Clear sounding piano sounds
01 henry16t.wav Average quality English voice
02 swave16t.wav Simple electronic music
03 taleena16t.wav Complex music including lyrics

7.3.2 Bitrate

The bitrate is the amount of bits that a computer needs to process per a unit
of time, in this context it means how many bits are needed to play back 1
second of an audio file.

To find the bitrate of a WAV file with a sampling rate Fs, we can use the
following equation:

bitrate = channelCount · Fs · bitsPerSample (7.1)

So in regards to compressing the example files, our target bitrate is at
most 2 · 44100 · 16 = 1411200 bits per second (or ∼ 1411 kbps).

To calculate the number of elements in an NMF-approximated matrix V
of size m× n with approximation rank r, we can use the following equation:

size(NMF (V )) = r(m+ n) (7.2)

Proof: NMF approximates a matrix m × n into two matrices m × r and
r × n, therefore the total size is mr + rn = r(m+ n).

7.3.3 ANMF-RAW

For ANMF-RAW, we need to find a compromise between the size of one
chunk and the rank of the NMF. First, we’ll fix the shape to 1152 × 200
and experiment with the rank.

The maximum number of iterations has been fixed to 3000, since past that
point the cost function is almost stable as seen in Figure 7.1.
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Figure 7.1: The value of the cost function per iteration during NMF in ANMF-
RAW at rank = 30.

In Table 7.3, you can see the results of changing the rank of the NMF
approximation. The rows correspond to the example IDs from Table 7.2, and
the columns correspond to the ODG for different rank values.

Table 7.3: ANMF-RAW rank experiment results

ID r = 30 r = 40 r = 45 r = 60 r = 75
00 −3.873 −3.830 −3.811 −3.749 −3.650
01 −3.908 −3.902 −3.895 −3.861 −3.844
02 −3.868 −3.850 −3.837 −3.800 −3.759
03 −3.744 −3.519 −3.361 −2.825 −2.461

It’s also worth mentioning that the runtime necessary for compression
scales with the rank, as seen in Table 7.4.

Table 7.4: ANMF-RAW average runtime in seconds

ID r = 30 r = 40 r = 45 r = 60 r = 75
00 63.378s 65.913s 67.082s 71.684s 75.839s

Interestingly enough, sample ID 03 notices the largest improvement despite
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being the more complex of the four, but when listening to the decompressed
audio, it still sounds quite distorted and noticeable. Another looming issue
is that at that rank the size of the compressed file approaches the original
filesize, so we will need to lower the rank and try a lower chunk size instead.

To calculate the bitrate of ANMF-RAW, we must take into account the
chunk size and the rank of the NMF approximation and then use Equation
7.2. There is some overhead for the metadata, but as it spans only a few bytes
it will be disregarded. The bitrate of ANMF-RAW with a chunk size of m×n
and rank r can be calculated as:

bitrateRAW = r(m+ n) · Fs
mn
· bitsPerV alue · channelCount (7.3)

Therefore, for a chunk 1152× 200 with rank 75, we get:

bitrateRAW = 75 · (1152 + 200) · 44100
1152 · 200 · 32 · 2 = 1242150 (7.4)

Our target is 1411 kbps and our compression with 1242 kbps is judged
as ”annoying” by GstPEAQ. We will try lowering the chunk size and rank
both to see if it has an effect. It was mentioned in Section 4.1.1.1 that it
can compress music by up to a factor of 12 without noticeable loss in quality.
Here, with this method, we are going to aim for at least around half that.

We take a rank of 40 and a target bitrate of 750 kbps. We pick e.g. 600
for m and solve the equation above, obtaining n ≈ 200. However, when trying
out these new parameters, the ODG barely changed from the previous shape,
and further testing of this method was thus stopped due to unsatisfactory
results.

7.3.4 ANMF-MDCT

For MDCT we fix the frame size to 1152 for a good balance between frequency
resolution and storage necessary. As seen in Figure 7.2, the approximation
converges in the same manner as ANMF-RAW (using a chunk size of 200 and
a rank of 40), but the values are much smaller. We will go with 3000 iterations
as before, though, to get more accurate results.

Learning a lesson from the ANMF-RAW experiments, it’s worth figuring
out whether ANMF-MDCT is even practical at all. To do that, we need to
be able to calculate the bitrate of ANMF-MDCT first. Assuming rank r,
sampling rate Fs, frame size Sf and chunk size Sc, our bitrate is:

bitrateMDCT = r(Sf2 + Sc) ·
Fs

1
2SfSc

· bitsPerV alue · channelCount (7.5)
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Figure 7.2: The value of the cost function per iteration during NMF in ANMF-
MDCT at rank = 40.

And as before, our initial goal is a target bitrate of 750 kbps. To achieve
that, we either use a higher rank and higher chunk size, or vice versa.

First, I tried to fix the rank to a relatively high value, specifically r = 60. If
we fill the known values into the equation and solve for Sc, we obtain a chunk
size of Sc ≈ 371. Similarly, if we go with a small chunk size, e.g. Sc = 100,
we obtain a rank of r ≈ 23.

However, as we can see in Table 7.5, the ODG values are less than usable
(and it sounds terrible to my ears as well). This seems to be mostly due to the
fact that the phase data contained in the MDCT coefficients is very sensitive
to inaccuracies and throws the signal off.

Out of curiosity, I tried increasing the frame size as well, but this only led
to the signal being unrecognizable and there doesn’t seem to be a good reason
to do it in the first place.

Due to the fact that ANMF-MDCT did not produce usable results at a
comparatively high bitrate, it will not be tested further.

7.3.5 ANMF-STFT

ANMF-STFT seemed to produce the best results during preliminary testing
when I was implementing the codec, so given that and the large amount of
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Table 7.5: ANMF-MDCT rank experiment results

ID r = 23, Sc = 100 r = 60, Sc = 371
00 −3.910 −3.911
01 −3.913 −3.913
02 −3.909 −3.910
03 −3.878 −3.877

parameters, this method will be tested thoroughly.
For baseline parameters that seemed to work well, we choose frame size

Sf = 1152, chunk size Sc = 500, µW = 104 and µH = 105. On Figure 7.3 we
notice NMF converges a lot sooner than in the previous methods, so we will
set max iterations to only 1000.

Figure 7.3: The value of the cost function per iteration during NMF in ANMF-
STFT at rank = 40. Logarithmic scale is used for better visibility.

Calculating the bitrate here is going to be a bit different. Since we use
Huffman coding, the bitrate will vary, since each value uses a different amount
of bits, but we can still estimate it.

To estimate the ”average” bitrate, we will take the Huffman table and in-
terpret it as a random variable, specifically XP for the phase spectrogram and
XH for the coefficient matrix of the magnitude spectrogram. As its output,
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we’ll use the amount of bits necessary to encode a value. For the probability
distribution of these values, we can use the data we obtained before as seen
in Figures 5.5 and 5.6. We then find the expected values E[XP ] and E[XH ]
for each of them.

The expected value E[X] of a discrete random variable X is simply put
an average of the possible values weighted by their respective probabilities.
Formally, it is defined as [58]:

E[X] =
∑
i

xipi (7.6)

By applying this model to the Huffman tables, we find that E[XP ] ≈ 3.072
bits, and E[XH ] ≈ 2.952 bits. We can then proceed with bitrate calculation.

To calculate the bitrate of ANMF-STFT, it will be easiest to calculate the
bits necessary for the phase matrix and the coefficient matrix separately, and
then add them together. The equations are:

For the phase matrix:

bitratePHASE = E[XP ] · Sf2 ·
Fs

1
2Sf

(7.7)

= E[XP ] · Fs (7.8)

For the magnitude matrix:

bitsW = r · Sc · 32 (7.9)

bitsH = r · Sf2 · E[XH ] (7.10)

bitrateMAG =
(
bitsW + bitsH

)
· Fs

1
2SfSc

(7.11)

=
(
r · Sc · 32 + r · Sf2 · E[XH ]

)
· Fs

1
2SfSc

(7.12)

= r

(
32 · Sc + Sf

2 · E[XH ]
)
· Fs

1
2SfSc

(7.13)

And finally:

bitrateSTFT = (bitratePHASE + bitrateMAG) · channelCount (7.14)

=
[
E[XP ] · Fs + r

(
32 · Sc + Sf

2 · E[XH ]
)
· Fs

1
2SfSc

]
· channelCount

(7.15)

=
(
E[XH ] · r

Sc
+ 64 · r

Sf
+ E[XP ]

)
· Fs · channelCount (7.16)
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Substituting the variables for our reference values, we end up with a bitrate
of ∼ 487 kbps, which is lower than the previous methods, but at the same
time, subjectively speaking, it actually sounds fairly promising.

However, upon closer inspection of the equations an alarming realization
sets in. If we calculate the bitrate of the phase spectrogram, we find out it
equals 3.072 · 44100 = 135475.2. This means is that the phase spectrogram
alone is taking up roughly 135 kbps (per channel!), which is already more than
the average MP3 file, and we are already compressing it with a total of only
3 bits per value. We run into the issue highlighted in [39], that being that
there doesn’t seem to be a good way to compress only the phase spectrogram.
As mentioned earlier, applying NMF to the phase spectrogram does not work
and produces barely recognizable sounds.

Regardless, I’m at least going to experiment on what I still can. The next
step is to stabilize this bitrate while experimenting with the variables and
measuring the quality. Once we find out the most influencing factors and end
up with satisfactory audio quality, we can try lowering the bitrate further to
try and match existing codecs.

Table 7.6: ANMF-STFT rank experiment results

ID r = 30 r = 40 r = 50 r = 60 r = 70
00 −3.529 −3.217 −3.041 −2.838 −2.768
01 −2.140 −1.884 −1.714 −1.658 −1.499
02 −3.816 −3.758 −3.696 −3.640 −3.576
03 −2.491 −1.282 −1.081 −1.033 −0.806

Looking at Table 7.6, we can notice that by increasing the rank, the ODG
gets lower. However, we can’t increase the rank ad infinitum, since any in-
crease means two things:

1. the required bitrate increases

2. the required number of NMF iterations increases

In short, the higher the rank, the more space it will take while also dras-
tically increasing the needed computation time. Using Equation 7.13 and
plotting the function (Figure 7.4), we find that the bitrate grows linearly with
the rank. At rank 60, we are already at a large value of ∼ 162 kbps.

Next up, I will experiment with the chunk size keeping the other values as
reference values.

In Table 7.7, we can see that the smaller the chunk size, the better the
quality. This makes sense, since if the chunk is smaller, the input matrix
to NMF is also smaller, which makes it easier to converge, but at the same
time increases the bitrate. Again, by using Equation 7.13 and plotting it for
Sc (Figure 7.5), we can notice a certain trend. Unlike rank, the chunk size
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Figure 7.4: Bitrate (kbps) per channel in relation to NMF rank for Sc = 500.

Table 7.7: ANMF-STFT chunk size experiment results

ID Sc = 100 Sc = 250 Sc = 400 Sc = 550 Sc = 700
00 −2.598 −3.170 −3.211 −3.272 −3.291
01 −1.149 −1.612 −1.892 −1.925 −1.877
02 −3.495 −3.685 −3.769 −3.758 −3.772
03 −1.303 −1.322 −1.415 −1.681 −2.163

changes the bitrate in an exponential manner, so while lower is better, we
need to be careful.

Between the experiments with rank and chunk size, I have decided to go for
a compromise. To strike a balance between quality and bitrate, experiments
from here on will use rank r = 50 and chunk size Sc = 250.

Finally, we move on to the last two parameters: µW and µH . For results,
please refer to Tables 7.8 and 7.9.

µW and µH don’t really seem to have too much effect, but it appears that
the reference values µW = 104 and µH = 5 were pretty accurate in terms of
what seems to give the best results. One thing of note is that muH has a
rather large jump for audio example ID 03 (electronic music). I believe this
is due to the fact that it contains sounds of similar frequencies, which doesn’t
play along well with µ-law companding for lower values of µ.
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Figure 7.5: Bitrate (kbps) per channel in relation to chunk size for r = 40.

Table 7.8: ANMF-STFT µW experiment results

ID µW = 102 µW = 103 µW = 104 µW = 105 µW = 106

00 −2.932 −2.828 −2.862 −2.872 −2.821
01 −1.524 −1.483 −1.538 −1.577 −1.583
02 −3.618 −3.594 −3.532 −3.591 −3.536
03 −1.057 −1.113 −1.039 −0.995 −1.014

In conclusion, our final values are frame size Sf = 1152, chunk size Sc =
250, 1000 NMF iterations with an approximation rank r = 50, and for µ-law
companding we have µW = 104 and µH = 105. If we plug these values into
Equation 7.16, we obtain the following bitrate:

bitrateSTFT =
(2.952 · 50

250 + 64 · 50
1152 + 3.072

)
· 44100 · 2 = 568023.68

(7.17)

7.3.6 Comparison

Due to the low quality of ANMF-RAW and ANMF-MDCT, they will be omit-
ted from comparison as it’s not deemed necessary.
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Table 7.9: ANMF-STFT µH experiment results

ID µH = 102 µH = 103 µH = 104 µH = 105 µH = 106

00 −2.946 −2.863 −2.833 −2.813 −2.883
01 −2.730 −2.279 −1.573 −1.474 −1.545
02 −3.405 −3.617 −3.610 −3.566 −3.591
03 −0.864 −0.950 −1.077 −0.840 −1.161

Our best lossy audio compression, ANMF-STFT, has reached a bitrate
of ∼ 568 kbps, which is about four times the bitrate of the average MP3
file, and while the quality is ”good enough”, there are noticeable issues with
it. Furthermore, experiments have shown that this form of compression does
not seem to particularly excel at any specific kind of audio, though from my
personal listening it was usable for speech (ID 00) and clear piano sounds (ID
01). While the ODG for music (ID 04) was not too high, the difference was
noticeable enough to convince a user to turn to another format.

For comparison, we will use MP3 with a target bitrate of 320 kbps, and
for Opus the target bitrate will be 256 kbps. For both of these, those bitrates
are more or less the highest practically used values and they were picked to
try and somewhat match the bitrate of ANMF-STFT.

To encode and decode the WAV files into and from the respective formats,
certain tools were used. For MP3, I used LAME [59], and for Opus, I used
opus-tools [60]. Afterwards, the ODG was measured using GstPEAQ. Please
refer to Table 7.10 for the results.

Table 7.10: ANMF-STFT versus MP3/Opus

ID 320 kbps MP3 256 kbps Opus
00 −0.025 −0.088
01 −0.052 0
02 −0.044 0
03 0 0

As you can see, there is no contest. Both of the reference codecs perform
much better than ANMF-STFT at a far lower bitrate.
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Chapter 8
Conclusion

The point of this thesis was to design and implement an audio codec with the
ultimate goal of audio compression. While this goal was technically met, it
leaves much to be desired.

In total, three different methods were designed and implemented:

ANMF-RAW compresses audio using NMF in the time domain directly

ANMF-MDCT compresses audio using NMF in the frequency domain via
modified discrete cosine transform

ANMF-STFT compresses audio using NMF in the frequency domain via
short-time Fourier transform

Out of these three methods, only ANMF-STFT ended up being usable
in practice. However, similarly to the research it was inspired by, I ended up
having a large portion of data in the form of a STFT phase matrix that wasn’t
feasibly compressible given current knowledge of this particular topic. NMF
is ultimately only a small part of the compression and improving the NMF
methodology won’t reduce the filesize by much.

In the case of both ANMF-RAW and ANMF-MDCT, the data is far too
fragile to be approximated without carefully crafted constraints, in which case
a proper quantization (similar to MP3 and Opus) will yield far more reliable
results than an approximation, i.e. NMF.

The main output of this work is therefore a command line tool capable of
compressing arbitrary audio in WAV format to a third of its size, but it is still
no match for contemporary codecs such as MP3 or Opus, which are capable
of reducing the bitrate by a factor of up to twelve, with far less noticeable
quality loss.

In its current form, it is not applicable to real-time use, but if the file
structure is altered somewhat, it’s definitely possible. It would require the
data from each channel to be interweaved similar to a WAV file, so that it can
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8. Conclusion

be read sequentially as a stream of frames. Decompression is not a problem,
as that boils down to simple matrix multiplication for the most part, which is
not an expensive process given today’s technology.

One thing that wasn’t explored in-depth in terms of implementation was
the application of psychoacoustics, to further trim ”unnecessary” sounds con-
tained in the signal. While this is most likely feasible and would save some
bytes, there is already a noticeable quality loss even when trying to preserve
as much information as possible, and as such application of psychoacoustics
would not make this codec any more competitive to its counterparts, which
are able to compress audio without any apparent distortion.

Considering the low amount of works exploring this particular topic, I
believe this thesis will serve as a decent reference for when somebody else may
stumble across the same problem. It’s also worth mentioning that this might
be the first public implementation for this specific problem, and as such it
might help with the understanding of the methodology behind this process
and possibly lead to improvement in the future.
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Appendix A
List of Symbols

t symbol representing a time value in seconds
τ symbol representing a ”slow” time, time index with a lower resolution than t
ξ symbol representing a frequency value in hertz
Fs symbol representing a sampling rate of an audio signal
z symbol representing a complex number

φ(z) symbol representing the phase of a complex number
|z| symbol representing the magnitude of a complex number

Q(x) function representing a uniform quantizer
∆ symbol representing the step size of a uniform quantizer

F (x) function representing µ-law compression
x(t) function representing the amplitude of a continuous signal at a time t
xn sequence representing the amplitude of a discrete signal indexed by n

w(t) continuous windowing function at a time t
wn discrete windowing function indexed by n

X(ξ) function representing the frequency component of a signal for a frequency ξ
S(ξ) the Fourier transform of a continuous signal
Sk the discrete Fourier transform of a discrete signal

S(τ, ξ) the short-time Fourier transform of a continuous signal
Sk,ξ the discrete short-time Fourier transform of a discrete signal
Mk the Modified discrete cosine transform of a discrete signal
r rank of a NMF approximation
Sf frame size
Sc chunk size
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Appendix B
Abbreviations

NMF non-negative matrix factorization

DFT discrete Fourier transform

STFT short-time Fourier transform

FFT Fast Fourier Transform

DCT discrete cosine transform

MDCT modified discrete cosine transform
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Appendix C
Contents of enclosed CD

README.txt ....................... the file with CD contents description
src.......................................the directory of source codes

audionmf................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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