
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 24, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Deep Latent Factor Models for Recommender Systems

 Student: Bc. Radek Bartyzal

 Supervisor: Ing. Tomáš Řehořek

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of summer semester 2019/20

Instructions

Survey latent factor models based on neural networks used in recommendation systems.

Implement several of the described models using modern deep learning frameworks.

Design and implement a new architecture able to produce vector representations of both users and items
while supporting input of different attribute information.

Evaluate and compare all the implemented models on several standard datasets using multiple metrics.

References

Will be provided by the supervisor.

Master’s thesis

Deep Latent Factor Models for
Recommender Systems

Bc. Radek Bartyzal

Department of Applied Mathematics
Supervisor: Ing. Tomáš Řehořek

April 25, 2019

Acknowledgements

I would like to thank my supervisor Ing. Tomáš Řehořek for his professional
guidance and various insights into the recommender systems. I would also
like to thank my family and friends for their support throughout my whole
studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adher-
ing to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right
to conclude a license agreement on the utilization of this thesis as school
work under the provisions of Article 60(1) of the Act.

In Prague on April 25, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Radek Bartyzal. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and
its usage without author’s permission is prohibited (with exceptions defined
by the Copyright Act).

Citation of this thesis
Bartyzal, Radek. Deep Latent Factor Models for Recommender Systems.
Master’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2019.

Abstrakt

Doporučovaćı systémy nám napomáhaj́ı objevit zaj́ımavé produkty v široké
nab́ıdce. Jedńım z typ̊u algoritmů generuj́ıćıch doporučeńı jsou faktorizačńı
modely. V této práci popisujeme moderńı faktorizačńı modely založené na
neuronových śıt́ıch. Čtyři z nich také implementujeme. Dále představujeme
nový faktorizačńı model Hybrid cSDAE založený na neuronových śıt́ıch,
který dokáže zpracovat, jak interakčńı informace, tak r̊uzné druhy atribut̊u.
Všechny implementované modely jsou porovnány na standardńıch datasetech
za stejných podmı́nek.

Kĺıčová slova Doporučovaćı systémy, Umělé neuronové śıtě, Faktorizačńı
modely

Abstract

Recommendation systems help users discover relevant items. One of the
types of models used to generate the recommendations are latent factor
models. We survey the state of the art neural network based latent factor

vii

models and implement four of them. We also design and implement a novel
architecture of a deep latent factor model called Hybrid cSDAE that is able
to process both the rating and attribute information. We comprehensively
evaluate the implemented models on standard datasets.

Keywords Recommender systems, Artificial Neural Networks, Latent
Factor Models

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Outline . 2

2 Related work 5
2.1 Recommendation systems 5
2.2 Artificial Neural Networks and Deep Learning 14
2.3 Autoencoders . 20

3 Analysis and design 25
3.1 Common characteristics . 25
3.2 Matrix Factorization . 26
3.3 Deep Matrix Factorization 28
3.4 Hybrid Stacked Denoising Autoencoder 29
3.5 Hybrid Additional Stacked Denoising Autoencoder 32
3.6 Hybrid Concatenated Stacked Denoising Autoencoder 36
3.7 Collaborative Deep Learning 40

4 Experiments 47
4.1 Implementation . 47
4.2 Datasets . 47
4.3 Model training . 49
4.4 Model evaluation . 50
4.5 Evaluation results . 54

5 Conclusion 65

ix

5.1 Future work . 66

Bibliography 69

A Acronyms 75

B Contents of enclosed CD 77

x

List of Figures

2.1 User-item matrix of rating values [1]. 7

3.1 Matrix factorization architectures. 27
3.2 Hybrid SDAE network architecture. 30
3.3 Hybrid Additional SDAE network architecture. 33
3.4 Hybrid Concatenated SDAE network architecture. 37
3.5 CDL network architecture. 41

4.1 Calculation of evaluation metrics on the validation set. Exactly
the same process is applied to the test set. The metrics are
calculated each 1000 steps during training to be able to find the
best score for each metric. 51

4.2 Model results on the MovieLens 100k dataset. Autoencoder
based models achieve higher coverage while having similar re-
call and NDCG to the other models. 56

4.3 Model results on the MovieLens 1m dataset. CDL achieves the
highest NDCG of all the models but simultaneously has one of
the lowest coverage scores. The proposed Hybrid cSDAE has
both high NDCG and coverage. The variant without attributes
is close with a slightly worse NDCG. The Deep MF surprisingly
has the worst results across all the measured metrics. 57

4.4 Model results on the BookCrossing dataset. Hybrid cSDAE and
Hybrid SDAE achieve very good results in Test recall, NDCG
and coverage. CDL is able to reach comparable NDCG scores
but at the cost of slightly worse coverage. 58

4.5 Effect of the negative sampling rate on the performance of the
Hybrid cSDAE trained using MovieLens 1m. 60

xi

4.6 Effect of the negative sampling rate on the performance of the
Hybrid cSDAE trained using BookCrossing. 61

4.7 Effect of noise ratio on Hybrid cSDAE trained on the MovieLens
1m dataset. High noise leads to worse recall and NDCG but also
to better coverage. 62

4.8 Effect of noise ratio on Hybrid cSDAE trained on the BookCross-
ing dataset. Absence of noise leads to worse recall, NDCG and
also coverage. 63

xii

List of Tables

2.1 Categorization of items according to their predicted and actual
relevance. Predicted relevant items are the recommended ones
or in other words, the ones in the top K items. 12

2.2 Notation used in the Section 2.3 explaining Autoencoders. . . . 21

3.1 Notation common to the architectures described in Chapter 3. . 25
3.2 Deep Matrix Factorization layers and the number of their units. 29
3.3 CDL specific notation. 40
3.4 Notation specific to the CDL evaluation equations. 44

4.1 Dataset statistics after preprocessing. 48
4.2 Tested combinations of the hyperparameters. 54
4.3 Hyperparameter values of Hybrid cSDAE during the negative

sampling rate experiment. 60

xiii

Chapter 1
Introduction

1.1 Motivation
The amount of digital information available in the world is increasing. This
trend has been going for many years and it does not show any signs of
slowing down. For example just Amazon offers over 1 000 000 books [2]
and over 800 000 movies [3], way more than it is possible to consume. The
true problem arrives when there are so many choices that we cannot even
go through all of them. That is where the recommendation systems come
into play.

Recommendation (recommender) systems allow for a personalized expe-
rience to be enabled by any site frequented by users looking for some item,
for example a book, an article, a job posting, anything really. The system
is comprised of one or a combination (ensemble) of algorithms.

There are several types of these recommendation algorithms that are
described in Section 2.1. Almost all of them deal with some representation
of the users visiting the site and the items offered on the site. Latent fac-
tor models is one of the groups of these algorithms able to predict items a
specific user would like but also producing low dimensional vector represen-
tations of both users and items called user (item) embeddings. The term
comes from the act of embedding a user/item in a lower dimensional space.

Using embeddings has multiple advantages over using the original rep-
resentations. Firstly it is simply more efficient to work with lower dimen-
sional vectors in case of the original representation being just a single high
dimensional vector. However in many cases the original representation can
comprise of multiple differently shaped vectors or even matrices. For ex-
ample a product can have an image, a text description, price, multiple tags
and so on. And these are just the attribute information, each item also

1

1. Introduction

has a rating vector specifying how it was rated by users. Combining all
this information into a single low dimensional vector is extremely useful be-
cause it allows to train the standard recommendation algorithms on these
embeddings without the need to redesign them to support all the different
kinds of attribute information available in the different domains.

There are many ways to embed a high dimensional input to a lower
dimensional space. This work focuses on methods using neural networks,
especially the ones with multiple hidden layers. Such networks are usually
called ”deep” hence the title of the thesis.

We will present several of the state of the art latent factor models includ-
ing our proposed architecture, describe their implementation and compare
them on multiple datasets under equal conditions.

1.2 Goals
Main goals of this thesis are:

• Survey state of the art latent factor models used in recommendation
systems.

• Implement several of the described models using modern deep learning
frameworks.

• Design and implement a new deep neural network architecture able to
process the rating and attribute information of both users and items.

• Evaluate and compare the implemented models under the same con-
ditions on several standard databases and discuss their performance.

• Examine the effects of chosen hyperparameters on the performance of
the proposed model.

1.3 Outline
We start by briefly presenting the basics of recommendation systems and
neural networks in Chapter 2. The following Chapter 3 describes the state
of the art latent factor models and presents our novel architecture. It also
explains our implementation of the models chosen for evaluation. Chapter
4 goes over the evaluation setup, used datasets and the exact way of how
we train the models. It ends with a description of all the experiments along
with the discussion of their results. The whole work is concluded by the last

2

1.3. Outline

Chapter 5 giving a summary of the findings and outlining possible future
work.

3

Chapter 2
Related work

This chapter goes over the basics of recommendation systems, defines no-
tation used in their algorithms and describes the most popular evaluation
metrics in Section 2.1. It also introduces neural networks and explains how
to train them in Section 2.2. Special attention is paid to the autoencoder
architecture in Section 2.3 that will be used frequently by the presented
latent factor models.

2.1 Recommendation systems
As has been already hinted at, the popularity of recommender systems has
greatly increased in the 21st century with the rapid adoption of the Internet
around the world.

One of the ways to define a modern recommendation systems is as:
”Any system that produces individualized recommendations as output or has
the effect of guiding the user in a personalized way to interesting or useful
objects in a large space of possible options.” [4].

We will be focusing on systems producing personalized recommendations
which in case of algorithms presented in this work means solving a Top-N
recommendation task. Top-N recommendation task refers to producing
a list of N items that should be the most relevant for a given user [5].

A possible way of solving this task is to use available data to predict the
unknown rating a certain user would give to the items he did not encounter.
The predicted ratings are then filtered, sorted and the top N highest rated
remaining items are recommended. This high level description applies to
all of the algorithms discussed in the Chapter 3.

5

2. Related work

There are four basic types of recommender systems: [6]:

• Collaborative filtering uses information about user preferences,
usually represented by their ratings to find similar users or items that
can be then used to predict the unknown ratings [7].

• Content based filtering is similar to the collaborative filtering ex-
cept instead of using the rating information it tries to match the user
attributes with the item attributes such as the description of an item,
user preferences, location of the user and so on [8].

• Knowledge based recommender systems require the user to interact
with the system by providing clues to what is he interested in while the
system guides him towards the desired items. These systems are not
as frequent as the previous ones and very different from the algorithms
discussed in this work [6].

• Hybrid systems are simply systems that combine one or more of the
types explained above [4].

Advantage of collaborative filtering is that it is able to recommend novel
items different from the ones already seen by the user. However the down-
side is that it requires enough rating information about the given user to be
able to recommend reasonably. The problem of not having enough rating
information for certain users or items is called cold start and can be solved
for example by returning content based recommendations before we gather
enough ratings [9].

Another problem plaguing the collaborative filtering is the long tail
[10]. It refers to the fact that the majority of ratings are distributed among
the minority of items meaning that the majority of items has very little
to none ratings. This can be again solved by including content based rec-
ommendations that do no suffer from this problem, because they do not
have to take the ratings into consideration at all. On the other hand, the
rating information is incredibly rich and therefore important for generating
quality recommendations which points to a clear conclusion that the best
way is to combine both methods.

All the algorithms presented in this work use the rating information
which makes them collaborative filtering models. Some of the advanced
algorithms also support adding the attribute information of both users and
items which means they could be considered hybrid models.

6

2.1. Recommendation systems

2.1.1 Rating matrix
With the basic functioning of the recommendation systems explained, we
can delve deeper into the description of the algorithms themselves. At the
core of all the evaluated algorithms are the ratings. They can be either
explicit or implicit:

• Explicit ratings are given by the user and express his opinion. It
can be a simple like or dislike, number of stars or other typical rating
mechanisms.

• Implicit ratings are inferred from the user’s behaviour. For example
whether the user clicked on the item, added it to his cart or bought
it. The interpretation of these user actions and their translation to a
numeric value is up to the designer of the recommendation system.

Both types of ratings are usually represented by discrete or binary num-
bers and are stored in a rating matrix called R. The matrix R, visualized
in Figure 2.1, is a n ×m matrix which consists of rows representing users
and columns representing items, r12 therefore represents the rating given to
item 2 by user 1 [1].

R =

r11 r12 r13 . . . r1m
r21 r22 r23 . . . r2m
...
rn1 rn2 rn3 . . . rnm

Figure 2.1: User-item matrix of rating values [1].

The rating matrix is usually preprocessed before being used in training
of a recommendation algorithm. Frequently used preprocessing techniques
include:

• Removing user bias by subtracting the average rating of each user
from his ratings. This is useful if we want to work with the explicit
ratings because different users perceive the rating levels differently.

• Rescaling the ratings to a range of [0, 1] or [−1, 1]. Effectively
turning them from discrete to floating point representation by for
example min-max normalization [11].

7

2. Related work

• Binning the ratings to either binary values {0, 1} or to discrete
{−1, 0, 1} which is closely connected to the encoding of the unknown
values discussed below.

R is expected to be very sparse. That stems naturally from the fact
that having too many items for each user to go through is usually the very
premise of deploying a recommender system. Meaning that each user has
usually only couple of ratings.

The sparsity of the rating matrix brings two problems connected to the
unknown rating values:

1. How to encode them: We can either consider them as negative
ratings or we can assign them some value between a negative and
positive rating value.

If the training uses explicit ratings, the ratings are usually divided into
positive and negative by some arbitrary cut off point. The positive
ratings are assigned a value of 1 while the negative ratings are assigned
−1, which naturaly leaves 0 to be assigned to the unknown ratings.
Example of such preprocessing is the original AutoRec article [12].

In case of using implicit ratings it is typical to assign a value of 1 to
all positive user item interactions and to leave all the other ratings,
either negative or unknown, to a value of 0. This approach is used in
a majority of current publications on this topic because the implicit
ratings are easier to obtain in the real world domains [13] [14] [15] [16]
[17].

2. Their role during training: The explicit ratings can be directly
used to train the model to predict the unknown ratings. However it
is not so easy with the implicit ratings. If we trained a model only
on the positive ratings it would just predict positive for every user-
item combination and achieve 0 error. There are multiple ways to
prevent this behavior which are discussed along with our choice in
the Section 4.3.

With the rating matrix prepared and all the decisions about unknown
ratings made, we just need to select an algorithm to train.

8

2.1. Recommendation systems

2.1.2 Taxonomy of recommendation algorithms
Many recommendation algorithms have been created since the start of the
field. They can be divided into three high level groups:

• Non-personalized models: This is the simplest approach that re-
commends the same items to all of the users. Typical choice is the
most popular (most rated, purchased, viewed etc.) items in which
case the model is called Top Popular or Bestseller. Another way is to
recommend the items with the best average ratings [5].

• Traditional Data Mining: The field of Knowledge Discovery in
Databases (KDD) has been long interested in extracting information
from transactions stored in large databases. Transaction can be for
example a set of items purchased by a certain user.
One of the ways to use these transactions is to mine Association Rules
(AR) out of them by an algorithm presented in [18]. Quick explana-
tion of what an AR is follows. A set of all available items is called
I = {I1, I2 · · · In}. Each transaction T ⊆ I consists of items pur-
chased together by a certain user. An association rule X =⇒ Y
means that if a set of items X ⊆ I has been purchased there is a high
probability that the items in set Y ⊆ I, Y ∩X = ∅ will be purchased
as well.
Using these mined association rules to recommend new items to a
user is straightforward. Create a set of items Z purchased by the
user. Find all rules X =⇒ Y such that the user purchased all items
in X (X ⊆ Z). Now sort the rules according to their confidence and
recommend items from Y of the top rules. Confidence of a rule is just
a conditional probability of seeing Y , given that we have seen X [19].

• Collaborative Filtering (CF): CF is one of the most popular meth-
ods and is used in some form by a majority of currently deployed
recommender systems [19]. The basic idea is that the system recom-
mends items to a certain user based on other users opinion [20]. The
difference between CF and association rules is that CF uses the rat-
ing matrix to generate recommendations whereas AR just care about
what has been purchased together, not by whom. Also AR typically
do not support different rating levels. That gives CF an advantage in
ability to learn from what users both like a lot and not like at all.

The collaborative filtering group can be further divided into the follow-
ing subgroups based on how exactly it uses the interaction information:

9

2. Related work

• Neighborhood-based Collaborative Filtering methods work with
the full rating matrix which means that user u is represented by a row
Ru,• and the item i by a column R•,i. They are either user or item
based. Both incorporate the k-Nearest Neighbors algorithm and are
therefore called Item-KNN and User-KNN. Both support the same
similarity measures such as Cosine Similarity, Adjusted Cosine Simi-
larity or Pearson’s Correlation Coefficient [5].
Item-KNN generates recommendations for user u by looking at the
items he rated and approximating the unknown ratings using item-
item similarities. More exactly, the unknown rating rui is calculated
from the known ratings given by user u to items similar to the item i.
The calculation can be a simple similarity weighted sum of the ratings
or it can be a more complex regression model [21].
User-KNN works almost just like the Item-KNN. To predict the un-
known rating rui it finds the most similar users to u that have rated
the item i and combines their ratings [5].

• Model based algorithms take the rating matrix and possibly other
information as an input and try to model the relationships between
items and users using different techniques. This category is described
in greater detail in the Section 2.1.3.

2.1.3 Model based algorithms
All model based algorithms for recommendation can be described by a
following equation:

ŷui = fφ(u, i) (2.1)

The model fφ with trainable parameters φ is trying to predict the user
u’s opinion about the item i called yui. We intentionally call it an opinion
or preference instead of rating because some models do not have to predict
the exact ratings they can just try to predict the order in which the user u
prefers the items.

There are several types of models that reflect different relationships
between users and items [22]:

• Similarity Model (SM): The SM described in the Equation 2.2
has a lot in common with the previously mentioned Item-KNN but
instead of using a preset similarity function it learns its own similarity
matrix S. The similarity is used as a weight in a weighted sum over the

10

2.1. Recommendation systems

user u’s known ratings Ωu. The item i is explicitly excluded from the
sum however if we are trying to predict an unknown rating, it would
not be among the known ratings anyway. The issue of this model is
that the size of the similarity matrix S is quadratic in the number
of items and therefore quickly becomes infeasible to both store and
calculate [23].

ŷui = fSMS (u, i) =
∑

j∈Ωu\{i}
ruj · Sij (2.2)

• Factorized Similarity Model (FSM): The FSM depicted in the
Equation 2.3 follows naturally from the SM problems. Factorizing the
large similarity matrix S into two latent matrices P and Q allows the
model to be easily stored and to also extract interesting patters [24].

ŷui = fFSMP,Q (u, i) = (
∑

j∈Ωu\{i}
ruj · Pj)T ·Qi (2.3)

• Latent Factor Models (LFM): The LFM approximate the prefer-
ence yui by a dot product between a user embedding Uu and an item
embedding Vi. These embeddings can be calculated by a classic ma-
trix factorization of a rating matrix R. They can also be a result of
more complex models that compress both the rating information and
additional attribute information about the items and users [25].

ŷui = fLFMU,V (u, i) = Uu · V T
i (2.4)

• Latent Factor Similarity Models (LFSM): The LFSM described
in Equation 2.5 are a straightforward combination of LFM and FSM
allowing for compression of both similarity and rating information sep-
arately and then combining them together. This leads for example
to algorithm SVD++ which was successful during the famous Net-
flix price competition that invigorated the recommendation systems
research [24].

ŷui = fLFSMP,Q (u, i) = (
∑

j∈Ωu\{i}
ruj · Pj + Pu)T ·Qi (2.5)

The main reason why we chose the Latent Factor Models for our research
is its ability to incorporate different types of additional information and
combine it with the ratings to create multi-purpose embeddings. Meaning

11

2. Related work

we can not only get the predicted rating (we are going to be predicting
ratings with all the evaluated models) as a product of the embeddings but
we can also use these embeddings in other algorithms to further improve
the whole recommendation system.

2.1.4 Evaluation metrics
With such a large number of possible algorithms to choose from, we need
a way to find out which one is the best for our needs. There are several
evaluation metrics just for that. They are calculated using the output of a
trained model for the testing users T .

The simplest metric is the well known Root Mean Squared Error (RMSE)
comparing each of the predicted ratings to its known value and calculating
the square of the difference. The Ωu represents the set of items rated by
the user u.

RMSE =
√∑
u∈T

∑
i∈Ωu

(r̂ui − rui)2 (2.6)

Other metrics come from the field of information retrieval (IR). The task
of IR is to retrieve relevant documents from a large set which is remarkably
similar to the problem of recommendation. All the IR metrics are tied
to the confusion matrix shown in Table 2.1. It clearly divides the items
(documents) into four categories: True Positive (TP), False Positive (FP),
True Negative (TN) and False Negative (FN) [26].

items that were: actually relevant actually not relevant
predicted relevant TP FP
predicted not relevant FN TN

Table 2.1: Categorization of items according to their predicted and actual
relevance. Predicted relevant items are the recommended ones or in other
words, the ones in the top K items.

Among the IR metrics commonly used in recommendation are [27]:

• Precision is a fraction of recommended items that were actually rel-
evant:

Precision = |TP |
|TP |+|FP | (2.7)

12

2.1. Recommendation systems

• Recall also called True Positive Rate or Sensitivity is the fraction of
all relevant items that were recommended:

Recall = |TP |
|TP |+|FN | (2.8)

Both of these metrics are usually calculated using the top N items rec-
ommended by the algorithm. It is however standard in the literature to use
K instead of N in case of these metrics which is why they are then called
Precision@K and Recall@K.

The so far mentioned metrics have one thing in common: they do not
take the order of the returned items into consideration. In case of recom-
mending lists of items, the order is of great interest because the users are
more likely to see the items at the top. It is therefore important to have
the best possible items at high positions. A metric designed to measure the
ranking success is called Normalized Discounted Cumulative Gain (NDCG)
[28].

NDCGK = DCGK

IDCGK

(2.9)

The DCGK looks at the top K places and calculates the sum of the ith
item relevance (reli) divided by a smoothly increasing logarithm value. If
we consider only binary ratings {1, 0} the following equation 2.10 holds, if
not then only the first equality holds.

DCGK =
K∑
i=1

2reli − 1
log2(i+ 1) =

K∑
i=1

reli
log2(i+ 1) = rel1 +

K∑
i=2

reli
log2(i+ 1) (2.10)

If we normalize the DCG by the best possible DCG called Ideal DCG
(IDCG) we get the Normalized DCG. The IDCGK is the standard DCGK
calculated for the list of the relevant items (REL) ordered by their relevance.

IDCGK =
|REL|∑
i=1

2reli − 1
log2(i+ 1) (2.11)

Both the IR metrics and the NDCGK are calculated for each user in T
and then averaged to get the final score.

Last commonly used metric is Coverage, it is simply the relative amount
of items that were recommended compared to the number of all items.

Coverage = |set of unique items recommended to users T|
|set of all recommendable items| (2.12)

13

2. Related work

2.2 Artificial Neural Networks and Deep
Learning

The Artificial Neural Networks (ANN) started with a perceptron. An algo-
rithm for learning a linear binary classifier invented by Frank Rosenblatt in
1958 [29]. However as other linear classifiers it is able to divide the input
space only by carving out simple regions using hyperplanes. This approach
is not very robust against variations of the input that are irrelevant to the
classification. If we try to differentiate between the images of dogs and
wolves, their background is going to be completely irrelevant however it is
still going to be present in the input and changing from image to image.
A shallow linear model would not be able to correctly classify the images
based on raw pixels due to these variations. Which is why complex feature
extraction methods were invented to provide the shallow model with rep-
resentations that are stable and selective to the important aspects of the
images. Wanting to get rid of the engineered feature extractors led to the
creation of Deep Learning (DL) [30].

Deep learning architecture is a connected stack of simple trainable mod-
ules with input at one end and output at the other. Each of the modules
takes its input, processes it and outputs a new representation that is more
selective and invariant than the ones outputted by the previous modules.
The idea is to learn the feature extractors specifically for the current task
which makes them more effective than the generic hand-engineered ones.

In terms of ANN, deep learning started with feed-forward multi-layer
perceptrons trained by Group Method of Data Handling (GMDH) invented
by Ivakhnenko in 1968 [31]. The GMDH learned even the structure of
the networks with a variable number of layers and neurons. A much more
efficient way to train deep ANNs with fixed differentiable structure by gra-
dient descent has been enabled by the invention of the Backpropagation
algorithm in the 1970s. Backpropagation provides an efficient way to cal-
culate the derivative of the loss function with regard to all the parameters
[32].

The increasing computational power and invention of various optimiza-
tion tweaks led to a rejuvenation of the neural network field at the start
of the 21st century [33], [34]. Since then deep learning has been success-
fully applied to many domains and achieved great results. Recommendation
systems are not an exception with many different deep learning models be-
ing proposed at recent time. We are going to look into them in the next
chapter however first we are going to delve deeper into the current training
algorithms of the artificial neural networks.

14

2.2. Artificial Neural Networks and Deep Learning

2.2.1 Optimization algorithms
Using the backpropagation algorithm to calculate the gradient of the loss
function with regard to every parameter, we can then apply the gradient
to update the parameters. They are updated by taking a small step in the
opposite direction of the gradient since that is the direction in which the loss
function decreases the most in its value. The size of the step is controlled
by a parameter η called learning rate. This is a general description of a
Gradient Descent algorithm, however there are many different ways how to
calculate the actual step and we will present the ones most relevant to this
work.

2.2.1.1 Gradient Descent variants

There are three variants of the basic gradient descent algorithm and all of
them share the following inputs:

θ0 Initial parameters
N Number of training examples

xi, ∀i < N Training examples
ŷi, ∀i < N Labels for the training examples

T Number of epochs

(2.13)

• Batch Gradient Descent (BGD) shown as Algorithm 1 calculates
the step as an average of gradients over all the training examples. This
approach unfortunately does not scale well because from a certain
point you cannot load the whole dataset into memory making each
single update extremely slow. Another problem is that it does not
allow online learning meaning we cannot simply continue training
with newly arrived data points.

Algorithm 1: Batch Gradient Descent
for t← 1 to T do

g ← 0
for i← 1 to N do

g ← g +∇L(ŷi, f(θt−1, xi))
g ← 1

N
g

θt ← θt−1 − ηg

15

2. Related work

• Stochastic Gradient Descent (original SGD) shown as Algo-
rithm 2 updates the parameters with the gradient of every training
example sequentially. The training data is shuffled between epochs to
add an element of randomness resulting in increased chances of find-
ing a better local minimum. This approach alleviates both mentioned
problems of BGD, unfortunately it introduces its own one. Due to
the frequent updates, the global loss tends to have a very high vari-
ance which may help it escape local minima but it also complicates
convergence.

Algorithm 2: Stochastic Gradient Descent
θ ← θ0
for t← 1 to T do

shuffle(dataset)
for i← 1 to N do

g ← ∇L(ŷi, f(θ, xi))
θ ← θ − ηg

• Mini-batch Stochastic Gradient Descent (SGD) described in
Algorithm 3 is the logical combination of the two mentioned meth-
ods. By updating the parameters after each mini batch of size B the
algorithm achieves significantly less variance of the loss while keeping
the advantage of frequent updates. It also leverages the fast matrix
operations available on current graphical processors. The new hyper-
parameter B can be selected based on the size of the dataset and
available memory to strike a balance between speed and variance.
This algorithm is generally referred to as SGD because due to the
strong disadvantages of both BGD and original SGD they are very
rarely used.

Even though the SGD fixes the mentioned imperfections, it still has two
significant problems:

• Finding a good learning rate can prove to be difficult, but we can
offload this task to a learning rate scheduler that changes it during
training based both on elapsed time steps and past performance [35].
Although the adaptable learning rate performs much better than a
constant one, the fact that it is identical for all parameters causes
problems in situation where each example while having a high dimen-
sion has only few non-zero features. Therefore some features occur

16

2.2. Artificial Neural Networks and Deep Learning

Algorithm 3: Mini-batch Stochastic Gradient Descent
θ ← θ0
for t← 1 to T do

shuffle(dataset)
foreach mini batch ∈ dataset do

g ← 0
for i← 1 to B do

g ← g +∇L(ŷi, f(θ, xi))
g ← 1

B
g

θ ← θ − ηg

more frequently than others which is not reflected in the applied learn-
ing rate. That results in slower updates to the less frequent features.

• The loss function of a deep neural network is undoubtedly very com-
plex which brings many challenges to optimization. The most pro-
found difficulty in optimizing such a high dimensional non-convex
function is however believed to stem from an extensive number of
saddle or saddle-like points surrounded by large plateaus with high
error [36]. This is where the loss function increases in some dimensions
while it is constant or decreasing in other dimensions. A simple three
dimensional example can be a slowly descending valley with steep
slopes on both sides. The problem stems from the small decrease in
value in the one dimension that actually leads to a minimum. An
intuitive explanation of what will happen is that the SGD will keep
jumping across the valley while moving very slowly in the desired
direction.

The following methods alleviate one or both of the described issues [37].

2.2.1.2 AdaGrad

AdaGrad is an adaptive gradient method attempting to solve the issue of
some features appearing less frequently than others [38]. The general idea
is for the learner to give larger weight to infrequent features when they
appear.

This is implemented by taking note of the past gradient updates and
using the sum of the squared past gradients to divide the actual learning
rate.

17

2. Related work

We start with a gradient of the loss function L with respect to a param-
eter i at time t:

gt,i = ∇θL(θt,i) (2.14)

The classic mini-batch SGD update would look like this:

θSGDt+1,i = θt,i − ηgt,i (2.15)

However the AdaGrad update leverages the past gradient update infor-
mation to adaptively change the learning rate for each of the parameters
separately:

θAdaGradt+1,i = θt,i −
η√∑t

τ=1 g
2
τ,i + ε

gt,i (2.16)

The epsilon is used to prevent division by an extremely small number.
Even though this new update rule nicely adapts to each parameter, their
learning rates keep getting smaller with increasing time steps. This is caused
by the sum of squared gradients that can only increase with time resulting
in a smaller and smaller effective learning rate, possibly reaching zero and
stopping the training entirely. Another issue is the sensitivity to the initial
setting of the learning rate. If the gradients are too large at the beginning,
the parameter updates will be small for the rest of the training [39].

2.2.1.3 RMSProp and AdaDelta

Both RMSProp and AdaDelta have been invented around the same time
to solve the mentioned issue of AdaGrad’s diminishing learning rate. The
RMSProp has been introduced by G. Hinton in his course at University of
Toronto [40]. It is slightly simpler than AdaDelta [39] while using the same
idea which is why we will discuss it here.

The central idea is to use a decaying running average of past squared
gradients representing gradients from a certain time window instead of using
all of them. This ensures that the training will not slow down after a large
number of updates.

The running average of past gradients can be effectively calculated as:

E[g2]t = γE[g2]t−1 + (1− γ)g2
t (2.17)

18

2.2. Artificial Neural Networks and Deep Learning

Then we just replace the summation term in the AdaGrad update rule
with this running average estimate:

θRMSProp
t+1 = θt −

η√
E[g2]t + ε

gt (2.18)

The decay rate γ is recommended to be set to 0.9 while a good default
learning rate is 0.001. These methods are generally much less sensitive to
a different initial learning rates making hyper-parameter tuning easier [39].

2.2.1.4 Adam

The Adam (adaptive moment estimator) method is an improvement of the
previously mentioned RMSProp with an addition of an estimate of the first
order momentum [41].

Just as the RMSProp the Adam calculates the decaying running average
of the squared past gradients, here called vt. It also calculates the running
average of the gradients themselves, called mt the same way. The mt and vt
estimate the first and second order moments of the gradient corresponding
to the mean and the uncentered variance.

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2

t

(2.19)

The mt and vt are unfortunately biased toward zero at the start of
training due to their initialization to zero vectors. To correct that bias the
Adam algorithm divides the moment estimates with a time sensitive term
approaching 1 with increasing number of time steps:

m̂t = mt

(1− βt1)
v̂t = vt

(1− βt2)
(2.20)

These bias corrected moment estimates are then used in the actual up-
date rule similarly to the RMSProp and AdaDelta algorithms:

θAdamt+1 = θt −
η

√
vt + ε

mt (2.21)

The recommended default values for the hyper-parameters are β1 = 0.9,
β2 = 0.999, ε = 10−8. The positive aspects of the second order moment
dividing the learning rate have been explained in the previous sections. The
addition of the first order moment can be understood as a momentum term.
It aims to solve the problem SGD has with getting out of saddle points.

19

2. Related work

The effects of momentum can be presented on the example with the slowly
descending valley given at the end of Section 2.2.1.1.

If we imagine a ball without momentum in such valley, it will keep going
up the opposing sides while slowly moving through the valley. If we add
momentum to the ball, it will dampen its oscillation while increasing the
speed of movement in the direction of consistent decrease in function value.
We can compare that to adding weight to the ball.

Transferring the example to the effects on optimization, the updates in
the dimensions where the gradient directions keep changing will be smaller
while the updates in the dimensions that are consistently going a certain
direction will become incrementally larger.

A follow-up research into Adam has uncovered several convergence issues
and possible areas of improvement which led to the introduction of new
versions such as:

• NAdam: Adapt the momentum term with the Nesterov accelerated
gradient method [42].

• AdamW: Claims to fix the weight decay calculation[43].

• AmsGrad: Finds errors in the proof of Adam’s convergence and
claims to improve it by introducing AmsGrad algorithm [44].

To the contrary of the numerous papers claiming to improve the origi-
nal Adam algorithm, experimental results show that it in many cases works
better or at least as well as its newer variants. While some of them look
promising, there is no single variant dominating others at all tested opti-
mization tasks which is why we have chosen to use the default Adam for all
of our experiments [45].

2.3 Autoencoders
It is not a rare situation to have access to a large amount of unlabeled data
that we would like to use for a certain task. Any model attempting to solve
this task would benefit from a compact representation of the available data.
In case of recommendation systems, our task is to rank the items for each
user and the data is typically the user/item rating or attribute vectors.

The beneficial representation should ideally be compact, retain as much
information as possible and contain higher level features obtained by lo-
cating patterns in the data. Autoencoders are one of the possible ways to
calculate such representations.

20

2.3. Autoencoders

2.3.1 Traditional Autoencoder
The traditional Autoencoder, sometimes also called AutoAssociator, is a
feed-forward neural network trained to reconstruct its input at the output.
It consists of two parts: encoder and decoder. The Table 2.2 specifies the
notation used in this section.

x input vector
d dimension of the input vector
k hidden (latent) dimension = number of units in the last encoder layer

Table 2.2: Notation used in the Section 2.3 explaining Autoencoders.

The encoder function fencoder maps the input x into a hidden represen-
tation y. It is an affine transformation followed by a nonlinearity:

fencoder(x,W, b) = g(Wx+ b) = y (2.22)

The W is a d× k weight matrix and b is a k× 1 bias vector. The g is a
nonlinear activation function such as Sigmoid.

The decoder function fdecoder attempts to reconstruct the input x from
the hidden representation y. Its structure (weights W ′ and biases b′) mirrors
the encoder one:

fdecoder(y,W
′
, b

′) = g(W ′
y + b

′) = x̂ (2.23)

The training of the weights and biases is done by backpropagation fol-
lowing the loss function visible in Equation 2.24. It consists of a recon-
struction loss represented by a squared error. It is also possible to use a
cross-entropy loss in case of binary inputs and add regularization [46].

L = ‖x− x̂‖2 (2.24)

If k ≥ d the autoencoder could reach zero reconstruction error by simply
learning an identity transformations. Which would not be a helpful repre-
sentation at all. To prevent that, the hidden dimension is set to be smaller
than the input one. This forces the model to compress the available in-
formation and therefore create a compact representation retaining as much
input data as possible.

21

2. Related work

2.3.2 Denoising Autoencoder
Even though the traditional autoencoder is capable of compressing the input
data into a smaller representation, we would also like it to extract more
complex patterns other than whatever clues are beneficial to reconstructing
the input.

That can be achieved by corrupting the input vector while still expect-
ing the autoencoder to reconstruct the original clean input. This forces
the encoder to extract patterns that are robust to random perturbations
introduced by the noise applied to its input. Such autoencoder is called a
Denoising Autoencoder (DAE).

Frequently used types of noise are:

• Additive Gaussian noise adds a real valued vector sampled from a
normal distribution to the original input x. The resulting corrupted
vector x̃ is therefore x̃|x ∼ N(x, σ2I). This method is typically used
on real valued inputs and the level of corruption is controlled by σ.

• Salt and Pepper noise sets certain elements of x to a minimum or
maximum value. Which one it ends up as is decided by a coin flip.
This noise is usually applied to integer data that tend to have small
number of possible values.

• Binary Masking noise sets a portion of elements of the input to 0.
This results in effectively disabling these features from the point of
the model.

2.3.3 Stacked Denoising Autoencoder
As has been explained in the beginning of the Section 2.2, stacking mul-
tiple layers allows the network to extract patterns with multiple levels of
abstraction. Which is exactly what is needed to find more efficient ways of
compressing the input data [30].

Increasing the number of hidden layers in the Denoising Autoencoder
gives rise to a Stacked Denoising Autoencoder (SDAE). Both the encoder
and the decoder become feed-forward networks with multiple layers. The
number of units in the hidden layers of the decoder typically mirrors the
encoder ones however it is not necessary.

The name uses the word ”stacked” due to the fact that SDAE was
originally presented as a stack of multiple DAEs that were trained locally.
This means that if we wanted a two level SDAE, we would first learn a

22

2.3. Autoencoders

DAE on the corrupted version x̃ of the input x. Then we would take its
trained encoder f 1

e (x̃,W 1
e , b

1
e) and use its output as an input to a second

DAE. The inputs are no longer corrupted after the first DAE. The output
of the second trained encoder f 2

e (f 1
e (x̃,W 1

e , b
1
e),W 2

e , b
2
e) is then considered

our compressed representation. Or we can continue to stack further DAEs
[46].

Even though the name stayed the same, the training of SDAEs has
changed significantly since the rise of deep learning. They are now typically
constructed similarly to feed-forward networks with a bottleneck layer in
the middle and trained end to end with backpropagation through all the
hidden layers.

23

Chapter 3
Analysis and design

This chapter introduces several latent factor model architectures including
our proposed Hybrid cSDAE and exactly describes our implementation of
the ones we chose to evaluate.

3.1 Common characteristics
Since all the discussed architectures are Latent Factor Models, they share a
lot of similarities. That allows us to use common notation specified in the
Table 3.1.

n number of users
m number of items
k embedding dimension - same for user and item
R pre-processed n×m rating matrix
R̃ R after application of noise
R̂ approximation of R generated by the model
λ regularization multiplier
g dimension of the user attribute vector
h dimension of the item attribute vector
G n× g matrix of user attribute vectors
H m× h matrix of item attribute vectors
U n× k matrix of user embeddings
V m× k matrix of item embeddings
Xi i-th layer of a network
X

′
i i-th layer of a network symmetric to the layer Xi

Table 3.1: Notation common to the architectures described in Chapter 3.

25

3. Analysis and design

The following sections go over the different model architectures. All of
them are based on neural networks and use the Sigmoid activation function
as is standard in similar publications [12], [47], [22].

The evaluated models are optimized by the Adam algorithm described
in the Section 2.2.1. It requires a calculated gradient of a loss function with
respect to all the trainable parameters. Fortunately the TensorFlow library
provides an automated way to compute them from any supported function.
All we therefore have to do to train a model is to specify its loss and run
the Adam algorithm on it with proper training data. The loss functions
of the models are described in their respective sections while the common
creation of the training batches is described in the Section 4.3.

3.2 Matrix Factorization
One of the most basic latent factor models is the Matrix Factorization (MF)
[24]. The goal of MF is to decompose a large matrix into two smaller ones
in such a way that their dot product approximates the original matrix. In
the world of recommendation, the large matrix would be the rating matrix
R which is expected to be very sparse. MF is intuitively a good fit for
this case because it should be possible to efficiently compress the sparsely
distributed information. However we do not know how complex are the
relationships between the observed ratings and we therefore have to make
some assumptions before selecting the right model to try to infer them.

Formally the MF is trying to minimize the loss function L in the follow-
ing equation:

L =
∥∥∥R− UV T

∥∥∥2
+ λ ‖U‖2 + λ ‖V ‖2 (3.1)

The way we calculate the U and V basically specifies our model. If we
assume a linear relationship between the input rating vectors and their la-
tent representation we arrive at the simplest architecture depicted in Figure
3.1a.

As can be seen in the aforementioned Figure 3.1a, the architecture con-
sists of two feed-forward neural networks. One of them takes the user rating
vector as input and is therefore called the user part while the other one is
called the item part of the model and processes the item rating vectors.
Both of them output k dimensional latent representations of their respec-
tive inputs. The dot product of those embeddings then approximates the
true ratings from R.

26

3.2. Matrix Factorization

≈ Rijui vj

W
′

WRu,∙

R
∙,i

X0

X1

X
′

0

X
′

1

(a) MF architecture.

≈ Rijui vj

Ru,∙

R
∙,i

X0

X L

2

XL

X
′

0

X
′

L

2

X
′

L

(b) Deep MF architecture.

Figure 3.1: Matrix factorization architectures.

We have chosen to design this model as a neural network because we
wanted it to be easily expandable. This allows us to compare it with the
more advanced models that are all based on neural networks similar to the
one used for MF. Since we use the Sigmoid activation function (σ) in the
hidden layer we allow the model to use some non-linearity in its calculation
of embeddings. Using an identity function would result in purely linear
operations but it would also complicate comparing the performance of this
simple model with the Deep MF that has more hidden layers which of
course use the Sigmoid activations. We are especially interested in the
possible improvements gained by the increased number of layers, not by the

27

3. Analysis and design

introduction of non-linearity by activation functions. Additionally we have
observed that using identity functions leads to a very large decrease in all
measured metrics which means that using the non-linear ones would solely
overshadow any effects caused by the changes in the architecture.

The full loss function of the model is expressed exactly in the following
equation:

L =
∥∥∥R− σ(RW + b) · σ(RW ′ + b

′)T
∥∥∥2

+ λ(‖W‖2 +
∥∥∥W ′

∥∥∥2
)

(3.2)

We do not regularize the biases because we did not observe any benefits
of it. It is also recommended by Jia et al. as a way to prevent overfitting
[48].

Another advantage of the neural network based model is the ease of
evaluation on new users. If we were for example using Alternating Least
Squares (ALS) to optimize the MF, we would have to simulate the training
step minimizing the loss with regard to the calculated item embeddings
similarly to the Collaborative Deep Learning evaluation described in Section
3.7. In the case of this symmetric architecture we simply pass the user rating
vector through the user part of the network and retrieve the embedding.
The network inference is potentially less expensive than the aforementioned
method because it consists only of a sequence of matrix multiplications
which can be efficiently computed by the modern graphical processors.

3.3 Deep Matrix Factorization
The Deep Matrix Factorization (Deep MF) is a straightforward extension
of the previously introduced Matrix Factorization architecture discussed in
Section 3.2.

Since the MF already uses Sigmoid activations the only difference is the
addition of the hidden layers. We have decided to add two of them with
exponentially decreasing number of units. The resulting layers and their
unit counts are specified in Table 3.2. The item part of the architecture not
included in the Table 3.2 is symmetric to the user part.

We base the number of neurons on the desired dimension of the latent
representation k. As can be seen from the table, the number of neurons Nl

in hidden layer l ∈ {1, . . . , L} can be derived as:

Nl = k2L−l (3.3)

28

3.4. Hybrid Stacked Denoising Autoencoder

layer name # units description

X0 m
input layer processing the user rating vector
has a dimension equal to the number of items

X1 256 first hidden layer
X2 128 second hidden layer

X3 64 third and final layer that outputs
the latent representation

Table 3.2: Deep Matrix Factorization layers and the number of their units.

Using powers of two is standard in the area of neural networks as it
is in other computationally intensive fields. It leads to an efficient way of
utilizing the resources that all work in the base-2 numeral systems.

The decreasing layer size allows the model to gradually compress the
input information while extracting more complex representations of it with
each subsequent layer. This should ideally lead to a higher density of in-
formation stored in the embeddings compared to the simpler MF model.
Which in turn should potentially lead to a better performance during eval-
uation.

Our implementation of this model minimizes the following loss function:

L =
∥∥∥R− UV T

∥∥∥2
+ λ(‖WL‖2 +

∥∥∥W ′

L

∥∥∥2
) (3.4)

Not only do we not regularize the biases as in the MF model but we
also do not regularize any weight matrices except the one calculating the
last layer XL. Again the reason is that we observed this configuration to
perform better. However it is possible that it applies only to networks of
this size and the situation changes with increased number of layers or their
number of units.

3.4 Hybrid Stacked Denoising Autoencoder
Hybrid Stacked Denoising Autoencoder (Hybrid SDAE)is a simplified ver-
sion of the Hybrid Additional SDAE presented in [13] but without the added
side information.

Since it does not make use of the attribute information it is therefore not
a hybrid collaborative filtering model in the strict sense however we choose
to include the ”hybrid” word in the name to emphasize its connection to
the more complex variant.

29

3. Analysis and design

≈ Rijui vj

R̃

u,∙

R̃

∙,i

X0

X L

2

XL

X
′

0

X
′

L

2

X
′

L

R̂

u,∙

R̂

∙,i

Figure 3.2: Hybrid SDAE network architecture.

The Hybrid SDAE architecture visualized in Figure 3.2 consists of two
stacked denoising autoencoders (SDAEs). One of them processes the user
rating information and is therefore called the user autoencoder. The other
one processes the item rating vectors and is called the item autoencoder.
The outputs of their bottleneck layers approximate the known ratings from
R by a dot product.

As can be seen, the whole architecture can be also understood as an
enhancement of the previous Deep Matrix Factorization with the user and
item parts replaced by the SDAEs.

Using the autoencoders instead of simple feed-forward networks has the
following advantages:

• The embeddings are forced to contain as much of the original informa-
tion as possible because the decoder needs to be able to reconstruct
it. This is important in the case when we do not only care about the
approximated ratings but also about the embeddings themselves and

30

3.4. Hybrid Stacked Denoising Autoencoder

want them to be a good compressed representation of all the original
information.

• The generalization capabilities of the model can be improved by feed-
ing it a noisy version of input that needs to be denoised and subse-
quently reconstructed. This forces the model to extract more general
rules from the input data and not to get fixated at specific features
that would allow the model to cheat the loss function and achieve low
error while learning sub-optimal representations.

The layer structure of the autoencoders simply expands the Deep Ma-
trix Factorization architecture. This results in the first dL2 e encoder layers
X0, X1, X2 and X3 staying the same as they are described in Table 3.2
while the new decoder layers X4, X5, X6 mirror the encoder layer counts,
specifically the X2, X1 and X0.

The model’s loss function:

L =
∥∥∥R− UV T

∥∥∥2

+
∑
i

∥∥∥Ri,• − fuserd (R̃i,•,W, b)
∥∥∥2

+
∑
j

∥∥∥R•,j − f itemd (R̃•,j,W
′
, b

′)
∥∥∥2

+ λ(
∥∥∥WL

2

∥∥∥2
+
∥∥∥∥W ′

L
2

∥∥∥∥2
)

(3.5)

consists of:

• The rating loss. The approximated ratings are calculated as a dot
product of the user and item embeddings taken from the bottleneck
layer of the respective autoencoders. This layer is effectively the out-
put of the encoder part named fusere for the user autoencoder and f iteme

for the item one. The embeddings U and V are therefore calculated
as:

Ui,• = fusere (R̃i,•,W, b)
Vj,• = f iteme (R̃•,j,W

′
, b

′)
(3.6)

• The reconstruction loss. Both autoencoders attempt to reconstruct
the original clean ratings R while being given their noisy versions R̃.
The reconstructions are the outputs of the decoder parts named fuserd

and f itemd for the user and item autoencoders respectively.

31

3. Analysis and design

• The regularization loss. We regularize only the weight matrix preced-
ing the bottleneck layer in both autoencoders since we observed worse
performance while regularizing all of them.

3.5 Hybrid Additional Stacked Denoising
Autoencoder

Hybrid Additional Stacked Denoising Autoencoder (Hybrid aSDAE) is a
recent architecture proposed by Xin Dong et al. in 2017 [13]. It supports
incorporating both user and item attributes into the final latent representa-
tion U and V . It is therefore a truly hybrid recommendation model combin-
ing both collaborative and content based filtering through the latent factor
based matrix factorization.

The model architecture visualized in Figure 3.3 is similar to the previ-
ously explained Hybrid SDAE with the both SDAEs replaced by a novel
autoencoder architecture called Additional SDAE.

3.5.1 Additional Stacked Denoising Autoencoder
Additional SDAE (aSDAE) expands the traditional SDAE architecture de-
scribed in Section 2.3 with the support for another source of information.
In the case of recommendation systems, this model is able to process both
the ratings and attributes of items and users.

Since it is a denoising model, the input rating information R and at-
tribute information A is corrupted before feeding it into the network as R̃
and Ã respectively. The used corruption is either a binary masking noise
typically used on the sparse ratings or additive Gaussian noise which is a
good fit for real valued attributes.

The architecture of the autoencoder visible in the top and bottom part of
Figure 3.3 consists of newly added layers combining the processed attribute
information with the well known SDAE component which is at its heart.

The output hl of each hidden layer l ∈ {1, · · · , L− 1} is computed as:

hl = f(W r
l hl−1 +W a

l Ã+ bl) (3.7)

while h0 is a batch of corrupted rating vectors from R̃ and f is the
chosen activation function.

32

3.5. Hybrid Additional Stacked Denoising Autoencoder

≈ Rijui vj

R̃

u,∙

R̂

u,∙
W r

1
W r

L

2 W r

L

W
a

L

G̃

u,∙

Ĝ

u,∙

W
a
L

2

W
a

1

R̃

∙,i

W r
′

1
W r

′

L

2

W
a

′

L

2

W
a

′

1

H̃

i,∙

R̂

∙,i

Ĥ

i,∙

W r
′

L

W
a

′

L

Figure 3.3: Hybrid Additional SDAE network architecture.

The outputs R̂, Â of the last layers attempt to reconstruct the original
clean inputs, specifically the ratings R and attributes A as:

R̂ = f(W r
LhL + brL)

Â = f(W a
LhL + baL)

(3.8)

33

3. Analysis and design

As can be seen the name additive comes from the fact that the attribute
vectors are added to the output of each hidden layer. The attribute vectors
need to be multiplied by their own weight matrices W a

l before being added
to the output of the previous layer hl−1 multiplied by its special weights
W r
l . This need arises for two reasons:

• It allows the network to extract useful information from the noise
corrupted attributes to be able to both reconstruct them from the
last layer and find more complex patterns.

• To be able to actually add the attribute vectors to the layer outputs,
their dimensions must match. The weight matrices W a

l therefore have
dimensions of adim × nl where adim is the dimension of the attribute
vector and nl is the number of neurons in the l-th layer.

The first L
2 layers act as an encoder and we mark them as fe. The

output of this part is considered as an embedding of the input. The rest of
the layers act as a decoder.

Training of the autoencoder follows the loss function specified in Equa-
tion 3.9. It consists of the distances between the clean input and the re-
constructed one and weight regularization. The reconstruction losses are
balanced by the α parameter allowing us to control on which part should
the model focus more during training.

L = α
∥∥∥R− R̂∥∥∥2

+ (1− α)
∥∥∥A− Â∥∥∥2

+ λ(‖W r‖2 + ‖W a‖2)
(3.9)

Being able to incorporate additional sources of information is undoubt-
edly beneficial however the fact that the aSDAE has two sets of weights
(W r and W a) unfortunately leads to a significant increases in the number
of trainable parameters and therefore the training time. This problem is
especially noticeable in case of high dimensional attribute vectors.

3.5.2 Hybrid aSDAE
To create the final hybrid recommendation model, two aSDAEs are com-
bined through the goal of factorizing the rating matrix R similarly to all
the previously mentioned models.

Figure 3.3 clearly shows the user aSDAE at the top and the item one
at the bottom connected by a dot product of their bottleneck layers. The
outputs of the bottleneck layers of the user and item parts are called fusere

34

3.5. Hybrid Additional Stacked Denoising Autoencoder

and f iteme respectively because they represent the encoder parts of the au-
toencoders. These outputs form the latent representations stored in the U
and V matrices as seen in the following equation:

Ui,• = ui =fusere (R̃i,•, G̃i,•,W
r,W a, b)

Vj,• = vj =f iteme (R̃•,j, H̃•,j,W r′
,W a′

, b
′)

(3.10)

The dot product of the latent representations forms the approximated
ratings R̂. The loss function used for training the model is visible in Equa-
tion 3.12and consists of several terms:

• The sum of errors of the approximated ratings. However only selected
ratings having 1 in the binary matrix Iij are counted towards it. The
authors use only the known ratings.

• The reconstruction losses of the user and item autoencoders. Param-
eter α1 is used to balance the errors of ratings and attributes in case
of the user AE while α2 is used for the item AE. The reconstructions
are calculated by the last layers as:

R̂user = f(W r
LhL + brL)

Ĝ = f(W a
LhL + baL)

R̂item = f(W r′

L h
′

L + br
′

L)
Ĥ = f(W a′

L h
′

L + ba
′

L)

(3.11)

• Last term is a regularization of all the weights and biases used in the
network multiplied by the λ hyper parameter.

L =
∑
i,j

Iij(Rij − uivTj)2

+ α1

∥∥∥R− R̂user

∥∥∥2
+ (1− α1)

∥∥∥G− Ĝ∥∥∥2

+ α2

∥∥∥R− R̂item

∥∥∥2
+ (1− α2)

∥∥∥H − Ĥ∥∥∥2

+ λ(‖W r‖2 + ‖W a‖2 + ‖b‖2 +
∥∥∥W r′

∥∥∥2
+
∥∥∥W a′

∥∥∥2
+
∥∥∥b′
∥∥∥2

)

(3.12)

We did not implement this architecture because we believe it would
reach similar performance to our proposed Hybrid cSDAE discussed in the
next section while requiring more time to train.

35

3. Analysis and design

3.6 Hybrid Concatenated Stacked
Denoising Autoencoder

Hybrid Concatenated Stacked Denoising Autoencoder (Hybrid cSDAE) is a
novel architecture inspired by the Hybrid aSDAE discussed in the previous
section. The primary goal is to reduce the number of trainable parameters
as much as possible while still supporting the attribute information and
therefore keeping all the benefits of a hybrid recommendation model.

The architecture visible in Figure 3.4 is similar to the Hybrid aSDAE one
with the Additional SDAEs replaced with our newly proposed Concatenated
SDAE (cSDAE).

3.6.1 Concatenated Stacked Denoising Autoencoder
Concatenated Stacked Denoising Autoencoder (cSDAE) modifies the tradi-
tional SDAE by allowing multiple sources of information at the input and
being able to reconstruct them at the end of the decoder.

We specifically want to avoid the duplication of each SDAE layer which
aSDAE needs to be able to add the compressed attribute vector at every
step to the output of the previous layer. To achieve that, we compress the
attribute vector only one time at the beginning and concatenate the result
with the compressed rating vector. This concatenated vector is then passed
as an input to a traditional SDAE architecture. Its output is then used
to reconstruct both of the inputs by a layer structure mirroring the one
compressing the inputs.

The ratings are corrupted by a binary masking noise before being passed
into the network as is expected, however we found that corrupting the
attribute vectors did not improve the results and we therefore input them
unchanged.

Both the network f rcomp compressing the ratings R and the network
facomp compressing the attributes A are simple feed-forward architectures
with decreasing number of neurons in each subsequent layer. They can be
imagined as an extensions of the encoder part of the SDAE at the core.
We compress the inputs to the same dimension before concatenating them.
We did not test other ratios of the compressed dimensions that may be
beneficial in certain cases.

After compression and concatenation, the resulting vector hc is passed
to the first layer of the SDAE encoder called Xa in:

hc = concat(f rcomp(R̃i,•,W
r
comp, b

r
comp), facomp(Ai,•,W a

comp, b
a
comp)) (3.13)

36

3.6. Hybrid Concatenated Stacked Denoising Autoencoder

≈ Rijui vj

X0

X L

2

XL

Xa_in Xa_out

X
′

0

X
′

L

2

X
′

L

X
′

a_in
X

′

a_out
H

G

R̃

u,∙

R̃

∙,i

Ĥ

R̂

∙,i

R̂

u,∙

Ĝ

Figure 3.4: Hybrid Concatenated SDAE network architecture.

The encoder part fencode of the SDAE further compresses the input and
generates a latent representation hL

2
as a result of the bottleneck layer XL

2
:

hL
2

= fencode(hc,Wencode, bencode) (3.14)

Then the decoder part fdecode produces a vector ha out with the same

37

3. Analysis and design

dimensions as hc as an output of the layer Xa out:

ha out = fdecode(hL
2
,Wdecode, bdecode) (3.15)

Finally, the reproductions R̂i,•, Âi,• of the original Ri,•, Ai,• are produced
by the decompressing feed-forward networks extending the decoder and
mirroring the structure of the compression networks f •comp :

R̂i,• = f rdecomp(ha out,W r
decomp, b

r
decomp)

Âi,• = fadecomp(ha out,W a
decomp, b

a
decomp)

(3.16)

If we use one layer facomp and set the output dimension of it equal to the
dimension of the first hidden layer of aSDAE, we can see that:

dim(W a
1) = dim(W a

L) = dim(W a
comp) = dim(W a

decomp) (3.17)

meaning the cSDAE architecture reduces the number of trainable pa-
rameters by not needing the aSDAE layers processing the attributes be-
tween the first and last layer of the SDAE. Specifically, using the aSDAE
notation, the following number of parameters is removed:

L−1∑
l=2

(size(W a
l) + size(bal)) (3.18)

Training follows the loss function in Equation 3.19 which is almost identical
to the aSDAE loss. The only difference is that cSDAE regularizes only the
weights WL

2
that precede the last layer of the encoder.

L = α
∥∥∥R− R̂∥∥∥2

+ (1− α)
∥∥∥A− Â∥∥∥2

+ λ(
∥∥∥WL

2

∥∥∥2
)

(3.19)

3.6.2 Hybrid cSDAE
Combining two cSDAE to create the hybrid recommendation model is done
in exactly the same way as with Hybrid aSDAE.

The final loss function visible in Equation 3.20 is again similar to the one
of Hybrid aSDAE. The latent representation matrices U , V are user, item
variants of an encoder output hL

2
seen in Equation 3.14. The reconstructions

38

3.6. Hybrid Concatenated Stacked Denoising Autoencoder

R̂user, Ĝ and their item equivalents are calculated according to the Equation
3.16.

L =
∥∥∥R− UV T

∥∥∥2

+ α1

∥∥∥R− R̂user

∥∥∥2
+ (1− α1)

∥∥∥G− Ĝ∥∥∥2

+ α2

∥∥∥R− R̂item

∥∥∥2
+ (1− α2)

∥∥∥H − Ĥ∥∥∥2

+ λ(
∥∥∥∥W user

L
2

∥∥∥∥2
+
∥∥∥∥W item

L
2

∥∥∥∥2
)

(3.20)

The only major differences to the Hybrid aSDAE loss function is the
first term. Calculating the loss only on the known ratings may lead the
model to predict 1 for every rating. To prevent that, we inject some of the
unknown ratings into the training batches and use them as known negative
ratings. This whole process is described in detail in Section 4.3.

3.6.3 Architecture details
The specific Hybrid cSDAE architecture used in all our experiments has the
following layer structure:

• The network f rcomp compressing the ratings is a three layer feed-forward
net. The second layer has 256 neurons and the third one 128.

• The network facomp compressing the attributes is a two layer feed-
forward net with the second layer having 128 neurons. This is an
example of the flexibility of this architecture, since all the datasets
we evaluate on have fairly simple attribute vectors, we can choose
to use a smaller network to compress them. Smaller in comparison
to the one compressing the ratings that generally have much larger
dimensionality.

• The SDAE following the compression of inputs has three layers. The
input one has 256 neurons due to the concatenation of the two 128
inputs. Following is the bottleneck layer with k = 64 neurons and
then the decoder mirroring the layers of the encoder.

• The decoder output is passed onto the feed-forward decompressing
networks f rdecomp and fadecomp that reconstruct the inputs. Their struc-
ture mirrors the structure of the compressing networks.

• The hyperparameters α1 and α2 controlling the importance given to
the reconstruction of the ratings compared to the reconstruction of

39

3. Analysis and design

attributes are both set to 0.8 in our experiments unless stated other-
wise.

As can be seen we have chosen the layer unit counts carefully to be as
close as possible to the other evaluated architectures. We could easily ex-
pand both the compression nets and the core SDAE with additional hidden
layers to allow the model to extract more complex patterns with little added
computation cost. However we seek to compare the described models on
fair grounds and therefore try to minimize the differences between them.

3.7 Collaborative Deep Learning
The Collaborative Deep Learning (CDL) as it is defined in the original
publication [47] is a general framework that can incorporate several models.
We will focus on a special case using classic SDAE described in Section 2.3
for the item attribute feature extraction. This case is discussed by the CDL
authors as λs going to infinity. We are going to use the notation described
in Table 3.3. Only notable changes to the paper are renaming a to simply
1 and b to α.

H clean m× h matrix of all item attribute vectors
H̃ noisy m× h matrix of all item attribute vectors
W+ weight matrices of all layers
Wl weight matrix of layer l
bl bias vector of layer l
fe(input,weights) encoder function representing the first half of the autoencoder
fd(input,weights) decoder function representing the whole autoencoder
C n×m matrix with the weights of the ratings
1 weight of known ratings
α < 1 weight of unknown ratings

Table 3.3: CDL specific notation.

As can be seen in the Figure 3.5 CDL is quite different from the pre-
viously described models. It can be understood as a combination of an
autoencoder and matrix factorization. Only item attributes are supported,
not user ones which is one of the disadvantages of CDL. Although the archi-
tecture could be extended to be symmetric, the resulting model would have
even more complicated evaluation of new users. Nevertheless it is definitely
possible and an interesting direction of future work.

40

3.7. Collaborative Deep Learning

H̃

j,∙

X0

X L

2

XL

Ĥ

j,∙

(,)fe X0 W+

V ∈ IRm×k

vj ≈

ui vj ≈ Rij

U ∈ IRn×k

Figure 3.5: CDL network architecture.

The single autoencoder is trained to create compressed vector represen-
tations of the item attributes. These representations are continuously used
to optimize the actual item embeddings that are also connected to the user
embeddings through approximation of the train ratings. This approxima-
tion is done by a standard dot product of the embeddings and is compared
to the known ratings. The ratings are used only to calculate the error of
the approximation, they are not passed as an input.

The loss function depicted in Equation 3.21 connects all the described
parts of CDL and consists of the following terms:

• L2 regularization of the user embeddings controlled by the λu hyper-
parameter. Note that there is no explicit regularization of the item
embeddings. They are indirectly regularized by the other terms.

• L2 regularization of all the weights and biases of the autoencoder
controlled by the λw hyperparameter.

41

3. Analysis and design

• L2 distance of the item embedding to the latent representation of item
attributes outputted by the encoder fe. The distance is multiplied by
the λv hyperparameter.

• Reconstruction loss of the autoencoder multiplied by the λn hyperpa-
rameter.

• Distance of the approximated ratings to the original ones weighted by
the C matrix. The C matrix is 1 for the known ratings and α for the
unknown ones.

L = λu
2
∑
i

‖ui‖2

+ λw
2
∑
l

(‖Wl‖2 + ‖bl‖2)

+ λv
2
∑
j

∥∥∥vj − fe(H̃j,•,W
+)T

∥∥∥2

+ λn
2
∑
j

∥∥∥fd(H̃j,•,W
+)−Hj,•

∥∥∥2

+
∑
i,j

Cij
2 (Rij − uTi vj)2

(3.21)

All the new lambda hyperparameters including the α need to be care-
fully tuned to ensure that one of the loss terms does not overshadow the
remaining ones. Since there are five of them, we have decided to find the
best combination of values for each of our dataset manually to avoid a very
expensive grid search.

3.7.1 Training
The training consists of optimization of the autoencoder that tries to recon-
struct the noisy item attributes and two floating point matrices representing
all the item and user embeddings respectively.

We feed just a batch of item indexes, their ratings for the loss function
and noise ratio to corrupt the item attribute vectors. The noise masks only
hide some ones in the binary attribute vectors that we use. The fact that we
do not input the rating vectors into any neural network is a significant ad-
vantage compared to the other discussed models that might have problems
with scaling in case of large number of users and items.

42

3.7. Collaborative Deep Learning

The gradients of the loss function in Equation 3.21 are calculated by
backpropagation. We take turns in optimizing the autoencoder part and
the embeddings part of the network. One training step updates embeddings
of items from the batch and all the user embeddings. The optimization of
all the user embeddings with each batch of items necessarily comes out of
the choice to approximate the whole item rating vectors that are compared
to the known ones in the loss function. This is unsurprisingly quite costly
and in our experience completely negates the benefit of not using a neural
net for processing the rating vectors.

Since we approximate the whole item rating vector, we need to weight
the error of the unknown ratings that we represent as zeroes. If we did
not weight them we would end up with a model predicting zero for every
rating and having a very small loss. We therefore use the alpha parameter
to multiply the squared error corresponding to the unknown ratings.

Both the user and the item embedding matrices are randomly initialized
at the start of training. The item embedding vectors are optimized to
minimize two constraints:

• Their L2 distance from the autoencoder’s latent representation of the
item attribute information.

• Square of the weighted distance of its dot product with the user em-
bedding from the known rating.

The user embeddings are optimized only to minimize the distance of the
dot product from the known rating. Which makes them much more free to
change.

All the other models presented in this chapter use a different training
regime mainly due to the fact that calculating all the user embeddings dur-
ing each update would be too expensive since it requires a neural network
inference for each user. The same applies to the item embeddings of course
because all the other architectures are symmetric. As a result of this con-
straint we had to choose a different approach to the loss and to preventing
the model from approximating every rating as unknown. It is described in
Section 4.3.

3.7.2 Evaluation
Since CDL in its original form presented in [47] does not support evaluation
on new users, we had to devise a method to use the trained model to

43

3. Analysis and design

recommend items for validation and test users that the model never saw
during training. This section uses notation specified in Table 3.4.

V m× k matrix of all item embeddings
λu user embedding regularization strength
u index of user whose embedding we want to calculate
w desired embedding of user u
Y m× 1 column rating vector of user u
s items implicitly rated by the user u
ms number of items in s
Vs ms × k matrix of embeddings of items rated by u
1 ms × 1 column vector of ones
Ik k × k identity matrix

Table 3.4: Notation specific to the CDL evaluation equations.

The problem is that in case of CDL, the user embeddings are not received
from a certain layer in a neural network but are all optimized separately.
As a result we cannot simply get an embedding for a new user u by just
inputting his rating information. We however have all the item embeddings
calculated and we can therefore use them to simulate one step of the CDL
training algorithm to get the embedding of user u. The goal is to mini-
mize the distance of the dot product of the user embedding and the item
embeddings to the corresponding ratings of the user u.

We derive the exact solution for our rating matrix consisting only of
ones for positive ratings and zeroes for either unknown or negative ratings.
We need to minimize the following loss function with regards to w which is
the embedding of some validation user u:

L(w) = α ‖Y − V w‖2 + (1− α) ‖1− Vsw‖2 + λu ‖w‖2 (3.22)

Solution for w starts by calculating the gradient of L(w) and setting it
to 0:

∇L(w) = −2αV T (Y − V w)− 2(1− α)V T
s (1− Vsw) + 2λuw

= αV TY − αV TV w + (1− α)V T
s 1− (1− α)V T

s Vsw − λuw
= 0

(3.23)

Then we just simplify the linear system of equations to a typical form

44

3.7. Collaborative Deep Learning

of Aw = b that can be solved by standard library functions:

αV TV w + (1− α)V T
s Vsw + λuw = αV TY + (1− α)V T

s 1

(αV TV + (1− α)V T
s Vs + λuIk)w = αV TY + (1− α)V T

s 1

(αV TV + (1− α)V T
s Vs + λuIk)w = αV T

s 1 + (1− α)V T
s 1

(αV TV + (1− α)V T
s Vs + λuIk)w = V T

s 1

(3.24)

After getting the validation user embedding we approximate his un-
known ratings by a dot product of his embedding with the corresponding
item embeddings. Recommendations are then standardly selected as the
top K items from the sorted list of approximated ratings.

45

Chapter 4
Experiments

4.1 Implementation
We implemented all the models and experiments in Python 3.5. The fol-
lowing libraries were used:

• TensorFlow 1.11 to implement all the models [49].

• Numpy for fast matrix operations during evaluation [50].

• Pandas for efficient loading and preprocessing of the training datasets
[51].

• scikit-learn for simple transformation of numerical values to one-hot
encoding [52].

4.2 Datasets
We use the following datasets for evaluation: MovieLens 100k, MovieLens
1m and BookCrossing. The number of publicly available datasets that
satisfy our requirements of having both user and item attribute information
is quite low, which is the reason why we did not evaluate our methods for
example on the larger variants of the MovieLens.

We only consider users and items with the attribute information filled
out. In case of MovieLens we keep users and items with at least two ratings.
The same applies to the items at BookCrossing but the users have to have
at least 20 ratings.

Preprocessing specific to the MovieLens datasets:

47

4. Experiments

• User attributes: Gender, age, occupation and zip code. We one-hot
encode all of them while using only the first 3 symbols of the zip code.
The resulting user attribute vector is a concatenation of these one-hot
encodings.

• Item attributes: The item attribute vector for both MovieLens
datasets is just the one-hot encoding of the respective item genres.
This means that dimension of the item attributes is much smaller
than the user ones.

Preprocessing specific to the BookCrossing dataset:

• User attributes: Concatenation of one-hot encoded age, country
and a region. We extract the country and region from the provided
Location column.

• Item attributes: We again one-hot encode and concatenate the
publisher and the publication year, all the other provided features
have too high variance.

We decided to use implicit binary ratings. That means we represent
all the unknown and negative ratings as 0 while assigning 1 to the positive
ones. Since all chosen datasets have explicit ratings we transform them
by considering all ratings smaller than a certain cut-off point as negative
and the rest as positive. The cut-off point is 4 for MovieLens and 5 for
BookCrossing.

MovieLens 100k MovieLens 1m BookCrossing
users 942 6037 3153
items 1447 3532 104749

implicit ratings 55375 573582 207669
portion of all ratings 4.0625% 2.6900% 0.0629%
avg ratings per user 58.8 95.0 65.8
avg ratings per item 38.2 162.4 1.9
user attributes dim 415 707 439
item attributes dim 19 18 8709

Table 4.1: Dataset statistics after preprocessing.

The basic statistics of the datasets after preprocessing are shown in the
Table 4.1. It can be clearly seen that the two MovieLens datasets have
roughly equal numbers of users and items whereas the BookCrossing one
has more than thirty times more items than users. It is also much sparser
with only 1.9 ratings per item on average.

48

4.3. Model training

4.3 Model training
The training follows similar rules for all the mentioned architectures except
for the Collaborative Deep Learning which uses a special procedure allowed
by the fact that it does not have a neural network calculating the user
embeddings. The training of CDL is described in detail in Section 3.7 while
the training procedure applicable to the rest of the architectures is described
here.

We initialize all layers in all the neural networks by Glorot uniform
initializer also called Xavier uniform initializer introduced by Xavier Glorot
and Joshua Bengio in [53] and implemented in TensorFlow.

The actual training is done by the Adam algorithm described in Section
2.2.1. We tune the learning rate for each model and dataset combination
while keeping the other parameters at default values of: β1 = 0.9, β2 =
0.999, ε = 10−8.

We use 80% of all the users for training, the rest is split evenly among
validation and test sets. The whole evaluation process is described in detail
in the Section 4.4.

We have already covered what do we pass into the models during training
and how we use a binary masking noise to hide some of the ratings from
the input rating vectors while describing the architectures in Chapter 3. All
the experiments were conducted with noise ratio 0.2 meaning that 20% of
the known ratings were hidden in the input rating vectors. What remains
is the description of how exactly are the batches created which can have a
significant impact on the performance of the trained model.

Since we use implicit binary ratings we cannot simply shuffle them and
pass them to the model, it would only learn to predict 1 for all the inputs.
On the other hand, if we considered all the unknown ratings as known
negative ones and used them with the known positive ones during training,
the model would probably learn to constantly predict a negative rating due
to their overwhelming majority out of all the ratings. There are two possible
ways to alleviate this problem:

• Feed all the ratings including the unknown ones that are 0 and give
more importance to the prediction of the known ratings. This ap-
proach makes sense if we predict multiple ratings at once, typically
whole rating vectors. A prime example is the CDL model which pre-
dicts whole item rating vectors at each training step and multiplies
the errors by a weight matrix.

49

4. Experiments

• Sample some unknown ratings and present them as known negative
ones to the model. That means the approximation of both 1s and
0s is given the same importance. The different weights of the errors
are replaced by a specific ratio of the sampled unknown and known
ratings in each training batch.

All the models except the CDL predict the ratings one by one and
we therefore choose the second option with balanced batches. We use a
parameter γ called negative sampling rate to describe the composition
of the batches. Each batch of size N consists of Nγ

γ+1 sampled unknown
ratings and N

γ+1 known ratings. This translates to γ unknown ratings per
one known rating. We use γ = 4 as default value which has been found to
be a reasonable choice according to the experiments of He et al. in [54].

To create these batches for one epoch, we first shuffle the known ratings
of the training users and cycle through them in N

γ+1 chunks. The rest of
each batch is always filled by random unknown ratings that are sampled
by cycling through the training users and through all the items. These are
both shuffled each time the iterator reaches the end.

The same issue with learning to predict a constant value arises at the
reconstruction end of the autoencoders. We therefore calculate the loss only
on selected reconstructed ratings. The selection includes all known ratings
and then γ times more randomly sampled unknown ratings. This masking
approach is more computationally efficient than multiplying the loss by a
weight matrix and produces good results.

4.4 Model evaluation
We first split the preprocessed dataset per users into train, validation and
test sets using 0.8, 0.1, 0.1 ratios respectively. We then split the validation
and test user ratings to train ratings used as an input to the trained model
and test ratings used for evaluation of model’s performance with ratios of
0.8 and 0.2 respectively. The whole process is in simplified form shown as
a diagram in Figure 4.1.

We measure the following metrics: RMSE, Recall, Test Recall and
NDCG. Because it is infeasible to calculate the predicted value for all possi-
ble ratings we uniformly sample 1000 items for each evaluated user that he
did not rated. We then calculate the model predictions on these sampled
items together with the rated ones. Detail descriptions of our implementa-
tion of the used metrics follows:

50

4.4. Model evaluation

Training set

Validation set
Test set

Users

Items

1. Rating matrix divided
according to users.

Trained
model

0

Train Test

Train

Mask test ratings

Feed to model

Predicted ratings

2. Validation user ratings split.
Train part fed to trained model.

Calculate
evaluation

metrics

3. Metrics calculated using
predicted ratings and

validation ratings.

Figure 4.1: Calculation of evaluation metrics on the validation set. Exactly
the same process is applied to the test set. The metrics are calculated each
1000 steps during training to be able to find the best score for each metric.

• RMSE: The error is calculated only on the withheld known ratings
which the model never encountered. They are all 1 due to the fact
that we use implicit ratings. As a result, a model predicting only
ones would have a zero RMSE. It also means that the RMSE could
be changed by simply scaling the outputs. For example if all the
predictions were around 0.5 and we added 0.1 to all of them, the
RMSE would get lower but the ordering of the items based on their
predicted ratings would stay exactly the same. This metric is therefore
not very useful for comparing the performances of different models
since they can just be inherently biased towards returning lower or
higher predictions. It can however be used to visualize the impact of
changing a specific hyperparameter in case of a single model.

• Classic Recall@K: Adaptation of the previously described Recall
metric specified in Algorithm 4. To calculate it for a single user we
take all of his ratings including the ones used as an input to the
model, combine them with the 1000 sampled items and calculate the
predicted rating values for them. We then select the top K of these
items sorted according to the predictions and count the number of
positively rated ones among them. After normalizing this number we
get the desired Recall@K for a single user. To get the overall Recall@K
we simply average them over all evaluated users. This metric is used
by the authors of the Hybrid aSDAE architecture and we include it

51

4. Experiments

to show how it can produce misleading results compared to the Test
Recall[13].
The problem comes from the fact that we count the positively rated
items provided to the network at input as successful ”hits” if they are
in the top K recommended items. This means that the network can
reach high recall by remembering and consequently reproducing the
input ratings. Which is not trivial since it did not see the validation
user ratings during training nevertheless it does not properly represent
the model’s capabilities to predict unknown ratings.

Algorithm 4: Classic Recall@K for user u
input : all pos itemids: all positive ratings of u,

sampled: 1000 randomly sampled items not rated by u
output: recallu: Classic Recall@K for user u
itemids← all pos itemids ∪ sampled
sorted itemids ← itemids descend. sorted acc. to predicted ratings
top k itemids ← sorted itemids[:K]
num pos top k ← |all pos itemids ∩ top k itemids|
max num pos top k ← minimum(K, |all pos itemids|)
recallu ← num pos top k

max num pos top k

• Test Recall@K: Is very similar to the Classic Recall@K metric. The
key difference is that we do not calculate the predicted rating values
for the ratings that were passed into the model as an input. We do
not include them in the top k items at all. We basically only look
at the randomly sampled items that were not rated and the withheld
ones never shown to the model. The exact description is in Algorithm
5. Compared to the Classic Recall, this metric better focuses at the
desired task of predicting the unknown ratings of new incoming users.

Algorithm 5: Test Recall@K for user u
input : test pos itemids: withheld positive ratings of u,

sampled: 1000 randomly sampled items not rated by u
output: recallu: Test Recall@K for user u
itemids← test pos itemids ∪ sampled
sorted itemids ← itemids descend. sorted acc. to predicted ratings
top k itemids ← sorted itemids[:K]
num pos top k ← |test pos itemids ∩ top k itemids|
max num pos top k ← minimum(K, |test pos itemids|)
recallu ← num pos top k

max num pos top k

52

4.4. Model evaluation

• NDCG@K: The creation of the top k list of items and all the asso-
ciated variables is identical to the way Test Recall does it. We then
calculate IDCGK according to the simplified equation 2.11 due to us-
ing the implicit ratings. The DCGK is a sum of the simplified term
over the top k items that were positively rated by the user. The rest
of the items have relevance equal to zero. The Algorithm 6 describes
the calculations using the variables from Algorithm 5.

Algorithm 6: NDCG@K for user u
input : top k itemids: calculated as in Algorithm 5,

test pos itemids: calculated as in Algorithm 5,
max num pos top k: calculated as in Algorithm 5

output: NDCGK : NDCG@K for user u
IDCGK ←

∑max num pos top k
i=1

1
log2(i+1)

DCGK ← 0
for i← 1 to K do

if top k itemids[i] ∈ test pos itemids then
DCGK ← DCGK + 1

log2(i+1)

NDCGK ← DCGK
IDCGK

• Coverage@K: The coverage represents the ratio of the recommended
items to the number of all the items. The recommended items are
counted as top k itemids in Algorithm 5. That means we do not count
the items with known ratings passed as an input to the model.

We calculate all the metrics based on K for K ∈ (10, 50, 100, 150, 200,
250, 300) and then select the best result for each K. In other words we
select the training step with the best validation score for each combination
of model, dataset, metric, K and report the test score of the model at this
training step.

In order to eliminate as much randomness as possible in the evalua-
tion, we use 5-fold cross-validation during every run of the hyper-parameter
search and all the other experiments. We implement it by cyclically choos-
ing the 20% of users used for evaluation. The first half of them is marked
as validation while the second one as test set. The rest of the users is used
for the training.

The cross-validation allows us to report the mean and standard deviation
of each of the hyperparametrization runs.

53

4. Experiments

4.5 Evaluation results
First we comprehensively evaluate all the implemented models described
in Chapter 3 by conducting a grid search over their hyperparameters and
evaluating each of the parametrizations by the method explained in the Sec-
tion 4.4. This generates enough data to compare the different architectures
among each other.

The following experiments focus on the effects of a single hyperparam-
eter on the performance of the proposed Hybrid cSDAE architecture. We
investigate the roles of the negative sampling rate and the noise ratio.

4.5.1 Grid search results
In order to compare the different models fairly we tried to find the best
hyperparameters for them on each dataset. The search was done by training
the models on all the combinations of the parameters in Table 4.2. Even
though the grid search does not appear very extensive it still took over 300
hours of computation time on a server with a single GTX 1080. All the
models were trained for 6 epochs and evaluated every 1000 steps. One step
equals to processing one batch.

parameter tested values
λ {1× 10−3, 1× 10−4, 1× 10−5} for all models except CDL

batch size {32, 64, 128} on MovieLens 100k
{128, 256, 512} for the other two datasets

learning rate {4× 10−3, 4× 10−4}

Table 4.2: Tested combinations of the hyperparameters.

Due to the large amount of regularization parameters of the CDL, we
fine tuned them by hand. This resulted in: α = 0.1, λw = 0.001, λu = 0.01,
λv = 100, λn = 20 for the MovieLens 100k dataset and α = 0.1, λw = 0.001,
λu = 0.01, λv = 10, λn = 2 for the MovieLens 1m and the BookCrossing
datasets.

The results are visualized in Figures 4.2, 4.3 and 4.4 that compare the
implemented models on the MovieLens 100k, MovieLens 1m and BookCross-
ing datasets respectively.

Each figure consists of two rows. The first row contains graphs compar-
ing the models using the Classic Recall, Test Recall and NDCG metrics that
were explained in Section 4.4. Each of the points in these graphs belongs

54

4.5. Evaluation results

to a certain dataset, metric and model. They are calculated by finding a
training step with the best metric value on the validation set. This is done
for each of the cross-validation iterations. The parametrization with the
best average validation score (over the cross-validation iterations) is cho-
sen and the test values from the previously selected training steps are put
together. Each point on the graph then represents the mean of these test
values with the errorbars signifying the standard deviation obtained thanks
to the cross-validation.

The second row of graphs visualizes the coverage of the model on the
test set. The points are again the means of the test values, however this
time we take them from the parametrizations and training steps selected
by a different metric. Concretely the metric having the graph at the same
position but in the first row. This means that the points on graphs in the
same column and belonging to the same K are a result of the exact same
model. We can therefore see the coverage of a model selected for its high
Recall or NDCG.

It would not make sense to show a coverage graph created the same
way as the ones in the first row. The reason is due to selecting the best
training step combined with the fact that a random model trivially achieves
a maximum coverage. This would lead to showing coverage values obtained
right after the random initialization of the network that are not interesting
at all. The shown graphs are useful because we are especially interested in
models that achieve both high recall and high coverage. Such models are
able to recommend a broad set items that are relevant to different groups
of users which is more desirable than a model focusing on a small set of
popular items.

Firstly we examine the performance of the models on the smallest dataset:
MovieLens 100k. The graphs with results are in the Figure 4.2. The low
number of users leads to a high variance of the measured metrics. Both
of these factors result in all of the models achieving similar performance in
both types of recall and NDCG. The differences are however clearly seen
in the coverage scores and they all follow a similar pattern. CDL has the
worst coverage, Hybrid SDAE with Hybrid cSDAE outperform the rest and
the MF models are in between.

It is important to remember that we are looking at the coverage scores
of models with the highest recall or NDCG. In the case of this dataset, since
all the models have reached similar scores of both recall and NDCG, we can
see that the autoencoder based models would produce more diverse recom-
mendations while keeping the reached recall which is typically desirable.

55

4. Experiments

10 50 100 150 200 250 300
K

0.6

0.7

0.8

0.9

Cl
as

sic
 re

ca
ll

Classic recall

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.4

0.6

0.8

Te
st

 re
ca

ll

Test recall

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.3

0.4

0.5

ND
CG

NDCG

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.2

0.4

0.6

0.8

Co
ve

ra
ge

Coverage by Classic recall

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.2

0.4

0.6

0.8

Co
ve

ra
ge

Coverage by Test recall

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.2

0.4

0.6

Co
ve

ra
ge

Coverage by NDCG

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

Grid search results: MovieLens 100k

Figure 4.2: Model results on the MovieLens 100k dataset. Autoencoder
based models achieve higher coverage while having similar recall and NDCG
to the other models.

The model results on the bigger MovieLens 1m dataset are visualized in
the Figure 4.3. The first thing that catches attention is the drop in Classic
recall from K = 10 to K = 50. To understand why it is happening we
have to delve into the exact computation of the metric for a certain user.
It firstly counts the number of positively rated items in the top K and then
divides this number by a minimum of K and the number of items positively
rated by the user.

The drop comes from a combination of two factors: the fact that the
metric counts the items passed as an input among the top K recommended
items and the fact that if majority of users have significantly more positive
ratings than K, it is then possible to reach recall of 1 by putting only some
input items into the top K while ranking the other positively rated items
very badly. This is exactly what happens here because the vast majority
of users have more than 20 implicit ratings. We use 80% of them as input
which means the model just has to rank 10 out of 16 items in the top K to
achieve recall of 1. At the K = 50 the recall drops because the denominator
increases and reveals that the other positively rated items are not ranked
high enough to be counted in the top K.

However we are of course interested in how well the model generalizes
to the unseen items not how well can it reproduce the inputted ratings.
That is why we are going to focus on the Test recall instead of the Classic

56

4.5. Evaluation results

10 50 100 150 200 250 300
K

0.6

0.7

0.8

0.9

Cl
as

sic
 re

ca
ll

Classic recall

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.4

0.6

0.8

Te
st

 re
ca

ll

Test recall

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.4

0.5

0.6

ND
CG

NDCG

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.2

0.4

0.6

Co
ve

ra
ge

Coverage by Classic recall

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.2

0.4

0.6

Co
ve

ra
ge

Coverage by Test recall

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.2

0.4

0.6

Co
ve

ra
ge

Coverage by NDCG

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

Grid search results: MovieLens 1m

Figure 4.3: Model results on the MovieLens 1m dataset. CDL achieves the
highest NDCG of all the models but simultaneously has one of the low-
est coverage scores. The proposed Hybrid cSDAE has both high NDCG
and coverage. The variant without attributes is close with a slightly worse
NDCG. The Deep MF surprisingly has the worst results across all the mea-
sured metrics.

one. According to the Classic recall, the CDL clearly outperforms the other
models, if we look at the Test recall however, we can see that they all reach
similar results pointing to a similar level of generalization. This is where
the NDCG comes in to clearly show the separation between the models.
Just as a reminder, the NDCG calculates the top K items the same way
as the Test recall but the resulting score takes into account the position of
the relevant items in the top K meaning that the score gets higher if the
relevant items are higher. On the other hand the recall only counts the
number of items in the top K no matter their position.

Looking at the NDCG results, we can see that the CDL is at the top,
followed by the our proposed Hybrid cSDAE which is close to the Hybrid
SDAE. If we look at the coverage scores for these models we can see a
similar story as with the MovieLens 100k dataset. The autoencoder based
models have significantly better coverage than the CDL. This is the case
where no single model dominates the others in all the relevant metrics and
choosing the best one would depend on the domain specific needs.

There is one more surprising thing evident in the results. The Deep
MF model has consistently the worst performance of all the models which

57

4. Experiments

is strange because it should theoretically be able to emulate the simpler
MF model. The reason why it is not able to do so probably lies in the
hyperparameter search that did not contain a hyperparametrization allow-
ing the Deep MF model to properly train. This just shows how non-trivial
is the neural network training process. Even a relatively simple change in
the architecture consisting of adding 2 feed-forward layers can demand a
completely different set of hyperparameters to train.

10 50 100 150 200 250 300
K

0.4

0.5

0.6

Cl
as

sic
 re

ca
ll

Classic recall
MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 re
ca

ll

Test recall

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.20

0.25

0.30

0.35

ND
CG

NDCG

MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.0

0.2

0.4

0.6

Co
ve

ra
ge

Coverage by Classic recall
MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

Coverage by Test recall
MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

10 50 100 150 200 250 300
K

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

Coverage by NDCG
MF
Deep MF
Hybrid SDAE
Hybrid cSDAE
CDL

Grid search results: BookCrossing

Figure 4.4: Model results on the BookCrossing dataset. Hybrid cSDAE and
Hybrid SDAE achieve very good results in Test recall, NDCG and coverage.
CDL is able to reach comparable NDCG scores but at the cost of slightly
worse coverage.

The BookCrossing dataset is extremely sparse with a low number of
users and large number of items. It averages only 1.9 implicit ratings per
item which makes it very different from the previous MovieLens datasets.
The model results visualized in the Figure 4.4 also show a different story
than before.

The Classic recall performance puts the CDL at the top again however
it clearly has the worst Test recall at par with the simple MF model. This
even more solidifies the case of Classic recall producing misleading results in
terms of model’s generalization capabilities. Our proposed Hybrid cSDAE
reaches the highest Test recall and simultaneously the highest coverage. In
both cases it is closely followed by the Hybrid SDAE and this time also
by the Deep MF which has therefore achieved much better results on the

58

4.5. Evaluation results

sparser BookCrossing dataset than on the MovieLens 1m. This shows that
the architectures and hyperparametrizations successful at one dataset are
not directly transferable to another one which is logical since both of them
have a direct impact on what is the model capable of learning.

On the other hand if we look at the model instances reaching the high-
est NDCG, we can see the Hybrid cSDAE, Hybrid SDAE and CDL trading
places at the top depending on the chosen K. This nicely shows that there
is rarely a single model dominating all the chosen metrics.

All in all the results have shown that the proposed Hybrid cSDAE ar-
chitecture is consistently among the best evaluated models when looking
at the Test recall, NDCG and coverage metrics. In all the results it has
been closely followed or tied by the Hybrid SDAE that does not use the
attribute information. This shows that the addition of the attributes either
directly improved the achieved results or it led to an increased model capac-
ity allowing the model to store more information. No matter which version
is true in the case of the evaluation on these datasets, Hybrid cSDAE is
definitely able to produce user and item embeddings containing the added
information and approximating the ratings when multiplied. We can see
the rating approximation capabilities in the high values of both recall and
NDCG. We also know that the produced embeddings contain the rating
and the attribute information because the model had no problem achieving
low reconstruction errors during training. The analysis of the properties of
the embeddings is unfortunately out of scope of this work and is therefore
left for future research.

4.5.2 Negative sampling rate experiment
All the previous runs were made with a negative sampling rate (γ) equal
to 4. That means each training batch consisted of 4 sampled unknown
ratings per one known positive rating. To explore the effect this param-
eter has on the performance of the proposed Hybrid cSDAE architecture,
we evaluate it on the BookCrossing and the MovieLens 1m datasets with
γ = {1, 2, 4, 8, 16}. Each of the parameter setting is evaluated using cross-
validation as in the previous experiments. The values of the other hyper-
parameters can be seen in Table 4.3.

The hyperparameters were selected based on the Test recall and NDCG
results obtained through the grid search detailed in the previous section.
We have decided to evaluate the model on the MovieLens 1m and the
BookCrossing dataset due to their higher number of ratings and differ-

59

4. Experiments

parameter value used in the experiment
λ 1× 10−5

batch size 128
learning rate 4× 10−3

number of epochs 6

Table 4.3: Hyperparameter values of Hybrid cSDAE during the negative
sampling rate experiment.

ent structures. The results for the MovieLens 1m dataset are visible in the
Figure 4.5 and the ones for the BookCrossing are in the Figure 4.6.

The Figure’s top and bottom rows are produced the same way as the
ones in the Section 4.5.1 examining the results of the hyperparameter grid
search. The only difference is that instead of comparing different models
we are comparing different hyperparametrizations of the Hybrid cSDAE. It
therefore makes sense to show the best obtained RMSE scores since we are
looking at the results of a single model. We exclude the Classic recall from
the Figures due to its misleading nature discussed in the previous sections.

1 2 4 8 16
gamma

0.3

0.4

0.5

0.6

RM
SE

RMSE

10 50 100 150 200 250 300
K

0.4

0.6

0.8

Te
st

 re
ca

ll

Test recall

gamma=1
gamma=2
gamma=4
gamma=8
gamma=16

10 50 100 150 200 250 300
K

0.40

0.45

0.50

0.55

0.60

ND
CG

NDCG

gamma=1
gamma=2
gamma=4
gamma=8
gamma=16

10 50 100 150 200 250 300
K

0.2

0.4

0.6

0.8

Co
ve

ra
ge

Coverage by RMSE

gamma=1
gamma=2
gamma=4
gamma=8
gamma=16

10 50 100 150 200 250 300
K

0.2

0.4

0.6

0.8

Co
ve

ra
ge

Coverage by Test recall

gamma=1
gamma=2
gamma=4
gamma=8
gamma=16

10 50 100 150 200 250 300
K

0.2

0.4

0.6

0.8

Co
ve

ra
ge

Coverage by NDCG

gamma=1
gamma=2
gamma=4
gamma=8
gamma=16

Negative sampling rate experiment: MovieLens 1m

Figure 4.5: Effect of the negative sampling rate on the performance of the
Hybrid cSDAE trained using MovieLens 1m.

Looking at the results on both datasets we can clearly see the lowest
reached RMSE rising with the increasing negative sampling rate. This is

60

4.5. Evaluation results

1 2 4 8 16
gamma

0.5

0.6

0.7

0.8

0.9

RM
SE

RMSE

10 50 100 150 200 250 300
K

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 re
ca

ll

Test recall

gamma=1
gamma=2
gamma=4
gamma=8
gamma=16

10 50 100 150 200 250 300
K

0.20

0.25

0.30

0.35

ND
CG

NDCG

gamma=1
gamma=2
gamma=4
gamma=8
gamma=16

10 50 100 150 200 250 300
K

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

Coverage by RMSE

gamma=1
gamma=2
gamma=4
gamma=8
gamma=16

10 50 100 150 200 250 300
K

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

Coverage by Test recall

gamma=1
gamma=2
gamma=4
gamma=8
gamma=16

10 50 100 150 200 250 300
K

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

Coverage by NDCG

gamma=1
gamma=2
gamma=4
gamma=8
gamma=16

Negative sampling rate experiment: BookCrossing

Figure 4.6: Effect of the negative sampling rate on the performance of the
Hybrid cSDAE trained using BookCrossing.

expected since increasing the γ means increasing the number of negative
ratings in each batch which indirectly raises the weight of the unknown
ratings and pushes the model to either predict more zeroes or output ratings
closer to zero. Which is exactly what the RMSE that is calculated only on
the known implicit ratings measures.

The Hybrid cSDAE is surprisingly robust to the different values of γ
in terms of the best reached Test recall. In case of MovieLens the reached
recall values are practically identical for all Ks whereas the lower γ values
gain a slight upper hand at K ∈ {250, 300} on the BookCrossing dataset.

The model’s NDCG performance is similarly robust to the changes in γ
with the exception of γ = 1 which leads to consistently worse results over
all values of K and both of the datasets.

The coverage scores reached by the models with the best RMSE re-
veal an interesting trend. Increasing the γ leads to worse coverage in case
of MovieLens however the complete opposite applies to the BookCrossing
dataset. This can be caused by the fact that the BookCrossing dataset is
much more sparse and contains vastly more items. This probably leads to
the increased coverage when the model predicts lower ratings on average.
More items then have similar low predicted ratings and get mixed up into
the top K which would also explain why the margins between the coverage
scores increase with the increasing K, something that is not happening for

61

4. Experiments

the MovieLens dataset.
All in all, the Hybrid cSDAE has proven to be quite robust against the

different negative sampling rates if we avoid using values smaller than two.

4.5.3 Noise ratio experiment
Corrupting the autoencoder’s input with noise is an important part of en-
abling it to produce meaningful compact representations of the data. We
evaluate the behavior of the proposed Hybrid cSDAE architecture with noise
ratios in {0.0, 0.2, 0.4, 0.6, 0.8} while the default ratio used in the previous
experiments was always 0.2. The model is again trained on the MovieLens
1m and the BookCrossing dataset. The other hyperparameters are set to
the same values as in the negative sampling rate experiment specified in
the Table 4.2. The experiment results are visualized in the Figures 4.7 and
4.8.

0.0 0.2 0.4 0.6 0.8
noise

0.25

0.30

0.35

0.40

0.45

RM
SE

RMSE

10 50 100 150 200 250 300
K

0.4

0.6

0.8

Te
st

 re
ca

ll

Test recall

noise=0.0
noise=0.2
noise=0.4
noise=0.6
noise=0.8

10 50 100 150 200 250 300
K

0.40

0.45

0.50

0.55

0.60

ND
CG

NDCG

noise=0.0
noise=0.2
noise=0.4
noise=0.6
noise=0.8

10 50 100 150 200 250 300
K

0.0

0.2

0.4

0.6

0.8

Co
ve

ra
ge

Coverage by RMSE

noise=0.0
noise=0.2
noise=0.4
noise=0.6
noise=0.8

10 50 100 150 200 250 300
K

0.2

0.4

0.6

0.8

Co
ve

ra
ge

Coverage by Test recall

noise=0.0
noise=0.2
noise=0.4
noise=0.6
noise=0.8

10 50 100 150 200 250 300
K

0.2

0.4

0.6

0.8

Co
ve

ra
ge

Coverage by NDCG

noise=0.0
noise=0.2
noise=0.4
noise=0.6
noise=0.8

Noise ratio experiment: MovieLens 1m

Figure 4.7: Effect of noise ratio on Hybrid cSDAE trained on the MovieLens
1m dataset. High noise leads to worse recall and NDCG but also to better
coverage.

We can see that for both datasets the best reached RMSE is clearly
getting lower with the higher noise ratio. That is expected since more noise
leads to more 1s turned into 0s in the input. The model is then trained to
reconstruct these 1s from the 0s which leads to the model predicting more

62

4.5. Evaluation results

1s as it struggles to distinguish between the noisy 0s and the actual 0s.
The relation between noise and number of non-zero values comes from the
choice of binary masking noise that can only replace ones with zeroes.

The results on MovieLens 1m visible in the Figure 4.7 show practically
identical scores of Test recall and NDCG for all ratios except 0.8. The worse
performance with high noise is expected however we would also expect a
decline in the test results with the absence of noise which would suggest
overfitting. That is obviously not a problem in this case which may be
caused by the structure of the dataset or the regularization properties of
the Hybrid cSDAE model with the chosen hyperparametrization.

Even though the models with the highest noise ratio achieved the lowest
Test recall and NDCG, they had significantly higher coverage at the same
time. That is not surprising considering the high noise introduces a lot of
uncertainty into the approximation of ratings which leads to different items
getting to the top K.

0.0 0.2 0.4 0.6 0.8
noise

0.60

0.65

0.70

0.75

0.80

RM
SE

RMSE

10 50 100 150 200 250 300
K

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 re
ca

ll

Test recall

noise=0.0
noise=0.2
noise=0.4
noise=0.6
noise=0.8

10 50 100 150 200 250 300
K

0.20

0.25

0.30

0.35

ND
CG

NDCG

noise=0.0
noise=0.2
noise=0.4
noise=0.6
noise=0.8

10 50 100 150 200 250 300
K

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

Coverage by RMSE

noise=0.0
noise=0.2
noise=0.4
noise=0.6
noise=0.8

10 50 100 150 200 250 300
K

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

Coverage by Test recall

noise=0.0
noise=0.2
noise=0.4
noise=0.6
noise=0.8

10 50 100 150 200 250 300
K

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

Coverage by NDCG

noise=0.0
noise=0.2
noise=0.4
noise=0.6
noise=0.8

Noise ratio experiment: BookCrossing

Figure 4.8: Effect of noise ratio on Hybrid cSDAE trained on the
BookCrossing dataset. Absence of noise leads to worse recall, NDCG and
also coverage.

Comparing the results on BookCrossing visible in the Figure 4.8, we
can see that the Test recall and NDCG scores suffer with the absence of
noise while staying relatively high with a large amount of noise. This is
a complete opposite of the evaluation on MovieLens which is probably a

63

4. Experiments

result of the serious differences in the structure of the datasets. The large
amount of items and sparsity of their ratings apparently makes the model
robust to higher noise while making it more susceptible to overfitting at the
same time.

The coverage scores of the models getting the plotted Test recall and
NDCG results are following a similar story. Instead of a high noise leading
to a high coverage as with the MovieLens dataset, it results in similar
coverage scores as most of the other ratios. The zero noise ratio is the value
standing out this time, leading to a significantly lower coverage than the
rest of them. This somewhat supports the overfitting hypothesis since an
overfitted model would learn to predict only a specific group of items and
therefore possibly reach a lower coverage than a well trained model.

Since we used the same model with the same hyperparametrizations,
the only difference between the two evaluation results is the choice of the
dataset. That means their structure is the most likely culprit for the differ-
ent model results based on the various noise ratios. The number of users
and items also influences the number of parameters the model has which
could impact its regularization ability. It would be interesting to further
investigate what exactly makes the datasets more susceptible to being over-
fitted on or otherwise causes the observed behavior. We leave this area for
the future work.

64

Chapter 5
Conclusion

We have started the Chapter 2 by introducing the basics of the recom-
mendation systems and by categorizing the algorithms they use according
to how they generate the recommendations. We primarily looked at the
model based algorithms to explain the latent factor models that are the
focus of this work.

The LFM recommend the top K items sorted by their ratings that
were approximated by a dot product of a user and item embedding. These
embeddings can be produced in many ways and as the title of the thesis
suggests, we focused on the models based on the artificial neural networks.
We explained the different optimization algorithms and went over the ad-
vanced autoencoder architectures that are the basis of our proposed model.

In the Chapter 3 we presented various models with increasing com-
plexity that lead to our novel Hybrid cSDAE architecture. We started by
a neural network adaptation of the traditional matrix factorization, then
we added more hidden layers to see what effect would it have on the perfor-
mance. Replacing the feed-forward networks of the Deep MF with stacked
denoising autoencoders lead to the Hybrid SDAE model which has been
inspired by the Hybrid aSDAE that we presented but did not implement.
Our proposed architecture Hybrid cSDAE is able to process both rating
and attribute information in similar way as the aSDAE variant however it
uses much less parameters to do so. We also added a Collaborative Deep
Learning model that combines matrix factorization with an autoencoder
processing item attributes in a quite specific way. We described both the
theory and the details of our implementation of the models.

After introduction of the models including our novel architecture we

65

5. Conclusion

moved on to the final Chapter 4 explaining the experiments. We firstly
discussed the chosen datasets and their preprocessing. Two MovieLens ones
with a similar structure but different sizes and the BookCrossing dataset
with a large number of items and a small number of users.

We also specified the training of the implemented models in detail. Es-
pecially how we solved the issue of training on the implicit ratings by con-
structing batches with a certain ratio of sampled unknown ratings presented
as negative ones.

Then we introduced our design of the evaluation process. The most
important point being that we split the rating matrix into the training and
test sets by users instead of by ratings which is more usual in the literature.
Splitting by users creates a more realistic scenario where the models never
saw the test users during training. To eliminate the noisiness coming from
the random selection of test users we ran a 5-fold cross-validation on each
parametrization of the models in all the experiments.

In order to compare the five implemented models we conducted a grid
search over selected hyperparameters. The results have shown how impor-
tant it is to use several different metrics such as the Test recall, NDCG and
coverage in our case. Taking all of them into consideration, our proposed
Hybrid cSDAE architecture has achieved better or comparable results to
the other models.

The last two experiments have investigated the effect of the negative
sampling rate and the noise ratio on the performance of the Hybrid cSDAE
model. The main takeaway point is that the Hybrid cSDAE is quite robust
against the different values of both of these hyperparameters.

All in all the comparison of the models on several different metrics and
datasets shows that there is rarely a single model dominating on all fronts.
Even though some tasks can be solved more efficiently by simpler models
like CDL, in case we need to incorporate both item and user attributes into
the model and generate corresponding embeddings, our proposed Hybrid
cSDAE is to our knowledge the most efficient autoencoder based model to
do so.

5.1 Future work
There are a lot of possible future research directions to explore. We def-
initely plan to evaluate the quality of the embeddings produced by the
various models. Especially how do they improve the performance of the
standard recommendation algorithms such as K-nearest neighbors. It would

66

5.1. Future work

also be interesting to look at the effects of the increasing size of the bot-
tleneck dimension on the various metrics. Since increasing the layer size
requires a new hyperparameter search we unfortunately could not fit it into
this work.

In order to improve the proposed model we plan to explore new ways
of creating the training batches, test different activation functions and op-
timization algorithms. Using a pairwise loss instead of the pointwise mean
square error could also bring some benefits to the ranking capabilities.

67

Bibliography

[1] Bartyzal, R. Optimization of Recommender Systems. Bachelor’s the-
sis, Czech Technical University in Prague, Faculty of Information
Technõlogy, 2016.

[2] All reading titles offered on Amazon [online]. https:
//www.amazon.com/gp/feature.html?docId=1002872331#faq/ref=
insider_ar_reading_primereading, [Online; accessed 2018-
September-06].

[3] All Movie DVDs offered on Amazon [online]. https:
//www.amazon.com/s/ref=Movies_H1_DVD?rh=i%3Amovies-tv%
2Cn%3A2625373011%2Cn%3A%212625374011%2Cn%3A2649512011%2Cp_
n_format_browse-bin%3A2650304011&bbn=2649512011&rw_html_
to_wsrp=1, [Online; accessed 2018-September-04].

[4] Burke, R. Hybrid recommender systems: Survey and experiments. User
modeling and user-adapted interaction, volume 12, no. 4, 2002: pp.
331–370.

[5] Cremonesi, P.; Koren, Y.; et al. Performance of recommender algo-
rithms on top-n recommendation tasks. In Proceedings of the fourth
ACM conference on Recommender systems, ACM, 2010, pp. 39–46.

[6] Trewin, S. Knowledge-based recommender systems. Encyclopedia of
library and information science, volume 69, no. Supplement 32, 2000:
p. 180.

[7] Breese, J. S.; Heckerman, D.; et al. Empirical analysis of predictive
algorithms for collaborative filtering. In Proceedings of the Fourteenth

69

https://www.amazon.com/gp/feature.html?docId=1002872331#faq/ref=insider_ar_reading_primereading
https://www.amazon.com/gp/feature.html?docId=1002872331#faq/ref=insider_ar_reading_primereading
https://www.amazon.com/gp/feature.html?docId=1002872331#faq/ref=insider_ar_reading_primereading
https://www.amazon.com/s/ref=Movies_H1_DVD?rh=i%3Amovies-tv%2Cn%3A2625373011%2Cn%3A%212625374011%2Cn%3A2649512011%2Cp_n_format_browse-bin%3A2650304011&bbn=2649512011&rw_html_to_wsrp=1
https://www.amazon.com/s/ref=Movies_H1_DVD?rh=i%3Amovies-tv%2Cn%3A2625373011%2Cn%3A%212625374011%2Cn%3A2649512011%2Cp_n_format_browse-bin%3A2650304011&bbn=2649512011&rw_html_to_wsrp=1
https://www.amazon.com/s/ref=Movies_H1_DVD?rh=i%3Amovies-tv%2Cn%3A2625373011%2Cn%3A%212625374011%2Cn%3A2649512011%2Cp_n_format_browse-bin%3A2650304011&bbn=2649512011&rw_html_to_wsrp=1
https://www.amazon.com/s/ref=Movies_H1_DVD?rh=i%3Amovies-tv%2Cn%3A2625373011%2Cn%3A%212625374011%2Cn%3A2649512011%2Cp_n_format_browse-bin%3A2650304011&bbn=2649512011&rw_html_to_wsrp=1
https://www.amazon.com/s/ref=Movies_H1_DVD?rh=i%3Amovies-tv%2Cn%3A2625373011%2Cn%3A%212625374011%2Cn%3A2649512011%2Cp_n_format_browse-bin%3A2650304011&bbn=2649512011&rw_html_to_wsrp=1

Bibliography

conference on Uncertainty in artificial intelligence, Morgan Kaufmann
Publishers Inc., 1998, pp. 43–52.

[8] Lops, P.; De Gemmis, M.; et al. Content-based recommender sys-
tems: State of the art and trends. In Recommender systems handbook,
Springer, 2011, pp. 73–105.

[9] Schein, A. I.; Popescul, A.; et al. Methods and metrics for cold-
start recommendations. In Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in information
retrieval, ACM, 2002, pp. 253–260.

[10] Brynjolfsson, E.; Hu, Y. J.; et al. From niches to riches: Anatomy of
the long tail. 2006.

[11] Al Shalabi, L.; Shaaban, Z.; et al. Data mining: A preprocessing en-
gine. Journal of Computer Science, volume 2, no. 9, 2006: pp. 735–739.

[12] Sedhain, S.; Menon, A. K.; et al. Autorec: Autoencoders meet collabo-
rative filtering. In Proceedings of the 24th International Conference on
World Wide Web, ACM, 2015, pp. 111–112.

[13] Dong, X.; Yu, L.; et al. A Hybrid Collaborative Filtering Model with
Deep Structure for Recommender Systems. In AAAI, 2017, pp. 1309–
1315.

[14] Wang, X.; Wang, Y. Improving content-based and hybrid music rec-
ommendation using deep learning. In Proceedings of the 22nd ACM
international conference on Multimedia, ACM, 2014, pp. 627–636.

[15] Christakopoulou, E.; Karypis, G. Local item-item models for top-n
recommendation. In Proceedings of the 10th ACM Conference on Rec-
ommender Systems, ACM, 2016, pp. 67–74.

[16] Zhang, S.; Yao, L.; et al. Autosvd++: An efficient hybrid collaborative
filtering model via contractive auto-encoders. In Proceedings of the 40th
International ACM SIGIR conference on Research and Development in
Information Retrieval, ACM, 2017, pp. 957–960.

[17] Liang, D.; Krishnan, R. G.; et al. Variational Autoencoders for Col-
laborative Filtering. arXiv preprint arXiv:1802.05814, 2018.

[18] Agrawal, R.; Imieliński, T.; et al. Mining association rules between sets
of items in large databases. In Acm sigmod record, volume 22, ACM,
1993, pp. 207–216.

70

Bibliography

[19] Sarwar, B.; Karypis, G.; et al. Analysis of recommendation algorithms
for e-commerce. In Proceedings of the 2nd ACM conference on Elec-
tronic commerce, ACM, 2000, pp. 158–167.

[20] Resnick, P.; Iacovou, N.; et al. GroupLens: an open architecture for
collaborative filtering of netnews. In Proceedings of the 1994 ACM con-
ference on Computer supported cooperative work, ACM, 1994, pp. 175–
186.

[21] Sarwar, B.; Karypis, G.; et al. Item-based collaborative filtering rec-
ommendation algorithms. In Proceedings of the 10th international con-
ference on World Wide Web, ACM, 2001, pp. 285–295.

[22] Wu, Y.; DuBois, C.; et al. Collaborative Denoising Auto-Encoders
for Top-N Recommender Systems. In Proceedings of the Ninth
ACM International Conference on Web Search and Data Mining -
WSDM ’16, ACM Press, 2016, ISBN 9781450337168, pp. 153–162,
doi:10.1145/2835776.2835837. Available from: http://dl.acm.org/
citation.cfm?doid=2835776.2835837

[23] Ning, X.; Karypis, G. Slim: Sparse linear methods for top-n recom-
mender systems. In 2011 11th IEEE International Conference on Data
Mining, IEEE, 2011, pp. 497–506.

[24] Koren, Y. Factorization meets the neighborhood: a multifaceted col-
laborative filtering model. In Proceedings of the 14th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, ACM,
2008, pp. 426–434.

[25] Koren, Y.; Bell, R.; et al. Matrix factorization techniques for recom-
mender systems. Computer, , no. 8, 2009: pp. 30–37.

[26] Gunawardana, A.; Shani, G. Evaluating Recommender Systems. In
Recommender Systems Handbook, Springer, 2015, pp. 265–308.

[27] Said, A. Evaluating the accuracy and utility of recommender systems.
Dissertation thesis, Universitätsbibliothek der Technischen Universität
Berlin, 2013.

[28] Wang, Y.; Wang, L.; et al. A Theoretical Analysis of Normalized Dis-
counted Cumulative Gain (NDCG) Ranking Measures. In Proceedings
of the 26th Annual Conference on Learning Theory, COLT, 2013.

71

http://dl.acm.org/citation.cfm?doid=2835776.2835837
http://dl.acm.org/citation.cfm?doid=2835776.2835837

Bibliography

[29] Rosenblatt, F. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, volume 65,
no. 6, 1958: p. 386.

[30] LeCun, Y.; Bengio, Y.; et al. Deep learning. nature, volume 521, no.
7553, 2015: p. 436.

[31] Ivakhnenko, A. G. The Group Method of Data of Handling; A rival
of the method of stochastic approximation. Soviet Automatic Control,
volume 13, 1968: pp. 43–55.

[32] Rumelhart, D. E.; Hinton, G. E.; et al. Learning representations by
back-propagating errors. nature, volume 323, no. 6088, 1986: p. 533.

[33] Hinton, G. E.; Salakhutdinov, R. R. Reducing the dimensionality of
data with neural networks. science, volume 313, no. 5786, 2006: pp.
504–507.

[34] Bengio, Y.; et al. Learning deep architectures for AI. Foundations and
trends R© in Machine Learning, volume 2, no. 1, 2009: pp. 1–127.

[35] Darken, C.; Chang, J.; et al. Learning rate schedules for faster stochas-
tic gradient search. In Neural Networks for Signal Processing [1992] II.,
Proceedings of the 1992 IEEE-SP Workshop, IEEE, 1992, pp. 3–12.

[36] Dauphin, Y. N.; Pascanu, R.; et al. Identifying and attacking the sad-
dle point problem in high-dimensional non-convex optimization. In Ad-
vances in neural information processing systems, 2014, pp. 2933–2941.

[37] Ruder, S. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[38] Duchi, J.; Hazan, E.; et al. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Re-
search, volume 12, no. Jul, 2011: pp. 2121–2159.

[39] Zeiler, M. D. ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

[40] G. Hinton’s lecture introducing RMSProp [online]. http:
//www.cs.toronto.edu/˜tijmen/csc321/slides/lecture_slides_
lec6.pdf, [Online; accessed 2018-October-17].

[41] Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

72

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Bibliography

[42] Dozat, T. Incorporating nesterov momentum into adam. 2016.

[43] Loshchilov, I.; Hutter, F. Fixing weight decay regularization in adam.
arXiv preprint arXiv:1711.05101, 2017.

[44] Reddi, S. J.; Kale, S.; et al. On the convergence of adam and beyond.
2018.

[45] FastAI’s experimental results of Adam variants [online]. http:
//www.fast.ai/2018/07/02/adam-weight-decay/, [Online; accessed
2018-October-17].

[46] Vincent, P.; Larochelle, H.; et al. Stacked denoising autoencoders:
Learning useful representations in a deep network with a local de-
noising criterion. Journal of machine learning research, volume 11, no.
Dec, 2010: pp. 3371–3408.

[47] Wang, H.; Wang, N.; et al. Collaborative Deep Learning for Recom-
mender Systems. In Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining - KDD
’15, ACM Press, 2014, pp. 1235–1244, doi:10.1145/2783258.2783273.
Available from: http://dl.acm.org/citation.cfm?doid=
2783258.2783273http://arxiv.org/abs/1409.2944

[48] Jia, X.; Song, S.; et al. Highly scalable deep learning training sys-
tem with mixed-precision: Training imagenet in four minutes. arXiv
preprint arXiv:1807.11205, 2018.

[49] Abadi, M.; Agarwal, A.; et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. 2015, software available from ten-
sorflow.org. Available from: https://www.tensorflow.org/

[50] Numpy. http://www.numpy.org/, [Online; accessed 27-September-
2018].

[51] Pandas. https://pandas.pydata.org/, [Online; accessed 27-
September-2018].

[52] scikit-learn. http://scikit-learn.org/stable/, [Online; accessed
27-September-2018].

[53] Glorot, X.; Bengio, Y. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics, 2010, pp.
249–256.

73

http://www.fast.ai/2018/07/02/adam-weight-decay/
http://www.fast.ai/2018/07/02/adam-weight-decay/
http://dl.acm.org/citation.cfm?doid=2783258.2783273 http://arxiv.org/abs/1409.2944
http://dl.acm.org/citation.cfm?doid=2783258.2783273 http://arxiv.org/abs/1409.2944
https://www.tensorflow.org/
http://www.numpy.org/
https://pandas.pydata.org/
http://scikit-learn.org/stable/

Bibliography

[54] He, X.; Liao, L.; et al. Neural collaborative filtering. In Proceedings of
the 26th International Conference on World Wide Web, International
World Wide Web Conferences Steering Committee, 2017, pp. 173–182.

[55] Adomavicius, G.; Tuzhilin, A. Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible exten-
sions. Knowledge and Data Engineering, IEEE Transactions on, vol-
ume 17, no. 6, 2005: pp. 734–749.

74

Appendix A
Acronyms

AE Autoencoder

ANN Artificial Neural Network

CDL Collaborative Deep Learning

DAE Denoising Autoencoder

DL Deep Learning

LFM Latent Factor Model

MF Matrix Factorization

NDCG Normalized Discounted Cumulative Gain

RMSE Root Mean Square Error

SDAE Stacked Denoising Autoencoder

75

Appendix B
Contents of enclosed CD

readme.txt................the file with data disk contents description
src the directory of source codes

implementation..........................implementation sources
thesis............the directory of LATEX source codes of the thesis

text..the thesis text directory
DP_Bartyzal_Radek_2019.pdf......the thesis text in PDF format

77

	Introduction
	Motivation
	Goals
	Outline

	Related work
	Recommendation systems
	Artificial Neural Networks and Deep Learning
	Autoencoders

	Analysis and design
	Common characteristics
	Matrix Factorization
	Deep Matrix Factorization
	Hybrid Stacked Denoising Autoencoder
	Hybrid Additional Stacked Denoising Autoencoder
	Hybrid Concatenated Stacked Denoising Autoencoder
	Collaborative Deep Learning

	Experiments
	Implementation
	Datasets
	Model training
	Model evaluation
	Evaluation results

	Conclusion
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD

