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Abstrakt

DJEES je distribuovaný systém pro spouštěńı a vyhodnocováńı úloh. Při
návrhu a implemntaci byli použity nejnověǰśı technolgie. Hlavńı část́ı systému
je Mesos framework, který zajǐsťuje přidělováńı volných prostředk̊u ve výpočetńım
clusteru. Výpočty jsou izolovány za použit́ı Docker kontejner̊u. Výstupy
výpočtu jsou následně uloženy v databázi Cassandra. Systém kombinuje dis-
tribuované technologie tak, aby tvořili škálovatelné a odolné prostřed́ı, kde
může uživatel spustit sv̊uj výpočet.

Kĺıčová slova Distribuované spouštěńı výpočt̊u, Mesos, Docker, Fluentd,
Kafka, Cassandra, Java

Abstract

DJEES is a distributed system for job execution and evaluation. It was im-
plemented using the latest technologies. The core of the system is a Mesos
framework that manages the cluster resources. The jobs are isolated using
Docker containers, and output is persisted into the Cassandra database. The
system combines distributed fault-tolerant technologies to provide a scalable,
fault-tolerant environment where users can run their jobs.
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Introduction

This thesis focuses on building distributed and scalable system using the latest
technologies. The purpose of this system is to provide students and other
users a versatile platform for running diverse jobs. It does not matter if the
user needs to run a compute-intensive, long-running job, or another type of
job, running such a job should be easy and should have minimal complexity.
However, running a big number of diverse workloads is a big challenge in the
matter of resources assignment, handling the dependencies, isolating jobs and
monitoring them.

First, with the development of hardware virtualization, it was possible to
divide the server into multiple virtual machines. However, hardware virtual-
ization is a bit heavy-weight tool. In the virtual machine, there is a whole
operating system running; the user has to take care of all the components
of the operating system and the whole running environment of the applica-
tion. Moreover, running a whole operating system has significant overhead. It
means that multiple applications have to be run on the same virtual machine
to minimize the overhead of running operating system. Running multiple ap-
plication on the same virtual machine brings again challenges with resources
and applications isolation. These factors increase the complexity of running
applications in a virtual machine. However, with massive adoption of the con-
tainerization, we can see a reduction of the complexity of starting, running
and migrating applications. With containers, the application can be packed
together with its dependencies and run in an isolated environment. More-
over, the containers are light-weight - contains only dependencies, not a whole
operating system, and are very easy and fast to run.

Proposed system benefits from the latest development of containerization
and resource sharing, and provides users unified interface for running their
tasks and utilizing available resources.
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Chapter 1
Analysis and design

This thesis aim is to design and implement a system for job execution and
subsequent analysis of the results. It is meant to be a universal comput-
ing environment where can any student submit a job and use the available
resources.

1.1 Requirements

The analysis is divided into two areas: user requirements and system require-
ments. The user is the main element that decides whether the project adopted
and considered as successful, or not. On the other side, there is a system main-
tainer. The system maintainer requires to keep operations costs low.

All the gathered requirements are further categorized as functional and
non-functional.

1.1.1 User Requirements

Currently, the main goal is to build a system where jobs could be evaluated for
the course MI-PAA (Problems and Algorithms). The jobs are considered to
be compute-intensive, and a user can choose the programming language which
is going to use to implement the solution. Therefore, the system should be
language independent. Moreover, the system can be used for other courses and
types of jobs with various resource requirements; therefore, the user should be
able to specify the required resources per job.

It can be expected that there are going to be multiple jobs running on
the same nodes. Jobs can have various dependencies that can be mutually
exclusive; therefore the job isolation is required.

When a job is submitted the user wants to know if the job is running and
what is its output. Then, when the job terminates, the user needs the job
output for further analysis.
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1. Analysis and design

1.1.2 System Requirements

For this thesis, four servers were used; however, no assumption cannot be
made about the hardware that is going to be used for the system in the
future. Moreover, the load and the usage of this system can not be predicted;
therefore, the system should be distributed, easy to scale and fault tolerant.

The system is going to run the user’s code and commands. Running user’s
code brings security risks. It is impossible to check if the code is potentially
dangerous; therefore the system should maximize the job isolation and mini-
mize the system exposition to the jobs.

1.1.3 Functional requirements

The functional requirements are the requirements that specify what function-
ality should system offer.

• Submit the job

• Run job with requested resources

• Run language independent job

• Display job status

• Show output in real-time

• Persistent output

1.1.4 Non-functional requirements

The functional requirements characterize the system. They state the proper-
ties that system should have.

• Distributed system

• Scalability

• Fault-tolerance

• Job isolation

1.2 Architecture design

The core of the system is a resource manager. It gathers information about
all the nodes in the system, manages the resource allocations and schedules
the jobs on a specific node. The resource manager is usually tightly coupled
with the job executor who runs the code on the specified node. Therefore, the

4



1.2. Architecture design

resource manager should support the chosen run method or at least provide
an interface for implementing required job executor.

The proper resource manager, together with job executor, must be able to
facilitate the following requirements.

• Submit the job

• Run job with requested resources

• Display job status

Moreover, to fulfill the non-functional requirements, they should support run-
ning in distributed mode and be easy to scale and fault-tolerant.

The non-functional requirement Job isolation requires a particular focus
on how the jobs are run in the system.

The jobs cannot be run directly on the node because they would be hard
to isolate; therefore, virtualization could solve the problem with job isolation.
Moreover, it allows isolating not only the job but also the dependencies. There
are two types of virtualization, hardware-level virtualization, and operating-
system-level virtualization.

Hardware virtualization provides virtualization of the underlying hardware
resources. It brings a reasonable level of security because virtualized systems
share only the hardware that is isolated by the virtualization platform. On
the other hand, running a job in a virtualized system means starting the whole
system including the operating system and running it which can be significant
time and resources consuming.

Operating-system-level virtualization, also known as containerization, vir-
tualizes kernel space and isolates the container in user space. The great ad-
vantage of this approach is that it is lightweight. The container contains only
the job, and it’s dependencies because it shares the rest with the host. The
most significant disadvantage of the containerization is that it is difficult to
fully isolate the container and prevent it from accessing the host machine and
other processes. However, containerization seems to be a good compromise
between complexity and job isolation.

Containerization is also going to allow fulfilling the requirement Run lan-
guage independent job because each container can have different dependencies
and libraries attached.

The requirement Show output in real-time means that there has to be
pipeline taking the job’s output that is running inside the container and deliver
it to the user. However, the requirement Persistent output defines that the
output has to be persisted to persistent storage. These two requirements can
be solved independently, one pipeline for the showing output in real-time and
one for persisting the output. Alternatively, they can be solved together, one
pipeline that stores the output to the storage and the user queries storage
that provides real-time data. The first approach does not rely on storage that

5



1. Analysis and design

means the output is not delayed by storing and loading data to and from
storage. However, in case of failure, there can be an inconsistency between
real-time data and persisted data. Moreover, two pipelines add complexity to
the system; therefore the system is going to use one pipeline that first saves
the output to the storage. The output is going to be served to user from
storage.

Storing data to storage can be complex operations that can be time and
resources consuming. Therefore, it is important to decouple the outputs ex-
tracting and storage. The message queue suits well for solving this problem.

Then, the data from the message queue are consumed by a consumer that
stores the data to storage. A stream processor can solve this problem.

Since no predictions cannot be made about the output of jobs and about
the number of jobs that are going to be run on the system, the pipeline should
be designed as high-throughput.

To summarize the previous analysis, the resource manager should sup-
port the executor that can use containerized jobs. The container platform
should support log forwarding. The message queue and the storage should be
designed as high-throughput, fault-tolerant, distributed and scalable.

Figure 1.1 shows the basic overview of proposed system.

Figure 1.1: Design of the system

1.3 Methodology for evaluating project

In the previous text, the requirements were defined. However, there is a huge
amount of technologies and projects with various quality. The criteria for
choosing the right component of the system and better orientation in projects
are defined.
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1.3. Methodology for evaluating project

1.3.1 Criteria

When building a new system, choosing the right projects is an essential part
of the design. Many technical requirements have to be met (performance,
compatibility, etc). However, there are factors that are not visible on the first
look that can significantly influence the complexity of building and running
system. These factors are closely related to people who develop the project,
who run the system, or simply people who have experience with the component
and who are open to share the experience and improve the project.

1. License

2. Developers’ activity

3. Ecosystem

4. Production usages

5. Community

6. Documentation

1.3.1.1 License

The project license is one of the most important aspects in choosing the right
component. The right license provides the certainty that the project can be
evolving freely in the future and that it can be adopted by other community
if it is needed. Moreover, there are sometimes functions that are not properly
documented or are not working as expected. With the open-source license, the
developer can take a look into the code and determine how the function works
and how to use it. The preferred license is one of the open-source licenses.
There are various licenses with different formulations and conditions. The
main institution that is focused on interpreting open source licenses is the
Open Source Initiative (https://opensource.org). The main open-source
licenses are following.

• Apache License 2.0

• MIT license

• Mozilla Public License 2.0

• GNU General Public License (GPL)

• BSD License

7
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1. Analysis and design

1.3.1.2 Developers’ activity

The repository activity can provide a good insight into the project’s com-
munity and background. It is necessary to choose the project that is alive,
that has a community which is developing the project and is fixing the issues
and security problems. The project repository is the right place to determine
the project state. The main metrics are the number of contributors, commits
frequency and recent activity.

1.3.1.3 Ecosystem

This criterion is difficult to measure, but the main purpose is to choose projects
with a strong and wide ecosystem that provides good versatility and extensibil-
ity. The good ecosystem does not provide only the project but also the tools
for monitoring, configuration and connecting to other components. These
tools reduce the complexity of starting and running the project.

1.3.1.4 Production deployments

Although the exact number is impossible to obtain, a rough estimate of the
production usages is a good indicator of the project maturity. Usually, it is
sufficient to determine if there are zero, few or many companies that run the
project in a production environment. Running the project in a production
environment means that there are people who believe in the project and are
willing to spend time and money on running it and on building their business
around it. Moreover, production usage guarantees that there are people that
need to keep the project up-to-date and there is a high probability that they
are going to share their experience and push the project forward.

1.3.1.5 Community

The community and the content made by the community greatly help and
simplify project adoption and system development. If there is a problem,
there is a high probability that somebody has already been solving it or that
the community could help with it. There are several types of content. It can
be discussions on the internet, presentations from conferences, additional tools
that simplify the work with a project or open source projects built on top of
the project.

1.3.1.6 Documentation

Although the source code can greatly help to understand the functionality,
the key component of the project is documentation. It allows the developer
to grasp the project architecture, reduces the project integration complexity
and speeds up solving problems.

8



1.3. Methodology for evaluating project

However, the quality of the documentation is hard to determine until the
developer start using the project and start solving specific problems.

9





Chapter 2
State of Art

This chapter focuses on describing current technologies and project that are
available and could help create the system. These projects are described in
various depth. The investigation of the projects is performed into the depth
that is necessary for choosing a suitable project.

2.1 Resource Manager

A resource manager is the core of the system. It monitors all the nodes and
their resources. When there is a new job, the resource manager matches the
requested resource with the job resources and send the job to the node.

2.1.1 Mesos

Apache Mesos is an open-source project that was developed at the Uni-
versity of California, Berkeley. It was published in [1]. ”It is a platform
for sharing commodity clusters between multiple diverse cluster computing
frameworks”[1]. Frameworks are programs that Mesos offers resources, and
that can accept them and run their job on the node. These frameworks have
to communicate with Mesos using Mesos API.

Mesos consists of two components: a scheduler and an executor. Mesos
uses resource offers to assign resources. When a node has available resources,
it notifies the master with the allocation module. The allocation module,
according to scheduling policy and resource request, creates the resource offer
and send it to the suppliant (Framework) that can decide whether it uses
the resources or not. If it accepts the resources, it sends the task to the
master that will forward the task to the executor. The figure 2.1 shows the
communication.

Mesos utilizes ZooKeeper to make the master with Allocation module
fault-tolerant. Mesos natively supports Docker and default Mesos contain-
ers.
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2. State of Art

Figure 2.1: Mesos resource offer and offer acceptance [1]

Mesos was massively commercialized because the Mesosphere built
a DC/OS (the Distributed Cloud Operating System) on it. DC/OS is an op-
erating system that incorporates many project and tools to provide a versatile
environment to users DC/OS is open-source; however, some parts are avail-
able only for paying customers. There is a huge community around Mesos
and DC/OS. The developers are very active and many companies run Mesos
or DC/OS in the production environment.

Around Mesos, there is a huge ecosystem of the tools and frameworks that
can be used out-of-box. Documentation of the Mesos and the tools in the
ecosystem varies from repository to repository. For example, Mesos has very
good and exhaustive documentation, Marathon as well; however, Metronome
has very brief documentation. Marathon and Metronome are Mesos frame-
works.

Currently, there are more than 50 companies that use Mesos in production
environment [12].

2.1.2 Yarn

The purpose of YARN (Yet Another Resource Negotiator) was to decouple the
programming model from the resource management, and delegates scheduling
functions in Hadoop’s compute platform [2].

12



2.1. Resource Manager

Yarn allows running other applications on Hadoop cluster, for example,
Dryad, Giraph, Hoza, Spark, etc. In Yarn, jobs are submitted via a public
interface to Resource Manager. Job specific logical plan of execution, request-
ing resources, generating physical resources and coordinating the execution of
the plan is delegated to an Application Master. On each node, there is a dae-
mon called the Node Manager. Resource Manager dynamically allocates the
resource of the Node Managers and provide them to the Application Master.
Then the job is run on allocated nodes. Figure 2.2 shows the Yarn architec-
ture. In 2013, Yarn was used in a production environment in Yahoo!, running

Figure 2.2: YARN Architecture with two application running [2]

on 2500 node grid [2].
The YARN is resource manager designed mainly for the Hadoop environ-

ment. It means it works great with MapReduce and HDFS; however, it is less
versatile.

2.1.3 Kubernetes

The Kubernetes evolved from Google’s internal systems Borg and Omega,
and Google released it as open-source. All three systems shared the same
goal - effective machines sharing, increasing resource utilization and thereby
reducing costs [13].

Kubernetes was developed with a strong focus on the experience of devel-
opers. Its goal is to provide an easy way to deploy and manage a complex
distributed system. The core of the Kubernetes is a shared persistent store
watching for changes to relevant objects that are accessed through a domain-
specific REST-API [13].

13



2. State of Art

The Kubernetes cluster consists of nodes (VM or physical machine). Each
node contains pods. A pod is a group of one or more containers (e.g., Docker
containers) that share storage and network (an IP address and port space).
A container is an isolated unit with a limited interface which runs container
image. A container image is a package that consists of the application and its
dependencies.

Figure 2.3: Kubernetes cluster diagram. Taken from kubernetes.io

Kubernetes is primary a container orchestration tool; it means it is mainly
focused on running containers.

Kubernetes is a very popular project with a live community, a big ongoing
development and many contributors (more than 2000 in the main repository).
The documentation is on a good level, and more than 900 companies use it in
production environment [14].

2.1.4 PBS/Torque

Torque (The Terascale Open-source Resource and QUEue Manager) is a fork
of OpenPBS and currently maintained by Adaptive Computing.

”A TORQUE cluster consists of one head node, and many compute nodes.
The head node runs the pbs server daemon, and the compute nodes run the
pbs mom daemon. Client commands for submitting and managing jobs can be
installed on any host (including hosts not running pbs server or pbs mom).”
[15]

”The head node also runs a scheduler daemon. The scheduler interacts
with pbs server to make local policy decisions for resource usage and allocate

14
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Figure 2.4: Kubernetes node diagram. Taken from kubernetes.io

nodes to jobs. A simple FIFO scheduler and code to construct more advanced
schedulers is provided in the TORQUE source distribution. Most TORQUE
users choose to use a packaged, advanced scheduler such as Maui or Moab.”[15]

The project documentation looks good. Unfortunately, there is very little
development in the repository. In the year 2018, there were only two commits
made. Moreover, it has only 37 contributors (compared to Mesos that has 294
contributors).

2.1.5 Nomad

Nomad is a resource manager and scheduler. Nomad was inspired by Google
Borg and Google Omega (Kubernetes’ ancestors), and it is designed as dis-
tributed, scalable and highly available.

Nomad is a general purpose; therefore, it can run Docker (containerized
applications), standalone, batch and scheduled applications. It uses Consul
(consistent distributed key-value storage) for service discovery.

In Nomad, there are two types of entities – Client and Server. A client is
a machine that tasks can be run on. Servers are responsible for accepting the
jobs, managing clients and assigning tasks. In each region, there is a leader
server which is elected using leader election.

Nomad’s repository has a similar activity and contributors amount as
Mesos. Documentation is on a good level. However, Nomad is architecturally
much simpler. It does not depend on other systems (like Zookeeper) and does
not need scheduling framework (like Marathon or Metronome for Mesos)[16].

15
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Figure 2.5: Nomad architecture [3]

[17] suggest that there are at least 20 companies that use Nomad; therefore
it can be considered as a mature project.

2.2 Containerization

Although Docker can be run on Windows too, this text is focused on running
containers in Linux environment.

Containerization (also called OS-level virtualization) is a technique that
isolates application in user space. The main operating system primitives for
isolation are namespaces and cgroups.

Namespaces allow process isolation in terms of system resources, network-
ing, and file system. It means that an isolated process does see nor interfere
with other running processes in the system. CGroups provide a way to limit
resources usage as CPU and memory.

However, when a new container is started there are many complex opera-
tions that can be parametrized. Therefore, containers runtimes were created.
The purpose of runtimes is to provide a certain level of abstraction to devel-
opers and reduce the complexity of a running container.

[18] suggests dividing runtimes on Low-level and High-level depending on
their capabilities and the level of abstraction. However, the problem of these
categories is that they cannot be exactly defined because different runtimes
implement different capabilities. The main idea is that Low-level runtimes take
care of creating namespace and cgroups, mounting file system and, generally,
running the container. The High-level runtimes take care about transport and
management of container images and delegates complex operation to Low-
level Runtime. Figure 2.6 shows the diagram of the components that run a
container.
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Figure 2.6: Container runtimes [4]

The leading organization that tries to standardize containers is the Open
Container Initiative(OCI). Containerization is a popular technology and is
developing fast. The following text provides a basic overview of the most
popular container runtimes.

2.2.1 runc

Runc is one of the most popular Low-level runtimes. It expects a user to
understand the low-level primitives; therefore it is mainly used by High-level
runtimes. It was originally developed as part of Docker and it implements the
Open Container Initiative (OCI) Runtime Specification.

2.2.2 rkt

RKT is alternative to runc developed by CoreOS.It provides low-level func-
tions but also some high-level features. It allows building and downloading
the image as well as running it.
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2.2.3 systemd-nspawn

The name systemd-nspawn is an abbreviation of namespaces spawn. It means
that only manages isolated processes; therefore, it cannot isolate resources. It
does not provide an image repository.

2.2.4 containerd

Containerd is a runtime that was initially part of Docker too. It prepares the
image and hand-over it to runc to run it.

2.2.5 Docker

Docker is currently on the most popular containerization technology. It pro-
vides an end-to-end user experience. It is composed of dockerd daemon,
docker-containerd, and docker-runc. Docker-containerd and docker-runc are
just packaged versions of containerd and runc [4].

2.2.6 Container Runtime Interface

Container Runtime Interface (CRI) is an interface defined by Kubernetes to
provide interchangeability of container runtimes. Kubernetes is a popular
open-source container orchestrator. The main High-level runtimes that im-
plement CRI are containerd, Docker and cri-o.

2.2.7 CRI-O

CRI-O is a lightweight CRI runtime made as a Kubernetes specific high-
level runtime. It supports the management of OCI compatible images and
pulls from any OCI compatible image registry. It supports runc and Clear
Containers as low-level runtimes [19].

2.2.8 LXC\LXD

LXC is a system container runtime designed to execute full system containers,
which generally consist of a full operating system image. An LXC process, in
most common use cases, will boot a full Linux distribution such as Debian,
Fedora, Arch, etc., and a user will interact with it similarly to how they would
with a Virtual Machine image [20].

LXD is based on LXC; however, it provides additional capabilities. It
exposes REST API that can be used for managing containers.

2.2.9 gVisor

gVisor is a project by Google. It works by emulating the Linux kernel in
userspace. This means that any syscall that is called by the container process
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is proxied through gVisor which then does the necessary work. gVisor stops
the container process from directly communicating with the host kernel [21]

2.2.10 Kata Containers

Kata Containers takes a very different approach to container isolation. Instead
of relying on the standard namespaces, cgroups and capabilities combination
to isolate the container process, Kata runs each container in a stripped down
QEMU virtual machine using the KVM hypervisor [21].

2.3 Message Queue

Message queues enable decoupling message architecture and provide scalabil-
ity. Publisher does not have to be aware of subscribers, they do not have to
send/receive at the same; they do not have to even run at the same time.
In the system, a message queue is used to decouple Job executor producing
output and the consumer that saves the output to the database.

2.3.1 Kafka

Apache Kafka was designed as a scalable publish-subscribe messaging system.
It was first developed by LinkedIn to solve a general problem of delivering
extreme high volume event data to diverse subscribers [22].

Nowadays, it is a distributed streaming platform. It means that it com-
bines a queuing system and a publish-subscribe system.

Kafka organizes messages as a partitioned commit log on persistent storage
so both real-time subscribers (e.g., online services) and offline subscribers (e.g.,
Hadoop) can read the messages at arbitrary pace [22].

In Kafka, the category or feed name to which record is published is called
topic. The topic is Multi-subscriber (zero, one or many consumers) and can
be partitioned. A partition is an ordered, immutable sequence of records.
The record consists of a key, a value, and a timestamp. Each record in the
partition has a sequential id number called offset. All records are persisted
for the configurable retention period. After the retention period, the records
are discarded.

A partition is the main unit of scaling and distribution. The topic can be
too big to fit on a single server so it can be divided into multiple partitions
that can be hosted on different servers. Moreover, a partition can be replicated
across a configurable number of servers. Each partition has one ”leader” and
followers that can take over in case of leader failure.

Producers are responsible for choosing a topic and partition. They can use
a round-robin way to balance load or use other technique. Consumers can be
assigned to consumer groups. Then each published record is delivered to one
instance of each subscribing consumer group.
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Figure 2.7: Topic’s structure [5]

Kafka gives the following high-level guarantees [5].

• If the two messages are sent from the same producer to the same topic
partition, the first sent message is going to have lower record offset than
the later one.

• A consumer sees the record in the order they are stored into the log.

• If the replication factor is N, the system is going to tolerate N-1 failures
without data loss.

The main Kafka’s design goal is to handle high throughput (millions of
messages).

Kafka is a widely used the popular messaging system. It has a big com-
munity of users and developers and good documentation.

2.3.2 Rabbit MQ

RabitMQ is an efficient and scalable implementation of the Advanced Message
Queuing Protocol (AMQP) [23]. AMQP is a specification that defines the
semantics of an interoperable messaging protocol. The Advanced Message
Queuing Protocol ( AMQP ) is an open standard that defines a protocol for
systems to exchange messages. AMQP defines the interaction that happens
between a consumer/producer and a broker, and also the representation of the
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Figure 2.8: Consumer groups in Kafka [5]

messages and commands that are being exchanged. Because of the message
format specification, it is truly interoperable, and there are implementations
in a wide range of languages [6].

The core concepts of AMQP are following: [6]

• Broker Receives messages from publishers and deliver them to consumers
or to another broker.

• Virtual host Virtual division in a broker, allowing segregation.

• Connection Network connection (TCP)

• Channel Logical connection. There can be multiple channels in one
connection.

• Exchange Initial destination for all messages. It applies routing rules
(e.g. direct(point-to-point), topic (publish-subscribe) and fanout (mul-
ticast))

• Queue Place where the messages wait to be consumed.

• Binding Virtual connection beween exchange and queue.

RabbitMQ is optimized for empty-or-nearly-empty queues, and the per-
formance degrades significantly if the messages get accumulates. The reason
is that the main design goal is to handle messages in DRAM memory [23].

RabbitMQ provides many exchange types which can be used to create
complex routing logic.
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Figure 2.9: AMPQ architecture [6]

Since there can be run various jobs with various size of the output in the,
it is important that the Message Queue can work effectively if there is a long
queue of messages. Therefore, RabbitMQ is not well suited for the system.

2.3.2.1 Zero MQ

ZeroMQ is a library. It runs on different architectures and has support for
more than 20 programming languages [24].

ZeroMQ is different from other message queuing systems because it does
not need a broker - the central message server that provides asynchronous
communication. If the application wants to send the message asynchronously,
it can simply delegate it to ZeroMQ library that will queue the message in an
asynchronous I/O thread [24].

ZeroMQ is an interesting technology; however, it is not well suited for
the system. It is a library that can be used to build brokers and protocols.
However, log forwarders are simple, light-weight programs that are designed
to forward the message and move on.

2.3.3 Active MQ

ActiveMQ is open source messaging and message-oriented middleware.
Multiple ActiveMQ brokers can coordinate with each other to work as a

single entity so that it is capable of providing expandability to meet require-
ments of large-scale systems. Unlike Apache Kafka, ActiveMQ does not allow
multiple consumers to poll messages from a queue in parallel. It is because of
ActiveMQ’s centralized architecture which can potentially limit the queuing
performance [7].

ActiveMQ is not suitable for the system because it does not allow consumer
scaling that is important for the system.
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Figure 2.10: ActiveMQ architecture [7]

2.3.4 Apache Pulsar

Pulsar is a multi-tenant, high-performance solution for server-to-server mes-
saging. Pulsar was originally developed by Yahoo, it is under the stewardship
of the Apache Software Foundation[25].

Pulsar combines streaming and queuing into unified messaging model and
API. It means it can be used in the system where both streaming and queuing
are needed.

Pulsar offers following consuming modes.

• Exclusive subscription Only one subscriber can be subscribed to sub-
scription.

• Failover subscriptions Multiple subscribers can be subscribed to the sub-
scription; however only one consumes the messages and others will con-
sume in case of the consuming subscriber.

• Shared subscriptions Multiple subscribers can be attached to the same
subscription. Messages are delivered in a round-robin distribution.

A Pulsar instance consists of at least one Pulsar cluster. Clusters can
replicate the data among themselves. A cluster consists of at least one Pulsar
broker, Zookeeper and set of bookies. Pulsar broker exposes REST API for
administrative tasks and topic lookup and dispatcher. The dispatcher is an
asynchronous TCP server used for all data transfers. Bookies are instances
of Apache BookKeeper. Apache BookKeeper is a distributed write-ahead log
that is in Pulsar used as persistent message storage. Figure 2.11 shows the
architecture of Pulsar.
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Figure 2.11: Apache Pulsar architecture. Taken from https://
pulsar.apache.org/docs/

2.4 Stream Processor

The Stream processor was originally defined as a possible solution of con-
suming messages from Message Queue. However, adding Stream processor
increases the operational complexity and can be solved by simple consumer
application. The Stream processors that were considered are following.

• Spark

• Storm

• Flink

2.5 Storage

In general, data storage can be divided into File system storage and database.
File system storage is not suitable for the system because the system is not
only going to save the job’s output but also the information about the tasks.

The following properties can classify databases.

• Consistency

• Availability
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• Partition-tolerance

In 2000, these properties were specified by Brewer [26]. They can be used
to characterize the type of database because all three properties cannot be
fulfilled at the same time.

Consistency means that all clients see the same data at the same time. It
means that by updating data on one node, the data on all nodes are updated.

Availability means that the client can read and write any time regardless
of the state of the system.

Partition tolerance is the property that guarantees that the database works
despite message loss or partition failure.

Figure 2.12: Database properties with examples [8]

In the previous text, the following requirement for the database were de-
fined.

• High-throughput

• Fault-tolerant

• Distributed

• Scalable
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Considering the CAP theorem, Partition-tolerance is important in order to
fulfill the requirement on Fault-tolerance. High-throughput requirement shows
the need for Availability. However, the high-throughput is necessary only for
writing to the database. For the reading, Consistency is more important
(to provide user consistent up-to-date results). Therefore, the ideal database
should be CP or AP with the possibility of tuning Availability a Consistency.

In addition to the CAP theorem, the databases can be categorized us-
ing the way they store data. In addition to traditional Relational model
(databases that do not use the relational model are frequently called NoSQL
databases), databases can be divided into the following categories. [27].

• Key-Value The data are stored as pair Key-Value.

• Wide Column or Column Families Data are stored by columns; therefore
some rows may not contain part of the columns which results in bigger
flexibility in the data definition.

• Document-oriented Document is generally set of fields with attributes.
A document can be represented in various formats like XML, JSON or
BSON.

• Graph-oriented The data are stored in a graph-like structure.

Considering the data model, Document-oriented and Wide Column seem
to be suitable for the system. In the database, there will be information about
the job and job outputs. These data should be kept together so they can be
queried easily. Therefore, both Document and Wide Column (or Column
Families) can effectively store this information.

2.5.1 Cassandra

Cassandra is an open source distributed, decentralized, fault-tolerant, eventu-
ally consistent, linearly scalable, and a column-oriented data store [28]. Re-
garding CAP theorem, Cassandra is classified as an AP system. However,
Cassandra consistency can be tuned for each driver; therefore it can be turned
into a CP system easily while increasing latency.

Cassandra’s data management topology can be described as a ring. To
determine where (on which node) the data should be saved, the hash value of
the primary key is computed; the hash is called token. Each node in topology
is responsible for a range of tokens. Therefore, data are saved to the node
that takes care of the range of tokens where the token falls.

Replication in Cassandra occurs in a transparent manner. If the replication
is set to 4, then four nodes will have copies of each row in the range. The
first replica is always saved to the node with the range where the token falls.
Other nodes are chosen using Replication Strategy which can be changed. By
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default, Cassandra offers Simple Strategy and Network Topology Strategy.
Simple Strategy assigns the replicas to consecutive nodes in the ring. Network
Topology Strategy also considers different user-defined data centers and racks.

When any write operation is requested, first the change is written into
CommitLog. CommitLog is component which tracks all write requests and
is able to replay it in case of a problem. After the CommitLog, the change
is written to MemTable is an in-memory representation of a column family.
It can be thought of as cached data. When the system has gathered enough
updates in memory or after a certain threshold time, flush the data to a disk
in a structured file called SSTable [28]. Figure 2.13 shows the write operation.

Figure 2.13: Write operation in Cassandra. Taken from https://
www.edureka.co/blog/introduction-to-cassandra-architecture/

2.5.2 Elasticsearch

Elasticsearch is an open-source search engine built on top of Apache Lucene,
a full-text search-engine library [29]. Elasticsearch is part of Elastic Stack and
Graylog.

The Elastic Stack is a popular platform for collecting, analyzing and visu-
alizing various data (mainly log files) from various sources. The Elastic stack
consists of Elasticsearch, Logstash and Kibana. Graylog is similar product as
Elastic stack. Graylog collects logs and provides real-time search and analysis.
It is built on MongoDB and Elasticsearch.

Elasticsearch was designed as highly-scalable; it means it can be run on
multiple nodes in a cluster. The cluster is uniquely identified by a unique
name. Each node in the cluster have a unique name and participates in storing
data, indexing and searching capabilities.
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The main organizational unit in Elasticsearch is an index. The index is
a collection of documents that share somewhat similar characteristic (e.g.,
tweets from Twitter can be in Elasticsearch saved under /twitter index). The
basic unit of information is called a document. The document is expressed in
JSON.

Because the index can contain a large amount of data, Elasticsearch pro-
vides an ability to split the index into multiple pieces called shards. On index
creation, the user can specify the number of shards. The number of shards
can be changed later but it is no trivial. Shards are a basic unit of replication.
They are independent; therefore, can be each shard searched in parallel.

Elasticsearch’s data replication is based on the primary-backup model.
Based on documentID, the primary shard of the replication group is deter-
mined using routing. The primary shard is responsible for validating the
operating and forwarding it to other replicas. Elasticsearch keeps the list of
shards which received all the operations and can serve the actual data. When
the node receives the read request, it forwards the request to the relevant
shards. By default, Elasticsearch round robin between the replicas. Elastic-
search is a document-oriented database with a powerful engine for indexing
and searching documents.

2.5.2.1 MongoDB

MongoDB is high performance and very scalable document-oriented database.
It stores data in BSON format. BSON keep documents in an ordered list of
elements, every element as three components: a field name, a data type and
a value. BSON was designed to be efficient in storage space and scan speed
which is done for large elements in a BSON document by a prefixed with a
length field. All documents must be serialized to BSON before being sent
to MongoDB; they’re later deserialized from BSON by the driver into the
language’s native document representation [30].

MongoDB uses sharding to provide horizontal scalability. Sharding is a
method for distributing data across multiple machines. There can be a mixture
of sharded and unsharded collections in the database. MongoDB partitions the
collection using the shard key. Shard key is an identificator of the document
in the collection. It can consist of immutable field od document or fields that
exist in every document in the collection. To perform Read/Write operation,
routing service, called mongos, is used 2.14 MongoDB provides two sharding
strategies, Hashed Sharding and Ranged Sharing.

MongoDB has a limit of maximum BSON document size 16 MB.

2.5.3 ArangoDB

ArrangoDB is a native multi-model database. It offers document-oriented
storage, graph-oriented storage, and key-value storage. It is licensed under
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Figure 2.14: MongoDB collection sharding and routing [9]

open source Apache License 2.0 license.
The Cluster architecture of ArangoDB is a CP master/master model with

no single point of failure [10]. There are 3 roles that can instance of ArangoDB
have. They are Agents, Coordinators, and DBServers. Figure 2.15 shows the
architecture of the cluster.

Agents perform leader election and keep the configuration of the server.
Together, they form the Agency. Agency held the configuration of the server.
Agency is a highly-available resilient key/value store and uses Raft Consensus
Protocol to coordinate instances.

Figure 2.15: ArangoDB cluster architecture [10]

Coordinators are the endpoints that are exposed to the clients. They
coordinate cluster tasks and run Foxx services.
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DBServers are instances where data are hosted. The data are sharded and
are synchronously replicated. DBServer can be a leader or follower of the data
shard.

Foxx services are an interesting feature of ArangoDB that offers developer
run microservice providing the database data directly on Coordinator.

2.5.4 HBase

HBase, an Apache open-source project, is a distributed fault-tolerant and
highly scalable, column-oriented, NoSQL database built on top of HDFS.
HBase is used for real-time read/write random-access to very large databases [31].

Regarding the CAP theorem, it is considered to be a CP system. To run
HBase, there have to be a Hadoop File System (HDFS). This requirement
increases the complexity of using it in the system. Therefore; it is not further
considered a suitable option.

2.5.5 Amazon DynamoDB

DynamoDB is a database that supports key-value and document storage.
However, it is a proprietary technology that disqualifies it from being used
in the system.

2.5.6 CouchDB

CouchDB is highly available, partition tolerant, and eventually consistent Doc-
ument Storage. It uses JSON to store the data and JavaScript to query the
data.

2.5.7 Couchbase

Couchbase Server (previously known as Membase) is an open source, dis-
tributed Documents storage. It stores data as items, each of which has a key
and a value. Key is a unique identifier and value can be binary or JSON.

2.5.8 Druid

Apache Druid is currently open source distributed data store. It is currently
being incubated by The Apache Software Foundation. Druid is, similarly as
Elasticsearch, focused on data analytics and search systems.
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Implementation

The system will be called DJEES (an abbreviation of Distributed Job Execu-
tion and Evaluation System). Firstly, the system was developed on the laptop.
Then, it was deployed to a cluster that consist of four nodes each node with
the following resources. The nodes have names storm1, storm2, storm3, and
storm4.

• CPU: AMD Opteron Processor 6344 - 12 cores

• RAM: 32 GB

• Disk: Hard drive WDC WD1003FBYX - 1 TB

All the nodes run Ubuntu 16.04.
This chapter is divided into two parts. In the first part, the projects

that are used in the DJEES are selected, and, then, the implementation is
described.

3.1 Projects selection

3.1.1 Resource manager

The main candidates were Mesos, Kubernetes, and Nomad. The Mesos was
chosen because it is not limited to running only Docker containers. It means
Mesos supports running custom frameworks for example for Kafka or Cas-
sandra. Although these frameworks were not used because of the deprecated
versions, custom frameworks were considered as project advantage. Frame-
works were also considered as Mesos advantage over Nomad.
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3.1.2 Scheduler

The scheduler is generally Mesos framework. Every framework that is run on
Mesos clusters has to use Mesos APIs to communicate with Mesos Master and
to schedule task.

3.1.2.1 Singularity

Singularity targets to be more generic middle part that allows a various ap-
plication to be run on Mesos cluster. Singularity combines long-running tasks
and job scheduling functionality and provides a uniform way to run applica-
tions. Singularity currently supports following process types [11].

1. Web Services

2. Workers

3. Scheduled Jobs

4. On-Demand Processes

Figure 3.1: Singularity functionality [11]
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The Singularity was my first choice when prototyping the system. However,
I did not found API documentation, and the documentation was overall con-
fusing.

3.1.3 Aurora

Apache Aurora is Mesos Framework that supports long-running services, cron
jobs, and ad-hoc jobs. Aurora claims that it lets using an Apache Mesos
cluster as a private cloud. It means that it production grade tool that is used
by many top companies (Twitter, Uber, PayPal and many more). However,
Aurora is quite difficult to configure, and it does not expose any Http API
(or at least there is no documented Http API). Therefore, the Thrift API
has to be used. It increases the complexity of implementing and running this
framework.

3.1.3.1 Marathon

Marathon is a container orchestration platform for Mesos. It is mainly focused
on running services. It schedules services to the nodes, monitor them and
restarts them if it is needed. Marathon provides various options for fine-
tuning the service. Marathon offers out of the box UI and well documented
REST API. Therefore, Marathon was chosen to run the services in the Mesos.

3.1.4 Metronome

Metronome is a Mesos framework for scheduled jobs. It uses Zookeeper to keep
information about jobs. It has a simple REST API that is well-documented.
Therefore, it was chosen for submitting user jobs to the Mesos cluster.

3.1.5 Containerization platform

There are quite a lot of containerization projects; however, Docker currently
dominates the marker. [32] calculates Docker market share at 83%. The
second is CoreOS RKT with 12%, 3rd is Mesos containers with 4% and the
last mentioned are Linux Containers LXC with 1% market share. Generally,
Docker is more widespread; therefore, it can be expected that many users
already have some experience with Docker. Moreover, Docker can be built on
Windows too. Since it can be expected that the users will have to prepare the
container to run the job, the Docker containers are considered as the main
platform for running the user jobs.

Docker is an open source project that builds on many long-familiar tech-
nologies from operating systems research: LXC containers, virtualization of
the OS, and a hash-based or git-like versioning and differencing system, among
others [33].
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Docker shares with the host only the kernel. It means all the dependencies
have to be packed inside the container. The main file for the constructing new
container is Dockerfile. In the Dockerfile, the user specifies how the container
should be created. User can specify the source image, commands that have to
be run to install programs or services, the files that should be copied inside
the container. Then the container can be built and pushed to Docker Registry.
Docker Registry is an open source server for storing and distributing Docker
images. The system maintainer can use Registry provided by Docker called
Docker Hub or deploy own instance of the Docker Registry. The Docker was
already chosen as the main containerization technique in the previous text.
The main argument for selecting the Docker is its popularity, widespread, and
overall good user experience. Moreover, it is easy to use and is well supported
by Mesos.

3.1.6 Logs extraction

The problem of extracting output from the container can be solved in several
ways. There can be another process inside the container that will forward
the output to the endpoint outside the container. However, this approach
means exposing the endpoint to the running process and potential security
risk. Another approach is a shared file between container and host system.
However, this approach exposes filesystem (or part of it) to the container and
is security risk too. Moreover, both approaches set the requirements on the
user code and reduce the usability and potentially user experience. Therefore,
this is system is going to use the log forwarders that are connected directly to
the container socket and forward stdout and stderr of the container.

The process of log forwarding consists of two steps. First, a special driver
that is supported by Docker forward logs to the service or server. Then,
the service or server forwards the log messages to the targeted system. The
targeted system is a message queue.

3.1.6.1 Docker drivers

Docker currently supports many logging drivers. Moreover, a custom plugin
for logging can be installed into Docker. However, the following text describes
the drivers can be potentially used in the system.

3.1.6.1.1 Syslog Syslog is a standardized protocol for event notification
messages; it is standardized in [34] (also specified as RFC 5424). It uses
client-server architecture.

3.1.6.1.2 Journald Journald is logging driver that is able to send the
container logs to the systemd journal.
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3.1.6.1.3 Gelf Gelf is an abbreviation of Graylog Extended Format. Gray-
log is a popular open-source logging solution. It is build using Elasticsearch
and MongoDB projects. It can be used with various tools such as Graylog,
Logstash, and Fluentd.

3.1.6.1.4 Fluentd Fluentd driver sends logs to the Fluentd collector.

3.1.6.1.5 Splunk Splunk is a product for monitoring and analyzing gen-
erated data. The Docker Splunk logging driver sends container logs to HTTP
Event Collector in Splunk product. However, Splunk is a commercial product;
therefore, it is not suitable for the system.

3.1.6.2 Log forwarding systems and services

The Docker logging driver can forward the log message to various log forward-
ing or log processing services. In the proposed system, the service objective is
to send the log message to the message queue. There is an enormous amount
of projects for log forwarding with various architecture. The most popular
projects are following.

3.1.6.2.1 Logstash Logstash is part of The Elastic Stack. It is open
source, and its primary function is to collect the data from various sources
and sends them to Elasticsearch. However, Logstash has pluggable architec-
ture so it can be used with various projects.

3.1.6.2.2 Logagent Logagent is open-source, light-weight log shipper. It
claims that uses low memory and low CPU. It workes as Syslog listener.

3.1.6.2.3 Fluentd Fluentd is an open-source platform for data collection.
It is also presented as a unified logging layer. It can process various messages
and forward them to various systems. The main source of versatility is its
Pluggable Architecture.

3.1.7 Log forwarding solution

Suitable drivers for the system are Syslog, GELF, and Fluentd. However,
in this thesis, the decision was made between Logstash and Fluentd. The
difference between Logstash and Fluentd is in the way they handle the output.
Fluentd uses tags to determine the action; Logstash uses if-else statements.
Logstash and Fluentd both use similar pluggable architecture. [35] suggests
that Fluentd might be faster and uses less memory. However, the differences
were not further investigated, and Fluentd was chosen because of personal
preference and experience from creating a prototype (Fluentd is easy to run
and configure).
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3.1.8 Output queuing

Apache Pulsar looks interesting; however, Fluentd nor Logstash do not have
output plugin for Apache Pulsar. Kafka was chosen as the best option because
it is designed as high throughput and it supports the consumer scaling.

3.1.9 Data storage

The main arguments for Cassandra were that it is highly scalable, fault-
tolerant and high-throughput. Moreover, it allows fine-tuning of the queries
consistency. Therefore, the writing queries can be optimized for speed and
reading queries for consistency.

3.2 Configuring and connecting projects

The whole process of the configuration is described in detail in Appendix
B. For the project development and necessary functionality testing, project
Minimesos (https://minimesos.org) is available. It is an excellent ready-to-
use tool.

Figure 3.2 shows the final project architecture and the output flow between
the parts of the system.

Figure 3.2: System overview

The number of servers does not allow to divide the services among the
nodes; therefore, the system components are running simultaneously on the
nodes. It means that there are usually running Zookeeper, Mesos-master,
Mesos-slave, Kafka and Cassandra on the same node to simulate the dis-
tributed environment. This setup is not ideal; however, it should not signifi-
cantly affect constructing or testing the system.
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3.2.1 Zookeeper and Mesos

As a first step, the Zookeeper have to be installed. Mesos and both frameworks
that are going to be used (Metronome and Marathon) depend on it. After
that, Mesos can be deployed. Mesos consists of two components master and
agent (previously called as a slave). The master takes care of resource offering
to frameworks and assigning jobs to agents. The agent has to be deployed
on each node that is intended for running the jobs. The agent is responsible
for running the framework executor on his node. If there are multiple master
instances leader is elected using Zookeeper; therefore, the master must be
configured with the addresses of the Zookeeper nodes.

The agent uses Zookeeper to determine the leading master which should
offer resources. Therefore, the agent must be configured with the addresses
of the Zookeeper nodes too. Moreover, the agent has to be configured with
the supported containerization methods. By default, it only uses Mesos con-
tainers. Furthermore, the offered resources can be configured. There are four
distinct resource types of resources that the agent offers and that have to
match to run a job.

• CPU

• Memory

• Disk

• Port (by default only ports 31000 - 32000 are offered)

3.2.2 Docker and log forwarder

Mesos supports the Docker from version 0.20.0 (version 1.7.2 is used in this
project). However, to run the Docker container on the node, there have to
be Docker installed. Therefore, the Docker must be installed on each node
that is intended for running the jobs. Moreover, the log forwarder is tightly
coupled with log forwarder. The system is using Fluentd log forwarder that
is distributed as service called td-agent.

3.2.3 Kafka

There is a project that runs Kafka as a Mesos framework that is called
mesos/kafka, but the project is not maintained, and it would be difficult to
configure and run.

The Kafka was also considered to be run as a Marathon service inside the
container. However, Kafka is a complex project, and it is difficult to config-
ure to run inside the docker container. More about the running the Kafka
inside the Docker can be found on https://rmoff.net/2018/08/02/kafka-
listeners-explained/. Besides, running the Kafka inside the Docker using
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Mesos increases the complexity of monitoring and debugging it. Therefore;
Kafka was installed as service directly on the nodes.

Kafka uses Zookeeper to keep information about topics and partitions.
Therefore, Kafka has to be configured with addresses of the Zookeeper nodes.

In addition, when Kafka is started, a new topic for the output messages
have to be created. In the DJEES, the topic is called metronome because the
jobs in the system are scheduled by Metronome framework. In Kafka, each
topic has two properties - replication factor and number of partitions. In the
DJEES, the metronome partition is configured with replication=2, to provide
fault-tolerance, and partitons=3 to provide customers’ scalability.

3.2.4 Connecting Fluentd with Kafka

Fluentd uses plugin architecture. There many various input and output plu-
gins. DJEES utilizes standard forward input plugin. For sending messages
to Kafka, there is a couple of output plugins. DJEES uses kafka2 plugin.
However, this plugin contains a bug that prevents the plugin from injecting
tag and formatted timestamp into the message. Tag is important because it is
used to determine the job that produced the message. The timestamp is used
for messages ordering. Therefore, the right format with the specified precision
is crucial for determining the correct message order. Because of these reasons,
the filter plugin is used to inject tag and timestamp to the message. All three
mentioned plugins are already included in package td-agent3. It means that
they can be turned on by proper configuration.

3.2.5 Cassandra

Cassandra was also installed as from Cassandra repository. Firstly, there
was an idea of running Cassandra as a Marathon service inside the Docker.
However, running a distributed database inside the Docker brings a lot of
challenges (similar to running Kafka inside Docker); therefore, Cassandra is
run directly on the node.

When started, Cassandra uses a ring topology. Therefore, Cassandra
should be configured with seed addresses. Seeds are the nodes that are al-
ready connected to the ring. When the instance of Cassandra is started, it
initializes the gossip with the seed node and joins the ring topology. However,
the topology is established only when the instance starts, and the instance
keeps the configuration over the instance restarts. Therefore, it is necessary
to remove Cassandra data before joining a new ring.

Then the keyspace and tables have to be created. When creating the
keyspace, two properties have to be defined. The replication strategy defines
how the data are replicated among the nodes. The replication factor defines
how many copies of the data there will be in the Cassandra cluster. DJEES
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is configured to use SimpleStrategy and replication factor=2 to provide fault-
tolerance.

Then, tables can be defined inside the keyspace. Each table has columns
with the defined type. Moreover, for each table, the primary key has to
be defined. The primary key can be a compound of the partition key and
clustering columns. The unique identification of the row is a combination of
the partition key and clustering columns. Rows with the same partition key
are kept in the same table partition and are ordered using clustering columns.

In the DJEES, there are two keyspace, runs and runInformation. The
jobs outputs are stored in the keyspace runs in tables stdout and stderr. The
partition key is a field source that is a unique identifier of the job run. The
clustering column is a timestamp of the log message. Because the Cassandra
uses the timestamp to order the rows in partition, it is ensured that if the job
run is queried, the log messages are returned in the correct order using times-
tamp. The information about the jobs is stored in keyspace runInformation
in tables task and taskRun. Figure 3.3 shows the columns of tables task and
taskRun. The partition keys are marked with asterisk and clustering column
is marked with a hash symbol.

runInformation.task runInformation.taskRun
∗ user text ∗ user text

# name text ∗ name text
command text # runId int

image text state text
submissionTime text submissionTime text

memory int finishedAt text
cpus float
disk int

Figure 3.3: Tables runInformation.task and runInformation.taskRun

3.2.6 Marathon

Marathon is a Mesos framework that deploys services and applications on
Mesos agents. It allows to monitor them and in case of failure restart them.
In the DJEES, it is used to run Metronome, TaskSubmitter, and Cassan-
draKafkaConsumer which are described in the following text.

For running Marathon, Mesosphere Docker image in version 1.5.1 was
used. Marathon uses Zookeeper to provide fault-tolerance and elect a leader.
Therefore, it has to be configured with the addresses of Zookeeper. Moreover,
since it is a Mesos framework, it has to be also configured with Mesos path in
the Zookeeper.
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3.2.7 Persisting data from Kafka to Cassandra

The problem of moving log messages from the Kafka queue to Cassandra is
solved by Java application. The application is called CassandraKafkaCon-
sumer and uses Apache Kafka library called kafka-clients for consuming mes-
sages from Kafka and the Cassandra driver from Datastax for storing data
to Cassandra. First, the class KafkaConsumer uses ConsumerFactory class to
sign up for topic.

To sign up for the topic, Consumer needs at least one valid address of
Kafka node, topic name, and the GroupId. GroupId identifies the groups and
allows load balancing partitions consuming among the multiple instances of
the CassandraKafkaConsumer.

For the connection to Cassandra, class CassandraConnector is used. It
needs at least one valid address (in a driver called contactPoint) of Cassandra
node and name of the datacenter that was Cassandra configured with. The
CassandraConnector on startup prepares queries for inserting the log messages
to the Cassandra.

When a new message is accepted, KafkConsumer class uses Gson converter
to convert the message to Java object. Then, using the source field determines
whether the log message should be inserted to table stdout or stderr. Finally,
the object is persisted to the Cassandra using CassandraConnector class.

To run the CassandraKafkaConsumer on Marathon, CassandraKafkaCon-
sumer has to be registered using Marathon REST API. In the DJEES, the
Marathon is configured to run three instances of CassandraKafkaConsumer,
each on a different node. Running the application on different nodes is ensured
using constraint unique hostname.

3.2.8 Metronome

Metronome is a Mesos framework, but it is focused on one-off tasks and sched-
uled jobs. In the DJEES, it is used to schedule users jobs on the Mesos cluster.
To run Metronome, the docker image was prepared and run using Marathon.

3.2.9 Job submitting

Submitting jobs to the system is solved by an application build on Java Spring
framework that is called TaskSubmitter. It uses the Datastax Cassandra
driver to connect Cassandra. The application uses Spring Boot server and
layered architecture. The application was designed to simplify the task sub-
mitting.

TaskSubmitter uses two classes to represent the job. The first one is Task
class that represents a general problem and holds the information about job
name, command and container that should be run. The second one is class
TaskRun that represents a single run of the job. It contains runId, state,
submission time.
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The primary endpoint is /runs/user that can be used to list all the users’
tasks and to add a new task. The system does not currently support authen-
tication and authorization; however, the design allows to implement it using
Spring Boot Security easily.

To submit the new job the user has to specify the task name, requested
resources, container (in the JSON called image) and the command. When the
job is submitted, the job run must be triggered using Http Post method. The
system generates runId that is used to identify the task run and obtain the
run output.

DJEES currently supports only two states of the job run. When the
job run is requested, it enters the state submitted. When it finishes, the
state is changed on finished, and the column finishedAt is updated. Unfor-
tunately, Metronome does not support webhooks; therefore, the job runs’
states are updated when user requests list of the Job Runs. The information
about the Job run can be obtained from Metronome using query parameter
embed=historySummary. When the Job run enters the finished state, the
Job run is removed from Metronome. The reason for this is that Metronome
saves information about the run into the Zookeeper. It is expected that there
are going to be a huge amount of jobs and job runs and it could have a sig-
nificant effect on Zookeeper performance. Moreover, Zookeeper is used by
critical parts of the system (Mesos, Marathon, Kafka). Furthermore, there is
minimum extra information versus information that is saved in Cassandra.

Currently, TaskSubmitter offers the following functionality.

• List all user Jobs

• Submit a new Job

• List Job runs

• Get job run standard output

• Get job run standard error output

Marathon uses Http to check if the application is running. For this pur-
pose, Task Submitter has /health endpoint that response to Http Get method.
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Chapter 4
System analysis

4.1 Capabilities demonstration

For the demonstration purposes, the first assignment from the MI-PAA was
chosen. The assignment is to implement simple recursive solving of the Knap-
sack problem. The solution was implemented in Python and C++ using simple
recursion. To demonstrate possibilities, the solution in C++ was cloned from
the Gitlab repository and run in the prepared image. The Python solution is
packet inside the docker image and only the run script is called.

4.1.1 Running C++

Figure 4.1 shows JSON for running the C++ code in the DJEES. Firstly, the
code is downloaded from the Gitlab. Then, it is compiled, and finally, the
binary is run. To submit the job, the JSON has to be sent to /runs/user
endpoint using the Post method. The Linux utility curl was used for this
purpose. Figure 4.2 shows the command that was used during the testing
phase. When the job is submitted, it has to be triggered to run using the Post
method on /runs/user/taskName endpoint. Figure 4.3 shows the command
that can be used to trigger the job run and response from the system. The
response contains generated identifier runId that can be used to obtain the
real-time output. Figure 4.4 shows the command for getting the job standard
output and the response from the system. Figure 4.5 shows the command for
getting standard error output and the response from the system.

The time measurement was performed using C++ chrono library.

4.1.2 Running Python

The purpose of this test was to demonstrate that the system can run any
language that the user supplies with its dependencies.
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{
"command":

"git clone https://gitlab.com/dip-test-cases/paa-brute-force.git
&& cd paa-brute-force && g++ main.cpp -o run && ./run",

"cpus": 1,
"disk": 0,
"image": "mashtak/c_cpp_image:1.0",
"memory": 512,
"name": "paacppbruteforce"

}

Figure 4.1: Json for running C++ algorithm

curl -H "Content-Type: application/json" -X POST -d@paa_c++.json \
storm2:31800/runs/masekja7

Figure 4.2: Command for submitting JSON to system

curl -X POST storm2:31800/runs/masekja7/paacppbruteforce

{
"user": "masekja7",
"name": "paapythonbruteforce",
"runId": 1,
"submissionTime": "2019-05-05T21:04:10.489Z",
"state": "submitted",
"finishedAt": null
}

Figure 4.3: Command for triggering job run and system response

The process of submitting a Python job is the same as for C++ program.
The only difference is the JSON for submitting a job (Figure 4.6). The job
run can be triggered using the name defined in JSON (paapythonbruteforce)
and output is obtained the same way as in C++ version (Figure 4.7).

4.2 High load

The goal of this testing phase was to discover if the system isolates resources
and give the same results. First, the test triggering 40 runs of the C++
recursive solving Knapsack problem. The same implementation as in 4.1.1 was

44



4.2. High load

curl -X GET storm2:31800/runs/masekja7/paacppbruteforce/1/stdout

{
"ouput": [

"-------knap_4.inst.dat--------",
"0.000198077",
"-------knap_10.inst.dat--------",
"0.00352617",
"-------knap_15.inst.dat--------",
"0.177497",
"-------knap_20.inst.dat--------",
"6.39341",
"-------knap_22.inst.dat--------",
"27.4397"

],
"user": "masekja7",
"name": "paacppbruteforce",
"runId": 1,
"type": "stdout"
}

Figure 4.4: Command for obtaining job standard output and system response

curl -X GET storm2:31800/runs/masekja7/paacppbruteforce/1/stderr

{
"ouput": ["Cloning into ’paa-brute-force’..."],
"user": "masekja7",
"name": "paacppbruteforce",
"runId": 1,
"type": "stderr"
}

Figure 4.5: Command for obtaining job standard error output and system
response

used; however, the only instance of size 22 was measured. The measurement
was performed on DJEES with 3 Mesos agents running on 3 nodes. Figure
4.8 shows the command that was used to trigger the job runs and figure 4.9
shows the obtained results.

Unfortunately, the significant differences can be observed between the
fastest and slowest solution (column Measured time). The fastest solution
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{
"command": "./test_script.sh",
"cpus": 1,
"disk": 0,
"image": "mashtak/mi-paa_python_bruteforce:1.0",
"memory": 512,
"name": "paapythonbruteforce"

}

Figure 4.6: Json to run the Python program

spent 30.87 seconds performing the task; however, the slowest run spent with
the same task 48.259 seconds. It means that the slowest run is more than 50%
slower than the fastest. Moreover, if there is no load on the node, the job runs
even faster (27.4397 seconds shown in 4.1.1).

The cause of big difference could be that other services are running on
the nodes (Kafka, Cassandra) but the Mesos agent offers the full capacity.
Another test was performed to verify it. The C++ Knapsack recursive solver
was run together with the stress utility that can impose load on CPU. To
perform this test, only one Mesos Agent was used. Figure 4.10 shows the
JSON that was used to configure the job. The stress utility tries to stress all
the 12 node CPUs, although, it has dedicated only one CPU. It stresses the
CPU for 2 minutes.

The measured time when there was a stress utility running on the same
node was 44.705 seconds. However, without load, the same job on the same
server runs between 27 and 29 seconds. This test shows that CPU isolation
does not work correctly and that simultaneously running jobs affect each other.

The problem of the job resource isolation lays in the way how the Mesos
and Docker use CPU parameter. The problem of resources limitation is de-
scribed in [36]. Mesos converts the CPU parameter to Docker’s parameter
cpu-shares. However, the cpu-share option defines only the priority of the con-
tainer and the portion of the CPU time that the container receives. Therefore,
when running the stress test and the C++ Knapsack solver on the same node
with CPUs equal 1, both processes have the same priority; therefore C++
solver receives only 50% of CPU time which results in a significant slowdown
of the C++ solver.

Docker offers parameter −−cpus that limits the usage of the available
CPUs. This option would be more suitable for this system. It could be passed
as additional Docker parameter to Metronome; however, this option was not
implemented nor tested. This option was successfully tested using htop to
monitor system resources. Therefore, it can be implemented to the system in
the future.
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4.3 Security

System security can be viewed from two perspectives. First is the security of
the interface that is exposed to users. Second is running user code that could
be potentially malicious.

The only interface that is meant to be exposed to the users is TaskSub-
mitter application. However, TaskSubmitter is not ready for a production
environment. It contains protection against SQL injection because all the
queries use Prepared Statements, but Task Submitter does not implement
any Authentication nor Authorization; therefore it currently cannot be used
for serving multiple users.

The security of running depends on container isolation. There can be two
goals of the malicious code. It can be using system resources to attack the
targets on the internet. The second possibility is that the attacker wants to
gain control of the node potentially the whole system.

The first risk, attacking targets on the network, can be mitigated by setting
up firewall and white-listing allowed website. For example, the container could
only connect to the specified git server and the server with containers.

The second risk, gaining host root access is a big security problem that
is not solved satisfyingly. In the paper [37], there was a huge amount of
attack analyzed, and security mechanisms were created. Moreover, the new
vulnerability CVE-2019-5736 was discovered recently (it is described in [38]).
However, the more profound analysis of the container security is beyond the
scope of this thesis. The main conclusion of this analysis is that containers in
the default configuration cannot be currently considered as a secure way to
run 3rd party programs. However, there are mechanisms and techniques to
minimize the risk of gaining control of the host machine. The problem is that
they are not standardized and setting the containers properly needs particular
caution.

4.4 Scalability

The system is scalable in several ways. If only more computational power
is needed, the node with Mesos agent can be added. The node will offer its
resource; hence, increases available system computational power.

When adding new node the following steps have to be made.

• Install Docker

• Install td-agent(Fluentd)

• Configure td-agent to forward messages to Kafka

• Install Mesos agent
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• Configure Mesos agent with Zookeeper to be able to reach Mesos master

Although the scaling computational power increases the overall computa-
tional power of the system, other parts of the system have to be able to handle
increased traffic. However, determining the required amount is currently im-
possible because presumptions cannot be about the jobs the will be run in the
system. There can be a few compute-intensive jobs that generate very few
output messages or there can be many jobs and will generate a huge amount
of output messages.

All of the system components are easy to scale. Adding nodes to Kafka
or Cassandra means installing the service on the node and connecting it to
the existing topology. When scaling CassandraKafkaConsumer, two things
have to be done. First, there has to be enough partition in the Metronome
topic. Otherwise, adding new CassandraKafkaConsumer would not have an
effect. Generally, there should be at least the same number partition as is
CassandraKafkaConsumers in the system. Second, adding more instance of
the CassandraKafkaConsumer can be done changing Marathon JSON and
updating it in Marathon.

Problematic is scaling Task Submitter and Metronome. Scaling TaskSub-
mitter means that users need to know the location of the server they should
contact. It induces the need to have a load balancer that would divide the
traffic among the instances of Task Submitter. Moreover, the Task Submit-
ter needs to be configured with the address of the Metronome; therefore,
TaskSubmitter has to be scaled simultaneously with Metronome.

4.5 Fault-tolerance

The fault-tolerance of the system have to analyzed be analyzing each compo-
nent. Zookeeper, Mesos, Marathon, Kafka, and Cassandra are fault-tolerant
by design (however, Kafka and Cassandra have to configured with replication
factor at least 2). However, when the node running job stops, the job has to
be restarted. CassandraKafkaConsumer is also fault-tolerant because Kafka
can forward to the partition to other instance of the consumer. However,
TaskSubmitter is not fault-tolerant. It is going to be restarted by Marathon
if the application fails. However, the Marathon deploys the Task Submitter
only to the node with the specified hostname. Therefore, if the node with the
specified name is not accessible, the Task Submitter will not be redeployed.

4.6 Further development

There are many possibilities for extending the current system. Mesos is a
versatile platform that can be extended in several ways.

Mesos resource managing is not limited only to CPUs, memory, and disk,
but can provide GPUs as well. GPUs are used mainly in Machine Learning and
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Artificial Intelligence. Moreover, there is an implementation of popular Ten-
sorFlow as Mesos framework (https://github.com/douban/tfmesos). Ten-
sorFlow is a framework that greatly simplifies developing Machine Learning
and Artificial Intelligence applications.

Another possibility is exploring and integrating framework mesos-hydra
(https://github.com/mesosphere/mesos-hydra). Mesos hydra is frame-
work for running MPI applications in Mesos cluster. Message Passing Interface
(MPI) is a standardized and portable message-passing standard designed to
run parallel applications on a wide variety of parallel computing architectures.

Finally, migrating to DC/OS should be considered. DC/OS is a distributed
operating system based on Mesos that simplifies using Mesos and integrates
many projects that were used in this project.
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{
"ouput": [

"knap_10.inst.dat",
"------brute_10------",
"",
"real\t0m0.139s",
"user\t0m0.136s",
"sys\t0m0.000s",
"knap_15.inst.dat",
"------brute_15------",
"",
"real\t0m1.986s",
"user\t0m1.980s",
"sys\t0m0.008s",
"knap_20.inst.dat",
"------brute_20------",
"",
"real\t0m59.668s",
"user\t0m59.636s",
"sys\t0m0.020s",
"knap_22.inst.dat",
"------brute_22------",
"", "real\t3m35.005s",
"user\t3m34.956s",
"sys\t0m0.008s",
"knap_4.inst.dat",
"------brute_4------",
"",
"real\t0m0.029s",
"user\t0m0.020s",
"sys\t0m0.012s"

],
"user": "masekja7",
"name": "paapythonbruteforce",
"runId": 5,
"type": "stdout"

}

Figure 4.7: System output for Python program
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for i in {1..40}; do curl -X POST \
storm2:31800/runs/masekja7/paacppbruteforce; done

Figure 4.8: Command for triggering 40 runs of the C++ solver
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RunId Submission Finished Time Measured
time time to finish time

1 18:34:42.802 18:37:32.868 0:02:50.066 33.692
2 18:34:42.881 18:37:19.680 0:02:36.799 47.624
3 18:34:42.963 18:36:42.243 0:01:59.280 31.652
4 18:34:43.034 18:36:45.308 0:02:02.274 36.420
5 18:34:43.099 18:36:44.389 0:02:01.290 37.858
6 18:34:43.176 18:37:19.067 0:02:35.891 47.146
7 18:34:43.239 18:36:46.618 0:02:03.379 34.637
8 18:34:43.307 18:37:21.091 0:02:37.784 46.854
9 18:34:43.371 18:37:25.816 0:02:42.445 31.212
10 18:34:43.440 18:37:25.916 0:02:42.476 30.960
11 18:34:43.510 18:37:21.394 0:02:37.884 46.334
12 18:34:43.580 18:36:49.343 0:02:05.763 38.299
13 18:34:43.651 18:37:28.749 0:02:45.098 31.106
14 18:34:43.721 18:36:44.542 0:02:00.821 40.662
15 18:34:43.789 18:37:21.908 0:02:38.119 47.238
16 18:34:43.853 18:36:39.809 0:01:55.956 37.329
17 18:34:43.913 18:37:23.141 0:02:39.228 47.179
18 18:34:43.975 18:37:23.334 0:02:39.359 46.696
19 18:34:44.046 18:37:29.542 0:02:45.496 30.959
20 18:34:44.114 18:37:25.518 0:02:41.404 30.870
21 18:34:44.178 18:37:29.951 0:02:45.773 31.881
22 18:34:44.247 18:36:47.544 0:02:03.297 37.693
23 18:34:44.315 18:36:45.349 0:02:01.034 42.286
24 18:34:44.384 18:37:21.601 0:02:37.217 47.264
25 18:34:44.447 18:36:47.781 0:02:03.334 41.163
26 18:34:44.522 18:37:35.689 0:02:51.167 36.388
27 18:34:44.580 18:36:42.345 0:01:57.765 31.630
28 18:34:44.646 18:36:42.650 0:01:58.004 38.211
29 18:34:44.713 18:37:28.758 0:02:44.045 32.365
30 18:34:44.780 18:37:20.484 0:02:35.704 47.999
31 18:34:44.845 18:36:43.250 0:01:58.405 38.683
32 18:34:44.913 18:37:28.134 0:02:43.221 31.962
33 18:34:44.979 18:36:41.928 0:01:56.949 31.696
34 18:34:45.045 18:37:31.367 0:02:46.322 34.675
35 18:34:45.109 18:36:46.350 0:02:01.241 39.760
36 18:34:45.171 18:37:18.976 0:02:33.805 48.259
37 18:34:45.230 18:37:28.542 0:02:43.312 36.900
38 18:34:45.295 18:36:42.516 0:01:57.221 38.006
39 18:34:45.363 18:37:23.026 0:02:37.663 46.991
40 18:34:45.425 18:37:22.517 0:02:37.092 46.258

Figure 4.9: Running 40 instances of the C++ Knapsack recursive solver
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{
"command": "stress --cpu 12 --timeout 120s",
"cpus": 1,
"disk": 0,
"image": "containerstack/alpine-stress",
"memory": 512,
"name": "stress"

}

Figure 4.10: JSON for running stress utility

53





Conclusion

The current open-source technologies were analyzed. The methodology for
evaluating and selecting open source technologies was defined. Suitable tech-
nologies were chosen using that methodology. The system for the distributed
job execution and evaluation was implemented using selected technologies. It
was proven that chosen technologies can be used to provide a scalable environ-
ment for running user jobs. The system is able to run a job on a computing
cluster with requested resources. Display its status, and show its output in
real-time. The output is persisted into the Cassandra database. Jobs are run
in containers to provide isolation of the jobs. Containerization of jobs also
allows running any programming language. Capabilities were demonstrated;
however, further tests showed that CPU limitation does not work as expected
because of the Docker implementation. Therefore; DJEES can provide incon-
sistent results in specific scenarios. However, a solution was found and can be
implemented in the future.

DJEES is a complex and versatile system that offers many possibilities
for further development. The main areas for the further development were
addressed in Chapter 4.
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Appendix A
Acronyms

GUI Graphical user interface

XML Extensible markup language

API Aplication interface

JSON JavaScript Object Notation

BSON Binary JSON

REST Representational State Transfer

URL Uniform Resource Locator
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Appendix B
Installation manual

B.1 Zookeeper

The Zookeeper should be installed as the first component. Depending on
Linux distribution it can be installed from the repository or downloaded from
the website. Then, it has to be configured. There is a sample configuration in
folder conf in Zookeeper location. The file that configures Zookeeper should
have name zoo.cfg. Zookeeper should be run on at least 3 nodes to provide
fault-tolerance.

B.2 Docker

All the nodes that are going to execute user code must have Docker installed.
Docker can installed from Docker repository. More information can be found
at https://docs.docker.com/install/.

B.3 Fluentd

All nodes that will run users’ jobs must have Fluentd installed to be able to
forward the messages to Kafka. Fluentd can be installed using deb package
https://docs.fluentd.org/v1.0/articles/install-by-deb as td-agent ser-
vice. Then, the configuration file has to be copied from the project folder and
the Fluentd have to be restarted.

copy configuration/td-agent.conf /etc/td-agent/
service td-agent restart

The configuration file contains the seed of Kafka brokers. The addresses of
the Kafka brokers should be updated according to the cluster configuration.

63

https://docs.docker.com/install/
https://docs.fluentd.org/v1.0/articles/install-by-deb


B. Installation manual

B.4 Mesos

Mesos can be built from the source. The process of building is described at
http://mesos.apache.org/documentation/latest/building/.

First, the master instances have to be run. They can be run using startup
script ./bin/mesos-master.sh or it can be registered as system service. Mesos
have to be configured with the address of Zookeeper.

Then, agents can be run. However, Docker has to be added to container-
izers. In addition, the agent can be configured with exact resources it should
offer.

echo ’docker,mesos’|sudo tee /etc/mesos-slave/containerizers

B.5 Kafka

Kafka can be set up as a system service using following commands.

wget "http://www-eu.apache.org/dist/kafka/2.2.0/kafka_2.12-2.2.0.tgz"
mkdir /opt/kafka
tar -xvzf kafka_2.12-2.2.0.tgz --directory /opt/kafka
--strip-components 1
rm -rf kafka_2.12-2.2.0.tgz
mkdir /var/lib/kafka
mkdir /var/lib/kafka/data
cp ./configuration/kafka/server.properties /opt/kafka/config
cp ./configuration/kafka/kafka.service /etc/systemd/system/
service kafka status

File server.properties contains information about Zookeeper nodes; there-
fore, it has to updated to reflect the addresses in cluster.

When Kafka runs, the topic can be created.

/opt/kafka/bin/kafka-topics.sh --create --topic metronome \
--replication-factor 2 --zookeeper storm3 --partitions 3

B.6 Cassandra

Cassandra can be installed using deb package following the steps from http://
cassandra.apache.org/doc/latest/getting_started/installing.html#

When Cassandra is installed, it automatically starts with a default config-
uration. Therefore; it has to be stopped and configuration has to be changed.

service cassandra stop
sudo rm -rf /var/lib/cassandra/data/system/*
cp ./configuration/cassandra.yaml /etc/cassandra/
service cassandra start
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B.7. Marathon

The file cassandra.yaml contains information about other Cassandra that
it should use to establish topology. There has to be at least one running server
that Cassandra should use.

Established ring topology can be verified using following command.

nodetool status

Then the keyspaces and tables can be defined. The easiest way is running
docker image wtih cqlsh binary.

docker run --rm --network host -it cassandra /bin/bash
cqlsh

create keyspace runs with replication =
{’class’:’SimpleStrategy’, ’replication_factor’ : 2};
create table runs.stdout ( source text, timestamp text, \
log text, PRIMARY KEY (source,timestamp) );

create table runs.stderr ( source text, timestamp text,\
log text, PRIMARY KEY (source,timestamp) );

create keyspace runInformation with replication = \
{’class’:’SimpleStrategy’, ’replication_factor’ : 2};

create table runInformation.task (user text, name text,\
command text, image text, submissionTime text, memory int, \
cpus float, disk int ,PRIMARY KEY(user,name) );

create table runInformation.taskRun (user text, name text,
runId int, state text, submissionTime text, finishedAt text, \
PRIMARY KEY((user,name),runId) );

B.7 Marathon

Marathon can be simply run on required nodes using Docker. It is recom-
mended to run at least two instances on different nodes to provide fault-
tolerance.

docker run -d --network host --restart always \
mesosphere/marathon:v1.5.1 \
--master zk://0.0.0.0:2181/mesos \
--zk zk://0.0.0.0:2181/marathon

It has to be run with correct Zookeeper addresses.
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B.8 Metronome

Metronome can be simply run by submiting configuration JSON to Marathon.
JSON has to be configured with correct Zookeeper and Metronome nodes
addresses.

curl -H "Content-Type: application/json" -X POST \
-d@start-up_commands/marathon_metronome.json \
localhost:8080/v2/apps

B.9 CassandraKafkaSubmitter

CassandraKafkaSubmitter is run by Marathon too; therefore, it can be run
same way as Metronome. Howver, JSON file has to configured with correct
Kafka and Cassandra adresses.

curl -H "Content-Type: application/json" -X POST \
-d@start-up_commands/cassandraKafkaConsumer_marathon.json
localhost:8080/v2/apps

B.10 TaskSubmitter

TaskSubmitter is run by Marathon too; therefore, it can be run same way as
Metronome. Howver, JSON file has to configured with correct Metronome
address.

curl -H "Content-Type: application/json" -X POST \
-d@start-up_commands/marathon_tasksubmitter.json \
localhost:8080/v2/apps

Then the functionality can be verified by submitting any of JSON files in
task submitter example runs to the TaskSubmitter endpoint.
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Appendix C
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

DJEES.............................................DJEES directory
CassandraKafkaConsumer ............. CassandraKafkaConsumer
implementation
TaskSubmitter...................TaskSubmitter implementation
configuration............................... Configuration files
containers..........................Prepared Docker containers
start-up commands .............. Commands for starting DJEES
task submitter example ......................... Jobs examples

thesis..............the directory of LATEX source codes of the thesis
text..........................................the thesis text directory

thesis.pdf...........................the thesis text in PDF format
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