
Czech Technical University in Prague
Faculty of Electrical Engineering

Habilitation Thesis

April 2019 Branislav Bošanský

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Equilibrium Computation in
Dynamic Games

Habilitation Thesis

Branislav Bošanský

Prague, April 2019

Copyright

The works presented in this habilitation thesis are protected by the copyright of Elsevier
and ACM. They are presented and reprinted in accordance with the copyright agreements
with the respective publishers. Further copying or reprinting can be done exclusively with
the permission of the respective publishers.

c© Branislav Bošanský, 2019
c© Elsevier, 2016,2018
c© ACM, 2017,2018

Dedicated to my daughter Zuzka, my wife Pavlı́na, and all my family.

Acknowledgments

I am grateful for having an opportunity to work with great researches on papers presented in
this thesis. First of all, I thank my students, Jiřı́ Čermák, Karel Horák, and Jakub Černý for
all their hard work over the years (not only) on the papers presented in this work. Secondly,
I thank Christopher Kiekintveld and Viliam Lisý for their collaboration on many research
projects and extensive discussions and brainstorming sessions that pushed me always a bit
further. I also thank prof. Michal Pěchouček for his endless support at the Department of
Computer Science and as the head of Artificial Intelligence Center and for giving me this
opportunity to work on dynamic games and game theory.

I am also grateful to all my coauthors on all the publications that were published over
the years. Namely, I would like to thank Peter Bro Miltersen for the opportunity to spend
great postdoc at Aarhus University and I also thank Simina Brânzei, Kristoffer Arnsfelt
Hansen and Troels Bjerre Lund for their work on Stackelberg equilibrium. I also thank
Milind Tambe, Krishnendu Chatterjee, Marc Lanctot, Albert Xin Jiang, Nicolla Gatti, Bo
An, Qingyu Guo, Karel Durkota, and Tomáš Pevný for their collaboration on joint papers.

Finally, I want to thank all master and bachelor students that I supervised and all other
colleagues at Artificial Intelligence Center for making this center a great place for research.

The work in this thesis was supported by Czech Science Foundation grants P202/12/2054
and 15-23235S, by the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16 019/0000765
”Research Center for Informatics”, by the Combat Capabilities Development Command
Army Research Laboratory and was accomplished under Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Security CRA). Finally, many of the experimental re-
sults presented in the papers were obtained using CESNET LM2015042 and the CERIT
Scientific Cloud LM2015085, provided under the programme “Projects of Large Research,
Development, and Innovations Infrastructures”. During the postdoc, I was supported by the
Danish National Research Foundation and the National Science Foundation of China (un-
der the grant 61361136003) for the Sino-Danish Center for the Theory of Interactive Com-
putation, and by the Center for Research in Foundations of Electronic Markets (CFEM),
supported by the Danish Strategic Research Council.

Abstract

This habilitation thesis presents advancements in computing exact and approximate solution con-
cepts in dynamic games. Dynamic games model scenarios that evolve over time, players are able to
perform actions that modify the environment, however, the players do not have perfect information
about the environment and receive only partial information as observations. We consider strictly
competitive (or zero-sum) games where a gain of one player is a loss of the opponent as well as
general-sum games. Similarly, we consider both games with a finite, pre-defined number of moves
(horizon) after which the game terminates, as well as games where the number of moves is not fixed.

There are several key contributions. For zero-sum games, we provide algorithmic contributions
for games with both finite and with infinite horizon. For finite games, we adopted the incremental
strategy-generation technique in order to scale-up to larger domains and also provided the first
algorithm for approximately solving games where players have imperfect memory (imperfect recall).
For games with infinite horizon, we provide the first algorithms for approximately solving games
where at least one player has partial information about the environment.

For general-sum games, we provide several theoretical results determining the complexity of
computing a Stackelberg Equilibrium and novel algorithms for its computation in finite dynamic
games. Moreover, we formally define a novel solution concept, a variant of Stackelberg Equilibrium
termed Stackelberg Extensive-Form Correlated Equilibrium, and we show that this solution concept
is important both from the theoretical perspective, since the computational complexity is often lower
compared to Stackelberg Equilibrium, as well as from the practical perspective. To this end, we
propose an algorithm that uses this new solution concept in order to quickly compute a Stackelberg
Equilibrium.

Abstrakt

Tato habilitačnı́ práce shrnuje nové poznatky v oblasti algoritmické a výpočetnı́ teorie her pro dy-
namické hry. Dynamickými hrami rozumı́me situace, které se rozvı́jejı́ v čase, hráči vykonávajı́ akce,
které modifikujı́ prostředı́ a zároveň nemajı́ hráči o prostředı́ plnou informaci a pozorujı́ jej pouze
částečně. V rámci práce uvažujeme jak striktně kompetitivnı́ hry, ve kterých zisk jednoho hráče
odpovı́dá ztrátě oponenta, tak i obecnějšı́ hry s nenulovým součtem. Rovněž, uvažujeme jak hry s
konečným, pevně daným počtem tahů (tzv. horizontem), tak i hry, kde počet tahů může být nekonečný.

Habilitačnı́ práce má několik přı́nosů. Pro hry s nulovým součtem přinášı́ nové algoritmické
výsledky v hrách s konečným i nekonečným horizontem. Pro hry s konečným horizontem jsme adop-
tovali algoritmus inkrementálnı́ho přidávánı́ strategiı́ s cı́lem zlepšenı́ škálovatelnosti a umožněnı́
řešenı́ většı́ch her. Takisto popisujeme prvnı́ praktické algoritmy pro řešenı́ her, ve kterých majı́
hráči nedokonalou paměť. V hrách s nekonečným horizontem představujeme vůbec prvnı́ algoritmus
pro aproximativnı́ řešenı́ her, pokud alespoň jeden z hráčů má neúplnou informaci.

Pro hry s nenulovým součtem jsme provedli teoretickou analýzu několika problémů výpočetnı́
složitosti výpočtu Stackelbergova ekvilibria a představili prvnı́ algoritmy pro jeho výpočet v dy-
namických hrách s konečným horizontem. Navı́c definujeme novou variantu Stackelbergova ekvilib-
ria, nazvanou Stackelberg Extensive-Form Correlated Equilibrium, a ukazujeme jejı́ jak teoretické
výhody (složitost výpočtu této varianty je často nižšı́ v porovnánı́ s originálnı́m konceptem) tak prak-
tické výhody, které demonstrujeme novým algoritmem, který pro výpočet Stackelbergova ekvilibria
využı́vá právě tuto korelovanou variantu.

Contents

1 Introduction 1

2 Dynamic Games 5
2.1 Formal Models of Dynamic Games . 5

2.1.1 Extensive-Form Games . 5
2.1.2 Partially Observable Stochastic Games 6

2.2 Solving a Dynamic Game . 7
2.2.1 Solution Concepts . 7
2.2.2 Complexity of Computing Solution Concepts 8

3 Algorithms for Solving Dynamic Games 9
3.1 Computational and Algorithmic Results for Zero-Sum Games 9

3.1.1 Results for Extensive-Form Games 10
3.1.2 Results for Partially Observable Stochastic Games 14

3.2 Computational and Algorithmic Results for General-Sum Games 16
3.2.1 Computing Stackelberg Equilibrium in EFGs 16
3.2.2 Using Correlation in Computing Stackelberg Equilibrium 17
3.2.3 Using Incremental Strategy Generation for Stackelberg Equilibrium

Computation . 18

4 Conclusions and Future Work 21

Appendix A An Exact Double-Oracle Algorithm for Zero-Sum Extensive-Form
Games with Imperfect Information 29

Appendix B Algorithms for computing strategies in two-player simultaneous move
games 69

Appendix C Approximating maxmin strategies in imperfect recall games using
A-loss recall property 111

Appendix D Heuristic Search Value Iteration for One-Sided Partially Observable
Stochastic Games 149

Appendix E Solving Partially Observable Stochastic Games with Public Obser-
vations 157

Appendix F Sequence-Form Algorithm for Computing Stackelberg Equilibria in
Extensive-Form Games 167

Appendix G Computation of Stackelberg Equilibria of Finite Sequential Games 175

Appendix H Using Correlated Strategies for Computing Stackelberg Equilibria
in Extensive-Form Games 201

Appendix I Incremental Strategy Generation for Stackelberg Equilibria in Extensive-
Form Games 211

Chapter 1

Introduction

“Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear less.”

– Marie Curie

Recent years have seen a massive deployment of algorithms and techniques of artificial
intelligence (AI) into every-day life. AI, mostly models based on machine or reinforcement
learning, empower autonomous cars, they translate text or speech to different languages, and
they are more and more becoming an inherent part of our lives. However, our dependence
on AI models can turn into a significant risk if such models are deceived or directly attacked
by an adversary. While there is a significant effort devoted to make such models robust, all
of the typically used improvements are still vulnerable to attacks [Athalye et al., 2018]. To
guarantee robustness and reliability of AI models, explicit reasoning about the adversary
and their plans has to be used. To this end, game theory, that formally defines optimal
behavior under a presence of an adversary, can be applied.

Game-theoretic strategies have already found their place in many real-world applica-
tions where competitive situations between interacting parties (or agents) naturally arise.
The examples mostly include security, where a defense agency needs to allocate scares
resources to protect valuable targets (e.g., airport terminals, ports, or wildlife animals, com-
puter network) against an attacker (a thief, a terrorist, poachers) [Tambe, 2011, Yin et al.,
2012, Fang et al., 2015]. Another recently emerging applications relate to the problem of
machine/reinforcement learning in a presence of an adversary. Consider the problem of se-
curing a computer network with a classification system that is used to identify anomalies or
suspicious behavior. The classifier adapts from the previous and/or current data that can be
poisoned by a strategic attacker [Durkota et al., 2017]. Therefore, in order to provide true
robustness even against unseen samples, the game-theoretic reasoning and game-theoretic
algorithms must be used.

Many of the mentioned real-world scenarios are dynamic in nature – agents act in an
environment and they are able to (imperfectly) observe the changes in the environment that
are caused by the actions of other agents. In network security, for example, the defending
agent is able to react to intelligence and current situation (e.g., increased risk level, sus-
picious activity on a computer network), while the attacking agent can observe the current

CHAPTER 1

allocation of the resources and adapt its plan accordingly. In some scenarios, we can specify
that there is a certain number of actions after which the interaction terminates. However, in
many real-world cases, there is no fixed horizon of the dynamic interaction. For example,
the attacker can weigh the trade-off between the length of reconnaissance and estimate how
much information they can learn, and between the costs for gathering the intelligence (e.g.,
in [An et al., 2012]) and such a trade-off is typically not restricted with a fixed deadline. For
Advanced Persistent Threats (e.g.,in [Rass et al., 2017]), the attack can take up to several
months and the attacker can patiently and strategically wait for the best moment to execute
their attack and then cover their steps. Solving such dynamic games is challenging in gen-
eral due to players’ uncertainty and exponentially many possibilities that can arise during
the game.

There are two main questions that drive algorithmic and computational research for
dynamic games:

1. How difficult it is to compute (approximate) optimal strategies for different classes of
dynamic games?

2. Do there exist scalable, practical algorithms that allow us to compute (approximate)
optimal strategies in dynamic games?

To describe the results answering these questions, basic concepts of game theory must
be described. First of all, we must specify what does it mean to solve the game or to
find optimal strategies. Optimal strategies are defined by solution concepts (equilibria)
and there are various solution concepts that are used in practical applications. First, there
are the maxmin strategies that guarantee a player the best expected outcome in the worst
case. Maxmin strategies are particularly useful as robust strategies for protecting critical
infrastructures and they turn the game into a strictly competitive one (called a zero-sum
game). If the game is zero-sum, maxmin strategies coincide with well-known Nash Equi-
librium [Nash, 1950]. Second solution concept, that is often used, is Stackelberg Equilib-
rium [von Stackelberg, 1934]. In this solution concept, one player (typically the defender)
commits to a strategy, while the other player (the attacker) plays the best response to this
commitment. Stackelberg Equilibrium is widely used in asymmetric scenarios where the
defender (or a policy maker, a market leader) has the power to commit to a strategy and
announce this strategy so that the other player(s) can react to this commitment.

Secondly, we must specify what kind of dynamic games we consider. As mentioned
above, there are two main subclasses of dynamic games – games with a fixed, finite number
of possible moves (termed Extensive-Form Games) and games with an infinite or indefinite
number of possible moves (termed Partially Observable Stochastic Games). We consider
both strictly competitive (or zero-sum games where a gain of one player is a loss of another
player) as well as more general general-sum games.

Main Contributions:

This habilitation thesis summarizes extensive research advancements made in algorithmic
and computational game theory for dynamic games. For zero-sum dynamic games, the
contributions are made for both games with finite as well as infinite horizon:

2

INTRODUCTION

1. Extensive-Form Games

(a) Fundamentally new algorithm for computing Nash strategies in general extensive-
form games as well in games with perfect information and simultaneous moves
based on incremental strategy-generation technique.

(b) Novel computational complexity results and first algorithm for computing ap-
proximate maxmin strategies in extensive-form games with imperfect recall
(players have imperfect memory).

2. Partially Observable Stochastic Games

(a) First algorithm for computing approximate maxmin strategies in partially ob-
servable stochastic games with one-sided partial observability (one player has
perfect information).

(b) First algorithm for computing approximate maxmin strategies in partially ob-
servable stochastic games with public observations (both players have imperfect
information).

For general-sum games, this thesis summarizes contributions for computing a Stackelberg
Equilibrium in finite extensive-form games:

1. First algorithm for computing a Stackelberg Equilibrium in general extensive-form
games.

2. A formal definition of a novel variant of Stackelberg Equilibrium termed Stackelberg
Extensive-Form Correlated Equilibrium.

(a) Novel computational complexity result for computing Stackelberg Extensive-
Form Correlated Equilibrium.

(b) Novel algorithm for computing a Stackelberg Equilibrium using Stackelberg
Extensive-Form Correlated Equilibrium.

3. First exact and heuristic algorithm for using the incremental strategy-generation tech-
nique for computing a Stackelberg Equilibrium in general extensive-form games.

3

CHAPTER 1

4

Chapter 2

Dynamic Games

This chapter introduces basic concepts and definitions used in computational game theory1.
We introduce two formal representations of games used for reasoning about dynamic games
– extensive-form games that model games with a finite and known number of moves in the
game (termed horizon) and partially observable stochastic games that do not have a fixed
horizon.

2.1 Formal Models of Dynamic Games

The baseline formal model for reasoning about games are normal-form games (NFG), also
known as strategic or matrix games. Formally, a NFGG is defined as a tupleG = (N,A, u),
where N is a set of players, Ai is a set of pure strategies (or actions) for player i ∈ N , and
ui : A → R. In all of the discussed research results, only two-player games have been
considered, hence N = {1, 2}. We say that the game is zero-sum if gains of one player are
the losses of the other player (formally, u1(a) = −u2(a) for any a ∈ A). If this assumption
does not hold, the game is non-zero-sum (or general-sum).

NFGs are suited for reasoning about one-shot games that end immediately after playing
one action. On the other hand, NFGs are impractical for studying dynamic games since
they can be exponentially larger (or infinite) compared to models defined specifically for
modeling dynamic strategic interaction.

2.1.1 Extensive-Form Games

Extensive-form games (EFGs) model games with a finite and predetermined horizon. An EFG
can be visualized as a tree where each node of the tree corresponds to a state of the game
where one player can make a decision – i.e., to choose from one of the applicable actions
(edges in the tree outgoing from this node) that changes the state of the game and a new state
(node) is reached. EFGs are general enough to model stochastic events – in specific nodes,
termed chance nodes an action to be played is chosen according to a known probability

1Definitions of concepts from game theory are based on books [Shoham and Leyton-Brown, 2009, Maschler
et al., 2013].

CHAPTER 2

Figure 2.1: Example of a two-player zero-sum extensive-form game depicted as a game tree
between player 1 (circle) and player 2 (box). Dashed boxes visualize the information sets.
Utility values are for player 1, player 2 minimizes the value.

distribution. In EFGs, the players do not have to have perfect information about the state
of the game – if a player cannot distinguish between a set of states, all of these states are
grouped together in an information set. Finally, the outcomes (utility function) of the game
are defined in leafs of the game tree. Example of a simple game is visualized in Figure 2.1.

The main advantage of using an EFG is that it offers an exponentially smaller represen-
tation of a game compared to the NFG representation. The main reason for this is that a
pure strategy in an EFG corresponds to an assignment of an action that should be played for
each information set. As a consequence, the number of pure strategies is exponential in the
number of information sets in an EFG.

To reduce the size of strategies, players may forget certain information and thus create
larger information sets (more states are considered to be indistinguishable). If all players
in a game perfectly remember the history of their actions as well as all information gained
during the course of the game, we say that the game has perfect recall. Otherwise, we say
that the game has imperfect recall.

2.1.2 Partially Observable Stochastic Games

As discussed in the introduction, having a fixed known horizon for the game is not always
satisfied in real-world scenarios. Therefore, stochastic games model dynamic interaction
among players that can take an infinite number of moves/turns. Visually, one can imagine
the game as an infinitely large EFG tree for which there exist infinitely long branches. This
representation poses two main issues – (i) specification of the utility function for players
cannot be defined for leafs (as there may not be any) and (ii) the size of a pure strategy can
be infinite (there can be an infinite number of information sets).

Due to the first issue, the utility in stochastic games is defined over runs in the game (i.e.,
the sequence of actions played by both players). There are several options when defining
the utility for players. The most common approach is that the game has specified immedi-
ate rewards over states and joint actions and the players optimize the (discounted) sum of
rewards over the runs in the game. Alternatively, players may want to optimize average re-

6

DYNAMIC GAMES

ward, or one player might want to optimize run such that a certain subset of states is either
reached or avoided (so-called reachability/safety objective). The papers presented in this
thesis assume that players optimize the discounted sum of rewards.

Due to the second issue, solving a stochastic game often requires finding a compact fi-
nite representation of strategies. Consequently, the existing focus of research has been given
on computing strategies from a restricted class of strategies (e.g., memoryless or stationary
strategies) that are not guaranteed to reach (near) optimum rewards. The second approach
is to restrict to a subclass of POSGs where one can show that there exist a compact repre-
sentation of strategies that is sufficient for computing (approximately) optimal solutions.

2.2 Solving a Dynamic Game

There are two notions for solving a game. Either the game can be solved quantitatively
where, given a game, the algorithm computes an (ε-approximation of) expected value of an
equilibrium, or strategically, where the algorithm computes an (ε-approximation of) equi-
librium strategies. For games with a finite horizon, both notions coincide, however, for
stochastic games, some algorithms work in a quantitative manner and solving the game
strategically requires additional computation.

2.2.1 Solution Concepts

The best known solution concept is the Nash Equilibrium (NE). A pair of strategies is in a
NE if neither of the players can gain by unilaterally deviating to a different strategy. Alter-
natively, one can say that in a NE, both players are playing a best response to the strategy
of the opponent. Note that NE is descriptive equilibrium since it only describes which pairs
of strategies are stable but NE does not give an answer for players which strategy to adopt.

In Stackelberg Equilibrium (SE), the roles of the players are asymmetric. One player,
called the leader, commits to a (possibly randomized) strategy (from now on we will as-
sume that player 1 is always the leader). The opponent, called the follower, observes this
commitment and plays a best response that maximizes her utility. In case there are multi-
ple best responses of the follower, she split ties using a pre-determined rule. The follower
can either split the ties in favor of the leader (so-called Strong SE, or the optimistic case)
or against the leader (so-called Weak SE, or pessimistic case). In the literature, it is most
common to assume the first approach that we have also adopted in our works and whenever
we talk about Stackelberg Equilibrium we mean it in the strong sense. There are only a
few existing works that focus on computing weak SE [Coniglio et al., 2017] or finding its
approximation since it has been shown the WSE does not have to exist [von Stengel and
Zamir, 2010]. Contrary to NE, SE the prescribes what strategy the leader should adopt.

Finally, in the presented works we have exploited a connection between SE and a dif-
ferent solution concept called Correlated equilibrium (CE). A probability distribution over
outcomes in a game is in CE, if an external device (a trusted mediator) samples from this dis-
tribution and recommends the players which action to play; following this recommendation
is a best response for the players knowing the initial probability distribution. As demon-

7

CHAPTER 2

strated by Conitzer and Korzhyk [Conitzer and Korzhyk, 2011], algorithms for computing
CE can be easily adapted for computing SE in one-shot games and we have established
similar connections also for the dynamic games.

In the works discussed by this thesis, the goal was to either compute a NE or a maxmin
strategy in zero-sum games or to compute a variant of a SE in non-zero-sum games. For
many zero-sum games, many of the solution concepts coincide. Due to Von Neumann’s
minmax theorem, we know that quantitatively maxmin, minmax, NE, and SE share all the
same value (the expected utility of player 1 in an equilibrium) that is called the value of the
game. Therefore, we often refer to computing the value of the game in zero-sum games as
solving the game and computing optimal strategy without specifying which solution concept
is computed. This is no longer true for general-sum games where the equilibrium strategies
differ for different solution concepts. Since NE is a descriptive solution concept, for general-
sum games we aim to compute a (variant of) SE that specifically prescribes the strategy the
leader should commit to playing.

2.2.2 Complexity of Computing Solution Concepts

The difficulty of the problem of computing equilibria depends on the class of the game and
the solution concept. For zero-sum games, solving a game is a polynomial problem for both
one-shot as well as extensive-form games with finite horizon. Solving stochastic games
is tractable only in the perfect-information case (e.g., solving simple stochastic games is
in PLS [Yannakakis, 1990, Etessami and Yannakakis, 2007]), however, many even single-
player problems with imperfect information and infinite horizon are undecidable [Madani
et al., 1999].

Moreover, there are additional complications that make computing optimal strategies
in POSGs highly intractable even in the two-player zero-sum setting. Since the players
do not perfectly observe the environment, each player has a belief over possible states of
the environment. However, the reward the player receives for choosing some action(s)
also depends on the action of the other player who decides based on their belief. Therefore,
player 1 has to consider also the belief of player 2 and belief that player 2 has about player 1,
and so on. This reasoning is called nested beliefs (e.g., in [MacDermed, 2013]) and it causes
a doubly-exponential number of histories to consider for each agent. Therefore, we focus
on approximate algorithms that solve the game in the sense of weak approximation (i.e.,
computed expected utility value is ε close to the optimal expected values) and our goal
is to consider subclasses of POSGs where strategies with finite memory are sufficient to
approximate value of the game.

For general-sum games, the complexity classes are more diverse. Computing a NE is
PPAD-complete in both finite representations – i.e., in NFGs [Chen et al., 2006] as well as in
EFGs [Daskalakis et al., 2006]. The computational complexity for computing a SE depends
on the representation – in NFGs, computing a SE is polynomial [Conitzer and Sandholm,
2006], however, computing a SE in EFGs is typically NP-hard [Letchford and Conitzer,
2010].

8

Chapter 3

Algorithms for Solving Dynamic
Games

This chapter summarizes the novel results presented in referenced papers. First, we focus on
the results for strictly competitive (zero-sum) games, following by results for general-sum
games.

3.1 Computational and Algorithmic Results for Zero-Sum Games

Our results are discussed separately for different classes of games. Most of the zero-
sum games can be solved in polynomial time using linear programming. For normal-form
games, a simple linear program can be constructed where variables correspond to a mixed
strategy of one player and the constraints correspond to a best-responding opponent. For
EFGs, it is also possible to construct a single linear program that computes the value of the
game and equilibrium strategy due to von Stengel and Koller [von Stengel, 1996, Koller
et al., 1996]. The linear program for EFGs, termed sequence-form linear program, has a
linear number of variables and constraints in the size of the game tree and exploits differ-
ent representation of strategies in EFGs known as realization plans. In this representation,
the strategy is represented as a probability that certain sequence of actions of player i will
be executed conditioned the opponent allows these actions to be executed (technically, the
opponent chooses such actions that lead to information sets where the actions of a sequence
can be applied). Due to this representation, this linear program is applicable only for EFGs
with perfect recall.

The main challenge when solving EFGs is to tackle the size of the game tree. The game
tree grows exponentially with the horizon (or a number of the moves in the game) – even a
simple game where each player chooses from two actions, has more than 106 states after 10
moves of each player.

When moving to games with infinite horizon, there is the problem with nested beliefs
that prevents one from designing an (approximate) optimal algorithm for fully general set-
tings, as we discussed in Section 2.2.2. Nested beliefs can be tackled directly with histo-
ries – one of the few such approaches is a bottom-up dynamic programming for construct-

CHAPTER 3

ing relevant finite-horizon policy trees for individual players while pruning-out dominated
strategies [Hansen et al., 2004, Kumar and Zilberstein, 2009]. However, due to the ex-
plicit dependence on history, the scalability in the horizon is very limited leading to similar
problems as in EFGs.

A more common approach is to focus on a subclass of POSGs where approximate opti-
mal strategies do not need to depend on history. In [Ghosh et al., 2004], zero-sum POSGs
with public actions and observations are considered. The authors show that the game has a
value and present an algorithm that exploits the transformation of such a model into a game
with complete information. Another significant subclass of POSGs are One-Sided POSGs
where one player has perfect information [Chatterjee and Doyen, 2014, Basu and Stettner,
2015]. This subclass is particularly important for security applications since it provides nat-
urally robust strategies against the worst-case fully-informed opponent. It is this subclass of
POSGs that we investigate and for which we have designed the first approximate algorithm
that can solve non-trivial games. Moreover, in a follow-up work, we have shown that this
algorithm and approach can be generalized even to settings where both players have some
partial information, but at the same time, they are able to infer the belief of the opponent.
This is ensured by assuming that all observations that are received by players are public.

3.1.1 Results for Extensive-Form Games

For EFGs, the main challenge is to address the exponentially large input of the game – both
the size of a strategy and the size of the game tree is exponential in the number of moves in
the game. Dealing with this exponential size can be done in multiple ways. We have inves-
tigated two possible directions for improving scalability and thus allowing solving larger
games. First, we describe how it is possible to find an exact solution without necessarily
constructing the complete game. Second, we describe a way for solving EFGs where we
allow players to forget the history of their actions.

In the first case, we adopted the incremental strategy generation methodology, known as
the double-oracle algorithm, originally introduced for normal-form games by McMahan et
al. [McMahan and Gordon, 2003]. The idea of the double-oracle algorithm is as follows (see
Figure 3.1). The algorithm forms a restricted variant of a game to be solved by restricting
the number of possible actions the players can choose from. The algorithm then operates in
iterations and in each iteration, the restricted game is solved using a standard algorithm (e.g.,
the linear program) and the algorithm computes optimal strategy in the restricted game.
Now, for each player, the algorithm computes a best response to the strategy of the opponent
from the restricted game. However, this best response is selected from the unrestricted set of
all possible actions in the original game. If the expected value for playing this best response
is better for a player compared to the expected value gained in the restricted game, the best
response strategy is allowed in subsequent iterations and the restricted game is expanded
with this strategy. Otherwise, if neither of the players wants to expand the restricted game
with additional strategy, the double-oracle algorithm computed a solution of the original
game without necessarily constructing the complete game and considering all possible pure
strategies.

10

ALGORITHMS FOR SOLVING DYNAMIC GAMES

Figure 3.1: Schematic of the double-oracle algorithm for a normal-form game.

This method has been successfully used for solving large normal-form games, mostly in
the security domain (e.g., in [Kiekintveld et al., 2009, Jain et al., 2011a, Jain et al., 2013])
due to an exponential number of strategies. The only previous attempt for using double or-
acle principle for EFGs has been using a transformation to normal-form pure strategies that
are incrementally added [Zinkevich et al., 2007]. The main disadvantage of this approach
is an exponential number of required iterations since there are exponentially many pure
strategies in an EFG. In our work, we have demonstrated that the ideas of the double-oracle
algorithm can be generalized to compact strategy spaces (i.e., realization plans in EFGs) and
thus can be used to scale-up algorithms for many classes of dynamic games. We describe
our main contributions in the next section, but we also use this idea in other algorithms as
well.

As the second approach, we investigate a method for solving EFGs where players are
allowed to forget the history of their own actions – technically, we focused on solving EFGs
with imperfect recall. The main benefit of imperfect recall games is that the size of a strategy
of a player can be exponentially smaller compared to the perfect recall case. An imperfect
recall game can, for example, be a result of an abstraction algorithm applied on an EFG.
The abstraction algorithm can identify that certain information is not required or necessary
for finding (approximate) optimal strategies and thus merges two information sets into a
single one, thus transforming the perfect recall game into an imperfect recall game with
(exponentially) fewer information sets. However, there were no known practical algorithms
for solving games with imperfect recall. Therefore, as our second major contribution for
zero-sum EFGs, we describe first novel algorithms for solving games with imperfect recall.

Double-Oracle Methods for Solving Sequential Games with Finite Horizon

We have designed double-oracle algorithm for EFGs to operate directly on game trees.
The restricted game is defined as a subset of sequences that players can play in the game
and the algorithm uses the sequence-form linear program for solving the restricted game.
The main technical contribution when translating double oracle for EFGs is to specify the
restricted game and design the methodology for expanding the restricted game. In normal-
form games, adding a new pure strategy into the restricted game is straightforward – for the
algorithm, it is only necessary to calculate all utility values for combinations of the newly
added pure strategies of player i and all already added pure strategies of the opponent −i.

11

CHAPTER 3

In EFGs, allowing a player to play a new sequence of actions is not sufficient to formulate
a well-defined restricted EFG since this particular sequence of actions does not have to
be executable in the restricted game – the opponent does not play actions that allow this
sequence of actions to be played.

We have made the following key technical contributions in order to define the double-
oracle algorithm for EFGs:

• Formal definition of a valid restricted EFG defined as using a subset of allowed se-
quences of actions to be played.

• Algorithms for expanding and maintaining the validity of the restricted game.

• Domain-independent search for computing best-response sequences in EFGs.

We have formally proven that the algorithm converges to a Nash Equilibrium (The-
orem 5.5 in [Bošanský et al., 2014]) and demonstrated that the double-oracle algorithm
can find an exact NE adding only small fractions of all possible sequences. We have
compared the double-oracle algorithm with exact and approximate existing algorithms on
several games, including a search game, poker, and phantom variant of Tic-Tac-Toe, and
showed that it is able to find the exact solution of much larger games, often using only as
few as 1% sequences of the original game.

All discussed contributions describing double oracle for general EFGs are summarized
in the following journal publication (see Appendix A).

B. Bošanský, C. Kiekintveld, V. Lisý, and M. Pěchouček. An Exact Double-Oracle Algorithm for Zero-
Sum Extensive-Form Games with Imperfect Information. Journal of Artificial Intelligence Research
(JAIR), pp. 829–866, 2014. (65%)

We have also investigated a possibility for using double-oracle approach for selected
subclasses of EFGs. Specifically, we have examined EFGs with perfect information and si-
multaneous moves that generalize many simple turn-based scenarios – e.g., pursuit-evasion
games and many card and board games. We have combined double-oracle algorithm with
the alpha-beta pruning known for perfect information game and introduced an algorithm
that scales orders of magnitude better compared to the existing state of the art.

All discussed contributions describing double oracle for EFGs for simultaneous games
are summarized in the following journal publication (see Appendix B).

B. Bošanský, V. Lisý, M. Lanctot, J. Čermák, and M. M. H. Winands. Algorithms for Computing
Strategies in Two-player Simultaneous Move Games. Artificial Intelligence (AIJ), pp. 1–40, 2016.
(30%)

Solving EFGs with Imperfect Recall

Solving imperfect recall games is known to be a difficult problem (see, e.g., [Wichardt,
2008, Koller and Megiddo, 1992, Hansen et al., 2007]). We are interested in solving im-
perfect recall games created by an abstraction algorithm. Therefore, we focus on finding an

12

ALGORITHMS FOR SOLVING DYNAMIC GAMES

efficiently solvable subclass of imperfect recall games. Previous approaches create very spe-
cific abstracted games, so that perfect recall algorithms are still applicable: e.g., in chance
relaxed skew well-formed games [Kroer and Sandholm, 2016, Lanctot et al., 2012] or in
normal-form games with sequential strategies [Bošanský et al., 2015, Lisý et al., 2016].
The restrictions posed by these classes are unnecessarily strict, which can prevent us from
fully exploiting the possibilities of abstractions and compact representation of dynamic
games. We focus on a much larger subclass of imperfect recall games called A-loss re-
call games [Kaneko and Kline, 1995, Kline, 2002] where each loss of information of a
player can be traced back to forgetting his own actions.

The contributions for solving imperfect recall games are both theoretical as well as
practical. First, we present a complete picture of the problem of solving imperfect recall
games and show which computational tasks become easier when restricting to A-loss recall.
Second, we use the properties of the A-loss recall to provide the first family of algorithms
capable of approximating the strategies with the best worst-case expected outcome (maxmin
strategies1). Note that we require only one of the player (the opponent, or the minimizing
player) to have A-loss recall. The player for which we compute the (approximate) optimal
robust strategy is allowed to have a general imperfect recall.

Our theoretical results show that by restricting to A-loss recall opponent, the problem
of computing maxmin strategies does not become significantly easier from the theoretical
perspective. Specifically, we show that computing maxmin strategies is still NP-hard (The-
orem 4 in [Čermák et al., 2018]), determining whether a NE exists is NP-hard (Theorem 5 in
[Čermák et al., 2018]), and the optimal NE strategies may require irrational numbers even if
all utility values are rational (Theorem 3 in [Čermák et al., 2018]). As an important positive
result, we have identified necessary and sufficient (i.e., if and only if) condition for the ex-
istence of a Nash Equilibrium (NE) in behavioral strategies in A-loss recall games, making
A-loss recall games the only subclass of imperfect recall games for which such condition is
known (Theorem 1 in [Čermák et al., 2018]).

From the computational perspective, we exploit the fact that the best response of a player
with A-loss recall can be computed in polynomial time [Kaneko and Kline, 1995, Kline,
2002]. We thus provide a novel approximate algorithm, denoted IRABNB (Imperfect Re-
call Abstraction Branch-and-Bound algorithm), for computing maxmin strategies in imper-
fect recall games where the maximizing player has imperfect recall and the minimizing
player has A-loss recall. We base the algorithm on the sequence-form linear program for
computing maxmin strategies in perfect recall games [von Stengel, 1996, Koller et al., 1996]
extended by bilinear constraints necessary for the correct representation of strategies of the
maximizing player in imperfect recall games. We approximate the bilinear terms using
Multiparametric Disaggregation Technique (MDT) [Kolodziej et al., 2013] and provide a
mixed-integer linear program (MILP) for approximating maxmin strategies. Next, we pro-
pose a novel branch-and-bound algorithm that repeatedly solves the linear relaxation of
the MILP. The main novelty is that the algorithm simultaneously tightens the constraints

1We compute (approximate) maxmin strategies since Nash Equilibrium does not have to exist for this class
of games and for the class of behavioral strategies that allow reducing size of strategies in imperfect recall
EFGs.

13

CHAPTER 3

that approximate bilinear terms and searches for the optimal assignment to the relaxed bi-
nary variables from the MILP. We prove that the algorithm has guaranteed convergence to
maxmin strategy and we provide a bound on the number of steps needed.

Finally, we extend the IRABNB algorithm by incremental strategy generation tech-
nique. The resulting algorithm is denoted DOIRABNB (Double Oracle Imperfect Recall
Abstraction Branch-and-Bound Algorithm). Compared to the double-oracle algorithm for
perfect recall EFGs [Bošanský et al., 2014], there are several fundamental challenges that
need to be addressed when the double-oracle algorithm is used for imperfect recall EFGs.
First, the algorithm for solving the restricted game is a more complex (approximate) search
algorithm based on a branch-and-bound scheme. Second, the problem is that for incre-
mental computation of maxmin strategies in imperfect recall EFGs, adding best response
sequences of actions is not sufficient for convergence (see Example 2 in [Čermák et al.,
2018]). Therefore, we had to design more general rules to guarantee the convergence and
add all possible actions that can improve the outcome for the maximizing player. The ex-
perimental evaluation shows that DOIRABNB is capable of solving some games with up to
5 · 109 states in approximately 1 hour. We also experimentally demonstrated the effective-
ness of the use of imperfect recall abstractions to reduce the size of strategies to be stored.
We show that employing simple abstractions which still allow us to compute the maxmin
strategy of the original game can lead to strategies with the relative size as low as 0.03% of
the size of the strategy in the original unabstracted game.

All discussed contributions for computing maxmin strategies including the double ora-
cle extension are summarized in the following journal publication (see Appendix C).

Jiřı́ Čermák, Branislav Bošanský Karel Horák, Viliam Lisý and Michal Pěchouček. Approximating
maxmin strategies in imperfect recall games using A-loss recall property. International Journal of Ap-
proximate Reasoning, pp. 290–326, 2018. (25%)

3.1.2 Results for Partially Observable Stochastic Games

Our main contribution is the first domain-independent algorithm that has guarantees to ap-
proximate optimal strategies in one-sided POSGs. Our algorithm is a generalization of the
heuristic search value iteration algorithm (HSVI) originally proposed for Partially Observ-
able Markov Decision Processes (POMDPs) [Smith and Simmons, 2004, Smith and Sim-
mons, 2012]. Similarly to POMDPs, One-Sided POSGs allow us to compactly represent
strategies and value functions representing values of the game based on the belief the first
player has about the state of the game. Contrary to POMDPs, the presence of the opponent
player causes significant technical challenges that we resolve in our contribution. First, we
show that the assumption of the one-sided partial observability guarantees that the value
functions are convex. Second, we define a value backup operator and show that an itera-
tive application of this operator converges to the optimal values. Third, we generalize the
ideas behind HSVI towards one-sided POSGs and show that our algorithm approximates
optimal strategies. Finally, we demonstrate the applicability and scalability of our algo-
rithm on three different domains – patrolling games (including the variant with alarms),

14

ALGORITHMS FOR SOLVING DYNAMIC GAMES

pursuit-evasion games, and search games. The results show that our algorithm can closely
approximate solutions of large games with more than 4000 states.

All discussed contributions describing One-Sided POSGs and HSVI algorithm for this
class of stochastic games are summarized in the following A* publication (see Appendix D).

Karel Horák, Branislav Bošanský and Michal Pěchouček. Heuristic Search Value Iteration for One-
Sided Partially Observable Stochastic Games In Proceedings of AAAI Conference on Artificial Intelli-
gence. pp. 558–564, 2017. (45%)

While One-Sided POSGs have great motivation for deployment to scenarios where the
robust strategies are necessary, the computed strategies may be unnecessarily pessimistic
and the algorithm cannot properly evaluate the value of disclosing some information to the
opponent (since it assumes that the opponent has perfect information). Relaxing these as-
sumptions into a fully general setting is not possible due to the problem of nested beliefs.
Therefore, we relaxed the subclass of One-Sided POSGs to games where both players have
partial information, but we assume that observations that affect the private beliefs of the
players are public and thus each player is able to exactly reconstruct the belief of the op-
ponent [Horák and Bošanský, 2019]. The key characteristics of our model, termed POSGs
with public observations (PO-POSGs), are: (1) the state space is factored – each player ob-
serves his private state, but the state of the other player is not observed; (2) each observation
that modifies belief about the state of the other player is public (both players are aware of
this observation); (3) the true state of the player is observed privately by that player.

The contributions for the class of PO-POSGs: (1) We show that games in this class
have a value; (2) We show that the value function of PO-POSGs is convex in the belief of
the maximizing player and concave in the belief of the minimizing player; (3) We intro-
duce a novel algorithm based on Heuristic Value Iteration Search (HSVI) for One-Sided
POSGs [Horák et al., 2017a, Smith and Simmons, 2004] and show that this algorithm con-
verges to (approximate) optimal values.

We demonstrate our algorithm on two different domains – a patrolling game, where
the attacker has imprecise information about the position of the defender [Basilico et al.,
2009], and a lasertag game based on a single-player variant [Pineau et al., 2003]. The
results show that, for the first time, there is a practical domain-independent algorithm able
to closely approximate optimal values of non-trivial POSGs with hundreds of states where
both players have partial information about the environment.

All discussed contributions describing PO-POSGs and HSVI algorithm for this class of
stochastic games are summarized in the following A* publication (see Appendix E).

Karel Horák and Branislav Bošanský. Solving Partially Observable Stochastic Games with Public Ob-
servations In Proceedings of AAAI Conference on Artificial Intelligence. 2019 (40%)

15

CHAPTER 3

3.2 Computational and Algorithmic Results for General-Sum
Games

In general-sum games, the algorithmic and computational work focuses mostly on com-
puting the Stackelberg Equilibrium (SE) and its most common variant Strong Stackelberg
Equilibrium where the follower break ties in favor of the leader. While there is a large vol-
ume of works focusing on computing SE in one-shot games, mostly in security domain (e.g.,
in [Tambe, 2011]), the algorithms for computing SE in EFGs were not developed prior to
our work. Another significant difference compared to the zero-sum case, the complexity of
computing SE differs in EFGs (even with perfect recall) compared to NFGs. As shown by
Letchford and Conitzer [Letchford and Conitzer, 2010], computing SE is NP-hard for most
of the variants of EFGs. This is in contrast to a positive result for computing SE in NFGs
where the problem is polynomial [Conitzer and Sandholm, 2006].

Therefore, over several works, we have focused on algorithmic and computational as-
pects when computing SE in dynamic games. Most importantly, we have formalized the first
algorithm for computing SE in EFGs by extending the sequence-form linear program in or-
der to compute SE [Bošanský and Čermák, 2015]. The scalability of the first algorithm has
been limited and thus several of our follow-up works focused on improving the scalability.
There are two notable contributions that allowed us to push the scalability further. First, we
have formally defined a new variant of SE for EFGs, termed Stackelberg Extensive-Form
Correlated Equilibrium (SEFCE) [Bošanský et al., 2017], where the leader is allowed to
commit to correlated strategies and send signals to the follower (following the signals must
be the best response for the follower). In two papers, we showed that SEFCE has not only
lower computational complexity for certain subclasses of EFGs [Bošanský et al., 2017] but
also that SEFCE can be computationally used for computing standard SE [Čermák et al.,
2016].

Second, we have also explored the possibility for incremental strategy generation for
computing SE in EFGs. Compared to zero-sum EFGs, building a restricted game is more
challenging since the abstracted parts of the game tree cannot be represented using a single
value as it is done in the zero-sum case. We have overcome these challenges and proposed
two variants of an algorithm based on incremental strategy generation that does not have to
expand (and thus consider) the entire game tree to compute (approximate) SE.

3.2.1 Computing Stackelberg Equilibrium in EFGs

The sequence form mixed integer linear program (MILP) for computing SE in EFGs is a
direct extension of the sequence form linear programs for solving zero-sum games. The
main extensions are in the representation of strategies of the follower – binary variables are
used in order to represent the best response of the follower. Next, the expected outcome is
calculated based on the joint probability that a certain terminal state of the game is reached.
Since the follower plays a pure strategy, the joint probability can be expressed with linear
constraints. As a consequence, we formulate a MILP that has a linear size in the size of the
game tree. Therefore, we have provided a constructive proof that computing SE in EFGs is

16

ALGORITHMS FOR SOLVING DYNAMIC GAMES

NP-complete (NP-hardness has been shown before [Letchford and Conitzer, 2010]) and the
first algorithm specifically designed for computing SE in EFGs.

The scalability of our MILP algorithm was significantly better compared to algorithms
based on NFG representation that has an exponential size in the size of the game tree. The
algorithm was able to compute an exact SE within a few hours of games with 104 nodes or
105 if the number of pure strategies of the follower has been small.

All discussed contributions describing sequence-form MILP for computing SE in EFGs
are summarized in the following A* publication (see Appendix F).

Branislav Bošanský and Jiřı́ Čermák. Sequence-Form Algorithm for Computing Stackelberg Equilib-
ria in Extensive-Form Games. Proceedings of AAAI Conference on Artificial Intelligence, pp. 805–811,
2015. (70%)

3.2.2 Using Correlation in Computing Stackelberg Equilibrium

As mentioned above, we have formally defined a novel variant of SE, termed Stackelberg
Extensive-Form Correlated Equilibrium (SEFCE), where the leader is allowed to commit
to correlated strategies and send signals to the follower (following the signals must be the
best response for the follower). In EFGs, this concept is closely related to Extensive-Form
Correlated Equilibrium [von Stengel and Forges, 2008]. The key characteristic is that the
follower receives a particular signal which action to play after reaching certain information
set, however, the follower does not know which actions are going to be recommended af-
terwards. The follower only knows the probability distribution from which the actions are
sampled. This is in contrast to standard correlated equilibrium, where the complete strategy
in the game is received by players.

We analyzed the computational complexity of this new solution concept. We showed
that for certain subclasses of EFGs, computing a SEFCE is polynomial while computing SE
is NP-hard (e.g., for finite EFGs with perfect information and simultaneous moves) [Bošanský
et al., 2017]. Moreover, we have shown that the expected utility of the leader in SEFCE
forms an upper bound on the expected utility of the leader in SE. This proposition is impor-
tant since constructing a tight upper bound is important for the optimization problem like
Stackelberg Equilibrium. From the optimization perspective, finding an SE corresponds to
operating over a non-continuous piece-wise linear function with exponentially many parts.
SEFCE, however, forms a tight convex hull over this function and thus can be allowed to
guide the search when computing SE.

All discussed theoretical contributions regarding SEFCE are summarized in the follow-
ing journal publication (see Appendix G).

Branislav Bošanský, Simina Brânzei, Kristoffer Arnsfelt Hansen, Troels Bjerre Lund, Peter Bro Mil-
tersen. Computation of Stackelberg Equilibria of Finite Sequential Games. ACM Transactions on Eco-
nomics and Computation, Vol. 5, No. 4, Article 23, 2017. (35%)

We exploited this fact and designed a novel algorithm that uses SEFCE for computing
SE [Čermák et al., 2016]. The algorithm first computes a correlated variant of SE and then

17

CHAPTER 3

examines whether the signals the follower receives are all pure. If this is indeed the case, the
algorithm has, in fact, found a SE. Otherwise, the algorithm selects some information set
where the follower can receive multiple signals, adds a constraint that makes this no longer
possible and resolves the problem. There are several variants of our algorithm – there is a
choice in which information set is selected and whether the constraints are compatible with
linear programming or whether they use binary variables. Any of the variants, however,
significantly outperforms the first algorithm for computing SE are to this day present the
exact state-of-art domain-independent algorithm for computing SE in EFGs.

All discussed contributions describing sequence-form MILP for computing SE in EFGs
are summarized in the following A* publication (see Appendix H).

Jiřı́ Čermák, Branislav Bošanský, Karel Durkota, Viliam Lisý and Christopher Kiekintveld. Using Cor-
related Strategies for Computing Stackelberg Equilibria in Extensive-Form Games. In Proceedings of
AAAI Conference on Artificial Intelligence, pp. 439–445, 2016. (30%)

3.2.3 Using Incremental Strategy Generation for Stackelberg Equilibrium
Computation

Since our first algorithm based on sequence-form mathematical program, we aimed at pos-
sibility exploiting incremental strategy-generation technique for scaling-up the performance
of our algorithms for computing SE in EFGs. While incremental strategy generation works
well for computing SE in other classes of games (for example, for Bayesian games [Jain
et al., 2011b]), translating these ideas to EFGs is not straightforward. Similarly, despite
the fact that we have successfully designed a double-oracle algorithm for zero-sum EFGs,
adapting it for computing SE in general-sum games is again not straightforward. The main
complication is that in zero-sum EFGs, the not-expanded parts of the game tree (i.e., the
branches of the game tree that use sequences that were not added to the restricted game yet)
are in the restricted game represented using a single temporary leaf with a single temporary
value. For SE, however, this is not sufficient since there is no such single value. The reason
is that the leader can commit to a sequentially irrational strategy in a certain part of the game
tree, just to force the follower to play differently (i.e., to deliberately use threats; since the
commitment is not modifiable by the leader, the threats are credible).

We have solved this issue with a smaller temporary gadget-game that represent sev-
eral utility points from the abstracted game and let the leader choose from these possible
outcomes. The outcomes are chosen such that we may preserve guarantees that SE will
eventually be found. However, in order to guarantee convergence, complete sub-games
have to be expanded in such an algorithm. In imperfect-information EFGs, however, sub-
games represent rather large parts of the game tree and thus the algorithm in the form with
guarantees does not scale well. Removing this requirement loses the theoretical guarantees,
however, allows us to scale to much larger game trees. We were able to find near-optimal
solutions with error from true SE typically less than 4% while constructing a mathematical
program with size less than 5% compared to the full programs. Moreover, we have found
these near-optimal strategies an order of magnitude faster.

18

ALGORITHMS FOR SOLVING DYNAMIC GAMES

All discussed contributions describing sequence-form MILP for computing SE in EFGs
are summarized in the following A* publication (see Appendix I).

Jakub Černý, Branislav Bošanský and Christopher Kiekintveld. Incremental Strategy Generation for
Stackelberg Equilibria in Extensive-Form Games. In Proceedings of ACM Conference on Economics and
Computation, EC, pp. 151–168, 2018. (40%)

19

CHAPTER 3

20

Chapter 4

Conclusions and Future Work

This thesis summarizes results of research in equilibrium computation in dynamic games.
The discussed result advance state of the art in algorithmic and computational game the-
ory. We have provided new definitions of solution concepts, determined the computational
complexity of several open problems, and most importantly designed, implemented, and
experimentally evaluated a collection of novel algorithms for computing (approximate) so-
lutions in dynamic games. Most of our algorithmic approaches are domain-independent and
thus can act as baseline methods for many possible real-world applications. Moreover, all
our algorithms can be further enhanced with various heuristics to further improve scalability
and thus solve real-world instances.

There are several possible directions for possible future research in dynamic games.
One challenge is to push forward algorithms for solving Partially Observable Stochastic
Games (POSGs). There are three interesting directions for POSGs. First, the existing algo-
rithms presented in this thesis are the first of their kind. Hence, the scalability is limited and
further improvements in the algorithm can dramatically improve the practical applicability
of these algorithms. Indeed, our preliminary results show that there is a room for further
improvements and our algorithms for solving subclasses of POSGs can be used for comput-
ing approximate optimal strategies in real-world scenarios, especially in network security
and autonomous defense mechanisms [Horák et al., 2017b, Horák et al., 2019].

The second direction is to further generalize the concept of POSGs with public obser-
vations (PO-POSGs) and identify the largest subclass of POSGs where using a finitely-
bounded histories (or memory) is sufficient for approximately solving the game. We have
shown that public observations allow players to derive belief of the opponent thus avoiding
the problem of nested beliefs. However, there are two open questions: (1) Is it possible to
generalize the subclass of PO-POSGs even further? Do all observations need to be publicly
observable? (2) What is the quality of strategies computed for a One-Sided POSG or a
PO-POSG variant of a general POSG?

Third, we have designed algorithms for zero-sum POSGs. Another possible direction
is to generalize these algorithms to general-sum games and compute a Stackelberg Equi-
librium (SE) instead of maxmin. The main challenge in this direction is the prerequisite
of having a dynamic-programming operator for computing SE in a bottom-up fashion sim-

CHAPTER 4

ilarly as it is done in HSVI-based algorithms for POSGs [Horák et al., 2017a, Horák and
Bošanský, 2019]. Despite that this is again computationally more challenging, the pre-
liminary results show that it is possible to design such a dynamic-programming algorithm
and its approximate variant can be a valid basis for the first algorithm for computing SE in
POSGs [Rindt, 2019].

Another completely different direction is to design algorithms for dynamic games for
other classes of games. Among all, the biggest challenge would be to design solution con-
cepts and practical algorithms for solving dynamic games with many players. For exam-
ple, for Stackelberg Equilibrium, there already exist some algorithms with multiple follow-
ers [Basilico et al., 2016], however, they focus on normal-form games. Even more challeng-
ing would be to generalize concepts of dynamic games to succinctly represented games that
model interactions with many (hundreds) players. A typical example is a congestion game
where a set of agents is selecting a route through a network and their choices affect utilities
of other agents (e.g., if all agents are using the same road, the reward for each agent will
be low due to congestion at that road). Adding a dynamic aspect would be highly desirable
since many of the modeled scenarios are in fact dynamic (e.g., people change their decision
about which route to take). While there are again some results demonstrating that it is pos-
sible to design variants of succinct games with dynamic aspect [Hoefer et al., 2009], a fully
analyzed model and tailored algorithms for dynamic succinct games are missing.

22

Bibliography

[An et al., 2012] An, B., Kempe, D., Kiekintveld, C., Shieh, E., Singh, S., Tambe, M., and Vorob-
eychik, Y. (2012). Security games with limited surveillance. In Proceedings of the 26th AAAI
Conference on Artificial Intelligence, pages 1241–1248.

[Athalye et al., 2018] Athalye, A., Carlini, N., and Wagner, D. (2018). Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples. In Dy, J. and Krause,
A., editors, Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 274–283, Stockholmsmässan, Stockholm
Sweden. PMLR.

[Basilico et al., 2009] Basilico, N., Gatti, N., Rossi, T., Ceppi, S., and Amigoni, F. (2009). Ex-
tending Algorithms for Mobile Robot Patrolling in the Presence of Adversaries to More Realistic
Settings. In IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent
Agent Technology.

[Basilico et al., 2016] Basilico, N., Nittis, G. D., and G, N. (2016). A Security Game Combining
Patrolling and Alarm–Triggered Responses Under Spatial and Detection Uncertainties. In AAAI
Conference on Artificial Intelligence.

[Basu and Stettner, 2015] Basu, A. and Stettner, L. (2015). Finite- and infinite-horizon shapley
games with nonsymmetric partial observation. SIAM Journal on Control and Optimization,
53(6):3584–3619.

[Bošanský et al., 2017] Bošanský, B., Brânzei, S., Hansen, K. A., Lund, T. B., and Miltersen, P. B.
(2017). Computation of Stackelberg Equilibria of Finite Sequential Games. ACM Transactions
on Economics and Computation, 5(4):23:1–23:24.

[Bošanský et al., 2015] Bošanský, B., Jiang, A. X., Tambe, M., and Kiekintveld, C. (2015). Com-
bining Compact Representation and Incremental Generation in Large Games with Sequential
Strategies. In AAAI Conference on Artificial Intelligence.

[Bošanský et al., 2014] Bošanský, B., Kiekintveld, C., Lisý, V., and Pěchouček, M. (2014). An Ex-
act Double-Oracle Algorithm for Zero-Sum Extensive-Form Games with Imperfect Information.
Journal of Artificial Intelligence Research, 51:829–866.

[Bošanský and Čermák, 2015] Bošanský, B. and Čermák, J. (2015). Sequence-Form Algorithm for
Computing Stackelberg Equilibria in Extensive-Form Games. In AAAI Conference on Artificial
Intelligence.

[Chatterjee and Doyen, 2014] Chatterjee, K. and Doyen, L. (2014). Partial-observation stochastic
games: How to win when belief fails. ACM Transactions on Computational Logic (TOCL),
15(2):16.

[Chen et al., 2006] Chen, X., Deng, X., and Teng, S.-H. (2006). Computing Nash equilibria: Ap-
proximation and smoothed complexity. In Proc. 47th IEEE FOCS.

[Coniglio et al., 2017] Coniglio, S., Gatti, N., and Marchesi, A. (2017). Pessimistic leader-follower
equilibria with multiple followers. In Proceedings of the 27th International Conference on Arti-
ficial Intelligence (IJCAI).

[Conitzer and Korzhyk, 2011] Conitzer, V. and Korzhyk, D. (2011). Commitment to Correlated
Strategies. In Proceedings of AAAI Conference on Artificial Intelligence.

[Conitzer and Sandholm, 2006] Conitzer, V. and Sandholm, T. (2006). Computing the optimal strat-
egy to commit to. In Proceedings of the 7th ACM conference on Electronic commerce, pages
82–90. ACM.

[Daskalakis et al., 2006] Daskalakis, C., Fabrikant, A., and Papadimitriou, C. H. (2006). The Game
World Is Flat: The Complexity of Nash Equilibria in Succinct Games. In ICALP, pages 513–524.

[Durkota et al., 2017] Durkota, K., Lisý, V., Kiekintveld, C., Horák, K., Bošanský, B., and Pevný,
T. (2017). Optimal Strategies for Detecting Data Exfiltration by Internal and External Attackers.
In GameSec 2017, LNCS 10575, pages 171–192.

[Etessami and Yannakakis, 2007] Etessami, K. and Yannakakis, M. (2007). On the complexity of
nash equilibria and other fixed points. In FOCS.

[Fang et al., 2015] Fang, F., Stone, P., and Tambe, M. (2015). When Security Games Go Green:
Designing Defender Strategies to Prevent Poaching and Illegal Fishing. In In Proceedings of 24th
International Joint Conference on Artificial Intelligence (IJCAI).

[Ghosh et al., 2004] Ghosh, M. K., McDonald, D., and Sinha, S. (2004). Zero-Sum Stochastic
Games with Partial Information. Journal of Optimization Theory and Applications, 121(1):99–
118.

[Hansen et al., 2004] Hansen, E. A., Bernstein, D. S., and Zilberstein, S. (2004). Dynamic Pro-
gramming for Partially Observable Stochastic Games. In Proceedings of National Conference on
Artificial Intelligence (AAAI).

[Hansen et al., 2007] Hansen, K., Miltersen, P., and Sørensen, T. (2007). Finding equilibria in
games of no chance. In Computing and Combinatorics, volume 4598 of Lecture Notes in Com-
puter Science, pages 274–284. Springer Berlin Heidelberg.

[Hoefer et al., 2009] Hoefer, M., Mirrokni, V. S., Röglin, H., and Teng, S.-H. (2009). Competitive
routing over time. In Leonardi, S., editor, Internet and Network Economics, pages 18–29, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[Horák and Bošanský, 2019] Horák, K. and Bošanský, B. (2019). Solving Partially Observable
Stochastic Games with Public Observations. In Proceedings of AAAI Conference on Artificial
Intelligence.

[Horák et al., 2017a] Horák, K., Bošanský, B., and Pěchouček, M. (2017a). Heuristic Search Value
Iteration for One-Sided Partially Observable Stochastic Games. In In Proceedings of AAAI Con-
ference on Artificial Intelligence, pages 558–564.

[Horák et al., 2017b] Horák, K., Zhu, Q., and Bošanský, B. (2017b). Manipulating Adversary’s
Belief: A Dynamic Game Approach to Deception by Design for Proactive Network Security. In
GameSec 2017, LNCS 10575, pages 273–294.

[Horák et al., 2019] Horák, K., Bošanský, B., Kiekintveld, C., and Kamhoua, C. (2019).
Compact Representation of Value Function in Partially Observable Stochastic Games.
https://arxiv.org/abs/1903.05511.

[Jain et al., 2013] Jain, M., Conitzer, V., and Tambe, M. (2013). Security Scheduling for Real-world
Networks. In Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 215–222.

[Jain et al., 2011a] Jain, M., Korzhyk, D., Vanek, O., Conitzer, V., Tambe, M., and Pechoucek, M.
(2011a). Double Oracle Algorithm for Zero-Sum Security Games on Graph. In Proceedings
of the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 327–334.

[Jain et al., 2011b] Jain, M., Tambe, M., and Kiekintveld, C. (2011b). Quality-bounded solutions
for finite Bayesian Stackelberg games: Scaling up. In Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent Systems, pages 997–1004.

[Kaneko and Kline, 1995] Kaneko, M. and Kline, J. J. (1995). Behavior Strategies, Mixed Strate-
gies and Perfect Recall. International Journal of Game Theory, 24:127–145.

[Kiekintveld et al., 2009] Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., and Tambe, M.
(2009). Computing optimal randomized resource allocations for massive security games. In
Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems,
pages 689–696.

[Kline, 2002] Kline, J. J. (2002). Minimum Memory for Equivalence between Ex Ante Optimality
and Time-Consistency. Games and Economic Behavior, 38:278–305.

[Koller and Megiddo, 1992] Koller, D. and Megiddo, N. (1992). The Complexity of Two-Person
Zero-Sum Games in Extensive Form. Games and Economic Behavior, 4:528–552.

[Koller et al., 1996] Koller, D., Megiddo, N., and von Stengel, B. (1996). Efficient Computation of
Equilibria for Extensive Two-Person Games. Games and Economic Behavior, 14(2):247–259.

[Kolodziej et al., 2013] Kolodziej, S., Castro, P. M., and Grossmann, I. E. (2013). Global optimiza-
tion of bilinear programs with a multiparametric disaggregation technique. Journal of Global
Optimization, 57(4):1039–1063.

[Kroer and Sandholm, 2016] Kroer, C. and Sandholm, T. (2016). Imperfect-recall abstractions with
bounds in games. In Proceedings of the 2016 ACM Conference on Economics and Computation,
pages 459–476. ACM.

[Kumar and Zilberstein, 2009] Kumar, A. and Zilberstein, S. (2009). Dynamic programming ap-
proximations for partially observable stochastic games.

[Lanctot et al., 2012] Lanctot, M., Gibson, R., Burch, N., Zinkevich, M., and Bowling, M. (2012).
No-Regret Learning in Extensive-Form Games with Imperfect Recall. In Proceedings of the 29th
International Conference on Machine Learning (ICML 2012), pages 1–21.

[Letchford and Conitzer, 2010] Letchford, J. and Conitzer, V. (2010). Computing optimal strategies
to commit to in extensive-form games. In Proceedings of the 11th ACM conference on Electronic
commerce, pages 83–92, New York, NY, USA. ACM.

[Lisý et al., 2016] Lisý, V., Davis, T., and Bowling, M. (2016). Counterfactual Regret Minimization
in Sequential Security Games. In Proceedings of AAAI Conference on Artificial Intelligence.

[MacDermed, 2013] MacDermed, L. C. (2013). Value Methods for Efficiently Solving Stochastic
Games of Complete and Incomplete Information. PhD thesis, Georgia Institute of Technology.

[Madani et al., 1999] Madani, O., Hanks, S., and Condon, A. (1999). On the undecidability of
probabilistic planning and infinite-horizon partially observable Markov decision problems. In
AAAI/IAAI, pages 541–548.

[Maschler et al., 2013] Maschler, M., Zamir, S., and Solan, E. (2013). Game Theory. Cambridge
University Press.

[McMahan and Gordon, 2003] McMahan, H. B. and Gordon, G. J. (2003). Planning in cost-paired
markov decision process games. In NIPS Workshop: Planning for the Real-World, volume 3.
Citeseer.

[Nash, 1950] Nash, J. (1950). Equilibrium points in n-person games. In National Academy of
Sciences, volume 36, pages 48–49.

[Pineau et al., 2003] Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based value iteration: An
anytime algorithm for POMDPs. In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI).

[Rass et al., 2017] Rass, S., König, S., and Schauer, S. (2017). Defending Against Advanced Per-
sistent Threats Using Game-Theory. PLoS ONE, 12(1).

[Rindt, 2019] Rindt, E. (2019). Dynamic Programming for Computing Stackelberg equilibrium in
Sequential Games. Master’s thesis, Faculty of Electrical Engineering, Czech Technical University
in Prague.

[Shoham and Leyton-Brown, 2009] Shoham, Y. and Leyton-Brown, K. (2009). Multiagent Sys-
tems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press.

[Smith and Simmons, 2004] Smith, T. and Simmons, R. (2004). Heuristic search value iteration for
POMDPs. In Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages
520–527. AUAI Press.

[Smith and Simmons, 2012] Smith, T. and Simmons, R. (2012). Point-based POMDP algorithms:
Improved analysis and implementation. arXiv preprint arXiv:1207.1412.

[Tambe, 2011] Tambe, M. (2011). Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned. Cambridge University Press.

[Čermák et al., 2016] Čermák, J., Bošanský, B., Durkota, K., Lisý, V., and Kiekintveld, C. (2016).
Using Correlated Strategies for Computing Stackelberg Equilibria in Extensive-Form Games. In
Proceedings of AAAI Conference on Artificial Intelligence, pages 439–445.

[von Stackelberg, 1934] von Stackelberg, H. (1934). Marktform und gleichgewicht.

[von Stengel, 1996] von Stengel, B. (1996). Efficient Computation of Behavior Strategies. Games
and Economic Behavior, 14:220–246.

[von Stengel and Forges, 2008] von Stengel, B. and Forges, F. (2008). Extensive-Form Correlated
Equilibrium: Definition and Computational Complexity. Mathematics of Operations Research,
33(4):1002–1022.

[von Stengel and Zamir, 2010] von Stengel, B. and Zamir, S. (2010). Leadership games with convex
strategy sets. Games and Economic Behavior, 69(2):446 – 457.

[Wichardt, 2008] Wichardt, P. C. (2008). Existence of Nash equilibria in finite extensive form
games with imperfect recall: A counterexample. Games and Economic Behavior, 63(1):366–
369.

[Yannakakis, 1990] Yannakakis, M. (1990). The analysis of local search problems and their heuris-
tics. In STACS, pages 298–311.

[Yin et al., 2012] Yin, Z., Jiang, A. X., Johnson, M. P., Tambe, M., Kiekintveld, C., Leyton-Brown,
K., Sandholm, T., and Sullivan, J. P. (2012). TRUSTS: Scheduling Randomized Patrols for Fare
Inspection in Transit Systems. In Proceedings of 24th Conference on Innovative Applications of
Artificial Intelligence (IAAI).

[Zinkevich et al., 2007] Zinkevich, M., Bowling, M., and Burch, N. (2007). A New Algorithm for
Generating Equilibria in Massive Zero-Sum Games. In Proceedings of National Conference on
Artificial Intelligence (AAAI), pages 788–793.

[Čermák et al., 2018] Čermák, J., Bošanský, B., Horák, K., Lisý, V., and Pěchouček, M. (2018).
Approximating maxmin strategies in imperfect recall games using A-loss recall property. Inter-
national Journal of Approximate Reasoning, pages 290–326.

APPENDIX

28

Appendix A

An Exact Double-Oracle Algorithm
for Zero-Sum Extensive-Form
Games with Imperfect Information

Journal of Artificial Intelligence Research 51 (2014) 829-866 Submitted 06/14; published 12/14

An Exact Double-Oracle Algorithm for Zero-Sum
Extensive-Form Games with Imperfect Information

Branislav Bošanský branislav.bosansky@agents.fel.cvut.cz
Agent Technology Center
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Christopher Kiekintveld cdkiekintveld@utep.edu
Computer Science Department
University of Texas at El Paso, USA

Viliam Lisý viliam.lisy@agents.fel.cvut.cz

Michal Pěchouček michal.pechoucek@agents.fel.cvut.cz

Agent Technology Center

Department of Computer Science

Faculty of Electrical Engineering

Czech Technical University in Prague

Abstract

Developing scalable solution algorithms is one of the central problems in computational
game theory. We present an iterative algorithm for computing an exact Nash equilibrium
for two-player zero-sum extensive-form games with imperfect information. Our approach
combines two key elements: (1) the compact sequence-form representation of extensive-
form games and (2) the algorithmic framework of double-oracle methods. The main idea of
our algorithm is to restrict the game by allowing the players to play only selected sequences
of available actions. After solving the restricted game, new sequences are added by finding
best responses to the current solution using fast algorithms.

We experimentally evaluate our algorithm on a set of games inspired by patrolling
scenarios, board, and card games. The results show significant runtime improvements in
games admitting an equilibrium with small support, and substantial improvement in mem-
ory use even on games with large support. The improvement in memory use is particularly
important because it allows our algorithm to solve much larger game instances than existing
linear programming methods.

Our main contributions include (1) a generic sequence-form double-oracle algorithm for
solving zero-sum extensive-form games; (2) fast methods for maintaining a valid restricted
game model when adding new sequences; (3) a search algorithm and pruning methods for
computing best-response sequences; (4) theoretical guarantees about the convergence of
the algorithm to a Nash equilibrium; (5) experimental analysis of our algorithm on several
games, including an approximate version of the algorithm.

1. Introduction

Game theory is a widely used methodology for analyzing multi-agent systems by applying
formal mathematical models and solution concepts. One focus of computational game the-
ory is the development of scalable algorithms for reasoning about very large games. The

c©2014 AI Access Foundation. All rights reserved.

Bošanský, Kiekintveld, Lisý, & Pěchouček

need for continued algorithmic advances is driven by a growing number of applications of
game theory that require solving very large game instances. For example, several decision
support systems have recently been deployed in homeland security domains to recommend
policies based on game-theoretic models for placing checkpoints at airports (Pita, Jain,
Western, Portway, Tambe, Ordonez, Kraus, & Parachuri, 2008), scheduling Federal Air
Marshals (Tsai, Rathi, Kiekintveld, Ordóñez, & Tambe, 2009), and patrolling ports (Shieh,
An, Yang, Tambe, Baldwin, Direnzo, Meyer, Baldwin, Maule, & Meyer, 2012). The ca-
pabilities of these systems are based on a large amount of research in fast algorithms for
security games (Tambe, 2011). Another notable example is the algorithmic progress that
has led to game-theoretic Poker agents that are competitive with highly skilled human
opponents (e.g., see Zinkevich, Bowling, & Burch, 2007; Sandholm, 2010).

We focus on developing new algorithms for an important general class of games that
includes security games and Poker, as well as many other familiar games. More precisely, we
study two-player zero-sum extensive-form games (EFGs) with imperfect information. This
class of games captures sequential interactions between two strictly competitive players in
situations where they make decisions under uncertainty. Uncertainty can be caused either
by having a stochastic environment or by having opponent actions that are not directly
observable. We consider general models for both sequential interactions and uncertainty,
while many of the fast algorithms that have been developed for Poker and security domains
rely on more specific game structure.

We propose a new class of algorithms for finding exact (or approximate) Nash equi-
librium solutions for the class of EFGs with imperfect information. The leading exact
algorithm in the literature uses the compact sequence-form representation and linear pro-
gramming optimization techniques to solve games of this type (Koller, Megiddo, & von
Stengel, 1996; von Stengel, 1996). Our approach exploits the same compact representa-
tion, but we improve the solution methods by adopting the algorithmic framework based
on decompositions known in the computational game theory literature as oracle algorithms
(McMahan, Gordon, & Blum, 2003). Oracle algorithms are related to the methods of con-
straint/column generation used for solving large-scale optimization problems (Dantzig &
Wolfe, 1960; Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998) and exploit two
characteristics commonly found in games. First, in many cases finding a solution to a
game only requires using a small fraction of the possible strategies, so it is not necessary to
enumerate all of the strategies to find a solution (Wilson, 1972; Koller & Megiddo, 1996).
Second, finding a best response to a specific opponent strategy in a game is computationally
much less expensive than solving for an equilibrium. In addition, best response algorithms
can often make use of domain-specific knowledge or heuristics to speed up the calculations
even further.

Our sequence-form double-oracle algorithm integrates the decomposition ideas of oracle
algorithms with the compact sequence-form representation for EFGs with imperfect infor-
mation. This results in an iterative algorithm that does not always need to generate the
complete linear program for the game to find a Nash equilibrium solution. The main idea
of the algorithm is to create a restricted game in which the players choose from a limited
space of possible strategies (represented as sequences of actions). The algorithm solves
the restricted game and then uses a fast best-response algorithm to find strategies in the
original unrestricted game that perform well against the current solution of the restricted

830

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

game. These strategies are added to the restricted game and the process iterates until no
best response can be found to improve the solution. In this case, the current solution is an
equilibrium of the original game. Typically, a solution can be found by adding only a small
fraction of the strategies to the restricted game.

We begin by presenting related work, technical background, and our notation. We then
describe our main algorithm in three parts: (1) methods for creating, solving, and expand-
ing a valid restricted game, (2) the algorithm for finding the best-response strategies to be
added to the restricted game, and (3) variants of the main loop controlling the iterative
process of solving restricted games and adding new strategies. We present a formal analysis
and prove that our algorithm converges to a Nash equilibrium of the original game. Fi-
nally, we provide an experimental evaluation of the runtime performance and convergence
behavior of our algorithm on several realistic games with different characteristics including
a border patrolling scenario, Phantom Tic-Tac-Toe, and a simplified variant of Poker. We
compare our results with state-of-the-art algorithms for finding both exact and approxi-
mate solutions: linear programming using the sequence form, and Counterfactual Regret
Minimization (CFR, Zinkevich, Johanson, Bowling, & Piccione, 2008; Lanctot, 2013).

The experimental results confirm that our algorithm requires only a fraction of all pos-
sible sequences to solve a game in practice and significantly reduces memory requirements
when solving large games. This advances the state of the art and allows us to exactly solve
much larger games compared to the existing algorithms. Moreover, in games admitting
an equilibrium with small support (i.e., only a few sequences have non-zero probability in
an equilibrium), our algorithm also achieves significant improvements in computation time
and finds an equilibrium after only few iterations. These result hold without using any
domain-specific knowledge, but we also show that incorporating domain-specific heuristics
and bounds into the algorithm in a straightforward way can lead to even more significant
performance improvements. Analysis of the convergence rate shows that the approximative
bounds on the value of the game are either similar or a bit worse during the early stages
compared to CFR. However, the convergence behavior of CFR algorithm has a very long
tail and our algorithm always finds an exact solution much faster than CFR.

2. Related Work

Solving imperfect-information EFGs is a computationally challenging task, primarily due
to uncertainty about the actions of the opponent and/or a stochastic environment. The
leading exact algorithm (Koller et al., 1996; von Stengel, 1996) is based on formulating the
problem of finding an optimal strategy to play as a linear program. This algorithm exploits
a compact representation of strategies as sequences of individual actions (called the sequence
form) and results in a linear program of linear size in the size of the game tree. However,
this approach has limited applicability since the game tree grows exponentially with the
number of sequential actions in the game. A common practice for overcoming the limited
scalability of sequence-form linear programming is to use an approximation method. The
best known approximative algorithms include counterfactual regret minimization (CFR,
Zinkevich et al., 2008), improved versions of CFR with sampling methods (Lanctot, Waugh,
Zinkevich, & Bowling, 2009; Gibson, Lanctot, Burch, Szafron, & Bowling, 2012); Nesterov’s
Excessive Gap Technique (EGT, Hoda, Gilpin, Peña, & Sandholm, 2010); and variants of

831

Bošanský, Kiekintveld, Lisý, & Pěchouček

Monte Carlo Tree Search (MCTS) algorithms applied to imperfect-information games (e.g.,
see Ponsen, de Jong, & Lanctot, 2011).

The family of counterfactual regret minimization algorithms is based on learning meth-
ods that can be informally described as follows. The algorithm repeatedly traverses the
game tree and learns a strategy to play by applying a no-regret learning rule that min-
imizes a specific variant of regret (counterfactual regret) in each information set. The
no-regret learning converges to an optimal strategy in each information set. The overall
regret is bounded by the sum of the regret in each information set; hence, the strategy
as a whole converges to a Nash equilibrium. The main benefits of this approach include
simplicity and robustness, as it can be adapted for more generic games (e.g., see Lanctot,
Gibson, Burch, Zinkevich, & Bowling, 2012, where CFR is applied on games with imperfect
recall). However, the algorithm operates on the complete game tree and therefore requires
convergence in all information sets, which can be very slow for large games when one desires
a solution with small error.

Another popular method is Excessive Gap Technique that exploits the convex properties
of the sequence-form representation and uses recent mathematical results on finding extreme
points of smooth functions (see Hoda et al., 2010, for the details). The main idea is to ap-
proximate the problem of finding a pair of equilibrium strategies by two smoothed functions
and guiding them to find an approximate solution. Although this approach achieves faster
convergence in comparison with CFR, the algorithm is less robust (it is not known whether
a similar approach can be used for more general classes of games) and less used in practice.
Like CFR, EGT also operates in the complete strategy space of all sequences.

Monte Carlo Tree Search (MCTS) is another family of methods that has shown promise
for solving very large games, in particular perfect information board games such as Go (e.g.,
Lee et al., 2009). While the CFR and EGT algorithms are guaranteed to find an ε-Nash
equilibrium, convergence to an equilibrium solution has not been formally shown for any of
the variants of MCTS in imperfect-information games. On the contrary, the most common
version of MCTS based on the Upper Confidence Bounds (UCB) selection function can
converge to incorrect solutions even in simultaneous-move games (Shafiei, Sturtevant, &
Schaeffer, 2009) that are the simplest class of imperfect-information EFGs. MCTS algo-
rithms therefore do not (in general) guarantee finding an (approximate) optimal solution in
imperfect-information games. One exception is the recent proof of convergence of MCTS
with certain selection methods for simultaneous-move games (Lisy, Kovarik, Lanctot, &
Bosansky, 2013). Still, using MCTS is sometimes a reasonable choice since it can produce
good strategies in practice (Ponsen et al., 2011).

Contrary to the existing approximative approaches, our algorithm aims to find an ex-
act solution without explicitly considering the strategy in the complete game tree. Our
work combines the compact sequence-form representation and the double-oracle algorith-
mic framework. Previous work on the double-oracle framework has focused primarily on
applications in normal-form games, where the restricted game was expanded by adding pure
best-response strategies in each iteration. One of the first examples of solving games using
the double-oracle principle was by McMahan et al. (2003). They introduced the double-
oracle algorithm, proved the convergence to a Nash equilibrium, and experimentally verified
that the algorithm achieves computation time improvements on a search game where an
evader was trying to cross an environment without being detected by sensors placed by the

832

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

opponent. The double-oracle algorithm reduced the computation time from several hours
to tens of seconds and allowed to solve much larger instances of this game. Similar success
with the domain-specific double-oracle methods has been demonstrated on a variety of dif-
ferent domains inspired by pursuit-evasion games (Halvorson, Conitzer, & Parr, 2009) and
security games played on a graph (Jain, Korzhyk, Vanek, Conitzer, Tambe, & Pechoucek,
2011; Letchford & Vorobeychik, 2013; Jain, Conitzer, & Tambe, 2013).

Only a few works have tried to apply the iterative framework of oracle algorithms to
EFGs, primarily using pure and mixed strategies in EFGs. The first work that exploited this
iterative principle is the predecessor of the sequence-form linear-program formulation (Koller
& Megiddo, 1992). In this algorithm, the authors use a representation similar to the se-
quence form only for a single player, while the strategies for the opponent are iteratively
added as constraints into the linear program (there is an exponential number of constraints
in their formulation). This approach can be seen as a specific variant of the oracle algo-
rithms, where the strategy space is expanded gradually for a single player. Our algorithm
is a generalization of this work, since our algorithm uses the sequence-form representation
for both players and it also incrementally expands the strategy space for both players.

More recent work has been done by McMahan in his thesis (McMahan, 2006) and follow-
up work (McMahan & Gordon, 2007). In these works the authors investigated an extension
of the double-oracle algorithm for normal-form games to the extensive-form case. Their
double-oracle algorithm for EFGs operates very similarly to the normal-form variant and
uses pure and mixed strategies defined for EFGs. The main disadvantage of this approach
is that in the basic version it still requires a large amount of memory since a pure strategy
for an EFG is large (one action needs to be specified for each information set), and there
is an exponential number of possible pure strategies. To overcome this disadvantage, the
authors propose a modification of the double-oracle algorithm that keeps the number of the
strategies in the restricted game bounded. The algorithm removes from the restricted game
those strategies that are the least used in the current solution of the restricted game. In
order to guarantee the convergence, the algorithm adds in each iteration into the restricted
game a mixed strategy representing the mean of all removed strategies; convergence is then
guaranteed similarly to fictitious play (see McMahan & Gordon, 2007, for the details).
Bounding the size of the restricted game results in low memory requirements. However, the
algorithm converges extremely slowly and it can take a very long time (several hours for a
small game) for the algorithm to achieve a small error (see the experimental evaluation in
McMahan, 2006; McMahan & Gordon, 2007).

A similar concept for using pure strategies in EFGs is used in an iterative algorithm
designed for Poker in the work of Zinkevich et al. (2007). The algorithm in this work
expands the restricted game with strategies found by a generalized best response instead of
using pure best response strategies. Generalized best response is a Nash equilibrium in a
partially restricted game – the player computing the best response can use any of the pure
strategies in the original unrestricted game, while the opponent is restricted to use only the
strategies from the restricted game. However, the main disadvantages of using pure and
mixed strategies in EFGs are still present and result in large memory requirements and an
exponential number of iterations.

In contrast, our algorithm directly uses the compact sequence-form representation of
EFGs and uses the sequences as the building blocks (i.e., the restricted game is expanded

833

Bošanský, Kiekintveld, Lisý, & Pěchouček

by allowing new sequences to be played in the next iteration). Using sequences and the
sequence form for solving the restricted game reduces the size of the restricted game and
the number of iterations, however, it also introduces new challenges when constructing and
maintaining the restricted game, and ensuring the convergence to a Nash equilibrium, which
we must solve for our algorithm to converge to a correct solution.

3. Technical Background

We begin by presenting the standard game-theoretic model of extensive-form games, fol-
lowed by a discussion of the most common solution concepts and the algorithms for comput-
ing these solutions. Then we present the sequence-form representation and the state-of-the-
art linear program for computing solutions using this representation. Finally, we describe
oracle algorithms as they are used for solving normal-form games. A summary of the most
common notation is provided in Table 1 for quick reference.

3.1 Extensive-Form Games

Extensive-form games (EFGs) model sequential interactions between players in a game.
Games in the extensive form are visually represented as game trees (e.g., see Figure 2).
Nodes in the game tree represent states of the game; each state of the game corresponds to
a sequence of moves executed by all players in the game. Each node is assigned to a player
that acts in the game state associated with this node. An edge in the game tree from a
node corresponds to an action that can be performed by the player who acts in this node.
Extensive-form games model limited observations of the players by grouping the nodes into
information sets, so that a given player cannot distinguish between nodes that belong to
the same information set when the player is choosing an action. The model also represents
uncertainty about the environment and stochastic events by using a special Nature player.

Formally, a two-player EFG is defined as a tuple G = (N,H,Z,A, p, u, C, I): N is a set
of two players N = {1, 2}. We use i to refer to one of the two players (either 1 or 2), and −i
to refer to the opponent of i. H denotes a finite set of nodes in the game tree. Each node
corresponds to a unique history of actions taken by all players and Nature from the root of
the game; hence, we use the terms history and node interchangeably. We denote by Z ⊆ H
the set of all terminal nodes of the game. A denotes the set of all actions and we overload
the notation and use A(h) ⊆ A to represent the set of actions available to the player acting
in node h ∈ H. We specify ha = h′ ∈ H to be node h′ reached from node h by executing
action a ∈ A(h). We say that h is a prefix of h′ and denote it by h v h′. For each terminal
node z ∈ Z we define a utility function for each player i (ui : Z → R). We study zero-sum
games, so ui(z) = −u−i(z) holds for all z ∈ Z.

The function p : H → N ∪ {c} assigns each node to a player who takes an action in the
node, where c means that the Nature player selects an action in the node based on a fixed
probability distribution known to all players. We use function C : H → [0, 1] to denote
the probability of reaching node h due to Nature (i.e., assuming that both players play all
required actions to reach node h). The value of C(h) is the product of the probabilities
assigned to all actions taken by the Nature player in history h. Imperfect observation of
player i is modeled via information sets Ii that form a partition over the nodes assigned
to player i {h ∈ H : p(h) = i}. Every information set contains at least one node and each

834

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

node belongs to exactly one information set. Nodes in an information set of a player are
indistinguishable to the player. All nodes h in a single information set Ii ∈ Ii have the
same set of possible actions A(h). Action a from A(h) uniquely identifies information set
Ii and there cannot exist any other node h′ ∈ H that does not belong to information set
Ii and for which a is allowed to be played (i.e., a ∈ A(h′)). Therefore we overload notation
and use A(Ii) to denote the set of actions defined for each node h in this information set.
We assume perfect recall, which means that players perfectly remember their own actions
and all information gained during the course of the game. As a result, all nodes in any
information set Ii have the same history of actions for player i.

3.2 Nash Equilibrium in Extensive-Form Games

Solving a game requires finding a strategy profile (i.e., one strategy for each player) that
satisfies conditions defined by a specific solution concept. Nash equilibrium (NE) is the
best known solution concept in game theory and it describes the behavior of players under
certain assumptions about their rationality. In a Nash equilibrium, every player plays a
best response to the strategies of the other players. Let Πi be the set of pure strategies for
player i. In EFGs, a pure strategy is an assignment of exactly one action to be played in
each information set. A mixed strategy is a probability distribution over the set of all pure
strategies of a player. We denote by ∆i the set of all mixed strategies of player i. For any
pair of strategies δ ∈ ∆ = (∆1,∆2) we use ui(δ) = ui(δi, δ−i) for the expected outcome
of the game for player i when players follow strategies δ. A best response of player i to
the opponent’s strategy δ−i is a strategy δBRi , for which ui(δ

BR
i , δ−i) ≥ ui(δ

′
i, δ−i) for all

strategies δ′i ∈ ∆i. A strategy profile δ = (δ1, δ2) is a NE if and only if for each player i
it holds that δi is a best response to δ−i. A game can have multiple NEs; in the zero-sum
setting, all of these equilibria have the same value (i.e., the expected utility for every player
is the same). This is called the value of the game, denoted V ∗. The problem of finding a
NE in a zero-sum game has a polynomial computational complexity in the size of the game.

The NE solution concept is somewhat weak for extensive-form games. Nash equilibrium
requires that both players act rationally. However, there can be irrational strategies selected
for the parts of the game tree that are not reachable when both players follow the NE
strategies (these parts are said to be off the equilibrium path). The reason is that NE does
not expect this part of the game to be played and therefore does not sufficiently restrict
strategies in these information sets. To overcome these drawbacks, a number of refinements
of NE have been introduced imposing further restrictions with the intention of describing
more sensible strategies. Examples include subgame-perfect equilibrium (Selten, 1965) used
in perfect-information EFGs. The subgame-perfect equilibrium forces the strategy profile
to be a Nash equilibrium in each sub-game (i.e., in each sub-tree rooted in some node h)
of the original game. Unfortunately, sub-games are not particularly useful in imperfect-
information EFGs; hence, here the refinements include strategic-from perfect equilibrium
(Selten, 1975), sequential equilibrium (Kreps & Wilson, 1982), or quasi-perfect equilibrium
(van Damme, 1984; Miltersen & Sørensen, 2010). The first refinement avoids using weakly
dominated strategies in equilibrium strategies for two-player games (van Damme, 1991,
p. 29) and it is also known as the undominated equilibrium. Sequential equilibrium tries
to exploit the mistakes of the opponent by using the notion of beliefs consistent with the

835

Bošanský, Kiekintveld, Lisý, & Pěchouček

strategy of the opponent even in information sets off the equilibrium path. The main
intuitions behind the first two refinements are combined in quasi-perfect equilibrium.

Even though the solution described by NE does not always prescribe rational strategies
off the equilibrium path, it is still valuable to compute exact NE of large extensive-form
games for several reasons. We focus on zero-sum games, so the NE strategy guarantees
the value of the game even off the equilibrium path. In other words, the strategy off
the equilibrium path does not optimally exploit the mistakes of the opponent, but it still
guarantees an outcome of at least value gained by following the equilibrium path. Moreover,
a refined equilibrium is still a NE and calculating the value of the game is often a starting
point for many of the algorithms that compute these refinements – for example it is used
for computing undominated equilibrium (e.g., see Ganzfried & Sandholm, 2013; Cermak,
Bosansky, & Lisy, 2014) and normal-form proper equilibrium (Miltersen & Sørensen, 2008).

3.3 Sequence-Form Linear Program

Extensive-form games with perfect recall can be compactly represented using the sequence
form (Koller et al., 1996; von Stengel, 1996). A sequence σi is an ordered list of actions taken
by a single player i in a history h. The number of actions (i.e., the length of sequence σi)
is denoted by |σi| and the empty sequence (i.e., sequence with no actions) is denoted by ∅.
The set of all possible sequences for player i is denoted by Σi and the set of sequences for all
players is Σ = Σ1 × Σ2. A sequence σi ∈ Σi can be extended by a single action a taken by
player i, denoted by σia = σ′i (we use σi v σ′i to denote that σi is a prefix of σ′i). In games
with perfect recall, all nodes in an information set Ii share the same sequence of actions
for player i and we use seqi(Ii) to denote this sequence. We overload the notation and use
seqi(h) to denote the sequence of actions of player i leading to node h, and seqi(H

′) ⊆ Σi,
where seqi(H

′) =
⋃
h′∈H′ seqi(h

′) for some H ′ ⊆ H. Since action a uniquely identifies
information set Ii and all nodes in an information set share the same history of actions of
player i, each sequence uniquely identifies an information set. We use the function infi(σ

′
i)

to denote the information set in which the last action of the sequence σ′i is taken. For an
empty sequence, function infi(∅) is the information set of the root node.

Finally, we define the auxiliary payoff function gi : Σ → R that extends the utility
function to all nodes in the game tree. The payoff function gi represents the expected
utility of all nodes reachable by sequentially executing the actions specified in a pair of
sequences σ:

gi(σi, σ−i) =
∑

h∈Z : ∀j∈N σj=seqj(h)

ui(h) · C(h) (1)

The value of the payoff function is defined to be 0 if no leaf is reachable by sequentially ex-
ecuting all of the actions in the sequences σ – either all actions from the pair of sequences σ
are executed and an inner node (h ∈ H \ Z) is reached, or during the sequential execu-
tion of the actions node h is reached, for which the current action a to be executed from
sequence σρ(h) is not defined (i.e., a /∈ A(h)). Formally we define a pair of sequences σ to
be compatible if there exists node h ∈ H such that sequence σi of every player i equals to
seqi(h).

We can compute a Nash equilibrium of a two-player zero-sum extensive-form game
using a linear program (LP) of a polynomial size in the size of the game tree using the

836

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

sequence form (Koller et al., 1996; von Stengel, 1996). The LP uses an equivalent compact
representation of mixed strategies of players in a form of realization plans. A realization
plan for a sequence σi is the probability that player i will play this sequence of actions
under the assumption that the opponent will choose compatible sequences of actions that
reach the information sets for which the actions specified in the sequence σi are defined. We
denote the realization plan for player i by ri : Σi → R. The equilibrium realization plans
can be computed using the following LP (e.g., see Shoham & Leyton-Brown, 2009, p. 135):

max
r,v

vinf−i(∅)

vinf−i(σ−i) −
∑

I′−i∈I−i:seq−i(I
′
−i)=σ−i

vI′−i
≤
∑

σi∈Σi

gi(σ−i, σi) · ri(σi) ∀σ−i ∈ Σ−i (2)

ri(∅) = 1 (3)
∑

∀a∈A(Ii)

ri(σia) = ri(σi) ∀Ii ∈ Ii, σi = seqi(Ii) (4)

ri(σi) ≥ 0 ∀σi ∈ Σi (5)

Solving the LP yields a realization plan for player i using variables ri, and expected values
for the information sets of player −i (variables vI−i). The LP works as follows: player i
maximizes the expected utility value by selecting the values for the variables of realiza-
tion plan that is constrained by Equations (3–5). The probability of playing the empty
sequence is defined to be 1 (Equation 3), and the probability of playing a sequence σi is
equal to the sum of the probabilities of playing sequences extended by exactly one action
(Equation 4). Finding such a realization plan is also constrained by the best responding
opponent, player −i. This is ensured by Equation (2), where player −i selects in each
information set I−i such action that minimizes the expected utility value vI−i in this infor-
mation set. There is one constraint defined for each sequence σ−i, where the last action of
this sequence determines the best action to be played in information set inf−i(σ−i) = I−i.
The expected utility is composed of the expected utilities of the information sets reachable
after playing sequence σ−i (sum of v variables on the left side) and of the expected utilities
of leafs to which this sequence leads (sum of g values on the right side of the constraint).

3.4 Double-Oracle Algorithm for Normal-Form Games

We now describe the concept of column/constraint generation techniques applied previously
in normal-form games and known as the double-oracle algorithm (McMahan et al., 2003).
Normal-form games are represented using game matrices; rows of the matrix correspond
to pure strategies of one player, columns correspond to pure strategies of the opponent,
and values in the matrix cells represent the expected outcome of the game when players
play corresponding pure strategies. Zero-sum normal-form games can be solved by linear
programming in polynomial time in the size of the matrix (e.g., see Shoham & Leyton-
Brown, 2009, p. 89).

Figure 1 shows the visualization of the main structure of the double-oracle algorithm for
normal-form games. The algorithm consists of the following three steps that repeat until
convergence:

837

Bošanský, Kiekintveld, Lisý, & Pěchouček

Figure 1: Schematic of the double-oracle algorithm for a normal-form game.

1. create a restricted game by limiting the set of pure strategies that each player is
allowed to play

2. compute a pair of Nash equilibrium strategies in this restricted game using the LP for
solving normal-form games

3. for each player, compute a pure best response strategy against the equilibrium strategy
of the opponent found in the previous step; the best response may be any pure strategy
in the original unrestricted game

The best response strategies computed in step 3 are added to the restricted game, the game
matrix is expanded by adding new rows and columns, and the algorithm continues with the
next iteration. The algorithm terminates if neither of the players can improve the outcome
of the game by adding a new strategy to the restricted game. In this case both players
play a best response to the strategy of the opponent in the original unrestricted game.
The algorithm maintains the values of the expected utilities of the best-response strategies
throughout the iterations of the algorithm. These values provide bounds on the value of
the original unrestricted game V ∗ – from the perspective of player i, the minimal value
of all of her past best-response calculations represents an upper bound of the value of the
original game, V UB

i , and the maximal value of all of past best-response calculations of the
opponent represents the lower bound on the value of the original game, V LB

i . Note that for
the bounds it holds that the lower bound for player i is equal to the negative of the value
of the upper bound for the opponent:

V LB
i = −V UB

−i

In general, computing best responses is computationally less demanding than solving the
game, since the problem is reduced to a single-player optimization. Due to the fact that best-
response algorithms can operate very quickly (e.g., also by exploiting additional domain-
specific knowledge), they are called oracles in this context. If the algorithm incrementally
adds strategies only for one player, the algorithm is called a single-oracle algorithm, if
the algorithm incrementally adds the strategies for both players, the algorithm is called a
double-oracle algorithm. Double-oracle algorithms are typically initialized by an arbitrary
pair of strategies (one pure strategy for each player). However, we can also use a larger set
of initial strategies selected based on a domain-specific knowledge.

The double-oracle algorithm for zero-sum normal-form games runs in a polynomial time
in the size of the game matrix. Since each iteration adds at least one pure strategy to

838

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

Figure 2: Example of a two-player extensive-form game visualized as a game tree. Circle
player aims to maximize the utility value, box aims to minimize the utility value. The bold
edges represent the sequences of actions added to the restricted game.

the restricted game and there are finite pure strategies, the algorithm stops after at most
|Πi| + |Π−i| iterations. Each iteration is also polynomial, since it consists of solving the
linear program and computing best responses. The relative performance of the double-
oracle algorithm compared to solving the linear program for the original unrestricted game
closely depends on the number of iterations required for convergence. In the worst case, the
algorithm adds all pure strategies and solves the original game, although this is rarely the
case in practice. Estimating the expected number of iterations needed for the double-oracle
algorithm to converge, however, remains an open problem.

3.4.1 Towards Extensive-Form Games

The straightforward method of applying the double-oracle algorithm for EFGs is to use pure
strategies defined in EFGs (i.e., assignments of action for each information set, or realization
plans) and apply exactly the algorithm described in this section – i.e., iteratively add
pure strategies from the unrestricted extensive-form game into the restricted game matrix.
However, this can result in an exponential number of iterations and an exponentially large
restricted game in the worst case. Our algorithm differs significantly from this idea since it
directly operates on (more compact) sequences instead of full strategies.

4. Sequence-Form Double-Oracle Algorithm for Extensive-Form Games

We now describe our sequence-form double-oracle algorithm for solving extensive-form
games with imperfect information. First, we give an informal overview of our algorithm.
We use an example game depicted in Figure 2 to illustrate some of the key concepts. Af-
terwards, we formally define the restricted game and describe the key components of the
algorithm, following by a full example run of our algorithm.

The overall scheme of our algorithm is based on the double-oracle framework described in
the previous section. The main difference is that our algorithm uses the sequences to define
the restrictions in the game tree. The restricted game in our model is defined by allowing
players to use (i.e., to play with non-zero probability) only a subset of the sequences from
the original unrestricted game. This restricted subset of sequences defines the subsets of
reachable actions, nodes, and information sets from the original game tree. Consider our ex-
ample in Figure 2. A restricted game can be defined by sequences ∅, A,AC,AD for the circle
player, and ∅, x for the box player. These sequences represent actions allowed in the game,

839

Bošanský, Kiekintveld, Lisý, & Pěchouček

they define reachable nodes (using history we can reference them as ∅, A,Ax,AxC,AxD),
and reachable information sets (I1, I2 for the circle player and the only information set I�
for the box player).

The algorithm iteratively adds new sequences of allowed actions into the restricted
game, similarly to the double-oracle algorithm for normal-form games. The restricted game
is solved as a standard zero-sum extensive-form game using the sequence-form linear pro-
gram. Then a best response algorithm searches the original unrestricted game to find new
sequences to add to the restricted game. When the sequences are added, the restricted
game tree is expanded by adding all new actions, nodes, and information sets that are now
reachable based on the new sets of allowed sequences. The process of solving the restricted
game and adding new sequences iterates until no new sequences that improve the solution
can be added.

There are two primary complications that arise when we use sequences instead of full
strategies in the double-oracle algorithm, both due to the fact that sequences do not neces-
sarily define actions in all information sets: (1) a strategy computed in the restricted game
may not be a complete strategy in the original game, because it does not define behavior
for information sets that are not in the restricted game, and (2) it may not be possible to
play every action from a sequence that is allowed in the restricted game, because playing
a sequence can depend on having a compatible sequence of actions for the opponent. In
our example game tree in Figure 2, no strategy of the circle player in the restricted game
specifies what to play in information sets I3 and I4. The consequence of the second issue
is that some inner nodes of the original unrestricted game can (temporarily) become leafs
in the restricted game. For example, the box player can add sequence y into the restricted
game making node Ay a leaf in the restricted game, since there are no other actions of the
circle player in the restricted game applicable in this node.

Our algorithm solves these complications using two novel ideas. The first idea is the
concept of a default pure strategy (denoted πDef

i ∈ Πi). Informally speaking, the algorithm
assumes that each player has a fixed implicit behavior that defines what the player does by
default in any information set that is not part of the restricted game. This is described by
the default strategy πDef

i , which specifies an action for every information set. Note that this
default strategy does not need to be represented explicitly (which could use a large amount
of memory). Instead, it can be defined implicitly using rules, such as selecting the first action
from a deterministic method for generating the ordered set of actions A(h) in node h. We
use the default pure strategies to map every strategy from the restricted game into a valid
strategy in the full game. Specifically, the strategy in the original unrestricted game selects
actions according to the probabilities specified by a strategy for the restricted game in
every information set that is part of the restricted game, and for all other information sets
it plays according to the default pure strategy. Recall our example in Figure 2, where the
pure default strategy for the circle player can be 〈A,C,E,G〉 (i.e., selecting the leftmost
action in each information set). Hence, a strategy in the original unrestricted game can use
a strategy from the restricted game in information sets I1 and I2, and select pure actions
in E, G in information sets I3 and I4 respectively.

The second key idea is to use temporary utility values for cases where there are no
allowed actions that can be played in some node in the restricted game that is an inner
node in the original game (so called temporary leaf). To ensure the correct convergence of

840

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

H game-tree nodes / histories
Z ⊆ H leafs / terminal states
πDef
i implicit default pure strategy for player i
ri : Σi 7→ R realization plan of player i for a sequence
C : H 7→ R probability of reaching a node due to Nature play
gi : H 7→ R extension of the utility function to all nodes;

gi(h) = ui(h) · C(h) if h ∈ Z and gi(h) = 0 if h is not a terminal node (h /∈ Z)
seqi sequence(s) of actions of player i leading to a node / a set of nodes /

/ an information set
infi : Σi 7→ Ii an information set in which the last action of the sequence was executed

Table 1: An outline of the main symbols used in the paper.

the algorithm these temporary utilities must be assigned so that they provide a bound on
the expected value gained by continuing the play from the given node. Our algorithm uses
a value that corresponds to the expected outcome of continuing the game play, assuming
the player making the choice in the temporary leaf uses the default strategy, while the
opponent plays a best response. Assume we add sequence y for the box player into the
restricted game in our example tree in Figure 2. The temporary utility value for node Ay
would correspond to value −2, since the default strategy in information set I3 is to play E
for the circle player. In the next section we formally describe this method and prove the
correctness of the algorithm given these temporary values.

We now describe in detail the key parts of our method. We first formally define the
restricted game and methods for expanding the restricted game, including the details of
both of the key ideas introduced above. Then we describe the algorithm for selecting the
new sequences that are allowed in the next iteration. The decision of which sequences to add
is based on calculating a best response in the original unrestricted game using game-tree
search improved with additional pruning techniques. Finally, we discuss different variations
of the main logic of the double-oracle algorithm that determines for which player(s) the
algorithm adds new best-response sequences in the current iteration.

4.1 Restricted Game

This section formally defines the restricted game as a subset of the original unrestricted
game. A restricted game can be fully specified by the set of allowed sequences. We define
the sets of nodes, actions, and information sets as subsets of the original unrestricted sets
based on the allowed sequences. We denote the original unrestricted game by a tuple
G = (N,H,Z,A, p, u, C, I) and the restricted game by G′ = (N,H ′, Z ′, A′, p, u′, C, I ′). All
sets and functions associated with the restricted game use prime in the notation; the set of
players, and the functions p and C remain the same.

The restricted game is defined by a set of allowed sequences (denoted by Φ′ ⊆ Σ) that
are returned by the best response algorithms. As indicated above, even an allowed sequence
σi ∈ Φ′ might not be playable to the full length due to missing compatible sequences of the
opponent. Therefore, the restricted game is defined using the maximal compatible set of
sequences Σ′ ⊆ Φ′ for a given set of allowed sequences Φ′. We define Σ′ as the maximal

841

Bošanský, Kiekintveld, Lisý, & Pěchouček

subset of the sequences from Φ′ such that:

Σ′i ← {σi ∈ Φ′i : ∃σ−i ∈ Φ′−i∃h ∈ H ∀j ∈ N seqj(h) = σj} ∀i ∈ N (6)

Equation (6) means that for each player i and every sequence σi in Σ′i, there exists a
compatible sequence of the opponent σ−i that allows the sequence σi to be executed in full
(i.e., by sequentially executing of all the actions in these sequences σ some node h can be
reached such that seqj(h) = σj for all players j ∈ N).

The set of sequences Σ′ fully defines the restricted game, because all other sets in the
tuple G′ can be derived from Σ′. A node h is in the restricted game if and only if the
sequences that must be played to reach h are in the set Σ′ for both players:

H ′ ← {h ∈ H : ∀i ∈ N seqi(h) ∈ Σ′} (7)

If a pair of sequences is in Σ′, then all nodes reachable by executing this pair of sequences
are included in H ′. Actions defined for a node h are in the restricted game if and only if
playing the action in this node leads to a node that is in the restricted game:

A′(h)← {a ∈ A(h) : ha ∈ H ′} ∀h ∈ H ′ (8)

Nodes from the restricted game corresponding to inner nodes in the original unrestricted
game may not be inner nodes in the restricted game. Therefore, the set of leaves in the
restricted game is a union of leaf nodes of the original game and inner nodes from the
original game that currently do not have a valid continuation in the restricted game, based
on the allowed sequences:

Z ′ ←
(
Z ∩H ′

)
∪ {h ∈ H ′ \ Z : A′(h) = ∅} (9)

We explicitly differentiate between leaves in the restricted game that correspond to leaves in
the original unrestricted game (i.e., Z ′∩Z) and leaves in the restricted game that correspond
to inner nodes in the original unrestricted game (i.e., Z ′ \ Z), since the algorithm assigns
temporary utility values to nodes in the latter case.

The information sets in the restricted game correspond to information sets in the original
unrestricted game. If some node h belongs to an information set Ip(h) in the original game,
then the same holds in the restricted game. We define an information set to be a part of
the restricted game if and only if at least one inner node that belongs to this information
set is included in the restricted game:

I ′i ← {Ii ∈ Ii : ∃h ∈ Ii h ∈ H ′ \ Z ′} (10)

An information set in the restricted game Ii ∈ I ′i consists only of nodes that are in the
restricted game – i.e., ∀h ∈ Ii : h ∈ H ′.

Finally, we define the modified utility function u′ for the restricted game. The primary
reason for the modified utility function is to define the temporary utility values for leaves in
the set Z ′\Z. Consider h ∈ Z ′\Z to be a temporary leaf and player i to be the player acting
in this node (i = p(h)). Moreover, let u∗i (h) be the expected outcome of the game starting
from this node assuming both players are playing NE strategies in the original unrestricted
game. The modified utility function u′i for this leaf must return a value that is a lower bound

842

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

on value u∗i (h). Due to the zero-sum assumption, this value represents an upper bound on
value for the opponent −i. Setting the value this way ensures two things: (1) player −i is
likely to use sequences leading to node h in optimal strategies in the restricted game (since
the modified utility value is an upper bound of an actual value), and (2) player i adds new
sequences using best-response algorithms that prolong sequence seqi(h) leading to node h
if there are sequences that would yield better expected value than u′i. Later we show a
counterexample where setting the value otherwise can cause the algorithm to converge to
an incorrect solution. We calculate the lower bound by setting the utility value so that it
corresponds to the outcome in the original game if the player i continues by playing the
default strategy πDef

i and the opponent plays a best response δBR−i to this default strategy.
This is a valid lower bound since we consider only a single strategy for the player acting in
node h, which correspond to the default strategy; considering other strategies could allow
this player to improve the value of continuing from the node h. For all other leaf nodes
h ∈ Z ′ ∩ Z we set u′i(h)← ui(h).

4.1.1 Solving the Restricted Game

The restricted game defined in this section is a valid zero-sum extensive-form game and
it can be solved using the sequence-form linear programming described in Section 3. The
algorithm computes a NE of the restricted game by solving a pair of linear programs using
the restricted sets Σ′, H ′, Z ′, I ′, and the modified utility function u′.

Each strategy from the restricted game can be translated to the original game by using
the pure default strategy to extend the restricted strategy where it is not defined. Formally,
if r′i is a mixed strategy represented as a realization plan of player i in the restricted
game, then we define the extended strategy r′i to be a strategy identical to the strategy in
the restricted game for sequences included in the restricted game, and correspond to the
default strategy πDef

i if a sequence is not included in the restricted game:

r′i(σi)←
{
r′i(σi) σi ∈ Σ′i
r′i(σ

′
i) · πDef

i (σi \ σ′i) σi /∈ Σ′i; σ
′
i = arg maxσ′′i ∈Σ′i; σ

′′
i vσi |σ

′′
i |

(11)

The realization plan of a sequence σi not allowed in the restricted game (i.e., σi /∈ Σ′i)
is equal to the realization probability of the longest prefix of the sequence allowed in the
restricted game (denoted by σ′i), and setting the remaining part of the sequence (i.e., σi\σ′i)
to correspond to the default strategy of player i. This computation is expressed as a
multiplication of two probabilities, where we overload the notation and use πDef

i (σi \ σ′i) to
be 1 if the remaining part of the sequence σi corresponds to the default strategy of player i,
and 0 otherwise.

In each iteration of the double-oracle algorithm one sequence-form LP is solved for each
player to compute a pair of NE strategies in the restricted game. We denote these strategies
as (r∗i , r

∗
−i) and (r∗i , r

∗
−i) when they are extended to the original unrestricted game using

the default strategies.

4.1.2 Expanding the Restricted Game

The restricted game is expanded by adding new sequences to the set Φ′ and updating the
remaining sets according to their definition. After adding new sequences, the algorithm

843

Bošanský, Kiekintveld, Lisý, & Pěchouček

calculates and stores the temporary utility values for leaves in Z ′ \ Z so they can be used
in the sequence-form LP.

After updating the restricted game, the linear programs are modified so that they cor-
respond to the new restricted game. For all newly added information sets and sequences,
new variables are created in the linear programs and the constraints corresponding to these
information sets/sequences are created (Equations 2 and 4). Moreover, some of the con-
straints already existing in the linear program need to be updated. If a sequence σi is
added to the set Σ′i and the immediate prefix sequence (i.e., sequence σ′i v σi such that
|σ′i| + 1 = |σi|) was already a part of the restricted game, then we need to update the
constraint for information sets Ii for which σ′i = seqi(Ii) to ensure the consistency of the
strategies (Equation 4), and the constraint corresponding to sequence σ′i (Equation 2). In
addition, the algorithm updates Equations (2) assigned to sequences of the opponent σ−i
for which g(σi, σ−i) 6= 0. Finally, the algorithm updates all constraints that previously used
utilities for temporary leaf nodes that are no longer leaf nodes in the restricted game after
adding the new sequences.

New sequences for each player are found using the best response sequence (BRS) algo-
rithms described in Section 4.2. From the perspective of the sequence-form double-oracle
algorithm, the BRS algorithm calculates a pure best response for player i against a fixed
strategy of the opponent in the original unrestricted game. This pure best response specifies
an action to play in each information set that is currently reachable given the opponent’s
extended strategy r∗−i. The best response can be formally defined as a pure realization
plan rBR

i that assigns only integer values 0 or 1 to the sequences. This realization plan
is not necessarily a pure strategy in the original unrestricted game because there may not
be an action specified for every information set. Specifically, there is no action specified
for information sets that are not reachable (1) due to choices of player i, and (2) due to
zero probability in the realization plan of the opponent r∗−i. Omitting these actions does
not affect the value of the best response because these information sets are never reached;
hence, for rBR

i it holds that ∀r′i ∈ ∆i ui(r
BR
i , r∗−i) ≥ ui(r′i, r∗−i) and there exists a pure best

response strategy πBR
i ∈ Πi such that ui(r

BR
i , r∗−i) = ui(π

BR
i , r∗−i). The sequences that are

used in the best-response pure realization plan with probability 1 are returned by BRS
algorithm and we call these the best-response sequences:

{σi ∈ Σi : rBR
i (σi) = 1} (12)

4.1.3 Example Run of the Algorithm

We now demonstrate the sequence-form double-oracle algorithm on an example game de-
picted in Figure 3a. In our example, there are two players: circle and box. Circle aims to
maximize the utility value in the leafs, box aims to minimize the utility value. We assume
that choosing the leftmost action in each information set is the default strategy for both
players in this game.

The algorithm starts with an empty set of allowed sequences in the restricted game
Φ′ ← ∅; hence, the algorithm sets the current pair of (r∗i , r

∗
−i) strategies to be equivalent to

(πDef
i , πDef

−i). Next, the algorithm adds new sequences that correspond to the best response
to the default strategy of the opponent; in our example the best response sequences for
the circle player are {∅, A,AD}, and {∅, y} for the box player. These sequences are added

844

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4

Figure 3: Example of the steps of the sequence-form double-oracle algorithm in a two-player
zero-sum game, where circle player aims to maximize the utility value, box aims to minimize
the utility value. Bold edges correspond to the sequences of actions added into the restricted
game. The dashed boxes indicate the information sets.

to the set of allowed sequences Φ′. Next, the set of sequences of the restricted game Σ′ is
updated. The maximal compatible set of sequences from set Φ′ cannot contain sequence
AD because the compatible sequence of the box player (i.e., x in this case) is not allowed
in the restricted game yet and sequence AD cannot be fully executed. Moreover, by adding
sequences A and y, the restricted game will contain node Ay for which actions E and F
are defined in the original unrestricted game. However, there is no continuation in the
current restricted game yet; hence, this node is a temporary leaf, belongs to Z ′ \ Z, and
the algorithm needs to define a new value for a modified utility function u′ for this node.
The value u′(Ay) is equal to −2 and corresponds to the outcome of the game if the circle
player continues by playing the default strategy and the box player plays the best response.
To complete the first step of the algorithm we summarize the nodes and information sets
included in the restricted game; H ′ contains 3 nodes (the root, the node after playing an
action A and the node Ay), and two information sets (the information set for node Ay is
not added into the restricted game, because this node is now a leaf in the restricted game).
Playing the sequences A and y with probability 1 is the Nash equilibrium of the restricted
game. The situation is depicted in Figure 3b, the sequences in Σ′ are shown as bold edges.

The algorithm proceeds further and the complete list of steps of the algorithm is sum-
marized in Table 2. In the second iteration, new sequences B and BH are added into the
restricted game. The box player does not add new sequences in this iteration because y is
the best response to the extended equilibrium strategy of the circle player – i.e., playing
sequences A,AC,AE with probability 1. NE in the updated restricted game changes to
playing sequences B,BH and sequence y, all with probability 1. In the third iteration the
situation changes and the box player adds sequence x, while there are no new sequences

845

Bošanský, Kiekintveld, Lisý, & Pěchouček

added for the circle player. After adding sequence x, sequence AD also becomes a part of
the set Σ′© as it can now be fully executed due to adding the compatible sequence x. NE in
the restricted game is now fully mixed, the sequences starting with A and with B are played
in a ratio of 3 : 4, x and y in a ratio of 4 : 3. In the fourth iteration, the algorithm adds
sequence AF to the restricted game (the best response for the circle player), which removes
the assigned value u′(Ay) since the node no longer belongs to set Z ′. The algorithm stops
after four iterations. No other sequences are added into the restricted game, the solution of
the restricted game (r∗i , r

∗
−i) can be translated to the solution in the original unrestricted

game, and (r∗i , r
∗
−i) is Nash equilibrium of the original game.

Iteration rBR
© rBR

� Σ′© Σ′�
1. ∅, A,AD ∅, y ∅, A ∅, y
2. ∅, B,BH ∅, y ∅, A,B,BH ∅, y
3. ∅, B,BH ∅, x ∅, A,AD,B,BH ∅, y, x
4. ∅, A,AF ∅, y ∅, A,AD,AF,B,BH ∅, y, x

Table 2: Steps of the sequence-form double-oracle algorithm applied to the example.

Consider now a small modification of the example game where there is a utility value
of −3 in the leaf following action F (i.e., node AyF). In this case, the algorithm does not
need to add sequence AF (nor AE) to the restricted game because it does not improve
the value of the restricted game. Note that this modified example game shows why the
algorithm needs to set the utility values for nodes in Z ′ \ Z. If the algorithm simply uses
the unmodified utility function, then the node Ay will be treated as if it had zero utility
value. This value overestimates the outcome of any actual continuation following this node
in the original game for the circle player and since sequences AE or AF will never be a
part of the best response for the circle player, the algorithm can converge to an incorrect
solution.

4.2 Best-Response Sequence Algorithm

The purpose of the best-response sequence (BRS) algorithm is to generate new sequences
that will be added to the restricted game in the next iteration, or to prove that there is
no best response with better expected value that uses sequences currently not allowed in
the restricted game. Throughout this section we use the term searching player to represent
the player for whom the algorithm computes the best response sequences. We refer to this
player as i.

The BRS algorithm calculates the expected value of a pure best response to the oppo-
nent’s strategy r∗−i. The algorithm returns both the set of best-response sequences as well
as the expected value of the strategy against the extended strategy of the opponent.

The algorithm is based on a depth-first search that traverses the original unrestricted
game tree. The behavior of the opponent −i is fixed to the strategy given by the extended
realization plan r∗−i. To save computation time, the best-response algorithms use branch
and bound during the search for best-response sequences. The algorithm uses a bound on
the expected value for each inner node, denoted by λ. This bound represents the minimal
utility value that the node currently being evaluated needs to gain in order to be a part

846

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

Require: i - searching player, h - current node, Iki - current information set, r′−i - opponent’s
strategy, Min/MaxUtility - bounds on utility values, λ - lower bound for a node h

1: w ← r−i(seq−i(h)) · C(h)
2: if h ∈ Z then
3: return ui(h) · w
4: else if h ∈ Z ′ \ Z then
5: return u′i(h) · w
6: end if
7: sort a ∈ A(h) based on probability wa ← r′−i

(
seq−i(ha)

)
· C(ha)

8: vh ← 0
9: for a ∈ A(h), wa > 0 do

10: λ′ ← λ−
[
vh + (w − wa) ·MaxUtility

]

11: if λ′ ≤ wa·MaxUtility then
12: v′ ← BRSi(ha, λ

′)
13: if v′ = −∞ then
14: return −∞
15: end if
16: vh ← vh + v′

17: w ← w − wa

18: else
19: return −∞
20: end if
21: end for
22: return vh

Figure 4: BRSi in the nodes of other players.

of a best-response sequence. Using this bound during the search, the algorithm is able to
prune branches that will certainly not be part of any best-response sequence. The bound λ
is set to MinUtility for the root node.

We distinguish 2 cases in the search algorithm: either the algorithm is evaluating an
information set (or more specifically a node h) assigned to the searching player i, or the
node is assigned to one of the other players (either to the opponent, player −i, or it is a
chance node). The pseudocode for these two cases is depicted in Figures 4 and 5.

4.2.1 Nodes of the Opponent

We first describe the case used when the algorithm evaluates node h assigned to either
the opponent of the searching player or to Nature (see Figure 4). The main idea is to
calculate the expected utility for this node according to the (fixed) strategy of the player.
The strategy is known because it is either given by the extended realization plan r∗−i, or by
the stochastic environment (C). Throughout the algorithm, the variable w represents the
probability of this node based on the realization probability of the opponent and stochastic
environment (line 1). This value is iteratively decreased by values wa that represent real-
ization probabilities of the currently evaluated action a ∈ A(h). Finally, vh is the expected
utility value for this node.

The algorithm evaluates actions in the descending order according to the probability
of being played (based on r′−i and C; lines 9–21). First, we calculate a new lower bound

847

Bošanský, Kiekintveld, Lisý, & Pěchouček

λ′ for the successor ha (line 10). The new lower bound is the minimal value that must
be returned from the recursive call BRSi(ha) under the optimistic assumption that all the
remaining actions will yield the maximum possible utility. If the lower bound does not
exceed the maximum possible utility in the game, the algorithm is executed recursively
on the successors (line 12). Note that the algorithm does not evaluate branches with zero
realization probability (line 9).

There are 3 possibilities for pruning in this part of the search algorithm. The first
pruning is possible if the currently evaluated node is a leaf in the restricted game, but this
node is an inner node in the original node (i.e., h ∈ Z ′ \ Z; line 5). The algorithm can
directly use the value from the modified utility function u′ in this case, since it is calculated
as a best response of the searching player against the default strategy of the opponent that
will be applied in the successors of node h since h ∈ Z ′. Secondly, a cut-off also occurs
if the new lower bound for a successor is larger than the maximum possible utility in the
game, since this value can never be obtained in the successor (line 19). Finally, a cut-off
occurs if there was a cut-off in one of the successors (line 14).

4.2.2 Nodes of the Searching Player

In nodes assigned to the searching player, the algorithm evaluates every action in each
state that belongs to the current information set. The algorithm traverses the states in
the descending order according to the probability of occurrence given the strategies of the
opponent and Nature (line 8). Similar to the previous case, in each iteration the algorithm
calculates a new lower bound for the successor node (line 17). The new lower bound λ′

is the minimal value that must be returned from the recursive call BRSi(h
′a) in order for

the action a to be selected as the best action for this information set under the optimistic
assumption that this action yields the maximum possible utility value after applying it in
each of the remaining states in this information set. The algorithm performs a recursive call
(line 20) only for an action that still could be the best in this information set (i.e., the lower
bound does not exceed the maximal possible utility in the game). Note that if a cut-off
occurs in one of the successors, the currently evaluated action a can no longer be the best
action in this information set. Hence, va is set to −∞ and action a will not be evaluated for
any of the remaining nodes. When the algorithm determines which action will be selected
as the best one in an information set, it evaluates only this action for all remaining nodes
in the information set. Finally, the algorithm stores the values for the best action for all
nodes in this information set (line 30). These are reused if the same information set is
visited again (i.e., the algorithm reaches a different node h′ from the same information set
Ii; line 5).

A cut-off occurs in this part of the search algorithm if the maximal possible value vha
is smaller than the lower bound λ after evaluating node h. This means that regardless of
which action will be selected as the best action in this information set, the lower bound
for node h will not be reached; hence, the cut-off occurs (line 27). If a cut-off occurs in
an information set, this information set cannot be reached again and the sequences of the
searching player leading to this information set cannot be a part of the best response. This
is due to propagating the cut-off to at least one previous information set of the searching
player, otherwise there will be no tight lower bound set (the bound is first set only in the

848

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

Require: i - searching player, h - current node, Iki - current information set, r−i - opponent’s
strategy, Min/MaxUtility - bounds on utility values, λ− lower bound for a node h

1: if h ∈ Z then
2: return ui(h) · r′−i(seq−i(h)) · C(h)
3: end if
4: if vh is already calculated then
5: return vh

6: end if
7: H ′ ← {h′; h′ ∈ Ii}
8: sort H ′ descending according to value r−i(seq−i(h

′)) · C(h′)
9: w ←∑

h′∈H′ r−i(seq−i(h
′)) · C(h′)

10: va ← 0 ∀a ∈ A(h); maxAction ← ∅
11: for h′ ∈ H ′ do
12: wh′ ← r′−i(seq−i(h

′)) · C(h′)
13: for a ∈ A(h′) do
14: if maxAction is empty then
15: λ′ ← wh′ ·MinUtility
16: else
17: λ′ ← (vmaxAction + w ·MinUtility)− (va + (w − wh′) ·MaxUtility)
18: end if
19: if λ′ ≤ wh′ ·MaxUtility then
20: vh

′
a ← BRSi(h

′a, λ′)
21: va ← va + vh

′
a

22: end if
23: end for
24: maxAction ← arg maxa∈A(h′) va
25: w ← w − wh′

26: if h was evaluated ∧
(
maxa∈A(h) v

h
a < λ

)
then

27: return −∞
28: end if
29: end for
30: store vh

′
maxAction as vh

′ ∀h′ ∈ H ′
31: return vhmaxAction

Figure 5: BRSi in the nodes of the searching player.

information sets of the searching player). Therefore, there exists at least one action of the
searching player that will never be evaluated again (after a cut-off, the value va for this
action is set to −∞) and cannot be selected as the best action in the information set. Since
we assume perfect recall, all nodes in information set Ii share the same sequence of actions
seqi(Ii); hence, no node h′ ∈ Ii can be reached again.

4.3 Main Loop Alternatives

We now introduce several alternative formulations for the main loop of the sequence-form
double-oracle algorithm. The general approach in the double-oracle algorithm is to solve the
restricted game to find the equilibrium strategy for each player, compute the best responses
in the original game for both of the players, and continue with the next iteration. However,
the sequence-form LP is formulated in our double-oracle scheme in such a way that on each

849

Bošanský, Kiekintveld, Lisý, & Pěchouček

iteration the algorithm can solve the restricted game only from the perspective of a single
player i. In other words, we formulate a single LP as described in Section 3.3 that computes
the optimal strategy of the opponent in the restricted game (player −i), and then compute
the best response of player i to this strategy. This means that on each iteration we can
select a specific player i, for whom we compute the best response in this iteration. We call
this selection process the player-selection policy.

There are several alternatives for the player-selection policy that act as a domain-
independent heuristics in double-oracle algorithm. We consider three possible policies:
(1) the standard double-oracle player-selection policy of selecting both players on each it-
eration, (2) an alternating policy, where the algorithm selects only one player and switches
between the players regularly (player i is selected in one iteration, player −i is selected in
the following iteration), and finally (3) a worse-player-selection policy that selects the player
who currently has the worse bound on the solution quality. At the end of an iteration the
algorithm selects the player i for whom the upper bound on utility value is further away
from the current value of the restricted game. More formally,

arg max
i∈N

∣∣V UB
i − V LP

i

∣∣ (13)

where V LP
i is the last calculated value of the restricted game for player i. The intuition

behind this choice is that either this bound is precise and there are some missing sequences
of this player in the restricted game that need to be added, or the upper bound is overes-
timated. In either case, the best-response sequence algorithm should be run for this player
in the next iteration, either to add new sequences or to tighten the bound. In case of a tie,
the alternating policy is applied in order to guarantee regular switching of the players. We
experimentally compare these policies to show their impact on the overall performance of
the sequence-form double-oracle algorithm (see Section 6).

5. Theoretical Results

In this section we prove that our sequence-form double-oracle algorithm will always con-
verge to a Nash equilibrium of the original unrestricted game. First, we formally define the
strategy computed by the best-response sequence (BRS) algorithm, then we prove lemmas
about the characteristics of the BRS strategies, and finally we prove the main convergence
result. Note that variations of the main loop described in Section 4.3 do not affect the
correctness of the algorithm as long as the player-selection policy ensures that if no im-
provement is made by the BRS algorithm for one player that the BRS algorithm is run for
the opponent on the next iteration.

Lemma 5.1 Let r′−i be a realization plan of player −i in some restricted game G′. BRS(r′−i)
returns sequences corresponding to a realization plan rBRi in the unrestricted game, such that
rBRi is part of a pure best response strategy to r′−i. The value returned by the algorithm is
the value of executing the pair of strategies ui(r

′
−i, r

BR
i).

Proof BRS(r′−i) searches the game tree and selects the action that maximizes the value
of the game for player i in all information sets Ii assigned to player i reachable given
the strategy of the opponent r′−i. In the opponent’s nodes, it calculates the expected value

850

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

according to r′−i where it is defined and the value according to the pure action of the default
strategy πDef

−i where r′−i is not defined. In chance nodes, it returns the expected value of
the node as the sum of the values of the successor nodes weighted by their probabilities. In
each node h, if the successors have the maximal possible value for i then node h also has
the maximal possible value for i (when playing against r′−i). The selections in the nodes
that belong to i achieves this maximal value; hence, they form a best response to strategy
r′−i. �

For brevity we use v(BRS(r′−i)) to denote the value returned by the BRS algorithm,
which is equal to ui(r

′
−i, r

BR
i).

Lemma 5.2 Let r′−i be a realization plan of player −i in some restricted game G′ and let
V ∗i be the value of the original unrestricted game G for player i, then

v(BRS(r′−i)) ≥ V ∗i . (14)

Proof Lemma 5.1 showed that v(BRS(r′−i)) is a value of the best response against r′−i
which is a valid strategy in the original unrestricted game G. If v(BRS(r′−i)) < V ∗i then
V ∗i cannot be the value of the game since player −i has a strategy r′−i that achieves better
utility, which is a contradiction. �

Lemma 5.3 Let r′−i be a realization plan of player −i that is returned by the LP for some
restricted game G′ and let V LP

i be the value of the restricted game returned by the LP, then

v(BRS(r′−i)) ≥ V LP
i . (15)

Proof The realization plan r′−i is part of the Nash equilibrium strategy in a zero-sum
game that guarantees value V LP

i in G′. If the best response computation in the original
unrestricted game G selects only the actions from restricted game G′, it creates the best
response in game G′ as well obtaining value V LP

i . If the best response selects an action
that is not allowed in the restricted game G′, there are two cases.

Case 1 : The best response strategy uses an action in a temporary leaf h ∈ Z ′ \ Z.
Player i makes the decision in the leaf, because otherwise the value of the temporary leaf
would be directly returned by BRS. The value of the temporary leaf has been under-
estimated for player i in the restricted game by the modified utility function u′ and it is
over-estimated in the BRS computation as the best response to the default strategy πDef

−i .
The value of the best response can only increase by including this action.

Case 2 : The best response strategy uses an action not allowed in G′ in an internal node
of the restricted game H ′ \ Z ′. This can occur in nodes assigned to player i, because the
actions of player −i going out of G′ have probability zero in r′−i. BRS takes the action
with maximum value in the nodes assigned to player i, so the reason for selecting an action
leading outside G′ is that it has greater or equal value to the best action in G′. �

Lemma 5.4 Under the assumptions of the previous lemma, if v(BRS(r′−i)) > V LP
i then it

returns sequences that are added to the restricted game G′ in the next iteration.

851

Bošanský, Kiekintveld, Lisý, & Pěchouček

Proof Based on the proof of the previous Lemma, BRS for player i can improve over
the value of the LP (V LP

i) only by selecting an action a that is not present in G′ but is
performed in a node h that is included in G′ (in which i makes decision). Let (σi, σ−i) be
the pair of sequences leading to h. Then in the construction of the restricted game for the
next iteration, sequence σ−i is the sequence that ensures that σia can be executed in full
and will be part of the new restricted game. �

Note, that Lemmas 5.2 and 5.4 would not hold if the utility values u′ for temporary
leaves (h ∈ Z ′ \ Z) are set arbitrarily. The algorithm sets the values in temporary leaf h
as if the player p(h) continues by playing the default strategy and the opponent (−p(h)) is
playing the best response. If the utility values for the temporary leaves are set arbitrarily
and used in the BRS algorithms to speed-up the calculation as proposed (see the algorithm
in Figure 4, line 5), then Lemma 5.2 does not need to hold in cases where the value in
node h strictly overestimates the optimal expected value for player p(h). In this case, the
best-response value of the opponent may be lower than the optimal outcome,

v
(
BRS(rp(h))

)
< V ∗−p(h) (16)

On the other hand, if the BRS algorithm does not use the temporary values u′ for such a
node, then Lemma 5.4 is violated because the best-response value will be strictly higher for
player −p(h) even though no new sequences are to be added into the restricted game.

Theorem 5.5 The sequence-form double-oracle algorithm for extensive-form games de-
scribed in the previous section terminates if and only if

v(BRS(r′−i)) = −v(BRS(r′i)) = V LP
i = V ∗i , (17)

which always happens after a finite number of iterations (because the game is finite), and
strategies (r′i, r

′
−i) are a Nash equilibrium of the original unrestricted game.

Proof First we show that the algorithm continues until all equalities (17) hold. If
v(BRS(r′−i)) 6= −v(BRS(r′i)) then from Lemma 5.2 and Lemma 5.4 we know that for
some player i it holds that BRS(r′−i) > V LP

i , so the restricted game in the following iter-
ation is larger by at least one action and the algorithm continues. In the worst case, the
restricted game equals the complete game G′ = G, and it cannot be extended any further.
In this case the BRS cannot find a better response then V ∗i and the algorithm stops due
to Lemma 5.4.

If the condition in the theorem holds the algorithm has found a NE in the complete
game, because from Lemma 5.1 we know that rBR−i = BRS(r′i) is the best response to r′i in
the complete game. However, if the value of the best response to a strategy in a zero-sum
game is the value of the game, then the strategy r′i is optimal and it is part of a Nash
equilibrium of the game. �

6. Experiments

We now present our experimental evaluation of the performance of the sequence-form
double-oracle algorithm for EFGs. We compare our algorithm against two state-of-the-art

852

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

baselines, the full sequence-form LP (referred to as FullLP from now on), and Counter-
factual Regret Minimization (CFR). The first baseline is the standard exact method for
solving sequence-form EFG, while CFR is one of the leading approximate algorithms ap-
plied to EFG. Our experimental results demonstrate the advantages of the double-oracle
algorithm on three different classes of realistic EFGs. We also test the impact of the different
variants of the main loop of the algorithm described in Section 4.3.

We compare three variants of the sequence-form double-oracle algorithm: (1) DO-b
is a variant in which the best-responses are calculated for both players in each iteration;
(2) DO-sa calculates the best-response for a single player on each iteration according to
a simple alternating policy; and (3) DO-swp is a variant in which the best-response is
calculated for a single player according to the worse-player selection policy. For all of the
variants of the double-oracle algorithm we use the same default strategy where the first
action applicable in a state is played by default.

Since there is no standardized collection of zero-sum extensive-form games for bench-
mark purposes, we use several specific games to evaluate the double-oracle algorithm and
to identify the strengths and weaknesses of the algorithm. The games were selected to
evaluate the performance under different conditions, so the games differ in the maximal
utility the players can gain, in the causes of the imperfect information, and in the structure
of the information sets. One of the key characteristics that affects the performance of the
double-oracle algorithm is the relative size of the support of Nash equilibria (i.e., the num-
ber of sequences used in a NE with non-zero probability). If there does not exist a NE with
small support, the algorithm must necessarily add a large fraction of the sequences into the
restricted game to find a solution, mitigating the advantages of the double-oracle approach.

We present results for two types of games where the double-oracle significantly outper-
forms the FullLP on all instances: a search game motivated by border patrol and Phantom
Tic-Tac-Toe. We also present results on a simplified version of poker for which the double-
oracle algorithm does not always improve the computation time. However, the FullLP
also has limited scalability due to larger memory requirements and cannot find solutions for
larger variants of poker, while the double-oracle algorithm is able to solve these instances.

Our principal interest is in developing new generic methods for solving extensive-form
games. Therefore, we implemented the algorithm in a generic framework for modeling arbi-
trary extensive-form games.1 The algorithms do not use any domain-specific knowledge in
the implementation, and do not rely on any specific ordering of the actions. The drawbacks
of this generic implementation are higher memory requirements and additional overhead
for the algorithms. A domain-specific implementation could improve the performance by
eliminating some of the auxiliary data structures. We run all of the experiments using a
single thread on an Intel i7 CPU running at 2.8 GHz. Each of the algorithms was given a
maximum of 10 GB of memory for Java heap space. We used IBM CPLEX 12.5 for solving
the linear programs, with parameter settings to use a single thread and the barrier solution
algorithm.

In addition to runtimes, we analyze the speed of convergence of the double-oracle al-
gorithms and compare it to one of the state-of-the-art approximative algorithms, Counter-
factual Regret Minimization (CFR). We implemented CFR in a domain independent way

1. Source code is available at the home pages of the authors.

853

Bošanský, Kiekintveld, Lisý, & Pěchouček

based on the pseudocode in the work of Lanctot (2013, p. 22). In principle, it is sufficient
for CFR to maintain only a set of information sets and apply the no-regret learning rule
in each information set. However, maintaining and traversing such a set effectively in a
domain independent manner could be affected by our implementation of generic extensive-
form games data structures (i.e., generating applicable actions in the states of the game,
applying the actions, etc.). Therefore we use an implementation where CFR traverses the
complete game tree that is held in memory to maintain the fairness of the comparison, and
to guarantee the maximal possible speed of convergence of the CFR algorithm. The time
necessary to build the game tree is not included in the computation time of CFR.

6.1 Test Domains

Search Games Our first test belongs to the class of search (or pursuit-evasion) games,
often used in experimental evaluation of double-oracle algorithms (McMahan et al., 2003;
Halvorson et al., 2009). The search game has two players: the patroller (or the defender)
and the evader (or the attacker). The game is played on a directed graph (see Figure 6),
where the evader aims to cross safely from a starting node (E) to a destination node (D).
The defender controls two units that move in the intermediate nodes (the shaded areas)
trying to capture the evader by occupying the same node as the evader. During each turn
both players move their units simultaneously from the current node to an adjacent node,
or the units stay in the same location. The only exception is that the evader cannot stay in
the two leftmost nodes. If a pre-determined number of turns is made without either player
winning, the game is a draw. This is an example of a win-tie-loss game and the utility
values are from the set {−1, 0, 1}.

Players are unaware of the location and the actions of the other player with one exception
– the evader leaves tracks in the visited nodes that can be discovered if the defender visits
the nodes later. The game also includes an option for the evader to avoid leaving the tracks
using a special move (a slow move) that requires two turns to simulate the evader covering
the tracks.

Figure 6 shows examples of the graphs used in the experiments. The patrolling units
can move only in the shaded areas (P1,P2), and they start at any node in the shaded
areas. Even though the graph is small, the concurrent movement of all units implies a large
branching factor (up to ≈ 50 for one turn) and thus large game trees (up to ≈ 1011 nodes).
In the experiments we used three different graphs, varied the maximum number of turns
of the game (from 3 to 7), and we altered the ability of the attacker to perform the slow
moves (labeled SA if the slow moves are allowed, SD otherwise).

Phantom Tic-Tac-Toe The second game is a blind variant of the well-known game of
Tic-Tac-Toe (e.g., used in Lanctot et al., 2012). The game is played on a 3×3 board, where
two players (cross and circle) attempt to place 3 identical marks in a horizontal, vertical,
or diagonal row to win the game. In the blind variant, the players are unable to observe
the opponent’s moves and each player only knows that the opponent made a move and it is
her turn. Moreover, if a player tries to place her mark on a square that is already occupied
by an opponent’s mark, the player learns this information and can place the mark in some
other square. Again, the utility values of this game are from the set {−1, 0, 1}.

854

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

Figure 6: Three variants of the graph used in the experiments on the search game; we refer
to them as G1 (left), G2 (middle), and G3 (right).

The uncertainty in phantom Tic-Tac-Toe makes the game large (≈ 109 nodes). In
addition, since one player can try several squares before her move is successful, the players
do not necessarily alternate in making their moves. This rule makes the structure of the
information sets rather complicated and since the opponent never learns how many attempts
the first player actually performed, a single information set can contain nodes at different
depths in the game tree.

Poker Games Poker is frequently studied in the literature as an example of a large
extensive-form game with imperfect information. We include experiments with a simplified
two-player poker game inspired by Leduc Hold’em.

In our version of poker, each player starts with the same amount of chips and both
players are required to put some number of chips in the pot (called the ante). In the next
step, the Nature player deals a single card to each player (the opponent is unaware of the
card) and the betting round begins. A player can either fold (the opponent wins the pot),
check (let the opponent make the next move), bet (being the first to add some amount of
chips to the pot), call (add the amount of chips equal to the last bet of the opponent into
the pot), or raise (match and increase the bet of the opponent). If no further raise is made
by any of the players, the betting round ends, the Nature player deals one card on the
table, and the second betting round with the same rules begins. After the second betting
round ends, the outcome of the game is determined – a player wins if: (1) her private card
matches the table card and the opponent’s card does not match, (2) none of the players’
cards matches the table card and her private card is higher than the private card of the
opponent, or (3) the opponent folds. The utility value is the amount of chips the player has
won or lost. If no player wins, the game is a draw and the pot is split.

In the experiments we alter the number of types of the cards (from 3 to 4; there are
3 types of cards in Leduc), the number of cards of each type (from 2 to 3; set to 2 in Leduc),
the maximum length of sequence of raises in a betting round (ranging from 1 to 4; set to 1
in Leduc), and the number of different sizes of bets (i.e., amount of chips added to the pot)
for bet/raise actions (ranging from 1 to 4; set to 1 in Leduc).

6.2 Results

Search Games The results for the search game scenarios show that the sequence-form
double-oracle algorithm is particularly successful when applied to games where NEs with
small support exist. Figure 7 shows a comparison of the running times for FullLP and
variants of the double-oracle algorithm (note the logarithmic y-scale). All variants of the

855

Bošanský, Kiekintveld, Lisý, & Pěchouček

10
0

10
1

10
2

10
3

G1-SD G2-SD G3-SD G1-SA G2-SA G3-SA

T
im

e
[s

]
(l

o
g

 s
ca

le
)

Search Game Scenarios - Depth 6

FullLP
DO-B

DO-SA
DO-SWP

10
0

10
1

10
2

10
3

G1-SD G2-SD G3-SD G1-SA G2-SA G3-SA

T
im

e
[s

]
(l

o
g

 s
ca

le
)

Search Game Scenarios - Depth 7

FullLP
DO-B

DO-SA
DO-SWP

Figure 7: Comparison of the running times on 3 different graphs with either slow moves
allowed (SA) or disallowed (SD), the depth is set to 6 (left subfigure) or 7 (right subfigure).
Missing values for the FullLP algorithm indicate that the algorithm runs out of memory.

double-oracle algorithm are several orders of magnitude faster than FullLP. This is most
apparent on the fully-connected graph (G2) that generates the largest game tree. When
slow moves are allowed and the depth is set to 6, it takes almost 100 seconds for FullLP
to solve the instance of the game but all variants of the double-oracle algorithms solve the
game in less than 3 seconds. Moreover, when the depth is increased to 7, FullLP was
unable to solve the game due to the memory constraints, while the fastest variant DO-swp
solved the game in less than 5 seconds. Similar results were obtained for the other graphs.

The graph G1 induced a game that was the most difficult for the double-oracle algorithm:
when the depth is set to 7, it takes almost 6 minutes for FullLP to solve the instance, while
the fastest variant DO-swp solved the game in 21 seconds. The reason is that even though
the game tree is not the largest, there is a more complex structure of the information sets.
This is due to limited compatibility among the sequences of the players; when the patrolling
unit P1 observes the tracks in the top-row node, the second patrolling unit P2 can capture
the evader only in the top-row node, or in the middle-row node.

Comparing the different variants of the sequence-form double-oracle algorithm does
not show consistent results. There is no variant consistently better in this game since all
the double-oracle variants are typically able to compute a Nash equilibrium very quickly.
However, DO-swp is often the fastest and for some settings the difference is quite significant.
The speed-up this variant offers is most apparent on the G1 graph. On average through all
instances of the search game, DO-sa uses 92.59% of the computation time of DO-b, and
DO-swp uses 88.25%.

Table 3 shows a breakdown of the cumulative computation time spent in different com-
ponents of the double-oracle algorithm: solving the restricted game (LP), calculating best
responses (BR), and creating a valid restricted game after selecting new sequences to add
(Validity). The results show that due to the size of the game, the computation of the
best-response sequences takes the majority of the time (typically around 75% on larger
instances), while creating the restricted game and solving it takes only a small fraction of
the total time. It is also noticeable that the size of the final restricted game is very small

856

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 50 100 150 200

B
o

u
n

d
s

In
te

rv
al

 S
iz

e
[-

]
(l

o
g

 s
ca

le
)

Time [s]

DO-B DO-SA DO-SWP CFR

Figure 8: Convergence of variants of the double-oracle algorithm and CFR on the search
game domain: y-axis displays the current approximation error.

Algorithm Overall [s] LP [s] BR [s] Validity [s] Iterations |Σ′1|(|Σ
′
1|

|Σ1|) |Σ′2|(|Σ
′
2|

|Σ2|)

FullLP 351.98 − − − − − −
DO-b 81.51 6.97 63.39 10.58 187 252 (17.22%) 711 (0.26%)

DO-sa 54.32 5.5 39.11 9.09 344 264 (18.05%) 649 (0.24%)

DO-swp 21.15 1.93 16.28 2.47 209 193 (13.19%) 692 (0.25%)

Table 3: Cumulative running times for different components of the double-oracle algorithm,
iterations, and size of the restricted game in terms of the number of sequences compared to
the size of the complete game. The results are shown for scenario G1, depth 7, and allowed
slow moves.

compared to the original game, since the number of sequences for the second player (the
defender) is less than 1% (there are 273,099 sequences for the defender).

Finally, we analyze the convergence rate of the variants of the double-oracle algorithm.
The results are depicted in Figure 8, where the size of the interval given by the bounds
V UB
i and V LB

i defines the current error of the double-oracle algorithm as |V UB
i − V LB

i |.
The convergence rate of the CFR algorithm is also depicted. The error of CFR is calculated
in the same way, as a sum of the best-response values to the current mean strategies from
the CFR algorithm. We can see that all variants of the double-oracle algorithm perform
similarly – the error drops very quickly to 1 and a few iterations later each version of the
algorithm quickly converges to an exact solution. These results show that in this game the
double-oracle algorithm can very quickly find the correct sequences of actions and compute
an exact solution, in spite of the size of the game. In comparison, the CFR algorithm can
also quickly learn the correct strategies in most of the information sets, but the convergence
has a very long tail. After 200 seconds, the error of CFR is equal to 0.0657 and it is dropping
very slowly (0.0158 after 1 hour). The error of CFR is quite significant considering the value
of the game in this case (−0.3333).

Phantom Tic-Tac-Toe The results on Phantom Tic-Tac-Toe confirm that this game is
also suitable for the sequence-form double-oracle algorithm. Due to the size of the game,
both baseline algorithms (the FullLP and CFR) ran out of memory and were not able

857

Bošanský, Kiekintveld, Lisý, & Pěchouček

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5000 10000 15000 20000 25000

B
o

u
n

d
s

In
te

rv
al

 S
iz

e
[-

]
(l

o
g

 s
ca

le
)

Time [s]

DO-B DO-SA DO-SWP

10
3

10
4

Random Domain-dependent

T
im

e
[s

]
(l

o
g

 s
ca

le
)

Different Action Ordering in Phantom Tic-Tac-Toe

DO-B
DO-SA

DO-SWP

Figure 9: (left) Comparison of the convergence rate of the double-oracle variants for Phan-
tom Tic-Tac-Toe; (right) Comparison of the performance of the double-oracle variants for
Phantom Tic-Tac-Toe when domain-specific move ordering and default strategy is used.

Algorithm Overall [s] LP [s] BR [s] Validity [s] Iterations |Σ′1|(|Σ
′
1|

|Σ1|) |Σ′2|(|Σ
′
2|

|Σ2|)

FullLP N/A − − − − − −
DO-b 21,197 2,635 17,562 999 335 7,676 (0.60%) 10,095 (0.23%)

DO-sa 17,667 2,206 14,560 900 671 7,518 (0.59%) 9,648 (0.22%)

DO-swp 17,589 2,143 14,582 864 591 8,242 (0.65%) 8,832 (0.20%)

Table 4: Cumulative running times for different components of the double-oracle algorithm
for the game of Phantom Tic-Tac-Toe.

to solve the game. Therefore, we only compare the times for different variants of the
double-oracle algorithm. Figure 9 (left subfigure) shows the overall performance of all three
variants of the double-oracle algorithm in the form of a convergence graph. We see that the
performance of two of the variants is similar, with the performance of DO-sa and DO-swp
almost identical. On the other hand, the results show that DO-b converges significantly
slower.

The time breakdown of the variants of the double-oracle algorithm is shown in Table 4.
Similarly to the previous case, the majority of the time (≈ 83%) is spent in calculating
the best responses. Out of all variants of the double-oracle algorithm, the DO-swp variant
is the fastest one. It converged in significantly fewer iterations compared to the DO-sa
variant (iterations are twice as expensive in the DO-b variant).

We now present the results that demonstrate the potential of combining the sequence-
form double-oracle algorithm with domain-specific knowledge. Every variant of the double-
oracle algorithm can use a move ordering based on domain-specific heuristics. The move
ordering determines the default strategy (recall that our algorithm uses the first action as
the default strategy for each player), and the direction of the search in the best response
algorithms. By replacing the randomly generated move ordering with a heuristic one that
chooses better actions first, the results show a significant improvement in the performance
of all of the variants (see Figure 9, right subfigure), even though there are no changes to
the rest of the algorithm. Each variant was able to solve the game in less than 3 hours, and
it took 2 hours for the fastest DO-swp variant.

858

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

 0

 50

 100

 150

 200

R1 R2 R3 R4

T
im

e
[s

]

Increasing number of allowed "Raise Actions"

FullLP
DO-B

DO-SA
DO-SWP

10
0

10
1

10
2

10
3

10
4

B1 B2 B3 B4

T
im

e
[s

]
(l

o
g

 s
ca

le
)

Increasing size of possible bets

FullLP
DO-B

DO-SA
DO-SWP

Figure 10: Comparison of the running times on different variants of the simplified poker
game. The left subfigure shows the computation times with an increasing number of raise
actions allowed, the right subfigure shows the computation times with an increasing number
of different bet sizes for raise/bet actions.

Poker Games Poker represents a game where the double-oracle algorithms do not per-
form as well and the sequence-form LP is often faster on smaller instances. One significant
difference compared to the previous games is that the size of the NE support is larger
(around 5% of sequences for larger instances). Secondly, the game trees of poker games
are relatively shallow and the only imperfect information in the game is due to Nature.
As a result, the double-oracle algorithms require a larger number of iterations to add more
sequences into the restricted game (up to 10% of all sequences for a player are added even
for the largest poker scenarios) in order to find the exact solution. However, with increasing
depth and/or branching factor, the size of the game grows exponentially and FullLP is
not able to solve the largest instances due to the memory constraints.

Figure 10 shows the selected results for simplified poker variants. The results in the
left subfigure show the computation times with increasing depth of the game by allowing
the players to re-raise (players are allowed to re-raise their opponent a certain number of
times). The remaining parameters are fixed to 3 types of cards, 2 cards of each type, and 2
different betting sizes. The size of the game grows exponentially, with the number of possible
sequences increasing to 210,937 for each player for the R4 scenario. The computation time
for FullLP is directly related to the size of the tree and increases exponentially with the
increasing depth (note that there is a standard y scale). On the other hand, the increase is
less dramatic for all of the variants of the double-oracle algorithm. The DO-swp variant is
the fastest for the largest scenario – while FullLP solved this instance in 126 seconds, it
took only 103 seconds for DO-swp. Finally, FullLP is not able to solve the games if we
increase the length to R5 due to memory constraints, while the computation time of all of
the double-oracle algorithms increases only marginally.

The right subfigure of Figure 10 shows the increase in computation time with an in-
creasing number of different bet sizes for raise/bet actions. The remaining parameters were
fixed to 4 types of cards, 3 cards of each type, and 2 raise actions allowed. Again, the
game grows exponentially with the increasing branching factor. The number of sequences
increases up to 685,125 for each player for the B4 scenario, and the computation time of

859

Bošanský, Kiekintveld, Lisý, & Pěchouček

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 50 100 150 200 250 300 350 400

B
o

u
n

d
s

In
te

rv
al

 S
iz

e
[-

]
(l

o
g

 s
ca

le
)

Time [s]

DO-B DO-SA DO-SWP CFR

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 200 400 600 800 1000 1200 1400

B
o

u
n

d
s

In
te

rv
al

 S
iz

e
[-

]
(l

o
g

 s
ca

le
)

Time [s]

DO-B DO-SA DO-SWP CFR

Figure 11: Comparison of the convergence of the variants of the double-oracle algorithm
and CFR for two variants of the simplified poker with 4 types of cards, and 3 cards of each
type. There are 4 raise actions allowed, 2 different bet sizes in the left subfigure; there are
2 raise actions allowed, 3 different bet sizes in the right subfigure.

Algorithm Overall [s] LP [s] BR [s] Validity [s] Iterations |Σ′1|(|Σ
′
1|

|Σ1|) |Σ′2|(|Σ
′
2|

|Σ2|)

FullLP 278.18 − − − − − −
DO-b 234.60 149.32 56.04 28.61 152 6,799 (1.81%) 6,854 (1.83%)

DO-sa 199.24 117.71 51.25 29.59 289 6,762 (1.80%) 6,673 (1.78%)

DO-swp 182.68 108.95 48.25 24.8 267 6,572 (1.75%) 6,599 (1.76%)

Table 5: Cumulative running times for different components of the double-oracle algorithm,
iterations, and sizes of the restricted game in terms of the number of sequences compared
to the size of the complete game. The results are shown for poker scenario with 4 raise
actions allowed, 2 different betting values, 4 types of cards, and 3 cards of each type.

all algorithms increases exponentially as well (note logarithmic y scale). The results show
that even with the increasing branching factor, the double-oracle variants tend to be slower
than solving the FullLP. However, while the FullLP ran out of memory for the largest
B4 setting, all of the double-oracle variants were able to find the exact solution using less
memory.

Comparing the different variants of the double-oracle algorithm using the convergence
graph (see Figure 11) and the decomposition of the computation times (see Table 5) shows
that DO-swp is the fastest variant in the selected scenario (and in nearly all of poker
scenarios). Decomposition of the overall time shows that the majority of the computation
time is spent in solving the restricted game LP (up to 65%). The decomposition also shows
that DO-swp is typically faster due to the lower number of iterations. In addition, the
final size of the restricted game is typically the smallest for this variant. On average over
all instances of the poker games, DO-sa uses 86.57% of the computation time of DO-b,
and DO-swp uses 82.3% of the computation time.

Convergence in poker games is slower compared to search games of similar size (note the
logarithmic scale in Figure 11). Comparing the double-oracle algorithm variants with CFR
shows an interesting result in the left subfigure. Due to the size of the game, the speed of
the CFR convergence is nearly the same as for the double-oracle algorithms during the first

860

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

iterations. However, while the double-oracle algorithms continue to converge at roughly the
same rate and are able to find an exact solution, the error of the CFR algorithm decreases
very slowly. In the scenario depicted in the left subfigure, the CFR algorithm converged
to an error of 0.1212 (the value of the game in this case is ≈ −0.09963) after 400 seconds.
After 1 hour, the error dropped to 0.0268. For scenarios with more shallow game trees and
larger branching factor, the convergence of CFR is faster at the beginning compared to the
double-oracle algorithms (right subfigure of Figure 11). However, the main disadvantage of
CFR having a long tail for convergence is still the case and the error after 1600 seconds is
still over 0.0266 (the value of this game is ≈ −0.09828).

6.3 Discussion of the Results

The experimental results support several conclusions. The results demonstrate that the
sequence-form double-oracle algorithm is able to compute an exact solution for much larger
games compared to the state-of-the-art exact algorithm based on the sequence-form linear
program. Moreover, we have experimentally shown that there are realistic games where only
a small fraction of sequences are necessary to find a solution of the game. In these cases,
the double-oracle algorithms also significantly speed up the computation time. Our results
indicate that the DO-swp variant is typically the fastest, but not in all cases. By selecting
the player that currently has the worse bound on performance, the DO-swp version can
add more important sequences, or prove that there are not any better sequences and adjust
the upper bound on the value faster.

Comparing the speed of convergence of the double-oracle algorithms with the state-of-
the-art approximative algorithm CFR showed that CFR quickly approximates the solution
during the first iterations. However, the convergence of CFR has a very long tail and CFR is
not able to find an exact solution for larger games in a reasonable time. Another interesting
observation is that for some games the convergence rate of the double-oracle algorithms
and CFR is similar in the first iterations, and while the double-oracle algorithms continue
at this rate and find an exact solution, the long tail convergence remains for CFR. This is
despite the fact that our implementation of CFR has an advantage of having the complete
game tree including the states for all histories in memory.

Unfortunately, it is difficult to characterize the exact properties of the games for which
the double-oracle algorithms perform better in terms of computation time compared to the
other algorithms. Certainly, the double-oracle algorithm is not suitable for games were
the only equilibria have large support due to the necessity of large number of iterations.
However, having a small support equilibrium is not a sufficient condition. This is apparent
due to two graphs shown in the poker experiments, where either the depth of the game tree
or the branching factor was increased. Even though the game grows exponentially and the
size of the support decreases to ≈ 2.5% in both cases, the behavior of the double-oracle
algorithms is quite different. Our conjecture is that games with longer sequences suit the
double-oracle algorithms better, since several actions that form the best-response sequences
can be added during a single iteration. This contrasts with shallow game trees with large
branching factors, where more iterations are necessary to add multiple actions. However,
a deeper analysis to identify the exact properties of the games that are suitable is an open
question that must be analyzed for normal-form games first.

861

Bošanský, Kiekintveld, Lisý, & Pěchouček

7. Conclusion

We present a novel exact algorithm for solving two player zero-sum extensive-form games
with imperfect information. Our approach combines the compact sequence-form represen-
tation for extensive-form games with the iterative algorithmic framework of double-oracle
methods. This integrates two successful approaches for solving large scale games that have
not yet been brought together for the general class of games that our algorithm addresses.
The main idea of our algorithm is to restrict the game by allowing players to play only a
restricted set of sequences from the available sequences of actions, and to iteratively expand
the restricted game over time using fast best-response algorithms. Although in the worst
case the double-oracle algorithm may need to add all possible sequences, the experimental
results on different domains prove that the double-oracle algorithm can find an exact Nash
equilibrium prior to constructing the full linear program for the complete game. Therefore,
the sequence-form double-oracle algorithm reduces the main limitation of the sequence-form
linear program—memory requirements—and it is able to solve much larger games compared
to state-of-the-art methods. Moreover, since our algorithm is able to identify the sequences
of promising actions without any domain-specific knowledge, it can also provide a significant
runtime improvements.

The proposed algorithm also has another crucial advantage compared to the current state
of the art. The double-oracle framework offers a decomposition of the problem of computing
a Nash equilibrium into separate sub-problems, including the best-response algorithms, the
choice of the default strategy, and the algorithms for constructing and solving the restricted
game. We developed solutions for all of these sub-problems in a domain-independent man-
ner. However, we can also view our algorithm as a more general framework that can be
specialized with domain-specific components that take advantage of the structure of specific
problems to improve the performance of these sub-problems. This can lead to substantial
improvements in the speed of the algorithm, the number of iterations, as well as reducing
the final size of the restricted game. We demonstrated the potential of the domain-specific
approach on the game of Phantom Tic-Tac-Toe. Another example is that fast best-response
algorithms that operate on the public tree (i.e., a compact representation of games with
publicly observable actions; see Johanson, Bowling, Waugh, & Zinkevich, 2011) can be ex-
ploited for games like poker. Finally, our formal analysis identifies the key properties that
these domain-specific implementations need to satisfy to guarantee the convergence to the
correct solution of the game.

Our algorithm opens up a large number of directions for future work. It represents a new
class of methods for solving extensive-form games with imperfect information that operates
very differently than other common approaches (e.g., counterfactual regret minimization),
and many possible alternatives to improve the performance of the algorithm remain to
be investigated. Examples include more sophisticated calculation of utility values for the
temporary leaves, alternative strategies for expanding the restricted game, and removing
unused sequences from the restricted game. A broader analysis of using the sequence-
form double-oracle algorithm as an approximation technique should be performed, possibly
by exploring alternative approximative best-response algorithms based on sampling (e.g.,
Monte Carlo) techniques.

862

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

There are also several theoretical questions that could be investigated. First, the per-
formance of the double-oracle algorithm depends strongly on the number of iterations and
sequences that need to be added. However, the theoretical question regarding the expected
number of iterations and thus the speed of the convergence of the double-oracle algorithm
have not been explored even for simpler game models (e.g., games in the normal form). An
analysis of these simpler models is needed to identify the general properties of games where
the double-oracle methods tend to be faster and to identify the optimal way of expanding
the restricted game.

Acknowledgements

Earlier versions of this paper were published at the European Conference on Artificial
Intelligence (ECAI) (Bosansky, Kiekintveld, Lisy, & Pechoucek, 2012) and the conference
on Autonomous Agents and Multi Agent Systems (AAMAS) (Bosansky, Kiekintveld, Lisy,
Cermak, & Pechoucek, 2013). The major additions to this full version include (1) a novel,
more detailed description of all parts of the algorithm, (2) introduction and analysis of
different policies for the player selection in the main loop of the double-oracle algorithm,
(3) new experiments on the phantom tic-tac-toe domain together with a more thorough
analysis of the experimental results on all domains, including the analysis of the convergence
of the algorithm, (4) experimental comparison with CFR, and finally (5) extended analysis
of related work.

This research was supported by the Czech Science Foundation (grant no. P202/12/2054)
and by U.S. Army Research Office (award no. W911NF-13-1-0467).

References

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H.
(1998). Branch-And-Price: Column Generation for Solving Huge Integer Programs.
Operations Research, 46, 316–329.

Bosansky, B., Kiekintveld, C., Lisy, V., Cermak, J., & Pechoucek, M. (2013). Double-
oracle Algorithm for Computing an Exact Nash Equilibrium in Zero-sum Extensive-
form Games. In Proceedings of International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 335–342.

Bosansky, B., Kiekintveld, C., Lisy, V., & Pechoucek, M. (2012). Iterative Algorithm for
Solving Two-player Zero-sum Extensive-form Games with Imperfect Information. In
Proceedings of the 20th European Conference on Artificial Intelligence (ECAI), pp.
193–198.

Cermak, J., Bosansky, B., & Lisy, V. (2014). Practical Performance of Refinements of
Nash Equilibria in Extensive-Form Zero-Sum Games. In Proceedings of European
Conference on Artificial Intelligence (ECAI), pp. 201–206.

Dantzig, G., & Wolfe, P. (1960). Decomposition Principle for Linear Programs. Operations
Research, 8, 101–111.

Ganzfried, S., & Sandholm, T. (2013). Improving Performance in Imperfect-Information
Games with Large State and Action Spaces by Solving Endgames. In Computer

863

Bošanský, Kiekintveld, Lisý, & Pěchouček

Poker and Imperfect Information Workshop at the National Conference on Artificial
Intelligence (AAAI).

Gibson, R., Lanctot, M., Burch, N., Szafron, D., & Bowling, M. (2012). Generalized Sam-
pling and Variance in Counterfactual Regret Minimization. In Proceedings of the 26th
AAAI Conference on Artificial Intelligence, pp. 1355–1361.

Halvorson, E., Conitzer, V., & Parr, R. (2009). Multi-step Multi-sensor Hider-seeker Games.
In Proceedings of the Joint International Conference on Artificial Intelligence (IJCAI),
pp. 159–166.

Hoda, S., Gilpin, A., Peña, J., & Sandholm, T. (2010). Smoothing Techniques for Computing
Nash Equilibria of Sequential Games. Mathematics of Operations Research, 35 (2),
494–512.

Jain, M., Conitzer, V., & Tambe, M. (2013). Security Scheduling for Real-world Networks.
In Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 215–222.

Jain, M., Korzhyk, D., Vanek, O., Conitzer, V., Tambe, M., & Pechoucek, M. (2011). Double
Oracle Algorithm for Zero-Sum Security Games on Graph. In Proceedings of the 10th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pp. 327–334.

Johanson, M., Bowling, M., Waugh, K., & Zinkevich, M. (2011). Accelerating Best Response
Calculation in Large Extensive Games. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI), pp. 258–265.

Koller, D., & Megiddo, N. (1992). The Complexity of Two-Person Zero-Sum Games in
Extensive Form. Games and Economic Behavior, 4, 528–552.

Koller, D., Megiddo, N., & von Stengel, B. (1996). Efficient Computation of Equilibria for
Extensive Two-Person Games. Games and Economic Behavior, 14 (2), 247–259.

Koller, D., & Megiddo, N. (1996). Finding Mixed Strategies with Small Supports in Exten-
sive Form Games. International Journal of Game Theory, 25, 73–92.

Kreps, D. M., & Wilson, R. (1982). Sequential Equilibria. Econometrica, 50 (4), 863–94.

Lanctot, M. (2013). Monte Carlo Sampling and Regret Minimization for Equilibrium Com-
putation and Decision Making in Large Extensive-Form Games. Ph.D. thesis, Univer-
sity of Alberta.

Lanctot, M., Gibson, R., Burch, N., Zinkevich, M., & Bowling, M. (2012). No-Regret
Learning in Extensive-Form Games with Imperfect Recall. In Proceedings of the 29th
International Conference on Machine Learning (ICML 2012), pp. 1–21.

Lanctot, M., Waugh, K., Zinkevich, M., & Bowling, M. (2009). Monte Carlo Sampling
for Regret Minimization in Extensive Games. In Advances in Neural Information
Processing Systems (NIPS), pp. 1078–1086.

Lee, C.-S., Wang, M.-H., Chaslot, G., Hoock, J.-B., Rimmel, A., Teytaud, O., Tsai, S.-R.,
Hsu, S.-C., & Hong, T.-P. (2009). The Computational Intelligence of Mogo Revealed
in Taiwans Computer Go Tournaments. IEEE Transactions on Computational Intel-
ligence and AI in Games, 1, 73–89.

864

An Exact Double-Oracle Algorithm for Zero-Sum EFGs with Imperfect Information

Letchford, J., & Vorobeychik, Y. (2013). Optimal Interdiction of Attack Plans. In Pro-
ceedings of the 12th International Conference on Automonous Agents and Multiagent
Systems (AAMAS), pp. 199–206.

Lisy, V., Kovarik, V., Lanctot, M., & Bosansky, B. (2013). Convergence of Monte Carlo Tree
Search in Simultaneous Move Games. In Advances in Neural Information Processing
Systems (NIPS), Vol. 26, pp. 2112–2120.

McMahan, H. B. (2006). Robust Planning in Domains with Stochastic Outcomes, Adver-
saries, and Partial Observability. Ph.D. thesis, Carnegie Mellon University.

McMahan, H. B., & Gordon, G. J. (2007). A Fast Bundle-based Anytime Algorithm for
Poker and other Convex Games. Journal of Machine Learning Research - Proceedings
Track, 2, 323–330.

McMahan, H. B., Gordon, G. J., & Blum, A. (2003). Planning in the Presence of Cost
Functions Controlled by an Adversary. In Proceedings of the International Conference
on Machine Learning, pp. 536–543.

Miltersen, P. B., & Sørensen, T. B. (2008). Fast Algorithms for Finding Proper Strategies
in Game Trees. In Proceedings of Symposium on Discrete Algorithms (SODA), pp.
874–883.

Miltersen, P. B., & Sørensen, T. B. (2010). Computing a Quasi-Perfect Equilibrium of a
Two-Player Game. Economic Theory, 42 (1), 175–192.

Pita, J., Jain, M., Western, C., Portway, C., Tambe, M., Ordonez, F., Kraus, S., & Parachuri,
P. (2008). Deployed ARMOR protection: The Application of a Game-Theoretic Model
for Security at the Los Angeles International Airport. In Proceedings of the 8th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp.
125–132.

Ponsen, M. J. V., de Jong, S., & Lanctot, M. (2011). Computing Approximate Nash Equi-
libria and Robust Best-Responses Using Sampling. Journal of Artificial Intelligence
Research (JAIR), 42, 575–605.

Sandholm, T. (2010). The State of Solving Large Incomplete-Information Games, and
Application to Poker. AI Magazine, special issue on Algorithmic Game Theory, 13–
32.

Selten, R. (1975). Reexamination of the Perfectness Concept for Equilibrium Points in
Extensive Games. International Journal of Game Theory, 4, 25–55.

Selten, R. (1965). Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetrgheit
[An oligopoly model with demand inertia]. Zeitschrift für die Gesamte Staatswis-
senschaft, 121, 301–324.

Shafiei, M., Sturtevant, N., & Schaeffer, J. (2009). Comparing UCT versus CFR in Simul-
taneous Games. In IJCAI Workshop on General Game Playing.

Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., Direnzo, J., Meyer, G., Baldwin, C. W.,
Maule, B. J., & Meyer, G. R. (2012). PROTECT : A Deployed Game Theoretic System
to Protect the Ports of the United States. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 13–20.

865

Bošanský, Kiekintveld, Lisý, & Pěchouček

Shoham, Y., & Leyton-Brown, K. (2009). Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press.

Tambe, M. (2011). Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press.

Tsai, J., Rathi, S., Kiekintveld, C., Ordóñez, F., & Tambe, M. (2009). IRIS - A Tool
for Strategic Security Allocation in Transportation Networks Categories and Subject
Descriptors. In Proceedings of the 8th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 37–44.

van Damme, E. (1984). A Relation Between Perfect Equilibria in Extensive Form Games
and Proper Equilibria in Normal Form Games. Game Theory, 13, 1–13.

van Damme, E. (1991). Stability and Perfection of Nash Equilibria. Springer-Verlag.

von Stengel, B. (1996). Efficient Computation of Behavior Strategies. Games and Economic
Behavior, 14, 220–246.

Wilson, R. (1972). Computing Equilibria of Two-Person Games From the Extensive Form.
Management Science, 18 (7), 448–460.

Zinkevich, M., Johanson, M., Bowling, M., & Piccione, C. (2008). Regret Minimization
in Games with Incomplete Information. Advances in Neural Information Processing
Systems (NIPS), 20, 1729–1736.

Zinkevich, M., Bowling, M., & Burch, N. (2007). A New Algorithm for Generating Equilibria
in Massive Zero-Sum Games. In Proceedings of National Conference on Artificial
Intelligence (AAAI), pp. 788–793.

866

APPENDIX A

68

Appendix B

Algorithms for computing strategies
in two-player simultaneous move
games

Artificial Intelligence 237 (2016) 1–40

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Algorithms for computing strategies in two-player

simultaneous move games

Branislav Bošanský a,∗, Viliam Lisý a, Marc Lanctot b,1, Jiří Čermák a,
Mark H.M. Winands b

a Agent Technology Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague,
Technicka 2, 166 27 Prague 6, Czech Republic
b Games and AI Group, Department of Data Science and Knowledge Engineering, Maastricht University, P.O. Box 616, 6200 MD, Maastricht,
The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 July 2014
Received in revised form 9 January 2016
Accepted 22 March 2016
Available online 1 April 2016

Keywords:
Simultaneous move games
Markov games
Backward induction
Monte Carlo Tree Search
Alpha-beta pruning
Double-oracle algorithm
Regret matching
Counterfactual regret minimization
Game playing
Nash equilibrium

Simultaneous move games model discrete, multistage interactions where at each stage
players simultaneously choose their actions. At each stage, a player does not know what
action the other player will take, but otherwise knows the full state of the game. This
formalism has been used to express games in general game playing and can also model
many discrete approximations of real-world scenarios. In this paper, we describe both
novel and existing algorithms that compute strategies for the class of two-player zero-sum
simultaneous move games. The algorithms include exact backward induction methods with
efficient pruning, as well as Monte Carlo sampling algorithms. We evaluate the algorithms
in two different settings: the offline case, where computational resources are abundant
and closely approximating the optimal strategy is a priority, and the online search case,
where computational resources are limited and acting quickly is necessary. We perform a
thorough experimental evaluation on six substantially different games for both settings. For
the exact algorithms, the results show that our pruning techniques for backward induction
dramatically improve the computation time required by the previous exact algorithms. For
the sampling algorithms, the results provide unique insights into their performance and
identify favorable settings and domains for different sampling algorithms.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Strategic decision-making in multiagent environments is an important problem in artificial intelligence. With the growing
number of agents interacting with humans and with each other, the need to understand these strategic interactions at a
fundamental level is becoming increasingly important. Today, agent interactions occur in many diverse situations, such as
e-commerce, social networking, and general-purpose robotics, each of which creates complex problems that arise from
conflicting agent preferences.

* Corresponding author. Tel.: +420 22435 7581.
E-mail addresses: branislav.bosansky@agents.fel.cvut.cz (B. Bošanský), viliam.lisy@agents.fel.cvut.cz (V. Lisý), marc.lanctot@maastrichtuniversity.nl

(M. Lanctot), jiri.cermak@agents.fel.cvut.cz (J. Čermák), m.winands@maastrichtuniversity.nl (M.H.M. Winands).
1 This author has a new affiliation: Google DeepMind, London, United Kingdom.

http://dx.doi.org/10.1016/j.artint.2016.03.005
0004-3702/© 2016 Elsevier B.V. All rights reserved.

2 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Much research has been devoted to developing algorithms that reason about or learn in sequential (multi-step) inter-
actions. As an example, adversarial search has been a central topic of artificial intelligence since the inception of the field
itself, leading to very strong rational behaviors in Chess [1] and Checkers [2]. Advances in machine learning for multi-step
interactions (e.g., reinforcement learning) have led to self-play learning of evaluation functions achieving master level play
in Backgammon [3] and super-human level in Atari [4].

The most common model for these multistage environments is one with strictly sequential interactions. This model is
sufficient in many settings [5], such as in the examples used above. On the other hand, it is not a good representation of
the environment when agents are allowed to act simultaneously. These situations occur in many real-world scenarios such
as auctions (e.g., [6]), autonomous driving, and many video and board games in the expanding gaming industry (e.g., [7,
8], including games we use for our experiments). In all of these scenarios, the simultaneity of the decision-making is
crucial and we have to include it directly into the model when computing strategies. One of the fundamental differences
of simultaneous move games versus strictly sequential games is that the agents may need to use randomized (or mixed)
strategies in order to play optimally [9], i.e., to maximize their worst-case expected utility. This means that agents may need
to randomize over several actions in some states of the game to guarantee the worst-case expected utility, even though the
only information that is hidden is each player’s action as they play it.

This paper focuses specifically on algorithms for decision-making in simultaneous move games. We cover the offline
case, where the computation time is abundant and the optimal strategies are computed and stored, as well as the online
case, where the computation time is limited and agents must choose an action quickly. We are concerned both with the
quality of strategies based on their worst-case expected performance in theory and their observed performance in practice.
We compare and contrast the algorithms and parameter choices in the offline and the online cases, and thoroughly evaluate
each algorithm on a suite of games. Our collection covers Biased Rock–Paper–Scissors, Goofspiel, Oshi-Zumo, Pursuit–Evasion
Games, and Tron, all of which have been used for benchmark purposes in previous work. We also perform experiments on
randomly generated games. These games differ in the number of possible actions, the number of moves before the game
ends, the variance of the utility values, and the proportion of states in which mixed strategies are required for optimal play.

Our experimental comparison shows that the algorithms perform differently in each case. The exact algorithms based on
the backward induction are significantly better in the offline setting, where they are able to find the optimal strategy very
quickly compared to the sampling algorithms. In some cases, our novel algorithm (DOαβ) solves the game in less than 2%
of the time required by the standard backward induction algorithm. However, the exact algorithms are less competitive in
the online setting. In contrast, the approximative sampling algorithms can perform very well in the online setting and find
good strategies to play within a few seconds, however, they are not well-suited for offline solving of games.

The paper is structured as follows. First, we make explicit the contributions of the paper in Subsection 1.1. In Section 2,
we present a formal introduction of the simultaneous move games that we will use throughout the paper. Section 3 follows
with a list and discussion of the existing algorithms in the related work. In Section 4, we describe in detail selected exact
and approximative algorithms. We first describe the algorithms in the offline setting, followed by the necessary modifi-
cations used in the online case described in Section 5. In Section 6, we present our experimental results comparing the
algorithms. Finally, we conclude in Section 7.

1.1. Novel contributions

This paper presents detailed descriptions and analysis of recent state-of-the-art exact [10] and approximative algo-
rithms [11–13] that compute strategies for the class of two-player simultaneous move games. Furthermore, it presents
the following original contributions:

• We present the latest variants of state-of-the-art algorithms under a single unified framework and combine the offline
and online computation perspectives that have been previously analyzed separately.

• We describe the first adaptation of backward induction and the double-oracle algorithm with serialized bounds (DOαβ)
[10] to the online search setting in simultaneous move games using iterative deepening and heuristic evaluation func-
tions.

• We describe a novel variant of Online Outcome Sampling [13] tailored for two-player simultaneous move games (SM-
OOS) and provide its formal analysis.

• We provide a wide experimental analysis and a comparison of these and other algorithms on five different specific
games and on randomly generated games.

• We replicate an experimental convergence analysis for approximative algorithms that is often used in the literature as
a demonstration that sampling-based algorithms are not guaranteed to converge to an optimal solution [14], and we
identify the sensitivity of the existing approximative algorithms to tie-breaking rules.

Our algorithms thus allow computing offline strategies in larger games than previously possible (using DOαβ). In online
game-playing, our algorithms are less sensitive to chosen parameters (SM-MCTS-RM) or guarantee to closely approximate
the optimal strategies given enough time (SM-OOS). Since we describe each algorithm in a domain-independent manner,
they can be further tailored to specific domains to achieve additional improvements in the scalability and/or game-playing
performance.

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 3

Fig. 1. An example of a two-player simultaneous move game. Each white matrix corresponds to a state of the game where both players (a maximizing
player with actions in rows and a minimizing player with actions in columns) act simultaneously. The dark squares are terminal states. The values shown
in the matrices correspond to the values of subgames (e.g., calculated by backward induction).

Fig. 2. Matrix games of Matching Pennies (left), and one with a pure Nash equilibrium (right). Payoffs for the row player are shown.

2. Simultaneous move games

A finite two-player game with simultaneous moves and chance events (also called Markov games, or stacked matrix games)
is a tuple (N , S, A, T , ��, ui, s0), where S = D∪C ∪Z . The player set N = {1, 2, �} contains player labels, where � denotes
the chance player, and by convention a player is denoted i ∈ N . S is a set of states, with Z denoting the terminal states, D
the states where players make decisions, and C the possibly empty set of states where chance events occur. A = A1 × A2
is the set of joint actions of individual players. We denote by Ai(s) the actions available to player i in state s ∈ S . The
number of actions available to player i, |Ai(s)|, is called the branching factor for player i. When the player is not specified, we
mean the joint branching factor |A(s)|. The transition function T : S × A1 × A2 �→ S is a partial function that defines the
successor state given a current state and actions for both players. �� : C �→ �(S) describes a probability distribution over
possible successor states of the chance event. Induced by �� , we also define P�(s, r, c, s′) as the probability of transitioning
to s′ after choosing joint action (r, c) from s, or simply 1 when T (s, r, c) �∈ C . The utility function ui : Z �→ [vmin, vmax] ⊆ R
gives the utility of player i, with vmin and vmax denoting the minimum and maximum possible utility respectively. We
assume zero-sum games: ∀z ∈ Z, u1(z) = −u2(z). The game begins in an initial state s0 and a subset of a game that starts
in some node s is called a subgame. An example of such a game is depicted in Fig. 1, more examples can be found in [15,
Chapter 5].

In two-player zero-sum games, a (subgame perfect) Nash equilibrium strategy is often considered to be optimal (the
formal definition follows). It guarantees an expected payoff of at least V against any opponent. Any non-equilibrium strategy
has its nemesis, which makes it gain less than V in expectation. Moreover, a subgame perfect Nash equilibrium strategy can
earn more than V against weak opponents. After the opponent makes a sub-optimal move, the strategy will never allow it
to gain the loss back. The value V is known as the value of the game and it is the same for every equilibrium strategy profile
by von Neumann’s minimax theorem [16].

A matrix game is a single step simultaneous move game with action sets A1 and A2 (see Fig. 2). Each entry in the matrix
Arc where (r, c) ∈ A1 × A2 corresponds to a utility value reached if row r is chosen by player 1 and column c by player 2.
For example, in Matching Pennies in the left side of Fig. 2, each player has two actions (heads or tails). The row player
receives a payoff of 1 if both players choose the same action and 0 if they do not match. In simultaneous move games, at
every decision state s ∈ D there is a joint action set A1(s) × A2(s). Each joint action (r, c) leads to another state T (s, r, c)
that is either a terminal state or a subgame which is itself another simultaneous move game. A chance event is a state s ∈ C
with a fixed set of outcomes, each of which leads to a possible successor state. In simultaneous move games, Arc refers to
the value of the subgame rooted in state T (s, r, c).

A behavioral strategy for player i is a mapping from states s ∈ S to a probability distribution over the actions Ai(s),
denoted σi(s). We denote by σi(s, a) the probability that strategy σi assigns to a in s. These strategies are often called
randomized, or mixed because they represent a mixture over pure strategies, each of which is a point in the Cartesian
product space

∏
s∈S Ai(s).2 Let H be a global set of histories (sequences of actions from the start of the game). Given

2 Notice that a pure strategy is also a mixed strategy that assigns probability 1 to a single pure strategy and probability 0 to every other pure strategy.
However, as it is common in the literature, we sometimes refer to a mixed strategy to specifically mean not a pure strategy. This is mostly clear from the
context, but we clarify where necessary.

4 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Fig. 3. The matrix game of Rock, Paper, Scissors (left) and its equivalent extensive-form game representation (right). The extensive game has four states,
two information sets (I1 and I2), and nine terminal histories: {Rr, Rp, Rs, Pr, Pp, Ps, Sr, Sp, Ss}.

a strategy profile σ = (σ1, σ2), we define the probability of reaching a history h under σ as πσ (h) = πσ
1 (h)πσ

2 (h)πσ
� (h),

where each πσ
i (h) is a product of probabilities of the actions taken by player i along the path to h (π� being chance’s

probabilities). Finally, we define �i to be the set of all behavioral strategies for player i. We adopt a standard convention
that the index −i refers to the opponent of player i.

In order to define optimal behavior for this class of games, we now provide definitions of some fundamental concepts.

Definition 2.1 (Strictly dominated action). In a matrix game, an action ai ∈ Ai is strictly dominated if ∀a−i ∈ A−i, ∃a′
i ∈

Ai \ {ai} : ui(ai, a−i) < ui(a′
i, a−i).

No rational player would want to play a strictly dominated action, because there is always a better action to play
independent of the opponent’s action. The concept also extends naturally to behavioral strategies. For example, in the game
on the right of Fig. 2, both b and B are strictly dominated. In this paper we refer to the dominance always in this strict
sense.

Definition 2.2 (Best response). Suppose σ−i ∈ �−i is a fixed strategy of player −i. Define the set of best response strategies
BRi(σ−i) = {σi | ui(σi, σ−i) = maxσ ′

i ∈�i
ui(σ

′
i , σ−i)}. A single strategy in this set, e.g., σi ∈ BRi(σ−i), is called a best response

strategy to σ−i .

Note that a best response can be a mixed strategy, but a pure best response always exists [9] and it is often easier to
compute.

Definition 2.3 (Nash equilibrium). A strategy profile (σi, σ−i) is a Nash equilibrium profile if and only if σi ∈ BRi(σ−i) and
σ−i ∈ BR−i(σi).

In other words, in a Nash equilibrium profile each strategy is a best response to the opponent’s strategy. In two-player
zero-sum games, the set of Nash equilibria corresponds to the set of minimax-optimal strategies. That is, a Nash equilibrium
profile is also a pair of behavioral strategies optimizing

V = max
σ1∈�1

min
σ2∈�2

Ez∼σ [u1(z)] = max
σ1∈�1

min
σ2∈�2

∑
z∈Z

πσ (z)u1(z). (1)

None of the players can improve their utility by deviating unilaterally. For example, the game of Rock, Paper, Scissors
(depicted in Fig. 3) modeled as a matrix game has a single state and the only equilibrium strategy is to mix equally
between all actions, i.e., both players play with a mixed strategy σi = σ−i = (1/3, 1/3, 1/3) giving the expected payoff of
V = 0. Note that using a mixed strategy is necessary in this game to achieve the guaranteed payoff of V . Any pure strategy
of one player can be exploited by the opponent; so while a pure best response to a fixed strategy always exists, it is not
always possible to find a Nash equilibrium for which both strategies are pure. For the same reason, randomized strategies
are often necessary also in the multi-step simultaneous move games. If the strategies also optimize Equation (1) in every
subgame, the equilibrium strategy is termed subgame perfect.

Finally, a two-player simultaneous move game is a specific type of two-player extensive-form game with imperfect
information. In imperfect information games, states are grouped into information sets: two states s, s′ are in an information
set I if the player to act at I cannot distinguish whether she is in s or s′ . Any simultaneous move game can be modeled
using information sets to represent half-completed transitions, i.e., T (s, a1, ?) or T (s, ?, a2). The matrix game of Rock, Paper,
Scissors can also be thought of as a two-step process where the first player commits to a choice, writing it on a face-down
piece of paper, and then the second player responds. Fig. 3 shows this transformation, which can generally be applied to
every state in a simultaneous move game. Therefore, algorithms intended for two-player zero-sum imperfect information
games may also be applied to the simultaneous move game using this equivalent form.

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 5

3. Related work

There has been a number of algorithms designed for simultaneous move games. They can be classified into three cat-
egories: (1) iterative learning algorithms, (2) exact backward induction algorithms, (3) approximative sampling algorithms.
The first type computes strategies through iterated self-play. The second type computes strategies in a game state recursively
based on the values of its successors. The third type computes strategies by approximating utilities using sampling.

3.1. Iterative learning algorithms

A significant amount of interest in simultaneous move games was generated by initial work on multiagent reinforcement
learning. In multiagent reinforcement learning, each agent acts simultaneously and the joint action determines how the state
changes. Littman introduced Markov games to model these interactions as well as a variant of Q-learning called Minimax-Q
to compute strategies [17,18]. Minimax-Q modifies the learning rule so that the value of the next state (the subgame)
is obtained by solving a linear program using the estimated values of that subgame’s root. As it is common in these
settings, the goal of each agent is to maximize their expected utility. In two-player zero-sum Markov games, an optimal
policy corresponds to a Nash equilibrium strategy, which assures the agent the highest worst-case expected payoff. Initial
results provided conditions under which approximate dynamic programming could be used to guarantee convergence to
the optimal value function and policies [19]. Later, in [20], Lagoudakis and Parr provided stronger bounds and convergence
guarantees for least squares temporal difference learning using linear function approximation. Bounds on the approximation
error for sampling techniques in discounted Markov games are presented in [21], and new bounds for approximate dynamic
programming have also been recently shown [22].

In early 2000s, gradient ascent methods were introduced for playing repeated games [23,24]. These algorithms update
strategies in a direction of the strategy space that increases the expected payoff with respect to the opponent’s strategy.
These were then generalized and combined, and shown to minimize regret over time [25,26], leading to strong convergence
guarantees in multiagent learning. More no-regret algorithms followed and were applied to imperfect information games
in sequence-form (One-Card Poker) [27]. Later, counterfactual regret (CFR) minimization was introduced for large imperfect
information games [28]. CFR has gained much attention due to its success in computing Poker AI strategies, and recently
an application of CFR has solved Heads Up Limit Texas Hold’em Poker [29]. In this paper we analyze the effectiveness of a
specific form of Monte Carlo CFR for the first time in simultaneous move games.

As we focus on zero-sum simultaneous move games in this paper, the work on multiagent learning in general-sum and
cooperative games has been omitted. For surveys of the relevant previous work in multiagent reinforcement learning and
game theory (including the zero-sum case), see [30–32].

3.2. Exact backward induction algorithms

The techniques in this section are based on the backward induction algorithm (cf. [33]), a form of dynamic pro-
gramming [34] often presented for purely sequential games. A modified variant of the algorithm can also be applied to
simultaneous move games (e.g., see [35–37]). The algorithm enumerates states of the game tree in a depth-first manner and
after computing the values of all the succeeding subgames of state s ∈ S , it solves the normal-form game corresponding
to s (i.e., computes a NE of the matrix game in s), and propagates the calculated game value to the predecessor. Backward
induction then outputs a subgame perfect NE.

There are two notable algorithms that improve the standard backward induction in simultaneous move games. First is an
algorithm by Saffidine et al. [38] termed simultaneous move alpha-beta algorithm (SMAB). The main idea of the algorithm
is to reduce the number of the recursive calls of the backward induction algorithm by removing dominated actions in every
state of the game. The algorithm keeps bounds on the utility value for each successor in a game state. The lower and upper
bounds represent the threshold values, for which neither of the actions of the player is dominated by any other action
in the current matrix game. These bounds are calculated by linear programs in the state given existing exact values (or
appropriate bounds) of the utility values of all the other successors of the state. If they form an empty interval (the lower
bound is greater than the upper bound), pruning takes place and the dominated action is no longer considered in this state
afterward.

While SMAB outperforms classical backward induction, the speed-up is less significant in comparison to the second exact
algorithm introduced in [10], a description of which is given in detail in Subsection 4.3.1. The main idea is to integrate
two key components: (1) instead of evaluating all successors in each state of the game and solving a normal-form game,
the algorithm exploits the iterative framework known in game theory as double-oracle algorithm [39]; (2) the algorithm
computes bounds on the utility values of the successors by serializing the subgames and running the classic alpha-beta
algorithm.

Finally, since simultaneous move games can be seen as extensive-form games with imperfect information, one can use
techniques designed for large imperfect information games. An algorithm that is also built on double-oracle is the Range-
of-Skill algorithm [40]. However, the number of iterations required by this algorithm in the worst case can be large [41].
There are also state-of-the-art algorithms for solving generic extensive-form games with imperfect information, based on

6 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

sequence-form optimization problems [42–44]. However, these algorithms do not exploit the specific structure of simulta-
neous move games and could require memory that is linear in the size of the game tree. In practice, this prohibits scaling
to larger games (see, e.g., [38]) and causes weak performance compared to tailored algorithms.

3.3. Approximative sampling algorithms

Monte Carlo Tree Search (MCTS) is a simulation-based state space search technique often used in extensive-form games
[45,46]. Having first seen practical success in computer Go [47,48], MCTS has since been applied successfully to simultaneous
move games and to imperfect information games [13,49,50]. Most of the successful applications use the Upper Confidence
Bounds (UCB) formula [51] as a selection strategy. These variants of MCTS are also known as UCT (UCB applied to trees). The
first application of MCTS to simultaneous move games was in general game playing (GGP) [52] programs: CadiaPlayer [53,
54] uses UCB selection strategy for each player in a single game tree. The success of MCTS was demonstrated by the success
of CadiaPlayer which was the top-ranked player of the GGP competition between 2007 and 2009, and also in 2012.

Despite this success, Shafiei et al. in [14] provide a counter-example showing that this straightforward application of UCT
does not converge to an equilibrium even in the simplest simultaneous move games and that a player playing a NE can ex-
ploit this strategy. Another variant of UCT, which has been applied to Tron [55], builds the tree as if the players were moving
sequentially giving one of the players an informational advantage. This approach also cannot converge to an equilibrium in
general. For this reason, other variants of MCTS were considered for simultaneous move games. Teytaud and Flory describe
a search algorithm for games with short-term imperfect information [8], which are a generalization of simultaneous move
games. Their algorithm uses a different selection strategy, called Exp3 [56], and was shown to work well in the Internet card
game Urban Rivals. We provide details of these two main existing selection functions in Subsections 4.4.1 and 4.4.2. A more
thorough experimental investigation of different selection policies including UCB, UCB1-Tuned, UCB1-greedy, Exp3, and more
is reported in the game of Tron [57]. The work by Lanctot et al. [11] compares some of these variants and proposes Online
Outcome Sampling, a search version of Monte Carlo CFR [58], which computes an approximate equilibrium strategy with
high probability. We describe a new formulation of this algorithm in Subsection 4.5.1. Finally, [12,59] present variants of
MCTS that provably converge to Nash equilibria in simultaneous move games, using any regret-minimizing algorithm at
each stage. We elaborate on these results in Subsection 4.4.4.

There have been two recent studies that examine the head-to-head performance of these variants in practice. The
first [60] builds on previous work in Tron by varying the shape of the initial board, comparing previous serialized variants
of simultaneous move MCTS. The authors found that UCB1-Tuned worked particularly well in Tron when using knowledge-
based playout policies. The success of UCB1-Tuned differed in a similar study of the same variants across nine domains [61]
without domain knowledge. In this work, the chosen games were ones inspired by previous work in general game playing
and did not include chance elements. Results indicate that parameter-tuning landscapes do not seem as smooth as in the
purely sequential case.

3.3.1. Simulation-based search in real-time games
Real-time games are not turn-based and represent realistic physical situations where agents can move freely in space.

The state of the game is a continuous function of time and the effect of some actions may only be realized some time after
the decision is made. These games are often appropriately modeled as a simultaneous move game with very short delays
(e.g., 40 milliseconds) between frames.

MCTS has enjoyed some success in these types of games, in the single-agent setting [62,63] and multiagent setting [64].
Much of this work is inspired by video games [65–67]. Few of these works have considered MCTS in the simultaneous move
game directly. In one of the first papers on real-time strategy games, the authors used a randomized serialization of the
game [68], or a strategy simulation from scripts was used to build a single matrix of values from which an equilibrium
strategy was computed using linear programming [69]. This method can be extended to multiple nodes where internal
nodes would correspond to scripts being interrupted to replan, similarly to [70]. MCTS-style multistage replanning was also
applied to a real-time battle scenario which was also accurately represented as a discrete simultaneous move game [7].
Results of this work show that the multistage forward replanning can improve upon the single-stage forward planning, and
can produce approximate Nash equilibrium strategies when mixed strategies are computed at each stage during the search.
Around the same time, a serialized (sequential) version of the alpha-beta algorithm was proposed for simultaneous move
games and run on combat scenarios [71]. This algorithm is described in greater detail in Subsection 4.2 as it forms the basis
of the follow-up algorithm enhanced by double-oracle, presented in Subsection 4.3.

In this paper, we focus on the analysis of different algorithms for two-player simultaneous move games. Therefore, the
problems arising from discrete modeling of continuous time and space remain outside the scope of this paper.

4. Offline strategy computation

This section focuses on algorithms that compute strategies for simultaneous move games. The baseline algorithm for
solving simultaneous move games exactly is backward induction (BI) (Subsection 4.1). Afterwards we present a modification
that exploits a fast computation of upper and lower bounds in a simultaneous move game (Subsection 4.2). Then, we
further improve the algorithm by speeding up the computation of NE in matrix games, exploiting the iterative framework

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 7

input : s – current matrix game; i – searching player
1 if s ∈ Z then
2 return ui(s)
3 for r ∈ A1(s) do
4 for c ∈ A2(s) do
5 Arc ← ∑

s′∈S : P�(s,r,c,s′)>0 P�(s, r, c, s′) · BI(s′, i)
6 〈vs, σi(s)〉 ← solve matrix game A
7 return vs

Algorithm 1: Backward Induction algorithm (BI).

of double-oracle algorithms (Subsection 4.3). In Subsection 4.4 we describe Monte Carlo Tree Search for simultaneous move
games. Finally, we present counterfactual regret minimization and its adaptation Online Outcome Sampling in Subsection 4.5.

4.1. Backward induction

The standard backward induction algorithm, first described for simultaneous move games in [35], enumerates the states
in depth-first order. At each state of the game, it creates a matrix game for the current state using child subgame values,
solves the matrix game, and propagates back the value of the matrix game. The pseudocode of the algorithm is given in
Algorithm 1. If the successor node T (s, r, c) is a chance node, the algorithm directly evaluates all successors of this chance
node and computes an expected utility: the value of each subgame rooted in node s′ computed by the recursive call is
weighted by the probability of the stochastic transition P�(s, r, c, s′) (line 5).

Once the algorithm computes the value of each possible subgame following the current state s, matrix game A is well-
defined and the algorithm solves matrix game A by solving the standard linear program (LP) for normal-form games3:

max vs (2)

s.t.
∑

ai∈Ai

Aai ,a−i · σi(s,ai) ≥ vs ∀a−i ∈ A−i(s) (3)

∑
ai∈Ai

σi(s,ai) = 1 (4)

σi(s,ai) ≥ 0 ∀ai ∈ Ai(s) (5)

A linear programming algorithm computes both the value vs of the matrix game A, as well as the optimal strategy to play
in this matrix game (variables σi(s, ai)). Value vs is then propagated to the predecessor (line 7 of Algorithm 1) and the
optimal strategy σi(s, ai) is stored for this state. If the algorithm evaluates a terminal state, it directly returns the utility
value of the state (line 1).

Evaluating each successor and solving an LP in each state of the game is the main computational bottleneck of the
backward induction algorithm. The following algorithms try to prune some of the branches of the game tree in order to
reduce this bottleneck even at the cost of multiple traversals of the game tree.

4.2. Backward induction with serialized alpha-beta bounds

Solving computationally expensive linear programs in the backward induction algorithm is necessary in game states that
require mixed strategies. However, many realistic games include subgames where it is sufficient to use only pure strategies.
These subgames can be found efficiently by transforming the simultaneous move game into a perfect information extensive-
form game with sequential moves and subsequently using some of the algorithms developed for this more standard setting.
We call this purely alternating form a serialization of the original simultaneous move game. Consider a matrix game rep-
resenting a single joint action of both players. This matrix can be serialized by discarding the notion of information sets;
hence, letting one player play first, followed by the second player. The difference between a serialized and a simultaneous
move matrix game is that the second player to move has an advantage of knowing what action the first player chose.

Given this advantage, the value of a serialized game consisting of a single simultaneous move where player i is second
to move is greater than or equal to the value of the original simultaneous move game from the perspective of player i,
formally shown by the following lemma.

Lemma 4.1. Let A be a single step simultaneous move game for state s with value vs for player i. Let vi
s be the value of the serialized

game created from game A by letting player −i move first and player i move second with the knowledge of the move played by the first
player. Then

vs ≤ vi
s.

3 By solving a game we mean computing both the optimal value and the strategy that achieves it.

8 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Fig. 4. Different serializations of a simple simultaneous move game. Utility values are in the leaf nodes, the gray values correspond to the value propagation
when solving the serialized game.

Proof.

vs = min
σ−i∈�−i

max
σi∈�i

∑
ai∈Ai(s)

∑
a−i∈A−i(s)

σi(s,ai)σ−i(s,a−i)Aaia−i

= min
a−i∈A−i(s)

max
σi∈�i

∑
ai∈Ai(s)

σi(s,ai)Aaia−i

≤ min
a−i∈A−i(s)

max
ai∈Ai(s)

Aaia−i = vi
s.

The first equality is the definition of the value of a zero-sum game. The second equality is from the fact that a best response
can always be found in pure strategies: if there was a mixed strategy best response with expected utility vs and some of
the actions from its support would have lower expected utility, removing those actions from the support would increase the
value of the best response, which is a contradiction. The inequality is due to the fact that a maximization over each action
of player −i can only increase the value. �

We can now generalize this lemma to game trees with multiple simultaneous moves.

Lemma 4.2. Consider a simultaneous move subgame defined by state s and a serialized variant of this subgame, where in each state
player i is second to move. The value of the serialized game is an upper bound on the value of the simultaneous move subgame for
player i.

Proof. We use Lemma 4.1 inductively. Let s be the current state of the game and let A be the exact matrix game corre-
sponding to s with utilities of player i. By induction we assume that the algorithm computes for state s some A′ so that
each value in matrix A′ is greater than or equal to A:

∀ai ∈ Ai(s)∀a−i ∈ A−i(s) A′
aia−i

≥ Aaia−i .

Therefore, the value of matrix game v A′ ≥ v A . Finally, by Lemma 4.1 the algorithm returns value vi
A′ ≥ v A′ ≥ v A . �

An example of this serialization is depicted in Fig. 4. There is a simple matrix game for two players (the circle and the
box player; the utility values are depicted for the circle player; the box player in the column is minimizing this value).
There are two ways this game can be transformed into a serialized extensive-form game with perfect information. If the
circle player moves first (the left game tree), then the value of this serialized game is the lower bound of the value of the
game. If this player moves second (the right game tree), then the value of this serialized game is the upper bound of the
value of the game. Since the serialized games are zero-sum perfect information games in the extensive form, they can be
solved quite quickly by using some of the classic AI algorithms such as alpha-beta or Negascout [72]. If the values of both
serialized games are equal, then this value is also equal to the value of the original simultaneous move game. This situation
occurs in our example in Fig. 4, where both serialized games have value V = 3.

We can speed up the backward induction algorithm using bounds that are computed by the alpha-beta algorithm (de-
noted BIαβ). Algorithm 2 depicts the pseudocode. The BIαβ algorithm first serializes the game and solves the serialized
games using the standard alpha-beta algorithm; if the bounds are equal then this value is returned directly (line 3). Note
that in Algorithm 2 the call alpha-beta(s, i), i is the second player to move in the serialized game rooted at s. If the bounds
are not equal, the algorithm starts evaluating successors of the current state. As before, the algorithm computes upper and
lower bounds using the alpha-beta algorithm on serialized variants of the subgame rooted at the successor s′ (lines 9–10).
Then, the algorithm uses the value directly if the bounds are equal (line 14), or performs a recursive call otherwise (line 12).

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 9

input : s – current matrix game; i – searching player
1 if s ∈ Z then
2 return ui(s)
3 if (s is root) and (alpha-beta(s, i) = alpha-beta(s,−i)) then
4 return alpha-beta(s, −i)
5 for r ∈ A1(s) do
6 for c ∈ A2(s) do
7 Arc ← 0
8 for s′ ∈ S : P�(s, r, c, s′) > 0 do
9 vi

s′ ← alpha-beta(s′, i)
10 v−i

s′ ← alpha-beta(s′, −i)

11 if v−i
s′ < vi

s′ then
12 Arc ← Arc + P�(s, r, c, s′) · BIαβ(s′, i)
13 else
14 Arc ← Arc + P�(s, r, c, s′) · vi

s′
15 〈vs, σi〉 ← solve matrix game A
16 return vs

Algorithm 2: Backward Induction with serialized bounds (BIαβ).

We distinguish two cases when extracting equilibrium strategies from the BIαβ algorithm. In the first case, when a state
is fully evaluated by the algorithm (i.e., an LP was built and solved for this state), we proceed as before and keep the pair of
equilibrium strategies in this state. However, in the other case, the algorithms prunes certain branches and does not create
an LP in some of the subgames. The algorithm then keeps the strategy computed by the serialized alpha-beta algorithm in
those subgames. More precisely, for player i the algorithm keeps the pure strategy computed by alpha-beta(s, −i), where
the opponent has an advantage of knowing the moves of player i. Such a strategy provides a guarantees for player i (it
is not exploitable) and due to the alpha-beta cut-offs we know that there is no better strategy for player i with a higher
expected utility.

Theorem 4.3. The algorithm BIαβ(s, i) computes the value of the subgame from state s for player i.

Proof. The correctness of the algorithm follows immediately from the correctness of the standard BI algorithm and the
correctness of using the values computed by serialized alpha-beta (Lemma 4.2). Moreover, values computed by the serialized
alpha-beta algorithm are used only if the upper bound equals the lower bound. �

The performance of BIαβ depends on the existence of a pure NE in the simultaneous move game. In the best case
(i.e., there exists a pure NE), the algorithm finds the solution by solving each serialization exactly once starting from the
root state. In the worst case, all NE require mixed strategies in every state of the game. In this case, the algorithm not
only solves the LP in each state similarly to BI, but also repeatedly attempts to solve serialized subgames by calling the
alpha-beta algorithm. However, this case was very rarely encountered during our experiments.

4.3. Backward induction with double-oracle and serialized bounds

The computational complexity of solving a matrix game by linear programming can be reduced by their incremental
construction using the iterative double-oracle algorithm [39]. The following algorithm incorporates this idea to BIαβ , which
leads to additional pruning of the game tree. First of all, we describe the main principles of the double-oracle algorithm
for matrix games, followed by the description of the integration of the double-oracle algorithm in simultaneous move
games [10] (denoted DOαβ).

4.3.1. Double-oracle algorithm for matrix games
The goal of the double-oracle algorithm is to find a solution of a matrix game without necessarily constructing the

complete LP that solves the game. The main idea is to create a restricted game where the players can choose only from a
limited set of actions. The algorithm iteratively expands the restricted game by allowing the players to choose from new
actions. The new actions are added incrementally: in each iteration, a best response (chosen from the unrestricted action
set) to an optimal strategy of the opponent in the current restricted game, is added to restricted game.

Fig. 5 shows a visualization of the main structure of the algorithm, where the following three steps repeat until conver-
gence:

1. Create a restricted matrix game by limiting the set of actions that each player is allowed to play.
2. Compute a pair of Nash equilibrium strategies in this restricted game using linear programming.
3. For each player, compute a pure best response strategy against the equilibrium strategy of the opponent; pure best

response can be any action from the original unrestricted game.

10 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Fig. 5. Schematic of the double-oracle algorithm for a normal-form game.

The best response strategies computed in step 3 are added to the restricted game, the game matrix is expanded by adding
new rows and columns, and the algorithm follows with the next iteration. The algorithm terminates if neither of the players
can improve the outcome of the game by adding a new strategy to the restricted game; hence, both players play best
response strategies to the strategy of the opponent. The algorithm maintains the values of the best expected utilities of
the best-response strategies for each player throughout the iterations of the algorithm. These values provide bounds on the
value of the original game V (from Equation (1)), and their sum represents the error of the algorithm which converges to
zero.

4.3.2. Integrating double-oracle with backward induction
The double-oracle algorithm for matrix games can be directly incorporated into the backward induction algorithm: in-

stead of immediately evaluating each of the successors of the current game state and solving the linear program, the
algorithm can exploit the double-oracle algorithm. Pseudocode in Algorithm 3 details this integration.

Similarly to BIαβ , the algorithm first tests, whether the whole game can be solved by using the serialized variants of the
game (line 3). If not, then in each state of the game the algorithm initializes the restricted game with an arbitrary action
(line 5)4 – A′ represents the restricted matrix game, A′

i represents the restricted set of available actions to player i. The
algorithm then starts the iterations of the double-oracle algorithm. First, the algorithm needs to compute the value for each
of the successors of the restricted game, for which the current value is not known (lines 8–16). This evaluation is the same
as in the case of BIαβ . Once all values for restricted game A′ are known, the algorithm solves the restricted game and
keeps the optimal strategies σ ′ of the restricted game (line 17). Next, the algorithm computes best responses for each of
the player (lines 18, 19) using Algorithm 4 below, and updates the lower and upper bounds (line 20). Finally, the algorithm
expands the restricted game with the new best response actions (line 21) until the lower and upper bound are equal. Once
the bounds are equal, neither of the best responses improves the current solution from the restricted game; hence, the
algorithm has found an equilibrium of the complete unrestricted matrix game corresponding to state s.

Now we describe the algorithm for computing the best responses on lines 18 and 19. The pseudocode of this step is
depicted in Algorithm 4. The goal of the best response algorithm is to find the best action from the original unrestricted
game against the current strategy of the opponent σ ′

−i . Throughout the algorithm we use, as before, vi
s′ to denote the

upper bound of the value of the subgame rooted in state s′ computed using alpha-beta(s′, i). These values are computed on
demand, i.e., they are computed once needed and cached until the game for state s is solved. Moreover, once the algorithm
computes the exact value of a particular subgame, both upper and lower bounds are updated to be equal to the exact value
of the game.

The best response algorithm iteratively examines all actions of player i from the unrestricted game (line 3). Every action
ai is evaluated against the actions of the opponent that are used in the optimal strategy from the restricted game (line 5).
Before evaluating the successors, the algorithm determines whether the current action ai of the searching player i can still
be the best response action against the strategy of the opponent σ ′

−i . In order to determine this, the algorithm computes
value λai that represents the lower bound on the expected utility this action must gain against the current action of the
opponent a−i in order for action ai to be a best response. λai is calculated (line 7) by subtracting the upper bound of
the expected value against all other actions of the opponent (vi

T (s,ai ,a
′−i)

) from the current best response value (v B R
i) and

normalizing with the probability that the action a−i is played by the opponent (σ ′
−i(a−i)). This calculation corresponds to

a situation where player i achieves the best possible utility by playing action ai against all other actions from the strategy
of the opponent and it needs to achieve at least λai against a−i so that the expected value for playing ai is at least v B R

i . If
λai is strictly higher than the upper bound on the value of the subgame rooted in the successor (i.e., vi

T (s,ai ,a−i)
) then the

algorithm knows that the action ai can never be the best response action, and can proceed with the next action (line 9).
Note that λai is recalculated for each action of the opponent since the upper bound values can become tighter when the
exact values are computed for successor nodes s′ (line 13).

4 In practice we use the first action of a shuffled ordered set Ai for each player i. This initialization step can be improved with domain knowledge and
by adding more actions.

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 11

input : s – current matrix game; i – searching player; αs, βs – bounds for the game value rooted in state s
1 if s ∈ Z then
2 return ui(s)
3 if (s is root) and (alpha-beta(s, i) = alpha-beta(s,−i)) then
4 return alpha-beta(s, −i)
5 initialize A′

i , A′
−i with arbitrary actions from Ai, A−i

6 repeat
7 for r ∈ A′

i , c ∈ A′
−i do

8 if A′
rc is not initialized then

9 A′
rc ← 0

10 for s′ ∈ S : P�(s, r, c, s′) > 0 do
11 vi

s′ ← alpha-beta(s′, i)
12 v−i

s′ ← alpha-beta(s′, −i)

13 if v−i
s′ < vi

s′ then
14 A′

rc ← A′
rc + P�(s, r, c, s′) · DOαβ(s′, i, v−i

s′ , vi
s′)

15 else
16 A′

rc ← A′
rc + P�(s, r, c, s′) · vi

s′
17

〈
vs, σ

′〉 ← solve matrix game A′
18

〈
v B R

i ,aB R
i

〉 ← BR(s, i, σ ′
−i , βs)

19
〈
v B R

−i ,aB R
−i

〉 ← BR(s, −i, σ ′
i , −αs)

20 αs ← max(αs, −v B R
−i), βs ← min(βs, v B R

i)

21 A′
i ← A′

i ∪ {aB R
i }, A′

−i ← A′
−i ∪ {aB R

−i }
22 until αs = βs

23 return vs

Algorithm 3: Double-Oracle with serialized bounds (DOαβ).

input : s – current matrix game; i – best-response player; σ ′
−i – strategy of the opponent; λ – bound for the best-response value

1 v B R
i ← λ

2 aB R
i ← null

3 for ai ∈ Ai do
4 vai ← 0
5 for a−i ∈ A′

−i : σ ′
−i(a−i) > 0 do

6 vai ,a−i ← 0

7 λai ←
v B R

i −∑
a′−i ∈A′−i \{a−i } σ ′−i (a

′−i)·vi
T (s,ai ,a

′−i)

σ ′−i (a−i)

8 if λai > vi
T (s,ai ,a−i)

then
9 continue from line 3 with next ai

10 else
11 for s′ ∈ S : P�(s, ai , a−i , s′) > 0 do
12 if v−i

s′ < vi
s′ then

13 vai ,a−i ← vai ,a−i + P�(s, ai , a−i , s′)· DOαβ(s′, i, v−i
s′ , vi

s′)
14 else
15 vai ,a−i ← vai ,a−i + P�(s, ai , a−i , s′) · vi

s′
16 vai ← vai + σ ′

−i(a−i) · vai ,a−i

17 if vai ≥ v B R
i then

18 v B R
i ← vai

19 aB R
i ← ai

20 return 〈v B R
i , aB R

i 〉
Algorithm 4: Best Response with serialized bounds (BR).

If the currently evaluated action ai can still be a best response, the value of the successor is determined (first by
comparing the bounds). Once the expected outcome against all actions of the opponent is known, the expected value of
action ai is compared against the current best response value (line 17) and saved if the expected utility is higher (line 19).
These best response actions are allowed in the next iteration of the double-oracle algorithm and the algorithm progresses
further as described.

When extracting strategies from DOαβ , we proceed exactly as in the case of BIαβ: either a double-oracle is initialized
and solved for a certain matrix game and we keep the equilibrium strategies from the final restricted game, or the strategy
is extracted from the serialized alpha-beta algorithms as before.

Theorem 4.4. The DOαβ(s, i, αs, βs) algorithm computes the value of the subgame defined by state s for player i.

Proof. The correctness of the algorithm follows from the correctness of the standard BI algorithm, Lemma 4.2, and the
correctness of the double-oracle algorithm for matrix games [39]. We use them inductively for state s and assume DOαβ

for all the children of s returned correct values when called. Since we are using the classical double-oracle on a matrix

12 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Fig. 6. Simultaneous Move MCTS example. Here, Xs′ represents the cumulative payoff of all simulations that have passed through the cell, while ns′
represents the number of simulations that have passed through the cell.

game corresponding to state s with correct values, we only need to show that the best-response algorithm with serialized
bounds cannot return null action due to setting the bounds incorrectly.

Without loss of generality, consider a lower bound −αs for state s to be λ in the best response algorithm. Value λ thus
corresponds either to a value calculated by serialized alpha-beta and propagated via bounds when calling DOαβ(s, i, αs, βs),
or it was updated during the iterations of the double-oracle algorithm for state s (line 20). In either case there exists a pure
best response strategy corresponding to this value; hence, the best response has to find the strategy that achieves this value
and cannot return null. �

Similarly to BIαβ , the performance of DOαβ also depends on the existence of a pure NE in the simultaneous move game.
The best case is identical to BIαβ and the algorithm finds the solution by solving each serialization exactly once starting
from the root state. In the worst case, neither of the serialized games yield useful bounds and the algorithm needs to call
the double-oracle algorithm in every state. Moreover, the worst case for the double-oracle algorithm occurs when all actions
in this state must be added and an action for only a single player is added in each iteration causing the largest number of
iterations repeatedly resolving the linear program. Again in practical games used for benchmark purposes, or in real-world
applications this is rarely the case. Moreover, the computational overhead from repeatedly solving an LP is relatively small.
This is due to the size of each LP that is determined by the number of actions in each state (the number of constraints
and variables is bounded by the number of actions in each state). Therefore, the size of each LP is small compared to the
number of states DOαβ can prune out, especially if the pruning occurs close to the root of the game tree.

4.4. Simultaneous Move Monte Carlo Tree Search (SM-MCTS)

In the following subsections we move to the approximative algorithms. Monte Carlo Tree Search (MCTS) is a simulation-
based state space search algorithm often used in game trees. In its simplest form, the tree is initially empty and a single
leaf is added each iteration. Each iteration starts by visiting nodes in the tree, selecting which actions to take based on
a selection function and information maintained in the node. Consequently, the algorithm transitions to a successor state.
When a node is visited whose immediate children are not all in the tree, the node is expanded by adding a new leaf to the
tree. Then, a rollout policy (e.g., random action selection) is applied from the new leaf to a terminal state. The outcome of
the simulation is then returned as a reward to the new leaf and the information stored in the tree is updated.

Consider again the game depicted in Fig. 1. We demonstrate how Monte Carlo Tree Search could progress in this game
using the example shown in Fig. 6. This game has a root state, two subgames that are simple matrix games, and two
arbitrarily large subgames. In the root state, player 1 (Max) has two actions: top (t) and bottom (b), and player 2 also has
two actions: left (l) and right (r). The tree is initialized with a single empty state, s. On the first iteration, the first child

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 13

input : s – current state of the game
1 if s ∈ Z then
2 return u1(s)
3 if s ∈ C is a chance node then
4 Sample s′ ∼ ��(s)
5 return SM-MCTS(s′)
6 if s is in the MCTS tree then
7 (a1, a2) ← Select(s)
8 s′ ← T (s, a1, a2)

9 vs′ ← SM-MCTS(s′)
10 Update(s, a1, a2, vs′)
11 return vs′

12 else
13 Add s as a new child in the MCTS tree
14 vs ← Rollout(s)
15 return vs

Algorithm 5: Simultaneous Move Monte Carlo Tree Search (SM-MCTS).

corresponding to (t, l) is added to the tree, giving a payoff u1 = 3 at the terminal state which is backpropagated to each
state visited on the simulation. Similarly, on the second iteration the second child corresponding to (b, l) is added to the
tree, giving a payoff u1 = 1, which is backpropagated up to all of its parents. After four simulations, every cell in the root
state has a value estimate.

There are many possible ways to select actions based on the estimates stored in each cell which lead to different variants
of the algorithm. We therefore first formally describe a generic template of MCTS algorithms for simultaneous move games
(SM-MCTS) and then explain different instantiations derived from this template. Algorithm 5 describes a single iteration
of SM-MCTS. The “MCTS tree” is an explicit tree data structure that stores the nodes of the search tree maintained in
memory, e.g., the five-node tree shown in Fig. 6. Every node s in the tree maintains algorithm-specific statistics about the
iterations that previously visited this node. The template can be instantiated by specific implementations of the updates of
the statistics on line 10 and the selection based on these statistics on line 7. In the terminal states, the algorithm returns
the value of the state for the first player (line 2). At chance nodes, the algorithm samples one of the possible next states
based on its distribution (line 4). If the current state has a node in the current MCTS tree, the statistics in the node are used
to select an action for each player (line 7). These actions are executed (line 8) and the algorithm is called recursively on the
resulting state (line 9). The result of this call is used to update the statistics maintained for state s (line 10). If the current
state is not stored in the tree, it is added to the tree (line 13) and its value is estimated using the rollout policy (line 14).

Several different algorithms (e.g., UCB [51], Exp3 [56], and regret matching [73]) can be used as the selection function.
We now present the variants of SM-MCTS that were consistently the most successful in the previous works, though more
variants can be found in [57,60,61].

4.4.1. Decoupled upper-confidence bound applied to trees
The most common selection function for SM-MCTS is the decoupled Upper-Confidence Bound applied to Trees (UCT). For

the selection and updates, it executes the well-known UCT [46] algorithm independently for each of the players in each
nodes. The statistics stored in the tree nodes are independently computed for each action of each player. For player i ∈ N
and action ai ∈ Ai(s) the reward sums Xai and the number of times the action was used nai are maintained. When a joint
action needs to be selected by the Select function, an action that maximizes the UCB value over their utility estimates is
selected for each player independently (therefore it is called decoupled):

ai = argmax
ai∈Ai(s)

{
X̄ai + Ci

√
log ns

nai

}
, where X̄ai = Xai

nai

and ns =
∑

bi∈Ai(s)

nbi . (6)

The Update function increases the visit count and rewards for each player i and its selected action ai using Xai ← Xai + ui
and nai ← nai + 1.

Consider again the example shown in Fig. 6. Decoupled UCT now groups together all the payoffs obtained for an action.
Therefore, at the root Max has X̄t = 5/2 = 2.5, X̄b = 1/2 = 0.5 and the exploration term for both is Ci

√
(log 4)/2, and so top

action is selected. For Min, X̄l = 3/2 = 1.5 = X̄r , so both actions have the same value. Therefore, Min must use a tie-breaking
rule in this situation to decide which action to take. As we discuss later, the specific tie-breaking rule used here can lead to
a significant effect on the quality of the strategy that UCT produces.

After all the simulations are done, there are two options for how to determine the resulting action to play. The more
standard option is to choose for each state the action ai that maximizes nai for each player i. This is suitable mainly for
games, in which using mixed strategy is not necessary. Alternatively, the action to play in each state can be determined
based on the mixed strategy obtained by normalizing the visit counts of each action

σi(ai) = nai∑
bi∈Ai(s) nbi

. (7)

14 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Using the first method certainly makes the algorithm not converge to a Nash equilibrium, because the game may require a
mixed strategy. Therefore, unless stated otherwise, we only use the mixed form in Equation (7), which was called DUCT(mix)
in [11,61].

Note, that it was shown that this latter variant also might not converge to a Nash equilibrium (a well-known counter-
example in Rock, Paper, Scissors with biased payoffs [14]). However, one of the issues when using UCT in game trees is
an unspecified behavior in case there are multiple actions with identical value in the maximization described in the UCT
formula in Equation (6). This may have a significant impact on the performance of the UCT in simultaneous move games.
Consider the matrix game at the right of Fig. 2. This game has only one NE: (a, A). However, if UCT selects the first or the
last action among the options with the same value, it will always get only the utility 0 and the bias term will cause the
players to round-robin over the diagonal indefinitely. This is clearly not optimal, as each player can then improve by playing
first action with probability 1. However, if we choose the action to play randomly among the tied actions (where “tied”
could be defined as being within a small tolerance gap), UCT will quickly converge to the optimal solution in this game.
We experimentally analyze the impact of this randomization on the example used in [14] and show that if a randomized
variant of UCT is used, the algorithm still does not converge to a NE but does converge to a strategy that is much closer to
a NE than without randomization (see Subsection 6.3). Therefore, unless stated otherwise, we use the randomized variant
in our implementation.

Even though UCT is not guaranteed to converge to the optimal solution, it is often very successful in practice. It has been
used in general game playing [54], in the card game Urban Rivals [8], and in Tron [57].

4.4.2. Exponential-weight algorithm for exploration and exploitation
Another common choice of a selection function is to use the Exponential-weight algorithm for Exploration and Exploita-

tion (Exp3) [56] independently for each of the players. Unlike with UCT, two players using Exp3 in a single stage matrix
game are guaranteed to converge to a Nash equilibrium [56]; hence, we can expect a good performance of this selection
function even in multi-stage games. In Exp3, each player maintains an estimate of the sum of rewards for each action, de-
noted X̂ai . The joint action produced by Select is composed of an action independently selected for each player. An action is
selected by sampling from a probability distribution over actions. Define γ to be the probability of exploring, i.e., choosing
an action uniformly. The probability of selecting action ai is proportional to the exponential of the reward estimates:

σi(ai) = (1 − γ)exp(η X̂ai)∑
bi∈Ai(s) exp(η X̂bi)

+ γ

|Ai(s)| , where η = γ

|Ai(s)| . (8)

This standard formulation of Exp3 is suitable for deriving its properties, but a straightforward implementation of this
formula leads to problems with a numerical stability. Both the numerator and the denominator of the fraction can quickly
become too large. For this reason, other formulations have been suggested, e.g., in [11] and [50] that are more numerically
stable. We use the following equivalent formulation from [50]:

σi(ai) = (1 − γ)∑
bi∈Ai(s) exp(η(X̂bi − X̂ai))

+ γ

|Ai(s)| . (9)

The update after selecting actions (a1, a2) and obtaining a simulation result v1 normalizes the result to the unit interval
for each player by

u1 ← (v1 − vmin)

vmax − vmin
; u2 ← (1 − u1), (10)

and adds to the corresponding reward sum estimates the reward divided by the probability that the action was played by
the player using

X̂ai ← X̂ai + ui

σi(ai)
. (11)

Dividing the value by the probability of selecting the corresponding action makes X̂ai estimate the sum of rewards over all
iterations, not only the ones where ai was selected.

As the final strategy, after all iterations are executed, the algorithm computes the average strategy of the Exp3 algorithm
over all iterations for each player. Let σ t

i be the strategy used at time t . After T iterations in a particular node, the average
strategy is

σ̄ T
i (ai) = 1

T

T∑
t=1

σ t
i (ai). (12)

In our implementation, we maintain the cumulative sum and normalize it to obtain the average strategy.
Previous work [8] suggests removing the samples caused by the exploration first. This modification proved to be useful

also in our experiments and it has been shown not to reduce the performance substantially in the worst case [59], so as
the resulting final mixed strategy, we use

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 15

σ̄i(ai) ← max

(
0, σ̄i(ai) − γ

|Ai(s)|
)

, (13)

normalized to sum to one.

4.4.3. Regret matching
The last selection function we propose is inspired by regret matching [73], which forms the bases of the successful

algorithms for solving imperfect information games [28]. This variant applies regret matching to the current estimated
matrix game at each stage and was first used in [11]. The statistics stored by this algorithm in each node are the visit count
of each joint action (na1a2) and the sum of rewards for each joint action (Xa1a2).5 Furthermore, the algorithm for each player
i maintains a cumulative regret ri

ai
for having played σ t

i instead of ai ∈ Ai(s) on iteration t , initially set to 0. The regret
values ri

ai
are maintained separately by each player. However, the updates use a value that is a function of the joint action

space.
On iteration t , function Select first builds each player’s current strategies from the cumulative regrets. Define x+ =

max(x, 0),

σi(ai) = ri+
ai

R+
sum

if R+
sum > 0 otherwise

1

|Ai(s)| , where R+
sum =

∑
bi∈Ai(s)

ri+
bi

. (14)

The main idea is to adjust the strategy by assigning the probability to actions proportionally to the regret of having not
taken them over the long-term. To ensure exploration, a sampling procedure similar to Equation (8) is used to select action
ai with probability γ /|Ai(s)| + (1 − γ)σi(ai).

Update adds the regret accumulated at the iteration to the regret tables ri . Suppose joint action (a1, a2) is sampled from
the selection policy and utility u1 is returned from the recursive call on line 9. Label reward(b1, b2) = Xb1b2

nb1b2
if (b1, b2) �=

(a1, a2), or u1 otherwise. The updates to the regret are:

∀b1 ∈ A1(s), r1
b1

← r1
b1

+ (reward(b1,a2) − u1), (15)

∀b2 ∈ A2(s), r2
b2

← r2
b2

− (reward(a1,b2) − u1). (16)

After all simulations, the strategy to play in state s is defined by the mean strategy used in the corresponding node
(Equation (12)).

4.4.4. Theoretical properties
While the completeness of the exact algorithms is based on the Markov property and backward induction, the concept

of the completeness is less clear for the sampling algorithms due to the randomization. Instead, we discuss a form of
a probabilistic completeness. Unfortunately, none of the variants of this algorithm introduced above has been proven to
eventually converge to a Nash equilibrium. If the algorithm is instantiated by UCT, Shafiei et al. [14] have shown that the
algorithm converges to a stable strategy, which is not close to a Nash equilibrium. We replicate the experiment below and
note that this is the case only for the deterministic version of UCT. A randomized version of UCT with a well selected
exploration parameter empirically converges close to the equilibrium strategy, but then in some games oscillates and does
not converge further.

The only known theoretical result about SM-MCTS directly applicable to the algorithms in this paper is negative, and it
has been proven in [59].

Theorem 4.5. There are games, in which SM-MCTS instantiated by any regret minimizing selection function with a constant exploration
γ cannot converge to a strategy that would be an ε-Nash equilibrium for an ε < γ D, where D is the depth of the game tree.

The main idea of the proof is to define a specific class of games (see Example 2 in [59]), in which the exploration in a
greater depth of the game tree causes a bias in the values observed in the higher levels of the tree, consequently leading to
an incorrect decision in the root.

In order to obtain positive formal results about the convergence of SM-MCTS-like algorithms, the authors in [59] either
add an additional averaging step to the algorithm (that makes it significantly slower in practical games used in benchmarks),
or assume additional non-trivial technical properties about the selection function, which are not known to hold for any of
the selection functions above.

As for computational complexity, the time cost per node is linear in |Ai | for UCT and RM. The time cost per node is
quadratic in the case of Exp3 due to the numerically stable update rule (Equation (9)). The memory required per node is
linear for UCT and Exp3, and quadratic in |Ai | for RM due to storing estimates of each child subgame. This can be easily
avoided by storing the mean estimates directly in the children.

5 Note that na1a2 and Xa1a2 correspond to ns′ and Xs′ from Fig. 6.

16 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

4.5. Counterfactual regret minimization and outcome sampling

Finally, we describe algorithms based directly on Counterfactual Regret (CFR, a notion of regret at the information set
level), first designed for extensive-form games with imperfect information [28].

Recall from Section 2 the set of histories H. Here we also use Z defined previously as the set of terminal states, to refer
to the set of terminal histories since there is a one-to-one correspondence between them. A history is a sequence of actions
taken by all players (including chance) that starts from the beginning of the game. A history h′ is a prefix of another history
h, denoted h′ � h, if h contains h′ as a prefix sequence of actions. The counterfactual value of reaching information set I is
the expected payoff given that player i played to reach I , the opponent played σ−i and both players played σ after I was
reached:

vi(I,σ) =
∑

(h,z)∈ZI

πσ
−i(h)πσ (h, z)ui(z), (17)

where ZI = {(h, z) | z ∈ Z, h ∈ I, h � z}, πσ
−i(h) is the product of probabilities to reach h under σ excluding player i’s (i.e.,

including chance) and πσ (h, h′), where h � h′ , is the probability of all actions taken along the path from h to h′ . Suppose, at
time t , players play with strategy profile σ t . Define σ t

I→a as identical to σ t
i except at I action a is taken with probability 1.

Player i’s counterfactual regret of not taking a ∈ A(I) at time t is rt
i (I, a) = vi(I, σ t

I→a) − vi(I, σ t). The CFR algorithm
maintains the cumulative regret RT

i (I, a) = ∑T
t=1 rt

i (I, a), for every action at every information set. Then, the distribution at
each information set for the next iteration σ T +1(I) is obtained individually using regret-matching [73]. The distribution is
proportional to the positive portion of the individual actions’ regret:

σ T +1(I,a) =
{

RT ,+
i (I,a)/RT ,+

i,sum(I) if RT ,+
i,sum(I) > 0

1/|A(I)| otherwise,

where x+ = max(0, x) for any term x, and RT ,+
i,sum(I) = ∑

a′∈A(I) RT ,+
i (I, a′). Furthermore, the algorithm maintains for each

information set the average strategy profile

σ̄ T (I,a) =
∑T

t=1 πσ t

i (I)σ t(I,a)∑T
t=1 πσ t

i (I)
, (18)

where πσ t

i (I) = ∑
h∈I π

σ t

i (h). The combination of the counterfactual regret minimizers in individual information sets also
minimizes the overall average regret [28], and hence due to the Folk Theorem the average profile is a 2ε-equilibrium, with
ε → 0 as T → ∞.

Monte Carlo Counterfactual Regret Minimization (MCCFR) applies CFR to sampled portions of the games [58]. In the
outcome sampling (OS) variant, a single terminal history z ∈ Z is sampled in each iteration. The algorithm updates the regret
in the information sets visited along z using the sampled counterfactual value,

ṽ i(I,σ) =
{

1
q(z)π

σ
−i(h)πσ (h, z)ui(z) if (h, z) ∈ ZI

0 otherwise,
(19)

where q(z) is the probability of sampling z. As long as every z ∈ Z has a non-zero probability of being sampled, ṽ i(I, σ) is
an unbiased estimate of v(I, σ) due to the importance sampling correction (1/q(z)). For this reason, applying CFR updates
using these sampled counterfactual regrets r̃t

i (I, a) = ṽ i(I, σ t
I→a) − ṽ i(I, σ t) on the sampled information sets values also

eventually converges to the approximate equilibrium of the game with high probability. The required number of iterations
for convergence is much larger, but each iteration is much faster.

4.5.1. Online Outcome Sampling
We now present Online Outcome Sampling for simultaneous move games (SM-OOS). Note, importantly, that SM-OOS is

different from the general SM-MCTS algorithms presented in Subsection 4.4. SM-OOS is an adaptation of a more general
algorithm which has been proposed for search in imperfect information games [13]. However, since simultaneous move
games are decomposable into subgames, the typical problems encountered in the fully imperfect information search setting
are not present here. Hence, we present a simpler OOS specifically intended for simultaneous move games.

Online Outcome Sampling resembles MCTS in that it builds its tree incrementally. However, the algorithm is based on
MCCFR, from Subsection 4.5, rather than on stochastic and adversarial bandit algorithms, such as UCB and Exp3. A previous
version of this algorithm for simultaneous move games was presented by Lanctot et al. [11]. The version presented here is
simpler for implementation and it further reduces the variance of the regret estimates, which leads to a faster convergence
and better game play. The main novelty in this version is that in any state s, it defines the counterfactual values as if the
game actually started in s. This is possible in simultaneous move games, because the optimal strategy in any state depends
only on the part of the game below the state.

The pseudocode is given in Algorithm 6. The game tree is incrementally built, starting only with one node for the root
game state. Each node stores for each player: Ri(s, a) the cumulative regret (denoted RT

i (I, a) above) of player i in state s

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 17

input : s – current state of the game; i – regret updating player
output: (xi , qi , ui): xi – i’s contribution to tail probability (πσ (h, z)); qi – i’s contribution to sample probability (q(z)); ui – utility of the sampled

leaf
1 if s ∈ Z then return (1, 1, ui(s))
2 else if s ∈ C is a chance node then
3 Sample s′ from ��(s)
4 return SM-OOS(s′, i)
5 if s is already in the OOS tree then
6 σi ← RegretMatching(Ri(s))
7 ∀a ∈ Ai(s) : σ ′

i (s, a) ← (1 − ε)σi(s, a) + ε
|Ai (s)|

8 Sample action ai from σ ′
i

9 σ−i ← RegretMatching(R−i(s))
10 Sample action a−i from σ−i

11 (xi , qi , ui) ← SM-OOS(T (s, ai , a−i), i)
12 else
13 Add s to the tree

14 ∀a ∈ Ai(s) : σi(s, a) ← 1
|Ai (s)|

15 Sample action ai from σi

16 ∀a ∈ A−i(s) : σ−i(s, a) ← 1
|A−i (s)|

17 Sample action a−i from σ−i

18 (xi , qi , ui) ← OOS-Rollout(T (s, ai , a−i))

19 W ← ui · xi/qi

20 Ri(s, ai) ← Ri(s, ai) + 1−σi (s,ai)

σ ′
i (ai)

W

21 ∀a ∈ Ai(s) \ {ai} : Ri(s, a) ← Ri(s, a) − σi (s,ai)

σ ′
i (s,ai)

W

22 S−i(s) ← S−i(s) + σ−i

23 return (x · σi(s, ai), q · σ ′
i (s, ai), ui)

Algorithm 6: Simultaneous Move Online Outcome Sampling (SM-OOS).

and action a, and average strategy table Si(s), which stores the cumulative average strategy contribution for each action.
Normalizing Si gives the resulting strategy of the algorithm for player i.

The algorithm runs iterations from a starting state until it uses the given time limit. A single iteration is depicted in
Algorithm 6, which recursively descends down the tree. In the root of the game, the function is run as SM-OOS(root, i),
alternating player i ∈ {1, 2} in each iteration. If the function reaches a terminal history of the game (line 1), it returns the
utility of the terminal node for player i, and 1 for both the tail and sample probability contribution of i. If it reaches a chance
node, it recursively continues after a randomly selected chance outcome (lines 3–4). If none of the first two conditions holds,
the algorithm reaches a state where the players make decisions. If this state is already included in the incrementally built
tree (line 5), the following state is selected based on the cumulative regrets stored in the tree by regret matching with
ε-on-policy sampling strategy for player i (lines 6–8) and the exact regret matching strategy for player −i (lines 9–11). The
recursive call on line 11 then continues the iteration until the end of the game tree. If the reached node is not in the tree,
it is added (line 13) and an action for each player is selected based on the uniform distribution (lines 14–16). Afterwards,
a random rollout of the game until a terminal node is initiated on line 18. The rollout is similar to the MCTS case, but
in addition, it has to compute the tail probability xi and the sampling probability qi required to compute the sampled
counterfactual value. For example, if in the rollout player i acts ni times, and each time samples uniformly from exactly b
actions, then xi = 1

bni . Regardless of whether the current node was in the tree, the algorithm updates the regret table of
player i based on the simplified definition of sampled counterfactual regret for simultaneous move games (lines 19–21) and
the mean strategy of player −i (line 22). Finally, the function returns the updated probabilities to the upper level of the
tree.

SM-OOS appears similar to SM-MCTS using the RM selection mechanism (Subsection 4.4.3). However, there are a number
of differences: SM-OOS uses importance sampling of a sequence of probabilities to keep its estimate unbiased, but will suffer
a higher variance than RM which uses only a one-step correction. RM does not distinguish whether its utility comes from
exploration or otherwise, whereas SM-OOS separates the two into the tail probabilities of the strategy for the sequence
sampled (xi) and the sampling probability of the sequence (qi); when σi(s, a) = 0, due to exploration, then xi = 0 and the
value of the update increments are also 0. RM uses the means from the subgames as estimates of utility for those subgames,
which could introduce some bias in the estimators. We further discuss the comparison in Subsection 6.6.

4.5.2. Theoretical properties
SM-OOS, contrary to the MCTS-based algorithms, has finite-time probabilistic convergence guarantees. Since SM-OOS is

designed to update each node of the game in the same way as the root of the game, we present the following theorem from
the perspective of the root of the entire game. It holds also for starting the algorithm in non-root nodes, but the values of
|S| and δ can be adapted to represent the subgame.

18 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Theorem 4.6. When SM-OOS is run from the root of the game, with probability (1 − p) an ε-NE is reached after O (
|A||S|2�2

u,i

pδ2ε2)

iterations, where |A| = maxs∈S,i∈{1,2} |Ai(s)|, �u,i = maxz,z′∈Z |ui(z′) − ui(z)|, and δ is the smallest probability of sampling any
single leaf in the subtree of the root node.

Proof. The proof is composed of two observations. First, the whole game tree is eventually built by the algorithm. A direct
consequence of [59, Lemma 40] is that the tree of depth D is built with probability (1 − p1) in less than

16D

(|A|
γ

)2D

max(D,4 log p−1
1 + 4) (20)

iterations by an algorithm with a fixed exploration γ . This is the number of iterations needed for each leaf in the game to
be visited at least D times.

Second, during these and the following iterations, the algorithm performs exactly the same updates in the nodes con-
tained in memory, as the Outcome Sampling (OS) MCCFR [58]. If some nodes below a state were not added to the tree
yet, a uniform strategy is assumed in these states for the regret updates. Since CFR minimizes the counterfactual regret in
an individual information set regardless of the strategies in other information sets, the samples acquired during the tree
building cannot have a negative impact on the rate of regret minimization in individual states. Therefore, we can use [74,
Theorem 4] that bounds the number of iterations needed for OS as an offline solver with the complete game in the memory,
starting after the tree has been built with a high probability. It states that with probability (1 − p2) an ε-NE is reached after

O (
|A||S|2�2

u,i

p2δ2ε2) iterations.

We can see that the OS bound dominates the time required to build the tree. A single explorative action is taken with
probability γ /|A|, and when sampling a terminal z only due to exploration, 1

δ
= (

|A|
γ)2D , and D2 < |A|2D ∈ O (|S|) for any

A, and we can set p1 = p2 = p/2. Then the probability that both the tree will be built and the convergence will be achieved
can be bounded by (1 − p1)(1 − p2) ≥ (1 − p). �

As for computational complexity, the time cost as well as the memory required per node is linear in |Ai | in SM-OOS.

5. Online search

In this section, we describe online adaptations of the algorithms described in the previous section and their application
to any-time search given a limited time budget.

5.1. Iterative deepening backward induction algorithms

Minimax search [5] has been used with much success in sequential perfect information games, leading to super-human
chess AI, one of the key advances of artificial intelligence [1]. Minimax search is an online application of backward induction
run on a heuristically approximated game. The game is approximated by searching to a fixed depth limit d, treating the
states at depth d as terminal states, evaluating their values using a heuristic evaluation function, eval(s). The main focus is
to compute an optimal strategy for this heuristic approximation of the original game.

Similarly to the perfect information case, we can modify our algorithms based on backward induction for simultaneous
move games. Under the limited time settings, a search algorithm is given a fixed time budget to compute a strategy. We use
the classic approach of iterative deepening [5] that runs several depth-limited searches, starting at a low depth and iteratively
increasing the depth of each successive search. Note that the depth limit of d means that the algorithm evaluates d joint
actions (i.e., pairs of simultaneous actions) possibly preceded by a chance outcome if present.

In iterative deepening, the algorithm by default starts at depth d = 1 and gradually increases d until there is no more
time. In our implementation of iterative deepening we follow a natural observation that saves the computation time between
different searches: a solution computed in state s by player i to depth d contains an optimal solution on d − 1 approximation
of subgames starting in possible next states T (s, r, c), where r is the action selected for the player performing the search
and c is the action of the opponent. Therefore, when the iterative deepening algorithm starts a new search in state s′ ∈
T (s, r, c), it can often begin at depth d. This can require space exponential in the depth d in the worst case, but it is
beneficial in practical experiments. When information is missing due to pruning, then a search starts with the lowest
possible depth d = 1.

5.2. Online search using sampling algorithms

Using sampling algorithms in the online settings is simpler than with the algorithms based on backward induction, since
no significant changes are needed and the algorithms do not need an evaluation function. The algorithms are stopped after
a given time limit and the move to play or the complete strategy is extracted as described for each sampling algorithm in
Section 4.

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 19

There are two concepts that have to be discussed. First, the algorithms can re-use all information and statistics gained in
the previous iterations; hence, after returning a move and advancing to a succeeding state of the game s′ , the subtree of the
incrementally built tree rooted in s′ is preserved and used in the next iterations. Note that reusing the previously gathered
statistics in the sub-tree rooted in s′ has no potentially negative effect on any variant of the MCTS algorithms since the
behavior of the algorithms is exactly the same when the iteration is started in this node, and if this node is reached from
its predecessor. This is also true in SM-OOS because of the structure of simultaneous move games; a similar adaptation of
the algorithm is not possible in more general imperfect information games [13].

Second, even though the sampling algorithms do not require the use of domain-specific knowledge for online search,
they often incorporate this type of knowledge to better guide the sampling and thus to evaluate more relevant parts of the
state space [75–79]. When directly comparing approximative sampling algorithms with the backward induction algorithms
using an evaluation function, the outcome of such a comparison strictly depends on the quality of the evaluation function.
In a very large game, an accurate evaluation function greatly benefits the backward induction algorithm. Therefore, we also
use sampling algorithms combined with an evaluation function. The integration is done via replacing the random rollout
by directly using the value of the evaluation function in the current state for MCTS and OOS algorithms; i.e., Rollout(s) in
line 14 of Algorithm 5 or line 18 of Algorithm 6 is replaced by eval(s). This has been commonly used in several previous
works in Monte Carlo search [76,78–81].

Again, such a modification does not generally affect theoretical properties of the algorithms – the proofs of the con-
vergence assume that a whole game tree is eventually built and any statistics in the nodes collected before (either by
random rollouts or evaluation functions) can eventually be over-weighted. For MCTS algorithms, there is no reason to be-
lieve that a good evaluation function would give a worse estimate of the quality of a sub-tree using random play-outs.
The only complication could be with the way the probabilities are computed in OOS. The weight of the sample in Equa-
tion (19) is multiplied by the probability of reaching the terminal state z from some history h, πσ (h, z). However, the “tail”
probability is canceled because the rollout policy is fixed and so its contribution to q(z) is identical to its contribution
to πσ (h, z).

6. Empirical evaluation

We now present a thorough experimental evaluation of the described algorithms. We analyze both the offline and the
online case on a collection of games inspired by previous work, and randomly generated games. After describing rules and
properties of the games, we present the results for the offline strategy computation and we follow with the online game
playing.

6.1. Experimental settings

We start with an experimental evaluation of a well-known example of Biased Rock, Paper, Scissors [14] that often serves
as an example that MCTS with UCT selection function does not converge to a Nash equilibrium. We reproduce this ex-
periment and show the differences in performance of the sampling algorithms – primarily the impact of randomization in
UCT. Then, we compare the offline performance of the algorithms on other domains. For each domain, we first analyze the
exact algorithms and measure the computation time taken to solve a particular instance of the game. Afterward, we analyze
the convergence of the approximative algorithms. At a specified time step the algorithm produces strategies (σ1, σ2). Using
best responses we compute error(σ1, σ2) = maxσ ′

1∈�1
Ez∼(σ ′

1,σ2)[u1(z)] + maxσ ′
2∈�2

Ez∼(σ1,σ ′
2)[u2(z)], which is equal to 0 at

a Nash equilibrium. In each offline convergence setting, the reported values are means over at least 20 runs of each sam-
pling algorithm on a single instance of the game. We compared at least 3 different settings for each exploration parameter
and present the result only for the best exploration parameter. For OOS, Exp3, and RM the best values for the parameters
were almost always 0.6, 0.1, and 0.1, respectively. The only exception was Goofspiel with chance, where both Exp3 and RM
converge faster with the parameter set to 0.3. We give the optimal value for UCT constant C in each setting.

Finally, we turn to the comparison of the algorithms in the online setting and we present results from head-to-head
tournaments in each game. Here, we use larger instances of each game and compare the algorithms based on actual game
play with a limited time for each move. The algorithms based on backward induction need to use a domain-specific eval-
uation function in the online setting. This may give these algorithms an advantage if the evaluation function is accurate.
Therefore, we also run the sampling-based algorithms with an evaluation function for selected domains to compare the
algorithms in a fairer setting. Moreover, we have also tuned parameters for the sampling algorithms specifically for each
domain. Reported results are means over at least 1000 matches for each pair of algorithms.

Each of the described algorithms was implemented in a generic framework for modeling and solving extensive-form
games.6 We are interested in the performance of the algorithms and their ability to find or approximate the optimal be-
havior. Therefore, with the exception of the evaluation function used in selected online experiments, no algorithm uses any
domain-specific knowledge.

6 Source code is available at the web page of the authors. We use IBM CPLEX 12.5 to solve the linear programs.

20 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Fig. 7. Biased Rock, Paper, Scissors matrix game from [14].

6.2. Domains

In this subsection, we describe the six domains used in our experiments. The games in our collection differ in charac-
teristics, such as the number of available actions for each player (i.e., the branching factor), the maximal depth, and the
number of possible utility values. Moreover, the games also differ in the randomization factor – i.e., how often it is necessary
to use mixed strategies and whether this randomization occurs at the beginning of the game, near the end of the game, or
is spread throughout the whole course of the game.

For each domain we also describe the evaluation function used in the online experiments. Note that we are not seeking
the best-performing algorithm for a particular game; hence, we have not aimed for the most accurate evaluation functions
for each game. We intentionally use evaluation functions of different quality that allow us to compare the differences
between the algorithms from this perspective as well.

Biased Rock, Paper, Scissors. BRPS is a payoff-skewed version of the one-shot game Rock, Paper, Scissors shown in Fig. 7.
This game was introduced in [14], and it was shown that the visit count distribution of UCT converges to a fixed balanced
situation, but not one that corresponds to the optimal mixed strategy of (1

16 , 10
16 , 5

16).

Goofspiel. Goofspiel is a card game that appears as a common example of a simultaneous move game (e.g., [11,35,37,38]).
There are 3 identical decks of d cards with values {0, . . . , (d − 1)}, one for chance and one for each player, where d is a
parameter of the game. Standard Goofspiel is played with 13 cards. The game is played in rounds: at the beginning of each
round, chance reveals one card from its deck and both players bid for the card by simultaneously selecting (and removing)
a card from their hands. A player that selects a higher card wins the round and receives a number of points equal to the
value of the chance’s card. In case both players select the card with the same value, the chance’s card is discarded. When
there are no more cards to be played, the winner of the game is chosen based on the sum of card values he received during
the whole game.

There are two parameters of the game that can be altered to create four different variants of Goofspiel. The first pa-
rameter determines whether or not the chance player is included. We can use an assumption made in the previous work
that used Goofspiel as a benchmark for evaluation of the exact offline algorithms [38], where the sequence of the cards is
randomly chosen at the beginning of the game and it is known to both players. We refer to this setting as the fixed sequence
of cards. Alternatively, we can treat chance in the standard way, where chance nodes determine the card that gets drawn.
We refer to this setting as the stochastic sequence. The games are fairly similar in terms of performance of the algorithms,
however, the second variant induces a considerably larger game tree. The second parameter relates to the utility functions.
Either we treat the game as a win–tie–lose game (i.e., the players receive utility from {−1, 0, 1}), or the utility values for
the players are equal to the points they gain during the game.

Goofspiel forms game trees with interesting properties. First unique feature is that the number of actions for each player
is uniformly decreasing by 1 with the depth. Secondly, algorithms must randomize in NE strategies, and this randomization
is present throughout the whole course of the game. As an example, the following table depicts the number of states with
pure strategies and mixed strategies for each depth in a subgame-perfect NE calculated by backward induction for Goofspiel
with 5 cards and a fixed sequence of cards:

Depth 0 1 2 3 4

Pure 0 17 334 3,354 14,400
Mixed 1 8 66 246 0

We can see that the relative number of states with mixed strategies slowly decreases, however, players need to mix
throughout the whole game. In the last round, each player has only a single card; hence, there cannot be any mixed
strategy.

Our hand-tuned evaluation function used in Goofspiel takes into consideration the remaining cards in the deck weighted
by a chance of winning these cards depending on the remaining cards in hand for each player. Moreover, if the position is
clearly winning for one of the players (there is not enough cards to change the current score), the evaluation function is set
to maximal (or minimal) value. The formal definition follows (ci is the sum of values of the remaining cards of player i):

eval(s) =
{

u1(s) if c1 + c2 = 0 ;
tanh

(
c1−c2
c1+c2

· c�

0.5·d(d+1)

)
otherwise.

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 21

For the win–tie–lose case we use tanh to scale the evaluation function into the interval [−1, 1]; this function is omitted in
the exact point case.

Oshi-Zumo. Oshi-Zumo (also called Alesia in [22]) is a board game that has been analyzed from the perspective of computa-
tional game theory in [36]. There are two players in the game, both starting with N coins, and there is a board represented
as a one-dimensional playing field with 2K + 1 locations (indexed 0, . . . , 2K). At the beginning, there is a stone (or a
wrestler) located in the center of the playing field (i.e., at position K). During each move, both players simultaneously place
their bid from the amount of coins they have (but at least M if they still have some coins). Afterward, the bids are revealed,
both bids are subtracted from the number of coins of the players, and the highest bidder can push the wrestler one location
towards the opponent’s side. If the bids are the same, the wrestler does not move. The game proceeds until the money
runs out for both players, or the wrestler is pushed out of the field. The winner is determined based on the position of
the wrestler – the player in whose half the wrestler is located loses the game. If the final position of the wrestler is the
center, the game is a draw. Again, we have examined two different settings of the utility values: they are either restricted
to win–tie–lose values {−1, 0, 1}, or they correspond to the relative position of the wrestler {wrestler − K , K − wrestler}. In
the experiments we varied the number of coins and parameter K .

Many instances of the Oshi-Zumo game have a pure Nash equilibrium. With the increasing number of the coins the
players need to use mixed strategies, however, mixing is typically required only at the beginning of the game. As an ex-
ample, the following table depicts the number of states with pure strategies and mixed strategies in a subgame-perfect NE
calculated by backward induction for Oshi-Zumo with N = 10 coins, K = 3, and minimal bid M = 1. The results show that
there are very few states where mixed strategies are required, and they are present only at the beginning of the game tree.
Also note, that contrary to Goofspiel, not all branches have the same length.

Depth 0 1 2 3 4 5 6 7 8 9

Pure 1 98 2,012 14,767 48,538 79,926 69,938 33,538 8,351 861
Mixed 0 1 4 17 8 0 0 0 0 0

The evaluation function used in Oshi-Zumo takes into consideration two components: (1) the current position of the
wrestler and, (2) the remaining coins for each player. Formally:

eval(s) = tanh

(
b

2
+ 1

3

(
coins1 − coins2

M
+ wrestler − K

))
,

where b = 1 if coins1 ≥ coins2 and wrestler ≥ K , and at least one of the inequalities is strict; or b = −1 if coins1 ≤ coins2
and wrestler ≤ K , and at least one of the inequalities is strict; b = 0 otherwise. Again, we use tanh to scale the value into
the interval [−1, 1] only in the win–tie–lose case.

Pursuit–evasion games. Another important class of games is pursuit–evasion games (for example, see [82]). There is a single
evader and a pursuer that controls 2 pursuing units on a four-connected grid in our pursuit–evasion game. Since all units
move simultaneously, the game has larger branching factor than Goofspiel (up to 16 actions for the pursuer). The evader
wins if she successfully avoids the units of the pursuer for the whole game. The pursuer wins if her units successfully
capture the evader. The evader is captured if either her position is the same as the position of a pursuing unit, or the
evader used the same edge as a pursuing unit (in the opposite direction). The game is win–loss and the players receive
utility from the set {−1, 1}. We use 3 different square four-connected grid-graphs (with the size of a side 4, 5, and 10
nodes) for the experiments without any obstacles or holes. In the experiments we varied the maximum length of the game
d and we altered the starting positions of the players (the distance between the pursuers and the evader was always at
most

⌊
2
3 d

⌋
moves, in order to provide a possibility for the pursuers to capture the evader).

Similarly to Oshi-Zumo, many instances of pursuit–evasion games have a pure Nash equilibrium. However, the random-
ization can be required towards the actual end of the game in order to capture the evader. Therefore, depending on the
length of the game and the distance between the units, there might be many states that do not require mixed strategies
(the units of the pursuers are simply going towards the evader). Once the units are close to each other, the game may
require mixed strategies for the final coordination. This can be seen on our small example on a graph with 4 × 4 nodes and
depth 5:

Depth 0 1 2 3 4

Pure 1 12 261 7,656 241,986
Mixed 0 0 63 1,008 6,726

The evaluation function used in pursuit–evasion games takes into consideration the distance between the units of the
pursuer and the evader (denoted distance j for the distance in moves of the game between the jth unit of the pursuer and
the evader). Formally:

22 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

eval(s) = min(distance1,distance2) + 0.01 · max(distance1,distance2)

1.01 · (w + l)
,

where w and l are dimensions of the grid graph.

Random/synthetic games. Finally, we also use randomly generated games to be able to experiment with additional param-
eters of the game, mainly larger utility values and their correlation. In randomly generated games, we fixed the number of
actions that the players can play in each stage to 4 and 5 (the results were similar for different branching factors) and we
varied the depth of the game tree. We use 2 different methods for randomly assigning the utility values to the terminal
states of the game: (1) the utility values are uniformly selected from the interval [0,1]; (2) we randomly assign either −1,
0, or +1 value to each joint action (pair of actions) and the utility value in a leaf is a sum of all the values on the edges on
the path from the root of the game tree to the leaf. The first method produces extremely difficult games for pruning using
either alpha-beta, or the double-oracle algorithm, since there is no correlation between actions and utility values in sibling
leaves. The latter method is based on random P-games [83] and creates more realistic games using the intuition of good and
bad moves.

Randomly generated games represent games that require mixed strategies in most of the states. This holds even for
the games of the second type with correlated utility values in the leaves. The following table shows the number of states
depending on the depth for a randomly generated game of depth 5 with 4 actions available to both players in each state:

Depth 0 1 2 3 4

Pure 0 2 29 665 20,093
Mixed 1 14 227 3,431 45,443

Only the second type of randomly generated games is used in the online setting. The evaluation function used in this
case is computed similarly to the utility value and it is equal to the sum of values on the edges from the root to the current
node.

Tron. Tron is a two-player simultaneous move game played on a discrete grid, possibly obstructed by walls [55,57,60]. At
each step, both players move to adjacent nodes and a wall is placed to the original positions of the players. If a player hits
the wall or the opponent, the game ends. The goal of both players is to survive as long as possible. If both players move
into a wall, off the board, or into each other on the same turn, the game ends in a draw. The utility is +1 for a win, 0 for
a draw, and −1 for a loss. In the experiments, we used an empty grid with no obstacles and various sizes of the grid.

Similarly to pursuit–evasion games, there are many instances of Tron that have pure NE. However, even if mixed strate-
gies are required, they appear in the middle of the game once both players reach the center of the board and compete over
the advantage of possibly being able to occupy more squares. Once this is determined, the endgame can be solved in pure
strategies since it typically consists of filling the available space in an optimal ordering one square at a time. The following
table comparing the number of states demonstrates this characteristics of Tron on a 5 × 6 grid:

Depth 0 1 2 3 4 5 . . .

Pure 1 4 14 100 565 2,598
Mixed 0 0 2 0 9 7

. . . 6 7 8 9 10 11 12 13

9,508 25,964 54,304 83,624 87,009 63,642 23,296 3,127
51 92 106 121 74 0 0 0

The evaluation function is based on how much space is “owned” by each player, which is a more accurate version of the
space estimation heuristic [84] that was used in [60]. A cell is owned by player i if it can be reached by player i before
the opponent. These values are computed using an efficient flood-fill algorithm whose sources start from the two players’
current positions:

eval(s) = tanh

(
owned1 − owned2

5

)
.

6.3. Non-convergence and random tie-breaking in UCT

We first revisit the counter-example given in [14] showing that UCT does not converge to an equilibrium strategy in
Biased Rock, Paper, Scissors when using a mixed strategy created by normalizing the visit counts. We expand on this
result, showing the effect of the synchronization occurring when the UCT selection mechanism is fully deterministic (see
Subsection 4.4.1).

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 23

Fig. 8. Exploitability of strategies of recommended by MCTS-UCT over time in Biased Rock, Paper, Scissors. Vertical axis represents exploitability.

We run SM-MCTS with UCT, Exp3, and Regret Matching selection functions on Biased Rock, Paper, Scissors for 100 million
(108) iterations, measuring the exploitability of the strategy recommended by each variant at regular intervals. The results
are shown in Figs. 8 and 9.

The first observation is that deterministic UCT does not seem to converge to a low-exploitability strategy (see Fig. 8, top
figure). The exploitability of the strategies of Exp3 and RM variants do converge to low-exploitability strategies (see Fig. 9),
and the resulting approximation depends on the amount of exploration. If less exploration is used, then the resulting
strategy is less exploitable, which is natural in the case of a single state. RM does seem to converge slightly faster than
Exp3, as we will see in the remaining domains as well.

We then tried adding a stochastic tie-breaking rule to the UCT selection mechanism typically used in MCTS implemen-
tations, which chooses an action randomly when the scores of the best values are “tied” (less than 0.01 apart). The bottom
figure in Fig. 8 shows the convergence. One particularly striking observation is that this simple addition leads to a large
drop in the resulting exploitability, where the exploitability ranges from [0.5, 0.8] in the deterministic case, compared to
[0.01, 0.05] with the stochastic tie-breaking. Therefore, the stochastic tie-breaking is enabled in all of our experiments.

In summary, with this randomization UCT appears to be converging to an approximate equilibrium in this game but not
to an exact equilibrium, which is similar to results of a variant of UCT in Kuhn poker [85].

6.4. Offline equilibrium computation

We now compare the offline performance of the algorithm on all the remaining games. We measure the overall com-
putation time for each of the algorithms and the number of evaluated nodes – i.e., the nodes for which the main method
of the backward induction algorithm executed (nodes evaluated by serialized alpha-beta algorithms are not included in this
count, since they may be evaluated repeatedly). Unless otherwise stated, each data point represents a mean over at least 30
runs.

6.4.1. Goofspiel
We now describe the results for the card game Goofspiel. First, we analyze the games with fixed sequences of the cards.

Exact algorithms with fixed sequences. The results are depicted in Fig. 10 (note the logarithmic vertical scale), where the left
subfigure depicts the results for win–tie–lose utilities and the right subfigure depicts the results for point utilities. We
present the mean results over 10 different fixed sequences. The comparison on the win–tie–lose variant shows that there
is a significant number of subgames with a pure Nash equilibrium that can be computed using the serialized alpha-beta
algorithms. Therefore, the performance of BIαβ and DOαβ is fairly similar and the gap only slowly increases in favor of

24 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Fig. 9. Exploitability of strategies recommended by MCTS-Exp3 and MCTS-RM over time in Biased Rock, Paper, Scissors. Vertical axis represents exploitability.

Fig. 10. Running times of the exact algorithms on Goofspiel with fixed sequences of cards for increasing size of the deck; subfigure (a) depicts the results
with win–tie–lose utilities, (b) depicts the results with point difference utilities.

DOαβ with the increasing size of the game. Since serialized alpha-beta is able to solve a large portion of subgames, both
of these algorithms significantly reduce the number of the states visited by the backward induction algorithm. While BI

evaluates 3.2 × 107 nodes in the setting with 7 cards in more than 2.5 hours, BIαβ evaluates only 198,986 nodes in less
than 4 minutes. The performance is further improved by DOαβ that evaluates on average 79,105 nodes in less than 3
minutes. The overhead is slightly higher in case of DOαβ; hence, the time difference between DOαβ and BIαβ is relatively
small compared to the difference in evaluated nodes. Finally, the results show that even the DO algorithm without the
serialized alpha-beta search can improve the performance of BI. In the setting with 7 cards, DO evaluates more than 6 × 106

nodes which takes on average almost 30 minutes.
The results for the point utilities are the same for BI, while DO is slightly worse. On the other hand, the success of

serialized alpha-beta algorithms is significantly lower and it takes both algorithms much more time to solve the games of
the same size. With 7 cards, BIαβ evaluates more than 2 × 106 nodes and it takes the algorithm on average 32 minutes to
find the solution. DOαβ is still the fastest and it evaluates more than 3 × 105 nodes in less than 13 minutes on average.

The performance of algorithms BIαβ and DOαβ represent a significant improvement over the results of the pruning
algorithm SMAB presented in [38]. In their work, the number of evaluated nodes was at best around 29%, and the running
time improvement was only marginal.

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 25

Fig. 11. Running times of exact algorithms on Goofspiel with chance nodes for increasing size of the deck; subfigure (a) depicts the results with win–tie–lose
utilities, (b) depicts the results with point utilities.

Fig. 12. Convergence of the sampling algorithms on Goofspiel with 5 cards and a fixed sequence of cards. The vertical lines correspond to the computation
times for the exact algorithms. (Top) Goofspiel with win–tie–lose utility values; (bottom) Goofspiel with point utilities.

Exact algorithms with a stochastic sequence. Next we compare the exact algorithms in the variant of Goofspiel with standard
chance nodes. Introducing another branching due to moves by chance causes a significant increase in the size of the game
tree. For 7 cards, the game tree has more than 1011 nodes, which is 4 orders of magnitude more than in the case with
fixed sequences of cards. The results depicted in Fig. 11 show that the games become quickly too large to solve exactly
and the fastest algorithms solved games with at most 6 cards. Relative performance of the algorithms, however, is similar
to the case with fixed sequences. With win–tie–lose utilities, serialized alpha-beta is again able to find pure NE in most
of the subgames and prunes out a large fraction of the states. For the game with 5 cards, BI evaluates more than 2 × 106

nodes in almost 10 minutes, while BIαβ evaluates only 17,315 nodes in 27 seconds and DOαβ evaluates 6,980 nodes in 23
seconds. As before, the serialized alpha-beta algorithm is less helpful in the case with point utilities. Again with 5 cards,
BIαβ evaluates 91,419 nodes in more than 100 seconds and DOαβ evaluates 14,536 nodes in almost 55 seconds.

Sampling algorithms with fixed sequences. We now turn to the analysis of the convergence of the sampling algorithms – i.e.,
their ability to approximate Nash equilibrium strategies of the complete game. Fig. 12 depicts the results for Goofspiel game
with 5 cards with fixed sequence of cards (note the logarithmic horizontal scale). We compare MCTS algorithms with three
different selection functions (UCT, Exp3, and RM), and OOS. The results are means over 30 runs of each algorithm. Due to
the different selection and update functions, the algorithms differ in the number of iterations per second. RM is the fastest

26 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Fig. 13. Convergence of the sampling algorithms on Goofspiel with 4 cards and chance nodes. The vertical lines correspond to the computation times for
the exact algorithms. (Top) Goofspiel with win–tie–lose utility values; (bottom) Goofspiel with point utilities.

with more than 2.6 × 105 iterations per second, OOS has around 2 × 105 iterations, UCT 1.9 × 105, and Exp3 only 5.4 × 104

iterations.
The results show that OOS converges the fastest out of all sampling algorithms. This is especially noticeable in the

point-utility settings, where none of the other sampling algorithms were approaching zero error due to the exploration.
MCTS with RM selection function is only slightly slower in the win–tie–lose case, however, the other two selection functions
perform worse. While Exp3 eventually converges close to 0 in the win–tie–lose case, the exploitability of UCT decreases
rather slowly and it was still over 0.35 at the time limit of 500 seconds. The best C constant for UCT was 5 in the
win–tie–lose setting, and 10 in the point utility setting. While setting lower constant typically improves the convergence
rate slightly during the first iterations, the final error was always larger. The vertical lines represent the times for the exact
algorithms. In the win–tie–lose case, BIαβ is slightly faster and finishes first in 0.64 seconds, followed by DOαβ (0.69
seconds), DO (3.1 seconds), and BI (6 seconds). In the point case, DOαβ is the fastest (0.97 seconds), followed by BIαβ

(1.3 seconds), followed by DO and BI with similar times as in the previous case.

Sampling algorithms with a stochastic sequence. We also performed the experiments in the setting with chance nodes. Due to
the size of the game tree, we have reduced the number of cards to 4, since the size of this game tree is comparable to the
case with 5 cards and a fixed sequence of cards. The results depicted in Fig. 13 show a similar behavior of the sampling
algorithms as observed in the previous case. OOS converges the fastest, followed by RM, and Exp3. The main difference is in
the convergence of UCT, however, this is mostly due to the fact that a pure NE exists in Goofspiel with 4 cards; hence, UCT
can better identify the best action to play and converges faster to a less exploitable strategy than in the case with 5 cards.
Surprisingly, the convergence rates of the algorithms do not change that dramatically with the introduction of point utilities
as in the previous case. The main reason is that the range of the utility values is smaller compared to the previous case
(there is one card less in the present setting and the missing cards has the highest value). For comparison, we again use the
vertical lines to denote times of exact algorithms. BIαβ and DOαβ are almost equally fast, with DOαβ being slightly faster,
followed by DO and BI.

6.4.2. Pursuit–evasion games
The results on pursuit–evasion games show more significant improvement when comparing DOαβ and BIαβ (see Fig. 14).

In all settings, DOαβ is significantly the fastest. When we compare the performance on a 5 × 5 graph with depth set to 6,
BI evaluates more than 4.9 × 107 nodes taking more than 13 hours. On the other hand, BIαβ evaluates on average 42,001
nodes taking almost 10 minutes (584 seconds). Interestingly, the benefits of a pure integration with alpha-beta search is not
that helpful in this game. This is apparent from the results of DO algorithm that evaluates less than 2 × 106 nodes but it
takes slightly over 9 minutes on average (547 seconds). Finally, DOαβ evaluates only 6,692 nodes and it takes the algorithm
less than 3 minutes.

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 27

Fig. 14. Running times of exact algorithms on pursuit–evasion games with an increasing number of moves: subfigure (a) depicts the results on 4 × 4 grid
graph, (b) depicts results for 5 × 5 grid.

Fig. 15. Convergence of the sampling algorithms on a pursuit–evasion game, on a 4 × 4 graph, with depth set to 4. The vertical lines correspond to the
computation times for the exact algorithms.

Large parts of these pursuit–evasion games can be solved by the serialized alpha-beta algorithms. These parts typically
correspond to clearly winning, or clearly losing positions for a player; hence, the serialized alpha-beta algorithms are able to
prune a substantial portion of the space. However, since there are only two pursuit units, it is still necessary to use mixed
strategies for a final coordination (capturing the evader close to edge of the graph), and thus mixing strategy occurs near
the end of the game tree. Therefore, serialized alpha-beta is not able to solve all subgames, while double-oracle provides
additional pruning since many of the actions in the subgames are leading to the same outcome and not all of them required
finding equilibrium strategies. This leads to additional reductions in the computation time for DOαβ compared to BIαβ and
all the other algorithms.

We now turn to the convergence of the sampling algorithms. In terms of the number of iterations per second, again RM
was the fastest and OOS the second fastest with similar performance as in Goofspiel. UCT achieved slightly less (1.7 × 105

iterations per second), and Exp3 only 2.6 ×104 iterations. The results are depicted in Fig. 15 for the smaller, 4 ×4 graph and
4 moves for each player (note again the logarithmic horizontal scale). The starting positions were selected such that there
does not exist a pure NE strategy in the game. The results again show that OOS is overall the fastest out of all sampling
algorithms. During the first iterations, RM preforms similarly, however, OOS is able to maintain its convergence rate, and
RM starts converging more slowly. UCT again converges to an exploitable strategy with error 1.16 at best in the time limit
of 500 seconds (C = 2). Finally, Exp3 is converging even more slowly than in Goofspiel. The main difference between the
games is the size of the branching factor for the second player (the pursuer controls two simultaneously moving units),
which can cause more difficulties for the sampling algorithms to estimate good strategies.

As before, the vertical lines represent the times for the exact algorithms. In a pursuit–evasion game of this setting,
DOαβ is slightly faster and finishes first in 2.77 seconds, following by BIαβ (2.89 seconds), DO (5.48 seconds), and BI (12.5
seconds).

6.4.3. Oshi-Zumo
Many instances of the Oshi-Zumo game have Nash equilibria in pure strategies regardless of the type of the utility

function. Although this does not hold for all the instances, the sizes of the subgames with pure NE are rather large and
cause a dramatic computation speed-up for both algorithms using the serialized alpha-beta search. If the game does not
have equilibria in pure strategies, the mixed strategies are still required only near the root node and large end-games
are solved using alpha-beta search. Note that this is different than in the pursuit–evasion games, where mixed strategies
were necessary close to the end of the game tree. Fig. 16 depicts the results with the parameter K set to 4 and for

28 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Fig. 16. Running times of the exact algorithms on Oshi-Zumo with K set to 4 and an increasing number of coins: subfigure (a) depicts the results for binary
utilities, (b) depicts the results with point utilities.

two different settings of the utility function7; either win–tie–lose utilities (left subfigure) or point difference utilities (right
subfigure). In both cases, the graphs show the breaking points when the game stops having an equilibrium in pure strategies
(≥ 15 coins for each player). The advantage of BIαβ and DOαβ algorithms that exploit the serialized variants of alpha-beta
algorithms is dramatic. We can see that both BI and DO scale rather badly. The algorithms were able to scale up to 13
coins in a reasonable time. For setting with K = 4 and 13 coins, it takes almost 2 hours for BI to solve the game (the
algorithm evaluates 1.5 × 107 nodes) regardless of the utility values. DO improves the performance (the algorithm evaluates
2.8 × 106 nodes in 17 minutes for win–tie–lose utilities; the performance is slightly worse for point utilities: 5 × 106 nodes
in 23 minutes). Both BIαβ and DOαβ , however, solved a single alpha-beta search on each serialization finding a pure NE.
Therefore, their performance is identical and it takes around 1.5 seconds to solve the game for both types of utilities.
Although with an increasing number of coins the algorithms BIαβ and DOαβ need to find a mixed Nash equilibrium, their
performance is very similar for both types of utilities. As expected, the case with point utilities is more challenging and the
algorithms scale worse – for 18 coins both algorithms solve the game with win–tie–lose utilities in approximately 1 hour
(BIαβ in 50 minutes, DOαβ in 64). It takes the algorithms around 3 hours to solve the case with point utilities (BIαβ in
191 minutes, DOαβ in 172 minutes).

Turning to the sampling algorithms reveals that the game is difficult to approximate even in the win–tie–lose setting.
Fig. 17 depicts the results for the observed convergence rates of the sampling algorithms for the game with 10 coins, K set
to 3 and the minimum bid set to 1. This is an easy game for DOαβ and BIαβ with a pure NE and both of these algorithms
are able to solve the game in less than a second (0.73). However, due to a large branching factor for both players (10 actions
at the root node for each player) all sampling algorithms converge extremely slowly. The performance of the algorithms in
terms of iterations per second is similar to the previous games, however, OOS is slightly better in this case with 1.9 × 105

iterations per second compared to the RM with 1.6 × 105 iterations per second.
As before, OOS is the best converging algorithm, however, in a given time limit (500 seconds) the reached error was

only slightly below 0.3 (0.29). On the other hand, all of the other sampling algorithms perform significantly worse – RM
ends with error slightly over 1, UCT (C = 2) with 1.50, and Exp3 with 1.88. This confirms our findings from the previous
experiment that increasing the branching factor slows down the convergence rate. Secondly, since there is a pure Nash
equilibrium in this particular game configuration, the convergence of the algorithms is also slower since they essentially
mix the strategy during the iterations in order to explore the unvisited parts of the game tree. Since none of the sampling
algorithms can directly exploit this fact, their performance in offline solving of games like Oshi-Zumo is not compelling. On
the other hand, the existence of pure NE explains the better performance of UCT compared to Exp3 that is forced to explore
more broadly. Moreover, the convergence takes even more time in the point utility case, since the range of the utility values
is larger. OOS is again the fastest and converges to error 0.45 within the time limit, RM to 1.41, UCT (C = 4) to 3.1, and
Exp3 to 3.7.

6.4.4. Random games
In the first variant of the randomly generated games we used games with utility values randomly drawn from a uniform

distribution on [0, 1]. Such games represent an extreme case, where neither alpha-beta nor the double-oracle algorithm
can save much computation time, since each action can lead to arbitrarily good or bad terminal states. In these games, BI

is typically the fastest. Even though both BIαβ and DOαβ evaluate marginally fewer nodes (less than 90%), the overhead
of the algorithms (repeated computations of the serialized alpha-beta algorithm, repeatedly solving linear programs, etc.)
causes a slower run time performance in this case.

However, completely random games are rarely instances that need to be solved in practice. The situation changes, when
we use the intuition of good and bad moves and thus add correlation to the utility values. Fig. 18 depicts the results for
two different branching factors 4 and 5 for each player and increasing depth. The results show that DOαβ outperforms all

7 We have also performed the same experiments with K set to 3, but the conclusions were the same as in case K = 4.

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 29

Fig. 17. Convergence of the sampling algorithms on Oshi-Zumo game with 10 coins, K = 3, and M = 1. The vertical lines correspond to the computation
times for the exact algorithms. (Top) Oshi-Zumo with win–tie–lose utility values; (bottom) Oshi-Zumo with point utilities.

Fig. 18. Running times of the exact algorithms on randomly generated games with increasing depth: subfigure (a) depicts the results with branching factor
set to 4 actions for each player, (b) depicts the results with branching factor 5.

remaining algorithms, although the difference is rather small (still statistically significant). On the other hand, DO without
serialized alpha-beta is not able to outperform BI. This is most likely caused by a larger number of undominated actions
that forces the double-oracle algorithm to enumerate most of the actions in each state. Moreover, this is also demonstrated
by the performance of BIαβ that is only slightly better compared to BI.

The fact that serialized alpha-beta is less successful in randomly generated games is noticeable also when comparing the
number of evaluated nodes. For the case with branching factor set to 4 for both players and depth 7, BI evaluates almost
1.8 × 107 nodes in almost 3.5 hours, while BIαβ evaluates more than 1 × 107 nodes in almost 3 hours. DO evaluates even
more nodes compared to BIαβ (1.2 × 107) and it is slower compared to both BI and BIαβ . Finally, DOαβ evaluates 2 × 106

nodes on average and it takes the algorithm slightly over 80 minutes.
Fig. 19 depicts the results for convergence of the sampling algorithms for a random game with correlated utility values,

branching factor set to 4 and depth 5. The number of iterations per second is similar to the situation in Goofspiel, with
Exp3 being the exception able to achieve more than 6.5 × 104 iterations per second, which is still the lowest number
of iterations. Interestingly, there is a much less difference between the performance of the sampling algorithms in these
games. Since these games are generally more mixed (i.e., NE require to use mixed strategies in many states of the games),
they are much more suitable for the sampling algorithms. OOS can be considered the winner in this setting, however, the
performance of RM is very similar. Again, since the game is more mixed, Exp3 outperforms UCT in the longer run. The
exploration constant for UCT was set to 12 due to a larger utility variance in this setting.

30 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Fig. 19. Convergence of the sampling algorithms on a random game with branching factor 4 and depth 5. The vertical lines correspond to the computation
times for the exact algorithms.

Fig. 20. Running times of the exact algorithms on Tron with increasing width of the grid graph: subfigure (a) depicts the results with height of the graph
set to width − 1, (b) depicts the results with height = width.

6.4.5. Tron
Performance of the exact algorithms in Tron is affected by the fact that pure NE exist in all smaller instances (the results

are depicted for two different ratios of dimensions of the grid in Fig. 20). Therefore, BIαβ and DOαβ are essentially the
same since serialized alpha-beta is able to solve the game. Moreover, since the size of the game increases dramatically with
the increasing size of the grid (the longest branch of the game tree has (0.5 · w · l − 1) joint actions, where w and l are the
dimensions of the grid), the performance of standard BI is very poor. While BI is able to solve the grid 5 × 6 in 96 seconds,
it takes around 30 minutes to solve the 6 × 6 grid. By comparison, DO solves the 6 × 6 instance in 235 seconds, and both
BIαβ and DOαβ in 0.6 seconds. BIαβ and DOαβ scale much better and the largest graph these algorithms solved had size
9 × 9 taking almost 2 days to solve.

The size of the game tree in Tron also causes a slow convergence for the sampling algorithms. This is apparent also
in the number of iterations that is lower than before. OOS is the fastest performing 1.3 × 105 iterations per second, RM
achieves 1.2 × 105, UCT only 8 × 104, and Exp3 is again the slowest with 7.8 × 104 iterations per second. Fig. 21 depicts
the results for the grid 5 × 6. Consistently with the previous results, OOS performs the best and it is able to converge very
close to an exact solution in 300 seconds. Similarly, both RM and Exp3 are again eventually able to converge to a very small
error, however, it takes them more time and in the time limit they achieve error 0.05, or 0.02 respectively. Finally, UCT
(C = 5) performs reasonably well during the first 10 seconds, where the exploitability is better than both RM and Exp3.
This is most likely due to the existence of pure NE, however, the length of the game tree prohibits UCT from converging
and the best error the algorithm was able to achieve in the time limit was equal to 0.68.

6.4.6. Summary of the offline equilibrium computation experiments
The offline comparison of the algorithms offer several conclusions. Among the exact algorithms, DOαβ is clearly the

best algorithm, since it typically outperforms all other algorithms (especially in pursuit–evasion games and random games).
Although for smaller games (e.g., Goofspiel with 5 cards) BIαβ can be slightly faster, this difference is not significant and
DOαβ is never significantly slower compared to BIαβ .

Among the sampling algorithms, OOS is the clear winner since it is often able to quickly converge to a very small
error and significantly outperforms all variants of MCTS. On the other hand, comparing OOS and DOαβ , the exact DOαβ

algorithm is always faster and it is able to find an exact solution much faster compared to OOS. Moreover, DOαβ has
significantly lower memory requirements since it is a depth-first search algorithm and does not use any form of global
cache, while OOS iteratively constructs the game tree in memory.

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 31

Fig. 21. Convergence comparison of different sampling algorithms on Tron on grid 5 × 6. The vertical lines correspond to the computation times for the
exact algorithms.

6.5. Online search

We now compare the performance of the algorithms in head-to-head matches in the same games as in the offline
equilibrium computation experiments, but we use much larger instances of these games. Each algorithm has a strictly
limited computation time per move set to 1 second. After this time, the algorithm outputs an action to be played in the
current game state, receives information about the action selected by its opponent, and the game proceeds to the next
state. As described in Section 5, each algorithm keeps results of previous computations and does not start from scratch in
the next state. We have also performed a large set of experiments with 5 seconds of computation time per move, however,
the results are very similar to the results with 1 second per move. Therefore, we presents the results with 1 second in detail
and only comment on the 5-second results where the additional time leads to an interesting difference.

We compare all of the approximative sampling algorithms and DOαβ as a representative of backward induction algo-
rithms, because it was clearly the fastest algorithm in all of the considered games. Finally, we also include a random player
(denoted RAND) into the tournament to confirm that the algorithms choose much better strategies than the simple random
game play. We report expected rewards and win rates of the algorithms, in which a tie counts as half of a win. The param-
eters of the algorithms are tuned for each domain separately. We first present the comparison of different algorithms and
we discuss the influence of the parameters in Subsection 6.5.6.

In this subsection, we show cross tables of each algorithm (in each row) matched up against each competitor algorithm
(in each column). Each entry represents a mean of at least 1000 matches with the half of the width of the 95% confidence
interval shown in parentheses, e.g., 52.9(0.3) refers to 52.9% ± 0.3%. The result shown is the win rate for the row player, so
as an example in the standard game of Goofspiel (top of Table 1) DOαβ wins 67.2% ± 1.4% of games against the random
player. All evaluated games except the pursuit–evasion game are symmetric from the perspective of the first and the second
player. We made even the random games symmetric by always playing matches on the same game instance in pairs with
alternating players’ positions. However, for easier comparison of the algorithms, we mirror the same results to both fields
corresponding to a pair of players in the cross tables.

6.5.1. Goofspiel
In the head-to-head comparisons, our focus is primarily on the standard Goofspiel with 13 cards and chance nodes.

Additionally, for the sake of consistency with the offline results, we also evaluate the variant with a fixed known sequence
of cards. The full game has more than 2.4 × 1029 terminal states and the variant with a fixed sequence has still more than
3.8 × 1019 terminal states. The results are presented in Table 1, where the top table shows the win rates of the algorithms
in the full game and the other two tables show the win rates and the expected number of points gained by the algorithms
in the game with a fixed point card sequence. The results for the fixed card sequence are means over 10 fixed random
sequences. For each table, the algorithms were set up to optimize the presented measure (i.e., win rate or points) and the
exploration parameters were tuned to the values presented in the header of the table.

First, we can see that finding a good strategy in Goofspiel is difficult for all the algorithms. This is noticeable from the
results of the RAND player, that performs reasonably well (RAND typically loses almost every match in all the remaining
game domains). Next, we analyze the results of the DOαβ algorithm compared to the sampling algorithms. The results
show that even though DOαβ uses a domain-specific heuristic evaluation function, it does not win significantly against any
of the sampling algorithms that do not use any domain knowledge. The difference is always statistically significant with a
large margin. When optimizing win percentage, DOαβ loses the least against UCT while in optimizing the expected reward,
UCT performs significantly best. The performance of the other sampling algorithms is very similar against DOαβ , with Exp3
winning the least in the reward optimization.

32 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Table 1
Results of head-to-head matches in Goofspiel variants with exploration parameter settings indicated in the table headers.

Goofspiel: 13 cards, stochastic sequence of cards, win rate

DOαβ OOS(0.2) UCT(0.6) EXP3(0.3) RM(0.1) RAND

DOαβ • 26.6(2.7) 36.0(2.9) 26.1(2.7) 25.9(2.7) 67.2(1.4)
OOS 73.4(2.7) • 51.2(2.1) 52.5(2.2) 47.5(3.0) 81.4(1.7)
UCT 64.0(2.9) 48.8(2.1) • 55.6(2.1) 49.7(3.0) 77.3(1.8)
EXP3 73.8(2.7) 47.5(2.2) 44.4(2.1) • 41.1(3.0) 86.1(1.5)
RM 74.1(2.7) 52.5(3.0) 50.3(3.0) 58.9(3.0) • 85.2(2.2)
RAND 32.8(1.4) 18.6(1.7) 22.7(1.8) 13.9(1.5) 14.8(2.2) •

Goofspiel: 13 cards, known sequence of cards, win rate

DOαβ OOS(0.3) UCT(0.8) EXP3(0.2) RM(0.1) RAND

DOαβ • 28.2(2.8) 35.0(2.9) 30.1(2.8) 31.5(2.8) 67.2(2.9)
OOS 71.8(2.8) • 46.2(3.0) 51.8(3.0) 49.6(3.0) 83.8(2.3)
UCT 65.0(2.9) 53.8(3.0) • 57.1(2.9) 48.6(2.9) 79.5(2.5)
EXP3 70.0(2.8) 48.2(3.0) 42.9(2.9) • 46.5(3.0) 85.8(2.1)
RM 68.5(2.8) 50.4(3.0) 51.4(2.9) 53.5(3.0) • 84.2(2.2)
RAND 32.8(2.9) 16.2(2.3) 20.5(2.5) 14.2(2.1) 15.8(2.2) •

Goofspiel: 13 cards, known sequence of cards, point utilities

DOαβ OOS(0.3) UCT(0.8) EXP3(0.2) RM(0.1) RAND

DOαβ • −7.74(0.94) −8.89(0.91) −6.45(0.94) −7.88(0.96) 6.67(0.99)
OOS 7.74(0.94) • 1.19(0.78) 3.27(0.82) 0.35(0.76) 14.42(0.96)
UCT 8.89(0.91) −1.19(0.78) • 1.72(0.80) −1.94(0.73) 13.30(1.00)
EXP3 6.45(0.94) −3.27(0.82) −1.72(0.80) • −5.02(0.79) 14.79(0.97)
RM 7.88(0.96) −0.35(0.76) 1.94(0.73) 5.02(0.79) • 14.20(0.98)
RAND −6.67(0.99) −14.42(0.96) −13.30(1.00) −14.79(0.97) −14.20(0.98) •

We compare the sampling algorithms in the game variants in the order of the presented tables. The differences in the
performance of the sampling algorithms are relatively small between each other. They are more noticeable mainly against
the weaker players, which are outperformed by all sampling algorithms. In the game with stochastic point card sequence,
OOS, UCT and RM make approximately 10 × 103 iterations in the 1 second time limit in the root of the game. Exp3 is
slightly slower with 8 × 103 iterations. The best algorithm in this game variant is RM, which wins against all other sampling
algorithms and wins most often against DOαβ and Exp3. The second best algorithm is OOS, which loses only against RM
and Exp3 is the weakest algorithm losing against all other sampling algorithms.

The sampling algorithms in the second game variant (without chance) perform the same number of samples as in the
first variant, with the exception of UCT, which performs 12 ×103 iterations per second. However, they each build a consider-
ably deeper search tree, since the game tree is less wide. The exploration parameters were tuned to slightly larger numbers,
which indicate that more exploration is beneficial in smaller games. The results are similar to the previous game variant.
RM is still winning against all opponents, but it is not able to win more often against weaker players, which is consistent
with playing close to a Nash equilibrium. UCT loses only against RM in this variant and it significantly outperforms OOS and
Exp3. This indicates that UCT was able to better focus on the relevant part of the smaller game, which is supported also
by a larger number of simulations, which can be caused by shorter random simulations after leaving the part of the search
tree stored in memory.

When the players optimize the expected point difference, the differences between the algorithms are larger. We can
see that RM and OOS perform significantly better than UCT and Exp3. OOS wins against all opponents and RM loses only
against OOS. An important reason behind the decrease of the performance of Exp3 is that after normalizing the reward to
unit interval, the important differences in values for reasonably good strategies become much smaller, which slows down
the learning of the algorithm. UCT compensates the range of the rewards by the choice of the exploration parameter, but
different nodes would benefit from different exploration parameters, which causes more inefficiencies with more variable
rewards. An important advantage of OOS and RM is that their behavior is practically independent of the utility range.

In summary, RM is the only algorithm that did not lose significantly against any other sampling algorithm in any of
the game variants and it often wins significantly. Exp3 is overall the weakest algorithm, losing to all other algorithms in
all Goofspiel variants. Interestingly, Exp3 always performs the best against the random player, which indicates a slower
convergence against more sophisticated strategies.

6.5.2. Oshi-Zumo
In Oshi-Zumo, we use the setting with 50 coins, 2 · 3 + 1 = 7 fields of the board (i.e., K = 3), and the minimal bet of 1.

The size of the game is large with strictly more than 1015 terminal states and 50 actions for each player in the root.
The results are depicted in Table 2. As in the case of Goofspiel, we show the results for both the win rate as well as the

point utilities. Moreover, our evaluation function in Oshi-Zumo is much more accurate than the one in Goofspiel and DOαβ

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 33

Table 2
Results of head-to-head matches in Oshi-Zumo variants with exploration parameter settings indicated in the header. In the first two tables only DOαβ uses
a heuristic evaluation function and in the third table all algorithms use the evaluation function.

Oshi-Zumo: 50 coins, K = 3, win rate

DOαβ OOS(0.2) UCT(0.4) EXP3(0.8) RM(0.1) RAND

DOαβ • 79.2(2.5) 77.6(2.6) 84.8(2.2) 84.0(2.3) 98.8(0.5)
OOS 20.9(2.5) • 27.7(2.6) 57.1(2.1) 51.2(2.1) 98.9(0.4)
UCT 22.4(2.6) 72.3(2.6) • 83.0(2.0) 70.3(2.6) 99.9(0.2)
EXP3 15.2(2.2) 42.9(2.1) 17.0(2.0) • 44.5(2.8) 98.5(0.5)
RM 16.0(2.3) 48.8(2.1) 29.6(2.6) 55.5(2.8) • 99.0(0.4)
RAND 1.2(0.5) 1.1(0.4) 0.1(0.2) 1.5(0.5) 1.0(0.4) •

Oshi-Zumo: 50 coins, K = 3, point utilities

DOαβ OOS(0.2) UCT(0.4) EXP3(0.8) RM(0.1) RAND

DOαβ • 2.33(0.19) 2.27(0.20) 3.62(0.10) 2.85(0.17) 3.65(0.09)
OOS −2.33(0.19) • −0.53(0.19) 3.46(0.10) 0.25(0.20) 3.87(0.05)
UCT −2.27(0.20) 0.53(0.19) • 3.68(0.07) 0.58(0.17) 3.93(0.02)
EXP3 −3.62(0.10) −3.46(0.10) −3.68(0.07) • −3.53(0.09) 1.31(0.17)
RM −2.85(0.17) −0.25(0.20) −0.58(0.17) 3.53(0.09) • 3.87(0.04)
RAND −3.65(0.09) −3.87(0.05) −3.93(0.02) −1.31(0.17) −3.87(0.04) •

Oshi-Zumo: 50 coins, K = 3, win rate, evaluation function

DOαβ OOS(0.3) UCT(0.8) EXP3(0.8) RM(0.1) RAND

DOαβ • 63.0(2.1) 11.8(1.3) 52.9(2.2) 61.7(2.1) 98.6(0.5)
OOS 37.0(2.1) • 24.8(1.9) 33.4(2.0) 43.6(2.1) 99.6(0.3)
UCT 88.2(1.3) 75.2(1.9) • 80.5(1.7) 71.1(2.0) 99.8(0.2)
EXP3 47.1(2.2) 66.6(2.0) 19.5(1.7) • 58.7(2.1) 98.7(0.5)
RM 38.3(2.1) 56.4(2.1) 28.9(2.0) 41.3(2.1) • 99.6(0.3)
RAND 1.4(0.5) 0.4(0.3) 0.2(0.2) 1.3(0.5) 0.4(0.3) •

is clearly outperforming all sampling algorithms when they do not use any domain specific knowledge. Therefore we also
run experiments where the sampling algorithms also use an evaluation function instead of random rollout simulations.

In the offline experiment (Fig. 17), none of the sampling algorithms were able to converge anywhere close to the equi-
librium in a short time. Moreover, the game used in the offline experiments was orders of magnitude smaller (there were
only 10 coins for each player). In spite of the negative results in the offline experiments, all sampling algorithms are able to
find a reasonably good strategy. UCT is clearly the strongest sampling algorithm in all variants. In the win rate setting, the
strongest opponent of UCT among the sampling algorithms is RM (UCT wins 70.3% of games), followed by OOS performing
only slightly worse (UCT wins 72.3% of games). Finally, Exp3 is clearly the weakest of all sampling algorithms. A possible
reason may be that Exp3 manages to perform around 2.5 × 103 iterations per second in the root, while the other algo-
rithms perform ten times more. This is caused by the quadratic dependence of its computational complexity on the number
of actions, which is relatively high in this game. The situation remains similar when the algorithms optimize the point
utilities.

We now turn to the experiments with the evaluation function, the results of which are presented in the third table of
Table 2. The results show that the quality of play of all sampling algorithms is significantly improved. With this modification,
UCT already significantly outperforms all algorithms including DOαβ . DOαβ is the second best and still winning over the
remaining sampling algorithms. Exp3 benefits from the evaluation function more than OOS and RM, which are relatively
weaker with the evaluation function.

The reason why UCT performs well in this game is that the game mostly requires pure strategies, rather than precise
mixing between multiple strategies (see Subsection 6.2). UCT is able to quickly disregard other actions, if a single action
is optimal. So, the evaluation function generally helps every algorithm, but can make significant changes in ranking of the
algorithms.

6.5.3. Random games
The next set of matches was played on 10 different random games with each player having 5 actions in each stage and

depth 15. Hence, the game has more than 9.3 × 1020 terminal states. In order to compute the win-rates as in the other
games, we use the sign of the utility value defined in Subsection 6.2. The results are presented in Table 3.

The clearly best performing algorithm in this domain is UCT that significantly outperforms the other sampling algorithms,
and ties with DOαβ that uses a rather strong evaluation function. This is true even though UCT performs around 11 × 103

iterations per second, which is the least form all sampling algorithms. DOαβ wins over all other sampling algorithms.
OOS has the weakest performance in spite of good convergence results in the offline settings (see Fig. 19). The reason is
the quickly growing variance and decreasing number of samples in longer games, which we discuss in more details in
Subsection 6.6. OOS performs 20 × 103 iterations per second and only around 3 × 103 of them actually update the regrets
in the root. All the other iterations return with zero tail probability (xi) in the root, which leads to no change in the regret
values.

34 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Table 3
Win-rate in head-to-head matches of random games with 5 actions for each player in each move and depth of 15 moves.

DOαβ OOS(0.1) UCT(1.5) EXP3(0.6) RM(0.3) RAND

DOαβ • 57.4(2.9) 49.6(2.8) 53.4(2.8) 51.3(2.8) 88.8(1.8)
OOS 42.6(2.9) • 33.5(2.5) 43.5(2.7) 42.5(2.8) 85.0(2.4)
UCT 50.4(2.8) 66.5(2.5) • 67.4(2.5) 55.7(2.6) 95.9(1.2)
EXP3 46.6(2.8) 56.5(2.7) 32.6(2.5) • 42.9(2.7) 96.0(1.1)
RM 48.7(2.8) 57.5(2.8) 44.3(2.6) 57.1(2.7) • 93.1(1.5)
RAND 11.2(1.8) 15.0(2.4) 4.1(1.2) 4.0(1.1) 6.9(1.5) •

Table 4
Win-rate in head-to-head matches of Tron with random simulations (top) and evaluation function in the sampling algorithms (bottom).

Tron: 13 × 13 grid, win rate

DOαβ OOS(0.1) UCT(0.6) EXP3(0.5) RM(0.1) RAND

DOαβ • 78.2(2.0) 53.8(2.0) 66.6(2.3) 65.0(2.2) 98.6(0.5)
OOS 21.8(2.0) • 29.4(2.2) 46.1(1.8) 38.0(2.2) 97.2(0.5)
UCT 46.2(2.0) 70.6(2.2) • 64.8(2.2) 57.0(2.1) 98.0(0.6)
EXP3 33.4(2.3) 53.9(1.8) 35.1(2.2) • 44.3(2.3) 97.7(0.5)
RM 35.0(2.2) 62.0(2.2) 43.0(2.1) 55.7(2.3) • 97.6(0.9)
RAND 1.4(0.5) 2.9(0.5) 2.0(0.6) 2.3(0.5) 2.4(0.9) •

Tron: 13 × 13 grid, win rate, evaluation function

DOαβ OOS(0.1) UCT(2) EXP3(0.1) RM(0.2) RAND

DOαβ • 50.2(1.3) 42.7(1.5) 53.1(1.6) 46.3(1.6) 98.8(0.4)
OOS 49.8(1.3) • 53.0(0.9) 54.7(0.8) 52.2(0.8) 97.9(0.4)
UCT 57.3(1.5) 47.0(0.9) • 49.7(0.5) 46.7(0.6) 98.8(0.3)
EXP3 46.9(1.6) 45.3(0.8) 50.3(0.5) • 45.8(0.6) 98.2(0.4)
RM 53.7(1.6) 47.8(0.8) 53.3(0.6) 54.2(0.6) • 98.5(0.4)
RAND 1.2(0.4) 2.1(0.4) 1.2(0.3) 1.8(0.4) 1.5(0.4) •

6.5.4. Tron
The large variant of Tron in our evaluation was played on an empty 13 × 13 board. The branching factor of this game

is up to 4 for each player and its depth is up to 83 moves. This variant of Tron has more than 1021 terminal states.8 The
results are shown in Table 4.

The evaluation function in Tron approximates the situation in the game fairly well; hence, DOαβ strongly outperforms
all other algorithms when they do not use the evaluation function (top). Its win-rates are even higher with more time per
move. UCT is the strongest opponent for DOαβ – UCT loses 53.8% of matches and wins over all other sampling algorithms
in mutual matches. This is again because of the low need for mixed strategies in this game (see Subsection 6.2). Again, OOS
performs the worst despite its clearly fastest convergence on the smaller game variant in the offline setting due to the great
depth of the game tree in this setting. It won only 21.8% matches against DOαβ and 29.4% matches against UCT. In this
game, the variance of the regret updates is likely not the key factor, since it is between 20 and 40. However, only 1 × 103

out of 12 × 103 iterations per second update regrets in the root.
The good performance of DOαβ is consistent with the previous analysis in Tron where the best-performing algorithms,

including the winner of the 2011 Google AI Challenge, were based on depth-limited minimax searches [57,84].
As in the case of Oshi-Zumo, we also run the matches with the evaluation function in place of the random rollout

simulation in the sampling algorithms. We present the results in the second table of Table 4. Using the evaluation function
improves the performance of all sampling algorithms against DOαβ and it decreases the differences in performance between
each algorithm. The difference is most notable for OOS, since using the evaluation function strongly reduces the length of
the game. In this setting, both RM and UCT outperform DOαβ . Interestingly, while UCT performs quite well against DOαβ

and wins 57.3% of matches, it is not winning against any other sampling algorithm. Even Exp3 which loses against all other
algorithms manages to slightly outperform it. OOS practically ties with DOαβ , but it wins significantly against all sampling
algorithms. RM loses to OOS, but wins significantly against all other algorithms.

6.5.5. Pursuit–evasion game
Finally, we compare the algorithms on the pursuit–evasion game on an empty 10 × 10 grid with 15 moves time limit

and 10 different randomly selected initial positions of the units. The branching factor is at most 12, causing the number of
terminal states to be less than 1016.

The results in Table 5 show that the game is strongly biased towards the first player, which is the evader. The self-play
results on the diagonal show that DOαβ won over 81.5% matches against itself as the evader. Adding more computational
time typically improves the play of the pursuer in self-play. This is caused by a more complex optimal strategy of the

8 The number only estimates the number of possible paths when both players stay on their half of the board.

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 35

Table 5
Win-rate in head-to-head matches of pursuit–evasion games with time limit of 15 moves and 10 × 10 grid board. The evader is the row player and pursuer
is the column player.

DOαβ OOS(0.3) UCT(0.8) EXP3(0.5) RM(0.1) RAND

DOαβ 81.5(2.4) 89.1(1.9) 61.8(3.0) 91.2(1.8) 77.2(2.6) 100.0(0.0)
OOS(0.2) 77.5(2.6) 91.2(1.8) 57.8(3.1) 85.8(2.2) 79.3(2.5) 99.8(0.3)
UCT(1.5) 77.1(2.6) 94.2(1.4) 57.6(3.1) 88.9(1.9) 82.2(2.4) 100.0(0.0)
EXP3(0.2) 65.1(3.0) 92.1(1.7) 53.1(3.1) 83.9(2.3) 75.1(2.7) 99.8(0.3)
RM(0.1) 81.8(2.4) 92.7(1.6) 58.5(3.1) 86.7(2.1) 78.6(2.5) 99.8(0.3)
RAND 5.1(1.4) 28.8(2.8) 5.8(1.4) 1.7(0.8) 3.1(1.1) 71.1(2.8)

pursuer. This optimal strategy is more difficult to find due to a larger branching factor (recall that the pursuer controls two
units) and the requirement for a more precise execution (a single move played incorrectly can cause an escape of the evader
and can result in losing the game due to the time limit).

We first look at the differences in the performance of the algorithms on the side of the pursuer, which are more con-
sistent. We need to compare the different columns, in which the pursuer tries to minimize the values. The clear winner is
UCT that generally captures the evaders in approximately 40% of the matches. The second best pursuer is DOαβ and the
weakest is OOS that captures the non-random opponents in less than 10% of the cases.

The situation is less clear for the evader. Different algorithms performed best against different opponents. UCT was the
best against OOS and RM, but DOαβ was the best against UCT and Exp3. Exp3 is the weakest evader.

6.5.6. Parameter tuning
The exploration parameters can have a significant influence on the performance of the algorithm. We choose the pa-

rameters individually for each domain by running mutual matches with a pre-selected fixed pool of opponents. This pool
includes DOαβ and each of the sampling algorithms with one setting of the parameter selected based on the results of the
offline experiments. These values are 0.6 for OOS, 2 for UCT, 0.2 for Exp3 and 0.1 for RM. For each domain, we created a
table such as the two examples in Table 6. We then picked the parameter for the final cross tables presented above as the
parameter with the best mean performance against all the fixed opponents.

In the presented variant of Goofspiel, the choice of the exploration parameter has a rather large influence on the per-
formance against DOαβ . This is often the case for weaker players. The selection of the exploration parameter for OOS has
little effect on the mean performance, with a noticeable drop in performance for 0.1. In UCT, less exploration is generally
better, but the sudden drop of performance against Exp3 causes the optimum to be at 0.6. In Exp3, the optimal exploration
parameter against DOαβ would be even greater than 0.5, while the optimum against OOS would be 0.2. These kinds of
inconsistencies are common with the Exp3 algorithm. In the mean over all opponents, the optimum is 0.3. With RM, the
optimal exploration parameter against individual opponents stays around 0.1 and it is clearly the best value in the mean.

Parameter selection is generally more important when facing weaker players. The differences are more noticeable in
matches against other algorithms, but since the optimal parameters vary depending on the different opponents, the mean
performance presented in the last column does not vary much. OOS is consistently the least sensitive to different parameter
settings, while the performance differences in the other algorithms from changing exploration strongly depends on the
specific domains.

The differences between various parameter settings are larger in smaller games and mainly if an evaluation function
is used. Consider the results for Oshi-Zumo in Table 6. For OOS, the exploration parameter of 0.3 is consistently the best
against all opponents, with the exception of Exp3, which loses slightly more to OOS with exploration 0.4. However, the
difference is far from significant even after 1000 matches. The differences in performance of UCT with different parameters
are more often statistically significant. Overall, the best parameter is 0.8, even though the performance is significantly
better against DOαβ with smaller exploration and against UCT(2) with higher exploration. The best performance for Exp3
was surprisingly achieved with a very high exploration. The best of the tested values was 0.8, which means that 80% of the
time, the next action to sample is selected randomly regardless of the collected statistics about move qualities. The higher
values were consistently better for all opponents. RM seems to be quite sensitive to the parameter choice in this domain
and the results for specific opponents are more inconclusive than for the other algorithms. When playing DOαβ , RM wins
7% more matches with parameter 0.3 than with the overall optimal 0.1. On the other hand, when playing OOS, an even
smaller parameter value would be preferable.

The presented parameter tuning tables are representative of the behavior of the algorithms with different parameters.
The choices of the optimal parameters generally depend much more on the domain than the selected opponent, but in some
cases the optimal choice for one opponent is far from the optimum for another opponent. Especially with Exp3 and UCT,
very different parameters are optimal for different domains. While in the presented results in Oshi-Zumo with evaluation
function, 0.8 is best for Exp3, in Tron with evaluation function, the optimal parameter for Exp3 is 0.1. The range of optimal
parameters is much smaller for OOS and RM, which were always between 0.1 and 0.3. This can be a notable advantage for
playing previously unknown games without a sufficient time to tune the parameters for the specific domain.

36 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

Table 6
Sample parameter tuning tables for Goofspiel with stochastic point cards sequence and Oshi-Zumo.

Goofspiel: 13 cards, stochastic point card sequence

DOαβ OOS(0.6) UCT(2) EXP3(0.2) RM(0.1) Mean

OOS 0.5 73.8(2.7) 50.2(3.0) 54.4(4.2) 54.9(3.0) 49.4(3.0) 56.54
OOS 0.4 72.0(2.8) 50.5(3.0) 56.4(4.2) 54.1(3.0) 47.5(3.0) 56.1
OOS 0.3 73.0(2.7) 47.6(3.0) 58.4(4.2) 54.3(3.0) 48.0(3.1) 56.26
OOS 0.2 73.5(2.7) 50.2(3.0) 58.7(4.2) 54.3(3.0) 47.9(3.0) 56.92
OOS 0.1 70.2(2.8) 47.4(3.1) 53.4(4.3) 48.6(3.0) 43.9(3.0) 52.7

UCT 1.5 52.2(3.1) 45.4(3.0) 52.4(3.2) 53.9(3.9) 39.4(4.6) 48.66
UCT 1 52.5(3.0) 49.9(3.0) 58.3(3.2) 56.1(3.8) 43.1(4.6) 51.98
UCT 0.8 52.5(3.0) 51.1(3.0) 60.8(3.2) 59.7(3.8) 46.8(4.7) 54.18
UCT 0.6 54.2(3.0) 53.9(3.0) 61.2(3.1) 62.3(3.8) 46.6(4.7) 55.64
UCT 0.4 58.6(3.0) 54.9(3.0) 61.6(3.1) 58.6(3.8) 49.5(4.8) 55.04

EXP3 0.5 77.1(2.6) 42.6(3.0) 44.4(3.0) 47.4(3.0) 40.1(3.0) 50.32
EXP3 0.4 76.2(2.6) 44.8(3.0) 48.4(3.0) 49.5(3.0) 39.5(3.0) 51.68
EXP3 0.3 73.2(2.7) 44.5(3.0) 51.8(3.0) 51.1(3.0) 41.0(3.0) 52.32
EXP3 0.2 73.5(2.7) 47.2(3.0) 47.6(3.0) 50.0(3.0) 41.3(3.0) 51.92
EXP3 0.1 71.2(2.8) 44.9(3.0) 48.9(3.0) 51.2(3.0) 40.9(3.0) 51.42

RM 0.5 77.7(2.5) 44.9(3.0) 43.9(3.0) 46.9(3.0) 42.4(3.0) 51.16
RM 0.3 73.2(2.7) 49.3(3.0) 57.9(2.9) 53.9(3.0) 48.5(3.0) 56.56
RM 0.2 70.8(2.8) 50.7(3.0) 63.8(2.9) 57.8(3.0) 48.2(3.0) 58.26
RM 0.1 74.0(2.7) 54.1(3.0) 61.2(2.9) 58.1(3.0) 51.2(3.0) 59.72
RM 0.05 74.5(2.7) 51.6(3.0) 60.1(2.9) 59.0(3.0) 49.0(3.1) 58.84

Oshi-Zumo: 50 coins, K = 3, win rate, evaluation function

DOαβ OOS(0.6) UCT(2) EXP3(0.2) RM(0.1) Mean

OOS 0.5 35.3(2.9) 50.9(3.6) 28.5(3.3) 54.9(3.6) 43.7(3.5) 42.66
OOS 0.4 35.0(2.9) 56.0(3.6) 26.6(3.2) 56.1(3.6) 42.6(3.6) 43.26
OOS 0.3 36.5(3.0) 57.8(3.5) 27.7(3.2) 55.7(3.6) 44.8(3.6) 44.5
OOS 0.2 35.0(2.9) 53.1(3.6) 26.8(3.2) 54.1(3.6) 41.4(3.5) 42.08
OOS 0.1 34.6(2.9) 55.6(3.6) 24.1(3.1) 56.2(3.6) 43.0(3.6) 42.7

UCT 1.5 83.2(2.2) 74.0(3.8) 79.1(2.9) 87.4(2.9) 70.6(3.9) 78.86
UCT 1 83.8(2.1) 74.8(3.7) 81.4(2.7) 89.8(2.6) 68.8(4.0) 79.72
UCT 0.8 86.5(2.0) 77.9(3.6) 77.1(3.0) 89.2(2.7) 74.1(3.8) 80.96
UCT 0.6 89.4(1.8) 75.7(3.7) 54.9(3.9) 90.0(2.6) 74.1(3.7) 76.82
UCT 0.4 75.8(2.6) 75.0(3.7) 31.4(3.7) 89.8(2.6) 70.6(3.9) 68.52

EXP3 0.9 47.8(3.1) 68.2(2.8) 23.1(2.4) 67.2(2.8) 55.2(2.8) 52.3
EXP3 0.8 46.9(3.1) 68.4(3.6) 23.0(3.1) 74.2(3.4) 61.5(3.7) 54.8
EXP3 0.6 42.5(3.1) 67.6(3.7) 20.4(3.1) 65.4(3.7) 59.4(3.8) 51.06
EXP3 0.5 38.7(3.0) 60.9(3.8) 15.1(2.7) 64.7(3.7) 52.9(3.9) 46.46
EXP3 0.4 35.9(3.0) 57.5(3.9) 17.5(3.0) 64.1(3.8) 54.9(3.9) 45.98

RM 0.5 44.5(3.0) 41.1(3.5) 31.7(3.3) 49.4(3.6) 34.3(3.3) 40.2
RM 0.3 42.8(3.0) 52.1(3.5) 33.8(3.4) 61.2(3.5) 43.7(3.5) 46.72
RM 0.2 41.8(3.0) 55.7(3.6) 30.7(3.3) 59.2(3.5) 46.4(3.6) 46.76
RM 0.1 37.0(2.9) 58.1(3.5) 34.9(3.4) 57.6(3.6) 54.1(3.6) 48.34
RM 0.05 36.4(3.0) 59.6(3.5) 29.7(3.3) 59.3(3.5) 51.1(3.6) 47.22

6.5.7. Summary of the online search experiments
Several conclusions can be made from the head-to-head comparisons of the algorithms in larger games. First, the fast

convergence and low exploitability of OOS in the smaller variants of the games is not a very good predictor of its perfor-
mance in the online setting. OOS was often not the best algorithm in the online setting. In random games and Tron without
the evaluation function, it was the worst performing algorithm. We discuss the possible reasons in detail in Subsection 6.6.

Second, DOαβ with a good evaluation function often wins over the sampling algorithms without a domain specific
knowledge. This is not the case with a weaker evaluation function, as we can see in Goofspiel. Moreover, when the sam-
pling algorithms are allowed to use the evaluation functions, DOαβ is outperformed by UCT in both domains tested with
evaluation function and also by RM in Tron. Using a good evaluation function instead of random simulations helps all
sampling algorithms, but the amount of improvement is different for individual algorithms in different domains.

Third, the novel RM and OOS algorithms have proven efficient in a wider range of domains. Besides Goofspiel used
for evaluating earlier versions of the algorithms in [11], RM showed strong performance in random games and both RM
and OOS were the best performing algorithms in Tron with the evaluation function. These algorithms did not exploit the
weaker opponents the most but often won against all other competitors. A notable advantage of these algorithms is a
lower sensitivity for the parameter tuning, since they perform well in a wide range of domains with similar exploration
parameters.

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 37

Table 7
Measure of variances of estimated regret quantities in OOS and Regret Matching at the root of each game. T is
the number of iterations each algorithm runs for, and Run marks the run number (instance).

Game Run TOOS V̂arOOS TRM V̂arRM

Goofspiel(13) 1 12,582 32,939.94 11,939 283.03
Goofspiel(13) 2 13,888 26,737.95 7,160 359.96
Goofspiel(13) 3 13,906 27,283.47 7,897 552.24

OZ(50,3,1) 1 34,900 1,010.73 25,654 9.19
OZ(50,3,1) 2 40,876 1,225.89 26,719 7.93
OZ(50,3,1) 3 40,306 1,016.42 26,121 7.99

Tron(13,13) 1 11,222 40.23 11,634 0.84
Tron(13,13) 2 12,526 35.91 11,134 0.83
Tron(13,13) 3 13,000 22.23 10,075 0.75

Fourth, when the algorithms have five times more time for finding a move to play, the differences between win rates
of the sampling algorithms get smaller. Longer thinking time also has the same effect on parameter tuning and it also
significantly improves the performance of the sampling algorithms against backward induction. This is expected, since the
difference is too small for the DOαβ algorithm to reach a greater depth, while it is sufficient for the sampling algorithms to
execute five times more iterations improving their strategy.

Finally, the performance of Exp3 is the weakest in general. Its main problems are its larger computational complexity and
problematic normalization for wider ranges of payoffs. Exp3 was significantly worse than other algorithms in both domains
where we evaluated the point difference optimization and it performs an order of magnitude fewer iterations in Oshi-Zumo,
compared to all other sampling algorithms.

6.6. Online Outcome Sampling versus Regret Matching

Given the similar nature of OOS and RM, one might wonder why RM typically performs better than OOS in online
search, despite OOS being the only algorithm with provable convergence properties and the fastest converging algorithm in
the offline setting. In this subsection, we investigate this phenomenon and present the results of additional experiments.

We need to look at the convergence properties of OOS, which is essentially an application of outcome sampling MCCFR.
From the convergence bound of outcome sampling MCCFR presented in [86], after T iterations the strategy produced by the
algorithm is an ε-Nash equilibrium with probability 1 − p and

ε ≤ O

(
�̃i |S|√

T
+

√
Var

pT
+ Cov

p

)
,

where �̃i is determined by the structure of the game, and Var and Cov are the maximal variance and covariance of the
differences between the exact value of a regret of an action and its estimate computed based on the selected sample
(rt(s, a) − r̃t(s, a)) over all states, actions, and time steps. Computing these quantities exactly is prohibitively expensive, and
since the scale of the exact regrets is bounded by a relatively small range of utilities, we can estimate the variance of
the difference by the variance of the sampled regrets, which has often a very large range due to the importance sampling
correction (see Section 4.5). We measure the estimate V̂ar = Var[maxa∈A(s) r̃t(s, a)] in the root of the games, since they
have the largest range of possible values of r̃t (s, a). Regret matching also computes a quantity similar to r̃t(s, a). The only
difference is that they are not counterfactual, i.e., they take into account only the value of the current sample and not the
expected value of the strategy used throughout the entire game. We show these variances for Goofspiel(13), OZ(50, 3, 1),
and Tron(13, 13) in Table 7.

The results show that the variance of OOS is significantly higher than in case of RM. As such, even though RM may
be introducing some kind of bias by bootstrapping value estimates from its own subgame, when there are so few samples
this trade-off may be worthwhile to avoid the uncertainty introduced by the variance. This problem is not apparent in the
smaller games, because the higher probability of sampling individual terminal histories causes smaller variance and OOS
performs enough samples to make the regret estimates sufficiently close to the true values. For example, in Goofspiel(5)
used for offline convergence experiments, OOS performs approximately 2 × 105 iterations per second and the variance is
only around 350.

7. Conclusion and future research

In this paper, we provide an extensive analysis of algorithms for solving and playing zero-sum extensive-form games with
perfect information and simultaneous moves. We describe a collection of exact algorithms based on backward induction
as well as a collection of Monte Carlo tree search algorithms including our novel algorithms DOαβ , BIαβ , SM-OOS and
SM-MCTS with regret matching selection function.

38 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

We empirically compare the performance of these algorithms on six substantially different games in two different set-
tings. In the offline equilibrium computation setting, we show that our novel algorithm based on backward induction, DOαβ ,
is able to prune large parts of the search space. In most games, DOαβ is several orders of magnitude faster than the classical
backward induction and it is never significantly outperformed by any of its competitors. The only benefit of the sampling
algorithms in the offline setting is a to get a rough approximation of the equilibrium solution in a short time. Their results
are often inconsistent with short computation times. Given enough time, the results clearly show that SM-OOS achieves
the fastest convergence to a Nash equilibrium. Finally, our offline experiments also explained different behavior reported in
variants of SM-MCTS with UCT selection. We have shown that adding randomization to tie-breaking rules can significantly
improve the performance of this algorithm.

The success in the offline equilibrium computation is, however, not a very good indicator of the game playing perfor-
mance in the online setting of head-to-head matches. First of all, the sizes of the games used for online experiments are too
large for exact algorithms to be applicable without a domain-specific evaluation function. Performance of the representative
of the exact algorithms, DOαβ , depends heavily on the accuracy of the used evaluation function. Secondly, in spite of the
fastest convergence of SM-OOS among the sampling algorithms, SM-OOS does not always perform well in the online game
playing. This is mainly due to the large variance of the regret updates that increases significantly in these large games.
Among the remaining sampling algorithms, SM-MCTS based on regret matching is often very good, but sometimes it was
outperformed by SM-MCTS with UCT selection, especially in games that require less randomized strategies.

Our work opens several interesting directions for future research. After introducing a strong pruning algorithm, it is of
interest to formally study the limitations of pruning for this class of games, similarly to the theory developed for games
with sequential moves. Future work could show if these pruning techniques can be substantially improved or if they are in
some sense optimal. The main prerequisite is, however, estimating the expected number of iterations of the double-oracle
algorithms for single step matrix games, which still remains an open problem. Furthermore, running large head-to-head
tournaments for evaluating the game playing performance is time consuming, sensitive to setting correct parameters, and
provides only limited insights into the performance of the algorithms. Proximity to the Nash equilibrium is not always
a good indicator of game playing performance; hence, it is interesting to study alternative measures of quality of the
algorithms that would better predict their game-playing performance in large games.

Acknowledgements

This work is funded by the Czech Science Foundation (grant Nos. P202/12/2054 and 15-23235S) and the Netherlands
Organisation for Scientific Research (NWO) in the framework of the project Go4Nature, grant number 612.000.938. Branislav
Bošanský also acknowledges support from the Danish National Research Foundation and the National Science Foundation of
China (under the grant 61361136003) for the Sino-Danish Center for the Theory of Interactive Computation, and the support
from the Center for Research in Foundations of Electronic Markets (CFEM), supported by the Danish Strategic Research
Council. The access to computing and storage facilities owned by parties and projects contributing to the National Grid
Infrastructure MetaCentrum, provided under the programme “Projects of Large Infrastructure for Research, Development,
and Innovations” (LM2010005) is highly appreciated.

References

[1] M. Campbell, A.J. Hoane, F. Hsu, Deep Blue, Artif. Intell. 134 (1–2) (2002) 57–83.
[2] J. Schaeffer, R. Lake, P. Lu, M. Bryant, Chinook: the world man–machine checkers champion, AI Mag. 17 (1) (1996) 21–29.
[3] G. Tesauro, Temporal difference learning and TD-Gammon, Commun. ACM 38 (3) (1995) 58–68.
[4] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Human-level control through deep reinforcement learning, Nature
518 (7540) (2015) 529–533.

[5] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edition, Prentice Hall, 2009.
[6] A. Keuter, L. Nett, Ermes-auction in Germany. First simultaneous multiple-round auction in the European telecommunications market, Telecommun.

Policy 21 (4) (1997) 297–307.
[7] D. Beard, P. Hingston, M. Masek, Using Monte Carlo tree search for replanning in a multistage simultaneous game, in: Proceedings of the IEEE Congress

on Evolutionary Computation (CEC), 2012.
[8] O. Teytaud, S. Flory, Upper confidence trees with short term partial information, in: Applications of Evolutionary Computation (EvoGames 2011), Part I,

in: Lect. Notes Comput. Sci., vol. 6624, 2011, pp. 153–162.
[9] H. Gintis, Game Theory Evolving, 2nd edition, Princeton University Press, 2009.

[10] B. Bošanský, V. Lisý, J. Čermák, R. Vítek, M. Pěchouček, Using double-oracle method and serialized alpha-beta search for pruning in simultaneous
moves games, in: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), 2013, pp. 48–54.

[11] M. Lanctot, V. Lisý, M.H.M. Winands, Monte Carlo tree search in simultaneous move games with applications to Goofspiel, in: Computer Games
Workshop at IJCAI 2013, in: Commun. Comput. Inf. Sci., vol. 408, 2014, pp. 28–43.

[12] V. Lisý, V. Kovařík, M. Lanctot, B. Bošanský, Convergence of Monte Carlo tree search in simultaneous move games, in: Adv. Neural Inf. Process. Syst.,
vol. 26, 2013, pp. 2112–2120.

[13] V. Lisý, M. Lanctot, M. Bowling, Online Monte Carlo counterfactual regret minimization for search in imperfect information games, in: Proceedings of
the 14th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2015, pp. 27–36.

[14] M. Shafiei, N. Sturtevant, J. Schaeffer, Comparing UCT versus CFR in simultaneous games, in: Proceeding of the IJCAI Workshop on General Game-Playing
(GIGA), 2009, pp. 75–82.

[15] A. Saffidine, Solving games and all that, Ph.D. thesis, Université Paris-Dauphine, Paris, France, 2013.
[16] J.V. Neumann, Zur theorie der gesellschaftsspiele, Math. Ann. 100 (1928) 295–320.

B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40 39

[17] M.L. Littman, Markov games as a framework for multi-agent reinforcement learning, in: Proceedings of the 11th International Conference on Machine
Learning (ICML), 1994, pp. 157–163.

[18] M.L. Littman, Value-function reinforcement learning in Markov games, Cogn. Syst. Res. 2 (1) (2001) 55–66.
[19] M.L. Littman, C. Szepesvári, A generalized reinforcement-learning model: convergence and applications, in: Proceedings of the 13th International

Conference on Machine Learning (ICML), 1996, pp. 310–318.
[20] M.G. Lagoudakis, R. Parr, Value function approximation in zero-sum Markov games, in: Proceedings of the 18th Conference on Uncertainty in Artificial

Intelligence (UAI), 2002, pp. 283–292.
[21] U. Savagaonkar, R. Givan, E.K.P. Chong, Sampling techniques for zero-sum, discounted Markov games, in: Proceedings of the 40th Annual Allerton

Conference on Communication, Control and Computing, 2002, pp. 285–294.
[22] J. Perolat, B. Scherrer, B. Piot, O. Pietquin, Approximate dynamic programming for two-player zero-sum Markov games, in: Proceedings of the 32nd

International Conference on Machine Learning (ICML), 2015.
[23] S. Singh, M. Kearns, Y. Mansour, Nash convergence of gradient dynamics in general-sum games, in: Proceedings of the 16th Conference on Uncertainty

in Artificial Intelligence (UAI), 2000, pp. 541–548.
[24] M. Bowling, M. Veloso, Convergence of gradient dynamics with a variable learning rate, in: Proceedings of the 18th International Conference on

Machine Learning (ICML), 2001, pp. 27–34.
[25] M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, in: Proceedings of 20th International Conference on Machine

Learning (ICML), 2003, pp. 928–936.
[26] M. Bowling, Convergence and no-regret in multiagent learning, in: Adv. Neural Inf. Process. Syst., vol. 17, 2005, pp. 209–216.
[27] G. Gordon, No-regret algorithms for online convex programs, in: Proceedings of the 20th Annual Conference on Neural Information Processing Systems

(NIPS), 2006, pp. 489–496.
[28] M. Zinkevich, M. Johanson, M. Bowling, C. Piccione, Regret minimization in games with incomplete information, in: Adv. Neural Inf. Process. Syst., 2008,

pp. 1729–1736.
[29] M. Bowling, N. Burch, M. Johanson, O. Tammelin, Heads-up limit hold’em poker is solved, Science 347 (6218) (2015) 145–149.
[30] A. Nowé, P. Vrancx, Y.-M.D. Hauwere, Game theory and multi-agent reinforcement learning, in: Reinforcement Learning: State-of-the-Art, 2012,

pp. 441–470 (Ch. 12).
[31] L. Buşoniu, R. Babuška, B.D. Schutter, A comprehensive survey of multi-agent reinforcement learning, IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev.

38 (2) (2008) 156–172.
[32] D. Bloembergen, K. Tuyls, D. Hennes, M. Kaisers, Evolutionary dynamics of multi-agent learning: a survey, J. Artif. Intell. Res. 53 (2015) 659–697.
[33] Y. Shoham, K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, Cambridge University Press, 2009.
[34] R. Bellman, Dynamic Programming, Princeton University Press, 1957.
[35] S.M. Ross, Goofspiel — the game of pure strategy, J. Appl. Probab. 8 (3) (1971) 621–625.
[36] M. Buro, Solving the Oshi-Zumo game, in: Advances in Computer Games: Many Games, Many Challenges, in: IFIP Advances in Information and Com-

munication Technology, vol. 135, 2003, pp. 361–366.
[37] G.C. Rhoads, L. Bartholdi, Computer solution to the game of pure strategy, Games 3 (4) (2012) 150–156.
[38] A. Saffidine, H. Finnsson, M. Buro, Alpha-beta pruning for games with simultaneous moves, in: Proceedings of the 32nd Conference on Artificial

Intelligence (AAAI), 2012, pp. 556–562.
[39] H. McMahan, G. Gordon, A. Blum, Planning in the presence of cost functions controlled by an adversary, in: Proceedings of the 20th International

Conference on Machine Learning (ICML), 2003, pp. 536–543.
[40] M. Zinkevich, M. Bowling, N. Burch, A new algorithm for generating equilibria in massive zero-sum games, in: Proceedings of the 27th Conference on

Artificial Intelligence (AAAI), 2007, pp. 788–793.
[41] T.D. Hansen, P.B. Miltersen, T.B. Sørensen, On range of skill, in: Proceedings of the 28th Conference on Artificial Intelligence (AAAI), 2008, pp. 277–282.
[42] D. Koller, N. Megiddo, B. von Stengel, Efficient computation of equilibria for extensive two-person games, Games Econ. Behav. 14 (2) (1996) 247–259.
[43] T. Sandholm, The state of solving large incomplete-information games, and application to poker, AI Mag. 31 (4) (2010) 13–32.
[44] B. Bošanský, C. Kiekintveld, V. Lisý, M. Pěchouček, An exact double-oracle algorithm for zero-sum extensive-form games with imperfect information,

J. Artif. Intell. Res. 51 (2014) 829–866.
[45] R. Coulom, Efficient selectivity and backup operators in Monte-Carlo tree search, in: Proceedings of the 5th International Conference on Computers

and Games (CG), in: Lect. Notes Comput. Sci., vol. 4630, 2006, pp. 72–83.
[46] L. Kocsis, C. Szepesvári, Bandit-based Monte Carlo planning, in: 15th European Conference on Machine Learning, in: Lect. Notes Comput. Sci., vol. 4212,

2006, pp. 282–293.
[47] S. Gelly, D. Silver, Monte-Carlo tree search and rapid action value estimation in computer Go, Artif. Intell. 175 (11) (2011) 1856–1875.
[48] S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver, C. Szepesvári, O. Teytaud, The grand challenge of computer Go: Monte Carlo tree search and

extensions, Commun. ACM 55 (3) (2012) 106–113.
[49] P. Ciancarini, G. Favini, Monte Carlo tree search in Kriegspiel, Artif. Intell. 174 (11) (2010) 670–684.
[50] P.I. Cowling, E.J. Powley, D. Whitehouse, Information set Monte Carlo tree search, IEEE Trans. Comput. Intell. AI Games 4 (2) (2012) 120–143.
[51] P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multiarmed bandit problem, Mach. Learn. 47 (2–3) (2002) 235–256.
[52] M. Genesereth, N. Love, B. Pell, General game-playing: overview of the AAAI competition, AI Mag. 26 (2005) 73–84.
[53] H. Finnsson, Cadia-player: a general game playing agent, Master’s thesis, Reykjavík University, 2007.
[54] H. Finnsson, Simulation-based general game playing, Ph.D. thesis, Reykjavík University, 2012.
[55] S. Samothrakis, D. Robles, S.M. Lucas, A UCT agent for Tron: initial investigations, in: Proceedings of the 2010 IEEE Conference on Computational

Intelligence and Games (CIG), 2010, pp. 365–371.
[56] P. Auer, N. Cesa-Bianchi, Y. Freund, R.E. Schapire, The nonstochastic multiarmed bandit problem, SIAM J. Comput. 32 (1) (2003) 48–77.
[57] P. Perick, D.L. St-Pierre, F. Maes, D. Ernst, Comparison of different selection strategies in Monte-Carlo tree search for the game of Tron, in: Proceedings

of the IEEE Conference on Computational Intelligence and Games (CIG), 2012, pp. 242–249.
[58] M. Lanctot, K. Waugh, M. Bowling, M. Zinkevich, Sampling for regret minimization in extensive games, in: Adv. Neural Inf. Process. Syst., 2009,

pp. 1078–1086.
[59] V. Kovařík, V. Lisý, Analysis of Hannan consistent selection for Monte Carlo tree search in simultaneous move games, CoRR, arXiv:1509.00149.
[60] M. Lanctot, C. Wittlinger, M.H.M. Winands, N.G.P. Den Teuling, Monte Carlo tree search for simultaneous move games: a case study in the game of

Tron, in: Proceedings of the 25th Benelux Conference on Artificial Intelligence (BNAIC), 2013, pp. 104–111.
[61] M.J.W. Tak, M.H.M. Winands, M. Lanctot, Monte Carlo tree search variants for simultaneous move games, in: Proceedings of the IEEE Conference on

Computational Intelligence and Games (CIG), 2014, pp. 232–239.
[62] T. Pepels, M.H. Winands, M. Lanctot, Real-time Monte Carlo tree search for Ms Pac-Man, IEEE Trans. Comput. Intell. AI Games 6 (3) (2014) 245–257.
[63] D. Perez, E.J. Powley, D. Whitehouse, P. Rohlfshagen, S. Samothrakis, P.I. Cowling, S.M. Lucas, Solving the physical traveling salesman problem: tree

search and macro actions, IEEE Trans. Comput. Intell. AI Games 6 (1) (2014) 31–45.
[64] R.-K. Balla, A. Fern, UCT for tactical assault planning in real-time strategy games, in: Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), 2009, pp. 40–45.

40 B. Bošanský et al. / Artificial Intelligence 237 (2016) 1–40

[65] P.I. Cowling, M. Buro, M. Bida, A. Botea, B. Bouzy, M.V. Butz, P. Hingston, H. Muñoz-Avila, D. Nau, M. Sipper, Search in real-time video games, in:
Artificial and Computational Intelligence in Games, in: Dagstuhl Follow-Ups, vol. 6, 2013, pp. 1–19.

[66] M.G. Bellemare, Y. Naddaf, J. Veness, M. Bowling, The arcade learning environment: an evaluation platform for general agents, J. Artif. Intell. Res. 47
(2013) 253–279.

[67] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, M. Preuss, A survey of real-time strategy game AI research and competition in StarCraft,
IEEE Trans. Comput. Intell. AI Games 5 (4) (2013) 293–311.

[68] A. Kovarsky, M. Buro, Heuristic search applied to abstract combat games, Adv. Artif. Intell. (2005) 55–77.
[69] F. Sailer, M. Buro, M. Lanctot, Adversarial planning through strategy simulation, in: IEEE Symposium on Computational Intelligence and Games (CIG),

2007, pp. 37–45.
[70] V. Lisý, B. Bošanský, M. Jakob, M. Pěchouček, Adversarial search with procedural knowledge heuristic, in: Proceedings of the 8th International Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS), 2009, pp. 899–906.
[71] D. Churchill, A. Saffidine, M. Buro, Fast heuristic search for RTS game combat scenarios, in: 8th AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment (AIIDE), 2012, pp. 112–117.
[72] A. Reinefeld, An improvement to the scout tree-search algorithm, ICCA J. 6 (4) (1983) 4–14.
[73] S. Hart, A. Mas-Colell, A simple adaptive procedure leading to correlated equilibrium, Econometrica 68 (5) (2000) 1127–1150.
[74] M. Lanctot, Monte Carlo sampling and regret minimization for equilibrium computation and decision-making in large extensive form games, Ph.D.

thesis, Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, June 2013.
[75] S. Gelly, D. Silver, Combining online and offline learning in UCT, in: Proceedings of the 24th International Conference on Machine Learning, 2007,

pp. 273–280.
[76] R. Lorentz, Amazons discover Monte-Carlo, in: Proceedings of the 6th International Conference on Computers and Games (CG), in: Lect. Notes Comput.

Sci., vol. 5131, 2008, pp. 13–24.
[77] M.H.M. Winands, Y. Björnsson, J.-T. Saito, Monte Carlo tree search in Lines of Action, IEEE Trans. Comput. Intell. AI Games 2 (4) (2010) 239–250.
[78] R. Lorentz, T. Horey, Programming Breakthrough, in: Proceedings of the 8th International Conference on Computers and Games (CG), in: Lect. Notes

Comput. Sci., vol. 8427, 2013, pp. 49–59.
[79] M. Lanctot, M.H.M. Winands, T. Pepels, N.R. Sturtevant, Monte Carlo tree search with heuristic evaluations using implicit minimax backups, in: Pro-

ceedings of the IEEE Conference on Computational Intelligence and Games (CIG), 2014, pp. 341–348.
[80] R. Ramanujan, B. Selman, Trade-offs in sampling-based adversarial planning, in: Proceedings of the 21st International Conference on Automated Plan-

ning and Scheduling (ICAPS), 2011, pp. 202–209.
[81] M. Lanctot, A. Saffidine, J. Veness, C. Archibald, M.H.M. Winands, Monte Carlo *-minimax search, in: Proceedings of the Twenty-Third International

Joint Conference on Artificial Intelligence (IJCAI), 2013, pp. 580–586.
[82] K.Q. Nguyen, R. Thawonmas, Monte Carlo tree search for collaboration control of ghosts in Ms. Pac-Man, IEEE Trans. Comput. Intell. AI Games 5 (1)

(2013) 57–68.
[83] S. Smith, D. Nau, An analysis of forward pruning, in: Proceedings of the National Conference on Artificial Intelligence, 1995, p. 1386.
[84] N.G.P. Den Teuling, M.H.M. Winands, Monte-Carlo Tree Search for the simultaneous move game Tron, in: Proceedings of Computer Games Workshop

(ECAI), 2012, pp. 126–141.
[85] M. Ponsen, S. de Jong, M. Lanctot, Computing approximate Nash equilibria and robust best-responses using sampling, J. Artif. Intell. Res. 42 (2011)

575–605.
[86] R. Gibson, M. Lanctot, N. Burch, D. Szafron, M. Bowling, Generalized sampling and variance in counterfactual regret minimization, in: Proceedings of

the 26th Conference on Artificial Intelligence (AAAI), 2012, pp. 1355–1361.

APPENDIX B

110

Appendix C

Approximating maxmin strategies in
imperfect recall games using A-loss
recall property

International Journal of Approximate Reasoning 93 (2018) 290–326

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Approximating maxmin strategies in imperfect recall games

using A-loss recall property

Jiří Čermák ∗, Branislav Bošanský ∗, Karel Horák, Viliam Lisý, Michal Pěchouček

Department of Computer Science, Czech Technical University in Prague, Czechia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 June 2017
Received in revised form 14 November 2017
Accepted 17 November 2017
Available online 23 November 2017

Keywords:
Imperfect recall
Abstraction
Maxmin strategy
A-loss recall

Extensive-form games with imperfect recall are an important model of dynamic games
where the players are allowed to forget previously known information. Often, imperfect
recall games result from an abstraction algorithm that simplifies a large game with perfect
recall. Solving imperfect recall games is known to be a hard problem, and thus it is useful
to search for a subclass of imperfect recall games which offers sufficient memory savings
while being efficiently solvable. The abstraction process can then be guided to result in a
game from this class. We focus on a subclass of imperfect recall games called A-loss recall
games. First, we provide a complete picture of the complexity of solving imperfect recall
and A-loss recall games. We show that the A-loss recall property allows us to compute a
best response in polynomial time (computing a best response is NP-hard in imperfect recall
games). This allows us to create a practical algorithm for approximating maxmin strategies
in two-player games where the maximizing player has imperfect recall and the minimizing
player has A-loss recall. This algorithm is capable of solving some games with up to 5 · 109

states in approximately 1 hour. Finally, we demonstrate that the use of imperfect recall
abstraction can reduce the size of the strategy representation to as low as 0.03% of the
size of the strategy representation in the original perfect recall game without sacrificing
the quality of the maxmin strategy obtained by solving this abstraction.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Extensive-form games (EFGs) are a model of dynamic games with a finite number of moves and are capable of describing
scenarios with stochastic events and imperfect information. EFGs can model recreational games, such as poker, as well as
real-world situations in physical security [1], auctions [2], or medicine [3]. EFGs are represented as game trees where
nodes correspond to states of the game and edges to actions of players. Imperfect information is modeled by grouping
indistinguishable states into information sets.

There are two approaches to making decisions in EFGs. First, there are online (or game-playing) algorithms which given
the observations of the game state compute the action to be played. Second, there are offline algorithms which compute
(approximate) the strategy in the whole game and play according to this strategy. The latter algorithms typically provide
a better approximation of equilibrium strategies in large games compared to online algorithms [4]. One exception is the
recently introduced continual resolving algorithm used in DeepStack [5], which provides less exploitable strategies than
existing offline algorithms in heads-up no-limit Texas Hold’em poker. The main caveat of this algorithm is that it exploits

* Corresponding authors.
E-mail addresses: cermak@agents.fel.cvut.cz (J. Čermák), bosansky@agents.fel.cvut.cz (B. Bošanský), horak@agents.fel.cvut.cz (K. Horák),

lisy@agents.fel.cvut.cz (V. Lisý), pechoucek@agents.fel.cvut.cz (M. Pěchouček).

https://doi.org/10.1016/j.ijar.2017.11.010
0888-613X/© 2017 Elsevier Inc. All rights reserved.

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 291

the specific structure of poker where all actions of players are observable and its generalization to other games is not
straightforward. Therefore, we focus on offline algorithms.

The offline algorithms are useful in real-world applications since the strategy (a probabilistic distribution over actions in
each information set) is precomputed and can be simply stored on any device. It can then be accessed by deployed units
such as park rangers (see, e.g., [6]) without the need of large computational resources or good internet connection necessary
when using online algorithms. The main complication of offline algorithms is, however, the size of the strategy that needs
to be stored. Most of the existing offline algorithms [7–9] require that players remember all the information gained during
the game – a property denoted as a perfect recall. The main disadvantage of perfect recall is that the size of the strategy
grows exponentially with the number of moves, as the perfect memory allows the player to condition his behavior on
all his actions taken in the past. Therefore, a popular approach is to use abstractions [10] – create an abstracted game by
merging certain information sets to reduce the size of the strategy representation, solve the abstracted game, and translate
the resulting strategy back to the original game. The majority of existing algorithms (e.g., see [11–13]) create perfect recall
abstractions, where the requirement of perfect memory severely limits possible reductions in the size of strategies, as it still
grows exponentially with the increasing number of moves in the abstracted game. To achieve additional memory savings,
the assumption of perfect recall may need to be violated in the abstracted game resulting in an imperfect recall game.

Solving imperfect recall games is known to be a difficult problem (see, e.g., [14–16]). Since we are interested mainly in
solving imperfect recall games created by an abstraction algorithm, we focus on finding an efficiently solvable subclass of
imperfect recall games. The abstraction algorithm can then be guided to result in a game from this class. Existing approaches
create very specific abstracted games, so that perfect recall algorithms are still applicable: e.g., in chance relaxed skew well-
formed games [17,18] or in normal-form games with sequential strategies [19,1]. The restrictions posed by these classes are
unnecessarily strict, which can prevent us from fully exploiting the possibilities of abstractions and compact representation
of dynamic games. We focus on a different subclass of imperfect recall games called A-loss recall games [20,21] where each
loss of a memory of a player can be traced back to forgetting his own actions.

We provide the following contributions. We present a complete picture of the problem of solving imperfect recall games
and show which computational tasks become easier when restricting to A-loss recall. Next, we use the properties of the
A-loss recall to provide the first family of algorithms capable of approximating the strategies with the best worst-case
expected outcome (maxmin strategies). In order to achieve this result, we require only the minimizing player to have
A-loss recall, while the maximizing player is allowed to have imperfect recall. Finally, we experimentally demonstrate the
effectiveness of the use of imperfect recall abstractions to reduce the size of strategies to be stored.

One of the most important theoretical properties discussed in this paper is the complexity of computing a best response
since it is a subproblem of many algorithms solving EFGs. In general, it is NP-hard to find a best response in imperfect
recall game. In games where the best responding player has A-loss recall, however, finding a best response can be done
using the same algorithm as in the perfect recall case. Hence the problem is polynomially solvable [20,21]. We use this
property to design the first family of algorithms for approximating maxmin strategies in imperfect recall games where the
maximizing player has imperfect recall and the minimizing player has A-loss recall. Additionally, we provide novel necessary
and sufficient (i.e., if and only if) condition for the existence of a Nash equilibrium (NE) in behavioral strategies in A-loss
recall games, making A-loss recall games the only subclass of imperfect recall games for which such condition is known.
Thus we show that A-loss recall forms an interesting subclass of imperfect recall. On the other hand, we extend the known
hardness results of computing solution concepts in imperfect recall games due to Koller and Meggido [15] and Hansen [16]
to A-loss recall games.1

From the computational perspective, we provide a novel approximate algorithm, denoted IRABnB (Imperfect Recall Ab-
straction Branch-and-Bound algorithm), for computing maxmin strategies in imperfect recall games where the maximizing
player has imperfect recall and the minimizing player has A-loss recall.2 We base the algorithm on the sequence-form linear
program for computing maxmin strategies in perfect recall games [7,24] extended by bilinear constraints necessary for the
correct representation of strategies of the maximizing player in imperfect recall games. We approximate the bilinear terms
using recent Multiparametric Disaggregation Technique (MDT) [25] and provide a mixed-integer linear program (MILP) for
approximating maxmin strategies. We propose a novel branch-and-bound algorithm that repeatedly solves the linear relax-
ation of the MILP. It simultaneously tightens the constraints that approximate bilinear terms and searches for the optimal
assignment to the relaxed binary variables from the MILP. We prove that the algorithm has guaranteed convergence to
maxmin strategy and we provide a bound on the number of steps needed.

We further extend the IRABnB algorithm by incremental strategy generation technique. The resulting algorithm is de-
noted DOIRABnB

3 (Double Oracle Imperfect Recall Abstraction Branch-and-Bound algorithm). While such techniques exist

1 A part of this work appeared in [22]. Here we significantly improve the proofs and overall presentation. We further strengthen the relationship between
A-loss recall games and chance relaxed skew well-formed games and provide more examples.

2 A part of this work appeared in [23]. Here we mainly improve the description of the algorithm and proofs. We also provide a discussion of the
heuristics used (section 5.2.1). Notice that in this paper we refer to the BnB algorithm from [23] as IRABnB to remove the naming clash with general
branch-and-bound algorithm.

3 A part of this work appeared in [26]. Here, we provide an improved version of the DOIRABnB algorithm which is more efficient. Furthermore, we
significantly improve the description of the algorithm and the proof of correctness. Finally, we extend the experimental evaluation of the algorithm. Notice
that in this paper we refer to the DOBnB algorithm from [26] as DOIRABnB to improve the clarity of presentation.

292 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

Fig. 1. (Left) An imperfect recall game. (Right) Its coarsest perfect recall refinement. Circle nodes represent the states of the game, numbers in the circles
show which player acts in that node (player 1, player 2 or chance player N), dashed lines represent indistinguishable states and box nodes are the terminal
states with utility value for player 1 (the game is zero-sum, hence player 1 maximizes the utility, player 2 minimizes it).

for perfect recall games [27], transferring the ideas to imperfect recall games presents a number of challenges that we
address in this paper. First, we define the restricted EFG that is a subset of the original EFG. Second, we describe how the
restricted game is solved via the IRABnB search and describe the details of the integration of these two iterative algorithms.
Third, we describe how to expand the restricted EFG so that our algorithm preserves guarantees for approximating maxmin
strategies. The experimental evaluation shows that DOIRABnB significantly improves the scalability of IRABnB. The algorithm
is capable of solving some games with up to 5 · 109 states in approximately 1 hour.

Finally, we experimentally demonstrate the effectiveness of the use of imperfect recall abstractions to reduce the size of
strategies to be stored. We show that employing simple abstractions which still allow us to compute the maxmin strategy
of the original game can lead to strategies with the relative size as low as 0.03% of the size of the strategy in the original
unabstracted game.

2. Extensive-form games

A two-player extensive-form game (EFG) is a tuple G = (N , H, Z, A, u, C, I), which is commonly visualized as a game
tree (see Fig. 1). N = {1, 2} is a set of players, by i we refer to one of the players, and by −i to his opponent. Additionally,
the chance player (or nature) N represents the stochastic environment of the game. A denotes the set of all actions labeling
the edges of the game tree. H is a finite set of histories of actions taken by all players and the chance player from the root of
the game. Each history corresponds to a node in the game tree; hence, we use the terms history and node interchangeably.
Z ⊆ H is the set of all terminal states of the game corresponding to the leaves of the game tree. For each z ∈ Z and i ∈ N
we define a utility function ui : Z → R. If ui(z) = −u−i(z) for all z ∈ Z , we say that the game is zero-sum. Chance player
selects actions based on a fixed probability distribution known to all players. Function C : H → [0, 1] is the probability of
reaching h obtained as the product of probabilities of actions of chance player preceding h. Imperfect observation of player i
is modeled via information sets Ii that form a partition over h ∈ H where i takes action. Player i cannot distinguish between
nodes in any Ii ∈ Ii . We represent the information sets as nodes connected by dashed lines in the examples. A(Ii) denotes
actions available in each h ∈ Ii . The action a uniquely identifies the information set where it is available, i.e., for all distinct
I, I ′ ∈ I ∀a ∈ A(I) ∀a′ ∈ A(I ′) a �= a′ . An ordered list of all actions of player i from the root to node h is referred to as a
sequence, σi = seqi(h). �i is a set of all sequences of player i. We use seqi(Ii) as a set of all sequences of player i leading to
Ii . We use infi(σi) as a set of all information sets to which sequence σi leads. A game has perfect recall iff ∀i ∈ N ∀Ii ∈ Ii ,
for all h, h′ ∈ Ii holds that seqi(h) = seqi(h′). If there exists at least one information set where this does not hold (denoted
as imperfect recall information set), the game has imperfect recall. We use I I R

i as a set of all imperfect recall information sets
of player i.

Finally, to be able to discuss the effect of imperfect recall in any given imperfect recall game G , we need to be able to
construct a corresponding perfect recall game G ′ by adding the minimum amount of information for players to have perfect
recall in G . We denote G ′ as the coarsest perfect recall refinement of G . To do this, we first define a partition H(Ii) of states
in every information set Ii of some imperfect recall game G to the largest possible subsets, not causing imperfect recall.
More formally, let H(Ii) = {H1, . . . , Hn} be a disjoint partition of all h ∈ Ii , where

⋃n
j=1 H j = Ii and ∀H j ∈ H(Ii) ∀hk, hl ∈

H j : seqi(hk) = seqi(hl), additionally for all distinct Hk, Hl ∈ H(Ii) : seqi(Hk) �= seqi(Hl).

Definition 1. The coarsest perfect recall refinement G ′ of the imperfect recall game G = (N , H, Z, A, u, C, I) is a tuple
(N , H, Z, A′, u, C, I ′), where ∀i ∈ N ∀Ii ∈ Ii , H(Ii) defines the information set partition I ′ . A′ is a modification of A,
which guarantees that ∀I ∈ I ′ ∀hk, hl ∈ I A′(hk) = A′(hl), while for all distinct Ik, Il ∈ I ′ ∀ak ∈ A(Ik) ∀al ∈ A(Il) ak �= al . We
can limit the coarsest perfect recall refinement to player i and leave the information set structure of −i unchanged.

In Fig. 1 we show an example of an imperfect recall game (left) and its coarsest perfect recall refinement (right).

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 293

Fig. 2. An A-loss recall game where the Nash equilibrium in behavioral strategies does not exist (from [14]).

Notice, that in the Definition 1 we change the labeling of actions described by A to A′ , since we modify the structure
of the imperfect information I to I ′ (e.g., actions g , h in Fig. 1 (left) being relabel to g , h and i, j due to the split of
the information set in Fig. 1 (right)). Let E be the set of all edges of the game tree of G corresponding to actions of all
players except the chance player. By �′ : E → A′ we denote a function which for an edge e ∈ E returns its action label in
G ′ , similarly we define � : E → A. When we talk about the equivalence of arbitrary strategy representation in G and G ′ , we
talk about the equivalence with respect to � and �′ . Same goes for applying the strategy from G to G ′ and vice versa.

2.1. Strategies in imperfect recall games

There are several representations of strategies in EFGs. A pure strategy si for player i is a mapping assigning ∀Ii ∈ Ii an
element of A(Ii). Si is a set of all pure strategies for player i. A mixed strategy mi is a probability distribution over Si , set
of all mixed strategies of i is denoted as Mi . Behavioral strategy bi assigns a probability distribution over A(Ii) for each Ii .
Bi is a set of all behavioral strategies for i, Bp

i ⊆ Bi is the set of deterministic behavioral strategies for i. A strategy profile is
a set of strategies, one strategy for each player.

Definition 2. A pair of strategies xi, yi of player i with arbitrary representation is realization equivalent if ∀z ∈ Z : π xi
i (z) =

π
yi

i (z), where π xi
i (z) is a probability that z is reached due to strategy xi of player i when the rest of the players play to

reach z.

We overload the notation and use ui as the expected utility of i when the players play according to pure (mixed,
behavioral) strategies.

Behavioral strategies and mixed strategies have the same expressive power in perfect recall games, but it can differ in
imperfect recall games [28].

Example 1. Consider the game depicted in Fig. 2. This game has 4 pure strategies for player 1 S1 = {(a, c), (a, d), (b, c),
(b, d)}. A mixed strategy can condition the actions of players on information that the players should no longer have available.
For example, a mixed strategy where (a, c) and (b, d) are played with a uniform probability 0.5 allows player 1 to condition
playing c and d on the outcome of his stochastic choice in the root of the game, and thus randomize between the leftmost
and the rightmost state in information set of player 2. Note that one cannot model the same behavior using a behavioral
strategy that assigns a probability distribution over the actions available in every decision point without conditioning on
any previous knowledge. Therefore no additional information can be disclosed to the player.

Moreover, the size of these representations differs significantly. Mixed strategies of player i state probability distribution
over Si , where |Si| ∈ O(2|Z|), behavioral strategies create probability distribution over the set of actions (note that its size
is proportional to the number of information sets, which can be exponentially smaller than |Z|). Hence when one wants to
exploit the space savings caused by the reduced number of information sets in imperfect recall games, behavioral strategies
need to be used.

Next, we define the maxmin strategy and Nash equilibrium in behavioral strategies.

Definition 3. We say that b∗
i is a maxmin strategy iff

b∗
i = arg max

bi∈Bi

min
b−i∈B−i

ui(bi,b−i).

294 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

Fig. 3. (Left) A well-formed game which does not have A-loss recall. (Right) An A-loss recall game which is not chance relaxed skew well-formed.

Informally, maxmin strategy of player i maximizes the worst case expected outcome with respect to the behavior of −i.4

Definition 4. We say that strategy profile b = {b∗
i , b

∗
−i} is a Nash equilibrium (NE) in behavioral strategies iff ∀i ∈ N ∀b′

i ∈ Bi :
ui(b∗

i , b
∗
−i) ≥ ui(b′

i, b
∗
−i).

Informally, a strategy profile is a NE if no player wants to deviate to a different strategy.
Finally, we define the exploitability of a strategy.

Definition 5. We define the exploitability of a strategy bi as

min
b−i∈B−i

ui(bi,b−i).

Informally, the exploitability of a strategy bi is the worst case utility of i achievable when playing bi .

2.2. A-loss recall games

In this section we formally define the subclass of imperfect recall games called A-loss recall games [20,21] and show the
relationship of A-loss recall games to the only known subclasses of imperfect recall games being solved in the literature,
namely well-formed games, skew well-formed games and chance relaxed skew well-formed games [17,18].

Definition 6. Player i has A-loss recall if and only if for every I ∈ Ii and nodes h, h′ ∈ I it holds either (1) seqi(h) = seqi(h′),
or (2) ∃I ′ ∈ Ii and two distinct actions a, a′ ∈ Ai(I ′), a �= a′ such that a ∈ seqi(h) ∧ a′ ∈ seqi(h′).

Condition (1) in the definition says that if player i has perfect recall then she also has A-loss recall. Condition (2) can be
interpreted as requiring that each loss of memory of A-loss recall player can be traced back to some loss of memory of the
player’s own previous actions in one information set.

2.2.1. Well-formed games
The only known subclasses of imperfect recall games using the imperfect recall to reduce the memory requirements

of strategy representation are chance relaxed skew well-formed games (CRSWFG) and their subsets well-formed games
(WFG) and skew well-formed (SWFG) [17,18]. These classes of games restrict the structure of imperfect recall by requiring
similarity of the states included in one imperfect recall information set both in the structure of past and future moves
as well as the utilities reachable from the states. As a consequence, the perfect recall algorithms (namely Counterfactual
regret minimization (CFR) [8]) are still guaranteed to converge to (ε-)NE in these games (see Appendix F for more details
on applying CFR to imperfect recall games and CRSWFG).

Definition 7. We say that the imperfect recall game G is well-formed with respect to some perfect recall refinement G ′
of G if for all i ∈ N , I ∈ Ii , I ′, I ′′ (where I ′, I ′′ are information sets in G ′ which are unified to I) there exists a bijection
α : ZI ′ → ZI ′′ and constants kI ′,I ′′ , lI ′,I ′′ ∈ [0, ∞) such that for all z ∈ ZI ′ :

1. ui(z) = kI ′,I ′′ ui(α(z)),
2. C(z) = lI ′,I ′′C(α(z)),

4 Notice, that in maxmin the minimizing player takes into account only the utility of the maximizing player. Hence, we do not restrict the results
concerning maxmin in the following sections to zero-sum games, as the utility of the minimizing player can be arbitrary.

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 295

3. in G , seq−i(z) = seq−i(α(z)), and
4. in G , seqi(z[I ′], z) = seqi(α(z)[I ′′], α(z)),

where ZI stands for terminal states reachable from states in I , z[I] denotes the state in I reached when moving from the
root of the game to z and seqi(h, h′) is a sequence of actions needed to reach h′ from h. We say that G is well-formed game
if it is well-formed with respect to some perfect recall refinement.

Both SWFG and CRSWFG relax only condition (1) and (2) in the well-formed game definition and still require condition
(3) and (4) to hold (see [17,18] for more details).

While A-loss recall games restrict the structure of the game only above the imperfect recall information set (the require-
ment of being able to connect any loss of memory to forgetting player’s own actions), the WFG, SWFG, and CRSWFG restrict
the structure above, below and also the structure of the utilities. In the case of games with no chance, we can formally
define the relationship between A-loss recall games and WFG, SWFG, and CRSWFG.

Lemma 1. In games with no chance, the WFG, SWFG, and CRSWFG form a strict subset of A-loss recall games.

Proof. We first prove the Lemma for WFG and then show that it extends to both SWFG and CRSWFG.
The only requirement in A-loss recall games is that players are able to connect any loss of memory to forgetting their

own actions, hence the restriction in the information set I always concerns only the part of the tree above I . We, therefore,
focus on condition (3) in the definition of WFG, since it is the only one restricting the upper part of the game tree.
Condition (3) requires that for each h′ ∈ I ′ there must exist h′′ ∈ I ′′ such that seq−i(h′) = seq−i(h′′), which, combined with
the assumption that there is no chance player, implies that there must exist difference in seqi(h′) and seqi(h′′). Furthermore,
since seq−i(h′) = seq−i(h′′) we are sure that there must exist Ī ∈ Ii and distinct a, a′ ∈ A(Ī) such that a ∈ seqi(h′) and
a′ ∈ seqi(h′′) which is exactly the condition (2) in the A-loss recall property. The rest of the requirements of the WFG
restricts utilities and parts of the tree not restricted in A-loss recall games. Therefore the WFG form a subset of A-loss recall
games.

Notice that the Lemma also holds for SWFG and CRSWFG, since they provide relaxations in conditions (1) and (2)
only. �

In Fig. 3 (left) we show a WFG (with α : {z2 → z4, z3 → z5}) with chance which does not have A-loss recall. The game
does not have A-loss recall since player 1 forgets the information about the move of chance in the root of the game. Finally,
in Fig. 3 (right) we present an A-loss recall game which is not CRSWFG. The game is not CRSWFG since the leaves z2 and
z3 reachable from h1 cannot be mapped to any leaf after h2 without breaking condition 3 in Definition 7. Notice that when
assuming rational player 2, however, it is safe to include h1 and h2 to one information set, since the expected utilities
after every action available in h1, h2 are equal, and so any behavior optimal in h1 is optimal in h2. Hence CRSWFG are
unnecessarily conservative in the restrictions posed on the game tree.

2.3. Best response computation

One of the main computational components in algorithmic game theory is the problem of computing a best response.
Formally, a strategy of a player (e.g., pure, mixed, behavioral) is a best response to a given strategy of his opponent if its
expected utility is maximal against this strategy compared to all other strategies from the particular class. To denote the
best response regardless of the type of the strategy (i.e., regardless whether we consider mixed or behavioral strategies), we
use the term ex-ante best response.

In perfect recall EFGs, it is sufficient to consider a pure best response. However, this is no longer true in imperfect recall
EFGs. Consider a one-player game called the absentminded driver [29] depicted on the left in Fig. 4. We see that by playing
any pure, or even a mixed strategy, the player cannot reach outcome higher than 1. Note that in a mixed strategy a player
samples a pure strategy from the given distribution before the game begins; hence, there is no randomization when the
information set is reached, and player 1 always follows the pure strategy sampled from the mixed strategy. When using a
behavioral strategy, however, player samples the action from a given distribution independently every time an information
set is reached. Hence, the ex-ante optimal strategy is a behavioral strategy b(s) = 2

3 that reaches the expected value of 4
3 .

In general, we need to consider randomized best responses in so-called absent minded games (games where there exists a
path from the root of the game tree to some leaf such that at least one information set Ii ∈ Ii is visited more than once).
In the following text, we will assume that the games are without absentmindedness, where it is sufficient to consider only
pure strategies to find an ex-ante best response.

Lemma 2. Let G be an imperfect recall game without absentmindedness and b1 strategy of player 1. There exists an ex-ante pure best
response of player 2.

The proof is based on the fact that we search for an optimum of a multilinear function with independent variables over
a convex polytope with vertices corresponding to pure strategies (see Appendix A for full proof).

296 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

Fig. 4. (Left) Absentminded Driver. (Right) An EFG without A-loss recall where a time consistent best response (playing the best action in an information
set) is not necessarily the ex-ante best response.

The problem of finding an ex-ante best response in games without absentmindedness is still NP-hard (follows from
complexity results in [15]) while the problem is easy (polynomial) in perfect recall games. The main difference is that in
imperfect recall games an ex-ante best response cannot be found by selecting an action with the highest expected utility
to be played in each information set (called a time consistent strategy [21]). This is caused by the fact that the belief in an
information set of a player is not perfectly determined by the strategy of the opponent and nature, but also by the strategy
of the best-responding player.

Consider the game in Fig. 4 (right) between player 1 and chance. The ex-ante best response of player 1 in this game is
to play B ,D ,F getting the utility of 5−ε

2 . Note, however, that since the belief of player 1 in his imperfect recall information
sets depends on his behavior above the information set, one can reach a time consistent strategy playing B ,C ,E with the
expected utility of 2. This strategy is time consistent since when checking every information set separately, there is no
deviation of player 1, which could increase his expected value. Note that player 1 does not have A-loss recall in the game
in Fig. 4 (right) since parents of the nodes in the information set I3 are in two distinct information sets I1, I2 and their
common predecessor is a chance node.

The equivalence between time consistent strategies and ex-ante best responses is shown to hold in A-loss recall games.
Consequently, the computation of the best response is in P in A-loss recall games [20,21]. The following lemmas are a
consequence of these facts.

Lemma 3. Let G be an imperfect recall game where player i has A-loss recall. Let G ′ be the coarsest perfect recall refinement of G for
player i. Every pure behavioral strategy b′

i of player i from G ′ has realization equivalent pure behavioral strategy bi in G and vice versa.

Lemma 4. Let G be an imperfect recall game where player 2 has A-loss recall and b1 a strategy of player 1. Let G ′ be the coarsest perfect
recall refinement of G for player 2. Let b′

2 be a pure best response to b1 in G ′ and let b2 be a realization equivalent behavioral strategy
to b′

2 in G, then b2 is a pure best response to b1 in G.

The proofs of both lemmas can be found in Appendix A.
Lemma 4 allows us to formulate the concise mathematical program described in Section 4 which is used as the core of

algorithms discussed in Section 5.

3. NE and maxmin strategies in A-loss recall games

To provide a complete picture of the complexity of solving A-loss recall games, we discuss the existence, numerical
representation and computational complexity of maxmin and NE behavioral strategies in A-loss recall games.

3.1. Existence of NE in A-loss recall games

The guarantee of the existence of NE in finite games due to Nash [30] assumes mixed strategy representation only.
Hence, this guarantee does not extend to NE in behavioral strategies in imperfect recall games because of the different
descriptive power of mixed and behavioral strategies there [14]. Here, we discuss the necessary and sufficient condition for
the existence of NE in behavioral strategies in A-loss recall games. First, we show an example of the imperfect recall game
due to Wichardt [14] which does not have a NE in behavioral strategies and show that it has A-loss recall, which implies
that A-loss recall games need not have NE in behavioral strategies. We then provide novel sufficient and necessary (i.e., if
and only if) condition for the existence of NE in behavioral strategies in two-player A-loss recall games. Note, that thanks to
this result, A-loss recall games are the only subclass of imperfect recall games, for which such condition is known (the only
exception are well-formed games, where NE in behavioral strategies always exists, and so the condition is trivial).

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 297

Fig. 5. An A-loss recall game where all maxmin strategies and NE require irrational numbers [15].

Informally, Theorem 1 states that A-loss recall game G has a NE in behavioral strategies if and only if there exists a
behavioral NE in its coarsest perfect recall refinement G ′ which prescribes the same behavior in every information set
which is connected to some imperfect recall information set of G .

Proposition 1. The existence of NE in behavioral strategies is not guaranteed even in two-player zero-sum A-loss recall games.

Proof. In Fig. 2 we present the imperfect recall game where there is no NE in behavioral strategies due to Wichardt [14].
This game has A-loss recall since only player 1 has imperfect recall and he forgets only his own choice in the root. This
implies that the existence of NE is not guaranteed even in two-player zero-sum A-loss recall games. �
Theorem 1. An A-loss recall game G has a NE in behavioral strategies if and only if there exists a NE strategy profile b in behavioral
strategies of the coarsest perfect recall refinement G ′ of G, such that ∀I ∈ I of G, ∀Hk, Hl ∈ H(I) : b(Hk) = b(Hl), where b(H) stands
for the behavioral strategy in the information set of G ′ formed by states in H.

Proof. First, since b is a NE of G ′ we know that there exists no incentive for any player to deviate to any pure behavioral
strategy in G ′ . From Lemma 3, it follows that there can exist no pure behavioral strategy in G to which any of the players
want to deviate either. Additionally, from Lemma 2 it is sufficient to consider deviations to pure strategies in G since none
of the players is absentminded. This, in combination with the fact, that b prescribes valid strategy in G implies that b is a
NE in behavioral strategies of G .

Second, we prove that there exists no NE b′ in behavioral strategies of G which is not a NE of G ′ . Let us assume that
such b′ exists. This would imply that there is no pure behavioral strategy in G to which players want to deviate when
playing according to b′ , and therefore no pure behavioral strategy in G ′ either (Lemma 3), implying that b′ is a NE in G ′ .
This contradicts the assumption and completes the proof. �

Note that in general imperfect recall game this equivalence no longer holds. Consider the game in left subfigure of
Fig. 1. Here the only NE in behavioral strategies is playing d and e deterministically and mixing uniformly between g , h.
The only NE of its coarsest perfect recall refinement (shown in right subfigure of Fig. 1) is, however, playing d, e, h and i
deterministically. For more details about the existence of NE in general imperfect recall games see Appendix B.

3.2. Representation of Nash equilibrium and maxmin strategies

In this section, we state negative results concerning strategy representation in A-loss recall games. In two-player perfect
recall games with rational payoffs, there always exists a maxmin behavioral strategy which uses only rational probabili-
ties [15]. In imperfect recall games, this no longer holds [15]. We present the example of the imperfect recall game provided
in [15], where all maxmin strategies require irrational numbers and show that this game has A-loss recall. Moreover, since
the maxmin strategies form a part of all the NE strategies of this game, we extend this result also to NE of A-loss recall
games. It follows that computing exact maxmin and NE strategies requires exact representation of irrational numbers even
in A-loss recall games.

Theorem 2. All the maxmin strategies may require irrational numbers, even in two-player zero-sum A-loss recall game with rational
payoffs.

Proof. The example of the imperfect recall game used in [15] is depicted in Fig. 5. The maxmin strategy of player 2 is trying
to maximize

min{3b2(d)b2(f),3(1 − b2(d))(1 − b2(f)),b2(d)(1 − b2(f)) + (1 − b2(d))b2(f)}. (1)

298 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

Fig. 6. An A-loss recall game reduction from Theorem 4 of 3-SAT problem x1 ∨ ¬x3 ∨ x4 ∧ ¬x2 ∨ x3 ∨ ¬x4.

This is maximized when

3b2(d)b2(f) = 3(1 − b2(d))(1 − b2(f)) = b2(d)(1 − b2(f)) + (1 − b2(d))b2(f), (2)

which leads to b2(d) = 0.1(5 ± √
5).

This game has A-loss recall since the only information player 2 forgets is his own choice in his first information set. �
Theorem 3. All the Nash equilibrium strategies may require irrational numbers, even in two-player zero-sum A-loss recall game with
rational payoffs.

Proof. Strategy profiles b1(a) = b1(b) = 0.2, b2(d) = b2(g) = 0.1(5 ± √
5) form all the Nash equilibria of the game in Fig. 5.

This holds since none of the players wants to deviate and the strategies for player 2 are the only solutions of eq. (2). Hence,
it follows that any other strategy of player 2 has worse expected value against the best responding opponent, and therefore
cannot be stable. �
3.3. Computational complexity in imperfect recall games

Now we turn to the computational complexity of solving imperfect recall games. Computing maxmin strategies is
NP-hard in imperfect recall games [15] and it is NP-hard to decide whether there exists a NE in behavioral strategies
in imperfect recall games [16] (both theorems and their proofs are presented in Appendix C for completeness). We show
that both negative results directly translate to A-loss recall games. Notice that unlike ours, the reduction used in [16] re-
quires a game with absentmindedness, hence we significantly extend the class of games for which it is known that deciding
whether there exists a NE in behavioral strategies is NP-hard.

Theorem 4. The problem of deciding whether player 2 having an A-loss recall can guarantee an expected payoff of at least λ is NP-hard
even if player 1 has perfect recall, there are no chance moves, and the game is zero-sum.

Proof. The proof is made by reduction from the 3-SAT problem. It is a modification of the original proof of Koller [15] for
imperfect recall games. The example of the reduction is given in Fig. 6. Given n clauses x j,1 ∨ x j,2 ∨ x j,3 we create a two
person zero-sum game in the following way. In the root of the game player 2 chooses between n actions, each corresponding
to one clause. Player 1 plays next with no information about the action chosen by player 2. He has again n actions, each
corresponding to one clause. In every state of player 1, n − 1 actions lead directly to a terminal state with utility 0 for
player 1 and one action (corresponding to the same clause as the action of player 2 preceding this state) leads to a state of
player 2. Every such state of player 2 corresponds to the variable x j,1 where j is the index of the clause chosen in the root
of the game. Every such state has actions Tx j,1 , Fx j,1 available. These actions correspond to setting the variable x j,1 to true or
false respectively. After both Tx j,1 , Fx j,1 in x j,1 we reach the state representing the assignment to x j,2 with the same setup
(state representing the assignment to x j,3 is reached after that). After the assignment to x j,3 we reach the terminal state
with utility −nλ for player 1 if the assignment to x j,1, x j,2 and x j,3 satisfies the clause x j,1 ∨ x j,2 ∨ x j,3, 0 otherwise. The
information sets of player 2 group together all the states corresponding to the assignment to one variable in the original
3-SAT problem (note that we assume that the order of variables in every clause follows some complete ordering on the
whole set of variables in the 3-SAT problem).

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 299

Fig. 7. An A-loss recall game reduction from Theorem 5 of 3-SAT problem x1 ∨ ¬x3 ∨ x4 ∧ ¬x2 ∨ x3 ∨ ¬x4.

We will show that player 2 can guarantee the worst case expected value λ if and only if the original 3-SAT problem is
satisfiable. First, we show that if the original 3-SAT problem is satisfiable player 2 can guarantee the worst case expected
value λ. The worst case expected value λ is achieved when player 2 mixes uniformly in the root of the game and plays
according to the assignment which satisfies the original 3-SAT problem in the rest of the tree.

Next, we show that if player 2 can guarantee the worst case expected value λ, the original 3-SAT problem has to be
satisfiable. There are two cases we need to discuss.

Case 1: Player 2 plays a non-uniform strategy b2 in the root. In this case player 1 will play action a ∈ A1 corresponding to
the same clause as the action amin ∈ arg mina∈A2(root) b2(a). Since b2 is non-uniform in the root we know that b2(amin) < 1

n
and hence the expected value of player 2 must be lower than nλ

n no matter what happens in the rest of the game.
Case 2: The last chance to guarantee expected value λ is when player 2 plays a uniform strategy b2 in the root. Here

we show that λ can be guaranteed only when the corresponding 3-SAT problem is satisfiable. If the 3-SAT problem is not
satisfiable, that means that there always exists a state h of player 2 after the action of player 1, where uh

2(b2) < nλ, where
uh

2(b2) stands for the expected value in h when player 2 plays according to b2. By playing action leading to this state,
player 1 guarantees that the expected value for player 2 is lower than nλ

n . If the 3-S AT is satisfiable on the other hand, the
uniform b2 in the root and playing according to the assignment satisfying the 3-SAT guarantees the expected value λ.

The reduction is polynomial, since the game has n(n − 1) + 23n leaves.
The last thing which remains to be shown is that player 2 has A-loss recall. This is satisfied since any loss of information

about actions of player 1 can be tracked back to forgetting his own action taken in the root or to setting some of the SAT
variables to true or false. �

We leave the question whether the problem stated in Theorem 4 belongs to NP as an open problem. Even though Theo-
rem 2 states that the solution to this problem might require irrational numbers, it is not a sufficient argument for showing
that this problem does not belong to NP. From this perspective, the problem from Theorem 4 is similar to square-root sum
problem, since the square-root sum problem also requires operations with irrational numbers. However, deciding whether
square root sum problem belongs to NP is a major open problem [31] and there are known connections of square-root sum
problem to other problems in game theory, e.g., computing Nash equilibrium in 3-player games [32].

Theorem 5. It is NP-hard to check whether there exists a Nash equilibrium in behavioral strategies in two-player A-loss recall games
even if player 1 has perfect recall, there are no chance moves, and the game is zero-sum.

Proof. The proof is made by reduction from the 3-SAT problem. The reduction results in a two-player zero-sum game
similar to the one in proof of Theorem 4. The only change in the game is the substitution of the utility in the leaves directly
following actions of player 1 by −1 for player 1 and in the leaves corresponding to satisfying the given clause by −0.5 for
player 1. The example of the reduction is shown in Fig. 7.

We will show that a NE in behavioral strategies exists if and only if the corresponding 3-SAT problem is satisfiable. First,
if the 3-SAT problem is satisfiable, this game has a NE where both players mix uniformly in first two levels of the game,
and the player 2 plays according to the assignment of variables satisfying this problem.

Next, we show that if the NE exists, the corresponding 3-SAT problem has to be satisfiable. There are two cases we need
to discuss.

Case 1: Player 1 plays a non-uniform strategy b1. In this case, player 2 will always prefer to play action a ∈ A2(root)
which corresponds to the same clause as amin ∈ arg mina∈A1

b1(a) deterministically in the root and make the clause corre-
sponding to amin satisfiable. This way player 2 maximizes the probability that the immediate worst possible outcome −1

300 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

for player 1 will be reached and minimizes the value player 1 gets when the following state of player 2 is reached. Hence
b1 is not stable against a best responding opponent.

Case 2: The last chance for NE to exist is when player 1 plays a uniform strategy b1. Here we show that in this case, the
NE exists only when the corresponding 3-SAT problem is satisfiable. If the original 3-SAT problem is not satisfiable player 2
will prefer to play a subset of actions A′

2 ⊂ A2(root) in the root corresponding to a subset of clauses that can be satisfied at
the same time, while playing the assignment satisfying these clauses in the rest of the tree. In this case, however, player 1
wants to deviate to playing any distribution over his actions corresponding to the clauses of actions in A′

2. If the 3-SAT is
satisfiable on the other hand, the uniform b1 forms a part of NE when player 2 plays a uniform strategy in the root and
according to the assignment satisfying the 3-SAT in the rest of the tree. �
4. The mathematical program for approximating maxmin strategies in imperfect recall games

In this section, we present a mathematical program approximating maxmin strategies for two player games without
absentmindedness where the maximizing player has imperfect recall, first when assuming that the minimizing player has
A-loss recall, followed by its generalization where there are no restrictions for the minimizing player. Recall that computing
exact maxmin strategy in this class of games requires exact representation of irrational numbers (Theorem 2) and so ap-
proximating maxmin strategies is the only alternative. The main idea behind this formulation is to add bilinear constraints
into the sequence form LP [7] to restrict to imperfect recall strategies of the maximizing player. First, we present the exact
bilinear program, followed by explanation of Multiparametric Disaggregation Technique (MDT) [25] which will be used for
approximating bilinear terms. Next, we provide the mixed integer linear program (MILP) resulting from the application of
the MDT to the bilinear reformulation of the sequence form LP. Finally, we discuss how to use the result of this MILP to
construct a strategy with a bounded difference of its expected worst case utility from the maxmin value.

4.1. Exact bilinear sequence form against A-loss recall opponent

max
x,r,v

v(root,∅) (3a)

s.t. r(∅) = 1 (3b)

0 ≤ r(σ1) ≤ 1 ∀σ1 ∈ �1 (3c)∑
a∈A(I)

r(σ1a) = r(σ1) ∀σ1 ∈ �1,∀I ∈ inf1(σ1) (3d)

∑
a∈A(I)

x(a) = 1 ∀I ∈ I I R
1 (3e)

0 ≤ x(a) ≤ 1 ∀I ∈ I I R
1 ,∀a ∈ A(I) (3f)

r(σ1) · x(a) = r(σ1a) ∀I ∈ I I R
1 ,∀a ∈ A(I),

∀σ1 ∈ seq1(I) (3g)∑
σ1∈�1

g(σ1,σ2a)r(σ1) +
∑

I ′∈inf2(σ2a)

v(I ′,σ2a) ≥ v(I,σ2) ∀I ∈ I2,∀a ∈ A(I),

∀σ2 ∈ seq2(I) (3h)

The mathematical program (3) is a bilinear reformulation of the sequence-form LP [7] applied to the information set
structure of a game G where the player 1 has imperfect recall and the player 2 has A-loss recall. The objective of player 1
is to find a strategy that maximizes the expected utility against the best responding opponent in G . The strategy of the
maximizing player is represented as a realization plan (variables r) that assigns the probability to a sequence: r(σ1) is the
probability that σ1 ∈ �1 will be played assuming that information sets in which actions of the sequence σ1 are applicable
are reached due to player 2. The realization plan r must satisfy the network flow Constraints (3b)–(3d). Finally, a strategy of
player 1 is constrained by the best-responding opponent that selects an action minimizing the expected value of player 1 in
each I ∈ I2 and for each σ2 ∈ seq2(I) that was used to reach I (Constraint (3h)). These constraints ensure that the opponent
plays the best response in the coarsest perfect recall refinement of G and thus also in G by Lemma 4. The expected utility
for each action in Constraint (3h) is a sum of the expected utility values from immediately reachable information sets
I ′ and from immediately reachable leaves. For the latter we use generalized utility function g : �1 × �2 → R defined as
g(σ1, σ2) = ∑

z∈Z|seq1(z)=σ1∧seq2(z)=σ2
u1(z)C(z). In imperfect recall games, multiple σi can lead to some imperfect recall

information set Ii ∈ I I R
i ; hence, realization plans over these sequences do not have to induce the same behavioral strategy

for Ii . Therefore, for each I1 ∈ I I R
1 and each a ∈ A(I1) we define behavioral strategy x(a) (Constraints (3e)–(3f)). To ensure

that the realization probabilities induce the same behavioral strategy in I1, we add bilinear constraint r(σ1a) = x(a) · r(σ1)

for every σ1 ∈ seq1(I1) (Constraint (3g)).

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 301

Lemma 5. Let G be a two-player game where the maximizing player has imperfect recall and the minimizing player has A-loss recall.
The assignment to r variables satisfies constraints (3b)–(3g) if and only if there exists a behavioral strategy b1 ∈ B1 in G realization
equivalent to r.

Proof. First, we show that for every b1 ∈ B1 there exists an assignment to r variables that satisfies constraints (3b)–(3g).
For every sequence σ1 ∈ �1 we can compute such r(σ1) as

r(σ1) =
{

1, if σ1 = ∅∏
a∈σ1

b1(a), otherwise.
(4)

The network flow constraints (3b)–(3d) are satisfied from the construction of r in (4). Constraints (3e)–(3g) are satisfied
since b1 is a probability distribution over actions in information sets of G , and ∀I ∈ I I R

1 ∀a ∈ A(I) b1(a) = x(a).
Second, we show that for every assignment to r satisfying constraints (3b)–(3g) there exists realization equivalent

b1 ∈ B1. Such b1 can be constructed from r in the following way. In each I ∈ I1 \ I I R
1 , and for each a ∈ A(I), b(a) =

r(seq1(I)a)/r(seq1(I)). In case of I ∈ I I R
1 , however, seq1(I) is no longer a singleton. But from constraints (3e)–(3g) we know

that

∀σ1,σ
′
1 ∈ seq1(I)∀a ∈ A(I) r(σ1a)/r(σ1) = r(σ ′

1a)/r(σ ′
1) = x(a),

hence we can use b1(a) = x(a) for any I ∈ I I R
1 and a ∈ A(I). Finally, from constraints (3b)–(3d) follows that such b1 is a

probability distribution over actions in information sets of G . �
Lemma 6. Let G be a two-player game where the maximizing player has imperfect recall and the minimizing player has A-loss recall.
Assume that we fix r variables to arbitrary values in the mathematical program (3) applied to G, such that r satisfies constraints
(3b)–(3g). The optimal objective value of such program corresponds to the worst case expected value of player 1, when playing according
to r.

Proof. We need to show that the objective value of the mathematical program (3) applied to G with the fixed r corresponds
to the expected value of the player 1 playing r against the best responding player 2 minimizing the expected value of
player 1.

Let G ′ be the coarsest perfect recall refinement of G for the minimizing player 2. From Lemma 4 we know that when
searching for a best response to any b1 in G , it is sufficient to find a pure best response to b1 in G ′ . The sequence-form LP
applied to G ′ ensures that the minimizing player plays a best response using constraints∑

σ1∈�1

g(σ1,σ2a)r(σ1) +
∑

I ′∈inf2(σ2a)

v(I ′) ≥ v(I) ∀I ∈ I ′
2,∀a ∈ A(I), (5)

where σ2 = seq2(I). The fact that player 2 plays a best response in the solution of the mathematical program (3) for G is
ensured by constraints (3h) which are identical to constraints (5) applied to G ′ . This holds since all the pairs {(I, σ2)| I ∈
I2 ∧ σ2 ∈ seq2(I)} for player 2 in G exactly correspond to information sets of player 2 in G ′ (definition of A-loss recall).
Hence, variables v and the quantifiers in (3h) for G exactly correspond to variables v and the quantifiers in (5) for G ′ .
Finally, also the left sides of (3h) for G and (5) for G ′ are equal, since the extended utility function is the same in G and
G ′ and the pairs (I ′, σ2a) in the second sum of (3h) correspond to I ′ in the second sum of (5). Hence, the objective value
corresponds to the expected utility of player 1 playing r against the best responding player 2 minimizing the expected value
of player 1 in G ′ and therefore also in G . �
Theorem 6. Let G be a two-player game where the maximizing player has imperfect recall and the minimizing player has A-loss recall.
Realization plan r is a part of some optimal solution5 of the mathematical program (3) if and only if r is a maxmin strategy for the
maximizing player in G.

Proof. Let b1 be a behavioral strategy realization equivalent to r. We need to show that r is a part of some optimal solution
of the mathematical program (3) if and only if for b1 holds that

b1 ∈ arg max
b′

1∈B1

min
b2∈B2

u1(b
′
1,b2). (6)

First, we prove that if r is a part of an optimal solution of the mathematical program (3) then the eq. (6) holds for
behavioral strategy b1 realization equivalent to r (such strategy always exists from Lemma 5). This follows from the fact

5 r is only a part of the optimal solution since the r variables form a strict subset of all the variables present in (3).

302 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

that the mathematical program maximizes the worst case expected value of player 1 (Lemma 6) over all possible strategies
of player 1 (Lemma 5). Hence, b1 is a maxmin strategy of player 1 in G .

Finally, we prove that if the eq. (6) holds for a behavioral strategy b1, then the realization plan r, realization equivalent to
b1, is a part of the optimal solution of the mathematical program (3). Let’s assume that such r is not a part of any optimal
solution of the mathematical program (3). Since r satisfies constraints (3b)–(3g) (Lemma 5), it is a part of a valid solution
of (3). This would imply that the mathematical program (3) found r′ which guarantees higher worst case expected value
(Lemma 6), and hence b1 would not be a maxmin strategy for player 1. �
4.2. Player 2 without A-loss recall

If player 2 does not have A-loss recall, the mathematical program must use each possible pure best response of player 2
(hence in the worst case each s2 ∈ S2) as a constraint since the time consistent strategy of player 2, ensured by constraint
(3h) in the previous case, need not be his ex ante best response (as discussed in Section 2.3). This results in the following
bilinear program with size exponential in the size of the solved game.

max
x,r,v

v(root) (7a)

Constraints (3b)–(3g)∑
z∈Z | π

s2
2 (z)=1

u1(z)C(z)r(seq1(z)) ≥ v(root) ∀s2 ∈ S2, (7b)

where π s2
2 (z) is 1 if s2 prescribes all actions in seq2(z), 0 otherwise. Since the mathematical program (7) does not change

the parts of the program related to the approximation of strategies of player 1, all the following approximation methods,
theorems, and the branch-and-bound algorithm can also be applied to (7). However, the scalability would be significantly
worse for the mathematical program (7), since even the subproblem of computing the best response of the minimizing
player is NP-hard (follows from complexity results in [15]), and hence it requires exponential number of constraints (7b).
The algorithm presented in Section 5.2 iteratively solves the mathematical program, hence when using the formulation (7)
every iteration of the algorithm would require solving exponentially larger mathematical program compared to the case
where the minimizing player has A-loss recall.

4.3. Approximating bilinear terms

The final technical tool that we use to formulate the mathematical program is the approximation of bilinear terms
by Multiparametric Disaggregation Technique (MDT) [25]. The main idea of the approximation is to use a digit-wise dis-
cretization of one of the variables from a bilinear term. The main advantage of this approximation is a low number of
newly introduced integer variables and an experimentally confirmed speed-up over the standard technique of piecewise
McCormick envelopes [25].

Let a = bc be a bilinear term. MDT discretizes the variable b and introduces new binary variables wk,	 that indicate
whether the digit k is on 	-th position.

9∑
k=0

wk,	 = 1 	 ∈ Z (8a)

wk,	 ∈{0,1} (8b)∑
	∈Z

9∑
k=0

10	 · k · wk,	 = b (8c)

cL · wk,	 ≤ ĉk,	 ≤ cU · wk,	 ∀	 ∈ Z,∀k ∈ {0..9} (8d)
9∑

k=0

ĉk,	 = c ∀	 ∈ Z (8e)

∑
	∈Z

9∑
k=0

10	 · k · ĉk,	 = a (8f)

Constraint (8a) ensures that for each position 	 there is exactly one digit chosen. All digits used according to wk,l
variables must sum to b (Constraint (8c)). Next, we introduce variables ĉk,	 that are equal to c for such k and 	 where
wk,l = 1, and ĉk,	 = 0 otherwise (eqs. (8d), (8e)). cL and cU are bounds on the value of variable c. The value of a is given by
Constraint (8f).

This is an exact formulation that requires infinite sums and an infinite number of constraints. By restricting the set of
all possible positions 	 to a finite set {P L, . . . , P U } we get a lower bound approximation. Following the approach in [25] we
can extend the lower bound formulation to compute an upper bound:

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 303

Constraints (8a), (8b), (8d), (8e)∑
	∈{P L ,...,PU }

9∑
k=0

10	 · k · wk,	 +
b = b (9a)

0 ≤
b ≤ 10P L (9b)∑
	∈{P L ,...,PU }

9∑
k=0

10	 · k · ĉk,	 +
a = a (9c)

cL ·
b ≤
a ≤ cU ·
b (9d)(
c − cU

)
· 10P L + cU ·
b ≤
a (9e)(

c − cL
)

· 10P L + cL ·
b ≥
a (9f)

Here,
b is assigned to every discretized variable b allowing it to take up the value between the discretization points
(Constraints (9a)–(9b)). Similarly, we allow the product variable a to be increased with variable
a =
b · c. To approximate
the product of the delta variables, we use the McCormick envelope defined by Constraints (9c)–(9f).

4.4. Upper bound MILP approximation

We are now ready to state the main MILP for computing the upper bound on the optimal value of the bilinear program
(3) and hence also on the maxmin value of the solved game. The MILP formulation follows the MDT example and uses ideas
from Section 4.3 to approximate the bilinear term r(σ1)x(a) in Constraint (3g). In accord with the MDT, we represent every
variable x(a) using a finite number of digits of precision. Since x(a) is a probability, we use dig() as the function which for
every precision 	 ∈ {−P ..0} returns the set of digits used to represent x(a), i.e.,

dig() =
{

{0,1}, if 	 = 0

{0, . . . ,9} otherwise.

Binary variables w I1,a
k,	

correspond to wk,	 variables from (9) and are used for the digit-wise discretization of x(a). Finally,
r̂(σ1)

a
k,	

variables correspond to ĉk,	 variables from (9). To allow variable x(a) to attain an arbitrary value from [0, 1] interval
using a finite number of digits of precision, we add an additional real variable 0 ≤
x(a) ≤ 10−P that can span the gap
between two adjacent discretization points. Constraints (10d) and (10e) describe this loosening. Variables
x(a) also have
to be propagated to bilinear terms r(σ1) · x(a) involving x(a). We cannot represent the product
r(σ1a) = r(σ1) ·
x(a)

exactly and therefore we give bounds based on the McCormick envelope (Constraints (10i)–(10j)).

max
x,r,v

v(root,∅) (10a)

s.t. Constraints (3b)–(3f), (3h)

w I,a
k,	

∈ {0,1} ∀I ∈ I I R
1 ,∀a ∈ A(I), (10b)

∀	 ∈ {−P .. − 1},∀k ∈ dig()∑
k∈dig()

w I,a
k,	

= 1 ∀I ∈ I I R
1 ,∀a ∈ A(I), (10c)

∀	 ∈ {−P ..0}
0∑

	=−P

∑
k∈dig()

10	·k · w I,a
k,	

+
x(a) = x(a) ∀I ∈ I I R
1 ,∀a ∈ A(I) (10d)

0 ≤
x(a) ≤ 10−P ∀I ∈ I I R
1 ,∀a ∈ A(I) (10e)

0 ≤ r̂(σ)a
k,	 ≤ w I,a

k,	
∀I ∈ I I R

1 ,∀a ∈ A(I), (10f)

∀σ ∈ seq1(I),∀	 ∈ {−P ..0},
∀k ∈ dig()∑

k∈dig()

r̂(σ)a
k,	 = r(σ) ∀I ∈ I I R

1 ,∀σ ∈ seq1(I) (10g)

∀	 ∈ {−P ..0}
0∑

	=−P

∑
k∈dig()

10	 · k · r̂(σ)a
k,	 +
r(σa) = r(σa) ∀I ∈ I I R

1 ,∀a ∈ A(I), (10h)

∀σ ∈ seq1(I)

304 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

(r(σ) − 1) · 10−P +
x(a) ≤
r(σa) ≤ 10−P · r(σ) ∀I ∈ I I R
1 ,∀a ∈ A(I), (10i)

∀σ ∈ seq1(I)

0 ≤
r(σa) ≤
x(a) ∀I ∈ I I R
1 ,∀σ ∈ seq1(I), (10j)

∀a ∈ A(I)

Note that the MILP has both the number of variables and the number of constraints bounded by O (|I| · |�| · P), where
|�| is the number of sequences of both players. The number of binary variables is equal to 10 · |I I R

1 | · Amax
1 · P , where

Amax
1 = maxI∈I I R

1
|A1(I)|.

4.5. Theoretical analysis of the Upper Bound MILP

Here we show how to use the result of the Upper Bound MILP to construct a strategy with a bounded difference of its
expected worst case utility from the maxmin value of the solved game.

The variables
x(a) and
r(σ) ensure that the optimal value of the MILP is an upper bound on the value of the bilinear
program (3) and therefore also on the maxmin value. The drawback of using
x(a) and
r(σ) is that the realization proba-
bilities do not have to induce a valid strategy in the imperfect recall game G , i.e., if σ 1, σ 2 are two sequences leading to an
imperfect recall information set I1 ∈ I I R

1 where action a ∈ A(I1) can be played, r(σ 1a)/r(σ 1) need not equal r(σ 2a)/r(σ 2).
In the following text we will show how to create a valid corrected strategy in G from r which decreases the expected value
against a best responding opponent by at most ε compared to the value of the Upper Bound MILP (10), while deriving
bound on this ε.

Let b1
1(I1), . . . , bk

1(I1) be behavioral strategies in the imperfect recall information set I1 ∈ I I R
1 corresponding to realization

probabilities of continuations of sequences σ 1, . . . , σ k ∈ seq1(I1) leading to I1. These behavioral strategies can be obtained
from the realization plan as b j

1(I1, a) = r(σ ja)/r(σ j) for all σ j ∈ seq1(I1) and a ∈ A(I1). We will omit the information set
and use b1(a) whenever it is clear from the context. Since the imperfect recall is violated in I1, b j

1(a) may not be equal to
bl

1(a) for some j, l and action a ∈ A(I1).

Proposition 2. Using any of the b1
1(I1), . . . , bk

1(I1) as the corrected strategy b1(I1) in every I1 ∈ I1 ensures that ‖b1(I1) −b j
1(I1)‖1 ≤

|A(I1)| · 10−P for every b j
1(I1) ∈ {b1

1(I1), . . . , bk
1(I1)}, where P is the number of digits used to approximate the bilinear terms.6

Proof. Let us first show that probabilities of playing action a in b1
1, . . . , b

k
1 can differ by at most 10−P , i.e. |b j

1(a) − bl
1(a)| ≤

10−P for every j, l and action a ∈ A(I1). This is based on the MDT we used to discretize the bilinear program.
Let us denote

r(σ1a) =
0∑

	=−P

∑
k∈dig()

10	 · k · r̂(σ1)
a
k,	 (11)

x(I1,a) =
0∑

	=−P

∑
k∈dig()

10	 · k · w I1,a
k,	

, (12)

as the part of the strategy representation without the
r and
x variables. Notice that constraints (10f) and (10g) ensure
that r(σ1a) = r(σ1) · x(I1, a). Hence, the difference in b1(I1), . . . , bk(I1) is caused solely by the
r(σ1a) variables. Further-
more, we know that
r(σ1a) ≤ 10−P ·r(σ1) (Constraint (10i)) which ensures that the maximum difference in b1

1(a), . . . , bk
1(a)

for any a is at most 10−P . Taking any of the behavioral strategies b1
1, . . . , b

k
1 as the corrected behavioral strategy b1(I1),

therefore satisfies

‖b1(I1) − b j
1(I1)‖1 ≤

∑
a∈A(I1)

10−P = |A(I1)| · 10−P . �

We now connect the distance of the corrected strategy b1(I1) from the set of behavioral strategies b1
1(I1), . . . , bk

1(I1)

in I1 ∈ I I R
1 to the maximum possible distance in worst case expected values. First, we show this on the level of a single

history. Finally, we extend this result to the distance of the worst case expected value of the corrected strategy b1 from the
maxmin value.

6 The L1 norm is taken as ‖x1 − x2‖1 = ∑
a∈A(I1) |x1(a) − x2(a)|.

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 305

Lemma 7. Let h ∈ I1 be a history and b1
1 , b2

1 be behavioral strategies prescribing different behavior in I1 but prescribing the same
behavior in all subsequent states h � h′ . Let vmax(h) and vmin(h) be maximal and minimal utility of player 1 in the subtree of h. Then
the following holds:

max
b1

2,b2
2∈B2

|uh
1(b

1
1,b1

2) − uh
1(b

2
1,b2

2)| ≤
vmax(h) − vmin(h)

2
· ‖b1

1(I1) − b2
1(I1)‖1,

where uh
1(b1, b2) is the expected utility of player 1, when starting in h and playing according to b1, b2 .

The proof can be found in Appendix D.
Now we are ready to bound the distance of the worst case expected value of the corrected strategy b1 from the maxmin

value.

Theorem 7. The distance of the worst case expected value of the corrected strategy b1 from the maxmin value is bounded by

ε = 10−P · d · Amax
1 · vmax(∅) − vmin(∅)

2
,

where d is the maximum number of player 1’s imperfect recall information sets on any path from the root to a terminal node, Amax
1 =

maxI1∈I I R
1

|A(I1)| is the maximal branching factor and vmin(∅), vmax(∅) are the lowest and highest utilities for player 1 in the whole
game, respectively.

Proof. We show an inductive way to compute the upper bound on the distance of the worst case expected value of the
corrected strategy b1 from the maxmin value. Throughout the derivation we assume that all players play to maximize the
bound to guarantee that we obtain a valid upper bound. We proceed in a bottom-up fashion over the nodes in the game
tree, computing the bound L(h) on the maximum loss player 1 could have accumulated by correcting his behavioral strategy
in the subtree of h. The ε is obtained as the value of this bound in the root of the game. The bound L(h) in every h ∈ H is
guaranteed to be higher or equal to

max
b1

2,b2
2∈B2

|uh
1(y1,b1

2) − uh
1(b1,b2

2)|, (13)

where y1 is created by joining all b1
1(I1), . . . , bk

1(I1) from the solution of the Upper Bound MILP for all I1 ∈ I1 (y1 prescribes
behavior only on a level of sequences since b1

1(I1), . . . , bk
1(I1) can specify different behavior for every sequence leading to

I1, by y(σ1, a) we denote the probability that a will be played after sequence σ1), b1 is the strategy created by correcting
y1 in the whole tree.

The description of the computation of L(h) follows in a case to case manner.
(1) In leaves, L(h) = 0 as there is no correction made.
(2) In node h where player 2 or nature acts,

L(h) = max
a∈A(h)

L(h · a),

since there can be no loss accumulated and in the worst case the direct successor with the highest loss is chosen.
(3) In player 1’s node h, which is not a part of an imperfect recall information set, no corrective steps need to be

taken. The expected bound at node h is therefore
∑

a∈A(h) y1(seq1(h), a)L(h · a). In the worst case player 1’s behavioral
strategy y1(seq1(h)) selects deterministically the direct successor with the highest bound, therefore again we use the bound
L(h) = maxa∈A(h) L(h · a).

(4) In player 1’s node h, which is a part of an imperfect recall information set, the correction step may have to be taken.
Let y−h

1 be the strategy created from y1 by taking corrective steps in all successors of h and let us construct a strategy yh
1

from y−h
1 by correcting it also in h. We know that the loss caused by changing y1 to y−h

1 is at most maxa∈A(h) L(h · a),
hence

max
b1

2,b2
2∈B2

|uh
1(y1,b1

2) − uh
1(y−h

1 ,b2
2)| ≤ max

a∈A(h)
L(h · a).

Now we have to take the corrective step in the node h and construct strategy yh
1. When using the corrected strategy from

Proposition 2, we get the following bound (Lemma 7):

max
b1

2,b2
2∈B2

|uh
1(y−h

1 ,b1
2) − uh

1(yh
1,b2

2)| ≤
vdi f f (h)

2
· 10−P |A1(I1)|

≤ vdi f f (∅)

2
· 10−P Amax

1 .

306 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

It follows that

max
b1

2,b2
2∈B2

|uh
1(y1,b1

2) − uh
1(yh

1,b2
2)|

≤ max
b1

2,b2
2∈B2

|uh
1(y−h

1 ,b1
2) − uh

1(yh
1,b2

2)| + max
b1

2,b2
2∈B2

|uh
1(y1,b1

2) − uh
1(y−h

1 ,b2
2)|

≤ vdi f f (∅)

2
· 10−P Amax

1 + max
a∈A(h)

L(h · a),

hence we use

L(h) = vdi f f (∅)

2
· 10−P Amax

1 + max
a∈A(h)

L(h · a).

Finally, we provide a bound on the loss in the root node

L(∅) ≥ max
b1

2,b2
2∈B2

|u1(y1,b1
2) − u1(b1,b2

2)|. (14)

We have shown that in order to prove the worst case bound it suffices to consider deterministic choice of action at every
node h – this means that a single path in the game tree is pursued during the propagation of the bound. The bound is
increased exclusively in nodes which are a part of some imperfect recall information set. We can encounter at most d such
nodes on any path from the root. The increase of the bound in each such node is bounded by

vmax(∅) − vmin(∅)

2
· 10−P Amax

1 ,

therefore the bound in the root is

ε = L(∅) = vmax(∅) − vmin(∅)

2
· d · 10−P Amax

1

From eq. (14) follows that ε is guaranteed to be higher or equal to the actual difference of worst case expected values of y1
and b1, since it forms an upper bound even in the case where we maximize the difference of the expected values over all
pairs of player 2’s strategies, while in case of the worst case expected value player 2 is restricted to playing a best response.
It follows that the worst case expected value of the strategy we have found lies within the interval [v∗ − ε, v∗], where v∗ is
the worst case expected value of y1, and therefore the optimal value of the Upper Bound MILP. As v∗ is an upper bound on
the solution of the original bilinear program and therefore also on the maxmin value, no strategy can have a better worst
case expected value than v∗ . Hence the strategy b1 guarantees the ε distance from the maxmin value. �
5. Algorithms for approximating maxmin strategies in imperfect recall games

Algorithms for solving perfect recall games are either not applicable to imperfect recall games and A-loss recall games or
they do not provide any guarantees on the quality of the obtained solutions (see Appendix F for more details). Hence, new
algorithms for solving this class of games are required. In this section we describe a family of algorithms that use the Upper
Bound MILP formulation (10) introduced in the previous section to approximate the maxmin strategy in two-player games
where the maximizing player has imperfect recall and the minimizing player has A-loss recall. First, we describe a simple
approach (denoted as Base). Base starts with some initial precision of the representation of bilinear terms and iteratively
increases the precision until the distance of the corrected strategy obtained from the solution of the Upper Bound MILP with
the current precision from the maxmin value is below a given threshold. Next, to reduce the number of binary variables
and hence to improve the scalability of Base we present a branch-and-bound based algorithm (denoted as IRABnB). IRABnB

works on a linear relaxation of the Upper Bound MILP and simultaneously searches the possible precision improvements of
bilinear terms and the assignment to the relaxed binary variables until the error in the worst case expected value is below
a given threshold. Finally, to reduce the size of the mathematical program that needs to be solved, we extend IRABnB with
incremental strategy generation technique (the algorithm is denoted as DOIRABnB).

Notice, that the restriction to A-loss recall minimizing player leads to a following properties in all the algorithms.

Proposition 3. Let G be a two player game where the maximizing player has imperfect recall and the minimizing player has A-loss
recall. Let G ′ be the coarsest perfect recall refinement of G for the minimizing player with no modifications to the information set
structure of the maximizing player. Computing the maxmin strategy in G reduces to computing the maxmin strategy in G ′.

Proof. Follows directly from Lemma 4. �

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 307

Corollary 1. Let G be a two-player game where the maximizing player has imperfect recall and the minimizing player has A-loss recall.
Let’s assume that G is created as an imperfect recall abstraction of some perfect recall game G ′, such that G ′ is the coarsest perfect
recall refinement of G for the minimizing player. When computing maxmin strategy in G we effectively compute the least exploitable
strategy in any game with more refined information set structure of the maximizing player (hence also in G ′) that can be represented
in G.

Consequently, the maxmin value computed in G gives us the exploitability of the resulting strategy directly in G ′ , hence
the value can be used to evaluate the quality of the abstraction (the further the maxmin value of G is from the maxmin
value of G ′ , the more exploitable strategies resulting from solving G are).

5.1. Iterative precision refining MILP

Here we describe the Base algorithm, using the Upper Bound MILP formulation (10) to approximate the maxmin strate-
gies in two-player games where the maximizing player has imperfect recall and the minimizing player has A-loss recall.

The distance of the worst case expected value of the corrected strategy b1 from the maxmin value is a function of P ,
which is the precision of all approximations of bilinear terms. We design the following algorithm (denoted as Base): (1) start
with the precision set to 0 for all bilinear terms, (2) for each approximation of a bilinear term calculate the current error
contribution (the difference between
r(σ1a) and r(σ1)
x(a) multiplied by the expected utility). Choose from the terms
which do not yet have maximal allowed precision the term that contributes to the overall error the most and increase the
precision of its representation by 1. The algorithm terminates when none of the terms which do not yet have maximal
allowed precision contributes to the error.

5.2. Branch-and-bound algorithm

We now introduce a branch-and-bound search (denoted as IRABnB, Imperfect Recall Abstraction Branch-and-Bound al-
gorithm) for approximating maxmin strategies of two-player games where the maximizing player has imperfect recall and
the minimizing player has A-loss recall. We follow the standard practice in solving MILPs and apply the branch-and-bound
search to the linear relaxation of the Upper Bound MILP. Recall, that we linearize the w I1,a

k,	
variables that control digit-wise

discretization of x(a). Furthermore, we exploit the following observation in the IRABnB.

Observation 1. Even if the current assignment to variables w I1,a
k,	

is not feasible (they are not set to binary values), we can
correct the resulting strategy as described in Section 5.2.1 and use it to estimate the lower bound on the maxmin value of
player 1 without a complete assignment of all w I1,a

k,	
variables to either 0 or 1. The lower bound is computed as the expected

value of the corrected strategy against a best response to it.

The IRABnB algorithm starts with the linear relaxation of the Upper Bound MILP with bilinear terms approximated using
0 digits of precision. It builds and searches a branch and bound tree. In every node n of the branch and bound tree, the
algorithm solves the LP corresponding to n, heuristically selects the information set I and action a contributing to the
current approximation error the most, and creates successors of n by restricting the probability b1(I, a) that a is played in
I . The successors are created by adding new constraints to the LP corresponding to n depending on the value of b1(I, a) by
constraining (and/or introducing new) relaxed binary variables w I1,a

k,l . This way, the algorithm simultaneously searches for
the optimal approximation of bilinear terms as well as the assignment to binary variables. The algorithm terminates when
ε-optimal maxmin strategy is found (using the difference of the global upper bound computed by solving the LP relaxation
and the lower bound computed as described in Observation 1).

Algorithm 1 depicts the complete IRABnB algorithm. The algorithm creates and traverses nodes of the branch and bound
tree. Every node n has associated LP with the strategy of player 1 restricted to a certain degree of precision. Additionally, n
keeps the lower bound on the overall maxmin value of player 1 and the upper bound on the values of the LPs achievable in
the subtree of n. The algorithm starts in the root of the branch and bound tree, where the maxmin strategy is approximated
using 0 digits of precision after the decimal point (i.e., precision P (I1, a) = 0 for every variable x(a)). The algorithm main-
tains a set of active branch-and-bound nodes (fringe) and a node opt with the highest guaranteed expected value of player 1
against the best responding opponent that corresponds to the global lower bound on the worst-case guaranteed expected
value. In each iteration, the algorithm selects the node with the highest upper bound from fringe (lines 4–5). If there is no
potential for improvement in the unexplored parts of the branch and bound tree (i.e., all the nodes in the fringe have upper
bound lower than the lower bound in opt), the current best solution is returned (line 7) (upper bounds of the nodes added
to the fringe in the future will never be higher than the current upper bound). Next, the algorithm checks whether the
current solution has better lower bound than opt, if yes, the opt is replaced by the current node (line 9). Since the algorithm
always selects the most promising node with respect to the upper bound, we are sure that if the lower bound and upper
bound have distance at most ε, the algorithm found an ε-optimal solution and it can terminate (line 11) (upper bounds of
the nodes added to the fringe in the future will never be higher than the current upper bound). Otherwise, the algorithm
heuristically selects an action having the highest effect on the gap between the upper and lower bound in the selected

308 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

Algorithm 1: IRABnB algorithm.
input : Initial LP relaxation L P0 of Upper Bound MILP using a P = 0 discretization
output : ε-optimal strategy for a player having imperfect recall
parameters : Bound on maximum error ε, precision bounds for x(a) variables Pmax(I1, a)

1 fringe ← {CreateNode(L P0)}
2 opt ← (nil, −∞, ∞)

3 while fringe �= ∅ do
4 (LP, lb, ub) ← arg maxn∈fringe n.ub

5 fringe ← fringe \ (LP, lb, ub)

6 if opt.lb ≥ ub then
7 return ReconstructStrategy(opt)
8 if opt.lb < lb then
9 opt ← (LP, lb, ub)

10 if ub − lb ≤ ε then
11 return ReconstructStrategy(opt)
12 else
13 (I1, a) ← SelectAction(LP)
14 P ← number of digits of precision representing x(a) in LP

15 fringe ← fringe ∪ {CreateNode(LP ∪ {∑� aub+alb
2 �P

k=0 w I1,a
k,P = 1})}

16 fringe ← fringe ∪ {CreateNode(LP ∪ {∑9
k=� aub+alb

2 �P
w I1,a

k,P = 1})}
17 if P < Pmax(I1, a) then
18 fringe ← fringe ∪ {CreateNode(LP ∪ {w I1,a

L P .x(a)−P ,P = 1, introduce vars w I1,a
0,P+1, . . . , w I1,a

9,P+1 and corresponding constraints
from MDT })}

19 return ReconstructStrategy(opt)

20 function CreateNode(LP)
21 ub ← Solve(LP)
22 b1 ← ReconstructStrategy(LP)
23 lb ← u1(b1, BestResponse(b1))

24 return (LP, lb, ub)

node n (line 13, as described in Section 5.2.1). Next, it retrieves the precision used to represent behavioral probability of
this action. By default, two successors of the current branch-and-bound node n are added, each with one of the following
constraints. x(a) ≤ � aub+alb

2 �P (line 15) and x(a) ≥ � aub+alb
2 �P (line 16), where � · �p is flooring of a number towards p digits

of precision and aub and alb are the lowest and highest allowed probabilities of playing x(a). This step performs binary
halving restricting allowed values of x(a) in the current precision. Additionally, if the current precision is lower than the
maximal allowed precision Pmax(I1, a) the gap between bounds may be caused by the lack of discretization points; hence,
the algorithm adds one more successor with constraint �v�P ≤ x(a) ≤ �v�P , where v is the current probability of playing
a, while increasing the precision used for representing x(a) (line 18) (all the restriction to x(a) in all 3 cases are done via
w I1,a

k,l variables).
The function CreateNode computes the upper bound on the values achievable in the subtree of the current node by

solving the given LP (line 21) and the lower bound on the overall maxmin value of player 1 as described in Observation 1, by
using the heuristic construction of a valid strategy b1 from the solution of the given LP (line 22, as described in Section 5.2.1)
and computing the expected value of b1 against a best response to it.

5.2.1. LP for strategy reconstruction and action selection
We provide a linear program that is used as a heuristic to compute a corrected behavioral strategy in a given I1 ∈ I1 and

to estimate the contribution of the actions to the overall approximation error. It takes into account the realization probabil-
ities r(σ j

1) of sequences σ j
1 ∈ seq1(I1) leading to I1 as well as errors that can be accumulated in the subtrees of individual

histories h ∈ I1. Let us denote by {1, . . . , k} the set of indices of all sequences in seq1(I1). By b j
1, for each j ∈ {1, . . . , k} we

denote the behavioral strategy corresponding to the realization probability of sequence σ j
1 and its continuations. b1 is the

final corrected behavioral strategy.

min
b,L,α

∑
σ

j
1 ∈seq1(I1)

r(σ j
1) · L(σ

j
1) (15a)

s.t. L(σ
j

1 ,a) ≥ [b j
1(a) − b1(a)] · vmax(σ

j
1 · a) ∀ j ∈ {1, . . . ,k},∀a ∈ A(I1) (15b)

L(σ
j

1 ,a) ≥ [b1(a) − b j
1(a)] · (−vmin(σ

j
1 · a)) ∀ j ∈ {1, . . . ,k},∀a ∈ A(I1) (15c)

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 309

L(σ
j

1) =
∑

a∈A(I1)

L(σ
j

1 ,a) ∀σ
j

1 ∈ seq1(I1) (15d)

b1(a) =
∑

j∈{1,...,k}
α(σ

j
1) · b j

1(a) ∀a ∈ A(I1) (15e)

0 ≤ α(σ
j

1) ≤ 1 ∀σ
j

1 ∈ seq1(I1) (15f)∑
σ

j
1 ∈seq1(I1)

α(σ
j

1) = 1 (15g)

The LP finds a strategy minimizing the estimated error in the following way. Constraints (15b), (15c) compute the maximum
cost L(σ

j
1 , a) of changing the probability that action a is played after σ j

1 , assuming that the worst possible outcome in the
subtree following playing σ j

1 a is reached. Constraint (15d) computes the estimated errors L(σ
j

1) for every σ j
1 by summing

all the L(σ
j

1 , a) for all relevant a. The sum of L(σ
j

1) weighted by the realization probability of corresponding sequences is
minimized in the objective. Constraints (15e) to (15g) make sure that the result will be a convex combination of all the b j

1
strategies, with the α variables being the coefficients of the convex combination.

The bound from Theorem 7 on the error of a strategy constructed in this way holds, since we have shown that the
L1 distance of any pair of behavioral strategies bi

1, b j
1 obtained from realization plans in I1 is at most 10−P |A1(I1)| — the

distance to their convex combination b1 cannot be larger. Hence, the algorithm uses this LP to construct a valid strategy b1
in every imperfect recall information set where the results prescribe inconsistent behavior.

Finally, we use∑
σ k

1 ∈seq1(I1)

L(σ k
1 ,a)

as the heuristic estimate of the contribution of action a to the overall approximation error. The function SelectAction returns
the action with the highest such estimate over all I1 ∈ I I R

1 .

5.2.2. Theoretical properties of the IRABnB algorithm
The IRABnB algorithm takes the error bound ε as the input. First, we provide a method for setting the Pmax(I1, a)

parameters to guarantee that IRABnB returns ε-maxmin strategy for player 1. Finally, we provide a bound on the number of
iterations the algorithm needs to terminate. Notice that the NP-hardness result from Theorem 11 applies to both settings
where IRABnB is applicable.

Theorem 8. Let Pmax(I1) be the maximum number of digits of precision used for representing variables x(a), ∀a ∈ A(I1) set as

Pmax(I1) =
⌈

max
h∈I1

log10
|A(I1)| · d · vmax(h) − vmin(h)

2ε

⌉
,

where vmin(∅), vmax(∅) are the lowest and highest utilities for player 1 in the whole game, respectively. With this setting IRABnB is
guaranteed to return an ε-optimal maxmin strategy for player 1.

Proof. Let us first show that the limits on the number of refinements Pmax(I1) are sufficient to allow representation of
ε-maxmin strategy of player 1. The proof is conducted in the same case by case manner as the proof of Theorem 7. Here we
focus only on the case 4 from the proof of Theorem 7, which handles histories from some imperfect recall information set.
In the rest of the cases, we again assume that players play such that the action leading to the child with maximal bound
on loss is chosen.

Let I1 ∈ I I R
1 and h ∈ I1. We know that when using Pmax(I1) of digits to represent the strategy in I1, the L1 distance

between behavioral strategies in I1 is at most 10−Pmax(I1) · |A(I1)| (Proposition 2). This means that the bound in h from case
4 in the proof of Theorem 7 is modified to:

max
b1

2,b2
2∈B2

|uh
1(y1,b1

2) − uh
1(yh

1,b2
2)|

≤ max
b1

2,b2
2∈B2

|uh
1(y−h

1 ,b1
2) − uh

1(yh
1,b2

2)| + max
b1

2,b2
2∈B2

|uh
1(y1,b1

2) − uh
1(y−h

1 ,b2
2)|

≤ vdi f f (h)

2
· 10−Pmax(I1) · |A(I1)| + max

a∈A(h)
L(h · a)

≤ vdi f f (h)

2
· |A(I1)| · 2ε

|A(I1)| · d · vdi f f (h)
+ max

a∈A(h)
L(h · a)

= ε

d
+ max

a∈A(h)
L(h · a).

310 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

Similarly to the proof of Theorem 7, it suffices to assume that players choose actions deterministically in every node to
obtain the upper bound on the error. The path induced by these choices contains at most d imperfect recall nodes, thus
L(∅) = d · ε/d = ε.

Finally, we show that IRABnB is guaranteed to reach the precision guarantees which result in ε-optimal maxmin strategy.
This holds since (1) the upper and lower bound on the best worst case value of player 1’s strategy with a given precision
restrictions are correct (follows directly from their computation), hence the branch-and-bound search never prunes away
the branch with the optimal solution, (2) the IRABnB always retrieves the node with the highest upper bound from the
fringe and (3) the algorithm terminates only when an ε-maxmin strategy for player 1 is found. �
Theorem 9. When using Pmax(I1) from Theorem 8 for all I1 ∈ I I R

1 and all a ∈ A(I1), the number of iterations of the IRABnB algorithm
needed to find an ε-optimal solution is in

O

⎛
⎝(

34 log10(S1)+4

ε2

)S1
⎞
⎠

where S1 = |I I R
1 |Amax

1 .

The proof is based on bounding the number of nodes in the branch and bound tree as a function of Pmax(I1) and
computing the final bound by substituting the Pmax(I1) from Theorem 8 (see Appendix E for detailed proof).

The main disadvantage of IRABnB is that the size of the LP solved in every iteration is linear in the size of the game
and the algorithm can refine the precision of bilinear term approximation in parts of the game that may not be relevant
for the final solution. To reduce the size of the solved LP and to focus the refinements of the precision of bilinear term
approximation to relevant parts of the game, an incremental strategy-generation technique modified for imperfect recall
EFGs can be employed.

5.3. Double oracle for perfect recall EFGs

The double oracle algorithm for solving perfect recall EFGs (DOEFG, [27]) is an adaptation of column/constraint generation
techniques for EFGs. The main idea of DOEFG is to create a restricted game where only a subset of actions is allowed to
be played by players and then incrementally expand this restricted game by allowing new actions. The restricted game is
solved as a standard zero-sum extensive-form game using the sequence-form linear program [24,7]. Afterward, best response
algorithms search the original unrestricted game to find new sequences to add to the restricted game for each player. The
algorithm terminates when the best response calculated on the unrestricted game provides no improvement to the solution
of the restricted game for either of the players.

DOEFG uses two main ideas: (1) the algorithm assumes that players play some pure default strategy outside the restricted
game (e.g., playing the first action in each information set given some ordering), (2) temporary utility values are assigned to
leaves in the restricted game that correspond to inner nodes in the original unrestricted game (so-called temporary leaves),
which form an upper bound on the expected utility.

5.4. Double oracle IRABnB for imperfect recall EFGs

In this section, we introduce the DOIRABnB (Double Oracle Imperfect Recall Abstraction Branch-and-Bound) algorithm
combining ideas of IRABnB and DOEFG. Adapting the ideas of DOEFG for games with imperfect recall poses several chal-
lenges that we need to address. To solve the restricted game means to compute the maxmin strategy for player 1. However,
solving the restricted game requires calling IRABnB search that iteratively refines the approximation of bilinear terms in-
stead of solving a single (or a pair of) LPs in DOEFG for perfect recall games. DOIRABnB thus makes an integration of two
iterative methods and decides when to expand the restricted game and when to refine the approximation of bilinear terms
already in the restricted game.

We first provide the pseudocode of the algorithm with its description, followed by formal definitions of all the necessary
components of the algorithm.

In Algorithm 2 we present the DOIRABnB algorithm. Similarly to IRABnB, the algorithm performs a branch and bound
search. Every branch and bound node n stores the LP with corresponding precision adjustments to the bilinear term ap-
proximation, lower bound on the maxmin value of player 1 and an upper bound on the value achievable in the whole
game in the subtree of n. The list of currently active nodes is stored in the fringe. The node with the highest lower bound
encountered is stored in opt. There are two differences from IRABnB: (1) through the run, DOIRABnB incrementally builds
the restricted game Ḡ , and when solving the LP for any branch and bound node, the LP is always built to solve the cur-
rent Ḡ . (2) DOIRABnB uses function Add to add any node to the fringe. The function Add (lines 20 to 29) repeatedly uses
the maximizing player oracle (line 24, Section 5.4.2) to make sure that before adding the node to the fringe we first update
the restricted game so that solving the LP for Ḡ and current precision restriction gives an upper bound on the value of the

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 311

LP applied to the original game with the same precision restrictions (see Section 5.4.3 for more details). This is required to
guarantee the convergence of the algorithm to ε-maxmin strategy for player 1.

Note that DOIRABnB does not simply use the double oracle approach to solve LP in every single node to optimality, in-
stead it applies the oracles of the maximizing and minimizing player separately to avoid increasing the size of the restricted
game unnecessarily, while making sure that the algorithm works with valid upper bound on the value in the original game.

Algorithm 2: DOIRABnB algorithm.

input : Initial LP relaxation LP0 of Upper Bound MILP, Initial restricted game Ḡ
output : ε-optimal strategy for the maximizing player
parameters : Bound on maximum error ε, bound Pmax for bilinear term precision approximation

1 fringe ← {(LP0, −∞, ∞)}
2 opt ← (LP0, −∞, ∞)

3 while fringe �= ∅ do
4 (LP, lb, ub) ← arg maxn∈fringe n.ub

5 fringe ← fringe \ (LP, lb, ub)

6 if opt.lb ≥ ub then
7 return ReconstructStrategy(opt)
8 if opt.lb < lb then
9 opt ← (LP, lb, ub)

10 if ub − lb ≤ ε then
11 return ReconstructStrategy(opt)

12 if FromSmallerG(Ḡ, LP) then
13 Ḡ ←Add(Ḡ, LP)

14 else if ExpandableByMinPlayerOracle(Ḡ, LP) then
15 (Ḡ, LP) ← ExpandByMinPlayerOracle(Ḡ, LP)

16 Ḡ ←Add(Ḡ, LP)

17 else
18 (I1, a) ← SelectAction(LP)

19 AddSuccessors(LP, I1 , a, Pmax, Ḡ)

20 function Add(Ḡ, LP)
21 LP0 ← LP, t ← 1

22 (lb, ub, B̂1
2) ← Resolve(Ḡ, LP0)

23 while t = 1 || LPt−2 �= LPt−1 do
24 (Ḡ, LPt) ← ExpandByMaxPlayerOracle(Ḡ, LPt−1 , B̂t

2)

25 (Ḡ, LPt) ← UpdateUtilities(Ḡ, LPt , B̂t
2)

26 (lb, ub, BL Pt
2) ← Resolve(Ḡ, LPt)

27 B̂t+1
2 ← B̂t

2 ∪ BL Pt
2 , t ← t + 1

28 fringe ← fringe ∪ (LPt−1, lb, ub)

29 return Ḡ

The algorithm starts with an empty restricted game Ḡ . Lines 1 to 11 are the same as in the IRABnB algorithm. Ad-
ditionally, in every iteration, DOIRABnB checks whether the bounds in the current node were computed in some smaller
restricted game than the current Ḡ (line 12). If yes, DOIRABnB recomputes the bounds on the current restricted game,
returns the node to the fringe (line 13) and continues with the next iteration. This is done to make sure that DOIRABnB

does not make unnecessary precision adjustments due to imprecise bounds. Else, if bounds come from the same game as
the current restricted game Ḡ , the algorithm checks whether Ḡ can be expanded by the minimizing player oracle (line 14,
see Section 5.4.2). If Ḡ can be expanded, we expand it, resolve with the current precision restrictions and return the node
to the fringe (lines 15, 16). Note that we do not use the maximizing player oracle at this point, because the expansion by
maximizing player oracle is used when adding the node to the fringe in function Add (as described in Section 5.4.3). Oth-
erwise, if Ḡ cannot be expanded, the algorithm continues in the same way as IRABnB. It heuristically selects bilinear terms
corresponding to action a from the current restricted game Ḡ (line 18, as described in Section 5.2.1). The algorithm then
creates new nodes and adds new variables and constraints into the LPs in these nodes that further restrict possible values
of x(a). Next, if the maximal allowed precision permits, DOIRABnB creates an additional node with increased precision of
representation of x(a). Finally, it adds the new nodes to the fringe (line 19) using the Add function.

5.4.1. The restricted game
This section formally defines the restricted game Ḡ = (N , H̄, Z̄, Ā, ̄u, C, Ī) of the original unrestricted game G =

(N , H, Z, A, u, C, I). The restricted game Ḡ is built to guarantee that solving the LP with a given precision restrictions
for Ḡ gives an upper bound on the solution of the LP for the original game with the same precision restrictions, when the

312 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

player 2 plays some strategy from a set B̂2. By B̂2 we denote a subset of all strategies of player 2 from the restricted game
Ḡ extended by the default strategy (playing first action available in each decision point). In Section 5.4.2 we present the
oracles used to construct the restricted game to guarantee such bound. In Section 5.4.3 we explain how to iteratively build
B̂2 which combined with the use of the oracles guarantees that the solution of the LP gives an upper bound, this time when
the player 2 can play any strategy from the original game G .

The restricted game is limited by a set of allowed sequences �̄ ⊆ �, that are returned by the oracles. An allowed
sequence σi ∈ �̄ might not be playable to the full length due to missing compatible sequences of the opponent. Therefore,
the restricted game is defined using the maximal compatible set of sequences �̄ ⊆ �̄. Formally

�̄i = {σi ∈ �̄i|∃σ−i ∈ �̄−i ∃h ∈ H : seqi(h) = σi ∧ seq−i(h) = σ−i},∀i ∈ N . (16)

The sets H̄, Ā are the subsets of H, A reachable when playing sequences from �̄. Ī defines the same partition as I on
the reduced set H̄, i.e., for all h, h′ ∈ H̄, holds that h, h′ ∈ I for some I ∈ Ī in the restricted game if and only if h, h′ ∈ I for
some I ∈ I in the original game. The set of leaves in Ḡ is a union of leaf nodes of G present in Ḡ and inner nodes from G
that do not have a valid continuation in �̄

Z̄ = (Z ∩ H̄) ∪ {h ∈ H̄ \ Z|Ā(h) = ∅}. (17)

We refer to the members of the set Z̄ \ Z as temporary leaves. Note that if not stated otherwise, when we operate with a
strategy from the restricted game in the whole unrestricted game, we automatically assume that it is extended by a default
strategy playing the first action available as in DOEFG.

We define the temporary utility value in every z ∈ Z̄ as ū1(z, B̂2) so that ū1(z, B̂2) is an upper bound on the value the
player 1 can guarantee in the original game G in z, when the minimizing player plays any strategy from the set B̂2. Formally,
we use

ū1(z, B̂2) = max
b2∈B̂2

ûz
1(b2),∀z ∈ Z̄, (18)

where ûz
1(b2) stands for the expected value of player 1 in the original game G when starting in z and playing a strategy from

the coarsest perfect recall refinement of G maximizing the expected value in z against b2 (remember that b2 is extended
by the default strategy). We define ûz

1(b2) in such way since the best response of player 1 against b2 in the coarsest
perfect recall refinement is easy to compute as shown in Lemma 4 (player 1 has imperfect recall in G hence computing
the best response there is NP-hard). Furthermore, since we give more information to player 1 in the coarsest perfect recall
refinement, ûz

1(b2) is guaranteed to be an upper bound on the maximal expected value in z achievable by player 1 against
b2 ∈ B̂2 in G . The set B̂2 is built in function Add using best responses of player 2 taken from the solution of the LP by
finding actions corresponding to active Constraint (3h) (see Section 5.4.2 for details). Notice that the ū1 might differ in every
iteration of the algorithm, since B̂2 can change.

5.4.2. Updating the restricted game
In this section we discuss the oracles used in DOIRABnB and the way their results are used to expand the restricted

game (lines 15 and 24 in Algorithm 2). Note that the oracle of the maximizing player is given B̂2 (see Section 5.4.3 for
details on construction of B̂2) and expands the restricted game with respect to the strategies in B̂2.

Minimizing player oracle. The minimizing player plays a best response in the final maxmin solution of the game, hence,
similarly to DOEFG we use the best response computation as the oracle of player 2. In every iteration we compute bB R

2 ∈
B R2(b1) in the original game G , where b1 is the strategy of player 1 computed by DOIRABnB in the current node and current
restricted game extended by the default strategy. The algorithm extends �̄2 by all the valid continuations of σ2 ∈ �̄2 by
actions in bB R

2 and update �̄ accordingly.

Maximizing player oracle. The best response is not a sufficient oracle of the maximizing player 1 since his maxmin strategy
does not have to consist of best responses to pure strategies of the minimizing player.

Example 2. Consider the game in Fig. 8. The maxmin strategy for player 1 is playing b and e deterministically, guaranteeing
the maxmin value −1. Notice, however, that playing b and e is not a best response to any pure strategy of player 2. Since
during the run the DOIRABnB only computes pure best responses of player 2, the best response oracle for the maximizing
player 1 would never add states h2 and h3 and so the DOIRABnB would never find the correct solution.

To fix this, the algorithm keeps track of possible extensions of the restricted game by taking actions in states of the
maximizing player 1. To do that, the algorithm uses a set of pending states

Hp = {h ∈ H \ H̄|∃h′ ∈ H̄1∃a ∈ A(h′) : h′a = h}, (19)

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 313

Fig. 8. An A-loss recall game where the maxmin strategy for player 1 is not a best response to any of the pure best responses of player 2.

Fig. 9. Games for demonstration of the necessity of the Add function.

which contains all the states h not in the restricted game, whose parent h′ is in the restricted game and player 1 makes
decision in h′ . Since we build Ḡ to find strategy of player 1, which is optimal against the strategies from B̂2 there is no
point in adding h ∈ Hp which are not reachable by any b2 ∈ B̂2. Hence, we take a subset H′

p ⊆ Hp such that all h ∈ H′
p are

reachable by some b2 ∈ B̂2. Furthermore, we can exclude pending states which cannot improve the expected value of the
player 1 against any b2 ∈ B̂2. Formally, by H∗

p we denote a subset of H′
p , where for all h ∈ H∗

p holds that

ū1(h, B̂2) ≥ min
b2∈B̂2

uh′
1 (b1,b2),

where h′ is the parent of h, b1 is the strategy of player 1 from the current LP extended by the default strategy and uh
1(b1, b2)

stands for the expected value in state h when players play according to b1, b2. When expanding the restricted game, we
add to �̄ all the sequences leading to all h ∈ H∗

p .

Example 2 (continued). When using the pending states as an oracle of player 1 in the game in Fig. 8, we always add the
states h2 and h3. For example when h2 is not a part of the restricted game, player 1 cannot play action b. h2 is then added
by the maximizing player oracle since all the strategies of player 1 not playing action b can guarantee the expected value
of at most −2 in the h1 against the worst case opponent. On the other hand, ū1(h2, B̂2) ≥ −1, ∀B̂2 and so h2 is added to
the restricted game.

Finally, let us explain the functions used in Algorithm 2. ExpandableByMinPlayerOracle checks whether the ora-
cle of the minimizing player suggests any sequence to be added to the restricted game. ExpandByMinPlayerOracle and
ExpandableByMaxPlayerOracle add to the restricted game all the sequences suggested by the minimizing player or-
acle and the maximizing player oracle respectively.

5.4.3. Adding nodes to the fringe
There are two requirements Ḡ needs to fulfill before adding any given node to the fringe in function Add (lines 20 to 29)

in order to guarantee that solving the LP for Ḡ and given precision restrictions gives an upper bound on the value of the
LP for the original game with the same precision restrictions. (1) The function Add needs to make sure that the restricted
game is built so that player 1 has no deviation outside of the restricted game, which could increase his expected value. Let
us demonstrate this in the following example.

Example 3. Consider the game in Fig. 9 (left). Assume that the restricted game Ḡ consists of states {h1, h2, h3, z1, z2, z3, z4}
and there are no precision restrictions. If we solve the restricted game we obtain the value 0 for player 1, however, maxmin
strategy for player 1 is to play x guaranteeing the expected value 1.

314 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

(2) The utility ū1 in all z ∈ Z̄ , which is going to be used to construct the LP must be an upper bound on the worst case
utility of player 1 against all the possible best responses b2 ∈ BL P

2 corresponding to active Constraints (3h) after solving
this LP. Hence the utility must be set according to the possible behavior of the minimizing player, which depends on the
utility in question. This is required since strategies b2 ∈ BL P

2 can define behavior also outside of the restricted game due to
information sets of player 2 that can be only partially present in the restricted game. It is, therefore, insufficient to assume
that player 2 plays using only default strategy in every information set outside of the restricted game. Since the algorithm
sets the utility in the Z̄ \ Z to a fixed value (therefore not reflecting the changing behavior of player 2 in the LP), it needs
to make sure that the value is an upper bound against all possible strategies player 1 can face to obtain the required upper
bound by solving the LP. Let us demonstrate this in the following example.

Example 4. Consider the game in Fig. 9 (right). Assume that the restricted game Ḡ consists of states {h1, h2, h3, z3, z4} and
there are no precision restrictions. h2 is a temporary leaf in Ḡ , hence we need to compute a temporary utility value for it.
Let us first discuss what would happen if we do not consider the behavior in the restricted game and use the value from the
leaf reachable after the default strategy (playing the first action in every state). The default strategy leads to the terminal
state z1 with utility −2. Solving the restricted game using −2 as the temporary utility value for h2 leads to strategy with
the worst case expected value −2. However, the maxmin value of player 1 in the original game is 0 achievable by playing
uniformly in h1.

In the function Add we iteratively update the restricted game until we are guaranteed to obtain a correct upper bound.
To do that, the function Add builds in every iteration T a set B̂T

2 as a union of all the BL Pt
2 obtained by solving the LPt

in every iteration t ∈ {0, . . . , T − 1} (lines 26, 27) in the current invocation of the function Add. In every iteration T the
function Add expands Ḡ using the oracle of the maximizing player for the current set B̂T

2 (line 24) and updates the utilities
in Ḡ again using the current set B̂T

2 (line 25). The algorithm iterates in function Add until the LPs from last two iterations
are equal, and only then is the given node added to the fringe.

Example 3 (continued). Consider again the game in Fig. 9 (left). The function Add will ensure that z5 is added to Ḡ since
z5 ∈ H∗

p and so it will be added by the maximizing player oracle.

Example 4 (continued). Consider again the game in Fig. 9 (right). We did not receive a correct upper bound by solving the
restricted game, since setting the temporary utility value to −2 in h2 is incorrect. Player 2 plays action d in the solution of
the LP0 to force the resulting value to be −2 but the −2 in h2 was obtained assuming that player 2 will play c as a part
of his default strategy (playing c and d is mutually exclusive). To solve this, the function Add performs another iteration,
where it sets the utility in h2 to ū1(h2, B̂1

2), where B̂1
2 = BL P0

2 is the singleton containing the strategy playing d obtained as
the best response from the solution of the LP0. In this iteration the algorithm correctly sets ū1(h2, B̂2) = 2. After solving Ḡ
we get value 2, which is the desired upper bound on the maxmin value in the original game with no precision restrictions.

5.4.4. Theoretical properties
Here we demonstrate that if IRABnB is guaranteed to find ε-optimal maxmin strategy for some precision parameters

Pmax , DOIRABnB is also guaranteed to find ε-optimal maxmin strategy for the same Pmax .

Lemma 8. Every node n ∈ fringe in every iteration of DOIRABnB has a valid lower bound on the maxmin value of player 1 in the
original game G.

Proof. The lower bound is valid, since it is computed as u1(b1, b2), where b1 is the current solution of the LP corresponding
to n applied to the current restricted game Ḡ , extended by the default strategy and b2 ∈ B R2(b1) in the original game G .
Since the maxmin strategy b∗

1 of player 1 maximizes its expected value assuming the worst case opponent, u1(b1, b2) must
be lower or equal to the maxmin value of the game. �
Lemma 9. The upper bound in every node n ∈ fringe for the corresponding precision restrictions in every iteration of DOIRABnB forms
an upper bound on the value of the LP with the same precision restrictions applied to the original game G, hence the upper bound in
the node n is higher or equal to the upper bound in the node used in IRABnB applied to G with the same precision restrictions.

Proof. We add all nodes to the fringe using function Add. Since we iterate in function Add until the LPT in the current
iteration T is equal to the LPT −1, we are sure that there is no deviation of the player 1 outside of Ḡ which can increase his
worst case expected value against any b2 ∈ BL P T −1

2 , since adding any pending state would cause LPT to be different from
LPT −1. Additionally, since the LPT and LPT −1 are equal, we are sure that none of the b2 ∈ BL P T −1

2 change the utility structure
created using B̂T −1

2 , hence

ū1(z, B̂T −1
2) ≥ ū1(z,BL P T −1

2),∀z ∈ Z̄. (20)

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 315

Player 1 cannot increase his expected value by playing outside of the restricted game against any b2 ∈ BL P T −1
2 . Further-

more, every z ∈ Z̄ has assigned an upper bound on the expected value player 1 can guarantee in z against any b2 ∈ BL P T −1
2

in the original game. Hence, the value of the LPT −1 is an upper bound on the value of the LP with the same precision
restrictions in G . Finally, since LPT is equal to LPT −1 the same holds for the value of LPT . �
Theorem 10. If the IRABnB algorithm is guaranteed to return ε-optimal maxmin strategy for precision parameters Pmax, the
DOIRABnB returns ε-optimal maxmin strategy for the same precision parameters Pmax.

Proof. When DOIRABnB reaches a node where the upper and lower bound are at most ε distant, we are sure that we have
found an ε-optimal solution of the original game. This holds since (1) the node has correct bounds on the value achievable
in the original game with given precision restrictions (Lemmas 8, 9), (2) the DOIRABnB always retrieves the node with the
highest upper bound from the fringe (line 4). Additionally, DOIRABnB is guaranteed to reach this node, since it never prunes
away the branch containing the optimal solution in the space of precision restrictions (again from the correctness of the
upper and lower bound from Lemmas 8, 9).

When DOIRABnB reaches the node with the precision restrictions guaranteeing an ε-optimal solution in the original
game, the bounds might be more than ε distant due to the insufficiently built restricted game. This is caused by the
temporary leaves z ∈ Z̄ \ Z . The DOIRABnB assigns to every z ∈ Z̄ \ Z a temporary utility which is an upper bound on the
actual utility which player 1 can guarantee against worst-case opponent in z in the original game. Hence the strategy b1
computed for the current restricted game can prefer some temporary leaf z ∈ Z̄ \ Z based on this possibly overestimated
utility value. However, when computing the bB R

2 ∈ B R(b1) where b1 is extended by the default strategy in the original game,
the value uz

1(b1, bB R
2) can be significantly smaller than the temporary utility value in z. The oracle of the minimizing player,

however, expands Ḡ by actions in bB R
2 . Since bB R

2 exploits the difference in the temporary utility in z and the actual expected
value in z obtained when playing according to b1, bB R

2 , z has to be reached when playing according to these strategies. The
restricted game is, therefore, expanded by the action a ∈ A(z) played in bB R

2 and z is no longer a temporary leaf after the
expansion. The expansion of the temporary leaves continues until there is no temporary leaf where player 2 can exploit
the overestimated value of the temporary utility (lines 14, 24 in Algorithm 2). Hence the reason for the difference in the
bounds directly implies that the expansion of the restricted game on line 14 will occur. The DOIRABnB terminates when
the restricted game is built sufficiently to allow the distance of bounds to decrease to at most ε. This must happen after a
finite number of steps since in the worst case the algorithm builds the entire original game.

Finally, the fact that there is ε-optimal solution when using given precision parameters Pmax is guaranteed by the as-
sumption that IRABnB is guaranteed to find the ε-optimal solution for the same parameters in the original game. �
6. Experiments

In this section, we provide an experimental evaluation of the performance of DOIRABnB, IRABnB and the Base. Further-
more, we demonstrate the possible space savings in the size of the strategy representation when employing imperfect recall
abstractions and discuss the quality of strategies resulting from solving these abstractions. Since there is no standardized
collection of benchmark EFGs, the experiments are conducted on a set of Random games, an imperfect recall search game
and an imperfect recall variant of OshiZumo. All algorithms were implemented in Java, each algorithm uses a single thread,
8 GB memory limit and we use IBM ILOG CPLEX 12.6.2 to solve all LPs/MILPs.

Random games. We use randomly generated games to obtain statistically significant results. We randomly generate a per-
fect recall game with varying branching factor and fixed depth of 6. To control the information set structure, we use
observations assigned to every action – for player i, nodes h with the same observations generated by all actions in history
belong to the same information set. To obtain imperfect recall games with a non-trivial information set structure, we run a
random abstraction algorithm which merges information sets for all i ∈ N according to parameter p in the following way.
Let {I1

i , . . . , In
i } be the largest possible disjoint subsets of Ii of the perfect recall game such that

∀Ik
i ∈ {I1

i , . . . ,In
i }∀Ii, I ′i ∈ Ik

i |seqi(Ii)| = |seqi(I ′i)| ∧ |A(Ii)| = |A(I ′i)|,
and

⋃
Ik

i ∈{I1
i ,...,In

i } Ik
i = Ii . Each Ik

i ∈ {I1
i , . . . , In

i } contains candidates for merging. Let J ⊆ Ik
i be a set that initially contains

a random element I ∈ Ik
i . We iterate over all I ′ ∈ Ik

i \ I , and add I ′ to J with probability p. To create the abstraction
we iteratively choose the subset J of Ik

i , create abstracted set containing all elements of J , and remove J from Ik
i .

This procedure repeats until Ik
i is empty and is performed for all Ik

i ∈ {I1
i , . . . , In

i }. We further update the abstraction
by splitting the information sets of the minimizing player to make sure that he has A-loss recall. We generate a set of
experimental instances by varying the branching factor and the parameter p. Our random games are rather difficult to solve
since (1) information sets can span multiple levels of the game tree (i.e., the nodes in an information set often have histories
with differing sizes) and (2) actions can easily lead to leaves with very different utility values.

316 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

Fig. 10. Graph for the Search game. The attacker starts in the node S and tries to reach the node G . The defender operates two units, each moving in one
of the shaded areas.

OshiZumo. We use a modification of OshiZumo described, e.g., in [33]. The game is played by two players; both start with
a given number of coins. At the beginning of a game, a sumo wrestler is positioned at the center of a one-dimensional
playing field which consists of 7 positions. In every turn of the game, each player uses some amount of his coins to place
a bid. The highest bidder pushes the wrestler one location towards the opponent’s side. If the bids are equal, the wrestler
does not move. Either way, both players lose all the coins they used to make the bid and the game proceeds until the
money runs out or the wrestler is pushed off the field. The players observe only their bid and whether they won or not.
The bid of the opponent is never revealed. It is a zero-sum game, where the final position of the wrestler determines the
winner: if he is located at the center, the game result is a draw. Otherwise, the player in whose half the wrestler is located
gets a negative utility equal to the number of positions between the wrestler and the center of the playing field. In this
paper, we create different instances of OshiZumo by changing the number of coins available to players.

To create the imperfect recall abstraction of the OshiZumo, we give the maximizing player only the information about
the number of coins he has left, and whether he has won in each of the previous rounds, hence he does not remember the
exact bids he had made. The minimizing player remembers both his bids and whether he won in each round. Notice that
we do not modify the information set structure of the minimizing player, and so the original game is the coarsest perfect
recall refinement of this abstraction for the minimizing player.

Search game. Our third domain is an instance of search (or pursuit-evasion) game, used, e.g., in [27]. Search games are
commonly used for evaluating incremental algorithms [34]. The game is played on a directed graph shown in Fig. 10
between attacker and defender. The attacker tries to cross from the starting node S to his destination G . The attacker can
either move every turn, leaving tracks in each node he visits, or he can move every other turn without leaving any tracks.
The defender operates two units, each moving in one of the shaded areas, trying to intercept the attacker by capturing him
in a node. The defender observes only the tracks left by the attacker and only in case one of his units steps on the node
with the track. The attacker does not have any information about the defender units. The players move simultaneously.
It is a zero-sum game, where the attacker obtains utility 1 for reaching his destination and defender obtains utility 1 for
intercepting the attacker. If a given number of moves is depleted without either of the events happening, the game is
considered a draw and both obtain utility 0. We assume the defender to be the maximizing player.

To create an imperfect recall abstraction of the Search game, we give the defender only information about the tracks
he currently observes and the position of both of his units without remembering the history of moves leading there. The
attacker knows only the sequence of his actions in the past. Notice that we do not modify the information set structure
of the minimizing player, and hence the original game is the coarsest perfect recall refinement of this abstraction for the
minimizing player.

6.1. Results

The main experiments are divided into 2 parts. (1) We compare the Base, IRABnB and DOIRABnB algorithms to show
how the different components used in the algorithms influence the scalability. The results show that DOIRABnB outperforms
IRABnB and Base on smaller domains while providing significantly better scalability than the rest thanks to the fact that the
incremental strategy generation keeps the LP being solved small while focusing the precision adjustments to relevant parts
of the game tree. (2) We demonstrate the immense space savings in the strategy representation achievable by employing
the simple imperfect recall abstractions described above. Additionally, we show that solving these abstractions results in
finding the maxmin strategy of the original unabstracted game.

The ε in all the experiments was set to 10−4 · umax , where umax is the maximal utility of the solved game.

6.1.1. Runtime comparison

Random games. In Fig. 11 we present the runtime results in seconds obtained on random games. Every plot depicts the cu-
mulative relative number of instances (y-axis) solved under a given time limit (logarithmic x-axis). There were 100 instances
of random games solved for every setting. The rows contain results for random games with varying p, the first column for
branching factor 3, second for branching factor 4. The runtime of the algorithms was limited to 2 hours on every instance,

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 317

Fig. 11. Results for random games showing the relative cumulative number of instances (y-axis) solved under a given time limit (x-axis) and the relative
amount of instances terminated due to the exceeded runtime in bars labeled cutoff. Rows contain results for p = 0.3, p = 0.6, p = 0.9, columns show results
for branching factor 3 and 4.

Table 1
Average relative amount of sequences for maximizing and minimizing player respectively,
added to the restricted game by DOIRABnB in random games.

p \ b. 3 4

0.3 46.1% ± 2.9%, 22.2% ± 1.8% 62.5% ± 3.1%, 17.5% ± 2.2%
0.6 58.9% ± 2.8%, 23.3% ± 2.0% 71.7% ± 2.8%, 17.1% ± 2.1%
0.9 68.2% ± 2.5%, 24.0% ± 1.8% 76.6% ± 2.9%, 18.5% ± 1.1%

the relative number of instances terminated after this limit is reported in the bars labeled cutoff. The IRABnB usually domi-
nates the other two algorithms in the number of instances solved in the first time interval. As the runtime grows, however,
the performance of IRABnB decreases. This is because IRABnB tends to spend a lot of time making adjustments in the
irrelevant parts of the game tree. On the other hand, the DOIRABnB outperforms the other two algorithms across all the
settings, and we can see a significant decrease in the number of instances not solved in a given 2-hour limit, compared to
Base and IRABnB. This is because the DOIRABnB focuses adjustments to approximation precision to the relevant parts of
the game tree present in the restricted game while keeping the underlying LP smaller. Note that the random games form
an unfavorable scenario for all the presented algorithms since the construction of the abstraction is completely random,
which makes conflicting behavior in merged information sets common. As we can see, however, even in these scenarios
the DOIRABnB is capable of solving the majority of instances with branching factor 4 which have ∼ 3000 nodes in under
2 hours.

In Table 1 we present the average relative amount of sequences for each player needed by DOIRABnB to solve the
random games for each setting along with the standard error. The relative amount of sequences needed by the minimizing
player is consistently smaller because the restricted game is built to compute maximizing player’s robust strategy, while the
minimizing player only plays best responses during the computation. Even though the size of the restricted game remains
similar across all values of p, we observe an increase in the relative size, since the number of sequences decreases as p
increases.

OshiZumo. The DOIRABnB solved the game with 11 coins in 44 minutes using 0.9% sequences for the maximizing
player and 0.2% sequences for the minimizing player. The game has 3.5 · 106 states, 2.8 · 105 and 1.4 · 106 sequences

318 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

Table 2
The relative amount of information sets of the maximizing player in the imperfect recall abstractions with
different number of remembered moves w.r.t. the number of information sets of the maximizing player in the
original game for the OshiZumo with 10 and 11 coins (left) and the Search game with depth 6 and 7 (right).

c. \ r. m. 0 1 2

10 3.27% 5.54% 9.30%
11 1.90% 3.27% 5.64%

d. \ r. m. 0 1 2

6 0.10% 0.46% 1.81%
7 0.03% 0.11% 0.42%

Fig. 12. The first column shows the convergence of the lower and upper bound in DOIRABnB on OshiZumo with 11 coins as a function of iterations, each
row for a different number of remembered moves. Second column shows the convergence of the lower and upper bound in DOIRABnB on Search game
with depth 7 as a function of iterations, each row for a different number of remembered moves.

for the maximizing and minimizing player respectively. IRABnB and Base were able to solve the game with 9 coins in 20
seconds and 2 hours respectively, however, on the game with 10 coins none of the two algorithms finished in 10 hours.

Search game. In case of Search game, the DOIRABnB was able to solve a game with 10 moves allowed for each player (with
∼ 5 · 109 states, ∼ 2 · 104 sequences for the attacker and ∼ 4 · 107 sequences for the defender) using 0.002% of sequences
for the defender and 0.2% sequences for the attacker in 1.2 hours. IRABnB and Base were able to solve the game with 5
moves for every player in 12 seconds and 40 minutes respectively, however, on the game with 6 moves none of the two
algorithms finished in 10 hours.

The presented results show that DOIRABnB provides scalability which cannot be achieved by IRABnB and Base because
of their requirement to build the entire game. Furthermore, the results on random games show that even on small games,
where IRABnB and Base can be used, DOIRABnB provides the best performance and hence it is the most efficient algorithm.

6.1.2. Size of strategy representation and quality of resulting strategies
Here, we discuss the size of strategy representation needed in imperfect recall abstractions compared to their perfect

recall counterparts. Note that we use the number of information sets of the maximizing player present in a given game for
this purpose since in the worst case a strategy needs to define behavior in each of them. Additionally, we provide results
showing the quality of the strategy resulting from solving these abstractions in the original unabstracted game.

In Table 2 we present the relative amount of information sets of the maximizing player in a specific abstraction compared
to the unabstracted game for OshiZumo (left) and Search game (right). In both domains, we use the perfect recall game and
its imperfect recall abstraction with rules described earlier in this section. Moreover, in both domains, we experiment with
refining the abstraction by giving the maximizing player information about the last k moves he has made in the past (k is
specified in the first row of every column). In the case of OshiZumo, each row of the table represents the setting with the

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 319

number of coins specified in the first column. In the case of Search game, every row corresponds to a different number of
moves allowed for every player specified in the first column. As you can see the number of information sets is dramatically
smaller in all the presented settings, showing that the use of imperfect recall abstractions can lead to significant space
savings. Additionally, the results suggest that the relative size will further decrease with the increase in the size of the
original unabstracted games.

Finally, we provide results showing the actual bounds on the maxmin value computed during the run of DOIRABnB and
the quality of the resulting strategies.

In the first column of Fig. 12 we present more detailed results of DOIRABnB in OshiZumo with 11 coins. The plots depict
the bounds on the maxmin value in every iteration of the DOIRABnB algorithm, each row for an instance with different
number of remembered moves. As we can see DOIRABnB in all the abstractions converges to a strategy with exploitability
0. Since the maxmin value of the original game is also 0 and all the assumptions in Corollary 1 are satisfied, it follows that
the maxmin strategy obtained by solving the abstraction is the maxmin strategy of the original game. In the second column
of Fig. 12 we show similar results for Search game with 7 moves for every player. The DOIRABnB in all the abstractions
converges to a strategy with exploitability − 1

3 which is again the maxmin value of the original perfect recall game. Since
all the assumptions in Corollary 1 are satisfied, it follows that the maxmin strategy obtained by solving the abstraction is
the maxmin strategy of the original game.

7. Conclusion

In this paper, we are interested in exploring the possible limitations and the space savings achievable by the use of
imperfect recall abstractions in the size of strategy representation. We focus on A-loss recall games, a subclass of imperfect
recall games where each loss of memory of a player can be tracked to loosing information about his actions [20,21]. We
provide a complete picture of solving imperfect recall and A-loss recall games. We show that most of the hardness results
known for imperfect recall games still hold in A-loss recall games. On the other hand, we provide sufficient and necessary
(i.e., if and only if) condition for the existence of Nash equilibrium in A-loss recall games. This result makes the A-loss recall
games the only subset of imperfect recall games, where such conditions are known. Additionally, we show that A-loss recall
property allows us to compute a best response in polynomial time (computing best response is NP-hard in imperfect recall
games), which in turn allows us to create the first set of algorithm for approximating maxmin strategy of a player having
imperfect recall, when the minimizing player has A-loss recall. More specifically, we introduce a bilinear program with size
linear to the size of the game for approximating the maxmin strategy, and we approximate this bilinear program using
Multiparametric Disaggregation Technique (MDT) [25]. MDT uses a digitwise approximation of the bilinear terms using a
specified number of digits, which results in a mixed integer linear program (MILP). We first devise an algorithm, denoted as
IRABnB, which employs branch-and-bound search on the linear relaxation of this MILP. IRABnB simultaneously searches for
the assignment to binary variables and improves the precision of the bilinear term approximation until the desired approx-
imation of the maxmin strategy is reached. To increase the scalability, we further extend IRABnB with incremental strategy
generation (the resulting algorithm is denoted DOIRABnB). To create DOIRABnB, we provide a non-trivial combination of
two iterative procedures (the incremental strategy generation and the IRABnB) and provide guarantees of convergence of
this algorithm to ε-maxmin strategy. We show that DOIRABnB is capable of solving games with up to 5 · 109 states in
approximately 1 hour.

Finally, we experimentally demonstrate that employing simple imperfect recall abstractions which still allow us to com-
pute the maxmin strategy of the original game can lead to strategies with the relative size as low as 0.03% of the size of
the strategy in the original unabstracted game.

Acknowledgements

This research was supported by the Czech Science Foundation (grant no. 15-23235S), and by the Grant Agency of the
Czech Technical University in Prague, grant No. SGS16/235/OHK3/3T/13. Computational resources were provided by the
CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme “Projects of Large Research,
Development, and Innovations Infrastructures”.

Appendix A. Supplementary material for Section 2.3

Lemma 2. Let G be an imperfect recall game without absentmindedness and b1 strategy of player 1. There exists an ex ante pure best
response of player 2.

Proof. If the strategy of player 1 is fixed, finding the best response for player 2 corresponds to finding an optimum of a
function over a closed convex polytope of all possible behavioral strategies of player 2 created by constraining the strategy
by ∑

a∈A(I)

b2(a) = 1,∀I ∈ I2.

320 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

Vertices of this polytope are formed by pure behavioral strategies. Since each action can be chosen at most once in a game
without absentmindedness, the objective function is multilinear in a form∑

z∈Z
C(z)b1(z)u2(z)

∏
a∈seq2(z)

b2(a).

Notice that, thanks to the assumption of no absentmindedness, the variables b2(a) in every product always describe behavior
at most once for one information set and so the variables are independent. Hence, an optimum must be in one of the
vertices of this polytope – that is a pure behavioral strategy. �
Lemma 3. Let G be an imperfect recall game where player i has A-loss recall. Let G ′ be the coarsest perfect recall refinement of G for
player i. Every pure behavioral strategy b′

i of player i from G ′ has realization equivalent pure behavioral strategy bi in G and vice versa.

Proof. First we show how bi is constructed from b′
i . Consider an information set I of player i in G and corresponding

information sets I1, . . . , I j created according to H(I) in the coarsest perfect refinement G ′ of G .
Let us first show that at most one of information sets I1, . . . , I j can be reached when players play according to strategy

profile (b′
i, b−i), for every b−i ∈ B−i in G ′ . Due to A-loss recall of player i, for every pair of nodes hk, hl from two different

information sets Ik , Il ∈ {I1, . . . , I j}, there exists an information set I ′ of player i and two distinct actions a, a′ ∈ Ai(I ′), a �= a′
such that a ∈ seqi(hk) ∧a′ ∈ seqi(hl). However, since b′

i is a pure strategy, only one action among the pair of actions a, a′ can
be played with a non-zero probability and consequently, only one information set in every pair Ik, Il ∈ {I1, . . . , I j} can be
reached.

We use this property to construct bi . For information set I from G that is divided into information sets I1, . . . , I j in G ′
we define bi(I, a) = 1 for action a ∈ A(Ik), where b′

i(Ik, a) = 1 and Ik is the only reachable set from I1, . . . , I j as shown
above. If no information set from I1, . . . , I j is reachable, we set bi in I arbitrarily. For all information sets I ′ ∈ I ′ that are
not split in the coarsest perfect recall refinement (and therefore are the same as in G), we set bi(I ′) = b′

i(I ′). Due to the
construction, the realization equivalence between b′

i and bi follows immediately.
The same construction yields realization equivalent strategy also in the opposite direction. �

Lemma 4. Let G be an imperfect recall game where player 2 has A-loss recall and b1 a strategy of player 1. Let G ′ be the coarsest perfect
recall refinement of G for player 2. Let b′

2 be a pure best response to b1 in G ′ and let b2 be a realization equivalent behavioral strategy
to b′

2 in G, then b2 is a pure best response to b1 in G.

Proof. Note that b1 is a valid strategy in both games since the information set structure for player 1 in G and G ′ is identical.
Since player 2 is not absentminded in G , it is enough to consider pure behavioral strategies (Lemma 2) as a best response
to b1 in G . Furthermore from Lemma 3 we know that every pure behavioral strategy b̂′

2 from G ′ has realization equivalent
pure behavioral strategy b̂2 in G , hence also the expected utility u1(b1, ̂b′

2) in G ′ is equal to u1(b1, ̂b2) in G . Since b′
2 is a

best response to b1 in G ′ , it holds that for every pure behavioral strategy b̂′
2 in G ′ and its realization equivalent counterpart

b̂2 in G ,

u2(b1, b̂2) = u2(b1, b̂′
2) ≤ u2(b1,b′

2) = u2(b1,b2).

Finally, since also every pure behavioral strategy b̂2 in G has realization equivalent pure behavioral strategy in G ′
(Lemma 3), there can be no b̂2 for which u2(b1, ̂b2) > u2(b1, b2). �
Appendix B. Supplementary material for Section 3.1

In this section, we provide a sufficient condition for the existence of NE in general imperfect recall games.

Corollary 2. An imperfect recall game G (not restricted to A-loss recall) has a Nash equilibrium in behavioral strategies if there exists a
Nash equilibrium strategy profile b in behavioral strategies of the coarsest perfect recall refinement G ′ of G, such that ∀I ∈ IG ∀Hk, Hl ∈
H(I) : b(Hk) = b(Hl), where b(H) stands for the behavioral strategy in the information set of G ′ formed by states in H, the opposite
does not hold.

Proof. The proof follows from the fact that every pure behavioral strategy of G has realization equivalent pure behavioral
strategy in G ′ since we only merge information sets in G ′ to obtain G . The merging of information sets eliminates pure
behavioral strategies with mutually exclusive behavior in these sets. Since b is a Nash Equilibrium of G ′ , we know that
there exists no incentive for any player to deviate to any pure behavioral strategy in G ′ and therefore also no incentive to
deviate to any pure behavioral strategy in G . This, in combination with the fact, that b prescribes valid strategy in G implies
that b is a Nash Equilibrium in behavioral strategies of G .

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 321

Fig. C.13. An imperfect recall game reduction from Theorem 11 of 3-SAT problem x1 ∨ ¬x3 ∨ x4 ∧ ¬x2 ∨ x3 ∨ ¬x4.

Finally, we provide a counter-example showing that the opposite direction of the implication does not hold. Consider the
game in left subfigure of Fig. 1. Here the only Nash equilibrium in behavioral strategies is playing d and e deterministically
and mixing uniformly between g , h. The only Nash equilibrium of its coarsest perfect recall refinement (shown in right
subfigure of Fig. 1) is, however, playing d, e, h and i deterministically. �
Appendix C. Supplementary material for Section 3.3

Theorem 11. The problem of deciding whether player 2 having an imperfect recall can guarantee an expected payoff of at least λ is
NP-hard even if player 1 has perfect recall, there are no chance moves and the game is zero-sum [15].

Proof. The proof is made by reduction from 3-SAT problem. The example of the reduction is shown in Fig. C.13. Given
n clauses x j,1 ∨ x j,2 ∨ x j,3 we create a two-player zero-sum game in a following way. In the root of the game player 1
chooses between n actions, each corresponding to one clause. Each action of player 1 leads to a state of player 2. Every such
state of player 2 corresponds to the variable x j,1 where j is the index of the clause chosen in the root of the game. Every
such state has actions Tx j,1 , Fx j,1 available, these actions correspond to setting the variable x j,1 to true or false respectively.
After both Tx j,1 , Fx j,1 in x j,1 we reach the state representing the assignment to x j,2 with the same setup (state representing
the assignment to x j,3 is reached after that). After the assignment to x j,3 we reach the terminal state with utility −λ for
player 1 if the assignment to x j,1, x j,2 and x j,3 satisfies the clause x j,1 ∨ x j,2 ∨ x j,3, 0 otherwise. The information sets of
player 2 group together all the states corresponding to the assignment to one variable in the original 3-SAT problem (note
that we assume that the order of variables in every clause follows some complete ordering on the whole set of variables in
the 3-SAT problem).

We will show that player 2 can guarantee the worst case expected value λ if and only if the original 3-SAT problem is
satisfiable. First, we show that if the original 3-SAT problem is satisfiable player 2 can guarantee the worst case expected
value λ. The worst case expected value λ is achieved when player 2 plays according to the assignment which satisfies the
original 3-SAT problem. Next, we show that if player 2 can guarantee the worst case expected value λ, the original 3-SAT
problem has to be satisfiable. This holds since if there would be at least one clause not satisfied, player 1 will always choose
the action corresponding to this clause, causing the expected value smaller than λ.

The reduction is polynomial, since the game has 23n leaves. �
Theorem 12. It is NP-hard to check whether there exists a Nash equilibrium in behavioral strategies in two player imperfect recall
games even if the game is zero-sum and there are no chance moves [16].

Proof. The proof is by reduction from 3-SAT. Given a 3-CNF formula F with n clauses we construct a zero-sum two-
player game G as follows. Player 1 (the max-player) starts the game by making two actions, each time choosing one of n
clauses of F . We put all corresponding n + 1 nodes (the root plus n nodes in the next layer) in one information set. If he
fails to choose the same clause twice, he receives a payoff of −n3 and the game stops. Otherwise, the game continues in
the same way as in the proof of Theorem 11. If the choices of player 2 satisfy the clause, player 1 receives payoff 0. If none
of them do, player 1 receives payoff 1. An example of the reduction is shown in Fig. C.14.

The proof is now concluded by the following claim: G has an equilibrium in behavior strategies if and only if F is
satisfiable. Assume first that F is satisfiable. G then has the following equilibrium (which happens to be pure): player 2
plays according to a satisfying assignment while player 1 uses an arbitrary pure strategy. The payoff is 0 for both players,
and no player can modify their behavior to improve this, so we have an equilibrium. Next, assume that G has an equilibrium.
We shall argue that F has a satisfying assignment. We first observe that player 1 in equilibrium must have expected payoff
at least 0. If not, he could switch to an arbitrary pure strategy and would be guaranteed a payoff of at least 0. Now, look
at the two actions (i.e., clauses) that player 1 is most likely to choose. Let clause i be the most likely and let clause j be

322 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

Fig. C.14. An A-loss recall game reduction from Theorem 12 of 3-SAT problem x1 ∨ ¬x3 ∨ x4 ∧ ¬x2 ∨ x3 ∨ ¬x4.

the second-most likely. If player 1 chooses i and then j, he gets a payoff of −n3. His maximum possible payoff is 1, and his
expected payoff is at least 0. Hence, we must have that −n3 pi p j + 1 ≥ 0. Since pi ≥ 1

n , we have that p j ≤ 1
n2 . Since clause j

was the second most likely choice, we in fact have that pi ≥ 1 − (n − 1)(1
n2) > 1 − 1

n . Thus, there is one clause that player 1
plays with probability above 1 − 1

n . Player 2 could then guarantee an expected payoff of less than 1
n for player 1 by playing

any assignment satisfying this clause. Since we are playing an equilibrium, this would not decrease the payoff of player 1
so player 1 currently has an expected payoff less than 1

n . Now, look at the assignment defined by the most likely choices
of player 2 (i.e., the choices he makes with probability at least 0.5, breaking ties in an arbitrary way). We claim that this
assignment satisfies F . Suppose not. Then there is some clause not satisfied by F . If player 1 changes his current strategy to
the pure strategy choosing this clause, he obtains an expected payoff of at least (1

2)3 ≥ 1
n (supposing, wlog, that n ≥ 8). This

contradicts the equilibrium property, and we conclude that the assignment, in fact, does satisfy F . �
Appendix D. Supplementary material for Section 4.5

Lemma 7. Let h ∈ I1 be a history and b1
1 , b2

1 be behavioral strategies prescribing different behavior in I1 but prescribing the same
behavior in all subsequent states h � h′ . Let vmax(h) and vmin(h) be maximal and minimal utility of player 1 in the subtree of h. Then
the following holds:

max
b1

2,b2
2∈B2

|uh
1(b

1
1,b1

2) − uh
1(b

2
1,b2

2)| ≤
vmax(h) − vmin(h)

2
· ‖b1

1(I1) − b2
1(I1)‖1,

where uh
1(b1, b2) is the expected utility of player 1, when starting in h and playing according to b1, b2 .

Proof. When comparing b1
1 and b2

1, we can identify two subsets of A(I1) – a set of actions A+ where the probability of
playing the action in b2

1 is higher than in b1
1 and A− where the probability in b2

1 is lower than in b1
1. Let us denote

C+ =
∑

a∈A+
|b1

1(I1,a) − b2
1(I1,a)| (D.1)

C− =
∑

a∈A−
|b1

1(I1,a) − b2
1(I1,a)| (D.2)

We know that C+ = C− , moreover ‖b1
1(I1) − b2

1(I1)‖1 = C+ + C− . In the worst case, decreasing the probability of playing
action a ∈ A− results in the decrease of the expected value

vmax(h) ·
∑

a∈A−
|b1

1(I1,a) − b2
1(I1,a)| = vmax(h) · C−.

Similarly the increase of the probabilities of actions in A+ can add in the worst case vmin(h) · C+ to the expected value of
the strategy. Hence,

max
b1

2,b2
2∈B2

|uh
1(b

1
1,b1

2) − uh
1(b

2
1,b2

2)| ≤ vmax(h) · C− − vmin(h) · C+

= [vmax(h) − vmin(h)] · C+

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 323

= vmax(h) − vmin(h)

2
· 2C+

= vmax(h) − vmin(h)

2
· ‖b1

1(I1) − b2
1(I1)‖1. �

Appendix E. Supplementary material for Section 5.2.2

Theorem 9. When using Pmax(I1) from Theorem 8 for all I1 ∈ I I R
1 and all a ∈ A(I1), the number of iterations of the IRABnB algorithm

needed to find an ε-optimal solution is in

O

⎛
⎝(

34 log10(S1)+4

ε2

)S1
⎞
⎠

where S1 = |I I R
1 |Amax

1 .

Proof. We start by proving that there is n ∈ O(34|I1|Amax
1 Pmax) nodes in the BnB tree, where Amax

1 = maxI∈I I R
1
|A(I)| and

Pmax = maxI∈I I R
1

Pmax(I). This holds since in the worst case we branch for every action in every information set, hence
|I I R

1|Amax
1 branchings. We can bound the number of branchings for a fixed action by 4 · Pmax , since there are 10 digits on

which we use binary halving and at most Pmax number of digits of precision are required. 4|I1|Amax
1 Pmax is, therefore, the

maximum depth of the branch-and-bound tree. Finally, the branching factor of the branch-and-bound tree is at most 3 (we
add at most 3 successors in every iteration of Algorithm 1).

By substituting

max
I1∈I1

⌈
max
h∈I1

log10
|A(I1)| · d · vdi f f (h)

2ε

⌉

for Pmax in the above bound (Theorem 8), we obtain

n ∈ O

⎛
⎝3

4S1 maxI1∈I1

⌈
maxh∈I1 log10

|A(I1)|·d·vdi f f (h)

2ε

⌉⎞
⎠ ,where S1 = |I1|Amax

1

∈ O

⎛
⎝3

4S1 maxI1∈I1

⌈
log10

|A(I1)|·d·vdi f f (∅)

2ε

⌉⎞
⎠

∈ O

⎛
⎝3

4S1 maxI1∈I1

⌈
log10

S1 vdi f f (∅)

2ε

⌉⎞
⎠

∈ O

⎛
⎝3

4S1

⌈
log10

S1 ·vdi f f (∅)

2ε

⌉⎞
⎠

∈ O

⎛
⎝3

4S1

(
log10

S1 ·vdi f f (∅)

2ε +1

)⎞
⎠

∈ O
(

34S1
(
log10(S1·vdi f f (∅))−log10(2ε)+1

))
∈ O

(
34S1

(
log10(S1·vdi f f (∅))+1

)
3−4S1 log10(2ε)

)
∈ O

(
34S1

(
log10(S1·vdi f f (∅))+1

)
3

−4S1
log3(2ε)

log3(10)

)

∈ O
(

34S1
(
log10(S1·vdi f f (∅))+1

)
(2ε)

−4S1
log3(10)

)

∈ O
(

34S1
(
log10(S1·vdi f f (∅))+1

)
(2ε)−2S1

)
∈ O

(
34S1

(
log10(S1·vdi f f (∅))+1

)
2−2S1ε−2S1

)
∈ O

(
34S1 log10(S1·vdi f f (∅))34S1 2−2S1ε−2S1

)

324 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

∈ O
(

34S1 log10(S1·vdi f f (∅))21S1ε−2S1
)

∈ O

⎛
⎝(

34 log10(S1·vdi f f (∅))+4

ε2

)S1
⎞
⎠

Finally, we can substitute vdi f f (∅) by 1, since we can modify the utility structure of the game to have utilities in [0, 1]
interval. �
Appendix F. CFR in imperfect recall games

In this section we discuss the problems which prevent the convergence of Counterfactual regret minimization algorithm
[8] (CFR) in imperfect recall games. First, we briefly describe the ideas behind external regret and CFR. Finally, we discuss
why CFR does not have to converge to no-regret strategies in imperfect recall games and show an example where CFR can
converge to a strategy profile with arbitrarily worse expected value than the maxmin value of the game.

F.1. External regret

Given a sequence of behavioral strategy profiles b1, . . . , bT , the external regret for player i,

RT
i = max

b′
i∈Bi

T∑
t=1

(ui(b
′
i,bt

−i) − ui(b
t
i ,bt

−i)), (F.1)

is the amount of utility player i could have gained if he played the best possible strategy across all time steps t ∈ {1, . . . , T }.
An algorithm is a no-regret algorithm for player i, if the average positive regret approaches zero; i.e.

lim
T →∞

RT ,+
i

T
= 0,

where RT ,+
i = max(RT

i , 0).

F.2. Counterfactual regret minimization

Counterfactual regret is defined for each iteration t , player i, information set I ∈ Ii and action a ∈ A(I) as rt
i (I, a) =

vi(bt
I→a, I) − vi(bt , I), where bt

I→a is the strategy profile bt except for I , where a is played and

v(b, I) =
∑
z∈Z I

ui(z)πb
−i,c(z[I])πb(z[I], z),

where πb(h) is the probability that h will be reached when players play according to the strategy profile b, with πb
i being

the contribution of player i and πb
−i,c the contribution of −i and chance. z[I] is state h which is visited in I in order to

reach leaf z. Finally, πb(h, h′) stands for the probability that h′ will be reached from h when players play according to b.
The immediate counterfactual regret is defined as

RT
i,imm(I) = 1

T
max

a∈A(I)

T∑
t=1

rt
i (I,a).

In games having perfect recall, minimizing the immediate counterfactual regrets at every information set minimizes the
average external regret. This holds because perfect recall implies that the external regret is bounded by the sum of positive
parts of immediate counterfactual regrets [8],

RT
i ≤

∑
I∈Ii

max
a∈A(I)

RT ,+
i (I,a), (F.2)

and thus

RT
i

T
≤
i|Ii |√|Ai|

T
, (F.3)

where |Ai| = maxI∈Ii |A(I)|. In imperfect recall games, however, equations (F.2) and (F.3) are not guaranteed to hold.

J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326 325

Fig. F.15. An A-loss recall game where CFR finds a strategy with the expected utility arbitrarily worse than the maxmin value.

Fig. F.16. The exploitability of the average strategy computed by the CFR with outcome sampling (y-axis) with increasing number of iterations (logarithmic
x-axis) for 5 different seeds.

The no-regret learning cannot work in general in imperfect recall games since the loss function

lt(bi) = ui(b
t
i ,bt

−i) − ui(bi,bt
−i) (F.4)

used in equation (F.1) can be non-convex over the probability simplex of behavioral strategies (the loss function must be
convex for no-regret learning to have convergence guarantees [35]).

Example 5. Assume we are in the step T of a no-regret learning algorithm solving the game from Fig. F.15, and we evaluate
the loss from eq. (F.4) of some strategy b1 in step t < T . Let bt

1(a) = bt
1(g) = 0.5 and bt

2(d) = bt
2(e) = 1. Let b1(a) = b1(g) = 1,

b′
1(b) = b′

1(h) = 1, and b′′
1(a) = b′′

1(g) = 0.5. The losses of these strategies are lt(b1) = −x, lt(b′
1) = −x, lt(b′′

1) = 0. Since b′′
1

is a convex combination of b1 and b′
1 with uniform weights, it follows that the loss function is non-convex, hence the

convergence guarantees used in CFR due to Gordon [35] no longer apply. By increasing x > 2 in the game from Fig. F.15,
the CFR can find a strategy with its exploitability arbitrarily worse than the maxmin value −1 (we show the exploitability
of strategies resulting from CFR in the next section), since mixing between actions a and b can yield the expected value
strictly worse than the expected value reached by deterministic samples containing a and b if player 2 plays d and e with
positive probability. The game has A-loss recall and has 2 NE, playing (a, g) or (b, h) deterministically for player 1 and (c, f)
for player 2 (no mix between these two NE strategies for player 1 is a NE).

The non-convexity of the loss function shown in Example 5 will never appear in case of perfect recall games since the
behavior of i after any a, a′ ∈ A(Ii) is independent ∀I ∈ Ii . Furthermore, the guarantee of convergence of CFR to (ε-)optimal
strategies in chance relaxed skew well-formed games [17] is based on bounding the non-convexity of the loss function.

F.3. Experimental evaluation of strategies computed by CFR

Here, we empirically demonstrate the performance of the outcome-sampling version of CFR [36] on the example game
from Fig. F.15. Fig. F.16 depicts the exploitability of the average strategy computed by the CFR (logarithmic x-axis shows the
number of iterations, the y-axis shows the exploitability for the average strategy of player 1, every line represents one run
for a given seed). The algorithm does not converge to any fixed strategy, moreover, the exploitability differs significantly
from the maxmin value of −1 for player 1. Note that vanilla CFR (see, e.g., [36], page 22) does not work either, since for
example when initialized to uniform strategy, player 1 will never change his strategy since the expected values after his
actions are always equal.

References

[1] V. Lisý, T. Davis, M. Bowling, Counterfactual regret minimization in sequential security games, in: Proceedings of AAAI Conference on Artificial Intelli-
gence, 2016.

[2] G. Christodoulou, A. Kovács, M. Schapira, Bayesian combinatorial auctions, Autom. Lang. Program. (2008) 820–832.

326 J. Čermák et al. / International Journal of Approximate Reasoning 93 (2018) 290–326

[3] T. Sandholm, Steering evolution strategically: computational game theory and opponent exploitation for treatment planning, drug design, and synthetic
biology, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI Press, 2015, pp. 4057–4061.

[4] B. Bošanský, V. Lisý, M. Lanctot, J. Čermák, M.H. Winands, Algorithms for computing strategies in two-player simultaneous move games, Artif. Intell.
237 (2016) 1–40.

[5] M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh, M. Johanson, M. Bowling, DeepStack: expert-level artificial intelligence
in heads-up no-limit poker, Science 356 (6337) (2017) 508–513, https://doi.org/10.1126/science.aam6960.

[6] F. Fang, T.H. Nguyen, R. Pickles, W.Y. Lam, G.R. Clements, B. An, A. Singh, B.C. Schwedock, M. Tambe, A. Lemieux, PAWS—a deployed game-theoretic
application to combat poaching, AI Mag. 38 (1) (2017) 23–36, https://doi.org/10.1609/aimag.v38i1.2710.

[7] B. von Stengel, Efficient computation of behavior strategies, Games Econ. Behav. 14 (1996) 220–246.
[8] M. Zinkevich, M. Johanson, M.H. Bowling, C. Piccione, Regret minimization in games with incomplete information, in: Advances in Neural Information

Processing Systems, 2007, pp. 1729–1736.
[9] S. Hoda, A. Gilpin, J. Peña, T. Sandholm, Smoothing techniques for computing Nash equilibria of sequential games, Math. Oper. Res. 35 (2) (2010)

494–512.
[10] A. Gilpin, T. Sandholm, T.B. Sørensen, Potential-aware automated abstraction of sequential games, and holistic equilibrium analysis of Texas Hold’em

poker, in: Proceedings of the National Conference on Artificial Intelligence, vol. 22, 2007, p. 50.
[11] A. Gilpin, T. Sandholm, Lossless abstraction of imperfect information games, J. ACM 54 (5) (2007) 25.
[12] C. Kroer, T. Sandholm, Extensive-form game abstraction with bounds, in: Proceedings of the Fifteenth ACM Conference on Economics and Computation,

ACM, 2014, pp. 621–638.
[13] N. Brown, T.W. Sandholm, Simultaneous abstraction and equilibrium finding in games, in: Proceedings of the Twenty-Ninth AAAI Conference on

Artificial Intelligence, 2015.
[14] P.C. Wichardt, Existence of Nash equilibria in finite extensive form games with imperfect recall: a counterexample, Games Econ. Behav. 63 (1) (2008)

366–369.
[15] D. Koller, N. Megiddo, The complexity of two-person zero-sum games in extensive form, Games Econ. Behav. 4 (1992) 528–552.
[16] K.A. Hansen, P.B. Miltersen, T.B. Sørensen, Finding equilibria in games of no chance, in: Computing and Combinatorics, Springer, 2007, pp. 274–284.
[17] C. Kroer, T. Sandholm, Imperfect-recall abstractions with bounds in games, in: Proceedings of the Seventeenth ACM Conference on Economics and

Computation, ACM, 2016, pp. 459–476.
[18] M. Lanctot, N. Burch, M. Zinkevich, M. Bowling, R.G. Gibson, No-regret learning in extensive-form games with imperfect recall, in: Proceedings of the

29th International Conference on Machine Learning, ICML-12, 2012, pp. 65–72.
[19] B. Bošanský, A.X. Jiang, M. Tambe, C. Kiekintveld, Combining compact representation and incremental generation in large games with sequential

strategies, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 812–818.
[20] M. Kaneko, J.J. Kline, Behavior strategies, mixed strategies and perfect recall, Int. J. Game Theory 24 (1995) 127–145.
[21] J.J. Kline, Minimum memory for equivalence between ex ante optimality and time-consistency, Games Econ. Behav. 38 (2002) 278–305.
[22] J. Čermák, B. Bošanský, Towards solving imperfect recall games, in: Proceedings of AAAI Computer Poker Workshop, 2017.
[23] B. Bosansky, J. Cermak, K. Horak, M. Pechoucek, Computing maxmin strategies in extensive-form zero-sum games with imperfect recall, in: ICAART,

2017.
[24] D. Koller, N. Megiddo, B. Von Stengel, Efficient computation of equilibria for extensive two-person games, Games Econ. Behav. 14 (2) (1996) 247–259.
[25] S. Kolodziej, P.M. Castro, I.E. Grossmann, Global optimization of bilinear programs with a multiparametric disaggregation technique, J. Glob. Optim.

57 (4) (2013) 1039–1063.
[26] J. Čermák, B. Bošanský, M. Pěchouček, Combining incremental strategy generation and branch and bound search for computing maxmin strategies in

imperfect recall games, in: Proceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems, AAMAS, 2017.
[27] B. Bosansky, C. Kiekintveld, V. Lisy, M. Pechoucek, An exact double-oracle algorithm for zero-sum extensive-form games with imperfect information, J.

Artif. Intell. Res. (2014) 829–866.
[28] H. Kuhn, Extensive games and the problem of information, in: H. Kuhn, A. Tucker (Eds.), Contributions to the Theory of Games, 2016, pp. 193–216.
[29] M. Piccione, A. Rubinstein, On the interpretation of decision problems with imperfect recall, Games Econ. Behav. 20 (1) (1997) 3–24.
[30] J.F. Nash, et al., Equilibrium points in n-person games, Proc. Natl. Acad. Sci. 36 (1) (1950) 48–49.
[31] M.R. Garey, R.L. Graham, D.S. Johnson, Some NP-complete geometric problems, in: Proceedings of the Eighth Annual ACM Symposium on Theory of

Computing, ACM, 1976, pp. 10–22.
[32] K. Etessami, M. Yannakakis, On the complexity of nash equilibria and other fixed points, SIAM J. Comput. 39 (6) (2010) 2531–2597.
[33] B. Bošanský, V. Lisý, M. Lanctot, J. Čermák, M.H. Winands, Algorithms for computing strategies in two-player simultaneous move games, Artif. Intell.

237 (2016) 1–40.
[34] H.B. McMahan, G.J. Gordon, A. Blum, Planning in the presence of cost functions controlled by an adversary, in: Proceedings of the International

Conference on Machine Learning, 2003, pp. 536–543.
[35] G.J. Gordon, No-regret algorithms for online convex programs, in: Advances in Neural Information Processing Systems, 2006, pp. 489–496.
[36] M. Lanctot, Monte Carlo, Sampling and Regret Minimization for Equilibrium Computation and Decision-Making in Large Extensive Form Games, Uni-

versity of Alberta, 2013.

Appendix D

Heuristic Search Value Iteration for
One-Sided Partially Observable
Stochastic Games

Heuristic Search Value Iteration
for One-Sided Partially Observable Stochastic Games

Karel Horák and Branislav Bošanský and Michal Pěchouček
Department of Computer Science, Faculty of Electrical Engineering

Czech Technical University in Prague
{horak,bosansky,pechoucek}@agents.fel.cvut.cz

Abstract

Security problems can be modeled as two-player partially ob-
servable stochastic games with one-sided partial observabil-
ity and infinite horizon (one-sided POSGs). We seek for op-
timal strategies of player 1 that correspond to robust strate-
gies against the worst-case opponent (player 2) that is as-
sumed to have a perfect information about the game. We
present a novel algorithm for approximately solving one-
sided POSGs based on the heuristic search value iteration
(HSVI) for POMDPs. Our results include (1) theoretical
properties of one-sided POSGs and their value functions, (2)
guarantees showing the convergence of our algorithm to op-
timal strategies, and (3) practical demonstration of applica-
bility and scalability of our algorithm on three different do-
mains: pursuit-evasion, patrolling, and search games.

Introduction
Game theory is widely used in security problems and strate-
gies from game-theoretic models are applied to protect crit-
ical infrastructures (Pita et al. 2008; Kiekintveld et al. 2009;
Shieh et al. 2012), computer networks (Vanek et al. 2012) or
wildlife (Fang, Stone, and Tambe 2015; Fang et al. 2016).
Many real-world situations, however, contain a dynamic
strategic interaction between the players that has to be ad-
dressed in the models. Players can observe (possibly im-
perfectly) information about actions of their opponent and
react to these observations. Examples include patrolling
games (Basilico, Gatti, and Amigoni 2009; Vorobeychik
et al. 2014; Basilico, Nittis, and Gatti 2016), where a de-
fender protects a set of targets against an attacker, pursuit-
evasion (Chung, Hollinger, and Isler 2011), or search games,
where a defender is trying to find and capture an attacker.

Finding optimal strategies in such dynamic games with
imperfect information is often computationally challenging.
If the horizon of the interaction is restricted, we can use
the extensive-form games formulation. Typically, the size of
this representation grows exponentially with the horizon and
prohibits us from solving large games. If the horizon is infi-
nite (or indefinite), we can use partially observable stochas-
tic games (POSGs). In POSGs, however, many problems are
undecidable (Madani, Hanks, and Condon 1999) even when
we use a discount factor to restrict future gains.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, real-world security scenarios naturally require
partial observability and no strictly defined horizon. The
goal is to find best robust strategies that provide guaran-
tees on the expected outcome for one player (the defender)
against any opponent (the attacker). Therefore, we focus
on discounted two-player zero-sum POSGs with concurrent
moves and one-sided partial observability where it is as-
sumed that the attacker has full information about the game
– the attacker knows the state of the game as well as the
history of actions played. One-sided partial observability
has been used in specific domains such as patrolling games,
e.g. (Vorobeychik et al. 2014), or pursuit-evasion games,
e.g. (Horak and Bosansky 2016). We generalize this con-
cept to a broad class of POSGs.

Our main contribution is the first domain-independent al-
gorithm that has guarantees to approximate optimal strate-
gies in one-sided POSGs. Our algorithm is a general-
ization of the heuristic search value iteration algorithm
(HSVI) for Partially Observable Markov Decision Processes
(POMDPs). Similarly to POMDPs, one-sided POSGs al-
low us to compactly represent strategies and value func-
tions representing values of the game based on the belief
the first player has about the state of the game. Contrary to
POMDPs, the presence of the opponent player causes sig-
nificant technical challenges that we address in this paper.
First, we show that the assumption of the one-sided partial
observability guarantees that the value functions are convex.
Second, we define a value backup operator and show that
an iterative application of this operator converges to the op-
timal values. Third, we generalize the ideas behind HSVI
towards one-sided POSGs, and show that our algorithm ap-
proximates optimal strategies. Finally, we demonstrate the
applicability and scalability of our algorithm on three differ-
ent domains – patrolling games (including the variant with
alarms), pursuit-evasion games, and search games. The re-
sults show that our algorithm can closely approximate solu-
tions of large games with more than 4000 states.

Related Work
There are only a few relevant algorithms for computing
strategies in POSGs. An algorithm for computing strategies
in POSGs where all players have imperfect information was
proposed in (Hansen, Bernstein, and Zilberstein 2004). The
algorithm approximates an infinite horizon game by increas-

ing the horizon in a finite-horizon game and uses dynamic
programming to incrementally construct a set of relevant
pure strategies by eliminating dominated strategies. The set
of such strategies is then used to form a normal-form (or ma-
trix) representation of the POSG. However, the exponential
transformation to the normal form prevents this algorithm
from scaling up. One-sided partial observability allows us
to avoid such enumeration of pure strategies.

The closest works related to the algorithm presented in
this paper are two works on a specific subclass of one-
sided POSGs – pursuit-evasion games (PEGs). First, a class
of one-sided partially observable PEGs was presented and
theoretical results on the shape of the value functions and
the definition of the value backup operator were provided
in (Horak and Bosansky 2017). Second, an HSVI-based al-
gorithm was introduced in (Horak and Bosansky 2016).

Our algorithm can be seen as a significant generalization
of this approach to a broader class of one-sided POSGs.
First, the set of observations is very limited in PEGs –
player 1 is able to observe his own actions only and the
only direct information about the position of the opponent
is given when player 2 is captured. Considering general ob-
servations presents additional challenges for the model and
the algorithm which we address in this paper. Secondly, the
previous work relied on a uniform sampling of belief points
to guarantee the convergence, our algorithm approximates
the solution in a deterministic manner.

Two-Player One-Sided POSGs
A one-sided partially observable stochastic game G is a tu-
ple G = 〈S,A1,A2,O, T ,R〉. The game is played for an
infinite number of stages. At each stage, the game is in one
of the states s ∈ S and players choose their actions a ∈ A1

and a′ ∈ A2 simultaneously. An initial state of the game is
drawn from a probability distribution b0 ∈ ∆(S), which we
treat as a parameter of the game and term the initial belief.

The choice of actions determines the outcome of the cur-
rent stage: Player 1 gets an observation o ∈ O and the
game moves to a state s′ ∈ S with probability Ts,a,a′(o, s′),
where s is the current state. Furthermore he gets a reward
R(s, a, a′) for this transition. We assume the zero-sum case,
hence player 2 receives−R(s, a, a′), and we assume that the
rewards are discounted over time with discount factor γ < 1.
Players do not observe their rewards during the game.

We assume perfect recall, hence both players remember
their respective histories. A history of the first player is
formed by actions he played and observations he received,
i.e. (A1×O)t. The second player has complete observation,
hence S × (A1×A2×O×S)t is a set of her histories. The
strategies σ1, σ2 of the players map each of their histories to
a distribution over their actions.

Value of a Strategy and Value of the Game
In this section, we show that the value of a strategy (the ex-
pected reward of the first player playing σ1 when the oppo-
nent plays her best response) has a linear dependence on the
belief.

The value of the game G is the value of the best strategy
available for each of the initial beliefs b0 ∈ ∆(S). We rep-
resent the value of a game (based on the initial belief) as a
value function. This function is a pointwise maximum taken
over values of all strategies of the first player, which, since
the value of every strategy is linear, forms a convex function.

In the convergence proof of our algorithm, we exploit that
the rate of change in the value function is bounded in terms
of minimum and maximum rewards ofG, i.e. the value func-
tion is Lipschitz continuous.

Definition 1 (Value functions). The value of a strategy σ1

of the first player is a function vσ1
: ∆(S) → R which

assigns the expected utility vσ1
(b0) of the player 1 in the

game with initial belief b0 when the first player follows σ1

and the second player best-responds. The value function of
the game G is a function v∗ : ∆(S) → R that assigns the
value v∗(b0) of the best strategy of the first player for each
of the beliefs, i.e. v∗(b0) = supσ1

vσ1(b0).

Lemma 1. The value vσ1 of a fixed strategy σ1 of the first
player is linear in the initial belief.

The proof relies on the fact that the player 2 knows the ini-
tial state of the game; hence, the initial belief forms a convex
combination of values of best responses for individual states.
Due to the space constraints, full proofs of all lemmas can
be found in the full version of the paper.

We say that a function f is K-Lipschitz if it satisfies
|f(x) − f(y)| ≤ K · ‖x − y‖2. The key observation to
derive the Lipschitz continuity is that the value of the game
lies in a bounded interval [L,U] where

L = min
(s,a,a′)

∞∑

t=0

γtR(s, a, a′) , U = max
(s,a,a′)

∞∑

t=0

γtR(s, a, a′) .

The proof of the following lemma then relies on defining
the value of the strategy by assigning these extreme values
to the vertices of the belief simplex and identifying the con-
figuration with the largest rate of change.

Lemma 2. Value function vσ1
of a fixed strategy σ1 of

player 1 is (U−L)-Lipschitz.

Theorem 1. Value function v∗ of the game G is convex in
the initial belief and (U−L)-Lipschitz.

Proof. The value function v∗ is the supremum taken over
a set of (U −L)-Lipschitz functions corresponding to val-
ues of strategies available to player 1 (Def. 1, Lemma 2).
Supremum taken over a family of bounded (U−L)-Lipschitz
continuous functions is (U−L)-Lipschitz continuous. More-
over since these functions are linear (Lemma 1), the result-
ing value function is convex.

Value Backup
Now we present a value iteration algorithm for solving one-
sided POSGs. The algorithm approximates the value func-
tion v∗ of the infinite horizon game G by considering value

functions of the game with a restricted horizon. Each itera-
tion of the algorithm improves the approximation by increas-
ing the horizon by one step using the value backup opera-
tor (denoted H). Applying this operator means that players
choose their Nash equilibrium strategies in the current step
while assuming that the value of the subsequent stage is rep-
resented by the value function from the previous iteration.

The algorithm constructs a sequence {vt}∞t=0, starting
with a value function v0 of a game where only immediate
rewards are considered. First, we discuss application of the
operator in a single stage. Afterward we show the conver-
gence when the operator is applied repeatedly.

Value Backup Operator
The value backup operator H evaluated at belief b —
[Hv](b)— corresponds to solving a stage game where play-
ers choose their Nash equilibrium strategies for one stage of
the game (in latter text we use [Hv](b) to refer to this game
as well). We denote strategies for one stage π1 ∈ ∆(A1)
for the first player and π2 : S → ∆(A2) for the player 2.
The utilities in [Hv](b) depend both on the immediate re-
wards R and the discounted value of the subsequent game
represented by value function v. The immediate rewards part
depends solely on the actions played by the players:

Rimm
π1,π2

=
∑

s∈S

∑

a∈A1

∑

a′∈A2

b(s) ·π1(a) ·π2(s, a′) ·R(s, a, a′) (1)

The first player both knows the action a he played and ob-
serves observation o. He can use this information to derive
his belief for the subsequent game:

ba,oπ2
(s′) =

1

Pr[o|a, π2]

∑

s∈S

∑

a′∈A2

Ts,a,a′(o, s′)·b(s)·π2(s, a′) (2)

The value of the subsequent game is then the expectation
taken over individual action-observation pairs (a, o) of the
first player from the values of a game starting in belief ba,oπ2

:

Rsubs
π1,π2

(v) =
∑

a∈A1

∑

o∈O
π1(a) · Pr[o|a, π2] · v(ba,oπ2

) . (3)

Since the value function is convex, utility of playing strat-
egy profile (π1, π2) is convex when π1 is fixed and linear
when we fix π2. The minimax theorem (von Neumann 1928;
Nikaido 1954) applies and the Nash equilibrium strategy is
solved by maximin/minimax:

[Hv](b) = min
π2

max
π1

(
Rimm
π1,π2

+ γ ·Rsubs
π1,π2

(v)
)

. (4)

Computation of Value Backup Operator
Finally, we present the way of computing [Hv](b). When
the value function v is piecewise linear and convex (PWLC),
it can be represented by a set Γ of α-vectors and the value
backup [Hv](b) can be evaluated by means of linear pro-
gramming. Each α-vector α ∈ Γ is an |S|-tuple representing

the affine value function vσ1
of a fixed strategy σ1 by spec-

ifying its values in each of the pure beliefs (α(s) for each
s ∈ S). We focus on the problem of solving the problem
from the perspective of the second player first, who has to
choose her strategy π2 such that the utility V of the best
responding player 1 (who chooses his pure best response
a ∈ A1) is minimized.

The value of playing strategy π2 against action a ∈ A1

equals Rimm
a,π2

+ γRsucc
a,π2

(v), which allows us to construct a
set of best-response constraints (one for each action a)

V ≥
∑

s∈S

∑

a′∈A2

b(s) · π2(s, a′) · R(s, a, a′) +

+ γ
∑

o∈O
Pr[o|a, π2] · v(ba,oπ2

) . (5)

Assuming that the value function v is represented by a
set Γ of α-vectors, such that v(b) = maxα∈Γ〈α, b〉 (〈·, ·〉
denotes an inner product), its value can be rewritten by a set
of inequalities

v(ba,oπ2
) ≥

∑

s′∈S
α(s′) · ba,oπ2

(s′) ∀α ∈ Γ (6)

where ba,oπ2
(s′) is represented by linear constraints cor-

responding to Eq. (2). The term Pr[o|a, π2] occuring in
Eqs. (2) and (5) cancels out to form the resulting linear pro-
gram.

Strategy of the First Player One way to approximate the
value function by a PWLC function is to use a finite subset of
strategies of the first player. Value functions of these strate-
gies are linear (Lemma 1), and the pointwise maximum from
these linear functions gives us the desired PWLC approxi-
mation. In such a case, each of the vectors in Γ corresponds
to the value function of one of the strategies. The dual linear
program is used to find the optimal control strategy of the
first player, when duals of Eq. (5) correspond to the strategy
to play in the first stage (when the history of the first player
is empty) and duals of Eq. (6) prescribes what strategy to
follow when (a, o) was observed in the first stage.

Convergence of the Value Backup Operator
In this section we show that a repetitive application of the
value backup operator H converges to the same value func-
tion v∗ of the infinite horizon game regardless of what value
function it is applied on. We show this by demonstrating that
the operatorH is a contraction mapping with a factor γ < 1.
Lemma 3. Let v, v′ be value functions, b ∈ ∆(S) be a belief
and π1, π2 (resp. π′1, π′2) be equilibrial strategies in [Hv](b)
(resp. [Hv′](b)). Assume that for every action-observation
pair (a, o) of the first player, |v(ba,oπ2

)− v′(ba,oπ2
)| ≤ µ. Then

|[Hv](b)− [Hv′](b)| ≤ γµ.
The lemma is proven by modyfing Nash equilibrium strat-

egy profiles in games [Hv](b) and [Hv′](b) and bounding
the difference by the difference of their expected utilities.
Theorem 2. The operator H is a contraction mapping un-
der the norm ‖v − v′‖ = maxb∈∆(S) |v(b) − v′(b)|. It thus
has a unique fixpoint – the value function of the infinite hori-
zon game.

Data: Game 〈S,A1,A2,O, T ,R〉, initial belief b0,
discount factor γ, desired precision ε > 0,
neighborhood parameter R

Result: Approximate value function v̂
1 Initialize v̂
2 while gap(v̂(b0)) > ε do
3 Explore(b0, ε, R, 0)
4 return v̂
5 procedure Explore(b, ε, R, t)
6 π2 ← optimal strategy of player 2 in [Hv](b)
7 (a, o)← select according to forward exploration

heuristic
8 if excess(v̂(ba,oπ2

), t+ 1) > 0 then
9 Explore(ba,oπ2

, ε, R, t+ 1)
10 Γ← Γ ∪ {LΓ(b)}
11 Υ← Υ ∪ {UΥ(b)} and make v (U−L)-Lipschitz

Algorithm 1: HSVI algorithm for one-sided POSGs

Proof. Let ‖v−v′‖ ≤ µ. Then for every ba,oπ2
from Lemma 3

|v(ba,oπ2
) − v′(ba,oπ2

)| ≤ µ and for every belief b, |[Hv](b) −
[Hv′](b)| ≤ γµ. The uniqueness of the fixpoint and the
convergence properties follow from the Banach’s fixed point
theorem (Ciesielski 2007).

HSVI Algorithm for POSGs
Similarly to POMDPs, the value iteration algorithm can-
not scale for practical problems. We thus present a point-
based algorithm (Algorithm 1) that by sampling the be-
lief space bounds and approximates the true value func-
tion v∗ of the game by a pair of PWLC functions v (lower
bound), represented by a set of α-vectors Γ, and v (upper
bound) represented as a lower envelope of a set of points
Υ. We refer to these functions jointly as v̂. The goal of
the algorithm is to ensure that the gap in the initial belief
b0 of the game induced by the approximation defined as
gap(v̂(b)) = v(b)− v(b) is no higher than the required pre-
cision. Functions v̂ are refined by adding new elements to
their sets. These new elements result from point-based up-
dates of operator H at a single belief point b.

The algorithm is initialized with v (and Γ) corresponding
to the value of a uniform strategy of the first player and the
upper bound v (and Υ) results from solving a perfect infor-
mation refinement of the game. In every iteration, a finite
set of beliefs is updated by forward exploration (lines 6-9).
Beliefs selected by this process contribute to the fact that the
gap at b0 is not sufficiently small, and hence the approxima-
tion in these beliefs needs to be improved by applying point-
based updates (lines 10 and 11). We now describe how the
updates are performed, followed by the description of the
forward exploration search.

Point-Based Updates
A point-based update at belief point b updates the lower and
upper bound functions v and v using the optimal strategies
in games [Hv](b) and [Hv](b). In order to prove the con-
vergence, we require that the functions v and v are (U−L)-
Lipschitz; hence, the update has to preserve this property.

The update of v adds an α-vector corresponding to the
value of a Nash equilibrium strategy of the first player in
[Hv](b) (denoted LΓ(b)) computed from duals of the linear
program (Eqs. (5)-(6)). The value of such strategy is linear
and (U−L)-Lipschitz (Lemma 2), hence the expansion of Γ
by LΓ(b) preserves (U−L)-Lipschitz continuity of v.

The upper bound function v is represented by a set of
points Υ. Update of upper bound adds one point, UΥ(b) =
b→ [Hv](b), that corresponds to the evaluation of the value
backup at belief b. We cannot use the linear program out-
lined in Eqs. (5)-(6) to compute [Hv](b) directly since the
function v is not represented using α-vectors. We, there-
fore, use a transformation presented in (Horak and Bosan-
sky 2016) which performs projections of beliefs to the lower
envelope of v while preserving linearity of the constraints.

Adding a point to Υ can break the (U−L)-Lipschitz conti-
nuity of v. We can fix this by constructing a piecewise linear
approximation of a lower (U−L)-Lipschitz envelope:

v(b) := inf
b′∈Υ

{
v(b′) + (U−L) · ‖b− b′‖2

}
. (7)

The resulting function is c(U−L)-Lipschitz when c depends
on the accuracy of the approximation and can be arbitrarily
close to 1.

Forward Exploration
The value backup operator H expresses the value in belief b
in terms of values of subsequent beliefs ba,oπ2

. When applied
to value functions v̂, it also propagates the approximation
error. In order to minimize the gap in the initial belief b0, we
need to achieve sufficient accuracy also in beliefs encoun-
tered at a later time.

The forward exploration simulates a play between the
players while assuming that the second player follows a
strategy obtained from the application of H on the lower
bound v (i.e. she is overly optimistic with her strategy).
When a belief b is encountered at time t (we term such a
pair (b, t) a timed belief) and its approximation v̂(b) is not
sufficiently accurate, we say that it has positive excess gap.

Definition 2 (Excess gap). Let ε be the desired precision
and R > 0 be a neighborhood parameter. Let

ρ(t) = εγ−t −
t∑

i=1

2R(U−L)γ−i . (8)

We define the excess gap of a timed belief (b, t) as

excess(b, t) = gap(v̂(b))− ρ(t) . (9)

Later we show that if all subsequent timed beliefs
(ba,oπ2

, t+ 1) have negative excess gap, a point-based update
at (b, t) makes the excess gap excess(b, t) negative as well
(in fact, excess(b, t) ≤ −2R(U−L); we then term (b, t) as
closed). If this does not hold for the belief (b, t) currently
explored, the forward exploration process selects one of the
subsequent beliefs (ba,oπ2

, t + 1) with a positive excess gap
for further exploration and the process is repeated with the
timed belief (ba,oπ2

, t+1). If all subsequent beliefs have a neg-
ative excess gap, the forward exploration process terminates.

The termination is guaranteed if the neighborhood parame-
ter R is chosen so that the sequence ρ(t) is monotonically
increasing in t and unbounded.

Forward Exploration Heuristic A positive excess gap of
a belief contributes to the approximation error in the ini-
tial belief. If there are multiple subsequent timed beliefs
(ba,oπ2

, t + 1) with a positive excess gap, we select the one
with the highest weighted excess gap which is similar to
the weighted excess heuristic used in (Smith and Simmons
2004). The excess gap is weighted by both the observation
probability and the probability that the first player plays a
given action when using the strategy obtained from the up-
per bound value function v (i.e. according to the strategy
π1 from the game [Hv](b)). The action observation pair
(a, o) selected in timed belief (b, t) for the further explo-
ration maximizes π1(a) · Pr[o|a, π2] · excess(ba,oπ2

, t+ 1).

Convergence of the Algorithm
The goal of the HSVI algorithm is to make the excess gap
negative in all reachable timed beliefs and thus sufficiently
decrease the gap in the initial belief. Contrary to POMDPs,
reachable beliefs in POSGs are influenced by the strategy of
the second player – she can change her strategy to reach a
belief (b′, t) with a positive excess gap instead of a closed
belief (b, t), while b′ stays arbitrarily close to b.

We avoid this by ensuring that if (b′, t) with a positive
excess gap is reached by the forward exploration, it lies suf-
ficiently far from all previously closed beliefs at time t – the
minimum distance between the beliefs being controlled by
the neighborhood parameter R > 0 from the definition of
the excess gap. Unlike in POMDPs, our modified defini-
tion of the excess gap ensures that not only a closed belief
itself gets a negative excess gap: all beliefs within its R-
neighborhood get a negative excess gap as well (Lemma 4).
The convergence of the algorithm follows since there is only
a finite number of such R-separated belief points.

Lemma 4. Let (b, t) be a timed belief and π2 be the optimal
strategy of the second player in [Hv](b). If excess(ba,oπ2

, t +
1) ≤ 0 for all action-observation pairs (a, o) of the first
player, then after performing a point-based update at b it
holds that (i) excess(b, t) ≤ −2R(U−L) and (ii) all belief
points b′ in the R-neighborhood of b (i.e. ‖b − b′‖2 ≤ R)
have a negative excess gap excess(b′, t).

The first part of the lemma follows from Lemma 3, the lat-
ter follows from 2(U−L)-Lipschitz continuity of difference
of (U−L)-Lipschitz functions v and v.

Definition 3. Let t be time. The set of all beliefs with nega-
tive excess gap at time t is denoted Ψt;

Ψt = {b ∈ ∆(S) | gap(v̂(b)) ≤ ρ(t)} . (10)

Theorem 3. HSVI algorithm converges to the precision ε.

Proof. In each iteration, the algorithm performs a forward
exploration until it encounters a timed belief (b, t) such that
all subsequent timed beliefs (ba,oπf

, t+ 1) have a negative ex-
cess gap. Since gap(ba,oπf

) is bounded by U−L, this happens
after at most tmax steps, where

tmax =

⌈
log1/γ

(
U−L
ε
·
[
1 + 2R

1− γt
γt(1− γ)

])⌉
. (11)

When the terminal timed belief (b, t) is reached, then
b 6∈ Ψt and all subsequent timed beliefs have negative ex-
cess gap. After performing the point-based update at (b, t),
the excess gap of (b, t), as well as of all timed beliefs in the
R-neighborhood of (b, t), is negative (Lemma 4) and Ψt is
expanded. We show that the expansion of the sets Ψt′ guar-
antees that eventually Ψt′ = ∆(S) for all times t′ ≤ tmax,
unless the desired precision ε is achieved beforehand.

The distance of b from the nearest belief b′ in Ψt previ-
ously closed by the algorithm is at least R, since all points
in the R-neighborhood of b′ have a negative excess gap and
thus are in Ψt. In each iteration, Ψt is expanded by at least
one belief and (at least) its R-neighborhood.

The number of such expansions of timed beliefs is finite.
In fact, the problem of finding maximum set of R-separated
beliefs can be seen as a hypersphere packing (a higher di-
mensional version of the sphere packing (Hales 2011)) fill-
ing the belief simplex using non-overlapping hyperspheres
of radiusR/2, since the hyperspheres do not overlap exactly
when the distance between their centers is at least R. When
no hypersphere can be further inserted, it means that we
cannot find any belief with a positive excess gap, hence we
reached the desired precision in the whole belief space.

Experiments
We demonstrate application possibilities and scalability of
our algorithm on three types of games: pursuit-evasion
games (e.g., evaluated in (Horak and Bosansky 2016)), in-
trusion search games (e.g., see (Bosansky et al. 2014)), and
patrolling games with a discount factor (e.g., see (Vorobey-
chik et al. 2014)). Each player is assigned a team of units
(either one or multiple units) located in vertices of a graph
and he or she controls their movement on the graph. A move
consists of moving the units simultaneously to vertices adja-
cent to their current positions, or they can wait.

The utilities are scaled so that the values of the games lies
in the interval [0, 100] (or [−100, 0], respectively). Unless
stated otherwise the discount factor is γ = 0.95 and we ran
the algorithm until gap(v̂(b0)) ≤ 1.

Algorithm Settings
We initialize the value functions by solving the perfect-
information refinement of the game (for v) and as a best re-
sponse to a uniform strategy of player 1 (for v). We use stan-
dard value iteration for stochastic games, or MDPs, respec-
tively, and terminate the initialization when either change
in valuations between iterations is lower than 0.025, or 20s
time limit has expired. The initialization time is included in
the computation times of the algorithms.

Similarly to (Smith and Simmons 2004), we adjust ε in
each iteration using formula ε = 0.25+η(gap(v̂(b0))−0.25)
with η = 0.9. We set the neighborhood parameter R to the
largest value satisfying ρ(t) ≥ 0.25γ−t for all t ≤ tmax

from the proof of Theorem 3.

A D D T

(a)

1- 1

2- 1

3 4 5

101

102

103

104

Size of checkpoints W

LO
G
R
un
tim

e
(s
)

(b)

Attack time 4

Attack time 3

7 9 11 13 15

102

103

104

Number of vertices

LO
G
R
un
tim

e
(s
)

(c)

Success rate

Gap

7 9 11 13 15
0%

25%

50%

75%

100%

0

1

2

Number of vertices

S
ol
ve
d

3

G
ap

(d)

Figure 1: (a) Intrusion-search game: W = 3, configuration 1-1: A denotes initial position of the attacker, D initial posi-
tions of defender’s units, T is attacker’s target (b) Intrusion-search games with 2 zones, each with W vertices: Time to reach
gap(v̂(b0)) ≤ 1 (c) Patrolling games played on graphs generated from ER(0.25): Time to reach gap(v̂(b0)) ≤ 1 (only suc-
cessfully solved instances within 10 hours) (d) Patrolling games played on graphs generated from ER(0.25): Percentage of
successfully solved instances with t× = 4 and the gap on failed instances after 10 hours

Finally, we remove dominated points and vectors from
sets Γ and Υ whenever their size grows by 20% to reduce
the size of the linear programs. Again, this is similar to
POMDPs (Smith and Simmons 2004).

Pursuit-Evasion Games (PEGs)
A team of centrally controlled pursuers aims to locate and
capture the evader, and receive the utility of +100; the evader
aims for the opposite. We consider 3 × N grid graphs (we
vary the number of columns N), two pursuing units start in
top left positions, the evader starts in bottom right corner.
Our algorithm achieves similar scalability as the existing al-
gorithm designed specifically for one-sided PEGs (Horak
and Bosansky 2016) and displays exponential dependence
of the runtime on the width of the grid N . The game with
N = 3 was solved in 9s on average, the game with N = 6
took 3.5 hours to be solved to the gap 1. A graph depict-
ing the dependence of the runtime on N can be found in the
full version of the paper. Sizes of the games range from 143
states and 2671 transitions to 1299 states and 34807 transi-
tions.

Search Games
In search games that model intrusion, the defender patrols
checkpoint zones (see Figure 1a, the zones are marked with
box). The attacker aims to cross the graph, while not being
captured by the defender. If the attacker crosses the graph
unharmed, the defender receives a utility of -100. Whenever
the attacker enters a node, she leaves a trace and the defender
can later detect it. She can either wait for one move to con-
ceal her presence (and clean up the trace), or move further.

We consider games with 2 checkpoint zones with varying
sizes W (i.e. width of the graph) and 2 configurations of the
defending forces – with one defender in each of the check-
point zones (denoted 1-1), and 2 defenders in the first zone
while just 1 defender being in the second one (denoted 2-
1). The results are shown in Figure 1b (with 5 runs for each
parameterization, the confidence intervals mark the standard
error in our graphs). The largest game (W = 5 and 2 defend-
ers in the first zone) has 4656 states and 121239 transitions
and can be solved within 27 minutes. This case highlights
that our algorithm can solve even large games. However, a
much smaller game with the configuration 1-1 (964 states

and 9633 transitions) is more challenging, since the coor-
dination problem with just 1 defender in the first zone is
harder, and is solved within 3.5 hours.

Patrolling Games
In patrolling games (Basilico, Gatti, and Amigoni 2009;
Vorobeychik et al. 2014) the patroller patrols vertices of a
graph by moving over the graph. The attacker decides the
vertex she will attack and the time she will do so. The pa-
troller does not know if an attack has started, however, he
has a limited time (termed attack time, denoted t×) to reach
the vertex under the attack. Otherwise, the vertex is success-
fully attacked and the patroller receives a negative reward
associated to that vertex.

Following the setting in (Vorobeychik et al. 2014), we fo-
cus on graphs generated from Erdos-Renyi model (Newman
2010) with parameter p = 0.25 (denoted ER(0.25)) with
attack times 3 and 4 and number of vertices |V| ranging
from 7 to 15. Each instance with attack time t× = 3 was
solved by our algorithm in less than 12 minutes (see Fig-
ure 1c). This result generally outperforms the computation
times reported for tailored algorithm for solving discounted
patrolling games (Vorobeychik et al. 2014). For attack time
t× = 4, however, some number of instances failed to reach
the precision gap(v̂(b0)) ≤ 1 within the time limit of 10
hours. For the most difficult setting, |V| = 13, the algo-
rithm reached desired precision in 60% of instances (see
Figure 1d). For unsolved instances, mean gap(v̂(b0)) after
the cutoff after 10 hours is however reasonably small (also
depicted in Figure 1d, see the solid line and right y-axes).
The results include games with up to 856 states and 6409
transitions.

Since our algorithm is domain-independent, it can also
solve variants of patrolling games with alarms (Basilico,
Nittis, and Gatti 2016), including all types of imprecise sig-
nals (false positives, false negatives). The results for this
setting can be found in the full version of the paper.

Conclusions
We focus on two-player zero-sum partially observable
stochastic games (POSGs) with discounted rewards and one-
sided observability where the second player has perfect in-
formation about the game. We propose the first approximate

algorithm that generalizes the ideas behind point-based al-
gorithms designed for Partially Observable Markov Deci-
sion Processes (POMDPs) and transfers these techniques to
POSGs. We provide theoretical guarantees as well as an ex-
perimental evaluation of our algorithm on three fundamen-
tally different games.

Our work opens a completely new direction in research
of POSGs and sequential decision making and allows to de-
sign new scalable algorithm for one-sided POSGs that can
be applied in many real-world scenarios. While the current
scalability of our algorithm is limited, it is the first step in a
new direction of research. Many heuristics proven useful for
POMDPs can be translated and evaluated in this new setting,
and can further improve the scalability and applicability of
our results.

Acknowledgments
This research was supported by the Czech Science Foun-
dation (grant no. 15-23235S) and by the Grant Agency
of the Czech Technical University in Prague, grant No.
SGS16/235/OHK3/3T/13.

References
Basilico, N.; Gatti, N.; and Amigoni, F. 2009. Leader-
follower strategies for robotic patrolling in environments
with arbitrary topologies. In Proceedings of the 8th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 57–64.
Basilico, N.; Nittis, G. D.; and Gatti, N. 2016. A Secu-
rity Game Combining Patrolling and Alarm-Triggered Re-
sponses Under Spatial and Detection Uncertainties. In Pro-
ceedings of the 30th Conference on Artificial Intelligence
(AAAI), 397–403.
Bosansky, B.; Kiekintveld, C.; Lisy, V.; and Pechoucek, M.
2014. An Exact Double-Oracle Algorithm for Zero-Sum
Extensive-Form Games with Imperfect Information. Jour-
nal of Artificial Intelligence Research 51:829–866.
Chung, T. H.; Hollinger, G. A.; and Isler, V. 2011. Search
and pursuit-evasion in mobile robotics. Autonomous robots
31(4):299–316.
Ciesielski, K. 2007. On Stefan Banach and some of his
results. Banach Journal of Mathematical Analysis 1(1):1–
10.
Fang, F.; Nguyen, T. H.; Pickles, R.; Lam, W. Y.; Clements,
G. R.; An, B.; Singh, A.; Tambe, M.; and Lemieux, A. 2016.
Deploying PAWS: Field optimization of the protection assis-
tant for wildlife security. In Proceedings of the 30th Confer-
ence on Artificial Intelligence (AAAI), 3966–3973.
Fang, F.; Stone, P.; and Tambe, M. 2015. When Security
Games Go Green: Designing Defender Strategies to Prevent
Poaching and Illegal Fishing. In In Proceedings of 24th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), 2589–2595.
Hales, T. C. 2011. Historical overview of the Kepler con-
jecture. In The Kepler Conjecture. Springer. 65–82.
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic Programming for Partially Observable Stochastic

Games. In Proceedings of the 19th National Conference on
Artificial Intelligence (AAAI), 709–715.
Horak, K., and Bosansky, B. 2016. A Point-Based Approxi-
mate Algorithm for One-Sided Partially Observable Pursuit-
Evasion Games. In Proceedings of the Conference on Deci-
sion and Game Theory for Security, 435–454.
Horak, K., and Bosansky, B. 2017. Dynamic Programming
for One-Sided Partially Observable Pursuit-Evasion Games.
In Proceeding of the International Conference on Agents
and Artificial Intelligence (ICAART) — to appear.
Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Ordóñez, F.; and
Tambe, M. 2009. Computing optimal randomized resource
allocations for massive security games. In Proceedings of
the 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 689–696.
Madani, O.; Hanks, S.; and Condon, A. 1999. On the unde-
cidability of probabilistic planning and infinite-horizon par-
tially observable Markov decision problems. In Proceed-
ings of the 16th National Conference on Artificial Intelli-
gence and the Eleventh Innovative Applications of Artificial
Intelligence Conference Innovative Applications of Artificial
Intelligence (AAAI/IAAI), 541–548.
Newman, M. 2010. Networks: an introduction. Oxford
university press.
Nikaido, H. 1954. On von Neumann’s minimax theorem.
Pacific J. Math. 4(1):65–72.
Pita, J.; Jain, M.; Marecki, J.; Ordóñez, F.; Portway, C.;
Tambe, M.; Western, C.; Paruchuri, P.; and Kraus, S. 2008.
Deployed ARMOR protection: the application of a game
theoretic model for security at the Los Angeles International
Airport. In Proceedings of the 7th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
125–132.
Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; Di-
renzo, J.; Meyer, G.; Baldwin, C. W.; Maule, B. J.; and
Meyer, G. R. 2012. PROTECT : A Deployed Game The-
oretic System to Protect the Ports of the United States. In
Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 13–20.
Smith, T., and Simmons, R. 2004. Heuristic search value it-
eration for POMDPs. In Proceedings of the 20th conference
on Uncertainty in artificial intelligence, 520–527. AUAI
Press.
Vanek, O.; Yin, Z.; Jain, M.; Bosansky, B.; Tambe, M.;
and Pechoucek, M. 2012. Game-theoretic Resource Al-
location for Malicious Packet Detection in Computer Net-
works. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
902–915.
von Neumann, J. 1928. Zur Theorie der Gesellschaftsspiele.
Mathematische Annalen 100(1):295–320.
Vorobeychik, Y.; An, B.; Tambe, M.; and Singh, S. P. 2014.
Computing Solutions in Infinite-Horizon Discounted Adver-
sarial Patrolling Games. In Proceedings of the 24th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 314–322.

Appendix E

Solving Partially Observable
Stochastic Games with Public
Observations

Solving Partially Observable Stochastic Games with Public Observations

Karel Horák and Branislav Bošanský
Department of Computer Science, Faculty of Electrical Engineering

Czech Technical University in Prague
{horak,bosansky}@agents.fel.cvut.cz

Abstract

In many real-world problems, there is a dynamic interaction
between competitive agents. Partially observable stochastic
games (POSGs) are among the most general formal mod-
els that capture such dynamic scenarios. The model captures
stochastic events, partial information of players about the en-
vironment, and the scenario does not have a fixed horizon.
Solving POSGs in the most general setting is intractable.
Therefore, the research has been focused on subclasses of
POSGs that have a value of the game and admit designing
(approximate) optimal algorithms. We propose such a sub-
class for two-player zero-sum games with discounted-sum
objective function—POSGs with public observations (PO-
POSGs)—where each player is able to reconstruct beliefs of
the other player over the unobserved states. Our results in-
clude: (1) theoretical analysis of PO-POSGs and their value
functions showing convexity (concavity) in beliefs of maxi-
mizing (minimizing) player, (2) a novel algorithm for approx-
imating the value of the game, and (3) a practical demon-
stration of scalability of our algorithm. Experimental results
show that our algorithm can closely approximate the value of
non-trivial games with hundreds of states.

Introduction
Game theory describes the optimal behavior of rational
agents and is recently widely applied to solving security
problems. Game-theoretic strategies are used to protect crit-
ical infrastructures (Pita et al. 2008; Kiekintveld et al. 2009;
Shieh et al. 2012), secure computer networks (Vanek et
al. 2012; Nguyen, Wellman, and Singh 2017; Durkota et
al. 2017) or wildlife (Fang, Stone, and Tambe 2015; Fang
et al. 2016). In many real-world situations, there is a dy-
namic strategic interaction between the players, and the
players do not have perfect information about the environ-
ment. Moreover, a pre-defined horizon (number of moves in
the scenario) is only rarely given in practice and thus these
games belong to the class of partially observable stochastic
games (POSGs). Examples include patrolling games (Basil-
ico, Gatti, and Amigoni 2009; Vorobeychik et al. 2014;
Basilico, Nittis, and Gatti 2016; Brazdil, Kucera, and Rehak
2018), where a defender protects a set of targets against an
attacker, pursuit-evasion (Chung, Hollinger, and Isler 2011),

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or search games, where a defender is trying to find and cap-
ture an attacker.

We focus on two-player zero-sum POSGs, and even with
this restriction it is intractable to compute optimal strate-
gies in the most general case. Since the players do not per-
fectly observe the environment, each player has a belief over
possible states of the environment. However, the reward the
player receives for choosing some action(s) also depends on
the action of the other player who decides based on their
belief. Therefore, player 1 has to consider also the belief of
player 2 and belief that player 2 has about player 1, and so
on. This reasoning is called nested beliefs (e.g., in (Mac-
Dermed 2013)) and it causes a doubly-exponential number
of histories to consider for each agent.

However, real-world security scenarios require partial ob-
servability without a strictly defined horizon. Therefore,
one can restrict to subclasses of POSGs where games have
a value (i.e., the value of the game exists) and (approx-
imate) optimal algorithms can be designed. Examples of
such works are stochastic games in which both the play-
ers’ actions and observations are public (Ghosh, McDon-
ald, and Sinha 2004), games in which the support of pri-
vate/public observations does not depend on states and ac-
tions (Cole and Kocherlakota 2001), or games where only
one player has imperfect information (also called One-
Sided) (Chatterjee and Doyen 2014; Basu and Stettner 2015;
Horak, Bosansky, and Pechoucek 2017). The practical moti-
vation for such subclasses is to compute robust strategies for
the defender assuming the worst case scenario where the at-
tacker has additional information (Vorobeychik et al. 2014;
Horak and Bosansky 2016).

In this paper, we propose a new subclass of POSGs
in which we avoid the problem of nested beliefs, called
POSGs with public observations (PO-POSGs), that gener-
alizes previous subclasses. In this model, each player is able
to exactly reconstruct the belief of the opponent. The key
characteristics are: (1) the state space is factored – each
player observes his private state, but the state of the other
player is not observed; (2) each observation that modifies
belief about the state of the other player is public (both
players are aware of this observation); (3) the true state
of the player is observed privately by that player. We re-
strict to two-players zero-sum games with discounted fu-
ture rewards and give the following contributions: (1) We

show that games in this class have a value; (2) We show
that the value function of PO-POSGs is convex in the be-
lief of the maximizing player and concave in the belief
of the minimizing player; (3) We introduce a novel algo-
rithm based on Heuristic Value Iteration Search (HSVI) for
One-Sided POSGs (Horak, Bosansky, and Pechoucek 2017;
Smith and Simmons 2004) and show that this algorithm con-
verges to the (approximate) optimal values.

We demonstrate our algorithm on two different domains –
a patrolling game, where the attacker has imprecise informa-
tion about the position of the defender (Basilico et al. 2009),
and a lasertag game based on a single-player variant (Pineau,
Gordon, and Thrun 2003). The results show that, for the first
time, there is a practical domain-independent algorithm able
to closely approximate optimal values of non-trivial infinite-
horizon POSGs with hundreds of states where both players
have partial information about the environment.

Related Work
The notion of public actions and observations is common
in dynamic games. For finite horizon games, the concept
of public states and publicly observed actions creates sep-
arated subgames that allow designing limited-lookahead al-
gorithms for imperfect information games (Moravcik et al.
2017; Brown, Sandholm, and Amos 2018).

In games with an infinite horizon, the problem with nested
beliefs prevents one from designing an (approximate) op-
timal algorithm for fully general settings. Nested beliefs
can be tackled directly with histories – one of few such
approaches is a bottom-up dynamic programming for con-
structing relevant finite-horizon policy trees for individual
players while pruning-out dominated strategies (Hansen,
Bernstein, and Zilberstein 2004; Kumar and Zilberstein
2009). However, due to the explicit dependence on the his-
tories, the scalability in the horizon is very limited.

A more common approach is to focus on a subclass of
POSGs. In (Ghosh, McDonald, and Sinha 2004), zero-sum
POSGs with public actions and observations are considered.
The authors show that the value of the game exists and
present an algorithm that exploits the transformation of such
a model into a game with complete information. In our ap-
proach, we assume only public observations (i.e., actions are
private to the players). Moreover, we factor the state space
according to the players (i.e., each player has his own state
that is perfectly observable to this player, and the state of
the opponent is unknown). Similar factorization of the state
space is used also in (Cole and Kocherlakota 2001), how-
ever, in this work the authors assume that the support of
observations cannot change due to states or actions of the
players. We remove this assumption and actions and obser-
vations can be generated in states arbitrarily. Alternatively,
some works assume that only one player has partial informa-
tion (Chatterjee and Doyen 2014; Basu and Stettner 2015;
Horak, Bosansky, and Pechoucek 2017). Again, we remove
this assumption and allow both players to have partial in-
formation about the states of the other player. While our al-
gorithm is based on the algorithm for the one-sided case,
we provide significant generalizations of the previous work,

especially in the representation of value function, definition
and algorithms for computing value-backup operator.

Finally, (MacDermed 2013) gives a transformation of
POSGs to Markov Games of Incomplete Information
(MaGIIs) as a more efficient representation if observations
have Markov property. While the examples of games that we
consider satisfy this property, the author demonstrates the
benefits of this representation for the common-payoff case
of Dec-POMDPs only. We solve zero-sum games, which is
a more complex problem and since there is no apparent way
to exploit MaGIIs, we use a more common formalism.

POSGs with Public Observations
Definition 1. A partially observable stochastic game with
public observations (PO-POSG) is a two-player zero-sum
game (played by players i ∈ {1, 2}) represented by a tuple
〈Si, Ai, Oi, Zi, Ti, R, b(0)

i , γ〉, where
• Si is a finite set of (private) states of player i
• Ai is a finite set of actions available to player i
• Oi is a finite set of observations for player i
• Zi(oi|s−ia−i) is the probability to generate observation
oi for player i, given that his opponent1 −i played an ac-
tion a−i in state s−i

• Ti(s′i|siaioio−i) is the probability to transition from si to
s−i when player i played ai and observations oi and o−i
have been generated

• R(s1s2a1a2) is the reward of player 1 when actions
(a1, a2) have been jointly played in the joint state (s1, s2)

• b(0)
i ∈ ∆(S−i) is the initial belief of player i over states
S−i of his opponent

• γ ∈ [0, 1) is the discount factor.

A play in a PO-POSG proceeds as follows. First, the
initial joint state (s

(1)
1 , s

(1)
2) is drawn with probability

b
(0)
2 (s

(1)
1) · b(0)

1 (s
(1)
2). Then, in each round t, players observe

their current private state (player i observes s(t)
i , but not s(t)

−i
of his opponent). Based on this information (and history),
each player i chooses an action a(t)

i ∈ Ai independently of
the decision of his opponent −i. As a consequence of this
choice, player 1 receives reward r(t) = R(s

(t)
1 s

(t)
2 a

(t)
1 a

(t)
2)

and player 2 receives negated reward −R(s
(t)
1 s

(t)
2 a

(t)
1 a

(t)
2).

Furthermore, an observation o(t)
i for each player is generated

and made publicly known to both players with probability
Zi(o

(t)
i |s

(t)
−ia

(t)
−i) and a new private state s(t+1)

i of each player

is drawn from Ti(·|s(t)
i a

(t)
i o

(t)
i o

(t)
−i). We consider discounted

setting and the utility of player 1 is thus
∑∞
t=1 γ

t−1r(t) (and
negative value for the opponent as the game is zero-sum).

Definition 2. The history of player i up to time T is a se-
quence {s(t)

i a
(t)
i o

(t)
i o

(t)
−i}Tt=1s

T+1
i .

Definition 3. The (history-dependent) strategy of player i is
a mapping σi : (SiAiOiO−i)∗Si → ∆(Ai) from histories
of player i to randomized decisions.

1As it is commonly used, −i denotes opponent of player i.

Observe that in PO-POSGs, the player i updates his be-
lief solely on the information about the public observations
(oi, o−i) and the knowledge of the strategy used by the ad-
versary for the current stage only—we denote such one-
stage strategy by π−i as opposed to the full strategy σ−i.
Assuming that the adversary −i chooses an action a−i in a
state s−i with probability π−i(a−i|s−i) in the current stage
of the game (given the information available to him) and that
observations (oi, o−i) have been generated, player i can up-
date his belief bi ∈ ∆(S−i) to a belief τπ−i(bioio−i) where
the updated probability of being in a state s′−i is

τπ−i
(bioio−i)(s

′
−i) =

1

Prπ−i
[oi]

∑

s−i,a−i

bi(s−i) · (1)

· π−i(a−i|s−i) · Z(oi|s−io−i) · T (s′−i|s−ia−io−ioi) .

Since both the strategy π−i and the public observations
(oi, o−i) are known to player−i as well, she can reconstruct
τπ−i

(bioio−i), and the belief update is essentially public.

Value of PO-POSGs
We now establish the value function V ∗ to capture the utility
of playing optimal strategies in a PO-POSG (i.e., the value
of the game) based on the beliefs the players have.
Definition 4. The optimal value function of a PO-POSG is a
function V ∗ : ∆(S2)×∆(S1)→ R mapping each possible
initial belief (b1, b2) of the game to the expected utility of
player 1 in the equilibrium (i.e., the value of the game).

Since any finite-horizon approximation of a PO-POSGs
has a value (von Neumann 1928) and discounted-sum utili-
ties are considered, the value of a PO-POSG is well defined.
Theorem 1. The value of the game exists in PO-POSGs.

Proof (sketch). Denote vT the value of a finite approxima-
tion with horizon T ∈ N. The approximation considers
all rewards from the first T steps. The equilibrial strategies
in vT can thus only be inferior in the full, infinite-horizon
game, when rewards after T steps are considered. Hence

vT +
∑∞
t=T+1 γ

t−1 minR(·) ≤ V ∗[b(0)
1 , b

(0)
2] ≤

≤ vT +
∑∞
t=T+1 γ

t−1 maxR(·) . (2)

As T →∞, the bounds converge to V ∗[b(0)
1 , b

(0)
2].

Contrary to previous works, the optimal value function
V ∗ is neither convex nor concave. We show, however, that
due to the factorization of the state space, V ∗ is convex in
the belief b1 of the maximizing player 1 and concave in the
belief b2 of the minimizing player 2.
Lemma 1. Let σi be a strategy of player i, and b−i be the
belief of the adversary. Then the expected utility V σi|b−i :
∆(S−i) → R of playing σi against the best-responding op-
ponent −i parametrized by the belief of player i is linear
and (U − L)/

√
2-Lipschitz continuous.

Proof (sketch). Player −i knows σi as well as his true state
s−i, and his only uncertainty is about the state si (the prob-
ability of which is b−i(si)). It is thus possible to focus on

the best response for each state s−i separately. Let us de-
note the expected utility of playing the best response against
σi starting from s−i (when si ∼ b−i) by ξ(s−i). Since
the strategy σi is fixed (and thus does not depend on bi),
the expected utility of playing σi against the best response
of the adversary is the expectation over the values ξ(s−i),
V σi|b−i(bi) =

∑
s−i

bi(s−i) · ξ(s−i), and thus the value
V σi|b−i is linear in bi. Moreover, observe that

L =
minR(·)

1− γ ≤ V σi|b−i(bi) ≤
maxR(·)

1− γ = U (3)

which makes V σi be (U−L)/
√

2-Lipschitz continuous.

Theorem 2. The value function V ∗ is convex in b1 and con-
cave in b2. Moreover, it is (U − L)-Lipschitz continuous.

Proof. For a fixed b2, player 1 chooses a strategy that maxi-
mizes the utility, hence

V ∗[b1, b2] = max
σ1

V σ1|b2(b1) . (4)

As all V σ1|b2 are linear, V ∗ is convex in b1. Vice versa, for
given fixed b1, player 2 chooses a minimizing strategy,

V ∗[b1, b2] = min
σ2

V σ2|b1(b2) , (5)

and V ∗ is concave in b2. Since V ∗ is a pointwise maxi-
mum/minimum (Equations (4) and (5)) from (U − L)/

√
2-

Lipschitz continuous functions V σi|b−i , V ∗ is (U −L)/
√

2-
Lipschitz continuous in the dimension of b1, as well as b2.
Combining the Lipschitz constants in these two dimensions
results in

√
2 · (U −L)/

√
2-Lipschitz continuity of V ∗.

Properties of Nash Equilibrium of PO-POSGs
Consider a Nash equilibrium strategy profile (σ1, σ2) and
let πi(·|si) = σi(si). If observations (o1, o2) are gen-
erated, the probability of transitioning to the joint state
(s′1, s

′
2) is τπ1

(b2o2o1)(s′1) · τπ2
(b1o1o2)(s′2). Since the dy-

namics of the game is Markovian, the equilibrial strate-
gies aim to optimize the payoff in the subgame after
(o1, o2) is seen by the players—i.e., the expected dis-
counted sum of the rewards starting from the joint belief
(τπ2(b1o1o2)(s′2), τπ1(b2o2o1)(s′1)). Since in the equilib-
rium both players know this distribution, this expectation
is equal to V [τπ2

(b1o1o2), τπ1
(b2o2o1)] (since both players

have strategies that guarantee this expected long-term re-
ward when starting from the given joint belief).

This fact makes it possible to express the value of the
equilibrial strategy profile (σ1, σ2) in terms of the immedi-
ate reward (direct consequences of the decisions in the first
stage of the game) Rπ1π2 ,

Rπ1π2
=
∑

s1,s2,a1,a2

b2(s1)b1(s2)π1(a1|s1)π2(a2|s2)R(s1s2a1a2)

(6)
and the values V [τπ2

(b1o1o2), τπ1
(b2o2o1)] of the sub-

games:
Rπ1π2

+ (7)

+ γ
∑

o1,o2

Prπ1π2 [o1o2] · V [τπ2(b1o1o2), τπ1(b2o2o1)] .

Relaxing the assumption of known equilibrial strategies and
performing the maximin optimization over Equation (7)
gives us the value of the game starting in the joint belief
(b1, b2) as a fixpoint equation over value functions

V ∗[b1, b2] = HV ∗[b1, b2] = max
π1

min
π2

[
Rπ1π2

+ (8)

+ γ
∑

o1,o2

Prπ1π2 [o1o2] · V [τπ2(b1o1o2), τπ1(b2o2o1)]
]

.

Moreover, since γ < 1, the operator H defined over value
functions V : ∆(S2) × ∆(S1) → R is a contraction. The
Equation (8) can thus be used to approximate V ∗ iteratively.

Algorithm
Evaluating the dynamic programming operator H directly
(as defined in Equation (8)) is impossible since the set of all
joint beliefs is infinite. To design a practical algorithm, we
need to establish an approximation scheme for V ∗ that we
describe in this section first. Then we provide mathemati-
cal programs for computing HV when this approximation
scheme is used. Finally, we state our algorithm to obtain ε-
approximation of V ∗ in PO-POSGs.

Approximating V ∗

In POMDPs (or one-sided POSGs), the value function V ∗ is
commonly represented either as a point-wise maximum over
a set of linear functions (termed α-vectors) or by considering
a convex hull of a set of points. Both of these approaches
leverage that the value function V ∗ is convex, which is not
the case for PO-POSGs. In this section, we present a way to
form a lower bound approximation V of a convex-concave
function V ∗ inspired by both of the approaches mentioned
above (the construction of the upper bound V is analogous).

To represent the value of V in the dimension of S2, we use
an extended notion of α-vectors, termed αβ-vectors. In PO-
POSGs, the linear value V σ1|b2 of a strategy depends on the
belief b2 of the adversary (see Lemma 1). Hence, also our
αβ-vectors depend on the belief of the adversary denoted β.
An αβ-vector consists of two components (see the thick line
in Figure 1). First, there is a linear function α : ∆(S2)→ R
representing the value of the αβ-vector in the ∆(S2) dimen-
sion. Second, there is a belief of the adversary β ∈ ∆(S2)
which informally positions the αβ-vector in the ∆(S1) di-
mension. As a simplification, an αβ-vector can be seen as a
value V σ1|b2 of a strategy σ1 in belief b2, where α = V σ1|b2
and β = b2. However, an αβ-vector of player 1 is an arbi-
trary function that lower bounds V ∗ in general.
Definition 5. An αβ-vector of player i is a tuple consisting
of a linear function α : ∆(S−i) → R and the belief of the
adversary β ∈ ∆(Si) satisfying

α(b1) ≤ V ∗[b1, β] , or α(b2) ≥ V ∗[β, b2] (9)

for player 1 or player 2, respectively. The set of all αβ-
vectors of player 1 (player 2) used to construct the approxi-
mating function V (V) is denoted Γ1 (Γ2, respectively).

Since V ∗ is concave in the belief of player 2 (i.e., ∆(S1)),
every convex combination of αβ-vectors in Γ1 forms a lower

β
∆(S1)

(linear)

∆(S2)

α : ∆(S2) → R

Figure 1: Lower bound on V ∗ using αβ-vectors of player 1.

bound on V ∗, and for every coefficients of a convex combi-
nation λ(αβ) ≥ 0 satisfying

∑
αβ∈Γ1

λ(αβ) = 1,

α′(b1) =
∑

αβ∈Γ1

λ(αβ)α(b1), β′ =
∑

αβ∈Γ1

λ(αβ)β (10)

α′β′ is also an (implicit) αβ-vector. The implicit αβ-vectors
form facets in Figure 1.

Now, we leverage the α-vector representation of value
functions as commonly used in POMDPs (or one-sided
POSGs). To obtain the value V [b1, b2], a point-wise maxi-
mum over all (implicit) αβ-vectors with β = b2 is taken.

V [b1, b2] = max
λ(·)≥0

{ ∑

αβ∈Γ1

λ(αβ)α(b1)
∣∣∣
∑

αβ∈Γ1

λ(αβ)β = b2

}

(11)
The upper-bounding value function V is constructed by

considering αβ-vectors Γ2 of player 2 and using a point-
wise minimum instead of maximum. Lower and upper-
bound approximations define the approximation error.
Definition 6. Let V and V be the current approximations of
V ∗. The approximation error (gap) in joint belief (b1, b2) is

V̂ [b1, b2] = V [b1, b2]− V [b1, b2] . (12)

Computing HV [b1, b2] via linear programming
When considering approximate value functions V and V de-
scribed in the previous section, the point-based value backup
HV [b1, b2] (or HV [b1, b2]) can be evaluated using linear
programming. We again focus on the construction of a linear
program for computing lower bound HV [b1, b2] (denoted
LP(HV [b1, b2])), the case for LP(HV [b1, b2]) is analogous.

We start by rewriting the optimization problem
HV [b1, b2] (as defined in Equation (7)) by evaluating
V according to the Equation (11).

max
π1,λ

min
π2

[
Rπ1π2

+ γ
∑

o1,o2

Prπ2
[o1] · Prπ1

[o2]· (13a)

·
∑

s′2

τπ2
(b1o1o2)(s′2)

∑

αβ∈Γ1

λo1o2(αβ) · α(s′2)
]

s.t.
∑

αβ∈Γ1

λo1o2(αβ) · β(s′1) = τπ1
(b2o2o1)(s′1) (13b)

∀(o1, o2) ∈ O1 ×O2 ∀s′1 ∈ S1

λ(·) ≥ 0 (13c)

Variables λ(·) from Equation (11) have been replaced with
λo1o2(·) for each observation pair. The term 1/Prπ2 [o1] in
τπ2

(b1o1o2) cancels out, hence the objective becomes

max
π1,λ

min
π2

[
Rπ1π2 + γ

∑

o1,o2

Prπ1 [o2]
∑

s2,a2,s′2

b1(s2)π2(a2|s2)·

· Z(o1|s2a2)T (s′2|s2a2o2o1)
∑

αβ∈Γ1

λo1o2(αβ)α(s′2)
]

. (14)

Similarly, it is possible to cancel out Prπ1
[o2] in τπ1

(b2o2o1)

by substituting λ̂o1o2(·) = Prπ1
[o2] · λo1o2(·).

max
π1,λ̂

min
π2

[
Rπ1π2

+ γ
∑

s2,a2,o1,o2,s′2

b1(s2)π2(a2|s2)Z[o1|s2a2]·

· T [s′2|s2a2o2o1]
∑

αβ∈Γ1

λ̂o1o2(αβ) · α(s′2)
]

(15a)

s.t.
∑

αβ∈Γ1

λ̂o1o2(αβ) · β(s′1) =
∑

s1,a1

b2(s1)π1(a1|s1) ·

· Z(o2|s1a1)T (s′1|s1a1o1o2) ∀(o1, o2)∀s′1 (15b)

λ̂(·) ≥ 0 (15c)

When π1 and λ̂ variables are fixed, the value is linear
in π2. Hence the optimum will be in a pure strategy π2.
The minimization over a finite number of pure strategies
can be rewritten using a set of linear inequality constraints.
Moreover, we leverage the fact that the adversary (player 2)
knows his current state. Therefore, it is possible to compute
π2(·|s2) for each state s2 of player 2 separately and compute
the expectation over values of individual states. The result-
ing linear program follows.

max
π1,λ̂

∑

s2

b1(s2) · V (s2)

s.t. V (s2) ≤
∑

s1,a1

b2(s1)π1(a1|s1)R(s1s2a1a2) + (16a)

+ γ
∑

o1,o2,s′2

Z(o1|s2a2)T (s′2|s2a2o2o1) ·

·
∑

αβ∈Γ1

λ̂o1o2(αβ) · α(s′2) ∀s2, a2

∑

αβ∈Γ1

λ̂o1o2(αβ) · β(s′1)=
∑

s1,a1

b2(s1)π1(a1|s1) · (16b)

· Z(o2|s1a1)T (s′1|s1a1o1o2) ∀(o1, o2)∀s′1

λ̂(·) ≥ 0 (16c)

Note that the variables V (s2) correspond to the values of
playing a strategy represented by values of variables π1 and
λ̂ in the unobserved state s2 of the opponent. Such strategy
prescribes player 1 to play according to strategy π1 in the
first stage of the game and then, after observing (o1, o2), fol-
low a strategy the value of which is greater than the convex
combination of αβ-vectors with coefficients λ(αβ),

λ(αβ) = λ̂o1o2(αβ)/
∑

αβ∈Γ1

λ̂o1o2(αβ) . (17)

Hence, we can use values of the variables V (s2) to form a
new αβ-vector (β = b2) such that α(b1) =

∑
s2
b1(s2) ·

V (s2). For states s2 with b1(s2) = 0, the value V (s2)
may, however underestimate, due to the lack of pressure on
V (s2). In these cases, we compute the minimum represented
by constraints (16a) separately.

The algorithm
We are now ready to state our algorithm to compute an ε-
approximation of V ∗ in the joint belief (b

(0)
1 , b

(0)
2) and to

prove its correctness. The algorithm (Algorithm 1) follows
the ideas of the HSVI algorithm for POMDPs (Smith and
Simmons 2004) and one-sided POSGs (Horak, Bosansky,
and Pechoucek 2017) while replacing the point-based up-
date step with the computation of optimal αβ-vectors to add
using the linear program from Equations (16).

1 Initialize V and V
2 while V̂ [b

(0)
1 , b

(0)
2] > ε do explore(b(0)

1 , b
(0)
2 , 0)

3 procedure explore(b1, b2, t)
4 if V̂ [b1, b2] ≤ ρ(t) then return
5 Extract π1 from LP(HV [b1, b2]) and π2 from

LP(HV [b1, b2])
6 (o∗1, o

∗
2)← arg maxo1,o2 Prπ1π2

[o1o2]·
excesst+1(τπ2

(b1o1o2), τπ1
(b2o2o1))

7 explore(τπ2
(b1o1o2), τπ1(b2o2o1), t+ 1)

8 Extract α1 from LP(HV [b1, b2]) (V (s2)
variables)

9 Extract α2 from LP(HV [b1, b2]) (V (s1)
variables)

10 Γ1 ← Γ1 ∪ {α1b2} ; Γ2 ← Γ2 ∪ {α2b1}
Algorithm 1: HSVI algorithm for PO-POSGs.

Since we want to focus on the key characteristics of the
algorithm, we initialize V and V using the minimum and
maximum possible utilities of player 1,

L = min
s1,s2,a1,a2

R(s1s2a1a2)/(1− γ) (18)

U = max
s1,s2,a1,a2

R(s1s2a1a2)/(1− γ) . (19)

In practice, we can obtain tighter bounds (and consequently
faster convergence) by either leveraging domain knowledge,
or solving a simplified version of the game.

To obtain an ε-approximation of V ∗[b(0)
1 , b

(0)
2], it is suf-

ficient that beliefs (b1, b2) reached at depth t (the value of
which is therefore multiplied by γt) satisfy V̂ [b1, b2] ≤ ρ(t),
where ρ(t) is an increasing and unbounded sequence (for
sufficiently small R > 0),

ρ(t) = εγ−t −
t∑

i=1

2R(U − L)γ−i . (20)

If V̂ [b1, b2] > ρ(t), we say that (b1, b2) has a positive excess
gap excesst(b1, b2) = V̂ [b1, b2]− ρ(t).

Once Algorithm 1 terminates, an ε-approximation of
V ∗[b(0)

1 , b
(0)
2] has been found (see line 2). Moreover, since

the sequence ρ(t) is increasing and unbounded while the
maximum gap is bounded by U −L, the condition on line 4
is always eventually met and every call to explore therefore
terminates in a bounded number of recursion levels (denote
this bound Tmax). It is therefore sufficient to show that the
number of calls to explore is finite.

Denote {(b(t)1 , b
(t)
2)}Tt=0 the beliefs that have been visited

during a trial of length T . Observe that V̂ [b
(T−1)
1 , b

(T−1)
2] >

ρ(T − 1) (otherwise the trial would have terminated at
depth (T − 1)). On the contrary, when considering be-
lief (b

(T−1)
1 , b

(T−1)
2) and the corresponding strategy pro-

file (π1, π2) from line 5, the reachable beliefs satisfy
V̂ [τπ2

(b
(T−1)
1 o1o2), τπ1

(b
(T−1)
2 o2o1)] ≤ ρ(T) for every

(o1, o2) seen with positive probability.

Lemma 2. Consider a trial {(b(t)1 , b
(t)
2)}Tt=0 of length T and

consider that point-based updates on lines 8–10 of Algo-
rithm 1 have been performed. Then
(1) V̂ [b

(T−1)
1 , b

(T−1)
2] ≤ ρ(T − 1)− 2R(U − L), and

(2) For every (b1, b2) satisfying ‖(b1, b2) −
(b

(T−1)
1 , b

(T−1)
2)‖2 ≤ R, it holds V̂ [b1, b2] ≤ ρ(T − 1).

Proof (sketch). Observe that from the definition of the se-
quence ρ(t) in Equation (20) it follows that

γρ(T) = ρ(T − 1)− 2R(U − L) . (21)
Moreover, the trial terminated at depth T . Therefore, all be-
liefs that can be reached from (b

(T−1)
1 , b

(T−1)
2) when follow-

ing (π1, π1) from line 5 must satisfy

V̂ [τπ2
(b

(T−1)
1 o1o2), τπ1

(b
(T−1)
2 o2o1)] ≤ ρ(T) . (22)

Let (π1, π2) (and (π1, π2)) be equilibrial strategy profiles
in HV [b

(T−1)
1 , b

(T−1)
2] (and HV [b

(T−1)
1 , b

(T−1)
2], respec-

tively) and denote uV (π1, π2) the utility of playing strate-
gies (π1, π2) in HV [b

(T−1)
1 , b

(T−1)
2]. By deviating from the

equilibrium, the players can only worsen their utility. Hence,

uV (π1, π2) ≤ uV (π1, π2) = HV [b
(T−1)
1 , b

(T−1)
2] ≤ (23)

≤ HV [b
(T−1)
1 , b

(T−1)
2] = uV (π1, π2) ≤ uV (π1, π2) .

Since the same strategy profile (π1, π2) is considered in both
uV (π1, π2) and uV (π1, π2), the difference satisfies

uV (π1, π2)− uV (π1, π2) = γ
∑
o1o2

Prπ1π2
[o1o2]· (24)

· V̂ [τπ2
(b

(T−1)
1 o1o2), τπ1(b

(T−1)
2 o2o1)] .

The gap V̂ [τπ2
(b1o1o2), τπ1

(b2o2o1)] of all beliefs reach-
able using (π1, π2) is smaller than ρ(T) and hence
uV (π1, π2)−uV (π1, π2) ≤ γρ(T). The point-based update
in (b

(T−1)
1 , b

(T−1)
2) renders V̂ [b

(T−1)
1 , b

(T−1)
2] ≤ ρ(T −1)−

2R(U − L) which concludes the proof of (1).
Now, since V ∗ is (U−L)-Lipschitz continuous (Theo-

rem 2), it is possible to consider (U−L)-Lipschitz contin-
uous approximations V and V . Function V̂ = V − V is
then 2(U−L)-Lipschitz continuous and therefore the value
of any belief within theR-neighborhood of (b

(T−1)
1 , b

(T−1)
2)

cannot be higher than ρ(T − 1) which proves (2).

We are now ready to prove the correctness of the algo-
rithm by showing that it can only perform a finite number of
trials of given length.

Theorem 3. Algorithm 1 terminates with an ε-
approximation of V ∗[b(0)

1 , b
(0)
2].

Proof. Assume for the sake of contradiction that the algo-
rithm does not terminate and generates an infinite number of
explore trials. Since the length of a trial is bounded by a fi-
nite number Tmax, the number of trials of length T (for some
0 ≤ T ≤ Tmax) must be infinite. It is impossible to fit an in-
finite number of belief points (b1, b2) satisfying ‖(b1, b2) −
(b′1, b

′
2)‖2 > R within ∆(S1)×∆(S2). Hence there must be

two trials of length T , {(b(t)11 , b
(t)
21)}Tt=0 and {(b(t)12 , b

(t)
22)}Tt=0,

such that ‖(b(T−1)
11 , b

(T−1)
21) − (b

(T−1)
12 , b

(T−1)
22)‖2 ≤ R.

Without loss of generality, assume that (b
(T−1)
11 , b

(T−1)
21) was

visited the first. According to Lemma 2, the point-based up-
date in (b

(T−1)
11 , b

(T−1)
21) resulted in V̂ [(b

(T−1)
12 , b

(T−1)
22)] ≤

ρ(T − 1)—which contradicts that the condition on line 4 of
Algorithm 1 has not been satisfied for (b

(T−1)
12 , b

(T−1)
22) (and

hence that {(b(t)12 , b
(t)
22)}Tt=0 was a trial of length T).

Implementation details
In this section, we provide some of the details on our practi-
cal implementation of the HSVI algorithm for PO-POSGs.

Pruning The number of αβ-vectors grows in the course
of the algorithm, however, not all of the vectors are needed
to represent V (or V) accurately. To counteract this growth,
we run a pruning procedure every time the size of Γi gets
1.5× larger than after the pruning was last performed. An
αβ-vector is pruned if there exists a convex combination of
vectors in Γi that dominates it.

Lipschitz continuity The theoretical proof of the correct-
ness relies on the fact that the approximating functions
are (U−L)-Lipschitz continuous. While the extracted αβ-
vectors from the linear programs are (U−L)-Lipschitz con-
tinuous, the implicitly computed convex/concave hull need
not satisfy this property (and thus may potentially render the
Lipschitz constant of V or V impossible to bound). While
this issue can be fixed by computing a (U −L)-Lipschitz
envelope of V or V by adding additional αβ-vectors to Γi,
we omit this step in our implementation. The computation
of the envelope significantly increases the number of αβ-
vectors (and thus the number of expensive pruning steps)
and our experimental results show that the algorithm con-
verges in practice even when the assumption of boundedly
Lipschitz-continuous approximations is relaxed.

Other We use the idea of modifying ε between iterations
similarly to (Horak, Bosansky, and Pechoucek 2017). The
εimm for the current iteration is obtained as εimm = ε +

0.5(V̂ [b
(0)
1 , b

(0)
2] − ε). This allows the algorithm to perform

shorter trials in the initial phases of the search (when the
bounds do not provide accurate information about what parts
of the belief space to target).

Figure 2: Experimental results on the Patrolling domain for
different sizes of graph |V |. Time to reach V̂ [b

(0)
1 , b

(0)
2] ≤ 1.

We construct a compact version of the linear programs
LP(HV [b1, b2]). Namely, we consider only states, actions
and observation pairs that can be played/observed in the cur-
rent joint belief (b1, b2). Furthermore, we adopt a column
generation approach to incrementally add variables λoioj (·).
Initially, we start with one αβ-vector (and its λoioj (αβ))
for each pure belief of the opponent and we add additional
αβ-vectors once they are necessary to accurately represent
V [τ(b1o1o2), τ(b2o2o1)].

Experiments
We demonstrate the scalability of our algorithm on two
fundamentally different domains—partially observable pa-
trolling inspired by (Basilico et al. 2009) and a lasertag game
inspired by Tag from (Pineau, Gordon, and Thrun 2003). All
experiments use discount factor γ = 0.95 and were run on
Intel i7-8700K (solving 6 instances in parallel).

Patrolling The game is played by two players—the pa-
troller and the intruder. The patroller moves between ver-
tices V of a graph G = (V,E) and attempts to locate an in-
truder before the intruder succeeds in causing damage. The
intruder starts initially outside of the graph and observes the
position of the patroller whenever he steps on one of the
observable vertices O ⊆ V (otherwise the position of the
patroller remains hidden). The intruder may decide to attack
any target vertex v ∈ T , T ⊆ O. Once the intruder decides
to attack, he has to stay undetected in the chosen vertex v for
t× time steps to complete his attack and get a reward c(v).

In our experimental evaluation, we consider t× = 3 and
t× = 4 and generate random graphs from the Dorogovtsev-
Mendes model such that the shortest cycle covering all tar-
gets is longer than t× (i.e., the patroller cannot cover the
targets perfectly). There are |T | = dV/4e targets and |O| =
d2V/3e observable nodes. The costs c(v) of targets are gen-
erated uniformly from the [70, 100] interval. Figure 2 sum-
marizes the runtime of our algorithm on 200 randomly gen-
erated instances of Patrolling (time to reach precision 1, i.e.,
1% of the maximum cost, is reported). All instances have
been solved within 10 hours, while 97 instances with t× = 3
out of 100 and 82 instances with t× = 4 out of 100 have
been solved in less than 20 minutes.

Lasertag The game is played by two players—the tagger
and the evader—on a grid. In each time step, the players can

decide to move to an adjacent square (free of an obstacle),
or, the tagger can additionally shoot a laser beam either hori-
zontally or vertically (which is effective until hitting the first
obstacle). If the beam tags the evader, the tagger receives a
reward +10 and the game ends, otherwise his reward is−10
and the game continues. Unless the tagger decides to use the
laser beam, his reward is −1 in each step. Hence, the tag-
ger attempts to terminate the game by tagging the adversary
as quickly as possible. Neither player knows the position of
each other until the tagger decides to shoot when the evader
can observe the light ray (and thus deduce possible positions
of the tagger).

We consider lasertag games played on a 4× 4 grid with 3
obstacles where the tagger starts in the top-left corner, while
the evader starts at position (3, 4) next to the opposite cor-
ner. The obstacles are placed randomly while guaranteeing
the existence of a path between the players (we discard sym-
metrical instances). We ran the algorithm with ε = 0.05 for
5 hours. While the algorithm did not terminate within this
limit on 16 out of 20 instances, the average excess gap in
the initial belief relative to the value of the lower bound was
10%±2.6% (where the confidence interval marks standard
error). For grid size 3× 3, all non-symmetric instances with
players starting in opposite corners have been solved in less
than 8 seconds.

Analysis We provide a detailed analysis of the perfor-
mance of the algorithm for two instances of patrolling, an
11-vertex instance with t× = 4 solved in 307s and a 13-
vertex instance with t× = 4 solved in 11004s. On both of
the instances, 85% of the runtime corresponds to the opera-
tions with the approximating functions (especially comput-
ing values for a joint belief), while the construction and solv-
ing LP(HV [b1, b2]) took only 10% of the runtime. The re-
maining 5% of the runtime corresponds to the pruning step,
initiated 95 times on the larger instance within the 1556 it-
erations. The pruning eliminated 22126 αβ-vectors out of
50404 generated on the larger instance. Unlike in the pa-
trolling domain, on a lasertag instance solved in 9337s the
pruning was much more frequent (approximately one prun-
ing per 6 iterations) and considerably more demanding (took
22% of runtime).

Conclusions
We present a subclass of partially observable stochastic
games (POSGs) where the observations are publicly observ-
able by the players. We provide the formal definition of such
games and a novel, practical algorithm with proven conver-
gence to approximately solve games in this class. Our algo-
rithm is, to the best of our knowledge, the first practical gen-
eral algorithm to solve a broad subclass of infinite-horizon
games where both players lack information about the game
state.

There is a large volume of possible future work. One di-
rection is to adopt recent advancements from single-player
POMDPs and apply them to the class of POSGs to improve
scalability. Next, one can fine-tune representation of value
functions and their initialization for specific games in se-
curity domains (e.g., in cybersecurity) to solve much larger

instances that correspond to real-world problems. Another
way is to generalize the approach presented in this paper and
relax some of the assumptions made: (1) adapt the approach
for objective functions different from the discounted sum of
rewards or (2) relax the factorization over the states.

Acknowledgments
This research was sponsored by the OP VVV MEYS funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 ”Research Cen-
ter for Informatics” and the Army Research Laboratory,
and was accomplished under Cooperative Agreement Num-
ber W911NF-13-2-0045 (ARL Cyber Security CRA). The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding
any copyright notation here on.

References
Basilico, N.; Gatti, N.; Rossi, T.; Ceppi, S.; and Amigoni, F.
2009. Extending Algorithms for Mobile Robot Patrolling in
the Presence of Adversaries to More Realistic Settings. In
IEEE/WIC/ACM International Joint Conference on Web Intel-
ligence and Intelligent Agent Technology.
Basilico, N.; Gatti, N.; and Amigoni, F. 2009. Leader-follower
strategies for robotic patrolling in environments with arbitrary
topologies. In AAMAS.
Basilico, N.; Nittis, G. D.; and Gatti, N. 2016. A Security
Game Combining Patrolling and Alarm–Triggered Responses
Under Spatial and Detection Uncertainties. In AAAI.
Basu, A., and Stettner, L. 2015. Finite- and infinite-horizon
shapley games with nonsymmetric partial observation. SIAM
Journal on Control and Optimization 53(6):3584–3619.
Brazdil, T.; Kucera, A.; and Rehak, V. 2018. Solving Patrolling
Problems in the Internet Environment. In IJCAI.
Brown, N.; Sandholm, T.; and Amos, B. 2018. Depth-Limited
Solving for Imperfect-Information Games. In NIPS.
Chatterjee, K., and Doyen, L. 2014. Partial-observation
stochastic games: How to win when belief fails. ACM Transac-
tions on Computational Logic 15(2):16.
Chung, T. H.; Hollinger, G. A.; and Isler, V. 2011. Search
and pursuit-evasion in mobile robotics. Autonomous robots
31(4):299–316.
Cole, H. L., and Kocherlakota, N. 2001. Dynamic games with
hidden actions and hidden states. Journal of Economic Theory
98(1):114–126.
Durkota, K.; Lisý, V.; Kiekintveld, C.; Horák, K.; Bošanský,
B.; and Pevný, T. 2017. Optimal Strategies for Detecting Data
Exfiltration by Internal and External Attackers. In GameSec.
Fang, F.; Nguyen, T. H.; Pickles, R.; Lam, W. Y.; Clements,
G. R.; An, B.; Singh, A.; Tambe, M.; and Lemieux, A. 2016.
Deploying PAWS: Field optimization of the protection assistant
for wildlife security. In AAAI.
Fang, F.; Stone, P.; and Tambe, M. 2015. When Security Games
Go Green: Designing Defender Strategies to Prevent Poaching
and Illegal Fishing. In IJCAI.

Ghosh, M. K.; McDonald, D.; and Sinha, S. 2004. Zero-Sum
Stochastic Games with Partial Information. Journal of Opti-
mization Theory and Applications 121(1):99–118.
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic Programming for Partially Observable Stochastic
Games. In AAAI.
Horak, K., and Bosansky, B. 2016. A Point-Based Approximate
Algorithm for One-Sided Partially Observable Pursuit-Evasion
Games. In GameSec.
Horak, K.; Bosansky, B.; and Pechoucek, M. 2017. Heuris-
tic Search Value Iteration for One-Sided Partially Observable
Stochastic Games. In AAAI.
Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Ordóñez, F.; and
Tambe, M. 2009. Computing optimal randomized resource
allocations for massive security games. In AAMAS.
Kumar, A., and Zilberstein, S. 2009. Dynamic programming
approximations for partially observable stochastic games. In
FLAIRS.
MacDermed, L. C. 2013. Value Methods for Efficiently Solv-
ing Stochastic Games of Complete and Incomplete Information.
Ph.D. Dissertation, Georgia Institute of Technology.
Moravcik, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. DeepStack: Expert-Level Artificial Intelligence in
No-Limit Poker. Science 356(6337).
Nguyen, T. H.; Wellman, M. P.; and Singh, S. 2017. A Stack-
elberg Game Model for Botnet Data Exfiltration. In GameSec.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value
iteration: An anytime algorithm for POMDPs. In IJCAI.
Pita, J.; Jain, M.; Marecki, J.; Ordóñez, F.; Portway, C.; Tambe,
M.; Western, C.; Paruchuri, P.; and Kraus, S. 2008. Deployed
ARMOR protection: the application of a game theoretic model
for security at the Los Angeles International Airport. In AA-
MAS.
Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; Direnzo,
J.; Meyer, G.; Baldwin, C. W.; Maule, B. J.; and Meyer, G. R.
2012. PROTECT : A Deployed Game Theoretic System to Pro-
tect the Ports of the United States. In AAMAS.
Smith, T., and Simmons, R. 2004. Heuristic search value itera-
tion for POMDPs. In UAI.
Vanek, O.; Yin, Z.; Jain, M.; Bosansky, B.; Tambe, M.; and Pe-
choucek, M. 2012. Game-theoretic Resource Allocation for
Malicious Packet Detection in Computer Networks. In AAMAS.
von Neumann, J. 1928. Zur theorie der gesellschaftsspiele.
Mathematische Annalen 100(1):295–320.
Vorobeychik, Y.; An, B.; Tambe, M.; and Singh, S. P. 2014.
Computing Solutions in Infinite-Horizon Discounted Adversar-
ial Patrolling Games. In ICAPS.

APPENDIX E

166

Appendix F

Sequence-Form Algorithm for
Computing Stackelberg Equilibria in
Extensive-Form Games

Sequence-Form Algorithm for Computing Stackelberg Equilibria in
Extensive-Form Games

Branislav Bošanský1,2, Jiřı́ Čermák1

1 Agent Technology Center, Faculty of Electrical Engineering, Czech Technical University in Prague
2 Computer Science Department, Aarhus University
bosansky@cs.au.dk, jiri.cermak@agents.fel.cvut.cz

Abstract

Stackelberg equilibrium is a solution concept prescribing for
a player an optimal strategy to commit to, assuming the op-
ponent knows this commitment and plays the best response.
Although this solution concept is a cornerstone of many se-
curity applications, the existing works typically do not con-
sider situations where the players can observe and react to
the actions of the opponent during the course of the game.
We extend the existing algorithmic work to extensive-form
games and introduce novel algorithm for computing Stackel-
berg equilibria that exploits the compact sequence-form rep-
resentation of strategies. Our algorithm reduces the size of the
linear programs from exponential in the baseline approach to
linear in the size of the game tree. Experimental evaluation
on randomly generated games and a security-inspired search
game demonstrates significant improvement in the scalability
compared to the baseline approach.

Introduction
Solving games and computing game-theoretic solutions is
one of the key topics of artificial intelligence. The best
known solution concepts in game theory is Nash equilibrium
that prescribes optimal strategy profile (one strategy for each
player) such that no player can gain anything by unilaterally
changing their strategy. However, a line of research that an-
alyzes two-player games where the first player (termed the
leader) is able to commit to a publicly known strategy before
the other player (termed the follower) moves has received
a significant focus in recent years. This solution concept is
known as Stackelberg (or leader-follower) equilibrium (von
Stackelberg 1934; Leitmann 1978; von Stengel and Zamir
2004) and it is a cornerstone of many security applications
of game theory. The examples include airport security (Pita
et al. 2008), assigning Air Marshals to flights (Tsai et al.
2009), or protecting the coast (Shieh et al. 2012).

Most of the existing applications of Stackelberg equilibria
(SE) typically focus on single-step normal-form or Bayesian
games where the players do not learn anything during the
course of the game – the players are not able to observe
the actions performed by the opponent and cannot react to
this information. Such an assumption can be too strong in
practice, since conditioning the strategies of the players by

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the current development in the game can be desirable (e.g.,
security procedures based on a suspicious behavior). Game
theory provides representation for modeling finite sequential
interactions between the players known as extensive-form
games (EFGs). This model is sufficiently generic to repre-
sent uncertainty in observation (i.e., players are not able to
perfectly observe the current state of the game), or stochastic
environment.

The problem of computing SE in EFGs has been studied
from the computational perspective and it was shown that
computing SE in extensive-form games with imperfect in-
formation and stochastic events is NP-hard (Letchford and
Conitzer 2010). However, a tailored algorithm for comput-
ing an exact SE in EFGs is currently missing. A baseline ap-
proach is thus to transform an EFG to a single step normal-
form game and use one of the existing approaches based
on computing multiple linear programs (LPs) (Conitzer and
Sandholm 2006), or formulating the problem as a mixed-
integer linear program (MILP) (Paruchuri et al. 2008). This
transformation is, however, exponential and we show that
the scalability of the baseline approach is very limited.

This paper aims to address this issue and provides the first
specific algorithm for computing SE in two player EFGs.
Our approach exploits the compact representation of strate-
gies known as the sequence form (Koller, Megiddo, and von
Stengel 1996; von Stengel 1996). We generalize two exist-
ing algorithms for computing SE in single-step games and
introduce two variants of our novel algorithm: (1) based on
solving multiple LPs, and (2) based on reformulating the
problem as a MILP. Moreover, the size of our MILP is linear
in the size of the game, and it contains only binary integer
variables; hence, it provides an upper bound on the com-
putational complexity of the problem of computing SE and
shows that it is an NP-complete problem (Karp 1971).

We first give necessary technical background on EFGs,
Nash and Stackelberg solution concepts, following by the
description of the existing algorithms for computing each
of these concepts. Next, we describe our novel algorithm
that exploits the sequence form for computing SE in EFGs.
Finally, we experimentally demonstrate the scalability of
our algorithm on randomly generated games and a security-
inspired search game. The results show that our MILP al-
gorithm is significantly faster and can solve games several
magnitudes larger compared to the baseline approach.

Technical Background
Extensive-form games (EFGs) model sequential interactions
between the players and can be visually represented as game
trees. Nodes in the game tree represent the states of the
game; each state of the game corresponds to a sequence of
moves executed by all players in the game. Each node is as-
signed to a player that acts in the game state associated with
this node. An edge from a node corresponds to an action that
can be performed by the player who acts in this node. EFGs
model limited observations of the players by grouping cer-
tain nodes into information sets; a player cannot distinguish
between nodes that belong to the same information set. The
model also represents uncertainty about the environment and
stochastic events by using a special Nature player.

Formally, a two-player EFG is defined as a tuple G =
(N,H,Z,A, ρ, u, C, I): N = {1, 2} is a set of two players;
we use i to refer to one of the two players (either 1 or 2),
and−i to refer to the opponent of i.H denotes a finite set of
nodes in the game tree. Each node corresponds to a unique
history of actions taken by all players and Nature from the
root of the game; hence, we use the terms history and node
interchangeably. We denote byZ ⊆ H the set of all terminal
nodes of the game. A denotes the set of all actions and we
overload the notation and use A(h) ⊆ A to represent the set
of actions available to the player acting in node h ∈ H . We
specify ha = h′ ∈ H to be node h′ reached from node h by
performing action a ∈ A(h). For each terminal node z ∈ Z
we define a utility function for each player i (ui : Z → R).

The function ρ : H → N ∪ {c} assigns each node to
a player who takes an action in the node, where c means
that the Nature player selects an action in the node based on
a fixed probability distribution known to all players. We use
function C : H → [0, 1] to denote the probability of reaching
node h due to Nature (i.e., assuming that both players play
all required actions to reach node h). The value of C(h) is
defined to be the product of the probabilities assigned to all
actions taken by the Nature player in history h.

Imperfect observation of player i is modeled via infor-
mation sets Ii that form a partition over the nodes assigned
to player i {h ∈ H : ρ(h) = i}. Every information set
contains at least one node and each node belongs to exactly
one information set. Nodes in an information set of a player
are not distinguishable to the player. All nodes h in a sin-
gle information set Ii ∈ Ii have the same set of possible
actions A(h); hence, an action a from A(h) uniquely identi-
fies information set Ii and there cannot exist any other node
h′ ∈ H that does not belong to information set Ii and for
which a is allowed to be played (i.e., a ∈ A(h′)). We over-
load the notation and use A(Ii) to denote the set of actions
defined for each node h in this information set. We assume
perfect recall, which means that players perfectly remem-
ber their own actions and all information gained during the
course of the game. As a consequence, all nodes in any in-
formation set Ii have the same history of actions for player i.

Strategies and Solution Concepts in EFGs
Solving a game implies finding a strategy profile (i.e., one
strategy for each player) that satisfies conditions given by

a specific solution concept. Pure strategies (denoted as Πi)
correspond to assignments of exactly one action for each in-
formation set. A mixed strategy is a probability distribution
over the set of all pure strategies of a player. We denote by
∆i the set of all mixed strategies of player i. For any pair of
strategies δ ∈ ∆ = (∆1,∆2) we use ui(δ) = ui(δi, δ−i) for
the expected outcome of the game for player i when players
follow strategies δ. A best response of player i to the oppo-
nent’s strategy δ−i is a strategy δBRi = BRi(δ−i), for which
ui(δ

BR
i , δ−i) ≥ ui(δ′i, δ−i) for all strategies δ′i ∈ ∆i.

Nash equilibrium (NE) is the best known solution concept
in game theory and it describes the behavior of agents under
certain assumptions about their rationality. In a Nash equi-
librium, every player plays a best response to the strategies
of the other players. Formally, a strategy profile δ = (δ1, δ2)
is a NE if and only if for each player i it holds that δi is a
best response to δ−i (i.e., ∀i ∈ N δi = BRi(δ−i)).

In the Stackelberg setting, the first player commits to a
certain strategy δ1 that is observed by the second player
that plays a pure best response π2 to this strategy (π2 =
BR2(δ1)). Two strategies (δ1, π2) are in a Stackelberg equi-
librium (SE) if π2 = BR2(δ1) and the expected utility of
the leader is maximal (i.e., ∀δ′1 ∈ ∆1,∀π′2 ∈ Π2 such that
π′2 = BR2(δ′1) it holds u1(δ1, π2) ≥ u1(δ′1, π

′
2)). In case

player 2 has multiple possible best response strategies, we
assume the ties are broken in favor of player 1. This as-
sumption is common in the literature and the equilibrium
is called Strong Stackelberg Equilibrium (SSE) (Leitmann
1978; Conitzer and Sandholm 2006; Paruchuri et al. 2008;
Yin et al. 2010).

Sequence-Form and Computing NE in EFGs
Strategies in EFGs with perfect recall can be compactly rep-
resented by using the notion of sequences (Koller, Megiddo,
and von Stengel 1996; von Stengel 1996). A sequence σi is
an ordered list of actions taken by a single player i in history
h. The number of actions (i.e., the length of sequence σi) is
denoted as |σi|, the empty sequence (i.e., a sequence with
no actions) is denoted as ∅. The set of all possible sequences
for player i is denoted by Σi. A sequence σi ∈ Σi can be
extended by a single action a taken by player i, denoted by
σia = σ′i. In games with perfect recall, all nodes in an infor-
mation set Ii share the same sequence of actions for player
i and we use seqi(Ii) to denote this sequence. We overload
the notation and use seqi(h) to denote the sequence of ac-
tions of player i leading to node h. Since action a uniquely
identifies information set Ii and all nodes in an information
set share the same history, each sequence uniquely identifies
an information set. We use the function infi(σ′i) to denote
the information set in which the last action of the sequence
σ′i is taken. For an empty sequence, function infi(∅) denotes
the information set of the root node. A mixed strategy of a
player can now be represented as a probability distribution
over the sequences and it is called a realization plan (de-
noted ri : Σi → R). A realization plan for a sequence σi
is the probability that player i will play this sequence of ac-
tions under the assumption that the opponent plays in a way
which allows the actions specified in σi to be played.

When the strategies are represented as realization plans,
we can compute a Nash equilibrium of a two-player general-
sum extensive-form game using a linear complimentary pro-
gram (LCP) of a polynomial size in the size of the game tree
using the sequence form (Koller, Megiddo, and von Stengel
1996; von Stengel 1996). To describe the program we need
to define payoff function gi : Σ→ R that extends the utility
function to all nodes in the game tree. The payoff function
gi represents the expected utility of all nodes reachable by
sequentially executing the actions specified in a pair of se-
quences σ:

gi(σi, σ−i) =
∑

h∈Z : ∀j∈N σj=seqj(h)

ui(h) · C(h) (1)

The value of the payoff function is defined to be 0 if no leaf
is reachable by sequentially executing all of the actions in
the sequences σ – i.e., either all actions from the pair of se-
quences σ are executed and an inner node h ∈ H \ Z is
reached, or there is no further action that can be executed
from a node that is reached during the execution of the se-
quences. We say that a pair of sequences σ is compatible if
there exists a node h ∈ H such that sequence σi of every
player i equals to seqi(h). Now, the equilibrium realization
plans can be computed using the following feasibility LCP
(e.g., see (Shoham and Leyton-Brown 2009) p. 135):

vinfi(σi) = sσi +
∑

I′i∈Ii:seqi(I
′
i)=σi

vI′i +
∑

σ−i∈Σ−i

gi(σi, σ−i) · r−i(σ−i)

∀i ∈ N ∀σi ∈ Σi
(2)

ri(∅) = 1 ∀i ∈ N (3)

ri(σi) =
∑

a∈A(Ii)

ri(σia) ∀i ∈ N ∀Ii ∈ Ii, σi = seqi(Ii) (4)

0 = ri(σi) · sσi ∀i ∈ N ∀σi ∈ Σi (5)
0 ≤ ri(σi) ; 0 ≤ sσi ∀i ∈ N ∀σi ∈ Σi (6)

Constraints (2) ensure that the expected value vIi in each
information set of player i equals to the value of the best
response in this information set for player i against the strat-
egy of the opponent −i (i.e., for each action applicable in
information set Ii, vIi is greater than sum of all expected
values of information sets and leafs reachable after playing
an action in this information set). Note that in our formu-
lation we represent the inequality as an equality with slack
variables sσi ; there is one positive slack variable for each
sequence of each player σi. We use this representation as
it would be convenient for our novel algorithms to operate
with these constraints by using the slack variables.

Constraints (3-4) ensure that the realization plans of both
players satisfy the network-flow constraints: the probability
of reaching information set Ii using sequence σi = seqi(Ii)
must be equal to the sum of probabilities of sequences ex-
tended by actions a defined in Ii (a ∈ A(Ii)).

Finally, there are complementary slackness conditions
(constraints (5)) stating that a sequence σi is either never
played (i.e., ri(σi) = 0) or slack variable sσi = 0, which en-
sures that sequence σi is part of the best response for player i
ensured by the constraint (2).

Existing Algorithms for Computing SSE

We now focus on the Stackelberg setting and fix the roles
of the two players. Player 1 is the leader that commits to a
strategy. Player 2 is the follower that plays the best response
to the strategy of the leader. The baseline algorithm for com-
puting SSE in single-step normal-form games (NFGs), intro-
duced by (Conitzer and Sandholm 2006), is based on solv-
ing multiple linear programs – for every pure strategy of
the follower π2 ∈ Π2 we can compute a mixed strategy for
the leader δπ2

1 such that (1) playing π2 is the best response
of the follower against δπ2

1 (i.e., BR2(δπ2
1) = π2) and (2)

δπ2
1 is such that it maximizes expected utility of the leader.

Such a mixed strategy δπ2
1 can be found using linear pro-

gram; hence, the baseline algorithm calculates |Π2| linear
programs, and for each pure strategy of the leader the al-
gorithm computes δπ2

1 and the expected utility of the leader
u1(δπ2

1 , π2). Finally the algorithm selects such strategy pro-
file (δ

π∗2
1 , π∗2) for which the expected utility u1 is maximal.

Often, certain pure strategies of the follower can never be
best responses (e.g., strictly dominated strategies), in which
case the LPs for these pure strategies are not feasible.

Follow-up works primarily focused on the Bayesian set-
ting, where the leader is playing against one of pos-
sible followers with different preferences. Although the
work (Conitzer and Sandholm 2006) showed that finding
SSE in Bayesian games is NP-hard, new algorithms were
able to scale to real-world scenarios. First successful al-
gorithm was based on mixed-integer linear programming
(MILP) introduced in (Paruchuri et al. 2008). The main ad-
vantage of the MILP formulation is in avoiding the expo-
nential Harsanyi transformation of a Bayesian game into a
normal-form game. New algorithms that followed were in-
spired by column/constraint generation techniques that re-
strict the number of linear programs to be solved in multiple
LPs approach exploiting hierarchical consideration of the
types of the follower (Jain, Tambe, and Kiekintveld 2011),
and more tight calculation of bounds by using convex hull
relaxation and Bender’s decomposition in (Yin and Tambe
2012). Large volume of works focused on more specific
game models including security games (Kiekintveld et al.
2009; Tambe 2011), or patrolling games (Basilico, Gatti, and
Amigoni 2009; Vorobeychik, An, and Tambe 2012).

Described baseline algorithms could be, in principle, ap-
plied also for solving EFGs – we can transform any EFG into
a NFG using the concept of pure and mixed strategies. How-
ever, since the number of pure strategies is exponential, the
baseline algorithm would have to solve exponentially many
LPs (one LP for each pure strategy of the follower). More-
over, to ensure that the currently fixed strategy of the fol-
lower is the best response, each LP would be of an exponen-
tial size (exponentially many constraints, one constraint for
each pure strategy of the follower). Therefore, the scalability
of such approach is very limited.

In the next section we therefore introduce a new algorithm
that builds on the existing algorithms for computing SSE,
however, that directly exploits the compact representation
of strategies using the sequence form.

Sequence-Form for SSE in EFGs
We first describe the modification of the baseline algorithm
for computing Strong Stackelberg Equilibrium (SSE) based
on solving multiple LPs. We introduce a novel LP that for
a fixed pure strategy of the follower π2 computes a mixed
strategy δ1 satisfying 2 conditions required for the SSE: (1)
π2 is the best response to δ1 and (2) δ1 is such that the ex-
pected utility for the leader is maximal. Afterwards we ex-
tend this LP and formulate a MILP for computing SSE in
EFGs. For each algorithm, we first describe the key ideas
leading to the formulation, following by the complete listing
of all the constraints of the mathematical programs.

Multiple Sequence-Form LPs for SSE
Our algorithm exploits the compact sequence form and rep-
resents the strategy of both players as realization plans. First,
the realization plan of the leader r1 needs to satisfy the
network-flow constraints (3-4). Next, let us denote ΣBR2 se-
quences of the follower that correspond to the pure realiza-
tion plan of the follower (i.e., the sequences that are played
with probability 1 in the fixed pure realization plan of the
follower π2). The algorithm needs to ensure that the realiza-
tion plan of the leader is such that the sequences in ΣBR2 are
the best response to r1. To do this, the algorithm exploits the
constraint (2); there will be one such constraint for each se-
quence of the follower σ2 ∈ Σ2. To ensure that sequences
from ΣBR2 form the best response, we strictly set slack vari-
ables sσ2

to be equal to zero for sequences in ΣBR2 . Such
tightening of the slack variables causes the expected utility
value for a certain information set to be equal to the expected
utility gained by playing actions corresponding to sequences
in ΣBR2 . More precisely, consider a sequence σ2 ∈ ΣBR2 ,
where the last action of the sequence, a, is applicable in
information set I = inf2(σ2) (i.e., ∃σ′2 ∈ ΣBR2 such that
σ2 = σ′2a). Now, if a slack variable sσ2 is forced to be zero,
then it holds

vI =
∑

I′2∈I2:seq2(I′2)=σ2

vI′2 +
∑

σ1∈Σ1

g2(σ2, σ1) · r1(σ1) (7)

For any other action applicable in I (i.e., ∀b ∈ A(I) a 6= b)
the constraints for sequences σ′2b have a positive slack vari-
able. Therefore, the realization plan of the leader r1 must
be such that the expected value of the right side in this con-
straint gained by actions b must be less or equal to vI be-
cause the expected value of the right side of the constraint
can be only increased with a positive slack variable. This
restriction, however, corresponds to the fact that action a is
best to be played in information set I . Since this holds for
all sequences in ΣBR2 and these sequences correspond to a
pure realization plan for the follower, the instantiations of
constraints (2) restrict the strategy of the leader r1 such that
ΣBR2 is the best response of the follower.

Finally, we need to specify the objective function. Since
we have variables representing the realization plan of the
leader r1 and fixed set of sequences of the opponent ΣBR2 ,
we can simply calculate an expected utility for the leader
using function g1 only for the sequences in ΣBR2 . We thus
arrive to the final formulation of the linear program for com-
puting the desired realization plan for the leader:

max
r1,vI ,sσ

∑

σ1∈Σ1

∑

σ2∈ΣBR2

r1(σ1)g1(σ1, σ2) (8)

vinf2(σ2) = sσ2 +
∑

I′∈I2:seq2(I′)=σ2

vI′ +
∑

σ1∈Σ1

r1(σ1)g2(σ1, σ2)

∀σ2 ∈ Σ2

(9)

r1(∅) = 1 (10)
0 ≤ r1(σ1) ∀σ1 ∈ Σ1 (11)

r1(σ1) =
∑

a∈A(I1)

r1(σ1a) ∀I1 ∈ I1, σ1 = seq1(I1) (12)

0 ≤ sσ2 ∀σ2 ∈ Σ2 (13)

0 = sσ2 ∀σ2 ∈ ΣBR2 (14)

Note that the sequences in ΣBR2 must form a complete
pure realization plan of the follower; hence, the set must
be non-empty (empty sequence is always in ΣBR2) and ev-
ery sequence in ΣBR2 must also have a continuation se-
quence in ΣBR2 if possible. Formally, if there is a sequence
σ2 ∈ ΣBR2 and there exists an information set I ∈ I2

such that seq2(I) = σ2 then there must exist exactly one
sequence σ′2 ∈ ΣBR2 such that inf2(σ′2) = I . This con-
dition ensures that for every information set reachable un-
der the assumption the follower is playing realization plan
corresponding to ΣBR2 , there is at least one slack variable
forced to be zero. Violating this condition causes the LP to
return incorrect results since values vI could be arbitrarily
increased using slack variables without restricting the real-
ization plan of the leader.

By exploiting the sequence-form representation we
avoided the exponential number of constraints. Instead of
having one constraint for each possible strategy (to ensure
that currently selected is the best response), we have a single
constraint for each sequence of the follower. The presented
LP is thus of a linear size to the size of the game tree. How-
ever, the algorithm would still need to solve exponentially
many of such LPs (one for each pure realization plan of the
follower) to compute SSE. To further improve the algorithm,
we can exploit the reformulation using mixed-integer linear
programming (MILP).

Sequence-Form MILP for Computing SSE
Similarly to work in Bayesian games (Paruchuri et al. 2008),
we can reformulate the problem of solving Stackelberg equi-
librium as a MILP. Since the best response of the follower
is only in pure strategies, we can represent the strategy of
the follower as a pure realization plan with binary variables
r2 : Σ2 → {0, 1}. The realization plans are restricted as
usual and the network-flow constraints (3-4) apply. We again
use the same idea of enforcing certain slack variables sσ2 to
be equal to zero for the sequences used in the realization plan
of the follower. However, since the realization plan of the
follower is not fixed but it is represented with variables r2,
we need to force slack variables sσ2

= 0 whenever r2(σ2)
equals to 1. Since r2 are binary variables, we can use the
following constraint to ensure this:

0 ≤ sσ2
≤ (1− r2(σ2)) ·M (15)

where M is a large constant. Now, using the constraint (9)
we restrict variables r1 and r2 such that r2 = BR2(r1).

Finally, we need to modify the objective function, since
the strategy of the follower is no longer fixed. The main idea
is to use a new variable p that semantically corresponds to
the probability distribution over leafs in the game tree con-
sidered the strategy of both players. Such a probability cor-
responds to a multiplication of variables r1 and r2. However,
since the r2 are binary variables we do not need to use mul-
tiplication. Consider a leaf z ∈ Z and assume sequences σ1

and σ2 lead to this leaf for the leader and the follower re-
spectively (i.e., by executing the actions in these sequences,
leaf z is reached). Then, the value p(z) is either equal to
r1(σ1) (when the follower plays σ2 with probability 1), or it
is equal to 0 otherwise (the follower is not playing σ2). We
can ensure this behavior with a set of linear constraints (see
below, constraints (21-23)). Putting all together, we arrive to
the formulation of the problem of computing SSE for EFGs
as a MILP (note, that the presented MILP has linear size to
the size of the game tree, with only |Σ2| binary variables):

max
p,r,v,s

∑

z∈Z
p(z)u1(z)C(z) (16)

vinf2(σ2) = sσ2 +
∑

I′∈I2:seq2(I′)=σ2

vI′ +
∑

σ1∈Σ1

r1(σ1)g2(σ1, σ2)

∀σ2 ∈ Σ2

(17)

ri(∅) = 1 ∀i ∈ N (18)

ri(σi) =
∑

a∈Ai(Ii)
ri(σia) ∀i ∈ N ∀Ii ∈ Ii, σi = seqi(Ii)

(19)

0 ≤ sσ2 ≤ (1− r2(σ2)) ·M ∀σ2 ∈ Σ2 (20)
0 ≤ p(z) ≤ r2(seq2(z)) ∀z ∈ Z (21)
0 ≤ p(z) ≤ r1(seq1(z)) ∀z ∈ Z (22)

1 =
∑

z∈Z
p(z)C(z) (23)

r2(σ2) ∈ {0, 1} ∀σ2 ∈ Σ2 (24)
0 ≤ r1(σ1) ≤ 1 ∀σ1 ∈ Σ1 (25)

Experiments
We now turn to the experimental evaluation to demonstrate
the scalability of our algorithm. We evaluate both variants
of our algorithm – first variant with multiple LPs (denoted
MULTILP), and the second variant with MILP – against the
baseline approaches based on the transformation of EFGs
into the normal form, denoted as EXPMULTILP (Conitzer
and Sandholm 2006) and DOBBS (Paruchuri et al. 2008).

The main factor determining the complexity of the game
is the size of the strategy space of the follower, since it plays
a crucial part in the algorithms – one LP is solved for each
pure realization plan of the follower in MULTILP, and the
number of binary variables depends on the number of se-
quences of the follower in MILP. We analyze the scalability
of the algorithms in two different settings: (1) a security-
inspired search game (inspired by (Bosansky et al. 2013))
with a very large strategy space of the leader, while the strat-
egy space of the follower is very small, and (2) randomly

generated extensive-form games. While the first scenario al-
lows us to scale to large game trees, the strategy space is
more balanced in the second scenario and we analyze the
scalability with respect to the increasing number of realiza-
tion plans of the follower.

Experiment Settings
We use a domain-independent implementation of all algo-
rithms and IBM CPLEX 12.5 for solving LPs and MILPs.

Search Game The search game is played on a directed
graph (see Figure 1). The follower aims to reach one of the
destination nodes (D1 – D3) from starting node (E), while
the leader aims to encounter the follower with one of the two
units operating in the shaded areas of the graph (P1 and P2).
The follower receives different reward for reaching differ-
ent destination node (the reward is randomly selected from
interval [1, 2]). The leader receives positive reward 1 for cap-
turing the follower. The follower leaves tracks in the visited
nodes that can be discovered if the leader visits the node later
in the game, but the follower can decide to erase the tracks
in the current node (it takes one turn of the game).

Randomly Generated Games We use randomly gener-
ated games, where in each state of the game the number of
available actions is randomly generated up to a given pa-
rameter {2, . . . ,maxA}. Each action leads to a state where
the opponent is to move and also generates an observation
for the opponent. Observation is a number from a limited
set {1, . . . ,maxO} and determines partitioning of the nodes
into the information sets – for player i, the nodes h with the
same history of moves seqi(h) and the observations gener-
ated by the actions of the opponent −i belong to the same
information set. We generate the games of differing sizes by
varying parameters maxA = {3, 4, 5}, maxO = {2, 3, 4},
and depth of the game (up to 5 actions for each player). The
utility values for players in leafs are assigned randomly from
interval [−5, 5]. Finally, we are also interested in the effects
of the correlation between the utility values on the perfor-
mance of the algorithms (i.e., the utility values are gener-
ated to have a certain correlation factor; correlation −1 cor-
responds to zero-sum games, 1 to identical utility functions).

Results
Search Game The results on the search game (see the table
in Figure 1) show that our algorithm outperforms the base-
line approaches by several orders of magnitude. We scale
the game by increasing the number of steps in the game. All
algorithms were able to find the solution for 5 steps – it took
EXPMULTILP more than 2 hours to compute the solution,
while our MILP solved the game in slightly over 11 min-
utes. Making another step was possible only for our MILP
that solved the largest instance in 6.3 hours. The size of this
instance was 8.6×105 nodes with 470 pure realization plans
of the follower. This results demonstrate the ability of using
our MILP algorithm in sequential security scenarios where
a large strategy space of the leader, caused by deploying and
scheduling multiple resources, is more common.

Randomly Generated Games The results on random
games confirm the dominance of our algorithm (see Fig-
ure 2). The left graph compares computation times of our

Algs \ Steps 4 5 6
EXPMULTILP 89 7,764 -
DOBBS 122 3,067 -
MULTILP 41 2,485 -
MILP 19 676 22,847

Figure 1: (Left) Graph for the search game, where the leader
operates two units in the shaded areas, while the follower
is planning to cross the area unobserved. (Right) Computa-
tion times (in seconds) for the search game with increasing
number of steps in the game.

variants with the baseline approaches. Reported values are
means out of 20 games, the standard error was always very
small compared to the mean value and the differences be-
tween the algorithms (not visible in the graph). The results
show that even a slight increase in the number of realization
plans causes the baseline approaches to perform extremely
slowly (note the logarithmic y-scale). Even relatively small
games with 4000 realization plans of the follower take EXP-
MULTILP more than 80 minutes to solve, while our MILP
solves such games in 225 miliseconds.

Therefore we further scaled the games comparing only
our variants (the right graph in Figure 2, note that both scales
are logarithmic). The depicted results are means of at least
100 different games, the standard error was again marginal.
The results show that MILP is on average at least a magni-
tude faster compared to the MULTILP variant. The largest
instances MILP was able to solve contained more than 107

realization plans of the follower taking up to 2 days to solve.
The reported results are for the correlation factor set to

−0.5. When the correlation factor is decreased, it is more
difficult for the leader to maximize the utility, which is
strongly (but not absolutely) negatively correlated to the util-
ity of the follower. With the correlation set to−0.8 the com-
putation time of our MILP increases to 410ms for 4000 re-
alization plans. On the other hand, increasing the correlation
factor makes the games easier to solve (games with the cor-
relation set to −0.2 are solved in 193ms by our MILP).

Discussion
The experimental evaluation shows that our novel algorithm
dramatically outperforms the baseline approaches based on
the transformation of EFGs into the normal form. This ad-
vantage is not surprising, however, the experiments show
that our MILP algorithm is able to scale to moderately large
sequential games with up to 105 nodes, or more than 106

pure realization plans of the follower, which can be suffi-
cient for some real-world scenarios.

The comparison between the two variants of our algo-
rithm is strongly in favor of the MILP variant. The bottle-
neck of the MULTILP variant is the evaluation of each LP
for every pure realization plan of the follower, since the
algorithm currently does not use any pruning techniques,
or any iterative methods (e.g., branch-and-price or col-
umn/constraint generation methods). Using such techniques
is, however, the key behind the success of the state-of-the-
art algorithms for solving Bayesian Stackelberg games (Jain,

ExpMultiLP DOBBS MultiLP MILP

2000 4000 6000
101

102

103

104

105

106

107

Realization Plans [−]

Ti
m

e
[m

s]

101 102 103 104 105 106 107101

102

103

104

105

106

107

Realization Plans [−]

Ti
m

e
[m

s]

Figure 2: Comparison of the scalability of the exponential
baseline approaches and the variants of our algorithm.

Tambe, and Kiekintveld 2011; Yin and Tambe 2012). Un-
fortunately, exploiting the same principles in EFGs is not
straightforward due to a substantially different reason for the
exponential number of the strategies of the follower.

The main challenge stems from computing an upper
bound on the Stackelberg value for a partially instantiated
strategy of the follower (the lower bound is provided by
solving a LP for any complete strategy of the follower). Re-
call that described LPs do not work if the strategy of the
follower is not a complete realization plan. In the Bayesian
setting, a partially instantiated strategy of the follower corre-
sponds to fixing the strategy for certain types of the follower.
This provides a reasonable upper bound, since the remaining
unfixed follower types can alter the value only with respect
of their probability of appearing. The situation is different
in EFGs. Partially fixing the strategy of the follower only
restricts the achievable leafs in the game tree, but without
further assumptions on the utility structure it does not re-
strict the possible Stackelberg value for the leader in gen-
eral. A naı̈ve upper bound, the best response of the leader,
provides a very optimistic upper bound that does not im-
prove the computation times of MULTILP enhanced with a
branch-and-bound technique.

Conclusion
This paper presents a novel algorithm for computing Strong
Stackelberg equilibria in extensive-form games (EFGs) by
exploiting the compact sequence-form representation of
strategies. We provide two formulations of our algorithm:
one based on solving multiple linear programs (LPs), and
one based on mixed-integer linear program. Our novel algo-
rithm dramatically outperforms existing approaches based
on the exponential transformation of EFGs into the normal
form and allow us to solve significantly larger games.

Our work opens two important lines of research. First
of all, the presented algorithm can be a basis for creating
domain-dependent algorithms to solve large games, for ex-
ample in the security domain. Second, our variant based on
solving multiple LPs can be further improved by using it-
erative and decomposition techniques. To allow this, a new
(or domain-specific) algorithm for computing a tight upper
bound on the Stackelberg value in EFGs based on a partially
instantiated strategy of the follower must be designed.

Acknowledgments
This research was supported by the Czech Science Founda-
tion (grant no. P202/12/2054). Bosansky also acknowledges
support from the Danish National Research Foundation and
The National Science Foundation of China (under the grant
61361136003) for the Sino-Danish Center for the Theory of
Interactive Computation, and the support from the Center
for Research in Foundations of Electronic Markets (CFEM),
supported by the Danish Strategic Research Council.

References
Basilico, N.; Gatti, N.; and Amigoni, F. 2009. Leader-
follower strategies for robotic patrolling in environments
with arbitrary topologies. In Proceedings of the 8th Inter-
national Conference on Autonomous Agents and Multiagent
Systems, 57–64.
Bosansky, B.; Kiekintveld, C.; Lisy, V.; Cermak, J.; and Pe-
choucek, M. 2013. Double-oracle Algorithm for Comput-
ing an Exact Nash Equilibrium in Zero-sum Extensive-form
Games. In Proceedings of International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 335–
342.
Conitzer, V., and Sandholm, T. 2006. Computing the opti-
mal strategy to commit to. In Proceedings of the 7th ACM
conference on Electronic commerce, 82–90. ACM.
Jain, M.; Tambe, M.; and Kiekintveld, C. 2011. Quality-
bounded solutions for finite Bayesian Stackelberg games:
Scaling up. In Proceedings of the 10th International Confer-
ence on Autonomous Agents and Multiagent Systems, 997–
1004.
Karp, R. M. 1971. Reducibility among combinatorial prob-
lems. 85–103.
Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Ordóñez, F.; and
Tambe, M. 2009. Computing optimal randomized resource
allocations for massive security games. In Proceedings of
the 8th International Conference on Autonomous Agents and
Multiagent Systems, 689–696.
Koller, D.; Megiddo, N.; and von Stengel, B. 1996. Efficient
computation of equilibria for extensive two-person games.
Games and Economic Behavior 14(2):247–259.
Leitmann, G. 1978. On generalized stackelberg strategies.
Optimization Theory and Applications 26:637–643.
Letchford, J., and Conitzer, V. 2010. Computing optimal
strategies to commit to in extensive-form games. In Pro-
ceedings of the 11th ACM conference on Electronic com-
merce, 83–92. New York, NY, USA: ACM.
Paruchuri, P.; Pearce, J.; Marecki, J.; Tambe, M.; Ordonez,
F.; and Kraus, S. 2008. Playing games for security: an
efficient exact algorithm for solving Bayesian Stackelberg
games. In Proceedings of the 7th International Conference
on Autonomous Agents and Multiagent Systems, 895–902.
Pita, J.; Jain, M.; Marecki, J.; Ordóñez, F.; Portway, C.;
Tambe, M.; Western, C.; Paruchuri, P.; and Kraus, S. 2008.
Deployed ARMOR protection: the application of a game
theoretic model for security at the Los Angeles International

Airport. In Proceedings of the 7th International Conference
on Autonomous Agents and Multiagent Systems, 125–132.
Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; Di-
renzo, J.; Meyer, G.; Baldwin, C. W.; Maule, B. J.; and
Meyer, G. R. 2012. PROTECT : A Deployed Game The-
oretic System to Protect the Ports of the United States. In
International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS), 13–20.
Shoham, Y., and Leyton-Brown, K. 2009. Multiagent Sys-
tems: Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge University Press.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.
Tsai, J.; Rathi, S.; Kiekintveld, C.; Ordóñez, F.; and Tambe,
M. 2009. IRIS - A Tool for Strategic Security Allocation
in Transportation Networks Categories and Subject Descrip-
tors. In Proceedings of the 8th International Conference on
Autonomous Agents and Multiagent Systems, 37–44.
von Stackelberg, H. 1934. Marktform und gleichgewicht.
von Stengel, B., and Zamir, S. 2004. Leadership with com-
mitment to mixed strategies.
von Stengel, B. 1996. Efficient computation of behavior
strategies. Games and Economic Behavior 14:220–246.
Vorobeychik, Y.; An, B.; and Tambe, M. 2012. Adversarial
patrolling games. In Proceedings of the AAAI Spring Sym-
posium.
Yin, Z., and Tambe, M. 2012. A unified method for handling
discrete and continuous uncertainty in bayesian stackelberg
games. In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 855–862.
Yin, Z.; Korzhyk, D.; Kiekintveld, C.; Conitzer, V.; and
Tambe, M. 2010. Stackelberg vs. Nash in security games:
Interchangeability, equivalence, and uniqueness. In Pro-
ceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems, 1139–1146.

Appendix G

Computation of Stackelberg
Equilibria of Finite Sequential
Games

23

Computation of Stackelberg Equilibria of Finite
Sequential Games

BRANISLAV BOŠANSKÝ, Czech Technical University in Prague
SIMINA BRÂNZEI, Hebrew University of Jerusalem
KRISTOFFER ARNSFELT HANSEN, Aarhus University
TROELS BJERRE LUND, IT-University of Copenhagen
PETER BRO MILTERSEN, Aarhus University

The Stackelberg equilibrium is a solution concept that describes optimal strategies to commit to: Player 1 (the
leader) first commits to a strategy that is publicly announced, then Player 2 (the follower) plays a best response
to the leader’s choice. We study the problem of computing Stackelberg equilibria in finite sequential (i.e.,
extensive-form) games and provide new exact algorithms, approximation algorithms, and hardness results
for finding equilibria for several classes of such two-player games.

CCS Concepts: • Theory of computation → Algorithmic game theory; Exact and approximate com-
putation of equilibria; Problems, reductions and completeness;

Additional Key Words and Phrases: Algorithmic game theory, extensive-form games, finite sequential games,
stackelberg equilibrium, Extensive-Form Correlated Equilibrium

ACM Reference format:
Branislav Bošanský, Simina Brânzei, Kristoffer Arnsfelt Hansen, Troels Bjerre Lund, and Peter Bro Miltersen.
2017. Computation of Stackelberg Equilibria of Finite Sequential Games. ACM Trans. Econ. Comput. 5, 4,
Article 23 (December 2017), 24 pages.
https://doi.org/10.1145/3133242

The authors acknowledge support from the Danish National Research Foundation and The National Science Foundation of
China CEFC (under the grant 61361136003 CEFC) for the Sino-Danish Center for the Theory of Interactive Computation
and from the, supported by the Danish Strategic Research Council. Branislav Bošanský was also supported by the Czech
Science Foundation (grant no. 15-23235S). Simina Brânzei was also supported by ISF grant 1435/14 administered by the
Israeli Academy of Sciences and Israel-USA Bi-national Science Foundation (BSF) grant 2014389 and the I-CORE Program
of the Planning and Budgeting Committee and The Israel Science Foundation. This project has received funding from the
European Research Council (ERC) under the European Union‘s Horizon 2020 research and innovation programme (grant
agreement No 740282).
A short version of this article was published in the Proceedings of WINE 2015. This manuscript contains all the proofs not
previously published, as well as an extended introduction, discussion of related literature, and an extended example.
Authors’ addresses: B. Bošanský, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical
University in Prague; email: bosansky@agents.fel.cvut.cz; S. Brânzei, Hebrew University of Jerusalem; email: simina.
branzei@gmail.com; K. A. Hansen, Department of Computer Science, Aarhus University; email: arnsfelt@cs.au.dk; P. B.
Miltersen, Department of Computer Science, Aarhus University; email: bromille@cs.au.dk; T. B. Lund, IT-University of
Copenhagen; email: trbj@itu.dk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 ACM 2167-8375/2017/12-ART23 $15.00
https://doi.org/10.1145/3133242

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

23:2 B. Bošanský et al.

1 INTRODUCTION
The Stackelberg competition is a game theoretic model introduced by von Stackelberg (1934) for
studying market structures. The original formulation of a Stackelberg duopoly captures the sce-
nario of two firms that compete by selling homogeneous products. One firm—the leader—first de-
cides the quantity to sell and announces it publicly, while the second firm—the follower—decides
its own production only after observing the announcement of the first firm. The leader firm must
have commitment power (e.g., holds the monopoly in an industry) and cannot undo its publicly
announced strategy, while the follower firm (e.g., a new competitor) plays a best response to the
leader’s chosen strategy.

The Stackelberg competition has been an important model in economics ever since (see,
e.g., (Amir and Grilo 1999; Etro 2007; Hamilton and Slutsky 1990; Matsumura 2003; Sherali 1984;
van Damme and Hurkens 1999)), while the solution concept of a Stackelberg equilibrium has been
studied in a rich body of literature in computer science, with a number of important real-world
applications developed in the past decade (Tambe 2011). The Stackelberg equilibrium concept can
be applied to any game with two players (e.g., in normal or extensive form) and stipulates that the
leader first commits to a strategy, while the follower observes the leader’s choice and best responds
to it. The leader must have commitment power; in the context of firms, the act of moving first in
an industry, such as by opening a shop, requires financial investment and is evidently a form of
commitment. In other scenarios, the leader’s commitment refers to ways of responding to future
events should certain situations be reached, and, in such cases, the leader must have a way of en-
forcing credible threats. The leader can always commit to a Nash equilibrium strategy; however,
it can often obtain a better payoff by choosing some other strategy profile. We focus on the two-
player setting with one leader and one follower since this setting has attained the most attention
in the real-world applications. One of the reason is that computing a Stackelberg equilibrium in
a multiplayer game with three or more players requires finding a specific Nash equilibrium in a
general-sum game among the followers, which is already a computationally hard task.

One of the notable applications using the conceptual framework of Stackelberg equilibrium has
been the development of algorithms for protecting airports and ports in the United States (deployed
so far in Boston, Los Angeles, New York). More recent ongoing work (Nguyen et al. 2015), explores
additional problems such as protecting wildlife, forests, and fisheries. The general task of defending
valuable resources against attacks can be cast in the Stackelberg equilibrium model as follows.
The role of the leader is taken by the defender (e.g., police forces), who commits to a strategy,
such as the allocation of staff members to a patroling schedule of locations to check. The role of
the follower is played by a potential attacker, who monitors the empirical distribution (or even
the entire schedule) of the strategy chosen by the defender and then best responds by devising
an optimal attack given this knowledge. The crucial question is how to minimize the damage
from potential threats by computing an optimal schedule for the defender. Solving this problem
in practice involves several nontrivial steps, such as estimating the payoffs of the participants
for the resources involved (e.g., the attacker’s reward for destroying a section of an airport) and
computing the optimal strategy that the defender should commit to. While the applied models
do not consider strategic sequential interactions among the players, new applications may appear
with the development of new scalable algorithms. In fact, many currently modeled scenarios are
essentially sequential: Police forces can commit to a security protocol describing not only their
allocation to targets but also their strategy in case of an attack (or some other event), and this
results in a strategic response. Similarly, sequential models would allow rangers in national parks
to react to immediate observations made in the field.

In this article, we are interested in the following fundamental question:

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

Computation of Stackelberg Equilibria of Finite Sequential Games 23:3

Table 1. Overview of the Computational Complexity Results Containing Both Existing and New Results
Provided by This Article (Marked with *)

Inf. Chance Graph Str. Complexity Source
1.* TB ✗ DAG P O (|S| · (|S| + |Z|)) Theorem 3.1
2. TB ✗ Tree B O

(
|S| · |Z|2

)
(Letchford and Conitzer 2010)

3.* TB ✗ Tree C O (|S| · |Z|) Theorem 3.2
4. TB � Tree P/B NP-hard (Letchford and Conitzer 2010)
5.* TB � Tree P FPTAS Theorem 5.3
6.* TB � Tree B FPTAS Theorem 5.1
7.* TB � Tree C O (|S| · |Z|) Theorem 3.3
8.* CM ✗ Tree B NP-hard Theorem 4.1
9.* CM � Tree C polynomial Theorem 4.2

Information column: TB stands for Turn-based and CM for Concurrent Moves. Strategies: P stands for pure, B for Behavioral,
and C for Correlated. Finally, |S | denotes the number of decision points in the game and |Z | the number of terminal states.

Given the description of a game in extensive form, what is the optimal Stackelberg
strategy that the leader should commit to?

We study this problem for multiple classes of two-player extensive-form games (EFGs) and variants
of the Stackelberg solution concept that differ in kinds of strategies to commit to, and we provide
both efficient algorithms and computational hardness results. We emphasize the positive results
in the main text of the article and fully state technical hardness results in the appendix.

1.1 Our Results
The problem of computing a Stackelberg equilibrium in EFGs can be classified by the following
parameters:

• Information. Information captures how much a player knows about the opponent’s moves
(past and present). We study turn-based games (TB), where for each state there is a unique
player that can perform an action, and concurrent-move games (CM), where the players act
simultaneously in at least one state.

• Chance. A game with chance nodes allows stochastic transitions between states; otherwise,
the transitions are deterministic (made through actions of the players).

• Graph. We focus on trees and directed acyclic graphs (DAGs) as the main representations.
Given such a graph, each node represents a different state in the game, while the edges
represent the transitions between states.

• Strategies. We study several major types of strategies that the leader can commit to, namely
pure (P), behavioral (B), and correlated behavioral (C).

The results are summarized in Table 1 and can be divided into three categories.1
First, we design a more efficient algorithm for computing optimal pure strategies to commit

to for turn-based games on DAGs. Compared to the previous state of the art (due to Letchford
and Conitzer (2010), (Letchford 2013)), we reduce the complexity by a factor proportional to the

1We stated a theorem for NP-hardness for the correlated case on DAGs that was similar to the original theorem for behav-
ioral strategies (Letchford 2013) in an earlier version of this article. Due to an error, the theorem has not been correctly
proven, and the computational complexity for this case (i.e., computing optimal correlated strategies to commit to on DAGs)
remains currently open.

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

23:4 B. Bošanský et al.

number of terminal states (see row 1 in Table 1). The main idea behind the improvement is the
exploitation of algorithms for solving the widest-path problem on a DAG from a single source to
multiple destinations. Note that the problem of computing mixed behavioral strategies to commit
to is shown to be NP-hard due to a reduction from SAT (Letchford 2013).

Second, we investigate the impact of commitments to correlated strategies. In this setting, the
leader can send the follower signals about which action the follower should play, and following
these signals must be a best response for the follower. Contrary to behavioral strategies where the
best response of the follower is a pure strategy, the leader can randomize among the signals (and
thus best responses of the follower). This significantly modifies the space of strategies that can
also affect the computational complexity of the problem. Indeed, we show that correlation often
reduces the computational complexity of finding optimal strategies, and we design several new
polynomial-time algorithms for computing the optimal correlated strategy to commit to for both
turn-based and concurrent-move games (see rows 3, 7, 9).

Third, we study approximation algorithms for the NP-hard problems in this framework and
provide fully polynomial-time approximation schemes (FPTAS) for finding pure and behavioral
Stackelberg equilibria for turn-based games on trees with chance nodes (see rows 5, 6). The hard-
ness proof uses a reduction from Knapsack (Letchford and Conitzer 2010), and we exploit this
connection since our algorithm resembles the classical approximation scheme for Knapsack. We
leave open the question of finding an approximation for concurrent-move games on trees without
chance nodes for which we have only the negative result (see row 8).

1.2 Related Work
There is a rich body of literature studying the problem of computing Stackelberg equilibria. The
computational complexity of the problem is known for one-shot games (Conitzer and Sandholm
2006), Bayesian games (Conitzer and Sandholm 2006), and selected subclasses of extensive-form
games (Letchford and Conitzer 2010) and infinite stochastic games (Gupta 2015; Gupta et al. 2015;
Letchford et al. 2012). Similarly, many practical algorithms are also known and typically based on
solving multiple linear programs (Conitzer and Sandholm 2006), or mixed-integer linear programs
for Bayesian (Paruchuri et al. 2008) and extensive-form games (Bošanský and Čermák 2015).

For one-shot games, the problem of computing a Stackelberg equilibrium is polyno-
mial (Conitzer and Sandholm 2006) in contrast to the PPAD-completeness of a Nash equilibrium
(Chen et al. 2009; Daskalakis et al. 2006b). The situation changes in extensive-form games where
Letchford and Conitzer showed (2010) that for many cases the problem is NP-hard, while it still
remains PPAD-complete for a Nash equilibrium (Daskalakis et al. 2006a). More specifically, com-
puting Stackelberg equilibria is polynomial only for:

• games with perfect information with no chance on DAGs, where the leader commits to a
pure strategy,

• games with perfect information with no chance on trees.

Introducing chance or imperfect information leads to NP-hardness. However, several cases were
unexplored by the existing work; namely, extensive-form games with perfect information and
concurrent moves. We address this subclass in this work.

The computational complexity can also change when the leader commits to correlated
strategies. This extension of the Stackelberg notion to correlated strategies appeared in several
works (Conitzer and Korzhyk 2011; Letchford et al. 2012; Xu et al. 2015). Conitzer and Korzhyk
(2011) analyzed correlated strategies in one-shot games providing a single linear program for
their computation. Letchford et al. (2012) showed that the problem of finding optimal correlated

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

Computation of Stackelberg Equilibria of Finite Sequential Games 23:5

strategies to commit to is NP-hard in infinite discounted stochastic games.2 Xu et al. (2015)
focused on using correlated strategies in a real-world security-based scenario.

The detailed analysis of the impact when the leader can commit to correlated strategies has,
however, not been investigated sufficiently in the existing work. We address this extension and
study the complexity for multiple subclasses of extensive-form games. Our results show that, for
many, cases the problem of computing Stackelberg equilibria in correlated strategies is polyno-
mial compared to the NP-hardness in behavioral strategies. Finally, these theoretical results have
also practical algorithmic implications. An algorithm that computes a Stackelberg equilibrium in
correlated strategies can be used to compute a Stackelberg equilibrium in behavioral strategies,
allowing a significant speed-up in computation time (Čermák et al. 2016).

2 PRELIMINARIES
We consider finite two-player sequential games. Note that for every finite set K , Δ(K) denotes
probability distributions over K and P (K) denotes the set of all subsets of K .

Definition 2.1 (2-player sequential game). A two-player sequential game is given by a tuple G =
(N ,S,Z, ρ,A, u,T ,C), where:

• N = {1, 2} is a set of two players;
• S is a set of nonterminal states;
• Z is a set of terminal states;
• ρ : S → P (N) ∪ {c} is a function that defines which player(s) act in a given state, or

whether the node is a chance node (case in which ρ (s) = c);
• A is a set of actions; we overload the notation to restrict the actions only for a single player

as Ai and for a single state as A (s);
• T : S ×∏i ∈ρ (s) Ai → {S ∪Z} is a transition function between states depending on the

actions taken by all the players that act in this state. Overloading notation,T (s) also denotes
the children of a state s: T (s) = {s ′ ∈ S ∪ Z | ∃a ∈ A (s); T (s,a) = s ′};

• C : Ac → [0, 1] are the chance probabilities on the edges outgoing from each chance node
s ∈ S, such that ∑a∈Ac (s) C (a) = 1;

• Finally, ui : Z → R is the utility function for player i ∈ N .

In this article, we study Stackelberg equilibria; thus, player 1 will be referred to as the leader and
player 2 as the follower.

We say that a game is turn-based if there is a unique player acting in each state (formally,
|ρ (s) | = 1 ∀s ∈ S) and with concurrent moves if both players can act simultaneously in some state.
Moreover, the game is said to have no chance if there exist no chance nodes; otherwise, the game
is with chance.

A pure strategy πi ∈ Πi of a player i ∈ N is an assignment of an action to play in each state
of the game (πi : S → Ai), and Πi denotes the set of all pure strategies of player i . A behavioral
strategy σi ∈ Σi is a probability distribution over actions in each state σi : A → [0, 1] such that
∀s ∈ S,∀i ∈ ρ (s)

∑
a∈Ai (s) σi (a) = 1, Σi denotes the set of all behavioral strategies of player i .

The expected utility of player i given a pair of strategies (σ1,σ2) is defined as follows:

ui (σ1,σ2) =
∑

z∈Z
ui (z)pσ (z),

where pσ (z) denotes the probability that leaf z will be reached if both players follow the strategy
from σ and due to stochastic transitions corresponding to C.

2More precisely, that work assumes that the correlated strategies can use a finite history.

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

23:6 B. Bošanský et al.

A strategy σi of player i is said to represent a best response to the opponent’s strategy σ−i if
ui (σi ,σ−i) ≥ ui (σ ′i ,σ−i) ∀σ ′i ∈ Σi . Denote by BR (σ−i) ⊆ Πi the set of all the pure best responses
of player i to strategy σ−i . We can now introduce formally the Stackelberg Equilibrium solution
concept:

Definition 2.2 (Stackelberg Equilibrium). A strategy profile σ = (σ1,σ2) is a Stackelberg Equilib-
rium if σ1 is an optimal strategy of the leader given that the follower best-responds to its choice.
Formally, a Stackelberg equilibrium in pure strategies is defined as

(σ1,σ2) = arg max
σ ′1∈Π1,σ ′2∈BR (σ ′1)

u1 (σ ′1,σ
′
2)

while a Stackelberg equilibrium in behavioral strategies is defined as

(σ1,σ2) = arg max
σ ′1∈Σ1,σ ′2∈BR (σ ′1)

u1 (σ ′1,σ
′
2).

Next, we describe the notion of a Stackelberg equilibrium where the leader can commit to a
correlated strategy in a sequential game. The concept was suggested and investigated by Letchford
et al. (Letchford et al. 2012), but no formal definition exists. Formalizing such a definition here, we
observe that the definition is essentially the “Stackelberg analogue” of the notion of Extensive-Form
Correlated Equilibria (EFCE) introduced by von Stengel and Forges (2008). This parallel turns out
to be technically relevant as well.

Definition 2.3 (Stackelberg Extensive-Form Correlated Equilibrium). A probability distribution ϕ
on pure strategy profiles Π is called a Stackelberg Extensive-Form Correlated Equilibrium (SEFCE)
if it maximizes the leader’s utility (that is, ϕ = arg maxϕ′ ∈Δ(Π) u1 (ϕ ′)) subject to the constraint that
whenever the play reaches a state s where the follower can act, the follower is recommended an
action a according to ϕ such that the follower cannot gain by unilaterally deviating from a in state
s (and possibly in all succeeding states), given the posterior on the probability distribution of the
strategy of the leader, defined by the actions taken by the leader so far.

The variants of the Stackelberg solution concept with pure and behavioral strategies are guar-
anteed to exist since we assume that the follower breaks ties in favor of the leader (von Stengel and
Zamir 2010). The existence of the correlated variant is guaranteed by the existence of EFCE (von
Stengel and Forges 2008). We give an example to illustrate the variants of the Stackelberg solution
concept.

Example 2.4. Consider the game in Figure 1, where the follower moves first (in states s1, s2) and
the leader second (in states s3, s4). By committing to a behavioral strategy, the leader can gain
utility 1 in the optimal case: Leader commits to play left in state s3 and right in s4. The follower
will then prefer playing right in s2 and left in s1, reaching the leaf with utilities (1, 3). Note that the
leader cannot gain more by committing to strictly mixed behavioral strategies.

Now, consider the case when the leader commits to correlated strategies. We interpret the prob-
ability distribution over strategy profiles ϕ as signals sent to the follower in each node where the
follower acts, whereas the leader is committing to play with respect to ϕ and the signals sent to the
follower. This can be shown in node s2, where the leader sends one of two signals to the follower,
each with probability 0.5. In the first case, the follower receives the signal to move left, while the
leader commits to play the uniform strategy in s3 and action left in s4, reaching the utility value
(2, 1) if the follower plays according to the signal. In the second case, the follower receives the
signal to move right, while the leader commits to play right in s4 and left in s3, reaching the utility
value (1, 3) if the follower plays according to the signal. By using this correlation, the leader is

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

Computation of Stackelberg Equilibria of Finite Sequential Games 23:7

Fig. 1. (Left) An example game with different outcomes depending on whether the leader commits to
behavioral or to correlated strategies. The leader acts in nodes s3 and s4, the follower acts in nodes s1 and
s2. Utility values are shown in the terminal states: First value is the utility for the leader, second value is the
utility of the follower. (Right) A visualization of the outcomes of the example game in the two-dimensional
utility space of the players: The horizontal axis corresponds to the utility of the follower, the vertical axis
corresponds to the utility of the leader. Red vertical lines visualize the minimal value the follower can
guarantee in s2 or s1, respectively; blue lines and points correspond to new outcomes that can be achieved
if the leader commits to correlated strategies.

able to get the utility of 1.5, while ensuring the utility of 2 for the follower; hence, the follower
will follow the only recommendation in node s1 to play left.

The situation can be visualized using a two-dimensional space, where the x-axis represents the
utility of the follower and the y-axis represents the utility of the leader. This type of visualization
was also used in Letchford and Conitzer (2010), and we use it further in the proof of Theorem 3.2.
While the black nodes correspond to the utility points of the leafs, the solid black lines correspond
to outcomes when the leader randomizes between the leafs. The follower plays a best-response
action in each node; hence, in order to force the follower to play action left in s2, the leader must
guarantee the follower the utility of at least 1 in the subgame rooted in node s3 since the follower
can get at least this value by playing right in s2. Therefore, each state of the follower restricts
the set of possible outcomes of the game. These restrictions are visualized as the vertical dashed
lines: One corresponds to the described situation in node s2 and the second one due to the leaf
following node s1. Considering only commitments to behavioral strategies, the best of all possible
outcomes for the leader is the point (u2 = 3,u1 = 1). With correlation, however, the leader can
achieve a mixture of points (u2 = 1,u1 = 2) and (u2 = 3,u1 = 1) (the blue dashed line). This can
also be interpreted as forming a convex hull over all possible outcomes in the subtree rooted in
node s2. Note, that without correlation, the set of all possible outcomes is not generally a convex set.
Finally, after restricting this set of possible solutions due to leaf in node s1, the intersection point
(u2 = 2,u1 = 1.5) represents the expected utility for the Stackelberg Extensive-Form Correlated
Equilibrium solution concept.

The example gives an intuition about the structure of the probability distribution ϕ in SEFCE.
In each state of the follower, the leader sends a signal to the follower and commits to follow the
correlated strategy if the follower admits the recommendation while simultaneously committing
to punish the follower for each deviation. This punishment is simply a strategy that minimizes the
follower’s utility and will be useful in many proofs; next, we introduce some notation for it.

Let σm denote a behavioral strategy profile where, in each subgame, the leader plays a minmax
behavior strategy based on the utilities of the follower, and the follower plays a best response.

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

23:8 B. Bošanský et al.

Moreover, for each state s ∈ S, we denote by μ (s) the expected utility of the follower in the sub-
game rooted in state s if both players play according to σm (i.e., the value of the corresponding
zero-sum subgame defined by the utilities of the follower).

Note that being a probability distribution over pure strategy profiles, a SEFCE is, a priori, an
object of exponential size in the size of the description of the game when it is described as a
tree. This has to be dealt with before we can consider computing it. The following lemma gives a
compact representation of the correlated strategies in a SEFCE, and the proof yields an algorithm
for constructing the probability distribution ϕ from the compact representation. It is this compact
representation that we seek to compute.

Lemma 2.5. For any turn-based or concurrent-move game in tree form, there exists a SEFCE ϕ ∈
Δ(Π) that can be compactly represented as a behavioral strategy profile σ = (σ1,σ2) such that ∀z ∈
Z pϕ (z) = pσ (z) and ϕ corresponds to the following behavior:

• the follower receives signals in each state s according to σ2 (a) for each action a ∈ A2 (s)
• the leader chooses the action in each state s according to σ1 (a) for each action a ∈ A1 (s) if the

state s was reached by following the recommendations
• both players switch to the minmax strategy σm after a deviation by the follower.

Proof. Letϕ ′ be a SEFCE. We construct the behavioral strategy profile σ fromϕ ′ and then show
how an optimal strategy ϕ can be constructed from σ and σm .

To construct σ , it is sufficient to specify a probability σ (a) for each action a ∈ A (s) in each state
s . We use the probability of state s being reached (denoted ϕ ′(s)) that corresponds to the sum of
pure strategy profiles ϕ ′(π) such that the actions in strategy profile π allow state s to be reached.

Formally, there exists a sequence s0,a0, . . . ,ak−1, sk of states and actions (starting at the root),
such that for every j = 0, . . . ,k − 1 it holds that aj = π (sj), sj+1 = T (sj ,aj) (or sj+1 is the next
decision node of some player if T (sj ,aj) is a chance node), s0 = sroot , and sk = s . Let Π(s) denote
a set of pure strategy profiles for which such a sequence exists for state s , and Π(s,a) ⊆ Π(s) the
strategy profiles that not only reach s , but also prescribe action a to be played in state s . We have:

σ (a) =

∑
π ′ ∈Π(s,a) ϕ

′(π ′)
ϕ ′(s)

, where ϕ ′(s) =
∑

π ′ ∈Π(s)

ϕ ′(π ′).

In case ϕ ′(s) = 0, we set the behavior strategy in σ arbitrarily.
Next, we construct a strategy ϕ that corresponds to the desired behavior and show that it is

indeed an optimal SEFCE strategy. We need to specify a probability for every pure strategy profile
π = (π1,π2). Consider the sequence of states and actions that corresponds to executing the actions
from the strategy profile π . Let sl

0,a
l
0, . . . ,a

l
kl−1, skl be one of q possible sequences of states and

actions (there can be multiple such sequences due to chance nodes), such that j = 0, . . . ,kl − 1,
al

j = π (sl
j), sl

j+1 = T (sl
j ,a

l
j) (or sl

j+1 is one of the next decision nodes of some player immediately
following the chance node(s) T (sl

j ,a
l
j)), sl

0 = sroot , and sl
kl
∈ Z. The probability for the strategy

profile π corresponds to the probability of executing the sequences of actions multiplied by the
probability that the remaining actions prescribe minmax strategy σm in case the follower deviates:

ϕ (π) = ���
q∏

l=1

kl−1∏

j=0
σ (al

j)
��� ·

∏

a′=π (s ′) |s ′ ∈S\{s1
0, ...,s

1
k0−1,s

2
0, ...,s

q
kq−1 }

σm (a′).

Correctness. By construction of σ and ϕ, it holds that probability distribution over leafs remains
the same as in ϕ ′; hence, ∀z ∈ Z pϕ′ (z) = pσ (z) = pϕ (z) and thus the expected utility of ϕ for the
players is the same as in ϕ ′.

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

Computation of Stackelberg Equilibria of Finite Sequential Games 23:9

Second, we have to show that the follower has no incentive to deviate from the recommendations
inϕ. By deviating to some action a′ in state s , the follower gains μ (T (s,a′)) since both players play
according to σm after a deviation. In ϕ ′, the follower can get for the same deviation at best some
utility value v2 (T (s,a′)), which by the definition of the minmax strategies σm is greater than or
equal to μ (T (s,a′)). Since the expected utility of the follower for following the recommendations
is the same inϕ as inϕ ′, and the follower has no incentive to deviate inϕ ′ because of the optimality,
the follower has no incentive to deviate in ϕ either. �

3 COMPUTING EXACT STRATEGIES IN TURN-BASED GAMES
We start our computational investigation with turn-based games.

Theorem 3.1. There is an algorithm that takes as input a turn-based game in DAG form with no
chance nodes and outputs a Stackelberg equilibrium in pure strategies. The algorithm runs in time
O (|S|(|S| + |Z|)).

Proof. Our algorithm performs three passes through all the nodes in the graph.
First, the algorithm computes the minmax values μ (s) of the follower for each node in the game

by backward induction.
Second, the algorithm computes a capacity for each state in order to determine which states of

the game are reachable (i.e., there exists a commitment of the leader and a best response of the
follower such that the state can be reached by following their strategies). The capacity of state s ,
denoted γ (s), is defined as the minimum utility of the follower that needs to be guaranteed by the
outcome of the subgame starting in state s in order to make this state reachable. We initially set
γ (S ∪Z \ {sroot }) = ∞ and mark them as open, while we set γ (sroot) = −∞ and mark the root
state as closed.

Next, the algorithm evaluates each open state s , for which all parents have been marked as
closed. We distinguish whether the leader or the follower makes the decision:

• s is a leader node: The algorithm sets γ (s ′) = min(γ (s ′),γ (s)) for all children s ′ ∈ T (s);
• s is a follower node: The algorithm sets γ (s ′) = min(γ (s ′),max(γ (s),maxs ′′ ∈T (s)\{s ′ } μ (s ′′)))

for all children s ′ ∈ T (s).

Finally, we mark state s as closed.
We say that leaf z ∈ Z is a possible outcome, if μ (z) = u2 (z) ≥ γ (z). Now, the solution is such

a possible outcome that maximizes the utility of the leader; that is, arg maxz∈Z u2 (z)≥γ (z) u1 (z).
The strategy is now constructed in the third pass by following nodes from leaf z back to the root
while using nodes s ′with capacitiesγ (s ′) ≤ μ (z). Due to the construction of capacities, such a path
exists and forms a part of the Stackelberg strategy. The leader commits to the strategy leading to
max min utility for the follower in the remaining states that are not part of this path.

Correctness. To show the correctness of the algorithm, we must show that capacities for each
node are correctly computed in the second pass. Whenever the algorithm evaluates a state s , the
capacities of its parents are final; hence, the capacity value γ (s) is also determined and final. Next,
since the graph is a finite DAG, at least one vertex is marked as closed in each iteration, and there-
fore the second phase terminates and each vertex is evaluated exactly once.

A capacity for state s is defined as the minimum utility of the follower that needs to be guaran-
teed by the outcome of the subgame starting in state s . Recall that all nodes have the initial capacity
set to∞. Now, the capacities are updated iteratively. If a state s ′ can be immediately reached from
a leader’s node s , the capacity of s ′ can be decreased only if γ (s) < γ (s ′) : Since node s can be
reached while guaranteeing the value of γ (s) for the follower, the leader can then just commit to

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

23:10 B. Bošanský et al.

play the action that leads to s ′. If a state s ′ can be immediately reached from a follower’s node s ,
the capacity of s ′ can be decreased due to other choices in s: The action that leads from s to s ′ must
be a best response for the follower; hence, the follower must be guaranteed the best utility she can
get by deviating in s, which is ensured by the computation of capacities. As a direct consequence
of the construction of capacities, for each node s there exists a pure strategy of the leader π1 that
she can commit to and a best response π2 ∈ BR2 (π1) of the follower such that node s is reached
when players follow these strategies.

Now, selecting the leaf with the maximum utility for the leader among all possible outcomes is
a direct application of the definition of Stackelberg equilibria.

Complexity Analysis. Computing the max min values can be done inO (|S|(|S| + |Z|)) by back-
ward induction due to the fact the graph is a DAG. In the second pass, the algorithm solves the
widest-path problem from a single source to all leafs. In each node, the algorithm calculates capac-
ities for every child. In nodes where the leader acts, there is a constant-time operation performed
for each child. However, we need to be more careful in nodes where the follower acts. For each
child s ′ ∈ T (s), the algorithm computes a maximum value μ (s ′) of all of the siblings. We can do
this efficiently by computing two maximal values of μ (s ′) for all s ′ ∈ T (s) (say s1, s2), and for each
child then the term maxs ′′ ∈T (s)\{s ′ } μ (s ′′) equals either to s1 if s ′ � s1, or to s2 if s ′ = s1. Therefore,
the second pass can again be done in O (|S|(|S| + |Z|)). Finally, finding the optimal outcome and
constructing the optimal strategy is again at most linear in the size of the graph. Therefore, the
algorithm takes at most O (|S|(|S| + |Z|)) steps. �

Next, we provide an algorithm for computing a Stackelberg extensive-form correlated equilib-
rium for turn-based games with no chance nodes.

Theorem 3.2. There is an algorithm that takes as input a turn-based game in tree form with
no chance nodes and outputs an SEFCE in the compact representation. The algorithm runs in time
O (|S| |Z|).

Proof. We improve the algorithm from the proof of Theorem 4 in Letchford and Conitzer
(2010). The algorithm contains two steps: (i) a bottom-up dynamic program that for each node
s computes the set of possible outcomes, and (ii) a downward pass constructing the optimal cor-
related strategy in the compact representation.

For each node s we keep set of points Hs in two-dimensional space, where the x-dimension
represents the utility of the follower and they-dimension represents the utility of the leader. These
points define the convex set of all possible outcomes of the subgame rooted in node s (we assume
that Hs contains only the points on the boundary of the convex hull). We keep each set Hs sorted
by polar angle.

Upward pass. In leaf z ∈ Z, we set Hz = {z}. In nodes s, where the leader acts, the set of
points Hs is equal to the convex hull of the corresponding sets of the children Hw . That is,
Hs = Conv(∪w ∈T (s)Hw).

In nodes s, where the follower acts, the algorithm performs two steps. First, the algorithm re-
moves from each set Hw of child w the outcomes from which the follower has an incentive to
deviate. To do this, the algorithm uses the maxmin u2 values of all other children of s except w
and creates a new set Ĥw that we call the restricted set. The restricted set Ĥw is defined as an inter-
section of the convex set representing all possible outcomes Hw and all outcomes defined by the
halfspace restricting the utility x of the follower by the inequality:

x ≥ max
w ′ ∈T (s);w ′�w

min
p′ ∈Hw′

u2 (p ′).

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

Computation of Stackelberg Equilibria of Finite Sequential Games 23:11

Second, the algorithm computes the set Hs by creating a convex hull of the corresponding re-
stricted sets Ĥw of the children w . That is, Hs = Conv(∪w ∈T (s)Ĥw).

Finally, in the root of the game tree, the outcome of the SEFCE is the point with maximal payoff
of player 1: pSE = arg maxp∈Hsr oot

u1 (p).

Downward pass. We now construct the compact representation of commitment to correlated
strategies that ensures the outcomepSE calculated in the upward pass. The method for determining
the optimal strategy in each node is similar to the method strategy(s,p ′′) used in the proof of
Theorem 4 in Letchford and Conitzer (2010).

Given a node s and a point p ′′ that lies on the boundary of Hs , this method specifies how to
commit to correlated strategies in the subtree rooted in node s . Moreover, the proof in Letchford
and Conitzer (2010) also showed that it is sufficient to consider mixtures of at most two actions
in each node, and allowing correlated strategies does violate their proof. We consider separately
leader and follower nodes:

• For each node s, where the leader acts, the algorithm needs to find two points p,p ′ in the
boundaries of children Hw and Hw ′ , such that the desired point p ′′ is a convex combination
of p ∈ Hw and p ′ ∈ Hw ′ . Ifw = w ′, then the strategy in node s is to commit to pure strategy
leading to node w . If w � w ′, then the strategy to commit to in node s is a mixture: with
probability α to play action leading tow and with probability (1 − α) to play action leading
to w ′, where α ∈ [0, 1] is such that p ′′ = αp + (1 − α)p ′. Finally, for every child s ′ ∈ T (s)
we call the method strategy with appropriate p (or p ′) in case s ′ = w (or w ′), and with the
threat value corresponding to μ (s ′) for every other child.

• For each node s where the follower acts, the algorithm again needs to find two pointsp,p ′ in
the restricted boundaries of children Ĥw and Ĥw ′ , such that the desired point p ′′ is a convex
combination of p ∈ Ĥw and p ′ ∈ Ĥw ′ . The reason for using the restricted sets is because the
follower must not have an incentive to deviate from the recommendation.

Similarly to the previous case, if w = w ′, then the correlated strategy in node s is to
send the follower signal leading to node w while committing further to play strategy(w,p)
in the subtree rooted in node w , and to play the minmax strategy in every other child s ′
corresponding to value μ (s ′).

If w � w ′, then there is a mixture of possible signals: With probability α , the follower
receives a signal to play the action leading to w, and, with probability (1 − α), a signal to
play the action leading to w ′, where α ∈ [0, 1] is again such that p ′′ = αp + (1 − α)p ′. As
before, by sending the signal to play a certain action, the leader commits to play method
strategy(w,p) (or strategy(w ′,p ′)) in the subtree rooted in node w (or w ′) and commits to
play the minmax strategy leading to value μ (s ′) for every other child s ′.

Correctness. Due to the construction of the set of points Hs that are maintained for each node s ,
these points correspond to the convex hull of all possible outcomes in the subgame rooted in node s .
In leafs, the algorithm adds the point corresponding to the leaf. In the leader’s nodes, the algorithm
creates a convex combination of all possible outcomes in the children of the node. The only places
where the algorithm removes some outcomes from these sets are nodes of the follower. If a point is
removed from Hw in node s , there exists an action of the follower in s that guarantees the follower
a strictly better expected payoff than the expected payoff of the outcome that correspond to the
removed point. Therefore, such an outcome is not possible as the follower will have an incentive to
deviate. The outcome selected in the root node is the possible outcome that maximizes the payoff
of the leader on all possible outcomes; hence, it is optimal for the leader. Finally, the downward

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

23:12 B. Bošanský et al.

pass constructs the compact representation of the optimal correlated strategy to commit to that
reaches the optimal outcome.

Complexity Analysis. Computing the boundary of the convex hull Hs takes O (|Z|) time in each
level of the game tree since the children setsHw are already sorted (De Berg et al. 2000, p. 6). More-
over, since we keep only nodes on the boundary of the convex hull, the inequality∑s ∈S |Hs | ≤ |Z|
for all nodes in a single level of the game tree also bounds the number of lines that need to be
checked in the downward pass. Therefore, each pass takes at most O (|S| |Z|) time. �

Interestingly, the algorithm described in the proof of Theorem 3.2 can be modified also in cases
where the game contains chance, as shown in the next theorem. This is in contrast to computing
a Stackelberg equilibria that is NP-hard with chance.

Theorem 3.3. There is an algorithm that takes as input a turn-based game in tree form with chance
nodes and outputs the compact form of an SEFCE for the game. The algorithm runs in timeO (|S| |Z|).

Proof. We can use the proof from Theorem 3.2, but we need to analyze what happens in chance
nodes in the upward pass. The algorithm computes in chance nodes the Minkowski sum of all
convex sets in child nodes, and, since all sets are sorted and this is a planar case, this operation can
be again performed in linear time (De Berg et al. 2000, p. 279). The size of set Hs is again bounded
by the number of all leafs (Gritzmann and Sturmfels 1993). �

4 COMPUTING EXACT STRATEGIES IN CONCURRENT-MOVE GAMES
Next, we analyze concurrent-move games and show that while the problem of computing a Stack-
elberg equilibrium in behavior strategies is NP-hard (even without chance nodes), the problem of
computing an SEFCE can be solved in polynomial time.

Theorem 4.1. Given a concurrent-move game in tree form with no chance nodes and a number α ,
it is NP-hard to decide if the leader achieves payoff at least α in a Stackelberg equilibrium in behavior
strategies.

The proof for the preceding hardness result is included in Appendix A.1; the proof uses a re-
duction from the NP-complete problem Knapsack and constructs a two-step concurrent-move
game. Note that computing a Stackelberg equilibrium in a single-shot concurrent-move game is
polynomial (Conitzer and Sandholm 2006).

Theorem 4.2. For a concurrent-move games in tree form, the compact form of an SEFCE for the
game can be found in polynomial time by solving a single linear program.

Proof. We construct a linear program (LP) based on the LP for computing EFCE (von Stengel
and Forges 2008). We use the compact representation of SEFCE strategies (described by Lemma 2.5)
represented by variables δ (s) that denote a joint probability that state s is reached when both
players, and chance, play according to SEFCE strategies.

The size of the original EFCE LP—both the number of variables and constraints—is quadratic in
the number of sequences of players. However, the LP for EFCE is defined for a more general class
of imperfect-information games without chance. In our case, we can exploit the specific structure
of a concurrent-move game and, together with the Stackelberg assumption, reduce the number of
constraints and variables.

First, the deviation from a recommended strategy causes the game to reach a different subgame
in which the strategy of the leader can be chosen (almost) independently of the subgame that
follows the recommendation.

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

Computation of Stackelberg Equilibria of Finite Sequential Games 23:13

Second, the strategy that the leader should play according to the deviations is a minmax strategy,
with which the leader punishes the follower by minimizing the utility of the follower as much as
possible. Thus, by deviating to action a′ in state s , the follower can get at best the minmax value
of the subgame starting in node T (s,a′) that we denote as μ (T (s,a′)). The values μ (s) for each
state s ∈ S can be computed beforehand using backward induction.

The linear program is:

max
δ,v2

∑

z∈Z
δ (z)u1 (z) (1)

subject to: δ (sroot) = 1 (2)
0 ≤ δ (s) ≤ 1 ∀s ∈ S (3)

δ (s) =
∑

s ′ ∈T (s)

δ (s ′) ∀s ∈ S; ρ (s) = {1, 2} (4)

δ (T (s,ac)) = δ (s)C (s,ac) ∀s ∈ S ∀a ∈ Ac (s); ρ (s) = {c} (5)
v2 (z) = u2 (z)δ (z) ∀z ∈ Z (6)
v2 (s) =

∑

s ′ ∈T (s)

v2 (s ′) ∀s ∈ S (7)

∑

a1∈A1 (s)

v2 (T (s,a1 × a2)) ≥
∑

a1∈A1 (s)

δ (T (s,a1 × a2))μ (T (s,a1 × a′2))

∀s ∈ S ∀a2,a
′
2 ∈ A2 (s) (8)

The interpretation is as follows. Variables δ represent the compact form of the correlated strate-
gies. Equation (2) ensures that the probability of reaching the root state is 1, while Equation (3)
ensures that for each state s , we have δ (s) between 0 and 1.

Network-flow constraints: The probability of reaching a state equals the sum of probabilities
of reaching all possible children (Equation (4)), and it must correspond with the probability of
actions in chance nodes (Equation (5)). The objective function ensures that the LP finds a correlated
strategy that maximizes the leader’s utility.

The follower has no incentive to deviate from the recommendations given by δ : To this end, vari-
ablesv2 (s) represent the expected payoff for the follower in a subgame rooted in node s ∈ S when
played according to δ , defined by Equations (6–7). Each action that is recommended by δ must
guarantee the follower at least the utility she gets by deviating from the recommendation. This is
ensured by Equation (8), where the expected utility for recommended action a2 is expressed by the
left side of the constraint, while the expected utility for deviating is expressed by the right side of
the constraint.

Note that the expected utility on the right-hand side of Equation (8) is calculated by considering
the posterior probability after receiving the recommendation a2 and the minmax values of children
states after playing a′2; μ (T (s,a1 × a′2)).

Therefore, the variables δ found by solving this linear program correspond to the compact rep-
resentation of the optimal SEFCE strategy. �

5 APPROXIMATING OPTIMAL STRATEGIES
In this section, we describe fully polynomial-time approximation schemes for finding a Stackelberg
equilibrium in behavioral strategies as well as in pure strategies for turn-based games on trees with
chance nodes. The notion of approximation we consider is additive approximation, and, for this to
make sense, we assume that the utility function of the leader is bounded to the range [0, 1].

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

23:14 B. Bošanský et al.

We start with the problem of computing behavioral strategies for turn-based games on trees
with chance nodes.

Theorem 5.1. There is an algorithm that takes as input a turn-based game on a tree with chance
nodes, leader utilities in the range [0, 1], and a parameter ϵ and computes a behavioral strategy for the
leader. That strategy, combined with some best response of the follower, achieves a payoff that differs
by at most ϵ from the payoff of the leader in a Stackelberg equilibrium in behavioral strategies. The
algorithm runs in time O (T (HT /ϵ)3), where T is the size of the game tree and HT is its height.

The exact version of this problem was shown to be NP-hard by Letchford and Conitzer (2010).
Their hardness proof was a reduction from Knapsack and our algorithm is closely related to the
classical approximation scheme for this problem. We present here the algorithm and delegate the
proof of correctness to the appendix.

Our scheme uses dynamic programming to construct a table of values for each node in the tree.
Each table contains a discretized representation of the possible tradeoffs between the utility that
the leader can get and the utility that can, at the same time, be offered to the follower. In the
appendix, we show that the cumulative error in the leader’s utility is bounded additively by the
height of the tree. This error only depends on the height of the tree and not the utility. By an initial
scaling of the leader utility by a factor D, this error can be made arbitrarily small, at the cost of
extra computation time. The scaling is equivalent to discretizing the leader’s payoff to multiples
of some small δ = 1/D. For simplicity, we only describe the scheme for binary trees, since nodes
with higher branching factors can be replaced by small equivalent binary trees.

An important property is that only the leader’s utility is discretized, since we need to be able
to reason correctly about the follower’s actions. The tables are indexed by the leader’s utility and
contain values that are the follower’s utility.

We first present the dynamic programming algorithm as a separate statement.

Proposition 5.2. There is an algorithm that takes as input a turn-based game on a tree with
chance nodes and leader utilities in the range [U1,U2], where U1 and U2 are integers, and computes
for each subtree T of the game a table AT with the following properties guaranteed in each table:

(1) IfAT [k] > −∞ the leader has a behavioral strategy for the game treeT that offers the follower
utility AT [k] while securing utility at least k to the leader.

(2) No behavioral strategy of the leader can (starting from subtree T) offer the follower utility
strictly more than AT [k] while securing utility at least k + HT to the leader, where HT is the
height of the tree T .

(3) The entries of AT are nonincreasing, AT [U1] is the largest utility the leader can help the
follower to obtain, and AT [U2 + 1] = −∞.

Last, the algorithm runs in time O (TU 3), where T is the size of the game and U = U2 −U1.

(sketch). We will now examine each type of node and, for each, show how the table is
constructed. For each node T , we let L and R denote the two successors (if any), and we let
AT , AL , and AR denote their respective tables. Each table will have U + 2 entries, indexed by
k ∈ {U1, . . . ,U2 + 1}.

Leaf nodes. IfT is a leaf with utility (u1,u2), the table can be filled directly from the definition:

AT [k] :=
{
u2 , if k ≤ u1
−∞ , otherwise.

Leader nodes. If T is a leader node, and the leader plays L with probability p followed up by
the strategies that gave the guarantees for AL[i] and AR[j], then the leader would get at least an

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

Computation of Stackelberg Equilibria of Finite Sequential Games 23:15

expected pi + (1 − p)j while being able to offer pAL[i] + (1 − p)AR[j] to the follower. For a given
k , the optimal combination of the computed tradeoffs becomes:

AT [k] := max
i, j,p
{pAL[i] + (1 − p)AR[j] | pi + (1 − p)j ≥ k }.

This table can be computed in timeO (U 3) by looping over all i, j,k , and taking the maximum with
the extremal feasible values of p.

Chance nodes. If T is a chance node, where the probability of L is p, and the leader combines
the strategies that gave the guarantees for AL[i] and AR[j], then the leader would get at least
an expected pi + (1 − p)j while being able to offer pAL[i] + (1 − p)AR[j] to the follower. For a
given k , the optimal combination of the computed tradeoffs becomes: AT [k] := maxi, j {pAL[i] +
(1 − p)AR[j] | pi + (1 − p)j ≥ k }. The table AT can thus be filled in timeO (U 3) by looping over
all i, j,k , and this can even be improved to O (U 2) by a simple optimization.

Follower nodes. If T is a follower node, then if the leader combines the strategy for AL[k] in
L with the minmax strategy for R, this ensures leader utility k if AL[k] ≥ μ (R), and, similarly, if
the leader combines the strategy for AR[k] in R with the minmax strategy for L it ensures leader
utility k if AR[j] ≥ μ (L). Thus, the optimal combination becomes

AT [k] := max(AL[k] ↓μ (R),AR[k] ↓μ (L)) x ↓μ :=
{

x , if x ≥ μ
−∞, otherwise.

The table AT can be filled in time O (U).
Putting it all together, each table can be computed in timeO (U 3), and there is one table for each

node in the tree, which gives the desired running time.

With this in place, the approximation algorithm is immediate.

(Theorem 5.1). LetG be the given game and letuOpt be the leader utility in a Stackelberg equilib-
rium inG. LetG ′ be obtained fromG by scaling all leader utilities by a factor (HT + 1)/ϵ (we do not
round to integer utilities; this is already done implicitly by the dynamic programming algorithm).

Next, apply the algorithm of Proposition 5.2 to G ′. Let AT be the table of the root node,
let k = max{i | AT [i] > −∞}, and let σ1 be the associated leader strategy given by property (1).
Note that k is well-defined, since AT [0] > −∞ by property (3). By property (2), we have that
((HT + 1)/ϵ)uOpt < k + 1 + HT , since AT [k + 1] = −∞. Thus, σ1 approximates the leader payoff
of a Stackelberg equilibrium with additive error HT + 1 in G ′, which means the additive error in
the original game G is (HT + 1)/((HT + 1)/ϵ) = ϵ . The running time is O (T (HT /ϵ)3) as stated.

Next, we state the analogous statement for the case of pure strategies. Again, the exact problem
was shown to be NP-hard by Conitzer and Letchford.

Theorem 5.3. There is an algorithm that takes as input a turn-based game on a tree with chance
nodes and leader utilities in the range [0, 1] and a parameter ϵ and computes a pure strategy for
the leader. That strategy, combined with some best response of the follower, achieves a payoff that
differs by at most ϵ from the payoff of the leader in a Stackelberg equilibrium in pure strategies. The
algorithm runs in time O (T (HT /ϵ)2), where T is the size of the game tree and HT is its height.

The proof of this theorem is the same as the proof of Theorem 5.1, except for the use of a modified
dynamic programming algorithm as stated here:

Proposition 5.4. There is an algorithm that takes as input a turn-based game on a tree with
chance nodes and leader utilities in the range [U1,U2], where U1 and U2 are integers, and computes
for each subtree T of the game a table AT with the following properties guaranteed in each table:

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

23:16 B. Bošanský et al.

(1) If AT [k] > −∞ the leader has a pure strategy for the game tree T that offers the follower
utility AT [k] while securing utility at least k to the leader.

(2) No pure strategy of the leader can (starting from subtree T) offer the follower utility strictly
more than AT [k] while securing utility at least k + HT to the leader, where HT is the height
of the tree T .

(3) The entries of AT are nonincreasing, AT [U1] is the largest utility the leader can help the
follower to obtain, and AT [U2 + 1] = −∞.

Last, the algorithm runs in time O (TU 2), where T is the size of the game and U = U2 −U1.

(sketch). The algorithm is essentially the same as the one for behavioral strategies, except that
leader nodes only havep ∈ {0, 1}. For a given k , the optimal combination of the computed tradeoffs
becomes:

AT [k] := max{AL[k],AR[k]}.

The table AT can thus be computed in time O (U).
Since now the leader nodes can now be handled in linear time, the chance nodes are now the

limiting case, and each table can thus be computed in timeO (U 2), giving the desired total running
time O (TU 2).

6 DISCUSSION AND CONCLUSION
Our article settles several open questions in the problem of complexity of computing a Stackelberg
equilibrium in finite sequential games. Very often, the problem is NP-hard for many subclasses
of extensive-form games, and we show that the hardness holds also for games in the tree form
with concurrent moves. However, there are important subclasses that admit either an efficient
polynomial algorithm or fully polynomial-time approximation schemes (FPTAS); we provide an
FPTAS for games on trees with chance. The question unanswered within the scope of this article
is whether there exists a (fully) polynomial-time approximation scheme for games in the tree form
with concurrent moves. Our conjecture is that the answer is negative.

Second, we formalize a Stackelberg variant of the Extensive-Form Correlated Equilibrium solu-
tion concept (SEFCE) where the leader commits to correlated strategies. We show that the com-
plexity of the problem is often reduced (to polynomial) compared to NP-hardness when the leader
commits to behavioral strategies.

Our article does not address many other variants of computing a Stackelberg equilibrium where
the leader commits to correlated strategies. First, we consider only two-player games with one
leader and one follower. Even though computing an EFCE in games with multiple players is solv-
able in polynomial time, a recent result showed that computing a SEFCE on trees with no chance
with three or more players is NP-hard (Černý 2016). Second, we consider only behavioral strate-
gies (or memoryless strategies) in games on DAGs. Extending the concept of SEFCE to strategies
that can use some fixed-size memory is a natural continuation of the present work.

A APPENDIX
In this section, we provide all the missing proofs.

A.1 Computing Exact Strategies in Concurrent-Move Games
For the analysis in this section, we use a variant of the NP-complete problem Knapsack, which
we call Knapsack with unit-items:

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

Computation of Stackelberg Equilibria of Finite Sequential Games 23:17

Fig. 2. Game tree for reduction in proof of Theorem 4.1.

Knapsack with unit-items: Given N items with positive integer weights
w1, . . . ,wN and values v1, . . . ,vN , a weight budget W , and a target value K , and
such that at leastW of the items have weight and value 1, does there exist J ∈ P (N)
such that

∑
i ∈J wi ≤W and

∑
i ∈J vi ≥ K?

The following lemma will be useful.

Lemma A.1. The Knapsack with unit-items problem is NP-complete.

Proof. We can reduce from the ordinary Knapsack problem. Given N items with weights
w1, . . . ,wN and values v1, . . . ,vN , and weight budget W and target K , we form N +W items.
The weight and values of the first N items are given by wi and (W + 1)vi , for i = 1, . . . ,N . The
nextW items are given weight and value 1. The weight budget is unchangedW , but the new target
value is (W + 1)K . �

We can now prove the main result of this section.

Theorem 4.1 (Restated). Given a concurrent-move game in tree form with no chance nodes and a
number α , it is NP-hard to decide if the leader achieves payoff at least α in a Stackelberg equilibrium
in behavior strategies.

Proof. Consider an instance of Knapsack with unit-items. We define a concurrent-move
extensive-form game in a way so that the optimal utility attainable by the leader is equal to the
optimal solution value of the Knapsack with unit-items instance.

The game tree consists of two levels (see Figure 2): the root node consisting of N actions of
the leader and N + 1 actions of the follower. M denotes a large constant that we use to force the
leader to select a uniform strategy in the root node. More precisely, we choose M as the smallest
integer such that M >WNvi and M > Nwi for i = 1, . . . ,N . In the second level, there is a state
Ii corresponding to item i that models the decision of the leader to include items in the subset
(action ⊕) or not (action �).

Consider a feasible solution J to the Knapsack with unit-items problem with unit-items. This
translates into a strategy for the leader as follows. In the root node, she plays the uniform strategy
and, in the subgame Ii plays ⊕ with probability 1 if i ∈ J and plays � with probability 1 otherwise.
We can now observe that the follower plays L in subgames Ii where i ∈ J , since ties are broken in
favor of the leader, and the follower plays R in subgames Ii where i � J . In the root node, action
f0 for the follower thus leads to payoff −∑i ∈J wi ≥ −W . Actions fk for k ≥ 1 lead to payoff

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

23:18 B. Bošanský et al.

1
N

(NM −W −M) +
N − 1
N

(−W −M) = −W .
Since ties are broken in favor of the leader, the follower plays action f0, which means that the
leader receives payoff ∑i ∈J vi , which is the value of the Knapsack with unit-items solution.

Consider, on the other hand, an optimal strategy for the leader. By the structure of the game, we
have the following lemma:

Claim 1. Without loss of generality, the leader plays using a pure strategy in each subgame Ii .
Proof. If in subgame I the leader commits to playing ⊕ with probability 1, the follower will

choose to play L due to ties being broken in favor of the leader. If, on the other hand, the leader
plays ⊕ with probability strictly lower than 1, the follower will choose to play R, leading to utility
0 for the leader and at most 0 for the follower. Since the leader can only obtain positive utility if the
follower plays action f0 in the root node, there is thus no benefit for the leader in decreasing the
utility for the follower by committing to a strictly mixed strategy. In other words, if the leader plays
⊕ with probability strictly lower than 1, the leader might as well play ⊕ with probability 0. �

Thus, from now on, we assume that the leader plays using a pure strategy in each sub-game
Ii . Let J ∈ P (N) be such that the set of indices i of the subgames Ii where the leader commits to
action ⊕.

Claim 2. If the strategy of the leader ensures positive utility, it chooses an action uniformly at
random in the root node.

Proof. Let εi ∈ [− 1
N , 1 − 1

N] be such that the leader commits to playing action li with proba-
bility 1

N + εi . Then, if the follower plays action f0, the leader obtains payoff
∑

i ∈J

vi + N
∑

i ∈J

εivi

and the follower obtains payoff
−
∑

i ∈J

wi − N
∑

i ∈J

εiwi .

If the follower plays action fk , for k ≥ 1, the leader obtains payoff 0 and the follower obtains payoff
εkNM −W .

Let k be such that εk = maxi εi and assume to the contrary that εk > 0. Note that

εk ≥ 1
N

∑

i :εi >0
εi = − 1

N

∑

i :εi <0
εi .

We now proceed by case analysis.
Case 1 (

∑
i ∈J wi ≥W). By definition of εk and M we have

εkM ≥ ���−
1
N

∑

i ∈J :εi <0
εi
���M > −

1
N

∑

i ∈J :εi <0
εi (Nwi)

= −
∑

i ∈J :εi <0
εiwi ≥ −

∑

i ∈J

εiwi .

Multiplying both sides of the inequality by N and using the inequality: −W ≥ −∑i ∈J wi , we have

εkNM −W > −
∑

i ∈J

wi − N
∑

i ∈J

εiwi ,

which means that action fk is preferred by the follower. Thus, the leader receives payoff 0.

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

Computation of Stackelberg Equilibria of Finite Sequential Games 23:19

Case 2 (
∑

i ∈J wi <W). Since we have a Knapsack with unit-items instance, there is a knap-
sack solution that obtains value 1 +∑i ∈J vi , which corresponds to a strategy for the leader
that obtains the same utility. Since the current strategy is optimal for the leader, we must
have ∑i ∈J vi + N

∑
i ∈J εivi ≥ 1 +∑i ∈J vi , which means that 1 ≤ N

∑
i ∈J εivi ≤ (N 2 maxi vi)εk ,

and thus εk ≥ 1/(N 2 maxi vi). We then have by definition of M that

εkNM −W ≥ NM

N 2 maxi vi
−W > 0.

Thus, the payoff for the follower is strictly positive for the action fk , and this is thus preferred to
f0, thus leading to payoff 0 to the leader. �

Since there is a strategy for the leader that obtains strictly positive payoff, we can thus assume
that the strategy for the leader chooses an action uniformly at random in the root node, and the
follower chooses action f0. Since f0 is preferred by the follower to any other action, this means that∑

i ∈J wi ≤W , and the leader obtains payoff ∑i ∈J vi . Thus, this corresponds exactly to a feasible
solution to the Knapsack with unit-items instance of the same value.

B APPROXIMATING OPTIMAL STRATEGIES
In this section, we provide the full analysis for the dynamic programming algorithms used for our
approximation algorithm.

Proposition 5.2 (Restated). There is an algorithm that takes as input a turn-based game on a
tree with chance nodes and leader utilities in the range [U1,U2], where U1 and U2 are integers, and
computes for each subtree T of the game a table AT with the following properties guaranteed in each
table:

(1) IfAT [k] > −∞ the leader has a behavioral strategy for the game treeT that offers the follower
utility AT [k] while securing utility at least k to the leader.

(2) No behavioral strategy of the leader can (starting from subtree T) offer the follower utility
strictly more than AT [k] while securing utility at least k + HT to the leader, where HT is the
height of the tree T .

(3) The entries of AT are nonincreasing, AT [U1] is the largest utility the leader can help the
follower to obtain, and AT [U2 + 1] = −∞.

Last, the algorithm runs in time O (TU 3), where T is the size of the game and U = U2 −U1.

We have provided the algorithm in the main body of this article; its correctness and running
time will follow from the next lemma.

Lemma B.1. The algorithm of Proposition 5.2 is correct and has the desired running time.

Proof. We will prove the properties hold for the computed tables by induction. These properties
also form our induction hypothesis. In the proof , we will for convenience index the tables with
k also outside the range {U1, . . . ,U2 + 1}, noting that the tables would have AT [k] = AT [U1] for
k < U1 and AT [k] = AT [U2 + 1] for k > U2 + 1 following the definitions of the algorithm.

We consider each type of node in the tree. The easy case is the case of leaf nodes, where the
properties hold trivially by construction.

Leader nodes. Let T be a leader node, with successors L and R, each with tables AL and AR . If
the leader plays L with probability p and plays R with the remaining probability (1 − p), followed
up by the strategies that gave the guarantees for AL[i] and AR[j], then the leader would get at

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

23:20 B. Bošanský et al.

least an expected pi + (1 − p)j, while being able to offer pAL[i] + (1 − p)AR[j] to the follower. For
a given k , the optimal combination of the computed tradeoffs becomes:

AT [k] := max
i, j,p
{pAL[i] + (1 − p)AR[j] | pi + (1 − p)j ≥ k }

For property (1) of the induction hypothesis, the strategy that guaranteesAT [k] simply combines
the strategies for the maximizingAL[i] andAR[j] along with the probabilityp at nodeT . For a given
i , j, and k , finding the optimal value p amounts to maximizing a linear function over an interval
(i.e., it will attain its maximum at one of the end points of the interval). The table AT can thus be
filled in time O (U 3) by looping over all i, j,k .

For property (2) of the induction hypothesis, assume for contradiction that some strategy σ
yields utilities (uσ

1 ,u
σ
2) with

uσ
1 ≥ k + HT and uσ

2 > AT [k]. (9)

Let pσ be the probability that σ assigns to the action L, and let (uσ ,L
1 ,u

σ ,L
2) and (uσ ,R

1 ,uσ ,R
2) be

the utilities from playing σ and the corresponding follower strategy in the left and right child,
respectively. By definition,

uσ
l = pσ · uσ ,L

l + (1 − pσ) · uσ ,R
l , ∀l ∈ {1, 2}. (10)

By the induction hypothesis,

uσ ,c
2 ≤ Ac [�uσ ,c

1 � − HT + 1], ∀c ∈ {L,R}. (11)

Thus,
AT [k] < uσ

2 ≤ pσ · AL[�uσ ,L
1 � − HT + 1] + (1 − pσ) · AR[�uσ ,R

1 � − HT + 1]. (12)
But

pσ · (�uσ ,L
1 � − HT + 1) + (1 − pσ) · (�uσ ,R

1 � − HT + 1) (13)

≥ pσ · (uσ ,L
1 − HT) + (1 − pσ) · (uσ ,R

1 − HT) (14)
= uσ

1 − HT ≥ k, (15)

meaning that i = �uσ ,L
1 � − HT + 1 and j = �uσ ,R

1 � − HT + 1 satisfy the constraints in the definition
of AT [k], which contradicts the assumption that uσ

2 > AT [k].

Finally, property (3) holds trivially by the definition of AT [k] and the induction hypothesis.

Chance nodes. Let T be a chance node, with successors L and R, each with tables AL and AR ,
and let p be the probability that chance picks L. If the leader combines the strategies that gave the
guarantees for AL[i] and AR[j], then the leader would get at least an expected pi + (1 − p)j while
being able to offer pAL[i] + (1 − p)AR[j] to the follower. For a given k , the optimal combination of
the computed tradeoffs becomes:

AT [k] := max
i, j
{pAL[i] + (1 − p)AR[j] | pi + (1 − p)j ≥ k }.

For property (1) of the induction hypothesis, the strategy that guaranteesAT [k] simply combines
the strategies for the maximizing AL[i] and AR[j]. The table AT can thus be filled in time O (U 3)
by looping over all i, j,k , and this can even be improved to O (U 2) by a simple optimization.

For property (2) of the induction hypothesis, assume for contradiction that some strategy σ
yields utilities (uσ

1 ,u
σ
2) with

uσ
1 ≥ k + HT and uσ

2 > AT [k]. (16)

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

Computation of Stackelberg Equilibria of Finite Sequential Games 23:21

Let (uσ ,L
1 ,u

σ ,L
2) and (uσ ,R

1 ,uσ ,R
2) be the utilities from playing σ and the corresponding follower

strategy in the left and right child, respectively. By definition,
uσ

l = p · uσ ,L
l + (1 − p) · uσ ,R

l , ∀l ∈ {1, 2}. (17)
By the induction hypothesis,

uσ ,c
2 ≤ Ac [�uσ ,c

1 � − HT + 1], ∀c ∈ {L,R}. (18)
Thus,

AT [k] < uσ
2 ≤ p · AL[�uσ ,L

1 � − HT + 1] + (1 − p) · AR[�uσ ,R
1 � − HT + 1]. (19)

But
p · (�uσ ,L

1 � − HT + 1) + (1 − p) · (�uσ ,R
1 � − HT + 1) (20)

≥ p · (uσ ,L
1 − HT) + (1 − p) · (uσ ,R

1 − HT) (21)
= uσ

1 − HT ≥ k, (22)

meaning that i = �uσ ,L
1 � − HT + 1 and j = �uσ ,R

1 � − HT + 1 satisfy the constraints in the definition
of AT [k], which contradicts the assumption that uσ

2 > AT [k].

Again, property (3) holds trivially by the definition of AT [k] and the induction hypothesis.

Follower Nodes. Let T be a follower node, with successors L and R, each with tables AL and
AR , and let τL and τR be the minmax value for the follower in L and R, respectively. If the leader
combines the strategy forAL[k] in L with the minmax strategy for R, this ensures the leader utility
k if AL[k] ≥ τR , and, similarly, if the leader combines the strategy for AR[k] in R with the minmax
strategy for L, it ensures leader utility k if AR[j] ≥ τL . Thus, if we let

x ↓τ :=
{

x , if x ≥ τ
−∞ , otherwise,

then the optimal combination becomes
AT [k] := max(AL[k] ↓τR ,AR[k] ↓τL).

For property (1) of the induction hypothesis, the strategy that guaranteesAT [k] simply combines
the strategies for the maximizing AL[i] or AR[j] in one branch and playing minmax in the other.
The table AT can thus be filled in time O (U).

For property (3), it follows trivially that the entries of AT are nonincreasing and that AT [U2 +
1] = −∞ from the definition of AT [k] and the induction hypothesis. For the remaining part,
note that AL[U1] ≥ τL and AR[U1] ≥ τR . Thus, max(AL[U1],AR[U1]) ≥ max(τL,τR), which means
AT [U1] = max(AL[U1],AR[U1]).

Finally, for property (2) of the induction hypothesis, let HT be the height of the treeT . Suppose
that some strategy σ yields (uσ

1 ,u
σ
2) with

uσ
1 ≥ k + HT and uσ

2 > AT [k]. (23)

Assume without loss of generality that the follower plays L. Let (uσ ,L
1 ,u

σ ,L
2) be the utilities from

playing σ and the corresponding follower strategy in the left child. Combined with the induction
hypothesis, we get

AT [k] < uσ ,T
2 = uσ ,L

2 ≤ AL[�uσ ,L
1 � − HT + 1] = AT [�uσ

1 � − HT + 1]. (24)
But this is a contradiction, since AT [k] is nonincreasing in k and

�uσ
1 � − HT + 1 ≥ uσ

1 − HT ≥ k . (25)
This completes the proof. �

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

23:22 B. Bošanský et al.

For the case of commitment to pure strategies, we had a very similar algorithm.

Proposition 5.4 (Restated). There is an algorithm that takes as input a turn-based game on a
tree with chance nodes and leader utilities in the range [U1,U2], where U1 and U2 are integers, and
computes for each subtree T of the game a table AT with the following properties guaranteed in each
table:

(1) If AT [k] > −∞ the leader has a pure strategy for the game tree T that offers the follower
utility AT [k] while securing utility at least k to the leader.

(2) No pure strategy of the leader can (starting from subtree T) offer the follower utility strictly
morethan AT [k] while securing utility at least k + HT to the leader, where HT is the height
of the tree T .

(3) The entries of AT are nonincreasing, AT [U1] is the largest utility the leader can help the
follower to obtain, and AT [U2 + 1] = −∞.

Last, the algorithm runs in time O (TU 2), where T is the size of the game and U = U2 −U1.

In essence, the algorithm for Theorem 5.3 is the same, except leader nodes only consider p ∈
{0, 1}. The induction hypothesis is the same, except the quantifications are over pure strategies
instead. We argue the correctness of this algorithm formally in the following lemma.

Lemma B.2. The algorithm of Proposition 5.4 is correct and has the desired running time.

Proof. We have the same construction and induction hypothesis as in Proposition 5.2. Let T
be a leader node, with successors L and R, each with tables AL and AR . If the leader plays L (or
R), followed up by the strategies that gave the guarantees for AL[k] (or AR[k]), then the expected
leader utility would be k while being able to offer AL[k] (or AR[k] respectively) to the follower.
For a given k , the optimal combination of the computed tradeoffs becomes:

AT [k] := max{AL[k],AR[k]}.
For property (1) of the induction hypothesis, we simply use the move that maximizes the ex-

pression combined with the strategies that guaranteeAL[k] andAR[k] in the successors. The table
AT can thus be filled in time O (U).

For property (2) of the induction hypothesis, assume for contradiction that some pure strategy
π yields utilities (uπ

1 ,u
π
2) with

uπ
1 ≥ k + HT and uπ

2 > AT [k]. (26)

Assume without loss of generality that π plays L at T , and let (uπ ,L
1 ,u

π ,L
2) be the utilities from

playing π and the corresponding follower strategy in L. By definition,

uπ
l = u

π ,L
l , ∀l ∈ {1, 2}. (27)

By the induction hypothesis,
uπ ,L

2 ≤ AL[�uπ ,L
1 � − HT + 1]. (28)

Thus,
AT [k] < uπ

2 ≤ AL[�uπ ,L
1 � − HT + 1]. (29)

But

�uπ ,L
1 � − HT + 1 ≥ uπ ,L

1 − HT = u
π
1 − HT ≥ k, (30)

meaning that i = �uπ ,L
1 � − HT + 1 satisfies the constraints in the definition of AT [k], which con-

tradicts the assumption that uπ
2 > AT [k].

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

Computation of Stackelberg Equilibria of Finite Sequential Games 23:23

Finally, property (3) holds trivially by the definition of AT [k] and the induction hypothesis.
Note that the analysis for the other nodes is identical to those for behavioral strategies, which

completes the proof. �

REFERENCES
Rabah Amir and Isabel Grilo. 1999. Stackelberg versus Cournot equilibrium. Games and Economic Behavior 26, 1 (1999),

1–21.
Branislav Bošanský and Jiří Čermák. 2015. Sequence-form algorithm for computing Stackelberg equilibria in extensive-

form games. In Proceedings of AAAI Conference on Artificial Intelligence. AAAI, 805–811.
Jiří Čermák, Branislav Bošanský, Karel Durkota, Viliam Lisý, and Christopher Kiekintveld. 2016. Using correlated strategies

for computing Stackelberg equilibria in extensive-form games. In Proceedings of AAAI Conference on Artificial Intelli-
gence. AAAI, 439–445.

Jakub Černý. 2016. Stackelberg Extensive-Form Correlated Equilibrium with Multiple Followers. Master’s thesis. Czech Tech-
nical University in Prague.

Xi Chen, Xiaotie Deng, and Shang-Hua Teng. 2009. Settling the complexity of computing two-player Nash equilibria.
Journal of the ACM 56, Article 14 (May 2009), 57 pages. Issue 3.

Vincent Conitzer and Dmytro Korzhyk. 2011. Commitment to correlated strategies. In Proceedings of AAAI Conference on
Artificial Intelligence. AAAI, 632–637.

Vincent Conitzer and Tuomas Sandholm. 2006. Computing the optimal strategy to commit to. In Proceedings of ACM Con-
ference on Economics and Computation (EC). ACM, 82–90.

Constantinos Daskalakis, Alex Fabrikant, and Christos H. Papadimitriou. 2006a. The game world is flat: The complex-
ity of Nash equilibria in succinct games. In Proceedings of the International Colloquium on Automata, Languages and
Programming (ICALP). Springer Berlin Heidelberg, 513–524.

Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. 2006b. The complexity of computing a Nash
equilibrium. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC). ACM, 71–78.

Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf. 2000. Computational Geometry (2nd
ed.). Springer.

Federico Etro. 2007. Stackelberg Competition and Endogenous Entry. Springer Berlin, 91–129.
Peter Gritzmann and Bernd Sturmfels. 1993. Minkowski addition of polytopes: Computational complexity and applications

to Grbner bases. SIAM Journal on Discrete Mathematics (SIDMA) 6, 2 (1993), 246–269.
Anshul Gupta. 2015. Equilibria in Finite Games. Ph.D. Dissertation. University of Liverpool.
Anshul Gupta, Sven Schewe, and Dominik Wojtczak. 2015. Making the best of limited memory in multi-player discounted

sum games. In Proceedings of the 6th International Symposium on Games, Automata, Logics and Formal Verification.
Electronic Proceedings in Theoretical Computer Science (EPTCS), 16–30.

Jonathan H. Hamilton and Steven M. Slutsky. 1990. Endogenous timing in duopoly games: Stackelberg or cournot equilibria.
Games and Economic Behavior 2, 1 (1990), 29–46.

Joshua Letchford. 2013. Computational Aspects of Stackelberg Games. Ph.D. Dissertation. Duke University.
Joshua Letchford and Vincent Conitzer. 2010. Computing optimal strategies to commit to in extensive-form games. In

Proceedings of ACM Conference on Economics and Computation (EC). ACM, 83–92.
Joshua Letchford, Liam MacDermed, Vincent Conitzer, Ronald Parr, and Charles L. Isbell. 2012. Computing optimal strate-

gies to commit to in stochastic games. In Proceedings of AAAI Conference on Artificial Intelligence. AAAI, 1380–1386.
Toshihiro Matsumura. 2003. Stackelberg mixed duopoly with a foreign competitor. Bulletin of Economic Research 55 (2003),

275–287.
Thanh H. Nguyen, Francesco M. Delle Fave, Debarun Kar, Aravind S. Lakshminarayanan, Amulya Yadav, Milind Tambe,

Noa Agmon, Andrew J. Plumptre, Margaret Driciru, Fred Wanyama, and Aggrey Rwetsiba. 2015. Making the Most of
Our Regrets: Regret-Based Solutions to Handle Payoff Uncertainty and Elicitation in Green Security Games. Springer Inter-
national Publishing, 170–191.

Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki, Milind Tambe, Fernando Ordonez, and Sarit Kraus. 2008. Playing
games for security: An efficient exact algorithm for solving Bayesian Stackelberg games. In Proceedings of International
Conference on Agents and Multiagent Systems (AAMAS). International Foundation for Autonomous Agents and Multia-
gent Systems (IFAAMAS), 895–902.

Hanif D. Sherali. 1984. A multiple leader Stackelberg model and analysis. Operations Research 32, 2 (1984), 390–404.
Milind Tambe. 2011. Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press.
Eric van Damme and Sjaak Hurkens. 1999. Endogenous Stackelberg leadership. Games and Economic Behavior 28, 1 (1999),

105-129.
Heinrich von Stackelberg. 1934. Marktform und gleichgewicht. Springer-Verlag.

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

23:24 B. Bošanský et al.

Bernhard von Stengel and Francoise Forges. 2008. Extensive-form correlated equilibrium: Definition and computational
complexity. Mathematics of Operations Research 33, 4 (2008), 1002–1022.

Bernhard von Stengel and Shmuel Zamir. 2010. Leadership games with convex strategy sets. Games and Economic Behavior
69, 2 (2010), 446–457.

Haifeng Xu, Zinovi Rabinovich, Shaddin Dughmi, and Milind Tambe. 2015. Exploring information asymmetry in two-stage
security games. In Proceedings of AAAI Conference on Artificial Intelligence. AAAI, 1057–1063.

Received July 2016; revised December 2016; accepted June 2017

ACM Transactions on Economics and Computation, Vol. 5, No. 4, Article 23. Publication date: December 2017.

APPENDIX G

200

Appendix H

Using Correlated Strategies for
Computing Stackelberg Equilibria in
Extensive-Form Games

Using Correlated Strategies for Computing Stackelberg Equilibria in
Extensive-Form Games

Jiřı́ Čermák1, Branislav Bošanský1,2, Karel Durkota1, Viliam Lisý1,3, Christopher Kiekintveld4

1 Agent Technology Center, Faculty of Electrical Engineering, Czech Technical University in Prague
2 Department of Computer Science, Aarhus University

3 Department of Computing Science, University of Alberta
4 Department of Computer Science, University of Texas at El Paso

jiri.cermak@agents.fel.cvut.cz, branislav.bosansky@agents.fel.cvut.cz, karel.durkota@agents.fel.cvut.cz,
lisy@ualberta.ca, cdkiekintveld@utep.edu

Abstract

Strong Stackelberg Equilibrium (SSE) is a fundamental solu-
tion concept in game theory in which one player commits to
a strategy, while the other player observes this commitment
and plays a best response. We present a new algorithm for
computing SSE for two-player extensive-form general-sum
games with imperfect information (EFGs) where computing
SSE is an NP-hard problem. Our algorithm is based on a
correlated version of SSE, known as Stackelberg Extensive-
Form Correlated Equilibrium (SEFCE). Our contribution is
therefore twofold: (1) we give the first linear program for
computing SEFCE in EFGs without chance, (2) we repeat-
edly solve and modify this linear program in a systematic
search until we arrive to SSE. Our new algorithm outperforms
the best previous algorithms by several orders of magnitude.

Introduction
The roles of players in many games are often asymmetric.
One example is the ability of one player (the leader) to com-
mit to a strategy, to which the other players (the followers)
react by playing their best response. In real-world scenar-
ios, the leader can model a market leader with the power
to set the price for items or services, or a defense agency
committing to a security protocol to protect critical facilities.
Optimal strategies for the players in such situations are de-
scribed by the Strong Stackelberg Equilibrium (SSE) (Leit-
mann 1978; von Stengel and Zamir 2004). There are many
examples of successful applications of SSE in infrastructure
protection (Tambe 2011) as well as protecting the environ-
ment and wildlife (Fang, Stone, and Tambe 2015).

In most of the existing works, the game models are sim-
plified and do not consider the sequential interaction among
players (Pita et al. 2008; Tsai et al. 2009; Shieh et al. 2012;
Jiang et al. 2013). One reason is computational complexity,
since computing SSE is often NP-hard when sequential in-
teraction is allowed (Letchford and Conitzer 2010). Another
reason is the lack of practical algorithms. The only algo-
rithm designed specifically for computing SSE in two-player
imperfect-information general-sum extensive-form games

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(EFGs) was only introduced recently (Bosansky and Cermak
2015) and formulates the problem as a mixed-integer vari-
ant of sequence-form linear program (referred to as BC15).
However, the scalability of BC15 is limited as it contains a
binary variable for each sequence of actions of the follower.

Our main contribution is a novel algorithm computing
SSE in EFGs that offers a dramatic speed-up in computation
time compared to BC15. The key idea behind our algorithm
is in computing a variant of SSE, where the leader commits
to correlated strategies – i.e., the leader can send signals to
the follower, and the best response of the follower is to fol-
low these signals. We use this variant to find the original SSE
by systematically restricting which signals the leader can
send to the follower. This variant of SSE has previously been
studied in single step games (Conitzer and Korzhyk 2011),
finite turn-based and concurrent-move games (Bosansky et
al. 2015), infinite concurrent-move stochastic games (Letch-
ford et al. 2012), and security games (Xu et al. 2015;
Rabinovich et al. 2015; Durkota et al. 2015). Formally, it
has been defined as Stackelberg Extensive-Form Correlated
Equilibrium (SEFCE) in (Bosansky et al. 2015). While it
was shown that the utility value for the leader in SSE cannot
be closely approximated by SEFCE (Letchford et al. 2012),
we show that one can use SEFCE to compute SSE. Since
there was no previously known algorithm for computing SE-
FCE in EFGs, we also show that SEFCE can be found in
polynomial time in EFGs without chance.

The paper is structured as follows. After introducing the
formalism of EFGs, we formally define both SSE and SE-
FCE, and give an example of a game where these concepts
differ. Next, we present the linear program (LP) for comput-
ing SEFCE in EFGs without chance (we describe a modified
LP for EFGs with chance in the appendix). Afterwards, we
present our algorithm for computing SSE in EFGs that iter-
atively solves the LP for SEFCE with additional constraints
until SSE is reached. Finally, we provide three variants of
our algorithm and show that each variant significantly im-
proves the computation time compared to BC15 on ran-
domly generated games and an example of a search game.

Technical Background
Extensive-form games model sequential interactions be-
tween players and can be visually represented as game trees.
Formally, a two-player EFG is defined as a tuple G =
(N ,H,Z,A, u, C, I): N = {l, f} is a set of players, the
leader and the follower. We use i to refer to one of the play-
ers, and−i to refer to his opponent.H denotes a finite set of
nodes in the game tree. Each node corresponds to a unique
history of actions taken by all players and chance from the
root of the game; hence, we use the terms history and node
interchangeably. We say that h is a prefix of h′ (h v h′) if
h lies on a path from the root of the game tree to h′. A de-
notes the set of all actions. Z ⊆ H is the set of all terminal
nodes of the game. For each z ∈ Z we define a utility func-
tion for each player i (ui : Z → R). Chance player selects
actions based on a fixed probability distribution known to all
players. Function C : H → [0, 1] denotes the probability of
reaching node h due to chance; C(h) is the product of chance
probabilities of all actions in history h.

Imperfect observation of player i is modeled via infor-
mation sets Ii that form a partition over h ∈ H where i
takes action. Player i cannot distinguish between nodes in
any information set I ∈ Ii. We overload the notation and use
A(Ii) to denote possible actions available in each node from
information set Ii. We assume that action a uniquely iden-
tifies the information set where it is available. We assume
perfect recall, which means that players remember history
of their own actions and all information gained during the
course of the game. As a consequence, all nodes in any in-
formation set Ii have the same history of actions for player i.

Pure strategies Πi assign one action for each I ∈ Ii. A
more efficient representation in the form of reduced pure
strategies Π∗i assigns one action for each I ∈ Ii reachable
while playing according to this strategy. A mixed strategy
δi ∈ ∆i is a probability distribution over Πi. For any pair of
strategies δ ∈ ∆ = (∆l,∆f) we use ui(δ) = ui(δi, δ−i) for
the expected outcome of the game for player i when players
follow strategies δ. A best response of player i to the op-
ponent’s strategy δ−i is a strategy δBRi ∈ BRi(δ−i), where
ui(δ

BR
i , δ−i) ≥ ui(δ′i, δ−i) for all δ′i ∈ ∆i.

Strategies in EFGs with perfect recall can be compactly
represented by using the sequence form (Koller, Megiddo,
and von Stengel 1996). A sequence σi ∈ Σi is an ordered
list of actions taken by a single player i in history h. ∅ stands
for the empty sequence (i.e., a sequence with no actions). A
sequence σi ∈ Σi can be extended by a single valid action
a taken by player i, written as σia = σ′i. We say that σi
is a prefix of σ′i (σi v σ′i) if σ′i is obtained by finite num-
ber (possibly zero) of extensions of σi. We use σi(Ii) and
σi(h) to denote the sequence of i leading to Ii and h, re-
spectively. We use the function Ii(σ′i) to obtain the informa-
tion set in which the last action of the sequence σ′i is taken.
For an empty sequence, function Ii(∅) returns the informa-
tion set of the root node. A mixed strategy of a player can
now be represented as a realization plan (ri : Σi → R).
A realization plan for a sequence σi is the probability that
player i will play σi under the assumption that the opponent
plays to allow the actions specified in σi to be played. By

gi : Σl × Σf → R we denote the extended utility function,
gi(σl, σf) =

∑
z∈Z|σl(z)=σl∧σf (z)=σf

ui(z)C(z). If no leaf
is reachable with pair of sequences σ, value of gi is 0.

Solution Concepts in EFGs
Here we provide a formal definition of Strong Stackle-
berg Equilibrium (SSE) (e.g., in (Leitmann 1978)) and
Stackelberg Extensive-Form Correlated Equilibrium (SE-
FCE) (Bosansky et al. 2015) and give the intuition on an
example game.
Definition 1. A strategy profile δ = (δl, δf) is a Strong
Stackelberg Equilibrium if δl is an optimal strategy of the
leader given that the follower best-responds. Formally:

(δl, δf) = arg max
δ′l∈∆l,δ′f∈BRi(δ′l)

ul(δ
′
l, δ
′
f). (1)

The SSE of the game in Figure 11 (the first utility in every
leaf is for the leader, second for the follower) prescribes the
leader to commit to playing g in h4, j in h5, and k in h6.
The strategy of the follower is then to play a in h1 and d in
h2, leading to the expected utility of 1 for the leader.

In SEFCE we allow the leader to send signals to the
follower and condition his strategy on sent signals. More
specifically, the leader chooses π∗f ∈ Π∗f as the recom-
mendations for the follower according to SEFCE before the
game starts. The actual recommendation to play some action
a ∈ A(If) is revealed to the follower only after he reaches
If . Therefore, the follower only knows the past and cur-
rent recommendations, and the probability distribution from
which the recommendations are drawn in the future.
Definition 2. A probability distribution λ on reduced pure
strategy profiles Π∗ is called a Stackelberg Extensive-Form
Correlated Equilibrium if it maximizes the leader’s utility
subject to the constraint that whenever play reaches an in-
formation set I where the follower can act, the follower is
recommended an action a according to λ such that the fol-
lower cannot gain by unilaterally deviating from a in I and
possibly in all succeeding information sets given the pos-
terior on the probability distribution of the strategy of the
leader, defined by the actions taken by the leader so far.

The middle table in Figure 1 represents the distribution
λ forming the SEFCE of the example game (rows are la-
beled by Π∗l , columns by Π∗f). The leader chooses the sig-
nals to the follower to be either {a, c} or {a, d} based on the
probability distribution depicted in the table. Afterwards, the
corresponding column defines a valid mixed strategy for the
leader and the signals the follower receives in his informa-
tion sets. More specifically, the follower can receive either c
or d in h2. When the follower receives the recommendation
to play c, the leader commits to mix uniformly between g
and h in h4 and to play i in h5. When the follower receives
d as the recommendation, the leader commits to playing g in
h4 and j in h5. Finally in h1 the follower is recommended
to play a, while the leader commits to play k in h6 to ensure
that the follower does not deviate from playing a. The ex-
pected utility of the leader is 1.5 in SEFCE. Note that SSE

1This is a corrected version of the example published on AAAI 2016.

{a, c} {a, d} {b, e} {b, f}
{g, i, k} 0.25 0 0 0
{g, i, l} 0 0 0 0
{g, j, k} 0 0.5 0 0
{g, j, l} 0 0 0 0
{h, i, k} 0.25 0 0 0
{h, i, l} 0 0 0 0
{h, j, k} 0 0 0 0
{h, j, l} 0 0 0 0

∅ (a) (b) (a, c) (a, d) (b, e) (b, f)

∅ 1 1 0 0.5 0.5 0 0
(g) 0.75 0.75 0 0.25 0.5 - -
(h) 0.25 0.25 0 0.25 0 - -
(i) 0.5 0.5 0 0.5 0 - -
(j) 0.5 0.5 0 0 0.5 - -
(k) 1 1 0 - - 0 0
(l) 0 0 0 - - 0 0

Figure 1: (Left) EFG with different SEFCE and SSE. (Middle) SEFCE distribution over Π∗. (Right) SEFCE correlation plan.

in this representation always corresponds to a table where
only a single column of the follower has non-zero values.

LP for Computing SEFCE
To compactly represent the behavior described in the mid-
dle table in Figure 1, we use a correlation plan (von Stengel
and Forges 2008) that is quadratic in the size of the game
tree, instead of the exponential representation using Π∗. A
correlation plan for a sequence pair p(σl, σf) represents the
expected probability that σl will be played if actions from σf
are recommended to the follower. In order to model SEFCE
strategies using the correlation plan, the follower must be
able to determine whether following the signal is the best re-
sponse. Therefore, we need to specify the plan for so called
relevant sequences. Consider our game in Figure 1; when
the follower receives, for example, signal c in h2, the fol-
lower needs to know the commitment of the leader in the
related part of the tree – i.e, in both nodes h4, h5 – to evalu-
ate whether following the signal is the best response.
Definition 3. A pair of sequences (σl, σf) is termed relevant
if and only if either σf = ∅, or ∃h, h′ ∈ H, h′ v h;σl =
σl(h) ∧ h′ ∈ If (σf).

By rel(σi) we denote the set of sequences of −i which
form a relevant pair with σi. In our example rel((a)) =
rel((b)) = Σl, rel((b, e)) = rel((b, f)) = {∅, (k), (l)},
and rel((a, c)) = rel((a, d)) = {∅, (g), (h), (i), (j)}.
Definition 4. A correlation plan (von Stengel and Forges
2008) is a partial function p : Σl × Σf → R such
that there is a probability distribution λ on the set of re-
duced strategy profiles Π∗ so that for each relevant se-
quence pair (σl, σf), the term p(σl, σf) is defined and ful-
fills p(σl, σf) =

∑
(πl,πf)∈Π∗ λ(πl, πf) where πl, πf pre-

scribe playing all of the actions in σl and σf , respectively.
Let us now describe the SEFCE strategies (middle table

in Figure 1) using the correlation plan (the right table; rows
are labeled by Σl, columns by Σf). Every column of the ta-
ble corresponds to an expected probability of the occurrence
of the leader’s sequences when the follower follows his rec-
ommendations in the future, and gets the recommendation
to play the σf corresponding to this column. We use ‘-’ to
mark irrelevant sequence pairs. The entry for every σl, σf is
the sum of all the entries corresponding to the pure strategies
containing all the actions from σl and σf in the middle table
of Figure 1. The behavior in columns corresponding to se-
quences (a, c) and (a, d) matches the behavior discussed in

the previous section. The behavior in columns for sequence
∅ and (a) corresponds to the expected probability of playing
sequences of the leader given the probability of recommen-
dations, e.g., the probability of playing g for the recommen-
dation (a) is equal to p((g), (a, c)) + p((g), (a, d)) (in this
case the leader will play uniformly either g with probability
0.5 according to the column for (a, c) or g with probability 1
according to the column for (a, d)). Probabilities in column
for (a) allow the follower to evaluate his choices in h1.

Now we are ready to describe the LP for computing SE-
FCE in EFGs without chance that uses correlation plan:

max
p,v

∑

σl∈Σl

∑

σf∈Σf

p(σl, σf)gl(σl, σf) (2)

s.t. p(∅, ∅) = 1; 0 ≤ p(σl, σf) ≤ 1 (3)

p(σl(I), σf) =
∑

a∈A(I)

p(σl(I)a, σf) ∀I ∈ Il, ∀σf ∈ rel(σl) (4)

p(σl, σf (I)) =
∑

a∈A(I)

p(σl, σf (I)a) ∀I ∈ If , ∀σl ∈ rel(σf) (5)

v(σf) =
∑

σl∈rel(σf)

p(σl, σf)gf (σl, σf) +

+
∑

I∈If ; σf (I)=σf

∑

a∈Af (I)

v(σfa) ∀σf ∈ Σf (6)

v(I, σf) ≥
∑

σl∈rel(σf)

p(σl, σf)gf (σl, σf (I)a) +
∑

I′∈If ; σf (I′)=σf (I)a

v(I ′, σf)

∀I ∈If , ∀σf ∈
⋃

h∈I
rel(σl(h)),∀a ∈ A(I) (7)

v(σf (I)a) = v(I, σf (I)a) ∀I ∈ If , ∀a ∈ A(I) (8)

The LP is derived from the computation of Extensive-Form
Correlated Equilibrium (von Stengel and Forges 2008) by
omitting the incentive constraints for the leader and maxi-
mizing the expected utility of the leader (this is similar to
the approach in normal-form games (Conitzer and Korzhyk
2011)). Constraints (3) to (5) ensure that p is a well-formed
correlation plan. Constraint (6) ensures that v(σf) represents
the expected utility of playing σf for the follower, when he
follows his recommendations. The first sum represents the
expected utility of the leaves reached by playing according
to σl and σf , the second sum represents the contribution of
the expected utility from information sets reached by the
continuations of σf . Constraint (7) ensures that v(If , σf)
is the maximum over all possible sequences leaving If (de-
noted as σf (If)a for all a ∈ A(If)) after the follower has

received recommendation σf . Finally, constraint (8) forces
the move recommended to the follower in If to be optimal.
Definition 5. We say that p uses inconsistent recommen-
dation in I ∈ If if and only if p defines two different
recommendations for the follower in I . Formally, ∃a, a′ ∈
A(I), a 6= a′,∃σl, σ′l ∈

⋃
h∈I σl(h) p(σl, σf (I)a) > 0 ∧

p(σ′l, σf (I)a′) > 0. If there exists no such information set
we say that p uses only consistent recommendations.
Theorem 1. Assume a solution of the LP as described in
eqs. (2) to (8) such that there are only consistent recommen-
dations for the follower. There is a SSE strategy that can be
found in polynomial time from the p variables.

Proof. First, we show how the strategy of the leader is con-
structed. In every I ∈ Il there is a subset Σr of relevant se-
quences rel(σl(I)) played with a positive probability. The
behavior in I is specified by p(σl(I)a, σf) for all a ∈ A(I)
for arbitrary σf ∈ Σr, as the behavior is the same for all
σ′f ∈ Σr. This is guaranteed by constraint (5) – it forces the
probability of p(σl, σ′f) to be equal to the sum of p(σl, σ′′f)

over all extensions σ′′f of σ′f . Since there can be only a single
extension played with positive probability (assumed consis-
tent recommendations) the probabilities must be equal.

For every I ∈ If there exists at most one action a ∈ A(I)
with p(σl, σfa) > 0 for some σl ∈ Σl and σf = σf (I)
(consistent recommendations). By taking these actions and
arbitrary actions in information sets where there is no such
action a, we obtain a pure strategy for the follower. Finally,
due to the correctness of the strategy of the leader proved in
the previous step and constraints (6–8), this pure strategy is
a best response of the follower.

Theorem 2. Assume a solution of the LP as described in
eqs. (2) to (8). The objective value is greater than or equal
to the expected utility of the leader in SSE.

Proof. Theorem 1 shows that in case the leader uses only
consistent recommendations, the value of the LP corre-
sponds to the expected utility of the leader in SSE. If the
leader can also use inconsistent recommendations, the value
of the LP can be only greater or equal.

Algorithm Computing SSE
In this section we describe the algorithm for computing
SSE. The algorithm uses the linear program for computing
SEFCE in case the game is without chance. Otherwise, a
slightly modified version of this LP is required, however, the
algorithm remains the same. Due to the space constraints,
we describe this modified LP in details in the appendix of
the paper and refer to one of these two LPs as UB-SSE-LP.

The high level idea of our algorithm (depicted in Algo-
rithm 1) is a recursive application of the following steps:
(1) solve the UB-SSE-LP, (2) detect the set of information
sets of the follower with inconsistent recommendations Iin,
(3) restrict the leader to use only consistent recommenda-
tions in Iin by adding new constraints to the UB-SSE-LP.
Restrictions are added cumulatively, until we arrive at a
restricted UB-SSE-LP yielding only consistent p. The ex-
pected utility for the leader and the correlation plan p in this

Input: An UB-SSE-LP P
Output: leader’s expected utility and strategy profile in SSE

1 M ← {(∞, ∅)}; LB ← −∞; pc ← ∅
2 while M 6= ∅ do
3 (UB ,m)← max(M)
4 if UB < LB then
5 return (LB, pc)
6 apply(m, P)
7 if feasible(P) then
8 (value, p)← solve(P)
9 Iin ← inconsistentRecommendations(p)

10 if Iin = ∅ then
11 if value > LB then LB ← value; pc ← p
12 else addRestrictions((UB ,m), M , Iin, value)
13 revert(m, P)
14 return (LB, pc)

Algorithm 1: Algorithm for computing the SSE.

solution correspond to a candidate for the expected utility
of the leader and the strategies of players in SSE. It is only
a solution candidate, since we have enforced actions, which
may not be a part of SSE.

In more details, Algorithm 1 assumes as the input the UB-
SSE-LP P for the game we want to solve. By modification
mod = (UB ,m) we denote a pair of constraints m, to be
added to P , and the upper bound UB on the value of P after
adding the constraints. M is the set of modifications to be
explored during the search for the SSE sorted in descending
order of UB . The variable LB stores the expected utility for
the leader in the best solution candidate found so far pc. The
main cycle of the algorithm starts on line 2, we iterate until
there are no possible modifications of P left. On line 3 we
remove the modification with the highest UB from M . We
choose such mod = (UB ,m) in order to first explore mod-
ifications with the potential to lead to solution candidates
with the highest expected utility for the leader. The algo-
rithm verifies whether the modification mod (the one with
the highest UB value) can improve the current best solution
candidate (line 4). If not, the algorithm terminates and the
best candidate found so far is the SSE. Otherwise, we add the
constraints in m to P (line 6). If the modified P is feasible,
the algorithm solves the LP (line 8) obtaining the expected
utility of the leader and the correlation plan p. We find the set
of information sets where the follower gets an inconsistent
recommendation in p (line 9). If p uses only consistent rec-
ommendations, this solution corresponds to a solution can-
didate. If the expected utility for the leader is higher than
for the best solution candidate found so far, we replace it
(line 11). If Iin is not empty, we generate new modifications
to be applied to P and add them to M (line 12). The func-
tion addRestrictionswill be discussed in more detail in the
next subsection, as we explored several options of the modi-
fication generation. Finally, we revert the changes in m (line
13). If there are modifications left to be explored in M we
continue with the next iteration. Every modification contains
all the constraints added to the original P given as an input,
therefore after revert we again obtain the original P .

When we enforce the whole strategy of the follower to
be consistent with the SSE, the solution of the LP corre-

1 addRestrictions((UB ,m), M , Iin, value)
2 I ← getShallowest(Iin)
3 for a ∈ A(I) do
4 UBa ← value; ma ← m
5 for σl ∈ rel(σf (I)a) do
6 ma ← ma ∪ {p(σl, σf (I)) = p(σl, σf (I)a)}
7 M ←M ∪ {(UBa,ma)}

Algorithm 2: SI-LP.

sponds to the SSE, as it now maximizes the expected utility
of the leader under the restriction the follower gets recom-
mended the pure best response to the strategy of the leader.
It remains to be shown, that we are guaranteed to add mod-
ifications to M which force the correct set of actions of
the follower in every version of addRestrictions. The fi-
nal correctness arguments will be provided after discussing
the addRestrictions versions used.

Rules for Restricting Follower’s Behavior
We examine different approaches for method addRestric-
tions that generates new modifications of UB-SSE-LP re-
sulting in three different variants of our new algorithm.

In Algorithm 2 we describe the first version of the func-
tion addRestrictions, labeled SI-LP. On line 2 we find the
shallowest information set I , where the follower receives an
inconsistent recommendation. We generate modification for
every a ∈ A(I). Every such modification enforces corre-
sponding a ∈ A(I) to be recommended deterministically.
The upper bound is set to the value of P computed before
invoking addRestrictions. The shallowest information set
is chosen to avoid unnecessary modifications in deeper parts
of the game tree, which might end up not being visited at all.
This version of addRestrictions transforms Algorithm 1 to
branch and bound algorithm.

By adding mod = (UB ,m) to M for every action in the
shallowest information set with inconsistent recommenda-
tions, until no such set exists, we ensure that all of the ac-
tions which might form a part of SSE will be tried. The be-
havior in information sets with consistent recommendation
need not be restricted, as we are sure that the follower has
no incentive to deviate and therefore plays his best response
maximizing the expected utility of the leader. Finally, since
we assign to UB a value which forms an upper bound on the
solution of P after adding constraints m, we are sure that if
we terminate the algorithm on line 4 in Algorithm 1, there is
indeed no possibility to encounter a solution candidate better
than the one yielding the current LB.

A second option, presented in Algorithm 3, chooses Ic ⊆
Iin (line 2) and restricts the recommendations in every
I ∈ Ic. The restriction in I is done in the following way.
First, detect the subset Ac of A(I) of actions which are rec-
ommended with positive probability (line 5) and make the
recommendation mutually exclusive using binary variables
(lines 8 and 9), converting the LP P to a mixed integer lin-
ear program (MILP). We use two options of creating Ic.
First, we create a singleton containing only the shallowest
I ∈ Iin, we refer to this algorithm as SI-MILP. Second, we
let Ic = Iin, we refer to this algorithm as AI-MILP. Algo-

1 addRestrictions((UB ,m), M , Iin, value)
2 Ic ← chooseSets(Iin)
3 UB ′ ←∞; m′ ← m
4 for I ∈ Ic do
5 Ac ← {a ∈ A(I)|∃σl ∈ Σl p(σl, σf (I)a) > 0}
6 for a ∈ Ac do
7 for σl ∈ rel(σf (I)a) do
8 m′ ← m′ ∪ {p(σl, σf (I)a) ≤ ba}
9 m′ ← m′ ∪ {∑a∈Ac

ba = 1}
10 M ←M ∪ {(UB ′,m′)}

Algorithm 3: MILP.

rithm 1 using both SI-MILP and AI-MILP closely resembles
constraint generation, with the difference that additional bi-
nary variables are also added in every iteration.

If we introduce a binary variable for every action of the
follower in the game, we are guaranteed to obtain the SSE,
as the MILP then finds a strategy profile maximizing the ex-
pected utility of the leader (ensured by the objective), while
the follower plays a pure best response to the strategy of
the leader (breaking ties in favor of the leader due to the
objective), which is the definition of the SSE. If we cre-
ate some partial enforcement of consistent recommendations
using the binary variables and we obtain a pure strategy for
the follower then this is again SSE, since the enforcement in
the rest of the game would not make any difference as the
follower already gets consistent recommendations there. Fi-
nally, since we restrict the follower’s recommendations until
consistent recommendations are obtained, both MILP based
rules indeed guarantee to find the SSE.

Experimental Evaluation
We now turn to the experimental evaluation of the three de-
scribed variants of our algorithm for computing an SSE. We
use BC15 (Bosansky and Cermak 2015) as a baseline, state-
of-the-art algorithm for computing SSE in EFGs. Single-
threaded IBM CPLEX 12.5 solver was used to compute all
the (MI)LPs. We use two different domains previously used
for evaluation of BC15: a search game representing the sce-
nario where security units defend several targets against an
attacker, and randomly generated games.

Search Game. The search game is played on a directed
graph (see Figure 2). The follower aims to reach one of
the destination nodes (D1 – D3) from starting node (E) in
a given number of moves, while the leader aims to catch the
follower with one of the two units operating in the shaded
areas of the graph (P1 and P2). The follower receives dif-
ferent reward for reaching different destination node (the
reward is randomly selected from the interval [1, 2]). The
leader receives positive reward 1 for capturing the follower.
Once the follower runs out of moves without reaching any
goal or being captured, both players receive 0. The follower
leaves tracks in the visited nodes that can be discovered if
the leader visits the node. The follower can erase the tracks
in the current node (it takes one turn of the game). The fol-
lower does not know the position of the patrolling units, the
leader observes only the tracks left by the follower.

Algs \ Steps 4 5 6
BC15 25 863 42,261
SI-LP 9 212 10,790
AI-MILP 6 257 11,997
SI-MILP 5 272 11,263

Figure 2: (Left) Search game graph. (Right) Runtimes in
seconds for the search game with increasing depth.

Table 1: Number of games solved in given time intervals.
Algs\Runtime 1s 5s 30s 2min 25min 4h
BC15 2 12 137 245 393 55
SI-LP 583 191 54 12 4 0
AI-MILP 529 259 51 5 0 0
SI-MILP 483 279 72 9 1 0

Randomly Generated Games. We use randomly gener-
ated games, where in each state of the game the number of
available actions is randomly generated up to a given pa-
rameter {2, . . . ,maxA}. Each action leads to a state where
the opponent is to move and also generates an observa-
tion for the opponent. An observation is a number from a
set {1, . . . ,maxO} and determines partitioning of the nodes
into the information sets – for player i, the nodes h with the
same history of moves σi(h) and the observations generated
by the actions of the opponent −i belong to the same infor-
mation set. We generate games of differing sizes by varying
parameters maxA = {3, 4}, maxO = {2, 3}, and depth of
the game (up to 5 actions for each player). The utility for the
players is randomly generated in the interval [−100, 100].
The utilities are correlated with factor set to −0.5 (1 repre-
sents identical utilities, −1 zero-sum utilities).

Results
The runtime results on random games are depicted in the top
graph of Figure 3. The x-axis shows the number of realiza-
tion plans of the follower, while the y-axis depicts the time in
seconds needed to solve a given instance (both axes are log-
arithmic). The number of realization plans of the follower is
a good estimate of how difficult the game is to solve as it re-
flects both the size of the game as well as the structure of in-
formation sets. Each point represents the mean time needed
for every algorithm to solve the instances from a given time
interval (at least 600 different instances). The standard er-
rors of the mean values are very small compared to the dif-
ferences between algorithms and not visible in the graph.

The results show that each of the variants significantly
outperforms the previous state-of-the-art algorithm BC15. It
typically takes around 10 minutes for BC15 to solve games
with 106 realization plans of the follower, while our algo-
rithms were often able to find solutions under a second. AI-
MILP performs best on average, since it is the least sensitive
to the different structure of the instances solved. AI-MILP
fixes the behavior in a higher number of information sets and
so it preforms a successful trade off between the complexity
of solving a single MILP and the number of MILP invoca-
tions. The second best approach on average is the SI-MILP.

●

●

●
●

● ●

●

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

number of realization plans

ru
n

ti
m

e
 [

s
] ● BC15

SI−LP

AI−MILP

SI−MILP

0

100

200

300

10
−1

10
0

10
1

10
2

10
3

10
4

runtime [s]

n
u

m
b

e
r

o
f

s
o

lv
e

d
 g

a
m

e
s

BC15

SI−LP

AI−MILP

SI−MILP

Figure 3: (Top) Runtimes on randomly generated games.
(Bottom) Number of solved games in given time intervals.

The average performance is slightly worse due to a higher
number of MILP invocations needed to solve more difficult
instances (i.e., the ones with many inconsistent recommen-
dations). Finally, the SI-LP has the worst average perfor-
mance out of the variants of our new algorithm, since SI-LP
needs even more LP invocations on more difficult instances
in comparison to the previous variants of our algorithm.

Additionally, we provide in the bottom graph of Figure 3
a histogram for number of instances solved (y-axis) within a
time interval (x-axis). The results were calculated on random
games with the number of realization plans from interval
[3 ·105, 3 ·106]. Despite a slightly worse averge performance
of SI-LP on these instances, it solved the highest number of
instances very fast compared to the other two variants (SI-LP
solves 69% of the instances under 1 second, while AI-MILP
solves 62% and SI-MILP 57%). The histogram also shows
the reason behind the worse average performance of SI-LP.
There are multiple instances that SI-LP solves in more then
200 seconds, while such outliers are not present for the latter
two variants (the worst outlier for SI-LP took 773 seconds,
while the longest time for SI-MILP was 146 seconds, for AI-
MILP 57 seconds and for BC15 2.5 hours). For clarity we
provide the same data in coarser intervals in Table 1, where
the outliers are clearly visible (the label of column represents
the upper bound of the corresponding time interval, the la-
bel of the column to the left the lower bound of the time
interval). The results show that SI-LP is more efficient on
instances where the advantage in using the correlated strate-
gies is marginal and there are only few information sets with
inconsistent recommendations. On the other hand, AI-MILP
offers higher robustness across different instances.

Finally, in Figure 2 we present the results on the search
game. All the new approaches performed similarly, outper-
forming the BC15 in every setting. This shows that our al-

gorithm outperforms BC15 even in an unfavorable setting.
The search game has a specific structure, where the strategy
space of the leader is large (joint actions of the patrolling
units), while the strategy space of the follower is signifi-
cantly smaller. This structure is favorable for BC15, since
it implies a relatively small number of binary variables (the
MILP contains one binary variables for each sequence of the
follower), with the overall size of the MILP being linear in
the size of the game, while the size of our underlying LP is
quadratic due to the correlation plan.

Conclusion
We present a novel domain-independent algorithm for com-
puting Strong Stackelberg Equilibria (SSE) in extensive-
form games that uses the correlated variant of Stackelberg
Equilibria (Stackelberg Extensive-Form Correlated Equilib-
rium). This work opens several areas for future research.
First, our algorithm can be adapted and applied for solving
specific domains since its scalability is significantly better in
comparison to the existing algorithms. Second, the scalabil-
ity can most-likely be further improved by employing iter-
ative approaches for solving the underlying linear program.
Third, several question were not addressed in our approach
and remain open: Is it possible to generalize presented algo-
rithm for computing SSE with multiple followers? Can we
relax the assumption of perfect recall?

Acknowledgments
This research was supported by the Czech Science Founda-
tion (grant no. 15-23235S), by the Danish National Research
Foundation and The National Science Foundation of China
(under the grant 61361136003) for the Sino-Danish Cen-
ter for the Theory of Interactive Computation and Office of
Naval Research Global (grant no. N62909-13-1-N256). This
material is based upon work supported by the National Sci-
ence Foundation (grant no. IIS-1253950). This research was
supported by Alberta Innovates Technology Futures through
the Alberta Innovates Centre for Machine Learning and Re-
inforcement Learning and AI Lab and by the Grant Agency
of the Czech Technical University in Prague, grant No.
SGS15/205/OHK3/3T/13 and SGS15/206/OHK3/3T/13.

References
Bosansky, B., and Cermak, J. 2015. Sequence-Form Al-
gorithm for Computing Stackelberg Equilibria in Extensive-
Form Games. In AAAI Conference on Artificial Intelligence,
805–811.
Bosansky, B.; Branzei, S.; Hansen, K. A.; Miltersen, P. B.;
and Sorensen, T. B. 2015. Computation of Stackelberg Equi-
libria of Finite Sequential Games. In 11th Conference on
Web and Informatics (WINE).
Conitzer, V., and Korzhyk, D. 2011. Commitment to Cor-
related Strategies. In AAAI Conference on Artificial Intelli-
gence.
Durkota, K.; Lisy, V.; Bosansky, B.; and Kiekintveld, C.
2015. Approximate solutions for attack graph games with
imperfect information. In Decision and Game Theory for
Security, 228–249. Springer.

Fang, F.; Stone, P.; and Tambe, M. 2015. When Security
Games Go Green: Designing Defender Strategies to Pre-
vent Poaching and Illegal Fishing. In Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI,
2589–2595.
Jiang, A. X.; Yin, Z.; Zhang, C.; Tambe, M.; and Kraus,
S. 2013. Game-theoretic Randomization for Security Pa-
trolling with Dynamic Execution Uncertainty. In 12th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 207–214.
Koller, D.; Megiddo, N.; and von Stengel, B. 1996. Efficient
Computation of Equilibria for Extensive two-person Games.
Games and Economic Behavior 247–259.
Leitmann, G. 1978. On generalized Stackelberg strate-
gies. Journal of Optimization Theory and Applications
26(4):637–643.
Letchford, J., and Conitzer, V. 2010. Computing Optimal
Strategies to Commit to in Extensive-Form Games. In 11th
ACM conference on Electronic commerce, 83–92.
Letchford, J.; MacDermed, L.; Conitzer, V.; Parr, R.; and
Isbell, C. L. 2012. Computing Optimal Strategies to Commit
to in Stochastic Games. In AAAI Conference on Artificial
Intelligence.
Pita, J.; Jain, M.; Marecki, J.; Ordóñez, F.; Portway, C.;
Tambe, M.; Western, C.; Paruchuri, P.; and Kraus, S. 2008.
Deployed ARMOR protection: the application of a game
theoretic model for security at the Los Angeles International
Airport. In 7th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 125–132.
Rabinovich, Z.; Jiang, A. X.; Jain, M.; and Xu, H. 2015. In-
formation Disclosure as a Means to Security. In 14th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 645–653.
Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; Di-
Renzo, J.; Maule, B.; and Meyer, G. 2012. Protect: A
deployed game theoretic system to protect the ports of the
united states. In 11th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 13–20.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.
Tsai, J.; Kiekintveld, C.; Ordóñez, F.; Tamble, M.; and
Rathi, S. 2009. IRIS - A Tool for Strategic Security Alloca-
tion in Transportation Networks Categories and Subject De-
scriptors. In 8th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 37–44.
von Stengel, B., and Forges, F. 2008. Extensive-form Corre-
lated Equilibrium: Definition and Computational Complex-
ity. Mathematics of Operations Research 33(4):1002–1022.
von Stengel, B., and Zamir, S. 2004. Leadership with Com-
mitment to Mixed Strategies. Technical report, CDAM Re-
search Report LSE-CDAM-2004-01.
Xu, H.; Rabinovich, Z.; Dughmi, S.; and Tambe, M. 2015.
Exploring Information Asymmetry in Two-Stage Security
Games. In AAAI Conference on Artificial Intelligence.

Appendix
Extensive-Form Games with Chance
In this section we analyze the situation when EFGs con-
tain chance. With chance, one cannot directly use the cor-
relation plan as defined in Definition 4 to compute SEFCE
– von Stengel and Forges showed (2008) that the presence
of chance disrupts the structure of relevant sequences. More
specifically, by using correlation plan p, one can describe a
richer set of strategies that does not correspond to Extensive-
Form Correlated Equilibrium, defined as a probability distri-
bution over (reduced) pure strategy profiles.

We are, however, interested in finding SSE for a given
EFG with chance – i.e., such a solution of the LP in eqs. (2)
to (8) which recommends only a single pure strategy to the
follower. We can exploit this restriction and modify the LP
that uses correlation plan according to Definition 4. We show
that this new LP (1) returns SSE if all recommendations for
the follower are consistent; (2) computes an upper bound on
the expected utility of the leader in SSE.

The main difference caused by chance is that multiple
nodes in information sets of the leader can now be reached
with a non-zero probability in p even if the recommendation
for the follower is always consistent. This is not the case in
games without chance, since each node in an information
set of the leader has the same history for the leader (due
to perfect recall) and a different sequence of actions of the
follower. Therefore, we need to add constraints ensuring that
the strategy of the leader cannot depend on actions of chance
unobserved by the leader (i.e., they spawn different nodes in
an information set of the leader).
Definition 6. Let I ∈ Il be an information set of the
leader and h ∈ I nodes in this information set. Define
ΓI = (γ1, γ2, . . .) to be a partitioning of the nodes in I
based on the history of chance. Every node h belongs to ex-
actly one set γk such that all nodes in γk share the same
sequence of chance actions. Formally,

∀h ∈ I ∃γk ∈ ΓI h ∈ γk
∀h, h′ ∈ γk σC(h) = σC(h

′)

∀h ∈ γk ∀h′ ∈ γj k 6= j ∧ σC(h) 6= σC(h
′)

Next, we extend the definition of relevant sequences to a
restricted set such that the sequences are relevant due to a
specific node in the information set of the leader h:

rel(h) = {σf |∃h′ ∈ H, h′ v h;h′ ∈ If (σf)},
additionally there can be no pair of sequences σf , σ′f ∈
rel(h) such that one is a strict prefix of another: σf v σ′f
and σf 6= σ′f . Now we can give a modified version of LP
used in our algorithm:

max
p,v

∑

σl∈Σl

∑

σf∈Σf

pσl,σf
gl(σl, σf) (9)

s.t. constraints (3)-(8) (10)

sI,al =
∑

h∈γk

∑

σf∈rel(h)

p(σl(I)al, σf)

∀I ∈ Il∀al ∈ Al(I)∀γk ∈ ΓI (11)
0 ≤sI,al ≤ 1 ∀I ∈ Il∀al ∈ Al(I) (12)

We added a new variable sI,al that represents the realiza-
tion probability of action al being played in the information
set I . Constraint (11) now ensures that the strategy in this
information set cannot depend on chance, as shown by the
following Lemma and Theorem.

Lemma 1. Assume a solution of the LP described in eqs. (9-
12) such that there are only consistent recommendations for
the follower. Then, for every information set of the leader
I ∈ Il and every partition γk ∈ ΓI there exists at most one
sequence of the follower σf ∈ rel(h) for some node h ∈ γk
such that p(σl(h), σf) > 0.

Proof. For contradiction, let σf , σ
′
f be such different

relevant sequences for which p(σl(I), σf) > 0 and
p(σl(I), σ′f) > 0 and let h, h′ ∈ γk (not necessarily dif-
ferent), such that σf ∈ rel(h) and σ′f ∈ rel(h′).

Now, thanks to constraint (5) we know that there must be
a predecessor of these nodes with strictly positive value of p.
Let σ′′f be the longest common prefix of the two sequences
of the follower σf and σ′f . By construction of rel(h) we now
that σf 6= σ′f 6= σ′′f We distinguish two cases: (1) either the
first different action in sequences σf and σ′f after the longest
common prefix σ′′f is taken in the same information set, or
(2) there are two different information sets in which these
different actions are taken. The first case contradicts the as-
sumption that there are no inconsistent recommendations for
the follower. In the second case, these two information sets
must be reached either due to a different action of the leader
or chance, since σ′′f is the longest common prefix and the
first different actions in the sequences of the follower are
played in these information sets. However, this contradicts
the fact that the history for the leader is the same due to the
assumption of perfect recall, as well as the history of chance
is the same for these two nodes due to the partitioning of
ΓI .

Theorem 3. Assume a solution of the LP as described in
eqs. (9-12) such that there are only consistent recommenda-
tions for the follower. There is a SSE strategy that can be
found in polynomial time from variables p.

Proof. We need to show how p(σl, σf) is translated to a
valid mixed strategy that corresponds to SSE. First, we show
how the strategy of the leader is built. There is only a sin-
gle relevant sequence σf ∈

⋃
h∈γk rel(h) with a strictly

positive probability in every information set of the leader
I (thanks to Lemma 1). Since the history of actions of the
leader is the same for all nodes in this information set (per-
fect recall) and thanks to the constraint (5), the value of the
positive probability is the same for each relevant sequence
of the follower (only the prefixes of σf have positive proba-
bility) for each partition γk. Therefore, constraint (11) now
ensures that the behavior of the leader is unique for all rel-
evant sequences of the follower. And so, for every informa-
tion set of the leader variables p define a valid strategy that
maximizes the expected utility of the leader and that can be
computed in the same way as in the standard sequence form
in EFGs.

For the case of the follower, there is no inconsistent rec-
ommendations by assumption; hence, for every informa-
tion set I of the follower there exists at most one action
af ∈ A(I) with p(σl, σfaf) > 0 for some σl ∈ Σl and
σf = σf (I). By taking these actions and arbitrary actions
in information sets where there is no such action af , we ob-
tain a pure strategy for the follower. Finally, thanks to the
constraints (6–8), this pure strategy is a best response of the
follower to the strategy of the leader obtained in the previous
step.

Theorem 4. Assume a solution of the LP as described in
eqs. (9-12). The objective value of the LP is greater or equal
to the expected utility of the leader in SSE.

Proof. The theorem holds as a direct consequence of The-
orem 3. We know that in case there are no inconsistent rec-
ommendations for the follower, the value of the objective
corresponds to SSE. If we do not restrict the recommenda-
tions, the value can be only greater or equal.

Appendix I

Incremental Strategy Generation for
Stackelberg Equilibria in
Extensive-Form Games

Incremental Strategy Generation for Stackelberg Equilibria
in Extensive-Form Games

JAKUB ČERNÝ, Czech Technical University in Prague, Czech Republic

BRANISLAV BOŠANSKÝ, Czech Technical University in Prague, Czech Republic

CHRISTOPHER KIEKINTVELD, University of Texas at El Paso, USA

Dynamic interaction appears in many real-world scenarios where players are able to observe (perhaps
imperfectly) the actions of another player and react accordingly. We consider the baseline represen-
tation of dynamic games—the extensive form—and focus on computing Stackelberg equilibrium
(SE), where the leader commits to a strategy to which the follower plays a best response. For one-
shot games (e.g., security games), strategy-generation (SG) algorithms offer dramatic speed-up by
incrementally expanding the strategy spaces. However, a direct application of SG to extensive-form
games (EFGs) does not bring a similar speed-up since it typically results in a nearly-complete
strategy space. Our contributions are twofold: (1) for the first time we introduce an algorithm that
allows us to incrementally expand the strategy space to find a SE in EFGs; (2) we introduce a
heuristic variant of the algorithm that is theoretically incomplete, but in practice allows us to find
exact (or close-to optimal) Stackelberg equilibrium by constructing a significantly smaller strategy
space. Our experimental evaluation confirms that we are able to compute SE by considering only a
fraction of the strategy space that often leads to a significant speed-up in computation times.

CCS Concepts: • Theory of computation → Algorithmic game theory; Exact and approx-
imate computation of equilibria;

Additional Key Words and Phrases: Extensive-form games; strong Stackelberg equilibrium; correlated

equilibrium; strategy generation

1 INTRODUCTION

Many game-theoretic models inspired by real-world scenarios are dynamic, in that they
model sequences of interacting moves and observations by the players. The players may have

This research was sponsored by the Army Research Laboratory and was accomplished under Cooperative

Agreement Number W911NF-13-2-0045 (ARL Cyber Security CRA). The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official policies,

either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes not with standing any copyright

notation here on.

Access to computing and storage facilities owned by parties and projects contributing to the National Grid
Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and

Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated.

Authors’ addresses: Jakub Černý, Czech Technical University in Prague, Technická 2, Prague, 16627,

Czech Republic, jakub.cerny@agents.fel.cvut.cz; Branislav Bošanský, Czech Technical University in Prague,
Technická 2, Prague, 16627, Czech Republic, bosansky@fel.cvut.cz; Christopher Kiekintveld, University of

Texas at El Paso, 500 West University Ave. El Paso, Texas, 79968-0518, USA, cdkiekintveld@utep.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of this work owned

by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM EC’18, June 18–22, 2018, Ithaca, NY, USA. ACM ISBN 978-1-4503-5829-3/18/06. . . $15.00
https://doi.org/10.1145/3219166.3219219

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

151

uncertainty about the effects of actions and may receive only imperfect observations of the
actions chosen by other players. The baseline formalism for reasoning about dynamic games
with a limited horizon is extensive form games (EFGs), which can be represented using
game trees. Many scenarios can be modeled as EFG, including card games like poker [5, 15],
security games with patrols (e.g., examples in [4, 11]), computer network attacks [6, 7], and
synthetic biology games in medicine [16].

The roles of the players in many real-world games are asymmetric. One player (the leader)
has the power to commit to a strategy and the other player (the follower) plays a best
response. For example, the leader can correspond to a market leader with the power to set
the price for items or services, or a defense agency committing to a security protocol to
protect critical facilities. Optimal strategies for the players in such situations are described
by the Stackelberg Equilibrium (SE) [12, 22]. We follow the common assumption in the
literature that the follower break ties in favor of the leader; hence, we compute a Strong
Stackelberg Equilibrium (SSE)1.
The problem of computing SSE in EFGs is known to be NP-complete [4, 13]. There are

several existing algorithms for computing SSE in EFGs. Bošanský and Čermák [4] introduced
a mixed-integer linear program (MILP) that extends the sequence form linear program for
computing NE in EFGs to SSE [10, 20]. The scalability of this approach was improved by first
computing a correlated version of the SSE (called Stackelberg Extensive-Form Correlated
Equilibrium, SEFCE) and then using a search to refine the SEFCE into a SSE [19]. Finally,
Kroer et al. [11] introduced a novel MILP formulation that incorporates interval uncertainty
in the utility of the follower, as well as a limited lookahead approach assuming that the
follower is not perfectly rational and can only reason to a limited depth.

We introduce a novel strategy-generation (SG) technique that starts from a small restricted
game and incrementally expands the game tree of a two-player extensive-form game to
compute SSE. The inspiration for the algorithm is based on previous algorithms that have
been very successful for one-shot games (e.g., many types of security games [8, 9, 23]), as
well as for zero-sum sequential [2, 14, 18] and EFGs [3]. However, none of these previous SG
approaches translates directly to a practical algorithm for EFGs. In the first case, the main
step in each iteration is to add sequences of actions of the leader that can potentially increase
the objective of a (MI)LP. This is done by computing the reduced costs for variables that are
not included in the program yet [8]. We investigate this approach for EFG in Section 3, but
encounter a fundamental problem in that this approach adds many unnecessary sequences,
leading to “reduced” games that are comparable in size to the original. The SG algorithm
for zero-sum EFGs relies heavily on the zero-sum assumption and expands the game tree by
adding best-response sequences into the game tree. Unfortunately, this approach does not
converge to SSE in a general sum EFG.
We can now state the two main challenges we must solve to develop an effective SG

algorithm for computing SSE in EFGs: (1) What is the representation of the restricted
game, and in particular, the abstracted parts of the game tree? (2) What is the methodology
for expanding the restricted game? We address both of these challenges and show that
(1) the abstracted parts of the game tree can be effectively represented using a subset
of pareto-optimal outcomes; (2) the expansion can be done when an outcome from the
abstracted part of the game tree is used in the current solution of the restricted game.
Our technique is independent and can be combined with any of the existing algorithms

1We expect that our general approach would be applicable for computing other variations of Stackelberg
equilibrium, but leave this to future work.

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

152

for computing SSE. We use the SEFCE-based algorithm [19] since it has the best-known
scalability. The LP for computing SEFCE is quadratic in the size of the game tree, so
constructing a smaller game tree should also have a significant performance benefit. In
addition to an exact algorithm, we also introduce heuristic variants that lose theoretical
guarantees on convergence in exchange for much smaller games; our experimental results
show that the heuristic variant can compute exact Stackelberg equilibrium of games with
more than 107 states by constructing only 8% of the original SEFCE LP. More aggressive
heuristics are able to find near-optimal solutions considering only 3% of the LP, while the
outcome for the leader is on 6.38% worse compared to the optimum. Often, such a dramatic
reduction in the size of the LP leads to significant speed-up in computation times.

2 EXTENSIVE-FORM GAMES AND STACKELBERG SOLUTION CONCEPTS

Extensive-form games model sequential interactions between players and can be visu-
ally represented as game trees. Formally, a two-player EFG is defined as a tuple G =
(N ,H,Z,A, u, C, I): N = {l, f} is a set of players, the leader and the follower. We use i
to refer to one of the players, and −i to refer to his opponent. H denotes a finite set of
nodes in the game tree. Each node corresponds to a unique history of actions taken by all
players and chance from the root of the game; hence, we use the terms history and node
interchangeably. We say that h is a prefix of h′ (h ⊑ h′) if h lies on a path from the root of
the game tree to h′. A denotes the set of all actions. Z ⊆ H is the set of all terminal nodes
of the game. For each z ∈ Z we define a utility function for each player i (ui : Z → R). A
chance player selects actions based on a fixed probability distribution known to all players.
Function C : H → [0, 1] denotes the probability of reaching node h due to chance; C(h) is
the product of chance probabilities of all actions in history h.

Imperfect observation of player i is modeled via information sets Ii that form a partition
over h ∈ H where i takes action. Player i cannot distinguish between nodes in any information
set I ∈ Ii. We overload the notation and use A(Ii) to denote possible actions available
in each node from an information set Ii. We assume that action a uniquely identifies the
information set where it is available. We assume perfect recall, which means that players
remember the history of their own actions and all information gained during the course of
the game. As a consequence, all nodes in any information set Ii have the same history of
actions for player i.

Pure strategies Πi assign one action for each I ∈ Ii. A more efficient representation in the
form of reduced pure strategies Π∗

i assigns one action for each I ∈ Ii reachable while playing
according to this strategy. A mixed strategy δi ∈ ∆i is a probability distribution over Πi. For
any pair of strategies δ ∈ ∆ = (∆l,∆f) we use ui(δ) = ui(δi, δ−i) for the expected outcome
of the game for player i when players follow strategies δ. A best response of player i to the
opponent’s strategy δ−i is a strategy δBR

i ∈ BRi(δ−i), where ui(δ
BR
i , δ−i) ≥ ui(δ

′
i, δ−i) for

all δ′i ∈ ∆i.
Strategies in EFGs with perfect recall can be compactly represented by using the sequence

form [10]. A sequence σi ∈ Σi is an ordered list of actions taken by a single player i in
history h. ∅ stands for the empty sequence (i.e., a sequence with no actions). A sequence
σi ∈ Σi can be extended by a single valid action a taken by player i, written as σia = σ′

i.
We say that σi is a prefix of σ′

i (σi ⊑ σ′
i) if σ′

i is obtained by finite number (possibly
zero) of extensions of σi. We use seqi(Ii) and seqi(h) to denote the sequence of i leading
to Ii and h, respectively. We use the function infi(σ

′
i) to obtain the information set in

which the last action of the sequence σ′
i is taken. For an empty sequence, function infi(∅)

returns the information set of the root node. A mixed strategy of a player can now be

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

153

represented as a realization plan (ri : Σi → R). A realization plan for a sequence σi is the
probability that player i will play σi under the assumption that the opponent plays to allow
the actions specified in σi to be played. By gi : Σl × Σf → R we denote the extended utility
function, gi(σl, σf) =

∑
z∈Z|seql(z)=σl∧seqf (z)=σf

ui(z)C(z). If no leaf is reachable with a

pair of sequences σ, the value of gi is 0.

Stackelberg Solution Concepts in EFGs. We provide a formal definition of Strong
Stackelberg Equilibrium (SSE) (e.g., in [12]) and Stackelberg Extensive-Form Correlated
Equilibrium (SEFCE) [1, 13] and give the intuition on an example game.

Definition 2.1. A strategy profile δ = (δl, δf) is a Strong Stackelberg Equilibrium if δl is
an optimal strategy of the leader given that the follower best-responds. Formally:

(δl, δf) = argmax
δ′l∈Δl,δ′f∈BRi(δ′l)

ul(δ
′
l, δ

′
f). (1)

The SSE of the game in Figure 12 (the first utility in every leaf is for the leader, second for
the follower) prescribes the leader to commit to playing actions b7 and b10 in the information
sets in the left subtree and b11 in the right subtree. The strategy of the follower is then to
play b1 in the root of the game and b4 in the left subtree, leading to the expected utility of 1
for the leader.

f

f

l

(4, 0)

b7

(0,2)

b8

b3

l

(0, 1)

b9

(1, 3)

b10

b4

b1
f

(−1, 1)

b5

l

(−1, 1)

b11

(0, 3)

b12

b6

b2

{b1, b3} {b1, b4} {b2, b5} {b2, b6}
{b7, b9, b11} 0.25 0 0 0
{b7, b9, b12} 0 0 0 0
{b7, b10, b11} 0 0.5 0 0
{b7, b10, b12} 0 0 0 0
{b8, b9, b11} 0.25 0 0 0
{b8, b9, b12} 0 0 0 0
{b8, b10, b11} 0 0 0 0
{b8, b10, b12} 0 0 0 0

∅ b7 b8 b9 b10 b11 b12
∅ 1 1 0 0.5 0.5 0 0
b1 0.75 0.75 0 0.25 0.5 - -
b2 0.25 0.25 0 0.25 0 - -
b1b3 0.5 0.5 0 0.5 0 - -
b1b4 0.5 0.5 0 0 0.5 - -
b2b5 1 1 0 - - 0 0
b2b6 0 0 0 - - 0 0

Fig. 1. (Left) An EFG with different SEFCE and SSE. Each internal node is labeled by a player who acts
in this node, while under every terminal node is a tuple of utilities obtained by the first player and the
second player, respectively. Every edge is labeled by an action performed on a way from the node above
to the node below. The direction of the edges is omitted, but the tree is assumed to be traversed from
top to bottom. (Right Up) The SEFCE distribution over Π∗. (Right Down) The SEFCE correlation plan.

In SEFCE we allow the leader to send signals to the follower and condition his strategy on
sent signals. More specifically, the leader chooses π∗

f ∈ Π∗
f as the recommendations for the

follower according to SEFCE before the game starts. The actual recommendation to play
some action a ∈ A(If) is revealed to the follower only after he reaches If . Therefore, the
follower only knows the past and current recommendations, and the probability distribution
from which the recommendations are drawn in the future.

2The example is from [19].

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

154

Definition 2.2. A probability distribution λ on reduced pure strategy profiles Π∗ is called
a Stackelberg Extensive-Form Correlated Equilibrium if it maximizes the leader’s utility
subject to the constraint that whenever play reaches an information set I where the follower
can act, the follower is recommended an action ã according to λ such that the follower
cannot gain by unilaterally deviating from ã in I and possibly in all succeeding information
sets given the posterior on the probability distribution of the strategy of the leader, defined
by the actions taken by the leader so far.

SEFCE of the EFG in Figure 1 is shown in the top table, with the rows being labeled by
the leader’s strategies Π∗

l and the columns by the follower’s strategies Π∗
f). At the beginning

of the game, the leader decides to send either {b1, b3} or {b1, b4} as a recommendation to
the follower according to the probabilities in the table. In both cases, the follower commits
to playing action b11 in order to incentivize the follower to play b1. If the follower receives
b3, the leader plays action b9 and mixes uniformly between b7 and b8 in his right-most
information set. If the follower is recommended b4, the leader commits to playing b7 and b10.
The expected utility of the leader in this equilibrium is 1.5, which is strictly better than in
the SSE.
Using SEFCE for computing SSE. The correlated variant of the Stackelberg equilibrium
can be used for computing SSE. The main idea is to find SEFCE and then iteratively add
constraints so the recommendations for the follower are such that in each information set,
the follower can receive only a single action to be played as a recommendation. In that case,
the follower is playing a pure best response and the strategy of the leader is the same as in
the SSE.
We now describe the linear program for computing SEFCE. In this linear program, the

strategies of the players are represented using a correlation plan for relevant sequences. The
sequences are termed relevant when decisions at the information sets reachable by one of the
sequences can affect the decisions at the information sets reachable by the other sequence.

Definition 2.3 (Relevant sequences [21]). A pair of sequences (σ1, σ2) is termed relevant
if and only if ∃i ∈ {1, 2} either σi = ∅ or ∃h, h′ ∈ H,h′ ⊑ h;σi = seqi(h) ∧ σ−i = seq−i(h

′).

The set of sequences of player −i which form a relevant pair with σi is denoted rel(σi). For
the EFG depicted in Figure 1 rel(b1) = rel(b2) = Σl, rel(b2b5) = rel(b2b6) = {∅, b11, b12},
and rel(b1b3) = rel(b1b4) = {∅, b7, b8, b9, b10}. Now it is possible to define a generalization of
a realization plan suitable for joint probabilities of pairs of sequences, called a correlation
plan. We have to ensure that in mutually relevant information sets the consistency of
recommendations cannot be violated.

Definition 2.4 (A correlation plan [21]). A partial function p : Σ1 × Σ2 → R is a
correlation plan if there is a probability distribution λ on the set of reduced strategy
profiles Π∗ so that for each relevant sequence pair (σ1, σ2), the term p(σ1, σ2) equals to
p(σ1, σ2) =

∑
(π1,π2)∈Π∗ λ(π1, π2) where π1, π2 prescribe playing all of the actions in σ1 and

σ2, respectively.

The correlation plans describe a joint realization probability p(σl, σf) that a sequence σf

is recommended to the follower, in case the leader plays sequence σl. The bottom table of
Figure 1 represents the correlation plan of the SEFCE strategies. The rows of the table are
labeled by Σf , while columns are labeled by Σl. In every row identified by σf is depicted
the probability of the leader playing the corresponding column sequence in case the follower
is recommended the sequence σf and follows his recommendations. The irrelevant pairs of

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

155

sequences are denoted ‘-’. The correlation plan of every relevant pair (σl, σf) is the sum of
all probabilities of pure strategies containing actions from σl and σf in the top table.
In [21] the authors proved that correlation plans are sufficient to characterize the set of

extensive-form correlated equilibrium (EFCE) in two-player games with no chance nodes.
In [19] the authors used this characterization to formulate the following linear program
computing SEFCE.

Theorem 2.5 (Stackelberg extensive-form correlated equilibrium in two–
player game without chance moves [19]). The distribution λ on Π∗ defines a SEFCE
if and only if λ is a solution of the following linear program that maximizes leader’s expected
utility

max
p,v

∑

σl∈Σl

∑

σf∈Σf

p(σl, σf)gl(σl, σf) (2)

and the respective correlation plan p satisfies

p(∅, ∅) = 1; 0 ≤ p(σl, σf) ≤ 1 (3)

p(seql(I), σf) =
∑

a∈A(I)

p(seql(I)a, σf) ∀I ∈ Il, ∀σf ∈ rel(σl) (4)

p(σl, seqf (I)) =
∑

a∈A(I)

p(σl, seqf (I)a) ∀I ∈ If ,∀σl ∈ rel(σf) (5)

v(σf) =
∑

σl∈rel(σf)

p(σl, σf)gf (σl, σf) +

+
∑

I∈If ; seqf (I)=σf

∑

a∈Af (I)

v(σfa) ∀σf ∈ Σf (6)

v(I, σf) ≥
∑

σl∈rel(σf)

p(σl, σf)gf (σl, seqf (I)a) +
∑

I′∈If ; seqf (I′)=seqf (I)a

v(I ′, σf)

∀I ∈If ,∀σf ∈
⋃

h∈I
rel(seql(h)), ∀a ∈ A(I) (7)

v(seqf (I)a) = v(I, seqf (I)a) ∀I ∈ If , ∀a ∈ A(I) (8)

The first three constraints enforce the consistency of the correlation plan. The following
constraint ensures that vσf

is a representation of an expected payoff of the follower when he
plays σf , assuming he follows his recommendations. The constraint consists of two parts –
the first sum computes the expected utility of the leafs reached by playing according to σl

and σf , the second sum adds the contribution of the expected utility of information sets
reachable by all the extensions of σf . The next constraint guarantees that the expected
payoff v(I, σf) is the maximum over all possible sequences leaving the information set I
(denoted as seqf (I)a for all possible actions a ∈ A(I)) after the follower is recommended to
play σf . Finally, the last constraint forces the move which is recommended to the follower
in the information set I to be optimal. The value of SEFCE is always greater or equal than
the value of SSE.

Theorem 2.6 ([19]). Assume a solution of the LP as described in Theorem 2.5. The
objective value is greater than or equal to the expected utility of the leader in SSE.

As stated before, SSE can be reached by a branch-and-bound algorithm [19] so that the rec-
ommendations for the follower are unique – the authors define inconsistent recommendations
that are then fixed by a branch-and-bound type of search algorithm (BnB).

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

156

Definition 2.7 (Inconsistent recommendations [19]). We say that p uses inconsistent
recommendation in I ∈ If if and only if p defines two different recommendations for
the follower in I. Formally, ∃a, a′ ∈ A(I), a ̸= a′,∃σl, σ

′
l ∈

⋃
h∈I seql(h) p(σl, seqf (I)a) >

0 ∧ p(σ′
l, seqf (I)a

′) > 0. If there exists no such information set we say that p uses only
consistent recommendations.

ALGORITHM 1: BnB-Based Algorithm for computing SSE.

Input: An UB-SSE-LP P
Output: leader’s expected utility and strategy profile in SSE
M ← {(∞, ∅)}; LB ← −∞; pc ← ∅
while M ̸= ∅ do

(UB ,m)← max(M)

if UB < LB then
return (LB, pc)

apply(m, P)

if feasible(P) then
(value, p)← solve(P)

Iin ← inconsistentRecommendations(p)

if Iin = ∅ then
if value > LB then LB ← value; pc ← p

else addRestrictions((UB ,m), M , Iin, value)
revert(m, P)

return (LB, pc)

The Algorithm 1 can be decomposed into iterative applications of the following steps:
(1) solve an LP P in line 2, (2) find the set of information sets of the follower with inconsistent
recommendations Iin in line 1, and (3) restrict the leader’s strategy to use only consistent
recommendations in Iin by adding new constraints m to the LP P in line 1. The restrictions
are added recursively until a restricted LP for SEFCE uses only consistent correlation plan
p. At the beginning, the algorithm is initiated with an LP computing SEFCE.

3 CHALLENGES IN STRATEGY GENERATION FOR COMPUTING SSE IN EFGS

We now describe the general framework of a strategy generation (SG) technique for computing
a Strong Stackelberg Equilibrium (SSE) in extensive-form games (EFGs). We formally define
a restricted game as a subgraph of the original game tree and describe the baseline SG
algorithm that extends the algorithm for one-shot games [8]. However, we show on a simple
example that such a direct adaptation can easily generate the full game tree.

3.1 Strategy Generation for SSE Using Reduced Costs

The main idea of the previous approach [8] is to decompose the mathematical program for
computing SSE into a master problem and a slave problem. In the master problem, we
solve for SSE of a smaller restricted game (RG), where the RG is a subset of the original
unrestricted game. In the slave problem, we search for such strategies of the leader to be
added into the RG which have the largest positive impact on the objective, given the solution
of the master problem. The impact is measured using reduced costs, calculated from the dual
solution.
We translate this idea for computing SSE in EFGs while exploiting SEFCE solution

concept. Therefore, our master program corresponds to the LP formulation of SEFCE (LP

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

157

in Theorem 2.5) and the slave problem identifies which strategies of the leader should be
added to the restricted game.
After the SEFCE is found, the BnB algorithm is called in order to compute SSE. The

only change from the original version depicted in Algortihm 1 is that it solves for SEFCE in
the restricted game and after adding every restriction, the algorithm checks whether the RG
should be expanded.

Iterative Construction of SEFCE LP. We now detail how we translate this idea for
computing SSE in EFGs. First, our master program – the LP formulation of SEFCE – will
be solved for a restricted game that can be fully specified by the subset of sequences of the
leader (called allowed sequences). Similarly to [3], we define the sets of nodes, actions, and
information sets as subsets of the original unrestricted sets based on the allowed sequences.
The RG is denoted as G′ = (N ,H′,Z ′,A′, u, C, I ′) and the set of all sequences in the RG is
denoted Σ′.
We assume the RG is always closed on prefixes of leader’s sequences, such that for any

leader’s sequence in RG, all follower’s relevant sequences are in RG. The leader’s sequences
hence fully define the RG. The set H′ can be derived as

H′ ← {h ∈ H : ∀i ∈ N seqi(h) ∈ Σ′}, (9)

and the restriction A′ of A to the sequences in the RG is constructed as

A′(h)← {a ∈ A(h) : ha ∈ H′} ∀h ∈ H′. (10)

The leafs in the RG are Z ′ = Z ∩H′. Finally, the information sets of the RG are derived as

I ′i ← {Ii ∈ Ii : ∃h ∈ H′ ∩ Ii} ∀i ∈ N . (11)

In the slave problem, we search for the leader’s sequences not contained in the RG. The
dual solution as for computing the reduced costs follows:

rc(σl) = max
σf∈rel(σl)

rc(p(σl, σf)), (12)

where

rc(p(σl, σf)) = gl(σl, σf)−
∑

Il∈I′
l :seq(Il)=σl

d4(Il, σf) + d4(inf(σl), σf)−

−
∑

If∈I′
f :seq(If)=σf

d5(If , σl) + d5(inf(σf), σl)− d6(σf)+

+
∑

If∈I′
f :σf∈

⋃
h∈I rel(seql(h))

∑

a∈A′(If)

gf (σl, seqf (If)a)d7(If , σf , a),

(13)

and the dj(. . .), j ∈ {4, 5, 6, 7}, are the dual values of the constraints 4, 5, 6 and 7 in the
current solution of the LP computing SEFCE. In order for the algorithm to guarantee a
convergence to an optimum, the RG does not contain any temporary leafs, in contrast to
[3]. After enumerating the costs for all leader’s sequences outside the RG, the sequences

with the positive reduced costs Σ̂ are added to the RG. Simultaneously, we include also all
relevant sequences for the follower. The sequences Σ′ hence change as

Σ′ ← Σ′ ∪ Σ̂ ∪ rel
(
Σ̂
)
. (14)

The LP for the restricted game is then extended by generating new correlation plan constraints
4 and 5; and constraints 6, 7 and 8 in case a new follower’s sequence enter the RG. The

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

158

new correlation pairs p(σl, σf) are added into the already existing constraints and to the
objective.
At the beginning of the algorithm, the initial restricted game is constructed using the

sequences forming an arbitrary reduced pure strategy of the leader. In practice, we started
from the left-most branch of the game tree and continued adding the sequences of the leader
until we arrived to the full reduced pure strategy. The process of solving the master problem
and the slave problems is then repeated until all remaining leader sequences out of the RG
have a non-positive cost.

3.2 Limitations of Reduced Costs for SSE in EFGs

However, the practical experiments with reduced costs show that the final sizes of the RGs
often reach the size of the original game.

l

f

l

f

(1, 1)

c11

(1, 1)

c12

c5

f

(1, 1)

c11

(1, 1)

c12

c6

c3

(0, 0)

c4

c1

f

l

f

(0, 0)

c11

(0, 0)

c12

c7

f

(0, 0)

c11

(0, 0)

c12

c8

c3

l

(0.5, 0)

c9

(0.5, 0)

c10

c4

c2

Fig. 2. An example of an EFG where the final RG for the strategy generation with reduced costs is equal
to the complete game. The nodes which belong to the same information set are connected by a dashed
line. Otherwise, the figure follows a standard denotation of an extensive-form game.

Example 3.1. As an example, consider an EFG depicted in Figure 2. At the beginning,
the RG is initialized as

Σ′ ← {∅, c1, c1c5, c3, c4, c11, c12}. (15)

Note that Σ′ already describes a SEFCE in this game. After the first iteration, the sequences
Σ̂ = {c1c6, c2, c2c9, c2c10} are added into the RG. c1c6, c2c9 and c2c10 are included, because
they lead to the leafs with the positive utility and no dual variable is able to induce a
non-positive reduced cost. The sequence c2 is added because of the positive value of the dual
variable (4)(inf(c2), ∅) used in computing rc(p(c2, ∅)). The RG is hence extended into

Σ′ ← {∅, c1, c1c5, c1c6, c2, c2c9, c2c10,
c3, c3c11, c3c12, c4, c11, c12}.

(16)

In the second iteration, the positive value of the dual variable (4)(inf(c2c7), c4) enforces
adding also sequences c2c7, c2c8 and Σ = Σ′, i.e. the RG in equal to the complete game.

The algorithm based on reduced costs expands the whole game tree, even though the
SSE is clearly located in the left subtree. Our experiments gave comparable results even
when the algorithm was modified to add only the sequences with the highest costs, or by
initializing the restricted game using either a leaf with the highest utility for the leader, or a
Nash equilibrium in the zero-sum variant of the games where the follower’s utilities are set
to be complementary to the leader’s utilities.

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

159

ALGORITHM 2: Gadget-Based Algorithm for computing SEFCE.

Input: An EFG G
Output: leader’s expected utility and strategy profile in SEFCE
(M,Σ′)← expand(root(G), ∅)
expansionNeeded← size(M) > 0

while expansionNeeded do
for state h in M do

Σ′ ← Σ′ ∪ createGadget(h)

(value, p)← solve(Σ′)

M ← ∅, E ← getGadgetsToExpand(p)

expansionNeeded← False

for state h in E do
(M ′,Σ′)← expand(h,Σ′)

M ←M ∪ M ′

if size(M ′) > 0 then expansionNeeded← True

return (value, p)

The main problem of this approach is in the inability of the reduced costs to evaluate
the true impact of a sequence because the utilities are located only in the leafs. In order to
design more effective strategy-generation methods, it is necessary to introduce generalized
temporary leafs with utilities for non-terminal sequences. When designing the temporary
leafs in the Stackelberg setting, we have to keep in mind that the leader can use the individual
leafs to create threats against the follower. He can either intentionally lure the follower into
a specific subtree or to punish him in another. In contrast to the double-oracle methods, the
temporary leafs have to consist of more complex tree structures than just the single game
states.

4 GADGET-BASED STRATEGY GENERATION FOR EFGS

We introduce a novel strategy-generation algorithm that follows the intuition and avoids
adding complete sequences into the game tree by abstracting selected parts of the game
tree. We term these abstractions as gadgets: a multi-level subtree is replaced with a gadget
consisting of a node of the leader and actions leading directly to leafs that correspond to a
subset of leafs of the original subtree. The overall structure of the algorithm is the same
as in Section 3. In the master problem, we solve for SEFCE in the RG with the gadgets
acting as the temporary leafs while ensuring that the gadget-based restricted game always
provides an upper bound on SEFCE of the original game. In the slave problem, we identify
reachable gadgets and expand the RG. If no gadget is reachable by a current strategy, we
reached the equilibrium and it follows that the subtrees rooted in gadgets are not a part
of the equilibrium. Algorithm 2 depicts the main steps of the algorithm. We now describe
these steps in more details.

Construction of Gadgets. We explain how gadgets are constructed. Let h be the state of
the leader which should serve as the root of the gadget. We find all leafs Zh reachable from
h. The leafs can be visualized as points in a two-dimensional space where one dimension
correspond to the utility of the leader and the second one corresponds to the utility of the
follower (see Figure 4 for an example of this visualization). Since these points represent
possible outcomes in the abstracted game tree and the goal is to maximize the utility for
the leader, it is sufficient to keep only a subset of Zh that correspond to the upper convex

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

160

hull of these points – for each reachable utility of the follower we seek maximal utility of
the leader. We add new sequences, such that every gadget leaf is reachable from h by one
leader’s action. Note that once we add these new sequences to the set of sequences in the
RG Σ′, by the definition of information set, h is no longer a part of the same information
set as in the original unrestricted game.

ALGORITHM 3: Creating the gadget.

Input: A state h
Output: sequences added to RG

Σ̂← ∅
Zh ← getLeafsUnder(h)

Zh ← getUpperConvexHull(Zh)

for state z in Zh do
az,h ← createNewAction(z, h)

Σ̂← Σ̂ ∪ seql(h)az,h

return Σ̂

ALGORITHM 4: Expanding the gadget.

Input: A gadget root h, a set of sequences Σ′

Output: new gadget roots, updated set Σ′

Σ′ ← Σ′\{σ ∈ Σ′ : ∃z σ = seql(h)az,h}
Hh ← getShallowestLeaderStates(h)

for state g in Hh do

Σ̂l ← {σ ∈ Σl : σ ⊑ σl(g)}
Σ̂f ← {σ ∈ Σf : σ ⊑ σf (g)}
Σ′ ← Σ′ ∪ Σ̂f ∪ Σ̂l

return (Hh, Σ
′)

Expansion of Gadgets. Now we describe the expansion of the RG. Let h be the state of
the leader which should be expanded and Σ′ the current set of sequences in the RG. In case
h is a root of the gadget, we first delete from Σ′ all gadget sequences associated with h. We
search the subtree in the unrestricted game under h and find the set Hh of the shallowest
leader’s states in each branch, as

Hh ← {g ∈ Hl : σ(h) ⊑ seq(g);∄g′ ∈ Hl σ(h) ⊑ seq(g′) ⊑ seq(g)} (17)

For each state g in Hh we add to Σ′ all prefixes of seql(g) and seqf (g). Finally, all states in
Hh are identified as the new gadget roots.

It remains to explain which gadgets have to be expanded, based on the correlation plan p
of the current solution. First, we find the set R of all gadgets reachable by p as

R← {h ∈ Hl : ∃z ∃σf p(seql(h)az,h, σf) > 0}. (18)

We have to ensure the gadgets provide an upper bound on SEFCE. To ensure that, the RG
has to be closed on the information sets of the follower – whenever a node h where the
follower acts is added into the restricted game, all nodes from the information set I, such
that h belongs to this information set, also have to be added to the restricted game.

Lemma 4.1. Let G′ be a RG closed on the information sets of the follower. Then
for the utility of the leader in SEFCE of G′ (denoted as SEFCE(G′)) it holds that
SEFCE(G′) ≥ SEFCE(G), where G is the complete game.

Proof. Because G′ is closed on the information sets of the follower, the belief of the
follower that he is located in a given state of his information set in RG is fully determined
by the strategy of the leader in the RG. Therefore, the strategy of the follower in this
information set cannot be affected by any strategy of the leader in the subtrees rooted in
the gadgets. Because gadgets assume that leader can always obtain any outcome in the
subtree under the gadget, the abstraction represented by a gadget overestimates leader’s
strategizing ability in the subtree, hence providing an upper bound on SEFCE(G). □

The gadgets which have to be expanded in the current iteration of the algorithm are hence
both all the reachable gadgets and also the minimum set of gadgets which will retain the

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

161

property of the RG being closed on the information sets, given that all gadgets in R are
expanded.

The gadget algorithm creates a restricted game similarly to the strategy-generation with
the reduced costs. The RG is again fully defined by the sequences of the leader. However, the
set Σ′ is now updated in a more complex manner, as described in the previous paragraphs
about creating the gadgets and expanding the gadgets. Let Σ̃ = Σ′\Σ. The sets H′,Z ′,A′

and I ′ can be derived as follows:

H′ ←{h ∈ H : ∀i ∈ N seqi(h) ∈ Σ′} ∪ {z : ∃h seql(h)az,h ∈ Σ̃} (19)

Z ′ ←H′ ∩ Z (20)

A′(h)←{a ∈ A(h) : ha ∈ H′} ∪ {az,h : ∃z seql(h)az,h ∈ Σ̃} ∀h ∈ H′ (21)

I ′i ←{Ii ∈ Ii : ∃h ∈ H′ ∩ Ii;∄z seql(h)az,h ∈ Σ̃} ∪ (22)

{Ih : ∃z seql(h)az,h ∈ Σ̃} ∀i ∈ N .

The LP for computing SEFCE is altered according to the current set Σ′.

Lemma 4.2. Let Ĝ be a modified game constructed from the original game G by forbidding
some actions of the leader. Then SEFCE(Ĝ) ≤ SEFCE(G).

Proof. Because some actions of the leader are forbidden, the set of strategies avail-
able to the leader is restricted, while the set of strategies of the follower remains uncon-
strained. In case the excluded strategies are not a part of the SEFCE support in G, then
SEFCE(Ĝ) = SEFCE(G). Otherwise some leafs of SEFCE become unreachable, the
commitment advantage of the leader is hence reduced, resulting in a worse strategy for the
leader and SEFCE(Ĝ) ≤ SEFCE(G). □
Now we are ready to prove the algorithm converges to SEFCE.

Theorem 4.3. Assume a solution p of Algorithm 2. Then p is a correlation plan of a
SEFCE in the original unrestricted game. Algorithm 2 terminates in a finite time.

Proof. Since every EFG is finite, there is a finite number of gadgets which can be created.
Once a gadget is expanded, it can never be created again, because the game tree is expanded
top to bottom. Therefore, there is a finite number of LPs to solve. Algorithm 2 hence
terminates in a finite time.
In every iteration, Algorithm 2 finds SEFCE in the current RG, such that the utility of

the leader is maximal. In the worst case, the restricted game equals the complete game
and it cannot be extended any further and the algorithm terminates, returning a SEFCE.
Otherwise, there are states in the complete game, which are not a part of the final RG G′.
Algorithm 2 terminates once no gadget is reachable by p in the current solution. G′ can
be hence seen as a modified game in which some actions (those not added to the RG) are
forbidden. Therefore, by Lemma 4.2 it holds that SEFCE(G′) ≤ SEFCE(G). Because RG
is closed on the information sets of the follower, by Lemma 4.1 SEFCE(G′) ≥ SEFCE(G).
The SEFCE in the RG is hence a SEFCE in the original unrestricted game. □

4.1 Heuristic Gadget-Based Strategy Generation for EFGs

The effectiveness of the complete algorithm described in the previous section is still limited.
However, at the cost of losing theoretical guarantees, the algorithm can be turned into a
heuristic one and its performance can be measured experimentally. To this end, we introduce
three main heuristics: (1) we relax the requirement that the restricted game (RG) has to be

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

162

closed on the information sets of the follower; (2) the upper convex hull of points in a gadget
can be approximated using fewer points; (3) the leader utility can be artificially decreased in
order to compensate for the overestimation caused by the fact that the maximum-value leafs
are rarely reached if the follower plays the best response. We applied all these heuristics and
we now describe each of the heuristics in more detail:

Restricted Game Not Closed on Information Sets of the Follower. In order to
guarantee the convergence to the equilibrium, the requirement for the RG to be closed on
follower’s information sets is necessary. Consider a variant of our algorithm, where we relax
the condition for maintaining the closed RG on the information sets of the follower and we
expand only those gadgets that are reachable in the current solution. The following example
shows a game where such a modification leads to a suboptimal solution.

l

l

f

(10, 0)

d7

(1, 1)

d8

d3

f

(1, 0)

d7

(1, 1)

d8

d4

d1

l

f

(0, 1)

d7

(0, 0)

d8

d5

f

(0, 1)

d7

(0, 0)

d8

d6

d2 l

l

(10, 0)

a1

(1, 1)

a2

d1

l

(0, 1)

a3

(0, 0)

a4

d2

Fig. 3. (Left) An example of EFG where the heuristic algorithms does not converge. The figure follows
a standard denotation of an extensive-form game. (Right) An initial RG of the gadget algorithm. By
rectangles are denoted the roots of the gadgets. The full gadget algorithm would expand both gadgets
after the first iteration. The heuristic gadget algorithm expands only the left gadget.

Example 4.4. Consider the game depicted in Figure 3, where SEFCE (which is the same
as the SSE) is as follows: the leader commits to playing actions d1 and d2 with the same
probability 0.5 and actions d3 and d5 in his lower information sets. The follower is, therefore,
indifferent between d7 and d8 and by the definition of SEFCE plays d7. The follower’s
strategy guarantees the leader the expected utility of 5.0 in the equilibrium. The right part of
Figure 3 shows the initial RG of the heuristic gadget algorithm with gadget actions a1, a2, a3
and a4. Because the optimal strategy of the leader is to move into the left gadget, it is
expanded into the full subtree. In the second iteration, the leader has no intention of playing
d2 neither, because his utility is strictly greater in the left subtree. The algorithm therefore
terminates. Because the RG is not closed on the follower’s information sets, the leader is
unaware of the possibility to make the follower indifferent and the optimum is not reached.

Approximation of Upper Convex Hulls. This approximation addresses the problem
of creating gadgets for subtrees with large upper convex hull of leafs. Assume that there are
m sequences of the follower and n sequences of the leader in the subtree. The number of
leafs is hence upper bounded by m× n. If the number of leafs added to the gadget is close
to this bound and mn > m+ n, the number of the sequences which are added into the RG
is even larger then number of sequences in the whole subtree and the corresponding LP can
be prohibitively large. We solve this issue by excluding from the upper convex hull those
leafs, which do not provide a significant increase in the leader’s utility when compared with

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

163

−10 0 10 20 30 40
0

10

20

30

40

Follower’s utility

L
ea
d
er
’s
u
ti
lit
y

Complete upper convex hull

−10 0 10 20 30 40
0

10

20

30

40

Follower’s utility

L
ea
d
er
’s
u
ti
lit
y

Approximated upper convex hull

Fig. 4. An example of upper convex hull approximation. (Left) The complete upper convex hull, which is
used in the full gadget algorithm. (Right) The approximated upper convex hull with parameter δ = 0.4.

the affine combination of the neighboring leafs. Formally, we delete a leaf z = (ul, uf) in
between the leafs z1 = (u1

l , u
1
f) and z2 = (u2

l , u
2
f) in case that

∣∣∣∣∣u
1
l +

(u1
l − u2

l)(uf − u1
f)

u1
f − u2

f

− ul

∣∣∣∣∣ < δul, (23)

where the greater the δ > 0 gets, the more strict the approximation is.

Penalization of Leader’s Utilities. Finally, we penalize the leader’s utility in order to
compensate the optimism when the upper convex hull is created from the leafs directly.
Also, during the iterations, there might be several SEFCE with the same optimum, but with
different support. In case the solution returned from the LP solver uses the gadgets even
though the same optimum can be reached with sequences leading to the ordinary leafs in
the RG, the algorithm makes unnecessary iterations. Consequently, both the size of the final
RG and the computational time are unnecessarily increased. To speed up the convergence of
the algorithm we subtract ϵ|maxUtilityl|, where ϵ > 0, from all leader’s utilities in leafs in
the gadgets in order to enforce the LP solver into not using the gadgets if not necessary.

5 EXPERIMENTS

We performed experiments to evaluate the performance of our heuristic algorithm using
strategy generation to compute SSE in EFGs. For comparison, we use the state-of-the-art
SEFCE-based algorithm [19], which we refer to as FULL since it uses the full strategy space.
All algorithms were implemented in Java 1.8 and all LP computations were completed by
a single-threaded IBM CPLEX 12.8 solver using the barrier method. Based on an initial
exploration of the parameter space we set the parameter δ that controls the approximation
of the upper convex hulls to value δ = 0.3 since it gave the best results. However, we note
that the difference in performance between different values of δ was relatively small.

Flip It Games. The domain we used for the experiments is the “Flip It” game [17]. This
game is motivated by a cybersecurity scenario where an attacker can perform a stealthy
attack to gain control of a resource (e.g., install malware on a host or steal a password) that
may not be immediately detected by the defender. However, the defender can take actions
to restore control to the defender (e.g., performing a virus scan or resetting a password).
Flip It can be viewed as a general model of players competing over resources, and many
variations have been proposed in the literature. We use it for evaluation here because it has
a symmetric structure that makes it particularly difficult to compute SSE; specifically, the
vast majority of follower strategies are best responses to some strategy for the leader. This

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

164

makes it a particularly challenging test for our approach since strategy generation methods
would perform even better in games with many irrelevant strategies.

A two-player Flip It game is defined as a tuple F = (V,E, t, ρ, γ). The game is played by
a defender and an attacker on a directed graph (V,E) for a finite number of simultaneous
rounds t. The graph represents a typical structure for a computer network where not all
nodes are publicly accessible and an attacker may need to move deeper into the network.
There is a positive reward ρ : V → R+ and a positive cost γ : V → R+associated with each
node v ∈ V . At the beginning of the game, the defender controls all of the nodes. In each
round, each player selects one node to flip, i.e to attempt to gain control of. The flipping
action is successful when two conditions are met. First, the current owner of the node does
not also flip it; and second, the player has control over at least one predecessor of the node.
We assume that the source nodes in (V,E) can be flipped in any round (i.e., they are public
nodes). For every flipping action, the players pay the cost assigned to the node. At the end
of every round the players collect the total rewards from all nodes they control:

ui
j(V

i
j)← −γ(vij) +

∑

v∈V i
j

ρ(v) ∀i ∈ N , (24)

where V i
j are the nodes the player i owns after round j. After t rounds the game ends and

the final utilities are the sum of the rewards collected in the individual rounds. We consider
two versions of the game with different amounts of information provided to the players. In
the All-Points (AP) version the players learn whether their action succeeded and how many
points they have in total after each round. In the No-Info (NI) version the only information
the players observe is the sequence of actions they play. Moreover, we assume that the graph
can also contain a single disconnected pass node with zero reward and zero cost, simulating
a pass action. The directed graphs used in the experiments are depicted in Figure 5. All of
them include the pass node, which is not depicted in the figure.

i1 v2
v3

v4

(a) Graph 4a

i1 v2 v3 v4

(b) Graph 4b

i1

v3

v2

v4

(c) Graph 4c

Fig. 5. Graphs used in the experiments with the Flip It game.

We assume the defender acts as a leader in this game, while the attacker assumes the role
of the follower. For graphs 4a and 4c in Figure 5 we solved 40 instances of the Flip It games:
20 All-Points games and 20 No-Info games. For graphs 4b we computed 60 instances: 30 All-
Points games and 30 No-Info games. Each node in the graph was randomly assigned to one
of the following types: (1) high reward, high cost, (2) high reward, low cost, (3) low reward,
high cost, and (4) low reward, low cost. The reward and cost were generated uniformly
randomly from the intervals depicted in Table 6 to generate representative instances of Flip
It games.

The number of rounds was fixed at t = 5, so the number of nodes in the EFG representation
of the Flip It game is approximately 11× 106. Since the SI-LP variant of FULL algorithm
was reported to be fastest in [19], we use this variant as a baseline algorithm for computing
SSE in Flip It games.

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

165

Interval\Type (1) (2) (3) (4)
Reward interval 6..10 6..10 3..6 1..4
Cost interval 6..10 3..6 5..9 1..4

Fig. 6. The intervals from which the rewards and costs were generated for individual types of nodes.

5.1 Results

0.010.05 0.1 0.15 0.2 0.25 0.3

0.03

0.07

0.11

0.15

Penalization ϵ

L
P
si
ze

ra
ti
o

LP sizes in AP Flip It

4a
4b
4c

0.010.05 0.1 0.15 0.2 0.25 0.3

0.1

0.3

0.5

0.7

0.9

Penalization ϵ

R
u
nt
im

e
ra
ti
o

Runtimes in AP Flip It

4a
4b
4c

0.010.05 0.1 0.15 0.2 0.25 0.3

0.03

0.05

0.07

0.09

Penalization ϵ

L
P
si
ze

ra
ti
o

LP sizes in NI Flip It

4a
4b
4c

0.010.05 0.1 0.15 0.2 0.25 0.3

0.04

0.06

0.1

0.2

0.4

0.6
0.8

1.6

Penalization ϵ

R
u
n t
im

e
ra
ti
o

Runtimes in NI Flip It

4a
4b
4c

Fig. 7. The median LP sizes and median runtimes in both variants of Flip It for different values of ϵ.

The sizes of the LPs generated for the final restricted games (RG) in the All-Points
version of the Flip It games are presented in the leftmost graph of Figure 7. The x-axis
shows the penalization parameter ϵ, while the y-axis depicts the ratio of the number of
coefficients in the LP describing SSE in the final RG to the number of coefficients in the
complete LP used in FULL. Every point in the graph corresponds to the median ratio over
the sampled instances. The results show that even with small ϵ, the final LPs are more than
eight times smaller than in FULL. As the ϵ is set higher, the final RGs become even smaller.
For the graph 4c and ϵ = 0.3, the final LP reaches a size of less than 3% of the full LP. The
runtime results for the All-Points version are depicted in the second graph of Figure 7. The
x-axis varies the penalization parameter and the y-axis shows the median speedup, which
we calculate as the runtime of the heuristic gadget algorithm divided by the runtime of the
FULL algorithm.
In the same Figure 7, we present also the results for the final LP sizes and runtimes on

the No-Info version of the Flip It game. The graphs follow the same format as the graphs
for the All-Points version. Interestingly, when given no information about the progression of
the game, the more complex structure of the graph 4c slows down the convergence of the
heuristic algorithm. The reason is that with larger information sets than in the All-Points
version, the upper convex hulls are also larger and contain similar leafs. The algorithm
expands only a few gadgets in every iteration and the number of LP invocations is greater.
Note that even though the speedup is not that impressive, the sizes of final LPs of all graphs
are still less than 4% for the largest value of the parameter ϵ.

Finally, in Table 8 we present the median deviations from the optimum solution achieved
by the gadget algorithm. The deviations are measured as the absolute difference in the game
values computed by FULL and the heuristic gadget algorithm divided by the SSE game
value. We see in the results that the heuristic gadget algorithm achieves nearly optimal
results even with higher values of the penalization parameter ϵ. For example, for the graph
4c the deviation is 6.38%, with the size of the final LP only 2.8% in the All-Points version,
and 1.75% with the size of the final LP 3.3% in the No-Info version.

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

166

Instance \ϵ 0.01 0.05 0.1 0.15 0.2 0.25 0.3
4a All-Points 0% 0% 0% 0.9% 2.42% 3.01% 3.23%
4a No-Info 0% 0.35% 0.72% 1.29% 1.77% 2.5% 2.55%
4b All-Points 0% 0% 0% 0.56% 0.8% 2.39% 2.48%
4b No-Info 0% 0.16% 0.67% 1.27% 2.15% 2.42% 2.86%
4c All-Points 0% 0% 0.033% 0.79% 3.47% 4.8% 6.38%
4c No-Info 0% 0.24% 0.89% 1.75% 1.75% 1.75% 1.75%

Fig. 8. The deviations achieved with the heuristic gadget algorithm under different setting of the
penalization parameter ϵ.

6 CONCLUSION

In this paper, we introduce the first algorithm that successfully exploits the ideas of
incremental strategy generation for computing Stackelberg equilibria in extensive-form
games. Our algorithm is based on a novel way of representing abstracted parts of the game
tree, as well methods for expanding the representation systematically to compute Stackelberg
equilibrium. An advantage of our representation is that it leads to three different heuristic
approaches that trade off theoretical guarantees for greatly improved practical performance.
The heuristic methods can compute exact (or near-optimal) outcomes in practice while
constructing only 3% of the original linear program compared to the current state-of-the-
art algorithm, often achieving significant speed-up in computation times even in a very
challenging class of games.
The current experimental results show that even in a game that is structurally difficult

for strategy generation and the Stackelberg solution concept, it is not necessary to consider
the whole game tree and all the possibilities. Our algorithm suggests additional directions
towards more scalable and approximate algorithms for computing (approximate) Stackelberg
equilibrium in large extensive-form games, and it would be interesting to explore other types
of games that may have more favorable structure.

REFERENCES

[1] Branislav Bošanský, Simina Brânzei, Kristoffer Arnsfelt Hansen, Troels Bjerre Lund, and Peter Bro

Miltersen. 2017. Computation of Stackelberg Equilibria of Finite Sequential Games. ACM Transactions
on Economics and Computation 5, 4, Article 23 (Dec. 2017), 24 pages.

[2] Branislav Bošanský, Albert Xin Jiang, Milind Tambe, and Christopher Kiekintveld. 2015. Combining
Compact Representation and Incremental Generation in Large Games with Sequential Strategies. In

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.

[3] Branislav Bošanský, Christopher Kiekintveld, Viliam Lisý, and Michal Pěchouček. 2014. An Exact
Double-Oracle Algorithm for Zero-Sum Extensive-Form Games with Imperfect Information. Journal of

Artificial Intelligence Research 51 (2014), 829–866.

[4] Branislav Bošanský and Jǐŕı Čermák. 2015. Sequence-Form Algorithm for Computing Stackelberg
Equilibria in Extensive-Form Games. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial

Intelligence. 805–811.
[5] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. 2015. Heads-up limit holdem

poker is solved. Science 347, 6218 (2015), 145–149.

[6] Karel Durkota, Viliam Lisý, Christopher Kiekintveld, Branislav Bošanský, and Michal Pěchouček. 2016.
Case Studies of Network Defense with Attack Graph Games. IEEE Intelligent Systems 31, 5 (2016),

24–30.

[7] Karel Durkota, Viliam Lisý, Christopher Kiekintveld, Karel Horák, Branislav Bošanský, and Tomáš
Pevný. 2017. Optimal Strategies for Detecting Data Exfiltration by Internal and External Attackers. In

GameSec 2017, LNCS 10575. 171–192.

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

167

[8] Manish Jain, Erim Kardes, Christopher Kiekintveld, Fernando Ordónez, and Milind Tambe. 2010.

Security Games with Arbitrary Schedules: A Branch and Price Approach.. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence.

[9] Manish Jain, Milind Tambe, and Christopher Kiekintveld. 2011. Quality-bounded solutions for finite

Bayesian Stackelberg games: Scaling up. In Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems. 997–1004.

[10] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. 1996. Efficient Computation of Equilibria

for Extensive two-person Games. Games and Economic Behavior (1996), 247–259.
[11] Christian Kroer, Gabriele Farina, and Tuomas Sandholm. 2018. Robust Stackelberg Equilibria in

Extensive-Form Games and Extension to Limited Lookahead. In Proceedings of Thirty-Second AAAI
Conference on Artificial Intelligence.

[12] George Leitmann. 1978. On generalized Stackelberg strategies. Journal of Optimization Theory and

Applications 26, 4 (1978), 637–643.
[13] Joshua Letchford and Vincent Conitzer. 2010. Computing Optimal Strategies to Commit to in Extensive-

Form Games. In Proceedings of the 11th ACM conference on Electronic commerce. 83–92.

[14] H. Brendan McMahan, Geoffrey J. Gordon, and Avrim Blum. 2003. Planning in the Presence of Cost
Functions Controlled by an Adversary. In Proceedings of the International Conference on Machine

Learning. 536–543.

[15] Matěj Moravč́ık, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor Davis,
Kevin Waugh, Michael Johanson, and Michael Bowling. 2017. DeepStack: Expert-Level Artificial

Intelligence in No-Limit Poker. Science (2017).

[16] Tuomas Sandholm. 2015. Steering evolution strategically: computational game theory and opponent
exploitation for treatment planning, drug design, and synthetic biology. In Proceedings of the Twenty-

Ninth AAAI Conference on Artificial Intelligence. AAAI Press, 4057–4061.
[17] Marten Van Dijk, Ari Juels, Alina Oprea, and Ronald L Rivest. 2013. FlipIt: The game of stealthy

takeover. Journal of Cryptology 26, 4 (2013), 655–713.

[18] Ondřej Vaněk. 2013. Computational Methods for Transportation Security. Ph.D. Dissertation. Czech
Technical University in Prague.

[19] Jǐŕı Čermák, Branislav Bošanský, Karel Durkota, Viliam Lisý, and Christopher Kiekintveld. 2016. Using

Correlated Strategies for Computing Stackelberg Equilibria in Extensive-Form Games. In Proceedings
of Thirtieth AAAI Conference on Artificial Intelligence. 439–445.

[20] Bernhard von Stengel. 1996. Efficient Computation of Behavior Strategies. Games and Economic

Behavior 14 (1996), 220–246.
[21] Bernhard von Stengel and Françoise Forges. 2008. Extensive-Form Correlated Equilibrium: Definition

and Computational Complexity. Mathematics of Operations Research 33, 4 (2008), 1002–1022.

[22] Bernhard von Stengel and Shmuel Zamir. 2004. Leadership with Commitment to Mixed Strategies.

Technical Report. CDAM Research Report LSE-CDAM-2004-01.

[23] Haifeng Xu, Rupert Freeman, Vincent Conitzer, Shaddin Dughmi, and Milind Tambe. 2016. Signaling in
bayesian stackelberg games. In Proceedings of the 2016 International Conference on Autonomous Agents

& Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems,

150–158.

Session 3b: Equilibrium Computation ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

168

