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Abstract

This habilitation thesis presents advancements in computing exact and approximate solution con-
cepts in dynamic games. Dynamic games model scenarios that evolve over time, players are able to
perform actions that modify the environment, however, the players do not have perfect information
about the environment and receive only partial information as observations. We consider strictly
competitive (or zero-sum) games where a gain of one player is a loss of the opponent as well as
general-sum games. Similarly, we consider both games with a finite, pre-defined number of moves
(horizon) after which the game terminates, as well as games where the number of moves is not fixed.

There are several key contributions. For zero-sum games, we provide algorithmic contributions
for games with both finite and with infinite horizon. For finite games, we adopted the incremental
strategy-generation technique in order to scale-up to larger domains and also provided the first
algorithm for approximately solving games where players have imperfect memory (imperfect recall).
For games with infinite horizon, we provide the first algorithms for approximately solving games
where at least one player has partial information about the environment.

For general-sum games, we provide several theoretical results determining the complexity of
computing a Stackelberg Equilibrium and novel algorithms for its computation in finite dynamic
games. Moreover, we formally define a novel solution concept, a variant of Stackelberg Equilibrium
termed Stackelberg Extensive-Form Correlated Equilibrium, and we show that this solution concept
is important both from the theoretical perspective, since the computational complexity is often lower
compared to Stackelberg Equilibrium, as well as from the practical perspective. To this end, we
propose an algorithm that uses this new solution concept in order to quickly compute a Stackelberg
Equilibrium.

Abstrakt

Tato habilitacni prdce shrnuje nové poznatky v oblasti algoritmické a vypocetni teorie her pro dy-
namické hry. Dynamickymi hrami rozumime situace, které se rozvijeji v case, hrdci vykondvaji akce,
které modifikuji prostiedi a zdrovern nemaji hrdci o prostiedi plnou informaci a pozoruji jej pouze
Cdstecné. 'V rdmci prdce uvaZujeme jak striktné kompetitivni hry, ve kterych zisk jednoho hrdce
odpovidd ztrdté oponenta, tak i obecnéjsi hry s nenulovym souctem. RovnéZ, uvaZujeme jak hry s
konecnym, pevné danym poctem tahii (tzv. horizontem), tak i hry, kde pocet tahit miiZe byt nekonecny.

Habilitac¢ni prdce md nékolik prinosii. Pro hry s nulovym souctem prindsi nové algoritmické
vysledky v hrdch s konecnym i nekonecnym horizontem. Pro hry s konecnym horizontem jsme adop-
tovali algoritmus inkrementdlniho p¥iddvdni strategii s cilem zlepSeni Skdlovatelnosti a umoznéni
FeSeni vétsich her. Takisto popisujeme prvni praktické algoritmy pro FesSeni her, ve kterych maji
hrdci nedokonalou pamét. V hrdch s nekonecnym horizontem predstavujeme viibec prvai algoritmus
pro aproximativni FeSeni her, pokud alespori jeden z hrdcii md netiplnou informaci.

Pro hry s nenulovym souctem jsme provedli teoretickou analyzu nékolika problémii vypocetni
sloZitosti vypoc¢tu Stackelbergova ekvilibria a predstavili prvni algoritmy pro jeho vypocet v dy-
namickych hrdch s kone¢nym horizontem. Navic definujeme novou variantu Stackelbergova ekvilib-
ria, nazvanou Stackelberg Extensive-Form Correlated Equilibrium, a ukazujeme jeji jak teoretické
vyhody (sloZitost vypocltu této varianty je Casto niZsi v porovndni s origindlnim konceptem) tak prak-
tické vyhody, které demonstrujeme novym algoritmem, ktery pro vypocet Stackelbergova ekvilibria
vyuzivd prdvé tuto korelovanou variantu.
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Chapter 1

Introduction

“Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear less.”

— Marie Curie

Recent years have seen a massive deployment of algorithms and techniques of artificial
intelligence (Al) into every-day life. Al, mostly models based on machine or reinforcement
learning, empower autonomous cars, they translate text or speech to different languages, and
they are more and more becoming an inherent part of our lives. However, our dependence
on Al models can turn into a significant risk if such models are deceived or directly attacked
by an adversary. While there is a significant effort devoted to make such models robust, all
of the typically used improvements are still vulnerable to attacks [Athalye et al., 2018]. To
guarantee robustness and reliability of Al models, explicit reasoning about the adversary
and their plans has to be used. To this end, game theory, that formally defines optimal
behavior under a presence of an adversary, can be applied.

Game-theoretic strategies have already found their place in many real-world applica-
tions where competitive situations between interacting parties (or agents) naturally arise.
The examples mostly include security, where a defense agency needs to allocate scares
resources to protect valuable targets (e.g., airport terminals, ports, or wildlife animals, com-
puter network) against an attacker (a thief, a terrorist, poachers) [Tambe, 2011, Yin et al.,
2012, Fang et al., 2015]. Another recently emerging applications relate to the problem of
machine/reinforcement learning in a presence of an adversary. Consider the problem of se-
curing a computer network with a classification system that is used to identify anomalies or
suspicious behavior. The classifier adapts from the previous and/or current data that can be
poisoned by a strategic attacker [Durkota et al., 2017]. Therefore, in order to provide true
robustness even against unseen samples, the game-theoretic reasoning and game-theoretic
algorithms must be used.

Many of the mentioned real-world scenarios are dynamic in nature — agents act in an
environment and they are able to (imperfectly) observe the changes in the environment that
are caused by the actions of other agents. In network security, for example, the defending
agent is able to react to intelligence and current situation (e.g., increased risk level, sus-
picious activity on a computer network), while the attacking agent can observe the current
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allocation of the resources and adapt its plan accordingly. In some scenarios, we can specify
that there is a certain number of actions after which the interaction terminates. However, in
many real-world cases, there is no fixed horizon of the dynamic interaction. For example,
the attacker can weigh the trade-off between the length of reconnaissance and estimate how
much information they can learn, and between the costs for gathering the intelligence (e.g.,
in [An et al., 2012]) and such a trade-off is typically not restricted with a fixed deadline. For
Advanced Persistent Threats (e.g.,in [Rass et al., 2017]), the attack can take up to several
months and the attacker can patiently and strategically wait for the best moment to execute
their attack and then cover their steps. Solving such dynamic games is challenging in gen-
eral due to players’ uncertainty and exponentially many possibilities that can arise during
the game.

There are two main questions that drive algorithmic and computational research for
dynamic games:

1. How difficult it is to compute (approximate) optimal strategies for different classes of
dynamic games?

2. Do there exist scalable, practical algorithms that allow us to compute (approximate)
optimal strategies in dynamic games?

To describe the results answering these questions, basic concepts of game theory must
be described. First of all, we must specify what does it mean to solve the game or to
find optimal strategies. Optimal strategies are defined by solution concepts (equilibria)
and there are various solution concepts that are used in practical applications. First, there
are the maxmin strategies that guarantee a player the best expected outcome in the worst
case. Maxmin strategies are particularly useful as robust strategies for protecting critical
infrastructures and they turn the game into a strictly competitive one (called a zero-sum
game). If the game is zero-sum, maxmin strategies coincide with well-known Nash Equi-
librium [Nash, 1950]. Second solution concept, that is often used, is Stackelberg Equilib-
rium [von Stackelberg, 1934]. In this solution concept, one player (typically the defender)
commits to a strategy, while the other player (the attacker) plays the best response to this
commitment. Stackelberg Equilibrium is widely used in asymmetric scenarios where the
defender (or a policy maker, a market leader) has the power to commit to a strategy and
announce this strategy so that the other player(s) can react to this commitment.

Secondly, we must specify what kind of dynamic games we consider. As mentioned
above, there are two main subclasses of dynamic games — games with a fixed, finite number
of possible moves (termed Extensive-Form Games) and games with an infinite or indefinite
number of possible moves (termed Partially Observable Stochastic Games). We consider
both strictly competitive (or zero-sum games where a gain of one player is a loss of another
player) as well as more general general-sum games.

Main Contributions:

This habilitation thesis summarizes extensive research advancements made in algorithmic
and computational game theory for dynamic games. For zero-sum dynamic games, the
contributions are made for both games with finite as well as infinite horizon:

2
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1. Extensive-Form Games

(a) Fundamentally new algorithm for computing Nash strategies in general extensive-
form games as well in games with perfect information and simultaneous moves
based on incremental strategy-generation technique.

(b) Novel computational complexity results and first algorithm for computing ap-
proximate maxmin strategies in extensive-form games with imperfect recall
(players have imperfect memory).

2. Partially Observable Stochastic Games

(a) First algorithm for computing approximate maxmin strategies in partially ob-
servable stochastic games with one-sided partial observability (one player has
perfect information).

(b) First algorithm for computing approximate maxmin strategies in partially ob-
servable stochastic games with public observations (both players have imperfect
information).

For general-sum games, this thesis summarizes contributions for computing a Stackelberg
Equilibrium in finite extensive-form games:

1. First algorithm for computing a Stackelberg Equilibrium in general extensive-form
games.

2. A formal definition of a novel variant of Stackelberg Equilibrium termed Stackelberg
Extensive-Form Correlated Equilibrium.

(a) Novel computational complexity result for computing Stackelberg Extensive-
Form Correlated Equilibrium.
(b) Novel algorithm for computing a Stackelberg Equilibrium using Stackelberg

Extensive-Form Correlated Equilibrium.

3. First exact and heuristic algorithm for using the incremental strategy-generation tech-
nique for computing a Stackelberg Equilibrium in general extensive-form games.
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Chapter 2

Dynamic Games

This chapter introduces basic concepts and definitions used in computational game theory!.
We introduce two formal representations of games used for reasoning about dynamic games
— extensive-form games that model games with a finite and known number of moves in the
game (termed horizon) and partially observable stochastic games that do not have a fixed
horizon.

2.1 Formal Models of Dynamic Games

The baseline formal model for reasoning about games are normal-form games (NFG), also
known as strategic or matrix games. Formally, a NFG G is defined as a tuple G = (N, A, u),
where IV is a set of players, A; is a set of pure strategies (or actions) for player ¢ € N, and
u; : A — R. In all of the discussed research results, only two-player games have been
considered, hence N = {1,2}. We say that the game is zero-sum if gains of one player are
the losses of the other player (formally, u1(a) = —usg(a) for any a € A). If this assumption
does not hold, the game is non-zero-sum (or general-sum).

NFGs are suited for reasoning about one-shot games that end immediately after playing
one action. On the other hand, NFGs are impractical for studying dynamic games since
they can be exponentially larger (or infinite) compared to models defined specifically for
modeling dynamic strategic interaction.

2.1.1 Extensive-Form Games

Extensive-form games (EFGs) model games with a finite and predetermined horizon. An EFG
can be visualized as a tree where each node of the tree corresponds to a state of the game
where one player can make a decision — i.e., to choose from one of the applicable actions
(edges in the tree outgoing from this node) that changes the state of the game and a new state
(node) is reached. EFGs are general enough to model stochastic events — in specific nodes,
termed chance nodes an action to be played is chosen according to a known probability

'Definitions of concepts from game theory are based on books [Shoham and Leyton-Brown, 2009, Maschler
et al., 2013].
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Figure 2.1: Example of a two-player zero-sum extensive-form game depicted as a game tree
between player 1 (circle) and player 2 (box). Dashed boxes visualize the information sets.
Utility values are for player 1, player 2 minimizes the value.

distribution. In EFGs, the players do not have to have perfect information about the state
of the game — if a player cannot distinguish between a set of states, all of these states are
grouped together in an information set. Finally, the outcomes (utility function) of the game
are defined in leafs of the game tree. Example of a simple game is visualized in Figure 2.1.

The main advantage of using an EFG is that it offers an exponentially smaller represen-
tation of a game compared to the NFG representation. The main reason for this is that a
pure strategy in an EFG corresponds to an assignment of an action that should be played for
each information set. As a consequence, the number of pure strategies is exponential in the
number of information sets in an EFG.

To reduce the size of strategies, players may forget certain information and thus create
larger information sets (more states are considered to be indistinguishable). If all players
in a game perfectly remember the history of their actions as well as all information gained
during the course of the game, we say that the game has perfect recall. Otherwise, we say
that the game has imperfect recall.

2.1.2 Partially Observable Stochastic Games

As discussed in the introduction, having a fixed known horizon for the game is not always
satisfied in real-world scenarios. Therefore, stochastic games model dynamic interaction
among players that can take an infinite number of moves/turns. Visually, one can imagine
the game as an infinitely large EFG tree for which there exist infinitely long branches. This
representation poses two main issues — (i) specification of the utility function for players
cannot be defined for leafs (as there may not be any) and (ii) the size of a pure strategy can
be infinite (there can be an infinite number of information sets).

Due to the first issue, the utility in stochastic games is defined over runs in the game (i.e.,
the sequence of actions played by both players). There are several options when defining
the utility for players. The most common approach is that the game has specified immedi-
ate rewards over states and joint actions and the players optimize the (discounted) sum of
rewards over the runs in the game. Alternatively, players may want to optimize average re-
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ward, or one player might want to optimize run such that a certain subset of states is either
reached or avoided (so-called reachability/safety objective). The papers presented in this
thesis assume that players optimize the discounted sum of rewards.

Due to the second issue, solving a stochastic game often requires finding a compact fi-
nite representation of strategies. Consequently, the existing focus of research has been given
on computing strategies from a restricted class of strategies (e.g., memoryless or stationary
strategies) that are not guaranteed to reach (near) optimum rewards. The second approach
is to restrict to a subclass of POSGs where one can show that there exist a compact repre-
sentation of strategies that is sufficient for computing (approximately) optimal solutions.

2.2 Solving a Dynamic Game

There are two notions for solving a game. Either the game can be solved quantitatively
where, given a game, the algorithm computes an (e-approximation of) expected value of an
equilibrium, or strategically, where the algorithm computes an (e-approximation of) equi-
librium strategies. For games with a finite horizon, both notions coincide, however, for
stochastic games, some algorithms work in a quantitative manner and solving the game
strategically requires additional computation.

2.2.1 Solution Concepts

The best known solution concept is the Nash Equilibrium (NE). A pair of strategies is in a
NE if neither of the players can gain by unilaterally deviating to a different strategy. Alter-
natively, one can say that in a NE, both players are playing a best response to the strategy
of the opponent. Note that NE is descriptive equilibrium since it only describes which pairs
of strategies are stable but NE does not give an answer for players which strategy to adopt.
In Stackelberg Equilibrium (SE), the roles of the players are asymmetric. One player,
called the leader, commits to a (possibly randomized) strategy (from now on we will as-
sume that player 1 is always the leader). The opponent, called the follower, observes this
commitment and plays a best response that maximizes her utility. In case there are multi-
ple best responses of the follower, she split ties using a pre-determined rule. The follower
can either split the ties in favor of the leader (so-called Strong SE, or the optimistic case)
or against the leader (so-called Weak SE, or pessimistic case). In the literature, it is most
common to assume the first approach that we have also adopted in our works and whenever
we talk about Stackelberg Equilibrium we mean it in the strong sense. There are only a
few existing works that focus on computing weak SE [Coniglio et al., 2017] or finding its
approximation since it has been shown the WSE does not have to exist [von Stengel and
Zamir, 2010]. Contrary to NE, SE the prescribes what strategy the leader should adopt.
Finally, in the presented works we have exploited a connection between SE and a dif-
ferent solution concept called Correlated equilibrium (CE). A probability distribution over
outcomes in a game is in CE, if an external device (a trusted mediator) samples from this dis-
tribution and recommends the players which action to play; following this recommendation
is a best response for the players knowing the initial probability distribution. As demon-

7
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strated by Conitzer and Korzhyk [Conitzer and Korzhyk, 2011], algorithms for computing
CE can be easily adapted for computing SE in one-shot games and we have established
similar connections also for the dynamic games.

In the works discussed by this thesis, the goal was to either compute a NE or a maxmin
strategy in zero-sum games or to compute a variant of a SE in non-zero-sum games. For
many zero-sum games, many of the solution concepts coincide. Due to Von Neumann’s
minmax theorem, we know that quantitatively maxmin, minmax, NE, and SE share all the
same value (the expected utility of player 1 in an equilibrium) that is called the value of the
game. Therefore, we often refer to computing the value of the game in zero-sum games as
solving the game and computing optimal strategy without specifying which solution concept
is computed. This is no longer true for general-sum games where the equilibrium strategies
differ for different solution concepts. Since NE is a descriptive solution concept, for general-
sum games we aim to compute a (variant of) SE that specifically prescribes the strategy the
leader should commit to playing.

2.2.2 Complexity of Computing Solution Concepts

The difficulty of the problem of computing equilibria depends on the class of the game and
the solution concept. For zero-sum games, solving a game is a polynomial problem for both
one-shot as well as extensive-form games with finite horizon. Solving stochastic games
is tractable only in the perfect-information case (e.g., solving simple stochastic games is
in PLS [Yannakakis, 1990, Etessami and Yannakakis, 2007]), however, many even single-
player problems with imperfect information and infinite horizon are undecidable [Madani
etal., 1999].

Moreover, there are additional complications that make computing optimal strategies
in POSGs highly intractable even in the two-player zero-sum setting. Since the players
do not perfectly observe the environment, each player has a belief over possible states of
the environment. However, the reward the player receives for choosing some action(s)
also depends on the action of the other player who decides based on their belief. Therefore,
player 1 has to consider also the belief of player 2 and belief that player 2 has about player 1,
and so on. This reasoning is called nested beliefs (e.g., in [MacDermed, 2013]) and it causes
a doubly-exponential number of histories to consider for each agent. Therefore, we focus
on approximate algorithms that solve the game in the sense of weak approximation (i.e.,
computed expected utility value is € close to the optimal expected values) and our goal
is to consider subclasses of POSGs where strategies with finite memory are sufficient to
approximate value of the game.

For general-sum games, the complexity classes are more diverse. Computing a NE is
PPAD-complete in both finite representations —i.e., in NFGs [Chen et al., 2006] as well as in
EFGs [Daskalakis et al., 2006]. The computational complexity for computing a SE depends
on the representation — in NFGs, computing a SE is polynomial [Conitzer and Sandholm,
2006], however, computing a SE in EFGs is typically NP-hard [Letchford and Conitzer,
2010].
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Algorithms for Solving Dynamic
Games

This chapter summarizes the novel results presented in referenced papers. First, we focus on
the results for strictly competitive (zero-sum) games, following by results for general-sum
games.

3.1 Computational and Algorithmic Results for Zero-Sum Games

Our results are discussed separately for different classes of games. Most of the zero-
sum games can be solved in polynomial time using linear programming. For normal-form
games, a simple linear program can be constructed where variables correspond to a mixed
strategy of one player and the constraints correspond to a best-responding opponent. For
EFGs, it is also possible to construct a single linear program that computes the value of the
game and equilibrium strategy due to von Stengel and Koller [von Stengel, 1996, Koller
et al.,, 1996]. The linear program for EFGs, termed sequence-form linear program, has a
linear number of variables and constraints in the size of the game tree and exploits differ-
ent representation of strategies in EFGs known as realization plans. In this representation,
the strategy is represented as a probability that certain sequence of actions of player ¢ will
be executed conditioned the opponent allows these actions to be executed (technically, the
opponent chooses such actions that lead to information sets where the actions of a sequence
can be applied). Due to this representation, this linear program is applicable only for EFGs
with perfect recall.

The main challenge when solving EFGs is to tackle the size of the game tree. The game
tree grows exponentially with the horizon (or a number of the moves in the game) — even a
simple game where each player chooses from two actions, has more than 10° states after 10
moves of each player.

When moving to games with infinite horizon, there is the problem with nested beliefs
that prevents one from designing an (approximate) optimal algorithm for fully general set-
tings, as we discussed in Section 2.2.2. Nested beliefs can be tackled directly with histo-
ries — one of the few such approaches is a bottom-up dynamic programming for construct-
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ing relevant finite-horizon policy trees for individual players while pruning-out dominated
strategies [Hansen et al., 2004, Kumar and Zilberstein, 2009]. However, due to the ex-
plicit dependence on history, the scalability in the horizon is very limited leading to similar
problems as in EFGs.

A more common approach is to focus on a subclass of POSGs where approximate opti-
mal strategies do not need to depend on history. In [Ghosh et al., 2004], zero-sum POSGs
with public actions and observations are considered. The authors show that the game has a
value and present an algorithm that exploits the transformation of such a model into a game
with complete information. Another significant subclass of POSGs are One-Sided POSGs
where one player has perfect information [Chatterjee and Doyen, 2014, Basu and Stettner,
2015]. This subclass is particularly important for security applications since it provides nat-
urally robust strategies against the worst-case fully-informed opponent. It is this subclass of
POSGs that we investigate and for which we have designed the first approximate algorithm
that can solve non-trivial games. Moreover, in a follow-up work, we have shown that this
algorithm and approach can be generalized even to settings where both players have some
partial information, but at the same time, they are able to infer the belief of the opponent.
This is ensured by assuming that all observations that are received by players are public.

3.1.1 Results for Extensive-Form Games

For EFGs, the main challenge is to address the exponentially large input of the game — both
the size of a strategy and the size of the game tree is exponential in the number of moves in
the game. Dealing with this exponential size can be done in multiple ways. We have inves-
tigated two possible directions for improving scalability and thus allowing solving larger
games. First, we describe how it is possible to find an exact solution without necessarily
constructing the complete game. Second, we describe a way for solving EFGs where we
allow players to forget the history of their actions.

In the first case, we adopted the incremental strategy generation methodology, known as
the double-oracle algorithm, originally introduced for normal-form games by McMahan et
al. [McMahan and Gordon, 2003]. The idea of the double-oracle algorithm is as follows (see
Figure 3.1). The algorithm forms a restricted variant of a game to be solved by restricting
the number of possible actions the players can choose from. The algorithm then operates in
iterations and in each iteration, the restricted game is solved using a standard algorithm (e.g.,
the linear program) and the algorithm computes optimal strategy in the restricted game.
Now, for each player, the algorithm computes a best response to the strategy of the opponent
from the restricted game. However, this best response is selected from the unrestricted set of
all possible actions in the original game. If the expected value for playing this best response
is better for a player compared to the expected value gained in the restricted game, the best
response strategy is allowed in subsequent iterations and the restricted game is expanded
with this strategy. Otherwise, if neither of the players wants to expand the restricted game
with additional strategy, the double-oracle algorithm computed a solution of the original
game without necessarily constructing the complete game and considering all possible pure
strategies.

10
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Figure 3.1: Schematic of the double-oracle algorithm for a normal-form game.

This method has been successfully used for solving large normal-form games, mostly in
the security domain (e.g., in [Kiekintveld et al., 2009, Jain et al., 2011a, Jain et al., 2013])
due to an exponential number of strategies. The only previous attempt for using double or-
acle principle for EFGs has been using a transformation to normal-form pure strategies that
are incrementally added [Zinkevich et al., 2007]. The main disadvantage of this approach
is an exponential number of required iterations since there are exponentially many pure
strategies in an EFG. In our work, we have demonstrated that the ideas of the double-oracle
algorithm can be generalized to compact strategy spaces (i.e., realization plans in EFGs) and
thus can be used to scale-up algorithms for many classes of dynamic games. We describe
our main contributions in the next section, but we also use this idea in other algorithms as
well.

As the second approach, we investigate a method for solving EFGs where players are
allowed to forget the history of their own actions — technically, we focused on solving EFGs
with imperfect recall. The main benefit of imperfect recall games is that the size of a strategy
of a player can be exponentially smaller compared to the perfect recall case. An imperfect
recall game can, for example, be a result of an abstraction algorithm applied on an EFG.
The abstraction algorithm can identify that certain information is not required or necessary
for finding (approximate) optimal strategies and thus merges two information sets into a
single one, thus transforming the perfect recall game into an imperfect recall game with
(exponentially) fewer information sets. However, there were no known practical algorithms
for solving games with imperfect recall. Therefore, as our second major contribution for
zero-sum EFGs, we describe first novel algorithms for solving games with imperfect recall.

Double-Oracle Methods for Solving Sequential Games with Finite Horizon

We have designed double-oracle algorithm for EFGs to operate directly on game trees.
The restricted game is defined as a subset of sequences that players can play in the game
and the algorithm uses the sequence-form linear program for solving the restricted game.
The main technical contribution when translating double oracle for EFGs is to specify the
restricted game and design the methodology for expanding the restricted game. In normal-
form games, adding a new pure strategy into the restricted game is straightforward — for the
algorithm, it is only necessary to calculate all utility values for combinations of the newly
added pure strategies of player ¢ and all already added pure strategies of the opponent —:.
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In EFGs, allowing a player to play a new sequence of actions is not sufficient to formulate
a well-defined restricted EFG since this particular sequence of actions does not have to
be executable in the restricted game — the opponent does not play actions that allow this
sequence of actions to be played.

We have made the following key technical contributions in order to define the double-
oracle algorithm for EFGs:

e Formal definition of a valid restricted EFG defined as using a subset of allowed se-
quences of actions to be played.

e Algorithms for expanding and maintaining the validity of the restricted game.
e Domain-independent search for computing best-response sequences in EFGs.

We have formally proven that the algorithm converges to a Nash Equilibrium (The-
orem 5.5 in [BoSansky et al., 2014]) and demonstrated that the double-oracle algorithm
can find an exact NE adding only small fractions of all possible sequences. We have
compared the double-oracle algorithm with exact and approximate existing algorithms on
several games, including a search game, poker, and phantom variant of Tic-Tac-Toe, and
showed that it is able to find the exact solution of much larger games, often using only as
few as 1% sequences of the original game.

All discussed contributions describing double oracle for general EFGs are summarized
in the following journal publication (see Appendix A).

B. Bosansky, C. Kiekintveld, V. Lisy, and M. Pé&choucek. An Exact Double-Oracle Algorithm for Zero-
Sum Extensive-Form Games with Imperfect Information. Journal of Artificial Intelligence Research
(JAIR), pp. 829-866, 2014. (65%)

We have also investigated a possibility for using double-oracle approach for selected
subclasses of EFGs. Specifically, we have examined EFGs with perfect information and si-
multaneous moves that generalize many simple turn-based scenarios — e.g., pursuit-evasion
games and many card and board games. We have combined double-oracle algorithm with
the alpha-beta pruning known for perfect information game and introduced an algorithm
that scales orders of magnitude better compared to the existing state of the art.

All discussed contributions describing double oracle for EFGs for simultaneous games
are summarized in the following journal publication (see Appendix B).

B. Bosansky, V. Lisy, M. Lanctot, J. Cermdk, and M. M. H. Winands. Algorithms for Computing
Strategies in Two-player Simultaneous Move Games. Artificial Intelligence (ALJ), pp. 1-40, 2016.
30%)

Solving EFGs with Imperfect Recall

Solving imperfect recall games is known to be a difficult problem (see, e.g., [Wichardt,
2008, Koller and Megiddo, 1992, Hansen et al., 2007]). We are interested in solving im-
perfect recall games created by an abstraction algorithm. Therefore, we focus on finding an

12
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efficiently solvable subclass of imperfect recall games. Previous approaches create very spe-
cific abstracted games, so that perfect recall algorithms are still applicable: e.g., in chance
relaxed skew well-formed games [Kroer and Sandholm, 2016, Lanctot et al., 2012] or in
normal-form games with sequential strategies [BoSansky et al., 2015, Lisy et al., 2016].
The restrictions posed by these classes are unnecessarily strict, which can prevent us from
fully exploiting the possibilities of abstractions and compact representation of dynamic
games. We focus on a much larger subclass of imperfect recall games called A-loss re-
call games [Kaneko and Kline, 1995, Kline, 2002] where each loss of information of a
player can be traced back to forgetting his own actions.

The contributions for solving imperfect recall games are both theoretical as well as
practical. First, we present a complete picture of the problem of solving imperfect recall
games and show which computational tasks become easier when restricting to A-loss recall.
Second, we use the properties of the A-loss recall to provide the first family of algorithms
capable of approximating the strategies with the best worst-case expected outcome (maxmin
strategies'). Note that we require only one of the player (the opponent, or the minimizing
player) to have A-loss recall. The player for which we compute the (approximate) optimal
robust strategy is allowed to have a general imperfect recall.

Our theoretical results show that by restricting to A-loss recall opponent, the problem
of computing maxmin strategies does not become significantly easier from the theoretical
perspective. Specifically, we show that computing maxmin strategies is still NP-hard (The-
orem 4 in [Cermak et al., 2018]), determining whether a NE exists is NP-hard (Theorem 5 in
[Cermék et al., 2018]), and the optimal NE strategies may require irrational numbers even if
all utility values are rational (Theorem 3 in [Cermik et al., 2018]). As an important positive
result, we have identified necessary and sufficient (i.e., if and only if) condition for the ex-
istence of a Nash Equilibrium (NE) in behavioral strategies in A-loss recall games, making
A-loss recall games the only subclass of imperfect recall games for which such condition is
known (Theorem 1 in [éermék et al., 2018]).

From the computational perspective, we exploit the fact that the best response of a player
with A-loss recall can be computed in polynomial time [Kaneko and Kline, 1995, Kline,
2002]. We thus provide a novel approximate algorithm, denoted IRABNB (Imperfect Re-
call Abstraction Branch-and-Bound algorithm), for computing maxmin strategies in imper-
fect recall games where the maximizing player has imperfect recall and the minimizing
player has A-loss recall. We base the algorithm on the sequence-form linear program for
computing maxmin strategies in perfect recall games [von Stengel, 1996, Koller et al., 1996]
extended by bilinear constraints necessary for the correct representation of strategies of the
maximizing player in imperfect recall games. We approximate the bilinear terms using
Multiparametric Disaggregation Technique (MDT) [Kolodziej et al., 2013] and provide a
mixed-integer linear program (MILP) for approximating maxmin strategies. Next, we pro-
pose a novel branch-and-bound algorithm that repeatedly solves the linear relaxation of
the MILP. The main novelty is that the algorithm simultaneously tightens the constraints

"We compute (approximate) maxmin strategies since Nash Equilibrium does not have to exist for this class
of games and for the class of behavioral strategies that allow reducing size of strategies in imperfect recall
EFGs.

13
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that approximate bilinear terms and searches for the optimal assignment to the relaxed bi-
nary variables from the MILP. We prove that the algorithm has guaranteed convergence to
maxmin strategy and we provide a bound on the number of steps needed.

Finally, we extend the IRABNB algorithm by incremental strategy generation tech-
nique. The resulting algorithm is denoted DOIRABNB (Double Oracle Imperfect Recall
Abstraction Branch-and-Bound Algorithm). Compared to the double-oracle algorithm for
perfect recall EFGs [BoSansky et al., 2014], there are several fundamental challenges that
need to be addressed when the double-oracle algorithm is used for imperfect recall EFGs.
First, the algorithm for solving the restricted game is a more complex (approximate) search
algorithm based on a branch-and-bound scheme. Second, the problem is that for incre-
mental computation of maxmin strategies in imperfect recall EFGs, adding best response
sequences of actions is not sufficient for convergence (see Example 2 in [Cermék et al.,
2018]). Therefore, we had to design more general rules to guarantee the convergence and
add all possible actions that can improve the outcome for the maximizing player. The ex-
perimental evaluation shows that DOIRABNB is capable of solving some games with up to
5 - 10 states in approximately 1 hour. We also experimentally demonstrated the effective-
ness of the use of imperfect recall abstractions to reduce the size of strategies to be stored.
We show that employing simple abstractions which still allow us to compute the maxmin
strategy of the original game can lead to strategies with the relative size as low as 0.03% of
the size of the strategy in the original unabstracted game.

All discussed contributions for computing maxmin strategies including the double ora-
cle extension are summarized in the following journal publication (see Appendix C).

Jiti Cermdk, Branislav Bosansky Karel Horak, Viliam Lisy and Michal Péchoucek. Approximating
maxmin strategies in imperfect recall games using A-loss recall property. International Journal of Ap-
proximate Reasoning, pp. 290-326, 2018. (25%)

3.1.2 Results for Partially Observable Stochastic Games

Our main contribution is the first domain-independent algorithm that has guarantees to ap-
proximate optimal strategies in one-sided POSGs. Our algorithm is a generalization of the
heuristic search value iteration algorithm (HSVI) originally proposed for Partially Observ-
able Markov Decision Processes (POMDPs) [Smith and Simmons, 2004, Smith and Sim-
mons, 2012]. Similarly to POMDPs, One-Sided POSGs allow us to compactly represent
strategies and value functions representing values of the game based on the belief the first
player has about the state of the game. Contrary to POMDPs, the presence of the opponent
player causes significant technical challenges that we resolve in our contribution. First, we
show that the assumption of the one-sided partial observability guarantees that the value
functions are convex. Second, we define a value backup operator and show that an itera-
tive application of this operator converges to the optimal values. Third, we generalize the
ideas behind HSVI towards one-sided POSGs and show that our algorithm approximates
optimal strategies. Finally, we demonstrate the applicability and scalability of our algo-
rithm on three different domains — patrolling games (including the variant with alarms),
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pursuit-evasion games, and search games. The results show that our algorithm can closely
approximate solutions of large games with more than 4000 states.

All discussed contributions describing One-Sided POSGs and HSVI algorithm for this
class of stochastic games are summarized in the following A* publication (see Appendix D).

Karel Hordk, Branislav Bosansky and Michal Péchoucek. Heuristic Search Value Iteration for One-
Sided Partially Observable Stochastic Games In Proceedings of AAAI Conference on Artificial Intelli-
gence. pp. 558-564, 2017. (45%)

While One-Sided POSGs have great motivation for deployment to scenarios where the
robust strategies are necessary, the computed strategies may be unnecessarily pessimistic
and the algorithm cannot properly evaluate the value of disclosing some information to the
opponent (since it assumes that the opponent has perfect information). Relaxing these as-
sumptions into a fully general setting is not possible due to the problem of nested beliefs.
Therefore, we relaxed the subclass of One-Sided POSGs to games where both players have
partial information, but we assume that observations that affect the private beliefs of the
players are public and thus each player is able to exactly reconstruct the belief of the op-
ponent [Hordk and BoSansky, 2019]. The key characteristics of our model, termed POSGs
with public observations (PO-POSGs), are: (1) the state space is factored — each player ob-
serves his private state, but the state of the other player is not observed; (2) each observation
that modifies belief about the state of the other player is public (both players are aware of
this observation); (3) the true state of the player is observed privately by that player.

The contributions for the class of PO-POSGs: (1) We show that games in this class
have a value; (2) We show that the value function of PO-POSGs is convex in the belief of
the maximizing player and concave in the belief of the minimizing player; (3) We intro-
duce a novel algorithm based on Heuristic Value Iteration Search (HSVI) for One-Sided
POSGs [Horék et al., 2017a, Smith and Simmons, 2004] and show that this algorithm con-
verges to (approximate) optimal values.

We demonstrate our algorithm on two different domains — a patrolling game, where
the attacker has imprecise information about the position of the defender [Basilico et al.,
2009], and a lasertag game based on a single-player variant [Pineau et al., 2003]. The
results show that, for the first time, there is a practical domain-independent algorithm able
to closely approximate optimal values of non-trivial POSGs with hundreds of states where
both players have partial information about the environment.

All discussed contributions describing PO-POSGs and HSVI algorithm for this class of
stochastic games are summarized in the following A* publication (see Appendix E).

Karel Hordk and Branislav Bosansky. Solving Partially Observable Stochastic Games with Public Ob-
servations In Proceedings of AAAI Conference on Artificial Intelligence. 2019 (40%)
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3.2 Computational and Algorithmic Results for General-Sum
Games

In general-sum games, the algorithmic and computational work focuses mostly on com-
puting the Stackelberg Equilibrium (SE) and its most common variant Strong Stackelberg
Equilibrium where the follower break ties in favor of the leader. While there is a large vol-
ume of works focusing on computing SE in one-shot games, mostly in security domain (e.g.,
in [Tambe, 2011]), the algorithms for computing SE in EFGs were not developed prior to
our work. Another significant difference compared to the zero-sum case, the complexity of
computing SE differs in EFGs (even with perfect recall) compared to NFGs. As shown by
Letchford and Conitzer [Letchford and Conitzer, 2010], computing SE is NP-hard for most
of the variants of EFGs. This is in contrast to a positive result for computing SE in NFGs
where the problem is polynomial [Conitzer and Sandholm, 2006].

Therefore, over several works, we have focused on algorithmic and computational as-
pects when computing SE in dynamic games. Most importantly, we have formalized the first
algorithm for computing SE in EFGs by extending the sequence-form linear program in or-
der to compute SE [Bosansky and Cermak, 2015]. The scalability of the first algorithm has
been limited and thus several of our follow-up works focused on improving the scalability.
There are two notable contributions that allowed us to push the scalability further. First, we
have formally defined a new variant of SE for EFGs, termed Stackelberg Extensive-Form
Correlated Equilibrium (SEFCE) [BoSansky et al., 2017], where the leader is allowed to
commit to correlated strategies and send signals to the follower (following the signals must
be the best response for the follower). In two papers, we showed that SEFCE has not only
lower computational complexity for certain subclasses of EFGs [BoSansky et al., 2017] but
also that SEFCE can be computationally used for computing standard SE [Cermék et al.,
2016].

Second, we have also explored the possibility for incremental strategy generation for
computing SE in EFGs. Compared to zero-sum EFGs, building a restricted game is more
challenging since the abstracted parts of the game tree cannot be represented using a single
value as it is done in the zero-sum case. We have overcome these challenges and proposed
two variants of an algorithm based on incremental strategy generation that does not have to
expand (and thus consider) the entire game tree to compute (approximate) SE.

3.2.1 Computing Stackelberg Equilibrium in EFGs

The sequence form mixed integer linear program (MILP) for computing SE in EFGs is a
direct extension of the sequence form linear programs for solving zero-sum games. The
main extensions are in the representation of strategies of the follower — binary variables are
used in order to represent the best response of the follower. Next, the expected outcome is
calculated based on the joint probability that a certain terminal state of the game is reached.
Since the follower plays a pure strategy, the joint probability can be expressed with linear
constraints. As a consequence, we formulate a MILP that has a linear size in the size of the
game tree. Therefore, we have provided a constructive proof that computing SE in EFGs is
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NP-complete (NP-hardness has been shown before [Letchford and Conitzer, 2010]) and the
first algorithm specifically designed for computing SE in EFGs.

The scalability of our MILP algorithm was significantly better compared to algorithms
based on NFG representation that has an exponential size in the size of the game tree. The
algorithm was able to compute an exact SE within a few hours of games with 10* nodes or
10° if the number of pure strategies of the follower has been small.

All discussed contributions describing sequence-form MILP for computing SE in EFGs
are summarized in the following A* publication (see Appendix F).

Branislav Bosansky and Jif{ Cermak. Sequence-Form Algorithm for Computing Stackelberg Equilib-
ria in Extensive-Form Games. Proceedings of AAAI Conference on Artificial Intelligence, pp. 805-811,
2015. (70%)

3.2.2 Using Correlation in Computing Stackelberg Equilibrium

As mentioned above, we have formally defined a novel variant of SE, termed Stackelberg
Extensive-Form Correlated Equilibrium (SEFCE), where the leader is allowed to commit
to correlated strategies and send signals to the follower (following the signals must be the
best response for the follower). In EFGs, this concept is closely related to Extensive-Form
Correlated Equilibrium [von Stengel and Forges, 2008]. The key characteristic is that the
follower receives a particular signal which action to play after reaching certain information
set, however, the follower does not know which actions are going to be recommended af-
terwards. The follower only knows the probability distribution from which the actions are
sampled. This is in contrast to standard correlated equilibrium, where the complete strategy
in the game is received by players.

We analyzed the computational complexity of this new solution concept. We showed
that for certain subclasses of EFGs, computing a SEFCE is polynomial while computing SE
is NP-hard (e.g., for finite EFGs with perfect information and simultaneous moves) [BoSansky
et al., 2017]. Moreover, we have shown that the expected utility of the leader in SEFCE
forms an upper bound on the expected utility of the leader in SE. This proposition is impor-
tant since constructing a tight upper bound is important for the optimization problem like
Stackelberg Equilibrium. From the optimization perspective, finding an SE corresponds to
operating over a non-continuous piece-wise linear function with exponentially many parts.
SEFCE, however, forms a tight convex hull over this function and thus can be allowed to
guide the search when computing SE.

All discussed theoretical contributions regarding SEFCE are summarized in the follow-
ing journal publication (see Appendix G).

Branislav Bosansky, Simina Branzei, Kristoffer Arnsfelt Hansen, Troels Bjerre Lund, Peter Bro Mil-
tersen. Computation of Stackelberg Equilibria of Finite Sequential Games. ACM Transactions on Eco-
nomics and Computation, Vol. 5, No. 4, Article 23, 2017. (35%)

We exploited this fact and designed a novel algorithm that uses SEFCE for computing
SE [Cermik et al., 2016]. The algorithm first computes a correlated variant of SE and then
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examines whether the signals the follower receives are all pure. If this is indeed the case, the
algorithm has, in fact, found a SE. Otherwise, the algorithm selects some information set
where the follower can receive multiple signals, adds a constraint that makes this no longer
possible and resolves the problem. There are several variants of our algorithm — there is a
choice in which information set is selected and whether the constraints are compatible with
linear programming or whether they use binary variables. Any of the variants, however,
significantly outperforms the first algorithm for computing SE are to this day present the
exact state-of-art domain-independent algorithm for computing SE in EFGs.

All discussed contributions describing sequence-form MILP for computing SE in EFGs
are summarized in the following A* publication (see Appendix H).

Jiti Cermék, Branislav Bosansky, Karel Durkota, Viliam Lisy and Christopher Kiekintveld. Using Cor-
related Strategies for Computing Stackelberg Equilibria in Extensive-Form Games. In Proceedings of
AAAI Conference on Artificial Intelligence, pp. 439—445, 2016. (30%)

3.2.3 Using Incremental Strategy Generation for Stackelberg Equilibrium
Computation

Since our first algorithm based on sequence-form mathematical program, we aimed at pos-
sibility exploiting incremental strategy-generation technique for scaling-up the performance
of our algorithms for computing SE in EFGs. While incremental strategy generation works
well for computing SE in other classes of games (for example, for Bayesian games [Jain
et al., 2011b]), translating these ideas to EFGs is not straightforward. Similarly, despite
the fact that we have successfully designed a double-oracle algorithm for zero-sum EFGs,
adapting it for computing SE in general-sum games is again not straightforward. The main
complication is that in zero-sum EFGs, the not-expanded parts of the game tree (i.e., the
branches of the game tree that use sequences that were not added to the restricted game yet)
are in the restricted game represented using a single temporary leaf with a single temporary
value. For SE, however, this is not sufficient since there is no such single value. The reason
is that the leader can commit to a sequentially irrational strategy in a certain part of the game
tree, just to force the follower to play differently (i.e., to deliberately use threats; since the
commitment is not modifiable by the leader, the threats are credible).

We have solved this issue with a smaller temporary gadget-game that represent sev-
eral utility points from the abstracted game and let the leader choose from these possible
outcomes. The outcomes are chosen such that we may preserve guarantees that SE will
eventually be found. However, in order to guarantee convergence, complete sub-games
have to be expanded in such an algorithm. In imperfect-information EFGs, however, sub-
games represent rather large parts of the game tree and thus the algorithm in the form with
guarantees does not scale well. Removing this requirement loses the theoretical guarantees,
however, allows us to scale to much larger game trees. We were able to find near-optimal
solutions with error from true SE typically less than 4% while constructing a mathematical
program with size less than 5% compared to the full programs. Moreover, we have found
these near-optimal strategies an order of magnitude faster.
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All discussed contributions describing sequence-form MILP for computing SE in EFGs
are summarized in the following A* publication (see Appendix I).

Jakub Cerny, Branislav Bosansky and Christopher Kiekintveld. Incremental Strategy Generation for
Stackelberg Equilibria in Extensive-Form Games. In Proceedings of ACM Conference on Economics and
Computation, EC, pp. 151-168, 2018. (40%)

19



CHAPTER 3

20



Chapter 4

Conclusions and Future Work

This thesis summarizes results of research in equilibrium computation in dynamic games.
The discussed result advance state of the art in algorithmic and computational game the-
ory. We have provided new definitions of solution concepts, determined the computational
complexity of several open problems, and most importantly designed, implemented, and
experimentally evaluated a collection of novel algorithms for computing (approximate) so-
lutions in dynamic games. Most of our algorithmic approaches are domain-independent and
thus can act as baseline methods for many possible real-world applications. Moreover, all
our algorithms can be further enhanced with various heuristics to further improve scalability
and thus solve real-world instances.

There are several possible directions for possible future research in dynamic games.
One challenge is to push forward algorithms for solving Partially Observable Stochastic
Games (POSGs). There are three interesting directions for POSGs. First, the existing algo-
rithms presented in this thesis are the first of their kind. Hence, the scalability is limited and
further improvements in the algorithm can dramatically improve the practical applicability
of these algorithms. Indeed, our preliminary results show that there is a room for further
improvements and our algorithms for solving subclasses of POSGs can be used for comput-
ing approximate optimal strategies in real-world scenarios, especially in network security
and autonomous defense mechanisms [Hordk et al., 2017b, Horak et al., 2019].

The second direction is to further generalize the concept of POSGs with public obser-
vations (PO-POSGs) and identify the largest subclass of POSGs where using a finitely-
bounded histories (or memory) is sufficient for approximately solving the game. We have
shown that public observations allow players to derive belief of the opponent thus avoiding
the problem of nested beliefs. However, there are two open questions: (1) Is it possible to
generalize the subclass of PO-POSGs even further? Do all observations need to be publicly
observable? (2) What is the quality of strategies computed for a One-Sided POSG or a
PO-POSG variant of a general POSG?

Third, we have designed algorithms for zero-sum POSGs. Another possible direction
is to generalize these algorithms to general-sum games and compute a Stackelberg Equi-
librium (SE) instead of maxmin. The main challenge in this direction is the prerequisite
of having a dynamic-programming operator for computing SE in a bottom-up fashion sim-
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ilarly as it is done in HSVI-based algorithms for POSGs [Horék et al., 2017a, Hordk and
BoSansky, 2019]. Despite that this is again computationally more challenging, the pre-
liminary results show that it is possible to design such a dynamic-programming algorithm
and its approximate variant can be a valid basis for the first algorithm for computing SE in
POSGs [Rindt, 2019].

Another completely different direction is to design algorithms for dynamic games for
other classes of games. Among all, the biggest challenge would be to design solution con-
cepts and practical algorithms for solving dynamic games with many players. For exam-
ple, for Stackelberg Equilibrium, there already exist some algorithms with multiple follow-
ers [Basilico et al., 2016], however, they focus on normal-form games. Even more challeng-
ing would be to generalize concepts of dynamic games to succinctly represented games that
model interactions with many (hundreds) players. A typical example is a congestion game
where a set of agents is selecting a route through a network and their choices affect utilities
of other agents (e.g., if all agents are using the same road, the reward for each agent will
be low due to congestion at that road). Adding a dynamic aspect would be highly desirable
since many of the modeled scenarios are in fact dynamic (e.g., people change their decision
about which route to take). While there are again some results demonstrating that it is pos-
sible to design variants of succinct games with dynamic aspect [Hoefer et al., 2009], a fully
analyzed model and tailored algorithms for dynamic succinct games are missing.
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Abstract

Developing scalable solution algorithms is one of the central problems in computational
game theory. We present an iterative algorithm for computing an exact Nash equilibrium
for two-player zero-sum extensive-form games with imperfect information. Our approach
combines two key elements: (1) the compact sequence-form representation of extensive-
form games and (2) the algorithmic framework of double-oracle methods. The main idea of
our algorithm is to restrict the game by allowing the players to play only selected sequences
of available actions. After solving the restricted game, new sequences are added by finding
best responses to the current solution using fast algorithms.

We experimentally evaluate our algorithm on a set of games inspired by patrolling
scenarios, board, and card games. The results show significant runtime improvements in
games admitting an equilibrium with small support, and substantial improvement in mem-
ory use even on games with large support. The improvement in memory use is particularly
important because it allows our algorithm to solve much larger game instances than existing
linear programming methods.

Our main contributions include (1) a generic sequence-form double-oracle algorithm for
solving zero-sum extensive-form games; (2) fast methods for maintaining a valid restricted
game model when adding new sequences; (3) a search algorithm and pruning methods for
computing best-response sequences; (4) theoretical guarantees about the convergence of
the algorithm to a Nash equilibrium; (5) experimental analysis of our algorithm on several
games, including an approximate version of the algorithm.

1. Introduction

Game theory is a widely used methodology for analyzing multi-agent systems by applying
formal mathematical models and solution concepts. One focus of computational game the-
ory is the development of scalable algorithms for reasoning about very large games. The
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need for continued algorithmic advances is driven by a growing number of applications of
game theory that require solving very large game instances. For example, several decision
support systems have recently been deployed in homeland security domains to recommend
policies based on game-theoretic models for placing checkpoints at airports (Pita, Jain,
Western, Portway, Tambe, Ordonez, Kraus, & Parachuri, 2008), scheduling Federal Air
Marshals (Tsai, Rathi, Kiekintveld, Ordénez, & Tambe, 2009), and patrolling ports (Shieh,
An, Yang, Tambe, Baldwin, Direnzo, Meyer, Baldwin, Maule, & Meyer, 2012). The ca-
pabilities of these systems are based on a large amount of research in fast algorithms for
security games (Tambe, 2011). Another notable example is the algorithmic progress that
has led to game-theoretic Poker agents that are competitive with highly skilled human
opponents (e.g., see Zinkevich, Bowling, & Burch, 2007; Sandholm, 2010).

We focus on developing new algorithms for an important general class of games that
includes security games and Poker, as well as many other familiar games. More precisely, we
study two-player zero-sum extensive-form games (EFGs) with imperfect information. This
class of games captures sequential interactions between two strictly competitive players in
situations where they make decisions under uncertainty. Uncertainty can be caused either
by having a stochastic environment or by having opponent actions that are not directly
observable. We consider general models for both sequential interactions and uncertainty,
while many of the fast algorithms that have been developed for Poker and security domains
rely on more specific game structure.

We propose a new class of algorithms for finding exact (or approximate) Nash equi-
librium solutions for the class of EFGs with imperfect information. The leading exact
algorithm in the literature uses the compact sequence-form representation and linear pro-
gramming optimization techniques to solve games of this type (Koller, Megiddo, & von
Stengel, 1996; von Stengel, 1996). Our approach exploits the same compact representa-
tion, but we improve the solution methods by adopting the algorithmic framework based
on decompositions known in the computational game theory literature as oracle algorithms
(McMahan, Gordon, & Blum, 2003). Oracle algorithms are related to the methods of con-
straint/column generation used for solving large-scale optimization problems (Dantzig &
Wolfe, 1960; Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998) and exploit two
characteristics commonly found in games. First, in many cases finding a solution to a
game only requires using a small fraction of the possible strategies, so it is not necessary to
enumerate all of the strategies to find a solution (Wilson, 1972; Koller & Megiddo, 1996).
Second, finding a best response to a specific opponent strategy in a game is computationally
much less expensive than solving for an equilibrium. In addition, best response algorithms
can often make use of domain-specific knowledge or heuristics to speed up the calculations
even further.

Our sequence-form double-oracle algorithm integrates the decomposition ideas of oracle
algorithms with the compact sequence-form representation for EFGs with imperfect infor-
mation. This results in an iterative algorithm that does not always need to generate the
complete linear program for the game to find a Nash equilibrium solution. The main idea
of the algorithm is to create a restricted game in which the players choose from a limited
space of possible strategies (represented as sequences of actions). The algorithm solves
the restricted game and then uses a fast best-response algorithm to find strategies in the
original unrestricted game that perform well against the current solution of the restricted
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game. These strategies are added to the restricted game and the process iterates until no
best response can be found to improve the solution. In this case, the current solution is an
equilibrium of the original game. Typically, a solution can be found by adding only a small
fraction of the strategies to the restricted game.

We begin by presenting related work, technical background, and our notation. We then
describe our main algorithm in three parts: (1) methods for creating, solving, and expand-
ing a valid restricted game, (2) the algorithm for finding the best-response strategies to be
added to the restricted game, and (3) variants of the main loop controlling the iterative
process of solving restricted games and adding new strategies. We present a formal analysis
and prove that our algorithm converges to a Nash equilibrium of the original game. Fi-
nally, we provide an experimental evaluation of the runtime performance and convergence
behavior of our algorithm on several realistic games with different characteristics including
a border patrolling scenario, Phantom Tic-Tac-Toe, and a simplified variant of Poker. We
compare our results with state-of-the-art algorithms for finding both exact and approxi-
mate solutions: linear programming using the sequence form, and Counterfactual Regret
Minimization (CFR, Zinkevich, Johanson, Bowling, & Piccione, 2008; Lanctot, 2013).

The experimental results confirm that our algorithm requires only a fraction of all pos-
sible sequences to solve a game in practice and significantly reduces memory requirements
when solving large games. This advances the state of the art and allows us to exactly solve
much larger games compared to the existing algorithms. Moreover, in games admitting
an equilibrium with small support (i.e., only a few sequences have non-zero probability in
an equilibrium), our algorithm also achieves significant improvements in computation time
and finds an equilibrium after only few iterations. These result hold without using any
domain-specific knowledge, but we also show that incorporating domain-specific heuristics
and bounds into the algorithm in a straightforward way can lead to even more significant
performance improvements. Analysis of the convergence rate shows that the approximative
bounds on the value of the game are either similar or a bit worse during the early stages
compared to CFR. However, the convergence behavior of CFR algorithm has a very long
tail and our algorithm always finds an exact solution much faster than CFR.

2. Related Work

Solving imperfect-information EFGs is a computationally challenging task, primarily due
to uncertainty about the actions of the opponent and/or a stochastic environment. The
leading exact algorithm (Koller et al., 1996; von Stengel, 1996) is based on formulating the
problem of finding an optimal strategy to play as a linear program. This algorithm exploits
a compact representation of strategies as sequences of individual actions (called the sequence
form) and results in a linear program of linear size in the size of the game tree. However,
this approach has limited applicability since the game tree grows exponentially with the
number of sequential actions in the game. A common practice for overcoming the limited
scalability of sequence-form linear programming is to use an approximation method. The
best known approximative algorithms include counterfactual regret minimization (CFR,
Zinkevich et al., 2008), improved versions of CFR with sampling methods (Lanctot, Waugh,
Zinkevich, & Bowling, 2009; Gibson, Lanctot, Burch, Szafron, & Bowling, 2012); Nesterov’s
Excessive Gap Technique (EGT, Hoda, Gilpin, Pena, & Sandholm, 2010); and variants of

831



BoSANSKY, KIEKINTVELD, LISV, & PECHOUCEK

Monte Carlo Tree Search (MCTS) algorithms applied to imperfect-information games (e.g.,
see Ponsen, de Jong, & Lanctot, 2011).

The family of counterfactual regret minimization algorithms is based on learning meth-
ods that can be informally described as follows. The algorithm repeatedly traverses the
game tree and learns a strategy to play by applying a no-regret learning rule that min-
imizes a specific variant of regret (counterfactual regret) in each information set. The
no-regret learning converges to an optimal strategy in each information set. The overall
regret is bounded by the sum of the regret in each information set; hence, the strategy
as a whole converges to a Nash equilibrium. The main benefits of this approach include
simplicity and robustness, as it can be adapted for more generic games (e.g., see Lanctot,
Gibson, Burch, Zinkevich, & Bowling, 2012, where CFR is applied on games with imperfect
recall). However, the algorithm operates on the complete game tree and therefore requires
convergence in all information sets, which can be very slow for large games when one desires
a solution with small error.

Another popular method is Excessive Gap Technique that exploits the convex properties
of the sequence-form representation and uses recent mathematical results on finding extreme
points of smooth functions (see Hoda et al., 2010, for the details). The main idea is to ap-
proximate the problem of finding a pair of equilibrium strategies by two smoothed functions
and guiding them to find an approximate solution. Although this approach achieves faster
convergence in comparison with CFR, the algorithm is less robust (it is not known whether
a similar approach can be used for more general classes of games) and less used in practice.
Like CFR, EGT also operates in the complete strategy space of all sequences.

Monte Carlo Tree Search (MCTS) is another family of methods that has shown promise
for solving very large games, in particular perfect information board games such as Go (e.g.,
Lee et al., 2009). While the CFR and EGT algorithms are guaranteed to find an e-Nash
equilibrium, convergence to an equilibrium solution has not been formally shown for any of
the variants of MCTS in imperfect-information games. On the contrary, the most common
version of MCTS based on the Upper Confidence Bounds (UCB) selection function can
converge to incorrect solutions even in simultaneous-move games (Shafiei, Sturtevant, &
Schaeffer, 2009) that are the simplest class of imperfect-information EFGs. MCTS algo-
rithms therefore do not (in general) guarantee finding an (approximate) optimal solution in
imperfect-information games. One exception is the recent proof of convergence of MCTS
with certain selection methods for simultaneous-move games (Lisy, Kovarik, Lanctot, &
Bosansky, 2013). Still, using MCTS is sometimes a reasonable choice since it can produce
good strategies in practice (Ponsen et al., 2011).

Contrary to the existing approximative approaches, our algorithm aims to find an ex-
act solution without explicitly considering the strategy in the complete game tree. Our
work combines the compact sequence-form representation and the double-oracle algorith-
mic framework. Previous work on the double-oracle framework has focused primarily on
applications in normal-form games, where the restricted game was expanded by adding pure
best-response strategies in each iteration. One of the first examples of solving games using
the double-oracle principle was by McMahan et al. (2003). They introduced the double-
oracle algorithm, proved the convergence to a Nash equilibrium, and experimentally verified
that the algorithm achieves computation time improvements on a search game where an
evader was trying to cross an environment without being detected by sensors placed by the
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opponent. The double-oracle algorithm reduced the computation time from several hours
to tens of seconds and allowed to solve much larger instances of this game. Similar success
with the domain-specific double-oracle methods has been demonstrated on a variety of dif-
ferent domains inspired by pursuit-evasion games (Halvorson, Conitzer, & Parr, 2009) and
security games played on a graph (Jain, Korzhyk, Vanek, Conitzer, Tambe, & Pechoucek,
2011; Letchford & Vorobeychik, 2013; Jain, Conitzer, & Tambe, 2013).

Only a few works have tried to apply the iterative framework of oracle algorithms to
EFGs, primarily using pure and mixed strategies in EFGs. The first work that exploited this
iterative principle is the predecessor of the sequence-form linear-program formulation (Koller
& Megiddo, 1992). In this algorithm, the authors use a representation similar to the se-
quence form only for a single player, while the strategies for the opponent are iteratively
added as constraints into the linear program (there is an exponential number of constraints
in their formulation). This approach can be seen as a specific variant of the oracle algo-
rithms, where the strategy space is expanded gradually for a single player. Our algorithm
is a generalization of this work, since our algorithm uses the sequence-form representation
for both players and it also incrementally expands the strategy space for both players.

More recent work has been done by McMahan in his thesis (McMahan, 2006) and follow-
up work (McMahan & Gordon, 2007). In these works the authors investigated an extension
of the double-oracle algorithm for normal-form games to the extensive-form case. Their
double-oracle algorithm for EFGs operates very similarly to the normal-form variant and
uses pure and mixed strategies defined for EFGs. The main disadvantage of this approach
is that in the basic version it still requires a large amount of memory since a pure strategy
for an EFG is large (one action needs to be specified for each information set), and there
is an exponential number of possible pure strategies. To overcome this disadvantage, the
authors propose a modification of the double-oracle algorithm that keeps the number of the
strategies in the restricted game bounded. The algorithm removes from the restricted game
those strategies that are the least used in the current solution of the restricted game. In
order to guarantee the convergence, the algorithm adds in each iteration into the restricted
game a mixed strategy representing the mean of all removed strategies; convergence is then
guaranteed similarly to fictitious play (see McMahan & Gordon, 2007, for the details).
Bounding the size of the restricted game results in low memory requirements. However, the
algorithm converges extremely slowly and it can take a very long time (several hours for a
small game) for the algorithm to achieve a small error (see the experimental evaluation in
McMahan, 2006; McMahan & Gordon, 2007).

A similar concept for using pure strategies in EFGs is used in an iterative algorithm
designed for Poker in the work of Zinkevich et al. (2007). The algorithm in this work
expands the restricted game with strategies found by a generalized best response instead of
using pure best response strategies. Generalized best response is a Nash equilibrium in a
partially restricted game — the player computing the best response can use any of the pure
strategies in the original unrestricted game, while the opponent is restricted to use only the
strategies from the restricted game. However, the main disadvantages of using pure and
mixed strategies in EFGs are still present and result in large memory requirements and an
exponential number of iterations.

In contrast, our algorithm directly uses the compact sequence-form representation of
EFGs and uses the sequences as the building blocks (i.e., the restricted game is expanded
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by allowing new sequences to be played in the next iteration). Using sequences and the
sequence form for solving the restricted game reduces the size of the restricted game and
the number of iterations, however, it also introduces new challenges when constructing and
maintaining the restricted game, and ensuring the convergence to a Nash equilibrium, which
we must solve for our algorithm to converge to a correct solution.

3. Technical Background

We begin by presenting the standard game-theoretic model of extensive-form games, fol-
lowed by a discussion of the most common solution concepts and the algorithms for comput-
ing these solutions. Then we present the sequence-form representation and the state-of-the-
art linear program for computing solutions using this representation. Finally, we describe
oracle algorithms as they are used for solving normal-form games. A summary of the most
common notation is provided in Table 1 for quick reference.

3.1 Extensive-Form Games

Extensive-form games (EFGs) model sequential interactions between players in a game.
Games in the extensive form are visually represented as game trees (e.g., see Figure 2).
Nodes in the game tree represent states of the game; each state of the game corresponds to
a sequence of moves executed by all players in the game. Each node is assigned to a player
that acts in the game state associated with this node. An edge in the game tree from a
node corresponds to an action that can be performed by the player who acts in this node.
Extensive-form games model limited observations of the players by grouping the nodes into
information sets, so that a given player cannot distinguish between nodes that belong to
the same information set when the player is choosing an action. The model also represents
uncertainty about the environment and stochastic events by using a special Nature player.

Formally, a two-player EFG is defined as a tuple G = (N, H, Z, A,p,u,C,Z): N is a set
of two players N = {1,2}. We use ¢ to refer to one of the two players (either 1 or 2), and —i
to refer to the opponent of i. H denotes a finite set of nodes in the game tree. Each node
corresponds to a unique history of actions taken by all players and Nature from the root of
the game; hence, we use the terms history and node interchangeably. We denote by Z C H
the set of all terminal nodes of the game. A denotes the set of all actions and we overload
the notation and use A(h) C A to represent the set of actions available to the player acting
in node h € H. We specify ha = I/ € H to be node h’ reached from node h by executing
action a € A(h). We say that h is a prefiz of i’/ and denote it by h C I/. For each terminal
node z € Z we define a utility function for each player i (u; : Z — R). We study zero-sum
games, S0 u;(z) = —u_;(z) holds for all z € Z.

The function p : H — N U {c} assigns each node to a player who takes an action in the
node, where ¢ means that the Nature player selects an action in the node based on a fixed
probability distribution known to all players. We use function C : H — [0,1] to denote
the probability of reaching node h due to Nature (i.e., assuming that both players play all
required actions to reach node h). The value of C(h) is the product of the probabilities
assigned to all actions taken by the Nature player in history h. Imperfect observation of
player i is modeled via information sets Z; that form a partition over the nodes assigned
to player ¢ {h € H : p(h) = i}. Every information set contains at least one node and each
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node belongs to exactly one information set. Nodes in an information set of a player are
indistinguishable to the player. All nodes h in a single information set I; € Z; have the
same set of possible actions A(h). Action a from A(h) uniquely identifies information set
I; and there cannot exist any other node ' € H that does not belong to information set
I; and for which a is allowed to be played (i.e., a € A(h')). Therefore we overload notation
and use A(l;) to denote the set of actions defined for each node h in this information set.
We assume perfect recall, which means that players perfectly remember their own actions
and all information gained during the course of the game. As a result, all nodes in any
information set I; have the same history of actions for player 3.

3.2 Nash Equilibrium in Extensive-Form Games

Solving a game requires finding a strategy profile (i.e., one strategy for each player) that
satisfies conditions defined by a specific solution concept. Nash equilibrium (NE) is the
best known solution concept in game theory and it describes the behavior of players under
certain assumptions about their rationality. In a Nash equilibrium, every player plays a
best response to the strategies of the other players. Let II; be the set of pure strategies for
player i. In EFGs, a pure strategy is an assignment of exactly one action to be played in
each information set. A mixed strategy is a probability distribution over the set of all pure
strategies of a player. We denote by A; the set of all mixed strategies of player . For any
pair of strategies § € A = (A1, Ag) we use u;(J) = u;(d;,0—;) for the expected outcome
of the game for player ¢ when players follow strategies 6. A best response of player i to
the opponent’s strategy §_; is a strategy 2%, for which w;(62%,5_;) > w;(6},5_;) for all
strategies o, € A;. A strategy profile 6 = (d1,02) is a NE if and only if for each player ¢
it holds that §; is a best response to d_;. A game can have multiple NEs; in the zero-sum
setting, all of these equilibria have the same value (i.e., the expected utility for every player
is the same). This is called the value of the game, denoted V*. The problem of finding a
NE in a zero-sum game has a polynomial computational complexity in the size of the game.

The NE solution concept is somewhat weak for extensive-form games. Nash equilibrium
requires that both players act rationally. However, there can be irrational strategies selected
for the parts of the game tree that are not reachable when both players follow the NE
strategies (these parts are said to be off the equilibrium path). The reason is that NE does
not expect this part of the game to be played and therefore does not sufficiently restrict
strategies in these information sets. To overcome these drawbacks, a number of refinements
of NE have been introduced imposing further restrictions with the intention of describing
more sensible strategies. Examples include subgame-perfect equilibrium (Selten, 1965) used
in perfect-information EFGs. The subgame-perfect equilibrium forces the strategy profile
to be a Nash equilibrium in each sub-game (i.e., in each sub-tree rooted in some node h)
of the original game. Unfortunately, sub-games are not particularly useful in imperfect-
information EFGs; hence, here the refinements include strategic-from perfect equilibrium
(Selten, 1975), sequential equilibrium (Kreps & Wilson, 1982), or quasi-perfect equilibrium
(van Damme, 1984; Miltersen & Sgrensen, 2010). The first refinement avoids using weakly
dominated strategies in equilibrium strategies for two-player games (van Damme, 1991,
p. 29) and it is also known as the undominated equilibrium. Sequential equilibrium tries
to exploit the mistakes of the opponent by using the notion of beliefs consistent with the
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strategy of the opponent even in information sets off the equilibrium path. The main
intuitions behind the first two refinements are combined in quasi-perfect equilibrium.
Even though the solution described by NE does not always prescribe rational strategies
off the equilibrium path, it is still valuable to compute exact NE of large extensive-form
games for several reasons. We focus on zero-sum games, so the NE strategy guarantees
the value of the game even off the equilibrium path. In other words, the strategy off
the equilibrium path does not optimally exploit the mistakes of the opponent, but it still
guarantees an outcome of at least value gained by following the equilibrium path. Moreover,
a refined equilibrium is still a NE and calculating the value of the game is often a starting
point for many of the algorithms that compute these refinements — for example it is used
for computing undominated equilibrium (e.g., see Ganzfried & Sandholm, 2013; Cermak,
Bosansky, & Lisy, 2014) and normal-form proper equilibrium (Miltersen & Sgrensen, 2008).

3.3 Sequence-Form Linear Program

Extensive-form games with perfect recall can be compactly represented using the sequence
form (Koller et al., 1996; von Stengel, 1996). A sequence o; is an ordered list of actions taken
by a single player ¢ in a history h. The number of actions (i.e., the length of sequence o;)
is denoted by |o;| and the empty sequence (i.e., sequence with no actions) is denoted by 0.
The set of all possible sequences for player ¢ is denoted by ¥; and the set of sequences for all
players is ¥ = ¥ X Ya. A sequence o; € ¥; can be extended by a single action a taken by
player i, denoted by o;a = o} (we use o; C o} to denote that o; is a prefix of ¢}). In games
with perfect recall, all nodes in an information set I; share the same sequence of actions
for player i and we use seq,(I;) to denote this sequence. We overload the notation and use
seq;(h) to denote the sequence of actions of player i leading to node h, and seq,(H') C %;,
where seq;(H') = U} cprseq;(h') for some H' C H. Since action a uniquely identifies
information set I; and all nodes in an information set share the same history of actions of
player 4, each sequence uniquely identifies an information set. We use the function inf;(o})
to denote the information set in which the last action of the sequence o is taken. For an
empty sequence, function inf;(()) is the information set of the root node.

Finally, we define the auxiliary payoff function g; : ¥ — R that extends the utility
function to all nodes in the game tree. The payoff function g; represents the expected
utility of all nodes reachable by sequentially executing the actions specified in a pair of
sequences o:

9i(0i,0-i) = > ui(h) - C(h) (1)

heZ :VjEN oj=seq;(h)

The value of the payoff function is defined to be 0 if no leaf is reachable by sequentially ex-
ecuting all of the actions in the sequences o — either all actions from the pair of sequences o
are executed and an inner node (h € H \ Z) is reached, or during the sequential execu-
tion of the actions node A is reached, for which the current action a to be executed from
sequence o) is not defined (i.e., a ¢ A(h)). Formally we define a pair of sequences o to
be compatible if there exists node h € H such that sequence o; of every player i equals to
seq; (h).

We can compute a Nash equilibrium of a two-player zero-sum extensive-form game
using a linear program (LP) of a polynomial size in the size of the game tree using the
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sequence form (Koller et al., 1996; von Stengel, 1996). The LP uses an equivalent compact
representation of mixed strategies of players in a form of realization plans. A realization
plan for a sequence o; is the probability that player ¢ will play this sequence of actions
under the assumption that the opponent will choose compatible sequences of actions that
reach the information sets for which the actions specified in the sequence o; are defined. We
denote the realization plan for player ¢ by r; : 3; — R. The equilibrium realization plans
can be computed using the following LP (e.g., see Shoham & Leyton-Brown, 2009, p. 135):

H}%X Vinf_; (D)

Uinf_i(o_3) — Z vr, < Zgi<0—i70i) : Ti(Uz‘) Vo_; € X (2)

I' €T_sseq_;(I' ))=a_; 0i€X;
ri(@) =1 (3)
> riloia) = ri(o) VI; € T;, 0; = seq;(I;) (4)
VacA(I;)
ri(o;) >0 Vo, €%, (5)

Solving the LP yields a realization plan for player ¢ using variables r;, and expected values
for the information sets of player —i (variables vy ). The LP works as follows: player 4
maximizes the expected utility value by selecting the values for the variables of realiza-
tion plan that is constrained by Equations (3-5). The probability of playing the empty
sequence is defined to be 1 (Equation 3), and the probability of playing a sequence o; is
equal to the sum of the probabilities of playing sequences extended by exactly one action
(Equation 4). Finding such a realization plan is also constrained by the best responding
opponent, player —i. This is ensured by Equation (2), where player —i selects in each
information set I_; such action that minimizes the expected utility value v7_, in this infor-
mation set. There is one constraint defined for each sequence o_;, where the last action of
this sequence determines the best action to be played in information set inf_;(o_;) = I_;.
The expected utility is composed of the expected utilities of the information sets reachable
after playing sequence o_; (sum of v variables on the left side) and of the expected utilities
of leafs to which this sequence leads (sum of g values on the right side of the constraint).

3.4 Double-Oracle Algorithm for Normal-Form Games

We now describe the concept of column/constraint generation techniques applied previously
in normal-form games and known as the double-oracle algorithm (McMahan et al., 2003).
Normal-form games are represented using game matrices; rows of the matrix correspond
to pure strategies of one player, columns correspond to pure strategies of the opponent,
and values in the matrix cells represent the expected outcome of the game when players
play corresponding pure strategies. Zero-sum normal-form games can be solved by linear
programming in polynomial time in the size of the matrix (e.g., see Shoham & Leyton-
Brown, 2009, p. 89).

Figure 1 shows the visualization of the main structure of the double-oracle algorithm for
normal-form games. The algorithm consists of the following three steps that repeat until
convergence:
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new strategies n13, n23 added best responses do not improve result
Start 1 m22 / Expand Restricted Game 4\ /)Terminate
nll | 2 (-1
Restricted Game Compute Best Response

m2 |03
\» Solve Restricted Game /

NE = <(1/2,1/2); (2/3, 1/3)>

Figure 1: Schematic of the double-oracle algorithm for a normal-form game.

1. create a restricted game by limiting the set of pure strategies that each player is
allowed to play

2. compute a pair of Nash equilibrium strategies in this restricted game using the LP for
solving normal-form games

3. for each player, compute a pure best response strategy against the equilibrium strategy
of the opponent found in the previous step; the best response may be any pure strategy
in the original unrestricted game

The best response strategies computed in step 3 are added to the restricted game, the game
matrix is expanded by adding new rows and columns, and the algorithm continues with the
next iteration. The algorithm terminates if neither of the players can improve the outcome
of the game by adding a new strategy to the restricted game. In this case both players
play a best response to the strategy of the opponent in the original unrestricted game.
The algorithm maintains the values of the expected utilities of the best-response strategies
throughout the iterations of the algorithm. These values provide bounds on the value of
the original unrestricted game V* — from the perspective of player i, the minimal value
of all of her past best-response calculations represents an upper bound of the value of the
original game, V;UB , and the maximal value of all of past best-response calculations of the
opponent represents the lower bound on the value of the original game, VZLB . Note that for
the bounds it holds that the lower bound for player 7 is equal to the negative of the value
of the upper bound for the opponent:
‘/iLB — —VgB

In general, computing best responses is computationally less demanding than solving the
game, since the problem is reduced to a single-player optimization. Due to the fact that best-
response algorithms can operate very quickly (e.g., also by exploiting additional domain-
specific knowledge), they are called oracles in this context. If the algorithm incrementally
adds strategies only for one player, the algorithm is called a single-oracle algorithm, if
the algorithm incrementally adds the strategies for both players, the algorithm is called a
double-oracle algorithm. Double-oracle algorithms are typically initialized by an arbitrary
pair of strategies (one pure strategy for each player). However, we can also use a larger set
of initial strategies selected based on a domain-specific knowledge.

The double-oracle algorithm for zero-sum normal-form games runs in a polynomial time
in the size of the game matrix. Since each iteration adds at least one pure strategy to
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Figure 2: Example of a two-player extensive-form game visualized as a game tree. Circle
player aims to maximize the utility value, box aims to minimize the utility value. The bold
edges represent the sequences of actions added to the restricted game.

the restricted game and there are finite pure strategies, the algorithm stops after at most
IIL;| + |II_;| iterations. Each iteration is also polynomial, since it consists of solving the
linear program and computing best responses. The relative performance of the double-
oracle algorithm compared to solving the linear program for the original unrestricted game
closely depends on the number of iterations required for convergence. In the worst case, the
algorithm adds all pure strategies and solves the original game, although this is rarely the
case in practice. Estimating the expected number of iterations needed for the double-oracle
algorithm to converge, however, remains an open problem.

3.4.1 TowaRDS EXTENSIVE-FORM GAMES

The straightforward method of applying the double-oracle algorithm for EFGs is to use pure
strategies defined in EFGs (i.e., assignments of action for each information set, or realization
plans) and apply exactly the algorithm described in this section — i.e., iteratively add
pure strategies from the unrestricted extensive-form game into the restricted game matrix.
However, this can result in an exponential number of iterations and an exponentially large
restricted game in the worst case. Our algorithm differs significantly from this idea since it
directly operates on (more compact) sequences instead of full strategies.

4. Sequence-Form Double-Oracle Algorithm for Extensive-Form Games

We now describe our sequence-form double-oracle algorithm for solving extensive-form
games with imperfect information. First, we give an informal overview of our algorithm.
We use an example game depicted in Figure 2 to illustrate some of the key concepts. Af-
terwards, we formally define the restricted game and describe the key components of the
algorithm, following by a full example run of our algorithm.

The overall scheme of our algorithm is based on the double-oracle framework described in
the previous section. The main difference is that our algorithm uses the sequences to define
the restrictions in the game tree. The restricted game in our model is defined by allowing
players to use (i.e., to play with non-zero probability) only a subset of the sequences from
the original unrestricted game. This restricted subset of sequences defines the subsets of
reachable actions, nodes, and information sets from the original game tree. Consider our ex-
ample in Figure 2. A restricted game can be defined by sequences 0, A, AC, AD for the circle
player, and (), z for the box player. These sequences represent actions allowed in the game,
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they define reachable nodes (using history we can reference them as 0, A, Ax, AxC, AzD),
and reachable information sets (I1, I for the circle player and the only information set I
for the box player).

The algorithm iteratively adds new sequences of allowed actions into the restricted
game, similarly to the double-oracle algorithm for normal-form games. The restricted game
is solved as a standard zero-sum extensive-form game using the sequence-form linear pro-
gram. Then a best response algorithm searches the original unrestricted game to find new
sequences to add to the restricted game. When the sequences are added, the restricted
game tree is expanded by adding all new actions, nodes, and information sets that are now
reachable based on the new sets of allowed sequences. The process of solving the restricted
game and adding new sequences iterates until no new sequences that improve the solution
can be added.

There are two primary complications that arise when we use sequences instead of full
strategies in the double-oracle algorithm, both due to the fact that sequences do not neces-
sarily define actions in all information sets: (1) a strategy computed in the restricted game
may not be a complete strategy in the original game, because it does not define behavior
for information sets that are not in the restricted game, and (2) it may not be possible to
play every action from a sequence that is allowed in the restricted game, because playing
a sequence can depend on having a compatible sequence of actions for the opponent. In
our example game tree in Figure 2, no strategy of the circle player in the restricted game
specifies what to play in information sets Is and I;. The consequence of the second issue
is that some inner nodes of the original unrestricted game can (temporarily) become leafs
in the restricted game. For example, the box player can add sequence y into the restricted
game making node Ay a leaf in the restricted game, since there are no other actions of the
circle player in the restricted game applicable in this node.

Our algorithm solves these complications using two novel ideas. The first idea is the
concept of a default pure strategy (denoted TrPEF € I1;). Informally speaking, the algorithm
assumes that each player has a fixed implicit behavior that defines what the player does by
default in any information set that is not part of the restricted game. This is described by
the default strategy 725", which specifies an action for every information set. Note that this
default strategy does not need to be represented explicitly (which could use a large amount
of memory). Instead, it can be defined implicitly using rules, such as selecting the first action
from a deterministic method for generating the ordered set of actions A(h) in node h. We
use the default pure strategies to map every strategy from the restricted game into a valid
strategy in the full game. Specifically, the strategy in the original unrestricted game selects
actions according to the probabilities specified by a strategy for the restricted game in
every information set that is part of the restricted game, and for all other information sets
it plays according to the default pure strategy. Recall our example in Figure 2, where the
pure default strategy for the circle player can be (A4,C, E,G) (i.e., selecting the leftmost
action in each information set). Hence, a strategy in the original unrestricted game can use
a strategy from the restricted game in information sets I; and I, and select pure actions
in F, GG in information sets I3 and Iy respectively.

The second key idea is to use temporary utility values for cases where there are no
allowed actions that can be played in some node in the restricted game that is an inner
node in the original game (so called temporary leaf). To ensure the correct convergence of
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H game-tree nodes / histories
Z CH leafs / terminal states
TDEF implicit default pure strategy for player 4

ri 2 = R realization plan of player ¢ for a sequence

C:H—R probability of reaching a node due to Nature play

g H— R extension of the utility function to all nodes;

gi(h) = u;i(h)-C(h) if h € Z and g;(h) = 0 if h is not a terminal node (h ¢ 2)
seq; sequence(s) of actions of player ¢ leading to a node / a set of nodes /

/ an information set

inf; : 3; — I; | an information set in which the last action of the sequence was executed

Table 1: An outline of the main symbols used in the paper.

the algorithm these temporary utilities must be assigned so that they provide a bound on
the expected value gained by continuing the play from the given node. Our algorithm uses
a value that corresponds to the expected outcome of continuing the game play, assuming
the player making the choice in the temporary leaf uses the default strategy, while the
opponent plays a best response. Assume we add sequence y for the box player into the
restricted game in our example tree in Figure 2. The temporary utility value for node Ay
would correspond to value —2, since the default strategy in information set I3 is to play E
for the circle player. In the next section we formally describe this method and prove the
correctness of the algorithm given these temporary values.

We now describe in detail the key parts of our method. We first formally define the
restricted game and methods for expanding the restricted game, including the details of
both of the key ideas introduced above. Then we describe the algorithm for selecting the
new sequences that are allowed in the next iteration. The decision of which sequences to add
is based on calculating a best response in the original unrestricted game using game-tree
search improved with additional pruning techniques. Finally, we discuss different variations
of the main logic of the double-oracle algorithm that determines for which player(s) the
algorithm adds new best-response sequences in the current iteration.

4.1 Restricted Game

This section formally defines the restricted game as a subset of the original unrestricted
game. A restricted game can be fully specified by the set of allowed sequences. We define
the sets of nodes, actions, and information sets as subsets of the original unrestricted sets
based on the allowed sequences. We denote the original unrestricted game by a tuple
G = (N,H,Z, A, p,u,C,T) and the restricted game by G’ = (N, H', Z', A, p,u/,C,T"). All
sets and functions associated with the restricted game use prime in the notation; the set of
players, and the functions p and C remain the same.

The restricted game is defined by a set of allowed sequences (denoted by ® C ) that
are returned by the best response algorithms. As indicated above, even an allowed sequence
o; € ® might not be playable to the full length due to missing compatible sequences of the
opponent. Therefore, the restricted game is defined using the maximal compatible set of
sequences Y C @ for a given set of allowed sequences ®'. We define ¥’ as the mazimal
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subset of the sequences from @' such that:
)« {o;€® : 3o, € ¥ 3he HVje Nseq;(h) =05} VieN (6)

Equation (6) means that for each player i and every sequence o; in X, there exists a
compatible sequence of the opponent o_; that allows the sequence o; to be executed in full
(i.e., by sequentially executing of all the actions in these sequences o some node h can be
reached such that seq;(h) = o; for all players j € N).

The set of sequences ¥/ fully defines the restricted game, because all other sets in the
tuple G’ can be derived from Y'. A node h is in the restricted game if and only if the
sequences that must be played to reach h are in the set ¥/ for both players:

H' < {h€H : Vie N seq;(h) € X'} (7)

If a pair of sequences is in ¥/, then all nodes reachable by executing this pair of sequences
are included in H’. Actions defined for a node h are in the restricted game if and only if
playing the action in this node leads to a node that is in the restricted game:

A'(h)+{a€ A(h) : hae H'} VheH (8)

Nodes from the restricted game corresponding to inner nodes in the original unrestricted
game may not be inner nodes in the restricted game. Therefore, the set of leaves in the
restricted game is a union of leaf nodes of the original game and inner nodes from the
original game that currently do not have a valid continuation in the restricted game, based
on the allowed sequences:

Z'+— (ZnH)Uu{he H'\Z : A(h) =0} (9)

We explicitly differentiate between leaves in the restricted game that correspond to leaves in
the original unrestricted game (i.e., Z'NZ) and leaves in the restricted game that correspond
to inner nodes in the original unrestricted game (i.e., Z’'\ Z), since the algorithm assigns
temporary utility values to nodes in the latter case.

The information sets in the restricted game correspond to information sets in the original
unrestricted game. If some node h belongs to an information set I,;) in the original game,
then the same holds in the restricted game. We define an information set to be a part of
the restricted game if and only if at least one inner node that belongs to this information
set is included in the restricted game:

I}« {,eZ, : 3hel;he H\ Z'} (10)

An information set in the restricted game I; € Z consists only of nodes that are in the
restricted game —i.e., Vh € I; : he H'.

Finally, we define the modified utility function «’ for the restricted game. The primary
reason for the modified utility function is to define the temporary utility values for leaves in
the set Z'\ Z. Consider h € Z’'\ Z to be a temporary leaf and player 7 to be the player acting
in this node (¢ = p(h)). Moreover, let u}(h) be the expected outcome of the game starting
from this node assuming both players are playing NE strategies in the original unrestricted
game. The modified utility function u} for this leaf must return a value that is a lower bound

842



AN ExXACT DOUBLE-ORACLE ALGORITHM FOR ZERO-SUM EFGS WITH IMPERFECT INFORMATION

on value u}(h). Due to the zero-sum assumption, this value represents an upper bound on
value for the opponent —i. Setting the value this way ensures two things: (1) player —i is
likely to use sequences leading to node h in optimal strategies in the restricted game (since
the modified utility value is an upper bound of an actual value), and (2) player ¢ adds new
sequences using best-response algorithms that prolong sequence seq,(h) leading to node h
if there are sequences that would yield better expected value than w). Later we show a
counterexample where setting the value otherwise can cause the algorithm to converge to
an incorrect solution. We calculate the lower bound by setting the utility value so that it
corresponds to the outcome in the original game if the player ¢ continues by playing the
default strategy W?EF and the opponent plays a best response (5§Z-R to this default strategy.
This is a valid lower bound since we consider only a single strategy for the player acting in
node h, which correspond to the default strategy; considering other strategies could allow
this player to improve the value of continuing from the node h. For all other leaf nodes
h e Z' N Z we set u(h) < ui(h).

4.1.1 SOLVING THE RESTRICTED GAME

The restricted game defined in this section is a valid zero-sum extensive-form game and
it can be solved using the sequence-form linear programming described in Section 3. The
algorithm computes a NE of the restricted game by solving a pair of linear programs using
the restricted sets ¥/, H', Z’, I’, and the modified utility function w’.

Each strategy from the restricted game can be translated to the original game by using
the pure default strategy to extend the restricted strategy where it is not defined. Formally,
if r/ is a mixed strategy represented as a realization plan of player i in the restricted
game, then we define the extended strategy T; to be a strategy identical to the strategy in
the restricted game for sequences included in the restricted game, and correspond to the
default strategy P if a sequence is not included in the restricted game:

%

(07) + {Tg(ai) oi €% (11)

’ T;(UD ' ﬂ-zDEF(O'i \ O'Z,) g ¢ E;; 0'1/' = arg maXa;'ezg; o/ Co; |U§/

The realization plan of a sequence o; not allowed in the restricted game (i.e., o; ¢ X))
is equal to the realization probability of the longest prefix of the sequence allowed in the
restricted game (denoted by o), and setting the remaining part of the sequence (i.e., 0;\ o))
to correspond to the default strategy of player i. This computation is expressed as a
multiplication of two probabilities, where we overload the notation and use 7% (0; \ o) to
be 1 if the remaining part of the sequence o; corresponds to the default strategy of player ¢,
and 0 otherwise.

In each iteration of the double-oracle algorithm one sequence-form LP is solved for each
player to compute a pair of NE strategies in the restricted game. We denote these strategies
as (rf,r*;) and (7;,7*,) when they are extended to the original unrestricted game using
the default strategies.

4.1.2 EXPANDING THE RESTRICTED GAME

The restricted game is expanded by adding new sequences to the set ® and updating the
remaining sets according to their definition. After adding new sequences, the algorithm
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calculates and stores the temporary utility values for leaves in Z’\ Z so they can be used
in the sequence-form LP.

After updating the restricted game, the linear programs are modified so that they cor-
respond to the new restricted game. For all newly added information sets and sequences,
new variables are created in the linear programs and the constraints corresponding to these
information sets/sequences are created (Equations 2 and 4). Moreover, some of the con-
straints already existing in the linear program need to be updated. If a sequence o; is
added to the set ¥} and the immediate prefix sequence (i.e., sequence o T o; such that
|0/l + 1 = |o;]) was already a part of the restricted game, then we need to update the
constraint for information sets I; for which o) = seq,;(I;) to ensure the consistency of the
strategies (Equation 4), and the constraint corresponding to sequence o) (Equation 2). In
addition, the algorithm updates Equations (2) assigned to sequences of the opponent o_;
for which g(o;,0_;) # 0. Finally, the algorithm updates all constraints that previously used
utilities for temporary leaf nodes that are no longer leaf nodes in the restricted game after
adding the new sequences.

New sequences for each player are found using the best response sequence (BRS) algo-
rithms described in Section 4.2. From the perspective of the sequence-form double-oracle
algorithm, the BRS algorithm calculates a pure best response for player i against a fixed
strategy of the opponent in the original unrestricted game. This pure best response specifies
an action to play in each information set that is currently reachable given the opponent’s
extended strategy 7*,. The best response can be formally defined as a pure realization
plan T?R that assigns only integer values 0 or 1 to the sequences. This realization plan
is not necessarily a pure strategy in the original unrestricted game because there may not
be an action specified for every information set. Specifically, there is no action specified
for information sets that are not reachable (1) due to choices of player i, and (2) due to
zero probability in the realization plan of the opponent 7*,. Omitting these actions does
not affect the value of the best response because these information sets are never reached;
hence, for PR it holds that V7, € A; u; (rPR,7* ) > u;(7},7* ;) and there exists a pure best
response strategy mow € II; such that w;(rPR, 7 ,) = u; (7P, 7). The sequences that are
used in the best-response pure realization plan with probability 1 are returned by BRS
algorithm and we call these the best-response sequences:

{o; €% : mP%(0y) =1} (12)

i
4.1.3 EXAMPLE RUN OF THE ALGORITHM

We now demonstrate the sequence-form double-oracle algorithm on an example game de-
picted in Figure 3a. In our example, there are two players: circle and box. Circle aims to
maximize the utility value in the leafs, box aims to minimize the utility value. We assume
that choosing the leftmost action in each information set is the default strategy for both
players in this game.

The algorithm starts with an empty set of allowed sequences in the restricted game
P’ « (); hence, the algorithm sets the current pair of (77,7 ;) strategies to be equivalent to
(7P 7D Next, the algorithm adds new sequences that correspond to the best response
to the default strategy of the opponent; in our example the best response sequences for
the circle player are {(), A, AD}, and {0, y} for the box player. These sequences are added
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Figure 3: Example of the steps of the sequence-form double-oracle algorithm in a two-player
zero-sum game, where circle player aims to maximize the utility value, box aims to minimize
the utility value. Bold edges correspond to the sequences of actions added into the restricted
game. The dashed boxes indicate the information sets.

to the set of allowed sequences ®'. Next, the set of sequences of the restricted game ¥’/ is
updated. The maximal compatible set of sequences from set ®' cannot contain sequence
AD because the compatible sequence of the box player (i.e., = in this case) is not allowed
in the restricted game yet and sequence AD cannot be fully executed. Moreover, by adding
sequences A and y, the restricted game will contain node Ay for which actions E and F
are defined in the original unrestricted game. However, there is no continuation in the
current restricted game yet; hence, this node is a temporary leaf, belongs to Z’' \ Z, and
the algorithm needs to define a new value for a modified utility function «’ for this node.
The value u/(Ay) is equal to —2 and corresponds to the outcome of the game if the circle
player continues by playing the default strategy and the box player plays the best response.
To complete the first step of the algorithm we summarize the nodes and information sets
included in the restricted game; H' contains 3 nodes (the root, the node after playing an
action A and the node Ay), and two information sets (the information set for node Ay is
not added into the restricted game, because this node is now a leaf in the restricted game).
Playing the sequences A and y with probability 1 is the Nash equilibrium of the restricted
game. The situation is depicted in Figure 3b, the sequences in ¥’ are shown as bold edges.

The algorithm proceeds further and the complete list of steps of the algorithm is sum-
marized in Table 2. In the second iteration, new sequences B and BH are added into the
restricted game. The box player does not add new sequences in this iteration because y is
the best response to the extended equilibrium strategy of the circle player — i.e., playing
sequences A, AC, AE with probability 1. NE in the updated restricted game changes to
playing sequences B, BH and sequence ¥, all with probability 1. In the third iteration the
situation changes and the box player adds sequence x, while there are no new sequences
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added for the circle player. After adding sequence xz, sequence AD also becomes a part of
the set E’O as it can now be fully executed due to adding the compatible sequence x. NE in
the restricted game is now fully mixed, the sequences starting with A and with B are played
in a ratio of 3 : 4, z and y in a ratio of 4 : 3. In the fourth iteration, the algorithm adds
sequence AF to the restricted game (the best response for the circle player), which removes
the assigned value u/(Ay) since the node no longer belongs to set Z’. The algorithm stops
after four iterations. No other sequences are added into the restricted game, the solution of
the restricted game (r},r*,) can be translated to the solution in the original unrestricted
game, and (77,7*,) is Nash equilibrium of the original game.

Iteration T’%R rgR %5 Xh
1. 0,A,AD | 0,y 0,A 0,y
2. 0.B,BH | 0,y 0.A, B.BH 0,y
3. 0.B,BH | 0,z | 0.A,AD,B,BH | 0,y.2
1 0.A,AF |0,y | 0.A,AD,AF,B,BH | 0,y,z

Table 2: Steps of the sequence-form double-oracle algorithm applied to the example.

Consider now a small modification of the example game where there is a utility value
of —3 in the leaf following action F' (i.e., node AyF'). In this case, the algorithm does not
need to add sequence AF (nor AE) to the restricted game because it does not improve
the value of the restricted game. Note that this modified example game shows why the
algorithm needs to set the utility values for nodes in Z’'\ Z. If the algorithm simply uses
the unmodified utility function, then the node Ay will be treated as if it had zero utility
value. This value overestimates the outcome of any actual continuation following this node
in the original game for the circle player and since sequences AE or AF will never be a
part of the best response for the circle player, the algorithm can converge to an incorrect
solution.

4.2 Best-Response Sequence Algorithm

The purpose of the best-response sequence (BRS) algorithm is to generate new sequences
that will be added to the restricted game in the next iteration, or to prove that there is
no best response with better expected value that uses sequences currently not allowed in
the restricted game. Throughout this section we use the term searching player to represent
the player for whom the algorithm computes the best response sequences. We refer to this
player as i.

The BRS algorithm calculates the expected value of a pure best response to the oppo-
nent’s strategy 7*,. The algorithm returns both the set of best-response sequences as well
as the expected value of the strategy against the extended strategy of the opponent.

The algorithm is based on a depth-first search that traverses the original unrestricted
game tree. The behavior of the opponent —i is fixed to the strategy given by the extended
realization plan 7*,. To save computation time, the best-response algorithms use branch
and bound during the search for best-response sequences. The algorithm uses a bound on
the expected value for each inner node, denoted by A. This bound represents the minimal
utility value that the node currently being evaluated needs to gain in order to be a part
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Require: i - searching player, h - current node, I¥ - current information set, ¥, - opponent’s
strategy, Min/MaxUtility - bounds on utility values, A - lower bound for a node h

1: w<7T_;(seq_;(h)) - C(h)

2: if h € Z then

3:  return wu;(h) - w

4: else if h € Z'\ Z then

5. return uj(h) - w

6: end if

7: sort a € A(h) based on probability w, < 7_; (seq_;(ha)) - C(ha)
8 v 0

9: for a € A(h), w, >0 do

10: N« A= [v" + (w — w,) - MaxUtility]
11:  if ) < w,-MaxUtility then
12: v’ + BRS;(ha, ')

13: if o' = —oco then

14: return —oo

15: end if

16: ol vl 4o

17: W 4— W — Wy

18:  else

19: return —oo
20:  end if
21: end for

22: return "

Figure 4: BRS; in the nodes of other players.

of a best-response sequence. Using this bound during the search, the algorithm is able to
prune branches that will certainly not be part of any best-response sequence. The bound A
is set to MinUtility for the root node.

We distinguish 2 cases in the search algorithm: either the algorithm is evaluating an
information set (or more specifically a node h) assigned to the searching player i, or the
node is assigned to one of the other players (either to the opponent, player —i, or it is a
chance node). The pseudocode for these two cases is depicted in Figures 4 and 5.

4.2.1 NODES OF THE OPPONENT

We first describe the case used when the algorithm evaluates node h assigned to either
the opponent of the searching player or to Nature (see Figure 4). The main idea is to
calculate the expected utility for this node according to the (fixed) strategy of the player.
The strategy is known because it is either given by the extended realization plan 7* ;, or by
the stochastic environment (C). Throughout the algorithm, the variable w represents the
probability of this node based on the realization probability of the opponent and stochastic
environment (line 1). This value is iteratively decreased by values w, that represent real-
ization probabilities of the currently evaluated action a € A(h). Finally, vy, is the expected
utility value for this node.

The algorithm evaluates actions in the descending order according to the probability

of being played (based on 7, and C; lines 9-21). First, we calculate a new lower bound

847



BoSANSKY, KIEKINTVELD, LISV, & PECHOUCEK

A for the successor ha (line 10). The new lower bound is the minimal value that must
be returned from the recursive call BRS;(ha) under the optimistic assumption that all the
remaining actions will yield the maximum possible utility. If the lower bound does not
exceed the maximum possible utility in the game, the algorithm is executed recursively
on the successors (line 12). Note that the algorithm does not evaluate branches with zero
realization probability (line 9).

There are 3 possibilities for pruning in this part of the search algorithm. The first
pruning is possible if the currently evaluated node is a leaf in the restricted game, but this
node is an inner node in the original node (i.e., h € Z'\ Z; line 5). The algorithm can
directly use the value from the modified utility function «' in this case, since it is calculated
as a best response of the searching player against the default strategy of the opponent that
will be applied in the successors of node h since h € Z'. Secondly, a cut-off also occurs
if the new lower bound for a successor is larger than the maximum possible utility in the
game, since this value can never be obtained in the successor (line 19). Finally, a cut-off
occurs if there was a cut-off in one of the successors (line 14).

4.2.2 NODES OF THE SEARCHING PLAYER

In nodes assigned to the searching player, the algorithm evaluates every action in each
state that belongs to the current information set. The algorithm traverses the states in
the descending order according to the probability of occurrence given the strategies of the
opponent and Nature (line 8). Similar to the previous case, in each iteration the algorithm
calculates a new lower bound for the successor node (line 17). The new lower bound )\
is the minimal value that must be returned from the recursive call BRS;(h'a) in order for
the action a to be selected as the best action for this information set under the optimistic
assumption that this action yields the maximum possible utility value after applying it in
each of the remaining states in this information set. The algorithm performs a recursive call
(line 20) only for an action that still could be the best in this information set (i.e., the lower
bound does not exceed the maximal possible utility in the game). Note that if a cut-off
occurs in one of the successors, the currently evaluated action a can no longer be the best
action in this information set. Hence, v, is set to —oo and action a will not be evaluated for
any of the remaining nodes. When the algorithm determines which action will be selected
as the best one in an information set, it evaluates only this action for all remaining nodes
in the information set. Finally, the algorithm stores the values for the best action for all
nodes in this information set (line 30). These are reused if the same information set is
visited again (i.e., the algorithm reaches a different node h’ from the same information set
I;; line 5).

A cut-off occurs in this part of the search algorithm if the maximal possible value v”
is smaller than the lower bound X after evaluating node h. This means that regardless of
which action will be selected as the best action in this information set, the lower bound
for node h will not be reached; hence, the cut-off occurs (line 27). If a cut-off occurs in
an information set, this information set cannot be reached again and the sequences of the
searching player leading to this information set cannot be a part of the best response. This
is due to propagating the cut-off to at least one previous information set of the searching
player, otherwise there will be no tight lower bound set (the bound is first set only in the
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Require: i - searching player, h - current node, I¥ - current information set, 7_; - opponent’s
strategy, Min/MaxUtility - bounds on utility values, A— lower bound for a node h
1: if h € Z then
2:  return wu;(h)-7_;(seq_;(h)) - C(h)
3: end if
4: if v" is already calculated then
5: return o"
6: end if
7. H « {W; I eI}
8: sort H' descending according to value 7_;(seq_;(h’)) - C(h')
9: w4 pep T-i(seq_;(B)) - C(h')
10: vg < 0 Va € A(h); mazAction < 0
11: for W' € H' do
12 wp <7 _;(seq_; (1)) -C(R)
13:  for a € A(h') do

14: if maxAction is empty then
15: N <+ wp, -MinUtility

16: else

17: N < (VmazAction + w - MinUtility) — (ve + (w — wy) - MaxUtility)
18: end if

19: if ) < wy, - MaxUtility then
20: v« BRS;(Wa, \)

21: Vg ¢ Vg + u,’;'

22: end if

23:  end for

24: maxAction < arg maxXgeA(n') Va

25: W 4= W — Wy
26:  if h was evaluated A (maxaeA(h) vf} < )\) then

27: return —oo

28: end if

29: end for

30: store vﬁ;axAmon as o Vh € H'

31: return v, action

Figure 5: BRS; in the nodes of the searching player.

information sets of the searching player). Therefore, there exists at least one action of the
searching player that will never be evaluated again (after a cut-off, the value v, for this
action is set to —oo) and cannot be selected as the best action in the information set. Since
we assume perfect recall, all nodes in information set I; share the same sequence of actions
seq;(I;); hence, no node b’ € I; can be reached again.

4.3 Main Loop Alternatives

We now introduce several alternative formulations for the main loop of the sequence-form
double-oracle algorithm. The general approach in the double-oracle algorithm is to solve the
restricted game to find the equilibrium strategy for each player, compute the best responses
in the original game for both of the players, and continue with the next iteration. However,
the sequence-form LP is formulated in our double-oracle scheme in such a way that on each
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iteration the algorithm can solve the restricted game only from the perspective of a single
player i. In other words, we formulate a single LP as described in Section 3.3 that computes
the optimal strategy of the opponent in the restricted game (player —i), and then compute
the best response of player i to this strategy. This means that on each iteration we can
select a specific player i, for whom we compute the best response in this iteration. We call
this selection process the player-selection policy.

There are several alternatives for the player-selection policy that act as a domain-
independent heuristics in double-oracle algorithm. We consider three possible policies:
(1) the standard double-oracle player-selection policy of selecting both players on each it-
eration, (2) an alternating policy, where the algorithm selects only one player and switches
between the players regularly (player ¢ is selected in one iteration, player —i is selected in
the following iteration), and finally (3) a worse-player-selection policy that selects the player
who currently has the worse bound on the solution quality. At the end of an iteration the
algorithm selects the player i for whom the upper bound on utility value is further away
from the current value of the restricted game. More formally,

UB _ y/LP
argmax [V, — V; (13)

where V;LP is the last calculated value of the restricted game for player 7. The intuition
behind this choice is that either this bound is precise and there are some missing sequences
of this player in the restricted game that need to be added, or the upper bound is overes-
timated. In either case, the best-response sequence algorithm should be run for this player
in the next iteration, either to add new sequences or to tighten the bound. In case of a tie,
the alternating policy is applied in order to guarantee regular switching of the players. We
experimentally compare these policies to show their impact on the overall performance of
the sequence-form double-oracle algorithm (see Section 6).

5. Theoretical Results

In this section we prove that our sequence-form double-oracle algorithm will always con-
verge to a Nash equilibrium of the original unrestricted game. First, we formally define the
strategy computed by the best-response sequence (BRS) algorithm, then we prove lemmas
about the characteristics of the BRS strategies, and finally we prove the main convergence
result. Note that variations of the main loop described in Section 4.3 do not affect the
correctness of the algorithm as long as the player-selection policy ensures that if no im-
provement is made by the BRS algorithm for one player that the BR.S algorithm is run for
the opponent on the next iteration.

Lemma 5.1 Letr’; be a realization plan of player —i in some restricted game G'. BRS(r"_;)
returns sequences corresponding to a realization plan TZB R in the unrestricted game, such that
rPR s part of a pure best response strategy to 7_;. The value returned by the algorithm is
the value of executing the pair of strategies u;(7_;, rP%).
Proof BRS(r’ ;) searches the game tree and selects the action that maximizes the value
of the game for player 7 in all information sets I; assigned to player ¢ reachable given

the strategy of the opponent 7 . In the opponent’s nodes, it calculates the expected value
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according to r’_, where it is defined and the value according to the pure action of the default
strategy WPZEF where r’_, is not defined. In chance nodes, it returns the expected value of
the node as the sum of the values of the successor nodes weighted by their probabilities. In
each node h, if the successors have the maximal possible value for ¢ then node h also has
the maximal possible value for i (when playing against 7 ;). The selections in the nodes
that belong to ¢ achieves this maximal value; hence, they form a best response to strategy
7, O

For brevity we use v(BRS(r’;)) to denote the value returned by the BRS algorithm,

which is equal to w;(7_;, rP).
Lemma 5.2 Let v’_; be a realization plan of player —i in some restricted game G' and let

V.* be the value of the original unrestricted game G for player i, then
v(BRS(r";)) > Vi*. (14)

Proof Lemma 5.1 showed that v(BRS(r’;)) is a value of the best response against 7_,
which is a valid strategy in the original unrestricted game G. If v(BRS(r";)) < V;* then
V* cannot be the value of the game since player —i has a strategy 7_, that achieves better
utility, which is a contradiction. [J

Lemma 5.3 Let 1’ be a realization plan of player —i that is returned by the LP for some
restricted game G’ and let VZ-LP be the value of the restricted game returned by the LP, then

v(BRS(r";)) > VLT, (15)

Proof The realization plan r’; is part of the Nash equilibrium strategy in a zero-sum
game that guarantees value V' in G’. If the best response computation in the original
unrestricted game G selects only the actions from restricted game G’, it creates the best
response in game G’ as well obtaining value ViLP . If the best response selects an action
that is not allowed in the restricted game G’, there are two cases.

Case 1: The best response strategy uses an action in a temporary leaf h € Z'\ Z.
Player ¢ makes the decision in the leaf, because otherwise the value of the temporary leaf
would be directly returned by BRS. The value of the temporary leaf has been under-
estimated for player i in the restricted game by the modified utility function ' and it is
over-estimated in the BRS computation as the best response to the default strategy WPZEF.
The value of the best response can only increase by including this action.

Case 2: The best response strategy uses an action not allowed in G’ in an internal node
of the restricted game H'\ Z’. This can occur in nodes assigned to player i, because the
actions of player —i going out of G’ have probability zero in 7 ,. BRS takes the action
with maximum value in the nodes assigned to player 7, so the reason for selecting an action
leading outside G’ is that it has greater or equal value to the best action in G’. J

Lemma 5.4 Under the assumptions of the previous lemma, if v(BRS(r' ) > V.EP then it
returns sequences that are added to the restricted game G’ in the next iteration.
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Proof Based on the proof of the previous Lemma, BRS for player ¢ can improve over
the value of the LP (ViLP ) only by selecting an action a that is not present in G’ but is
performed in a node h that is included in G’ (in which i makes decision). Let (o;,0_;) be
the pair of sequences leading to h. Then in the construction of the restricted game for the
next iteration, sequence o_; is the sequence that ensures that o;a can be executed in full
and will be part of the new restricted game. [J

Note, that Lemmas 5.2 and 5.4 would not hold if the utility values u’ for temporary
leaves (h € Z'\ Z) are set arbitrarily. The algorithm sets the values in temporary leaf h
as if the player p(h) continues by playing the default strategy and the opponent (—p(h)) is
playing the best response. If the utility values for the temporary leaves are set arbitrarily
and used in the BRS algorithms to speed-up the calculation as proposed (see the algorithm
in Figure 4, line 5), then Lemma 5.2 does not need to hold in cases where the value in
node h strictly overestimates the optimal expected value for player p(h). In this case, the
best-response value of the opponent may be lower than the optimal outcome,

v (BRS(Tp(h))) < V—*p(h) (16)

On the other hand, if the BRS algorithm does not use the temporary values v’ for such a
node, then Lemma 5.4 is violated because the best-response value will be strictly higher for
player —p(h) even though no new sequences are to be added into the restricted game.

Theorem 5.5 The sequence-form double-oracle algorithm for extensive-form games de-
scribed in the previous section terminates if and only if

o(BRS(r'.,)) = —v(BRS())) = VA = V;', (17)

which always happens after a finite number of iterations (because the game is finite), and
strategies (7;,7_;) are a Nash equilibrium of the original unrestricted game.

Proof First we show that the algorithm continues until all equalities (17) hold. If
v(BRS(r;)) # —v(BRS(r})) then from Lemma 5.2 and Lemma 5.4 we know that for
some player i it holds that BRS(r" ;) > VP so the restricted game in the following iter-
ation is larger by at least one action and the algorithm continues. In the worst case, the
restricted game equals the complete game G’ = G, and it cannot be extended any further.
In this case the BRS cannot find a better response then V;* and the algorithm stops due
to Lemma 5.4.

If the condition in the theorem holds the algorithm has found a NE in the complete
game, because from Lemma 5.1 we know that 72 = BRS(r!) is the best response to 7 in
the complete game. However, if the value of the best response to a strategy in a zero-sum
game is the value of the game, then the strategy 7, is optimal and it is part of a Nash
equilibrium of the game. [J

6. Experiments

We now present our experimental evaluation of the performance of the sequence-form
double-oracle algorithm for EFGs. We compare our algorithm against two state-of-the-art
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baselines, the full sequence-form LP (referred to as FULLLP from now on), and Counter-
factual Regret Minimization (CFR). The first baseline is the standard exact method for
solving sequence-form EFG, while CFR is one of the leading approximate algorithms ap-
plied to EFG. Our experimental results demonstrate the advantages of the double-oracle
algorithm on three different classes of realistic EFGs. We also test the impact of the different
variants of the main loop of the algorithm described in Section 4.3.

We compare three variants of the sequence-form double-oracle algorithm: (1) DO-B
is a variant in which the best-responses are calculated for both players in each iteration;
(2) DO-sA calculates the best-response for a single player on each iteration according to
a simple alternating policy; and (3) DO-SwWP is a variant in which the best-response is
calculated for a single player according to the worse-player selection policy. For all of the
variants of the double-oracle algorithm we use the same default strategy where the first
action applicable in a state is played by default.

Since there is no standardized collection of zero-sum extensive-form games for bench-
mark purposes, we use several specific games to evaluate the double-oracle algorithm and
to identify the strengths and weaknesses of the algorithm. The games were selected to
evaluate the performance under different conditions, so the games differ in the maximal
utility the players can gain, in the causes of the imperfect information, and in the structure
of the information sets. One of the key characteristics that affects the performance of the
double-oracle algorithm is the relative size of the support of Nash equilibria (i.e., the num-
ber of sequences used in a NE with non-zero probability). If there does not exist a NE with
small support, the algorithm must necessarily add a large fraction of the sequences into the
restricted game to find a solution, mitigating the advantages of the double-oracle approach.

We present results for two types of games where the double-oracle significantly outper-
forms the FULLLP on all instances: a search game motivated by border patrol and Phantom
Tic-Tac-Toe. We also present results on a simplified version of poker for which the double-
oracle algorithm does not always improve the computation time. However, the FULLLP
also has limited scalability due to larger memory requirements and cannot find solutions for
larger variants of poker, while the double-oracle algorithm is able to solve these instances.

Our principal interest is in developing new generic methods for solving extensive-form
games. Therefore, we implemented the algorithm in a generic framework for modeling arbi-
trary extensive-form games.! The algorithms do not use any domain-specific knowledge in
the implementation, and do not rely on any specific ordering of the actions. The drawbacks
of this generic implementation are higher memory requirements and additional overhead
for the algorithms. A domain-specific implementation could improve the performance by
eliminating some of the auxiliary data structures. We run all of the experiments using a
single thread on an Intel i7 CPU running at 2.8 GHz. Each of the algorithms was given a
maximum of 10 GB of memory for Java heap space. We used IBM CPLEX 12.5 for solving
the linear programs, with parameter settings to use a single thread and the barrier solution
algorithm.

In addition to runtimes, we analyze the speed of convergence of the double-oracle al-
gorithms and compare it to one of the state-of-the-art approximative algorithms, Counter-
factual Regret Minimization (CFR). We implemented CFR in a domain independent way

1. Source code is available at the home pages of the authors.
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based on the pseudocode in the work of Lanctot (2013, p. 22). In principle, it is sufficient
for CFR to maintain only a set of information sets and apply the no-regret learning rule
in each information set. However, maintaining and traversing such a set effectively in a
domain independent manner could be affected by our implementation of generic extensive-
form games data structures (i.e., generating applicable actions in the states of the game,
applying the actions, etc.). Therefore we use an implementation where CFR traverses the
complete game tree that is held in memory to maintain the fairness of the comparison, and
to guarantee the maximal possible speed of convergence of the CFR algorithm. The time
necessary to build the game tree is not included in the computation time of CFR.

6.1 Test Domains

Search Games Our first test belongs to the class of search (or pursuit-evasion) games,
often used in experimental evaluation of double-oracle algorithms (McMahan et al., 2003;
Halvorson et al., 2009). The search game has two players: the patroller (or the defender)
and the evader (or the attacker). The game is played on a directed graph (see Figure 6),
where the evader aims to cross safely from a starting node (E) to a destination node (D).
The defender controls two units that move in the intermediate nodes (the shaded areas)
trying to capture the evader by occupying the same node as the evader. During each turn
both players move their units simultaneously from the current node to an adjacent node,
or the units stay in the same location. The only exception is that the evader cannot stay in
the two leftmost nodes. If a pre-determined number of turns is made without either player
winning, the game is a draw. This is an example of a win-tie-loss game and the utility
values are from the set {—1,0,1}.

Players are unaware of the location and the actions of the other player with one exception
— the evader leaves tracks in the visited nodes that can be discovered if the defender visits
the nodes later. The game also includes an option for the evader to avoid leaving the tracks
using a special move (a slow move) that requires two turns to simulate the evader covering
the tracks.

Figure 6 shows examples of the graphs used in the experiments. The patrolling units
can move only in the shaded areas (P1,P2), and they start at any node in the shaded
areas. Even though the graph is small, the concurrent movement of all units implies a large
branching factor (up to ~ 50 for one turn) and thus large game trees (up to ~ 10*! nodes).
In the experiments we used three different graphs, varied the maximum number of turns
of the game (from 3 to 7), and we altered the ability of the attacker to perform the slow
moves (labeled SA4 if the slow moves are allowed, SD otherwise).

Phantom Tic-Tac-Toe The second game is a blind variant of the well-known game of
Tic-Tac-Toe (e.g., used in Lanctot et al., 2012). The game is played on a 3 x 3 board, where
two players (cross and circle) attempt to place 3 identical marks in a horizontal, vertical,
or diagonal row to win the game. In the blind variant, the players are unable to observe
the opponent’s moves and each player only knows that the opponent made a move and it is
her turn. Moreover, if a player tries to place her mark on a square that is already occupied
by an opponent’s mark, the player learns this information and can place the mark in some
other square. Again, the utility values of this game are from the set {—1,0,1}.
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P1

Figure 6: Three variants of the graph used in the experiments on the search game; we refer
to them as G1 (left), G2 (middle), and G3 (right).

The uncertainty in phantom Tic-Tac-Toe makes the game large (=~ 10° nodes). In
addition, since one player can try several squares before her move is successful, the players
do not necessarily alternate in making their moves. This rule makes the structure of the
information sets rather complicated and since the opponent never learns how many attempts
the first player actually performed, a single information set can contain nodes at different
depths in the game tree.

Poker Games Poker is frequently studied in the literature as an example of a large
extensive-form game with imperfect information. We include experiments with a simplified
two-player poker game inspired by Leduc Hold’em.

In our version of poker, each player starts with the same amount of chips and both
players are required to put some number of chips in the pot (called the ante). In the next
step, the Nature player deals a single card to each player (the opponent is unaware of the
card) and the betting round begins. A player can either fold (the opponent wins the pot),
check (let the opponent make the next move), bet (being the first to add some amount of
chips to the pot), call (add the amount of chips equal to the last bet of the opponent into
the pot), or raise (match and increase the bet of the opponent). If no further raise is made
by any of the players, the betting round ends, the Nature player deals one card on the
table, and the second betting round with the same rules begins. After the second betting
round ends, the outcome of the game is determined — a player wins if: (1) her private card
matches the table card and the opponent’s card does not match, (2) none of the players’
cards matches the table card and her private card is higher than the private card of the
opponent, or (3) the opponent folds. The utility value is the amount of chips the player has
won or lost. If no player wins, the game is a draw and the pot is split.

In the experiments we alter the number of types of the cards (from 3 to 4; there are
3 types of cards in Leduc), the number of cards of each type (from 2 to 3; set to 2 in Leduc),
the maximum length of sequence of raises in a betting round (ranging from 1 to 4; set to 1
in Leduc), and the number of different sizes of bets (i.e., amount of chips added to the pot)
for bet/raise actions (ranging from 1 to 4; set to 1 in Leduc).

6.2 Results

Search Games The results for the search game scenarios show that the sequence-form
double-oracle algorithm is particularly successful when applied to games where NEs with
small support exist. Figure 7 shows a comparison of the running times for FULLLP and
variants of the double-oracle algorithm (note the logarithmic y-scale). All variants of the
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Figure 7: Comparison of the running times on 3 different graphs with either slow moves
allowed (SA) or disallowed (SD), the depth is set to 6 (left subfigure) or 7 (right subfigure).
Missing values for the FULLLP algorithm indicate that the algorithm runs out of memory.

double-oracle algorithm are several orders of magnitude faster than FULLLP. This is most
apparent on the fully-connected graph (G2) that generates the largest game tree. When
slow moves are allowed and the depth is set to 6, it takes almost 100 seconds for FULLLP
to solve the instance of the game but all variants of the double-oracle algorithms solve the
game in less than 3 seconds. Moreover, when the depth is increased to 7, FULLLP was
unable to solve the game due to the memory constraints, while the fastest variant DO-swp
solved the game in less than 5 seconds. Similar results were obtained for the other graphs.

The graph G1 induced a game that was the most difficult for the double-oracle algorithm:
when the depth is set to 7, it takes almost 6 minutes for FULLLP to solve the instance, while
the fastest variant DO-SwP solved the game in 21 seconds. The reason is that even though
the game tree is not the largest, there is a more complex structure of the information sets.
This is due to limited compatibility among the sequences of the players; when the patrolling
unit P1 observes the tracks in the top-row node, the second patrolling unit P2 can capture
the evader only in the top-row node, or in the middle-row node.

Comparing the different variants of the sequence-form double-oracle algorithm does
not show consistent results. There is no variant consistently better in this game since all
the double-oracle variants are typically able to compute a Nash equilibrium very quickly.
However, DO-SwP is often the fastest and for some settings the difference is quite significant.
The speed-up this variant offers is most apparent on the G1 graph. On average through all
instances of the search game, DO-SA uses 92.59% of the computation time of DO-B, and
DO-swp uses 88.25%.

Table 3 shows a breakdown of the cumulative computation time spent in different com-
ponents of the double-oracle algorithm: solving the restricted game (LP), calculating best
responses (BR), and creating a valid restricted game after selecting new sequences to add
(Validity). The results show that due to the size of the game, the computation of the
best-response sequences takes the majority of the time (typically around 75% on larger
instances), while creating the restricted game and solving it takes only a small fraction of
the total time. It is also noticeable that the size of the final restricted game is very small
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Figure 8: Convergence of variants of the double-oracle algorithm and CFR on the search
game domain: y-axis displays the current approximation error.

Algorithm | Overall [s] | LP [s] | BR [s] | Validity [s] | Iterations |35 1( :;}:) [25]( :;2:)
FuLLLP 351.98 — — — — — —
DO-B 8151 6.97 | 63.39 10.58 187 252 (17.22%) | 711 (0.26%)
DO-sA 54.32 55 | 39.11 9.0 344 | 264 (18.05%) | 649 (0.24%)
DO-swp 2115 1.03 | 16.28 2.47 200 103 (13.19%) | 692 (0.25%)

Table 3: Cumulative running times for different components of the double-oracle algorithm,
iterations, and size of the restricted game in terms of the number of sequences compared to
the size of the complete game. The results are shown for scenario G1, depth 7, and allowed
slow moves.

compared to the original game, since the number of sequences for the second player (the
defender) is less than 1% (there are 273,099 sequences for the defender).

Finally, we analyze the convergence rate of the variants of the double-oracle algorithm.
The results are depicted in Figure 8, where the size of the interval given by the bounds
VUB and V/I'P defines the current error of the double-oracle algorithm as |[V;V5 — VL5,
The convergence rate of the CFR algorithm is also depicted. The error of CFR is calculated
in the same way, as a sum of the best-response values to the current mean strategies from
the CFR algorithm. We can see that all variants of the double-oracle algorithm perform
similarly — the error drops very quickly to 1 and a few iterations later each version of the
algorithm quickly converges to an exact solution. These results show that in this game the
double-oracle algorithm can very quickly find the correct sequences of actions and compute
an exact solution, in spite of the size of the game. In comparison, the CFR algorithm can
also quickly learn the correct strategies in most of the information sets, but the convergence
has a very long tail. After 200 seconds, the error of CFR is equal to 0.0657 and it is dropping
very slowly (0.0158 after 1 hour). The error of CFR is quite significant considering the value
of the game in this case (—0.3333).

Phantom Tic-Tac-Toe The results on Phantom Tic-Tac-Toe confirm that this game is
also suitable for the sequence-form double-oracle algorithm. Due to the size of the game,
both baseline algorithms (the FULLLP and CFR) ran out of memory and were not able
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Figure 9: (left) Comparison of the convergence rate of the double-oracle variants for Phan-
tom Tic-Tac-Toe; (right) Comparison of the performance of the double-oracle variants for
Phantom Tic-Tac-Toe when domain-specific move ordering and default strategy is used.

Algorithm | Overall [s] | LP [s] | BR [s] | Validity [s] | Iterations |25 1( :gi:) [25]( :g;:)
FuLLLP N/A — — — — — —
DO-B 21,197 | 2,635 | 17,562 999 335 7,676 (0.60%) | 10,095 (0.23%)
DO-sA 17,667 | 2,206 | 14,560 900 671 7,518 (0.59%) | 9,648 (0.22%)
DO-swp 17,580 | 2,143 | 14,582 864 591 8,242 (0.65%) | 8,832 (0.20%)

Table 4: Cumulative running times for different components of the double-oracle algorithm
for the game of Phantom Tic-Tac-Toe.

to solve the game. Therefore, we only compare the times for different variants of the
double-oracle algorithm. Figure 9 (left subfigure) shows the overall performance of all three
variants of the double-oracle algorithm in the form of a convergence graph. We see that the
performance of two of the variants is similar, with the performance of DO-sA and DO-swp
almost identical. On the other hand, the results show that DO-B converges significantly
slower.

The time breakdown of the variants of the double-oracle algorithm is shown in Table 4.
Similarly to the previous case, the majority of the time (= 83%) is spent in calculating
the best responses. Out of all variants of the double-oracle algorithm, the DO-swp variant
is the fastest one. It converged in significantly fewer iterations compared to the DO-sA
variant (iterations are twice as expensive in the DO-B variant).

We now present the results that demonstrate the potential of combining the sequence-
form double-oracle algorithm with domain-specific knowledge. Every variant of the double-
oracle algorithm can use a move ordering based on domain-specific heuristics. The move
ordering determines the default strategy (recall that our algorithm uses the first action as
the default strategy for each player), and the direction of the search in the best response
algorithms. By replacing the randomly generated move ordering with a heuristic one that
chooses better actions first, the results show a significant improvement in the performance
of all of the variants (see Figure 9, right subfigure), even though there are no changes to
the rest of the algorithm. Each variant was able to solve the game in less than 3 hours, and
it took 2 hours for the fastest DO-swp variant.
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Figure 10: Comparison of the running times on different variants of the simplified poker
game. The left subfigure shows the computation times with an increasing number of raise
actions allowed, the right subfigure shows the computation times with an increasing number
of different bet sizes for raise/bet actions.

Poker Games Poker represents a game where the double-oracle algorithms do not per-
form as well and the sequence-form LP is often faster on smaller instances. One significant
difference compared to the previous games is that the size of the NE support is larger
(around 5% of sequences for larger instances). Secondly, the game trees of poker games
are relatively shallow and the only imperfect information in the game is due to Nature.
As a result, the double-oracle algorithms require a larger number of iterations to add more
sequences into the restricted game (up to 10% of all sequences for a player are added even
for the largest poker scenarios) in order to find the exact solution. However, with increasing
depth and/or branching factor, the size of the game grows exponentially and FULLLP is
not able to solve the largest instances due to the memory constraints.

Figure 10 shows the selected results for simplified poker variants. The results in the
left subfigure show the computation times with increasing depth of the game by allowing
the players to re-raise (players are allowed to re-raise their opponent a certain number of
times). The remaining parameters are fixed to 3 types of cards, 2 cards of each type, and 2
different betting sizes. The size of the game grows exponentially, with the number of possible
sequences increasing to 210,937 for each player for the R4 scenario. The computation time
for FULLLP is directly related to the size of the tree and increases exponentially with the
increasing depth (note that there is a standard y scale). On the other hand, the increase is
less dramatic for all of the variants of the double-oracle algorithm. The DO-SwP variant is
the fastest for the largest scenario — while FULLLP solved this instance in 126 seconds, it
took only 103 seconds for DO-swp. Finally, FULLLP is not able to solve the games if we
increase the length to R5 due to memory constraints, while the computation time of all of
the double-oracle algorithms increases only marginally.

The right subfigure of Figure 10 shows the increase in computation time with an in-
creasing number of different bet sizes for raise/bet actions. The remaining parameters were
fixed to 4 types of cards, 3 cards of each type, and 2 raise actions allowed. Again, the
game grows exponentially with the increasing branching factor. The number of sequences
increases up to 685,125 for each player for the B4 scenario, and the computation time of
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Figure 11: Comparison of the convergence of the variants of the double-oracle algorithm
and CFR for two variants of the simplified poker with 4 types of cards, and 3 cards of each
type. There are 4 raise actions allowed, 2 different bet sizes in the left subfigure; there are
2 raise actions allowed, 3 different bet sizes in the right subfigure.

Algorithm | Overall [s] | LP [s] | BR [s] | Validity [s] | Iterations |25 1( :gi:) [Z5( Egl)
FuLLLP 278.18 — - — — — -
DO-B 934.60 | 149.32 | 56.04 28.61 152 6,799 (1.81%) | 6,854 (1.83%)
DO-sa 199.24 117.71 | 51.25 29.59 289 6,762 (1.80%) | 6,673 (1.78%)
DO-swp 182.68 108.95 | 48.25 24.8 267 6,572 (1.75%) | 6,599 (1.76%)

Table 5: Cumulative running times for different components of the double-oracle algorithm,
iterations, and sizes of the restricted game in terms of the number of sequences compared
to the size of the complete game. The results are shown for poker scenario with 4 raise
actions allowed, 2 different betting values, 4 types of cards, and 3 cards of each type.

all algorithms increases exponentially as well (note logarithmic y scale). The results show
that even with the increasing branching factor, the double-oracle variants tend to be slower
than solving the FULLLP. However, while the FULLLP ran out of memory for the largest
B4 setting, all of the double-oracle variants were able to find the exact solution using less
memory.

Comparing the different variants of the double-oracle algorithm using the convergence
graph (see Figure 11) and the decomposition of the computation times (see Table 5) shows
that DO-swp is the fastest variant in the selected scenario (and in nearly all of poker
scenarios). Decomposition of the overall time shows that the majority of the computation
time is spent in solving the restricted game LP (up to 65%). The decomposition also shows
that DO-swpP is typically faster due to the lower number of iterations. In addition, the
final size of the restricted game is typically the smallest for this variant. On average over
all instances of the poker games, DO-SA uses 86.57% of the computation time of DO-B,
and DO-swP uses 82.3% of the computation time.

Convergence in poker games is slower compared to search games of similar size (note the
logarithmic scale in Figure 11). Comparing the double-oracle algorithm variants with CFR
shows an interesting result in the left subfigure. Due to the size of the game, the speed of
the CFR convergence is nearly the same as for the double-oracle algorithms during the first
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iterations. However, while the double-oracle algorithms continue to converge at roughly the
same rate and are able to find an exact solution, the error of the CFR algorithm decreases
very slowly. In the scenario depicted in the left subfigure, the CFR algorithm converged
to an error of 0.1212 (the value of the game in this case is ~ —0.09963) after 400 seconds.
After 1 hour, the error dropped to 0.0268. For scenarios with more shallow game trees and
larger branching factor, the convergence of CFR is faster at the beginning compared to the
double-oracle algorithms (right subfigure of Figure 11). However, the main disadvantage of
CFR having a long tail for convergence is still the case and the error after 1600 seconds is
still over 0.0266 (the value of this game is ~ —0.09828).

6.3 Discussion of the Results

The experimental results support several conclusions. The results demonstrate that the
sequence-form double-oracle algorithm is able to compute an exact solution for much larger
games compared to the state-of-the-art exact algorithm based on the sequence-form linear
program. Moreover, we have experimentally shown that there are realistic games where only
a small fraction of sequences are necessary to find a solution of the game. In these cases,
the double-oracle algorithms also significantly speed up the computation time. Our results
indicate that the DO-swp variant is typically the fastest, but not in all cases. By selecting
the player that currently has the worse bound on performance, the DO-swP version can
add more important sequences, or prove that there are not any better sequences and adjust
the upper bound on the value faster.

Comparing the speed of convergence of the double-oracle algorithms with the state-of-
the-art approximative algorithm CFR showed that CFR quickly approximates the solution
during the first iterations. However, the convergence of CFR has a very long tail and CFR is
not able to find an exact solution for larger games in a reasonable time. Another interesting
observation is that for some games the convergence rate of the double-oracle algorithms
and CFR is similar in the first iterations, and while the double-oracle algorithms continue
at this rate and find an exact solution, the long tail convergence remains for CFR. This is
despite the fact that our implementation of CFR has an advantage of having the complete
game tree including the states for all histories in memory.

Unfortunately, it is difficult to characterize the exact properties of the games for which
the double-oracle algorithms perform better in terms of computation time compared to the
other algorithms. Certainly, the double-oracle algorithm is not suitable for games were
the only equilibria have large support due to the necessity of large number of iterations.
However, having a small support equilibrium is not a sufficient condition. This is apparent
due to two graphs shown in the poker experiments, where either the depth of the game tree
or the branching factor was increased. Even though the game grows exponentially and the
size of the support decreases to ~ 2.5% in both cases, the behavior of the double-oracle
algorithms is quite different. Our conjecture is that games with longer sequences suit the
double-oracle algorithms better, since several actions that form the best-response sequences
can be added during a single iteration. This contrasts with shallow game trees with large
branching factors, where more iterations are necessary to add multiple actions. However,
a deeper analysis to identify the exact properties of the games that are suitable is an open
question that must be analyzed for normal-form games first.
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7. Conclusion

We present a novel exact algorithm for solving two player zero-sum extensive-form games
with imperfect information. Our approach combines the compact sequence-form represen-
tation for extensive-form games with the iterative algorithmic framework of double-oracle
methods. This integrates two successful approaches for solving large scale games that have
not yet been brought together for the general class of games that our algorithm addresses.
The main idea of our algorithm is to restrict the game by allowing players to play only a
restricted set of sequences from the available sequences of actions, and to iteratively expand
the restricted game over time using fast best-response algorithms. Although in the worst
case the double-oracle algorithm may need to add all possible sequences, the experimental
results on different domains prove that the double-oracle algorithm can find an exact Nash
equilibrium prior to constructing the full linear program for the complete game. Therefore,
the sequence-form double-oracle algorithm reduces the main limitation of the sequence-form
linear program—memory requirements—and it is able to solve much larger games compared
to state-of-the-art methods. Moreover, since our algorithm is able to identify the sequences
of promising actions without any domain-specific knowledge, it can also provide a significant
runtime improvements.

The proposed algorithm also has another crucial advantage compared to the current state
of the art. The double-oracle framework offers a decomposition of the problem of computing
a Nash equilibrium into separate sub-problems, including the best-response algorithms, the
choice of the default strategy, and the algorithms for constructing and solving the restricted
game. We developed solutions for all of these sub-problems in a domain-independent man-
ner. However, we can also view our algorithm as a more general framework that can be
specialized with domain-specific components that take advantage of the structure of specific
problems to improve the performance of these sub-problems. This can lead to substantial
improvements in the speed of the algorithm, the number of iterations, as well as reducing
the final size of the restricted game. We demonstrated the potential of the domain-specific
approach on the game of Phantom Tic-Tac-Toe. Another example is that fast best-response
algorithms that operate on the public tree (i.e., a compact representation of games with
publicly observable actions; see Johanson, Bowling, Waugh, & Zinkevich, 2011) can be ex-
ploited for games like poker. Finally, our formal analysis identifies the key properties that
these domain-specific implementations need to satisfy to guarantee the convergence to the
correct solution of the game.

Our algorithm opens up a large number of directions for future work. It represents a new
class of methods for solving extensive-form games with imperfect information that operates
very differently than other common approaches (e.g., counterfactual regret minimization),
and many possible alternatives to improve the performance of the algorithm remain to
be investigated. Examples include more sophisticated calculation of utility values for the
temporary leaves, alternative strategies for expanding the restricted game, and removing
unused sequences from the restricted game. A broader analysis of using the sequence-
form double-oracle algorithm as an approximation technique should be performed, possibly
by exploring alternative approximative best-response algorithms based on sampling (e.g.,
Monte Carlo) techniques.
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There are also several theoretical questions that could be investigated. First, the per-
formance of the double-oracle algorithm depends strongly on the number of iterations and
sequences that need to be added. However, the theoretical question regarding the expected
number of iterations and thus the speed of the convergence of the double-oracle algorithm
have not been explored even for simpler game models (e.g., games in the normal form). An
analysis of these simpler models is needed to identify the general properties of games where
the double-oracle methods tend to be faster and to identify the optimal way of expanding
the restricted game.
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ARTICLE INFO ABSTRACT

Article history: Simultaneous move games model discrete, multistage interactions where at each stage
Received 14 July 2014 players simultaneously choose their actions. At each stage, a player does not know what
Received in revised form 9 January 2016 action the other player will take, but otherwise knows the full state of the game. This
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many discrete approximations of real-world scenarios. In this paper, we describe both
novel and existing algorithms that compute strategies for the class of two-player zero-sum
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simultaneous move games. The algorithms include exact backward induction methods with
efficient pruning, as well as Monte Carlo sampling algorithms. We evaluate the algorithms
in two different settings: the offline case, where computational resources are abundant

Monte Carlo Tree Search
Alpha-beta pruning
Double-oracle algorithm
Regret matching

and closely approximating the optimal strategy is a priority, and the online search case,
where computational resources are limited and acting quickly is necessary. We perform a
thorough experimental evaluation on six substantially different games for both settings. For
s the exact algorithms, the results show that our pruning techniques for backward induction
Counterfactual regret minimization R K . K . X .
Game playing dramatically improve the computation time required by the previous exact algorithms. For
Nash equilibrium the sampling algorithms, the results provide unique insights into their performance and
identify favorable settings and domains for different sampling algorithms.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Strategic decision-making in multiagent environments is an important problem in artificial intelligence. With the growing
number of agents interacting with humans and with each other, the need to understand these strategic interactions at a
fundamental level is becoming increasingly important. Today, agent interactions occur in many diverse situations, such as
e-commerce, social networking, and general-purpose robotics, each of which creates complex problems that arise from
conflicting agent preferences.

* Corresponding author. Tel.: +420 22435 7581.
E-mail addresses: branislav.bosansky@agents.fel.cvut.cz (B. BoSansky), viliam.lisy@agents.fel.cvut.cz (V. Lisy), marc.lanctot@maastrichtuniversity.nl
(M. Lanctot), jiri.cermak@agents.fel.cvut.cz (J. Cermdk), m.winands@maastrichtuniversity.nl (M.H.M. Winands).
T This author has a new affiliation: Google DeepMind, London, United Kingdom.

http://dx.doi.org/10.1016/j.artint.2016.03.005
0004-3702/© 2016 Elsevier B.V. All rights reserved.



2 B. Bosansky et al. / Artificial Intelligence 237 (2016) 1-40

Much research has been devoted to developing algorithms that reason about or learn in sequential (multi-step) inter-
actions. As an example, adversarial search has been a central topic of artificial intelligence since the inception of the field
itself, leading to very strong rational behaviors in Chess [1] and Checkers [2]. Advances in machine learning for multi-step
interactions (e.g., reinforcement learning) have led to self-play learning of evaluation functions achieving master level play
in Backgammon [3] and super-human level in Atari [4].

The most common model for these multistage environments is one with strictly sequential interactions. This model is
sufficient in many settings [5], such as in the examples used above. On the other hand, it is not a good representation of
the environment when agents are allowed to act simultaneously. These situations occur in many real-world scenarios such
as auctions (e.g., [6]), autonomous driving, and many video and board games in the expanding gaming industry (e.g., [7,
8], including games we use for our experiments). In all of these scenarios, the simultaneity of the decision-making is
crucial and we have to include it directly into the model when computing strategies. One of the fundamental differences
of simultaneous move games versus strictly sequential games is that the agents may need to use randomized (or mixed)
strategies in order to play optimally [9], i.e., to maximize their worst-case expected utility. This means that agents may need
to randomize over several actions in some states of the game to guarantee the worst-case expected utility, even though the
only information that is hidden is each player’s action as they play it.

This paper focuses specifically on algorithms for decision-making in simultaneous move games. We cover the offline
case, where the computation time is abundant and the optimal strategies are computed and stored, as well as the online
case, where the computation time is limited and agents must choose an action quickly. We are concerned both with the
quality of strategies based on their worst-case expected performance in theory and their observed performance in practice.
We compare and contrast the algorithms and parameter choices in the offline and the online cases, and thoroughly evaluate
each algorithm on a suite of games. Our collection covers Biased Rock-Paper-Scissors, Goofspiel, Oshi-Zumo, Pursuit-Evasion
Games, and Tron, all of which have been used for benchmark purposes in previous work. We also perform experiments on
randomly generated games. These games differ in the number of possible actions, the number of moves before the game
ends, the variance of the utility values, and the proportion of states in which mixed strategies are required for optimal play.

Our experimental comparison shows that the algorithms perform differently in each case. The exact algorithms based on
the backward induction are significantly better in the offline setting, where they are able to find the optimal strategy very
quickly compared to the sampling algorithms. In some cases, our novel algorithm (DO ) solves the game in less than 2%
of the time required by the standard backward induction algorithm. However, the exact algorithms are less competitive in
the online setting. In contrast, the approximative sampling algorithms can perform very well in the online setting and find
good strategies to play within a few seconds, however, they are not well-suited for offline solving of games.

The paper is structured as follows. First, we make explicit the contributions of the paper in Subsection 1.1. In Section 2,
we present a formal introduction of the simultaneous move games that we will use throughout the paper. Section 3 follows
with a list and discussion of the existing algorithms in the related work. In Section 4, we describe in detail selected exact
and approximative algorithms. We first describe the algorithms in the offline setting, followed by the necessary modifi-
cations used in the online case described in Section 5. In Section 6, we present our experimental results comparing the
algorithms. Finally, we conclude in Section 7.

1.1. Novel contributions

This paper presents detailed descriptions and analysis of recent state-of-the-art exact [10] and approximative algo-
rithms [11-13] that compute strategies for the class of two-player simultaneous move games. Furthermore, it presents
the following original contributions:

e We present the latest variants of state-of-the-art algorithms under a single unified framework and combine the offline
and online computation perspectives that have been previously analyzed separately.

e We describe the first adaptation of backward induction and the double-oracle algorithm with serialized bounds (DO« S)
[10] to the online search setting in simultaneous move games using iterative deepening and heuristic evaluation func-
tions.

e We describe a novel variant of Online Outcome Sampling [13] tailored for two-player simultaneous move games (SM-
00S) and provide its formal analysis.

e We provide a wide experimental analysis and a comparison of these and other algorithms on five different specific
games and on randomly generated games.

e We replicate an experimental convergence analysis for approximative algorithms that is often used in the literature as
a demonstration that sampling-based algorithms are not guaranteed to converge to an optimal solution [14], and we
identify the sensitivity of the existing approximative algorithms to tie-breaking rules.

Our algorithms thus allow computing offline strategies in larger games than previously possible (using DO« ). In online
game-playing, our algorithms are less sensitive to chosen parameters (SM-MCTS-RM) or guarantee to closely approximate
the optimal strategies given enough time (SM-0O0S). Since we describe each algorithm in a domain-independent manner,
they can be further tailored to specific domains to achieve additional improvements in the scalability and/or game-playing
performance.
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Fig. 1. An example of a two-player simultaneous move game. Each white matrix corresponds to a state of the game where both players (a maximizing
player with actions in rows and a minimizing player with actions in columns) act simultaneously. The dark squares are terminal states. The values shown
in the matrices correspond to the values of subgames (e.g., calculated by backward induction).
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Fig. 2. Matrix games of Matching Pennies (left), and one with a pure Nash equilibrium (right). Payoffs for the row player are shown.
2. Simultaneous move games

A finite two-player game with simultaneous moves and chance events (also called Markov games, or stacked matrix games)
is a tuple (V, S, A, T, A, uj, Sg), where S = DUCU Z. The player set N'= {1, 2, x} contains player labels, where x denotes
the chance player, and by convention a player is denoted i € A/. S is a set of states, with Z denoting the terminal states, D
the states where players make decisions, and C the possibly empty set of states where chance events occur. A= 41 x A3
is the set of joint actions of individual players. We denote by .4;(s) the actions available to player i in state s € S. The
number of actions available to player i, |.4;(s)|, is called the branching factor for player i. When the player is not specified, we
mean the joint branching factor | A(s)|. The transition function 7 : S x A; x Ay — S is a partial function that defines the
successor state given a current state and actions for both players. A, : C — A(S) describes a probability distribution over
possible successor states of the chance event. Induced by A,, we also define P,(s,r, ¢, s’) as the probability of transitioning
to s’ after choosing joint action (r, ¢) from s, or simply 1 when 7 (s, r, c) €C. The utility function u; : Z — [Vmin, Vmax] S R
gives the utility of player i, with v, and vpax denoting the minimum and maximum possible utility respectively. We
assume zero-sum games: Vz € Z,u1(z) = —u3(z). The game begins in an initial state sp and a subset of a game that starts
in some node s is called a subgame. An example of such a game is depicted in Fig. 1, more examples can be found in [15,
Chapter 5].

In two-player zero-sum games, a (subgame perfect) Nash equilibrium strategy is often considered to be optimal (the
formal definition follows). It guarantees an expected payoff of at least V against any opponent. Any non-equilibrium strategy
has its nemesis, which makes it gain less than V in expectation. Moreover, a subgame perfect Nash equilibrium strategy can
earn more than V against weak opponents. After the opponent makes a sub-optimal move, the strategy will never allow it
to gain the loss back. The value V is known as the value of the game and it is the same for every equilibrium strategy profile
by von Neumann’s minimax theorem [16].

A matrix game is a single step simultaneous move game with action sets .4; and .4, (see Fig. 2). Each entry in the matrix
Arc where (r,c) € Ay x Ay corresponds to a utility value reached if row r is chosen by player 1 and column c by player 2.
For example, in Matching Pennies in the left side of Fig. 2, each player has two actions (heads or tails). The row player
receives a payoff of 1 if both players choose the same action and 0 if they do not match. In simultaneous move games, at
every decision state s € D there is a joint action set A1(s) x Az(s). Each joint action (r, ¢) leads to another state 7 (s, 1, c)
that is either a terminal state or a subgame which is itself another simultaneous move game. A chance event is a state s € C
with a fixed set of outcomes, each of which leads to a possible successor state. In simultaneous move games, A, refers to
the value of the subgame rooted in state 7 (s, r, c).

A behavioral strategy for player i is a mapping from states s € S to a probability distribution over the actions .A;(s),
denoted oj(s). We denote by oj(s,a) the probability that strategy o; assigns to a in s. These strategies are often called
randomized, or mixed because they represent a mixture over pure strategies, each of which is a point in the Cartesian
product space [, s Ai(s).%> Let H be a global set of histories (sequences of actions from the start of the game). Given

2 Notice that a pure strategy is also a mixed strategy that assigns probability 1 to a single pure strategy and probability O to every other pure strategy.
However, as it is common in the literature, we sometimes refer to a mixed strategy to specifically mean not a pure strategy. This is mostly clear from the
context, but we clarify where necessary.
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Fig. 3. The matrix game of Rock, Paper, Scissors (left) and its equivalent extensive-form game representation (right). The extensive game has four states,
two information sets (I; and I,), and nine terminal histories: {Rr, Rp, Rs, Pr, Pp, Ps, Sr, Sp, Ss}.

a strategy profile o = (01, 032), we define the probability of reaching a history h under o as 77 (h) = 7y (h)7J (W) (h),
where each 7 (h) is a product of probabilities of the actions taken by player i along the path to h (7, being chance’s
probabilities). Finally, we define X; to be the set of all behavioral strategies for player i. We adopt a standard convention
that the index —i refers to the opponent of player i.

In order to define optimal behavior for this class of games, we now provide definitions of some fundamental concepts.

Definition 2.1 (Strictly dominated action). In a matrix game, an action g; € A; is strictly dominated if Ya_; € A_;,3a; €
Ai\{ai} 1 ui(ai, a_y) < ui(@j, a_y).

No rational player would want to play a strictly dominated action, because there is always a better action to play
independent of the opponent’s action. The concept also extends naturally to behavioral strategies. For example, in the game
on the right of Fig. 2, both b and B are strictly dominated. In this paper we refer to the dominance always in this strict
sense.

Definition 2.2 (Best response). Suppose o_; € X_; is a fixed strategy of player —i. Define the set of best response strategies
BRi(o_j) ={oj | uj(oj,0_j) = MaX,/esx; ui(o/,0_;)}. A single strategy in this set, e.g., o; € BR;(0_;), is called a best response
strategy to o_;.

Note that a best response can be a mixed strategy, but a pure best response always exists [9] and it is often easier to
compute.

Definition 2.3 (Nash equilibrium). A strategy profile (oj, 0_;) is a Nash equilibrium profile if and only if o; € BR;j(0_;) and
o_;j € BR_;(0j).

In other words, in a Nash equilibrium profile each strategy is a best response to the opponent’s strategy. In two-player
zero-sum games, the set of Nash equilibria corresponds to the set of minimax-optimal strategies. That is, a Nash equilibrium
profile is also a pair of behavioral strategies optimizing

V = max min E,-s[u1(z)] = max min ZTL’ @uq1(2). (1)
O01€X1 02€X) O01€X1 02€X

None of the players can improve their utility by deviating unilaterally. For example, the game of Rock, Paper, Scissors
(depicted in Fig. 3) modeled as a matrix game has a single state and the only equilibrium strategy is to mix equally
between all actions, i.e., both players play with a mixed strategy o; = o_; = (1/3,1/3,1/3) giving the expected payoff of
V = 0. Note that using a mixed strategy is necessary in this game to achieve the guaranteed payoff of V. Any pure strategy
of one player can be exploited by the opponent; so while a pure best response to a fixed strategy always exists, it is not
always possible to find a Nash equilibrium for which both strategies are pure. For the same reason, randomized strategies
are often necessary also in the multi-step simultaneous move games. If the strategies also optimize Equation (1) in every
subgame, the equilibrium strategy is termed subgame perfect.

Finally, a two-player simultaneous move game is a specific type of two-player extensive-form game with imperfect
information. In imperfect information games, states are grouped into information sets: two states s, s’ are in an information
set I if the player to act at I cannot distinguish whether she is in s or s’. Any simultaneous move game can be modeled
using information sets to represent half-completed transitions, i.e., 7 (s,ay, ?) or 7 (s, ?, a). The matrix game of Rock, Paper,
Scissors can also be thought of as a two-step process where the first player commits to a choice, writing it on a face-down
piece of paper, and then the second player responds. Fig. 3 shows this transformation, which can generally be applied to
every state in a simultaneous move game. Therefore, algorithms intended for two-player zero-sum imperfect information
games may also be applied to the simultaneous move game using this equivalent form.
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3. Related work

There has been a number of algorithms designed for simultaneous move games. They can be classified into three cat-
egories: (1) iterative learning algorithms, (2) exact backward induction algorithms, (3) approximative sampling algorithms.
The first type computes strategies through iterated self-play. The second type computes strategies in a game state recursively
based on the values of its successors. The third type computes strategies by approximating utilities using sampling.

3.1. Iterative learning algorithms

A significant amount of interest in simultaneous move games was generated by initial work on multiagent reinforcement
learning. In multiagent reinforcement learning, each agent acts simultaneously and the joint action determines how the state
changes. Littman introduced Markov games to model these interactions as well as a variant of Q-learning called Minimax-Q
to compute strategies [17,18]. Minimax-Q modifies the learning rule so that the value of the next state (the subgame)
is obtained by solving a linear program using the estimated values of that subgame’s root. As it is common in these
settings, the goal of each agent is to maximize their expected utility. In two-player zero-sum Markov games, an optimal
policy corresponds to a Nash equilibrium strategy, which assures the agent the highest worst-case expected payoff. Initial
results provided conditions under which approximate dynamic programming could be used to guarantee convergence to
the optimal value function and policies [19]. Later, in [20], Lagoudakis and Parr provided stronger bounds and convergence
guarantees for least squares temporal difference learning using linear function approximation. Bounds on the approximation
error for sampling techniques in discounted Markov games are presented in [21], and new bounds for approximate dynamic
programming have also been recently shown [22].

In early 2000s, gradient ascent methods were introduced for playing repeated games [23,24]. These algorithms update
strategies in a direction of the strategy space that increases the expected payoff with respect to the opponent’s strategy.
These were then generalized and combined, and shown to minimize regret over time [25,26], leading to strong convergence
guarantees in multiagent learning. More no-regret algorithms followed and were applied to imperfect information games
in sequence-form (One-Card Poker) [27]. Later, counterfactual regret (CFR) minimization was introduced for large imperfect
information games [28]. CFR has gained much attention due to its success in computing Poker Al strategies, and recently
an application of CFR has solved Heads Up Limit Texas Hold’em Poker [29]. In this paper we analyze the effectiveness of a
specific form of Monte Carlo CFR for the first time in simultaneous move games.

As we focus on zero-sum simultaneous move games in this paper, the work on multiagent learning in general-sum and
cooperative games has been omitted. For surveys of the relevant previous work in multiagent reinforcement learning and
game theory (including the zero-sum case), see [30-32].

3.2. Exact backward induction algorithms

The techniques in this section are based on the backward induction algorithm (cf. [33]), a form of dynamic pro-
gramming [34] often presented for purely sequential games. A modified variant of the algorithm can also be applied to
simultaneous move games (e.g., see [35-37]). The algorithm enumerates states of the game tree in a depth-first manner and
after computing the values of all the succeeding subgames of state s € S, it solves the normal-form game corresponding
to s (i.e., computes a NE of the matrix game in s), and propagates the calculated game value to the predecessor. Backward
induction then outputs a subgame perfect NE.

There are two notable algorithms that improve the standard backward induction in simultaneous move games. First is an
algorithm by Saffidine et al. [38] termed simultaneous move alpha-beta algorithm (SMAB). The main idea of the algorithm
is to reduce the number of the recursive calls of the backward induction algorithm by removing dominated actions in every
state of the game. The algorithm keeps bounds on the utility value for each successor in a game state. The lower and upper
bounds represent the threshold values, for which neither of the actions of the player is dominated by any other action
in the current matrix game. These bounds are calculated by linear programs in the state given existing exact values (or
appropriate bounds) of the utility values of all the other successors of the state. If they form an empty interval (the lower
bound is greater than the upper bound), pruning takes place and the dominated action is no longer considered in this state
afterward.

While SMAB outperforms classical backward induction, the speed-up is less significant in comparison to the second exact
algorithm introduced in [10], a description of which is given in detail in Subsection 4.3.1. The main idea is to integrate
two key components: (1) instead of evaluating all successors in each state of the game and solving a normal-form game,
the algorithm exploits the iterative framework known in game theory as double-oracle algorithm [39]; (2) the algorithm
computes bounds on the utility values of the successors by serializing the subgames and running the classic alpha-beta
algorithm.

Finally, since simultaneous move games can be seen as extensive-form games with imperfect information, one can use
techniques designed for large imperfect information games. An algorithm that is also built on double-oracle is the Range-
of-Skill algorithm [40]. However, the number of iterations required by this algorithm in the worst case can be large [41].
There are also state-of-the-art algorithms for solving generic extensive-form games with imperfect information, based on
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sequence-form optimization problems [42-44]. However, these algorithms do not exploit the specific structure of simulta-
neous move games and could require memory that is linear in the size of the game tree. In practice, this prohibits scaling
to larger games (see, e.g., [38]) and causes weak performance compared to tailored algorithms.

3.3. Approximative sampling algorithms

Monte Carlo Tree Search (MCTS) is a simulation-based state space search technique often used in extensive-form games
[45,46]. Having first seen practical success in computer Go [47,48], MCTS has since been applied successfully to simultaneous
move games and to imperfect information games [13,49,50]. Most of the successful applications use the Upper Confidence
Bounds (UCB) formula [51] as a selection strategy. These variants of MCTS are also known as UCT (UCB applied to trees). The
first application of MCTS to simultaneous move games was in general game playing (GGP) [52] programs: CADIAPLAYER [53,
54| uses UCB selection strategy for each player in a single game tree. The success of MCTS was demonstrated by the success
of CADIAPLAYER which was the top-ranked player of the GGP competition between 2007 and 2009, and also in 2012.

Despite this success, Shafiei et al. in [14] provide a counter-example showing that this straightforward application of UCT
does not converge to an equilibrium even in the simplest simultaneous move games and that a player playing a NE can ex-
ploit this strategy. Another variant of UCT, which has been applied to Tron [55], builds the tree as if the players were moving
sequentially giving one of the players an informational advantage. This approach also cannot converge to an equilibrium in
general. For this reason, other variants of MCTS were considered for simultaneous move games. Teytaud and Flory describe
a search algorithm for games with short-term imperfect information [8], which are a generalization of simultaneous move
games. Their algorithm uses a different selection strategy, called Exp3 [56], and was shown to work well in the Internet card
game Urban Rivals. We provide details of these two main existing selection functions in Subsections 4.4.1 and 4.4.2. A more
thorough experimental investigation of different selection policies including UCB, UCB1-Tuned, UCB1-greedy, Exp3, and more
is reported in the game of Tron [57]. The work by Lanctot et al. [11] compares some of these variants and proposes Online
Outcome Sampling, a search version of Monte Carlo CFR [58], which computes an approximate equilibrium strategy with
high probability. We describe a new formulation of this algorithm in Subsection 4.5.1. Finally, [12,59] present variants of
MCTS that provably converge to Nash equilibria in simultaneous move games, using any regret-minimizing algorithm at
each stage. We elaborate on these results in Subsection 4.4.4.

There have been two recent studies that examine the head-to-head performance of these variants in practice. The
first [60] builds on previous work in Tron by varying the shape of the initial board, comparing previous serialized variants
of simultaneous move MCTS. The authors found that UCB1-Tuned worked particularly well in Tron when using knowledge-
based playout policies. The success of UCB1-Tuned differed in a similar study of the same variants across nine domains [61]
without domain knowledge. In this work, the chosen games were ones inspired by previous work in general game playing
and did not include chance elements. Results indicate that parameter-tuning landscapes do not seem as smooth as in the
purely sequential case.

3.3.1. Simulation-based search in real-time games

Real-time games are not turn-based and represent realistic physical situations where agents can move freely in space.
The state of the game is a continuous function of time and the effect of some actions may only be realized some time after
the decision is made. These games are often appropriately modeled as a simultaneous move game with very short delays
(e.g., 40 milliseconds) between frames.

MCTS has enjoyed some success in these types of games, in the single-agent setting [62,63] and multiagent setting [64].
Much of this work is inspired by video games [65-67]. Few of these works have considered MCTS in the simultaneous move
game directly. In one of the first papers on real-time strategy games, the authors used a randomized serialization of the
game [G8], or a strategy simulation from scripts was used to build a single matrix of values from which an equilibrium
strategy was computed using linear programming [69]. This method can be extended to multiple nodes where internal
nodes would correspond to scripts being interrupted to replan, similarly to [70]. MCTS-style multistage replanning was also
applied to a real-time battle scenario which was also accurately represented as a discrete simultaneous move game [7].
Results of this work show that the multistage forward replanning can improve upon the single-stage forward planning, and
can produce approximate Nash equilibrium strategies when mixed strategies are computed at each stage during the search.
Around the same time, a serialized (sequential) version of the alpha-beta algorithm was proposed for simultaneous move
games and run on combat scenarios [71]. This algorithm is described in greater detail in Subsection 4.2 as it forms the basis
of the follow-up algorithm enhanced by double-oracle, presented in Subsection 4.3.

In this paper, we focus on the analysis of different algorithms for two-player simultaneous move games. Therefore, the
problems arising from discrete modeling of continuous time and space remain outside the scope of this paper.

4. Offline strategy computation

This section focuses on algorithms that compute strategies for simultaneous move games. The baseline algorithm for
solving simultaneous move games exactly is backward induction (BI) (Subsection 4.1). Afterwards we present a modification
that exploits a fast computation of upper and lower bounds in a simultaneous move game (Subsection 4.2). Then, we
further improve the algorithm by speeding up the computation of NE in matrix games, exploiting the iterative framework
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input : s - current matrix game; i - searching player
1 if se Z then
2 return u;(s)
3 for re Aq(s) do
4 for c € A, (s) do
5 Arc < Zs’es 1 Pu(s,r,c,8)>0 Pu(s,r,c,s") - BI(s', )
6 (vg,0(s)) < solve matrix game A
7 return v;

Algorithm 1: Backward Induction algorithm (BI).

of double-oracle algorithms (Subsection 4.3). In Subsection 4.4 we describe Monte Carlo Tree Search for simultaneous move
games. Finally, we present counterfactual regret minimization and its adaptation Online Outcome Sampling in Subsection 4.5.

4.1. Backward induction

The standard backward induction algorithm, first described for simultaneous move games in [35], enumerates the states
in depth-first order. At each state of the game, it creates a matrix game for the current state using child subgame values,
solves the matrix game, and propagates back the value of the matrix game. The pseudocode of the algorithm is given in
Algorithm 1. If the successor node 7 (s, 1, c) is a chance node, the algorithm directly evaluates all successors of this chance
node and computes an expected utility: the value of each subgame rooted in node s’ computed by the recursive call is
weighted by the probability of the stochastic transition P, (s, r,c,s’) (line 5).

Once the algorithm computes the value of each possible subgame following the current state s, matrix game A is well-
defined and the algorithm solves matrix game A by solving the standard linear program (LP) for normal-form games®:

max Vs (2)
sty Aga - 0i(s.0) = Vs Va_i€ A_i(s) (3)
a;eA;
Y oiGs,a) =1 (4)
a;ieA;
0i(s,a;) >0 Va; € Ai(s) (5)

A linear programming algorithm computes both the value v, of the matrix game A, as well as the optimal strategy to play
in this matrix game (variables oj(s, a;)). Value vg is then propagated to the predecessor (line 7 of Algorithm 1) and the
optimal strategy o;(s, a;) is stored for this state. If the algorithm evaluates a terminal state, it directly returns the utility
value of the state (line 1).

Evaluating each successor and solving an LP in each state of the game is the main computational bottleneck of the
backward induction algorithm. The following algorithms try to prune some of the branches of the game tree in order to
reduce this bottleneck even at the cost of multiple traversals of the game tree.

4.2. Backward induction with serialized alpha-beta bounds

Solving computationally expensive linear programs in the backward induction algorithm is necessary in game states that
require mixed strategies. However, many realistic games include subgames where it is sufficient to use only pure strategies.
These subgames can be found efficiently by transforming the simultaneous move game into a perfect information extensive-
form game with sequential moves and subsequently using some of the algorithms developed for this more standard setting.
We call this purely alternating form a serialization of the original simultaneous move game. Consider a matrix game rep-
resenting a single joint action of both players. This matrix can be serialized by discarding the notion of information sets;
hence, letting one player play first, followed by the second player. The difference between a serialized and a simultaneous
move matrix game is that the second player to move has an advantage of knowing what action the first player chose.

Given this advantage, the value of a serialized game consisting of a single simultaneous move where player i is second
to move is greater than or equal to the value of the original simultaneous move game from the perspective of player i,
formally shown by the following lemma.

Lemma 4.1. Let A be a single step simultaneous move game for state s with value v for player i. Let vi be the value of the serialized
game created from game A by letting player —i move first and player i move second with the knowledge of the move played by the first
player. Then

Vs < Vs

3 By solving a game we mean computing both the optimal value and the strategy that achieves it.
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Fig. 4. Different serializations of a simple simultaneous move game. Utility values are in the leaf nodes, the gray values correspond to the value propagation
when solving the serialized game.

Proof.

V¢ = min max E E 0i(s,a;)0_i(S, i) Aga_,
0_j€X_j0;€X;
aicAj(s)a_ije A_i(s)

min max 0i(s,ai)Agia_;
a_jeA_ij(s) 0;€X;
a;€Ai(s)

< min max Agqe =Vi.
a_ieA_i(s) a;€A;(s)
The first equality is the definition of the value of a zero-sum game. The second equality is from the fact that a best response
can always be found in pure strategies: if there was a mixed strategy best response with expected utility v and some of
the actions from its support would have lower expected utility, removing those actions from the support would increase the
value of the best response, which is a contradiction. The inequality is due to the fact that a maximization over each action
of player —i can only increase the value. O

We can now generalize this lemma to game trees with multiple simultaneous moves.

Lemma 4.2. Consider a simultaneous move subgame defined by state s and a serialized variant of this subgame, where in each state
player i is second to move. The value of the serialized game is an upper bound on the value of the simultaneous move subgame for
player i.

Proof. We use Lemma 4.1 inductively. Let s be the current state of the game and let A be the exact matrix game corre-
sponding to s with utilities of player i. By induction we assume that the algorithm computes for state s some A’ so that
each value in matrix A’ is greater than or equal to A:

Va; € Aij(s)Va_; € A_i(s) Afz,»a_,» > Aga_;-
Therefore, the value of matrix game v4 > v 4. Finally, by Lemma 4.1 the algorithm returns value qu, >va >Vva O

An example of this serialization is depicted in Fig. 4. There is a simple matrix game for two players (the circle and the
box player; the utility values are depicted for the circle player; the box player in the column is minimizing this value).
There are two ways this game can be transformed into a serialized extensive-form game with perfect information. If the
circle player moves first (the left game tree), then the value of this serialized game is the lower bound of the value of the
game. If this player moves second (the right game tree), then the value of this serialized game is the upper bound of the
value of the game. Since the serialized games are zero-sum perfect information games in the extensive form, they can be
solved quite quickly by using some of the classic Al algorithms such as alpha-beta or Negascout [72]. If the values of both
serialized games are equal, then this value is also equal to the value of the original simultaneous move game. This situation
occurs in our example in Fig. 4, where both serialized games have value V = 3.

We can speed up the backward induction algorithm using bounds that are computed by the alpha-beta algorithm (de-
noted Blo8). Algorithm 2 depicts the pseudocode. The Bla8 algorithm first serializes the game and solves the serialized
games using the standard alpha-beta algorithm; if the bounds are equal then this value is returned directly (line 3). Note
that in Algorithm 2 the call alpha-beta(s, i), i is the second player to move in the serialized game rooted at s. If the bounds
are not equal, the algorithm starts evaluating successors of the current state. As before, the algorithm computes upper and
lower bounds using the alpha-beta algorithm on serialized variants of the subgame rooted at the successor s’ (lines 9-10).
Then, the algorithm uses the value directly if the bounds are equal (line 14), or performs a recursive call otherwise (line 12).
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input : s - current matrix game; i - searching player
1 if se Z then

2 return u;(s)

3 if (sisroot) and (alpha-beta(s, i) = alpha-beta(s, —i)) then
4 return alpha-beta(s, —i)

5 for r € Ai(s) do

6 for c € Ay (s) do

7 Arc <0

8 fors'c¢S : P.(s,r,c,s’) >0 do

9 v;, < alpha-beta(s’, i)

1

10 vy' < alpha-beta(s’, —i)

11 if vs’,. < vi, then

12 Arc < Arc + Pu(s,1,¢,5") - BlaB(s', 1)
13 else

14 Arc < Arc + Pu(s,1,¢,5) - V;/

15 (vg, 0;) < solve matrix game A
16 return vg
Algorithm 2: Backward Induction with serialized bounds (Blaj).

We distinguish two cases when extracting equilibrium strategies from the Bla g algorithm. In the first case, when a state
is fully evaluated by the algorithm (i.e., an LP was built and solved for this state), we proceed as before and keep the pair of
equilibrium strategies in this state. However, in the other case, the algorithms prunes certain branches and does not create
an LP in some of the subgames. The algorithm then keeps the strategy computed by the serialized alpha-beta algorithm in
those subgames. More precisely, for player i the algorithm keeps the pure strategy computed by alpha-beta(s, —i), where
the opponent has an advantage of knowing the moves of player i. Such a strategy provides a guarantees for player i (it
is not exploitable) and due to the alpha-beta cut-offs we know that there is no better strategy for player i with a higher
expected utility.

Theorem 4.3. The algorithm Bl S(s, i) computes the value of the subgame from state s for player i.

Proof. The correctness of the algorithm follows immediately from the correctness of the standard BI algorithm and the
correctness of using the values computed by serialized alpha-beta (Lemma 4.2). Moreover, values computed by the serialized
alpha-beta algorithm are used only if the upper bound equals the lower bound. O

The performance of Bl depends on the existence of a pure NE in the simultaneous move game. In the best case
(i.e., there exists a pure NE), the algorithm finds the solution by solving each serialization exactly once starting from the
root state. In the worst case, all NE require mixed strategies in every state of the game. In this case, the algorithm not
only solves the LP in each state similarly to BI, but also repeatedly attempts to solve serialized subgames by calling the
alpha-beta algorithm. However, this case was very rarely encountered during our experiments.

4.3. Backward induction with double-oracle and serialized bounds

The computational complexity of solving a matrix game by linear programming can be reduced by their incremental
construction using the iterative double-oracle algorithm [39]. The following algorithm incorporates this idea to Bl 8, which
leads to additional pruning of the game tree. First of all, we describe the main principles of the double-oracle algorithm
for matrix games, followed by the description of the integration of the double-oracle algorithm in simultaneous move
games [10] (denoted DO« ).

4.3.1. Double-oracle algorithm for matrix games

The goal of the double-oracle algorithm is to find a solution of a matrix game without necessarily constructing the
complete LP that solves the game. The main idea is to create a restricted game where the players can choose only from a
limited set of actions. The algorithm iteratively expands the restricted game by allowing the players to choose from new
actions. The new actions are added incrementally: in each iteration, a best response (chosen from the unrestricted action
set) to an optimal strategy of the opponent in the current restricted game, is added to restricted game.

Fig. 5 shows a visualization of the main structure of the algorithm, where the following three steps repeat until conver-
gence:

1. Create a restricted matrix game by limiting the set of actions that each player is allowed to play.

2. Compute a pair of Nash equilibrium strategies in this restricted game using linear programming.

3. For each player, compute a pure best response strategy against the equilibrium strategy of the opponent; pure best
response can be any action from the original unrestricted game.
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Fig. 5. Schematic of the double-oracle algorithm for a normal-form game.

The best response strategies computed in step 3 are added to the restricted game, the game matrix is expanded by adding
new rows and columns, and the algorithm follows with the next iteration. The algorithm terminates if neither of the players
can improve the outcome of the game by adding a new strategy to the restricted game; hence, both players play best
response strategies to the strategy of the opponent. The algorithm maintains the values of the best expected utilities of
the best-response strategies for each player throughout the iterations of the algorithm. These values provide bounds on the
value of the original game V (from Equation (1)), and their sum represents the error of the algorithm which converges to
zero.

4.3.2. Integrating double-oracle with backward induction

The double-oracle algorithm for matrix games can be directly incorporated into the backward induction algorithm: in-
stead of immediately evaluating each of the successors of the current game state and solving the linear program, the
algorithm can exploit the double-oracle algorithm. Pseudocode in Algorithm 3 details this integration.

Similarly to Bla g, the algorithm first tests, whether the whole game can be solved by using the serialized variants of the
game (line 3). If not, then in each state of the game the algorithm initializes the restricted game with an arbitrary action
(line 5)* - A’ represents the restricted matrix game, Aj represents the restricted set of available actions to player i. The
algorithm then starts the iterations of the double-oracle algorithm. First, the algorithm needs to compute the value for each
of the successors of the restricted game, for which the current value is not known (lines 8-16). This evaluation is the same
as in the case of BlaB. Once all values for restricted game A’ are known, the algorithm solves the restricted game and
keeps the optimal strategies ¢’ of the restricted game (line 17). Next, the algorithm computes best responses for each of
the player (lines 18, 19) using Algorithm 4 below, and updates the lower and upper bounds (line 20). Finally, the algorithm
expands the restricted game with the new best response actions (line 21) until the lower and upper bound are equal. Once
the bounds are equal, neither of the best responses improves the current solution from the restricted game; hence, the
algorithm has found an equilibrium of the complete unrestricted matrix game corresponding to state s.

Now we describe the algorithm for computing the best responses on lines 18 and 19. The pseudocode of this step is
depicted in Algorithm 4. The goal of the best response algorithm is to find the best action from the original unrestricted
game against the current strategy of the opponent o’ ;. Throughout the algorithm we use, as before, v;, to denote the
upper bound of the value of the subgame rooted in state s’ computed using alpha-beta(s’, i). These values are computed on
demand, i.e., they are computed once needed and cached until the game for state s is solved. Moreover, once the algorithm
computes the exact value of a particular subgame, both upper and lower bounds are updated to be equal to the exact value
of the game.

The best response algorithm iteratively examines all actions of player i from the unrestricted game (line 3). Every action
a; is evaluated against the actions of the opponent that are used in the optimal strategy from the restricted game (line 5).
Before evaluating the successors, the algorithm determines whether the current action a; of the searching player i can still
be the best response action against the strategy of the opponent o’ ;. In order to determine this, the algorithm computes
value Aq that represents the lower bound on the expected utility this action must gain against the current action of the
opponent a_; in order for action a; to be a best response. Aq is calculated (line 7) by subtracting the upper bound of

the expected value against all other actions of the opponent (V’T(S ad )) from the current best response value (va) and
i d_;

normalizing with the probability that the action a_; is played by the opponent (o ;(a—;)). This calculation corresponds to
a situation where player i achieves the best possible utility by playing action a; against all other actions from the strategy
of the opponent and it needs to achieve at least A4, against a_; so that the expected value for playing a; is at least viBR. If
Ag; is strictly higher than the upper bound on the value of the subgame rooted in the successor (i.e., v"T(S‘ a. a_i)) then the
algorithm knows that the action a; can never be the best response action, and can proceed with the next action (line 9).
Note that Ag is recalculated for each action of the opponent since the upper bound values can become tighter when the
exact values are computed for successor nodes s’ (line 13).

4 In practice we use the first action of a shuffled ordered set .A; for each player i. This initialization step can be improved with domain knowledge and
by adding more actions.



B. Bosansky et al. / Artificial Intelligence 237 (2016) 1-40 11

input : s - current matrix game; i - searching player; o, 8s - bounds for the game value rooted in state s
1 if se Z then
2 return u;(s)
3 if (sisroot) and (alpha-beta(s, i) = alpha-beta(s, —i)) then
4 return alpha-beta(s, —i)
5 initialize Aj, A’ ; with arbitrary actions from A;, A_;
6 repeat
7 forre Aj,ce A_; do
8 if Ay is not initialized then
9 A, <0
10 fors'eS : P,(s,r,c,s’) >0 do
1 vi, < alpha-beta(s’, i)
12 vs’,i < alpha-beta(s’, —i)
13 if v;' < vl then
14 Al < Al + Pu(s,1,¢,8)) - DOB(S i, v, vi)
15 else
16 A < A+ Pu(s,r,c,5) - vé,
17 (vs,o’) < solve matrix game A’
18 (vEBR aBR) < BR(s,i,0”;, Bs)
19 (vBR aBR) « BR(s, —i, 0/, —t5)
20 o5 < max(as, —vBR), g5 « min(gs, vER)
21 A< AU@fR), A < AUt
22 until o5 = B
23 return v,
Algorithm 3: Double-Oracle with serialized bounds (DO« g).
input : s - current matrix game; i - best-response player; o’ - strategy of the opponent; A - bound for the best-response value
1 vER <2
2 aBR < null
3 for a; € A; do
4 Vg, <0
5 fora_je A’ : 0’ ;(a_;)>0do
6 Vgia; <0
V’BRizﬂLiEALi\(“—H OLI(aLi)‘viT(S«ﬂi‘“’,i)
7 Ao < o’ (ai)
8 if hq; > Vi 4.q ) then
9 continue from line 3 with next a;
10 else
11 fors'eS : P.(s,a;,a_i,s’) >0 do
12 if vs’,i < vi, then
13 Vaja; < Vaja; +Pa(s,ai,a_;,s")- DOaS(s', i, v;i, vi/)
14 else
15 Vana < Vana + Pu(s,a, a_i,s") - vi,
16 Va; < Vg; + O'Li(a—i) *Vaja_;
17 if vg, > vER then
18 vBR v,
19 aBR —q;

20 return (vlfR,afR)
Algorithm 4: Best Response with serialized bounds (BR).

If the currently evaluated action a; can still be a best response, the value of the successor is determined (first by
comparing the bounds). Once the expected outcome against all actions of the opponent is known, the expected value of
action a; is compared against the current best response value (line 17) and saved if the expected utility is higher (line 19).
These best response actions are allowed in the next iteration of the double-oracle algorithm and the algorithm progresses
further as described.

When extracting strategies from DO« 3, we proceed exactly as in the case of BloS: either a double-oracle is initialized
and solved for a certain matrix game and we keep the equilibrium strategies from the final restricted game, or the strategy
is extracted from the serialized alpha-beta algorithms as before.

Theorem 4.4. The DOx (s, i, s, Bs) algorithm computes the value of the subgame defined by state s for player i.

Proof. The correctness of the algorithm follows from the correctness of the standard BI algorithm, Lemma 4.2, and the
correctness of the double-oracle algorithm for matrix games [39]. We use them inductively for state s and assume DO« 3
for all the children of s returned correct values when called. Since we are using the classical double-oracle on a matrix
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Fig. 6. Simultaneous Move MCTS example. Here, Xy represents the cumulative payoff of all simulations that have passed through the cell, while ny
represents the number of simulations that have passed through the cell.

game corresponding to state s with correct values, we only need to show that the best-response algorithm with serialized
bounds cannot return null action due to setting the bounds incorrectly.

Without loss of generality, consider a lower bound —a«; for state s to be A in the best response algorithm. Value A thus
corresponds either to a value calculated by serialized alpha-beta and propagated via bounds when calling DO« 3(s, i, &, fBs),
or it was updated during the iterations of the double-oracle algorithm for state s (line 20). In either case there exists a pure
best response strategy corresponding to this value; hence, the best response has to find the strategy that achieves this value
and cannot return null. O

Similarly to Bla 8, the performance of DO« 8 also depends on the existence of a pure NE in the simultaneous move game.
The best case is identical to Bloe8 and the algorithm finds the solution by solving each serialization exactly once starting
from the root state. In the worst case, neither of the serialized games yield useful bounds and the algorithm needs to call
the double-oracle algorithm in every state. Moreover, the worst case for the double-oracle algorithm occurs when all actions
in this state must be added and an action for only a single player is added in each iteration causing the largest number of
iterations repeatedly resolving the linear program. Again in practical games used for benchmark purposes, or in real-world
applications this is rarely the case. Moreover, the computational overhead from repeatedly solving an LP is relatively small.
This is due to the size of each LP that is determined by the number of actions in each state (the number of constraints
and variables is bounded by the number of actions in each state). Therefore, the size of each LP is small compared to the
number of states DO« can prune out, especially if the pruning occurs close to the root of the game tree.

4.4. Simultaneous Move Monte Carlo Tree Search (SM-MCTS)

In the following subsections we move to the approximative algorithms. Monte Carlo Tree Search (MCTS) is a simulation-
based state space search algorithm often used in game trees. In its simplest form, the tree is initially empty and a single
leaf is added each iteration. Each iteration starts by visiting nodes in the tree, selecting which actions to take based on
a selection function and information maintained in the node. Consequently, the algorithm transitions to a successor state.
When a node is visited whose immediate children are not all in the tree, the node is expanded by adding a new leaf to the
tree. Then, a rollout policy (e.g., random action selection) is applied from the new leaf to a terminal state. The outcome of
the simulation is then returned as a reward to the new leaf and the information stored in the tree is updated.

Consider again the game depicted in Fig. 1. We demonstrate how Monte Carlo Tree Search could progress in this game
using the example shown in Fig. 6. This game has a root state, two subgames that are simple matrix games, and two
arbitrarily large subgames. In the root state, player 1 (Max) has two actions: top (t) and bottom (b), and player 2 also has
two actions: left (I) and right (r). The tree is initialized with a single empty state, s. On the first iteration, the first child
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input : s - current state of the game

1 if s € Z then

2 return uq(s)

3 if s € C is a chance node then
4 Sample s’ ~ A, (s)

5 return SM-MCTS(s’)

6 if s isin the MCTS tree then
7 (ay,az) < SELECT(S)

8 s < T(s,a1,az)

9 vy < SM-MCTS(s")
10 UPDATE(S, a1, az, Vg)
11 return vy
12 else
13 Add s as a new child in the MCTS tree
14 vs < Rollout(s)
15 return vg

Algorithm 5: Simultaneous Move Monte Carlo Tree Search (SM-MCTS).

corresponding to (t,[) is added to the tree, giving a payoff u; =3 at the terminal state which is backpropagated to each
state visited on the simulation. Similarly, on the second iteration the second child corresponding to (b,[) is added to the
tree, giving a payoff u; = 1, which is backpropagated up to all of its parents. After four simulations, every cell in the root
state has a value estimate.

There are many possible ways to select actions based on the estimates stored in each cell which lead to different variants
of the algorithm. We therefore first formally describe a generic template of MCTS algorithms for simultaneous move games
(SM-MCTS) and then explain different instantiations derived from this template. Algorithm 5 describes a single iteration
of SM-MCTS. The “MCTS tree” is an explicit tree data structure that stores the nodes of the search tree maintained in
memory, e.g., the five-node tree shown in Fig. 6. Every node s in the tree maintains algorithm-specific statistics about the
iterations that previously visited this node. The template can be instantiated by specific implementations of the updates of
the statistics on line 10 and the selection based on these statistics on line 7. In the terminal states, the algorithm returns
the value of the state for the first player (line 2). At chance nodes, the algorithm samples one of the possible next states
based on its distribution (line 4). If the current state has a node in the current MCTS tree, the statistics in the node are used
to select an action for each player (line 7). These actions are executed (line 8) and the algorithm is called recursively on the
resulting state (line 9). The result of this call is used to update the statistics maintained for state s (line 10). If the current
state is not stored in the tree, it is added to the tree (line 13) and its value is estimated using the rollout policy (line 14).

Several different algorithms (e.g., UCB [51], Exp3 [56], and regret matching [73]) can be used as the selection function.
We now present the variants of SM-MCTS that were consistently the most successful in the previous works, though more
variants can be found in [57,60,61].

4.4.1. Decoupled upper-confidence bound applied to trees

The most common selection function for SM-MCTS is the decoupled Upper-Confidence Bound applied to Trees (UCT). For
the selection and updates, it executes the well-known UCT [46] algorithm independently for each of the players in each
nodes. The statistics stored in the tree nodes are independently computed for each action of each player. For player i € N’
and action a; € A;(s) the reward sums X, and the number of times the action was used n, are maintained. When a joint
action needs to be selected by the SELECT function, an action that maximizes the UCB value over their utility estimates is
selected for each player independently (therefore it is called decoupled):

logng

a; = argmax {)_(ai + C;

_ X,
, where X, = Z9 and ng = Z Np; - (6)
ai€A;(s) n

Ng: )
di di bie A;(s)

The UpDATE function increases the visit count and rewards for each player i and its selected action a; using Xg; < Xq, + U;
and ng, < ng + 1.

Consider again the example shown in Fig. 6. Decoupled UCT now groups together all the payoffs obtained for an action.
Therefore, at the root Max has X; =5/2=2.5, X;, =1/2=0.5 and the exploration term for both is C;\/(log4)/2, and so top
action is selected. For Min, X; =3/2 = 1.5 = X;, so both actions have the same value. Therefore, Min must use a tie-breaking
rule in this situation to decide which action to take. As we discuss later, the specific tie-breaking rule used here can lead to
a significant effect on the quality of the strategy that UCT produces.

After all the simulations are done, there are two options for how to determine the resulting action to play. The more
standard option is to choose for each state the action g; that maximizes ng, for each player i. This is suitable mainly for
games, in which using mixed strategy is not necessary. Alternatively, the action to play in each state can be determined
based on the mixed strategy obtained by normalizing the visit counts of each action

Ng;
. (7)

0i(t) = =——.
Zb,—eA,— (s) b;
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Using the first method certainly makes the algorithm not converge to a Nash equilibrium, because the game may require a
mixed strategy. Therefore, unless stated otherwise, we only use the mixed form in Equation (7), which was called DUCT(mix)
in [11,61].

Note, that it was shown that this latter variant also might not converge to a Nash equilibrium (a well-known counter-
example in Rock, Paper, Scissors with biased payoffs [14]). However, one of the issues when using UCT in game trees is
an unspecified behavior in case there are multiple actions with identical value in the maximization described in the UCT
formula in Equation (6). This may have a significant impact on the performance of the UCT in simultaneous move games.
Consider the matrix game at the right of Fig. 2. This game has only one NE: (a, A). However, if UCT selects the first or the
last action among the options with the same value, it will always get only the utility O and the bias term will cause the
players to round-robin over the diagonal indefinitely. This is clearly not optimal, as each player can then improve by playing
first action with probability 1. However, if we choose the action to play randomly among the tied actions (where “tied”
could be defined as being within a small tolerance gap), UCT will quickly converge to the optimal solution in this game.
We experimentally analyze the impact of this randomization on the example used in [14] and show that if a randomized
variant of UCT is used, the algorithm still does not converge to a NE but does converge to a strategy that is much closer to
a NE than without randomization (see Subsection 6.3). Therefore, unless stated otherwise, we use the randomized variant
in our implementation.

Even though UCT is not guaranteed to converge to the optimal solution, it is often very successful in practice. It has been
used in general game playing [54], in the card game Urban Rivals [8], and in Tron [57].

4.4.2. Exponential-weight algorithm for exploration and exploitation

Another common choice of a selection function is to use the Exponential-weight algorithm for Exploration and Exploita-
tion (Exp3) [56] independently for each of the players. Unlike with UCT, two players using Exp3 in a single stage matrix
game are guaranteed to converge to a Nash equilibrium [56]; hence, we can expect a good performance of this selection
function even in multi-stage games. In Exp3, each player maintains an estimate of the sum of rewards for each action, de-
noted )A(ai. The joint action produced by SELECT is composed of an action independently selected for each player. An action is
selected by sampling from a probability distribution over actions. Define y to be the probability of exploring, i.e., choosing
an action uniformly. The probability of selecting action a; is proportional to the exponential of the reward estimates:

oi(ai) = a y)eXp(anli) + Y , Where n = y_
D biedis) XPMXp)  TAIG)] | Ai ()]
This standard formulation of Exp3 is suitable for deriving its properties, but a straightforward implementation of this
formula leads to problems with a numerical stability. Both the numerator and the denominator of the fraction can quickly
become too large. For this reason, other formulations have been suggested, e.g., in [11] and [50] that are more numerically
stable. We use the following equivalent formulation from [50]:

(1—-y) y
Zb,‘GAi(S) exP(’?()A(b,» - )A(a,»)) |Al (S)|

The update after selecting actions (a1, az) and obtaining a simulation result v{ normalizes the result to the unit interval
for each player by
Vi — Vnmi
up %w; uz < (1 —uy), (10)

Vmax — Vmin

(8)

oi(a;) =

(9)

and adds to the corresponding reward sum estimates the reward divided by the probability that the action was played by
the player using

A u;
< Xg + ——. (11)

X
‘ oi(a;)

i
Dividing the value by the probability of selecting the corresponding action makes )A(ai estimate the sum of rewards over all
iterations, not only the ones where a; was selected.

As the final strategy, after all iterations are executed, the algorithm computes the average strategy of the Exp3 algorithm
over all iterations for each player. Let ol.t be the strategy used at time t. After T iterations in a particular node, the average
strategy is

T
~r, 1 I
5/ @)=+ ;ai (@;). (12)

In our implementation, we maintain the cumulative sum and normalize it to obtain the average strategy.

Previous work [8] suggests removing the samples caused by the exploration first. This modification proved to be useful
also in our experiments and it has been shown not to reduce the performance substantially in the worst case [59], so as
the resulting final mixed strategy, we use
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_ - 14
i(aj 0,0i(a;) — , 13
a(a)<—max< oi(a;) IAi(s)|> (13)

normalized to sum to one.

4.4.3. Regret matching

The last selection function we propose is inspired by regret matching [73], which forms the bases of the successful
algorithms for solving imperfect information games [28]. This variant applies regret matching to the current estimated
matrix game at each stage and was first used in [11]. The statistics stored by this algorithm in each node are the visit count
of each joint action (ng,q,) and the sum of rewards for each joint action (Xg,q, ).> Furthermore, the algorithm for each player
i maintains a cumulative regret rfli for having played al.t instead of a; € A;(s) on iteration t, initially set to 0. The regret

values r("li are maintained separately by each player. However, the updates use a value that is a function of the joint action
space.

On iteration t, function SELECT first builds each player’s current strategies from the cumulative regrets. Define x* =
max(x, 0),

rit 1 :
0i(a)) = —5— if R, > 0 otherwise —— . where R, = Y rt. (14)
sum | Ai(s)] biaAs)

The main idea is to adjust the strategy by assigning the probability to actions proportionally to the regret of having not
taken them over the long-term. To ensure exploration, a sampling procedure similar to Equation (8) is used to select action
a; with probability y/|.A;(s)| + (1 — y)oi(a;).

UPDATE adds the regret accumulated at the iteration to the regret tables ri. Suppose joint action (ai, ay) is sampled from

the selection policy and utility uq is returned from the recursive call on line 9. Label reward(bq, by) = Xoyby if (b1,b2) #

Np1by
(ay, ay), or uy otherwise. The updates to the regret are:
Vb1 € Ai(s), 1 <1 + (reward(by, az) — uy), (15)
Vby € Ay(s), 15, <17, — (reward(ay, by) — uy). (16)

After all simulations, the strategy to play in state s is defined by the mean strategy used in the corresponding node
(Equation (12)).

4.4.4. Theoretical properties

While the completeness of the exact algorithms is based on the Markov property and backward induction, the concept
of the completeness is less clear for the sampling algorithms due to the randomization. Instead, we discuss a form of
a probabilistic completeness. Unfortunately, none of the variants of this algorithm introduced above has been proven to
eventually converge to a Nash equilibrium. If the algorithm is instantiated by UCT, Shafiei et al. [14] have shown that the
algorithm converges to a stable strategy, which is not close to a Nash equilibrium. We replicate the experiment below and
note that this is the case only for the deterministic version of UCT. A randomized version of UCT with a well selected
exploration parameter empirically converges close to the equilibrium strategy, but then in some games oscillates and does
not converge further.

The only known theoretical result about SM-MCTS directly applicable to the algorithms in this paper is negative, and it
has been proven in [59].

Theorem 4.5. There are games, in which SM-MCTS instantiated by any regret minimizing selection function with a constant exploration
y cannot converge to a strategy that would be an €-Nash equilibrium for an € < y D, where D is the depth of the game tree.

The main idea of the proof is to define a specific class of games (see Example 2 in [59]), in which the exploration in a
greater depth of the game tree causes a bias in the values observed in the higher levels of the tree, consequently leading to
an incorrect decision in the root.

In order to obtain positive formal results about the convergence of SM-MCTS-like algorithms, the authors in [59] either
add an additional averaging step to the algorithm (that makes it significantly slower in practical games used in benchmarks),
or assume additional non-trivial technical properties about the selection function, which are not known to hold for any of
the selection functions above.

As for computational complexity, the time cost per node is linear in |.A4;| for UCT and RM. The time cost per node is
quadratic in the case of Exp3 due to the numerically stable update rule (Equation (9)). The memory required per node is
linear for UCT and Exp3, and quadratic in |.A;| for RM due to storing estimates of each child subgame. This can be easily
avoided by storing the mean estimates directly in the children.

5 Note that Ng,a, and Xgq,q, correspond to ny and Xy from Fig. 6.
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4.5. Counterfactual regret minimization and outcome sampling

Finally, we describe algorithms based directly on Counterfactual Regret (CFR, a notion of regret at the information set
level), first designed for extensive-form games with imperfect information [28].

Recall from Section 2 the set of histories . Here we also use Z defined previously as the set of terminal states, to refer
to the set of terminal histories since there is a one-to-one correspondence between them. A history is a sequence of actions
taken by all players (including chance) that starts from the beginning of the game. A history h’ is a prefix of another history
h, denoted h’' C h, if h contains h’ as a prefix sequence of actions. The counterfactual value of reaching information set I is
the expected payoff given that player i played to reach I, the opponent played o_; and both players played o after I was
reached:

vill,o)y=Y_ 7%’ (h, 2)ui(2), (17)

(h,2)eZ;

where Z; ={(h,2) | ze Z,hel,hCz}, 7% (h) is the product of probabilities to reach h under o excluding player i’s (i.e.,
including chance) and 79 (h, h"), where h C I, is the probability of all actions taken along the path from h to h’. Suppose, at
time ¢, players play with strategy profile o*. Define o} , as identical to of except at [ action a is taken with probability 1.
Player i’s counterfactual regret of not taking a € A(I) at time t is rl?(l,a) = V,'(I,O',t_m) — vi(I,ot). The CFR algorithm
maintains the cumulative regret R,T (I,a) = Zthl rf (I, a), for every action at every information set. Then, the distribution at
each information set for the next iteration o’ +1(I) is obtained individually using regret-matching [73]. The distribution is
proportional to the positive portion of the individual actions’ regret:
T,+ T,+ e pT,+
R; (I,a)/Ri’sum(I) 1fRi’5um(I) >0

O_T+1 (I, a) —
1/1AD] otherwise,

where xT = max(0, x) for any term x, and R,.T;:m
information set the average strategy profile

Y e (hotd,a)
Yl wf ()

where 77 [(I) =D her Y [(h). The combination of the counterfactual regret minimizers in individual information sets also
minimizes the overall average regret [28], and hence due to the Folk Theorem the average profile is a 2e-equilibrium, with
€e—>0as T— oo.

Monte Carlo Counterfactual Regret Minimization (MCCFR) applies CFR to sampled portions of the games [58]. In the
outcome sampling (0S) variant, a single terminal history z € Z is sampled in each iteration. The algorithm updates the regret
in the information sets visited along z using the sampled counterfactual value,

D=2 gean Rl.T’+(I,a/). Furthermore, the algorithm maintains for each

a7, a)= (18)

L% (W7 (h,2)ui(z) if (h,2) € Z

Vi(l,0) = g@ (19)

otherwise,

where q(z) is the probability of sampling z. As long as every z € Z has a non-zero probability of being sampled, v;(I, o) is
an unbiased estimate of v(I, o) due to the importance sampling correction (1/q(z)). For this reason, applying CFR updates
using these sampled counterfactual regrets Ff(],a) = \7,'(1,0,;6,) — v;(I, o) on the sampled information sets values also
eventually converges to the approximate equilibrium of the game with high probability. The required number of iterations
for convergence is much larger, but each iteration is much faster.

4.5.1. Online Outcome Sampling

We now present Online Outcome Sampling for simultaneous move games (SM-00S). Note, importantly, that SM-0OS is
different from the general SM-MCTS algorithms presented in Subsection 4.4. SM-0O0S is an adaptation of a more general
algorithm which has been proposed for search in imperfect information games [13]. However, since simultaneous move
games are decomposable into subgames, the typical problems encountered in the fully imperfect information search setting
are not present here. Hence, we present a simpler OOS specifically intended for simultaneous move games.

Online Outcome Sampling resembles MCTS in that it builds its tree incrementally. However, the algorithm is based on
MCCER, from Subsection 4.5, rather than on stochastic and adversarial bandit algorithms, such as UCB and Exp3. A previous
version of this algorithm for simultaneous move games was presented by Lanctot et al. [11]. The version presented here is
simpler for implementation and it further reduces the variance of the regret estimates, which leads to a faster convergence
and better game play. The main novelty in this version is that in any state s, it defines the counterfactual values as if the
game actually started in s. This is possible in simultaneous move games, because the optimal strategy in any state depends
only on the part of the game below the state.

The pseudocode is given in Algorithm 6. The game tree is incrementally built, starting only with one node for the root
game state. Each node stores for each player: R;(s,a) the cumulative regret (denoted RiT (I,a) above) of player i in state s
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input : s - current state of the game; i - regret updating player
output: (x;,q;, u;): x; — i’s contribution to tail probability (77 (h, z)); q; - i’s contribution to sample probability (q(z)); u; - utility of the sampled
leaf
if s € Z then return (1, 1, u;(s))
else if s € C is a chance node then
Sample s’ from A,(s)
return SM-O0S(s', i)
if s is already in the OOS tree then
o; < RegretMatching(R;(s))
Va e Ai(s):0/(s,a) < (1 —€)oi(s,a) + IATTM
Sample action g; from o}
o_j < RegretMatching(R_;(s))
Sample action a_; from o_;
(xi, qi, uj) < SM-OOS(T (s,a;,a_;),i)
else
Add s to the tree

. 1
Va e A;i(s) : 0i(s,a) < FVol

O NOU A WN =

-
B Wi = o

—
(5

Sample action a; from o;
) 1
Vae A_i(s):0_i(s,a) < Fwia)l

-
N S

Sample action a_; from o_;
(Xi, qi, uj) < OOS-Rollout(7 (s, a;,a_;))
W < u;-xi/qi
Ri(s. @) < Ri(s, ) + 520 W
Va e A;i(s)\ {ai} : Ri(s,a) < Ri(s,a) — %W
S_i(s) < S—i(s)t+ o
return (x - 0i (s, a;),q - 0/ (s, a;), u;)

Algorithm 6: Simultaneous Move Online Outcome Sampling (SM-00S).

NN = =
- o © ®

NN
W N

and action a, and average strategy table S;(s), which stores the cumulative average strategy contribution for each action.
Normalizing S; gives the resulting strategy of the algorithm for player i.

The algorithm runs iterations from a starting state until it uses the given time limit. A single iteration is depicted in
Algorithm 6, which recursively descends down the tree. In the root of the game, the function is run as SM-OOS(root, i),
alternating player i € {1, 2} in each iteration. If the function reaches a terminal history of the game (line 1), it returns the
utility of the terminal node for player i, and 1 for both the tail and sample probability contribution of i. If it reaches a chance
node, it recursively continues after a randomly selected chance outcome (lines 3-4). If none of the first two conditions holds,
the algorithm reaches a state where the players make decisions. If this state is already included in the incrementally built
tree (line 5), the following state is selected based on the cumulative regrets stored in the tree by regret matching with
€-on-policy sampling strategy for player i (lines 6-8) and the exact regret matching strategy for player —i (lines 9-11). The
recursive call on line 11 then continues the iteration until the end of the game tree. If the reached node is not in the tree,
it is added (line 13) and an action for each player is selected based on the uniform distribution (lines 14-16). Afterwards,
a random rollout of the game until a terminal node is initiated on line 18. The rollout is similar to the MCTS case, but
in addition, it has to compute the tail probability x; and the sampling probability q; required to compute the sampled
counterfactual value. For example, if in the rollout player i acts n; times, and each time samples uniformly from exactly b
actions, then x; = b]Tz Regardless of whether the current node was in the tree, the algorithm updates the regret table of
player i based on the simplified definition of sampled counterfactual regret for simultaneous move games (lines 19-21) and
the mean strategy of player —i (line 22). Finally, the function returns the updated probabilities to the upper level of the
tree.

SM-00S appears similar to SM-MCTS using the RM selection mechanism (Subsection 4.4.3). However, there are a number
of differences: SM-OOS uses importance sampling of a sequence of probabilities to keep its estimate unbiased, but will suffer
a higher variance than RM which uses only a one-step correction. RM does not distinguish whether its utility comes from
exploration or otherwise, whereas SM-OO0S separates the two into the tail probabilities of the strategy for the sequence
sampled (x;) and the sampling probability of the sequence (g;); when oj(s,a) =0, due to exploration, then x; =0 and the
value of the update increments are also 0. RM uses the means from the subgames as estimates of utility for those subgames,
which could introduce some bias in the estimators. We further discuss the comparison in Subsection 6.6.

4.5.2. Theoretical properties

SM-00S, contrary to the MCTS-based algorithms, has finite-time probabilistic convergence guarantees. Since SM-0O0S is
designed to update each node of the game in the same way as the root of the game, we present the following theorem from
the perspective of the root of the entire game. It holds also for starting the algorithm in non-root nodes, but the values of
|S| and § can be adapted to represent the subgame.
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. . . . A|IS;2a2 .
Theorem 4.6. When SM-00S is run from the root of the game, with probability (1 — p) an €-NE is reached after O(llllja%)
iterations, where | A| = Maxses, icf1,2) [Ai(S)], Aui = Max, yez [ui(Z') — ui(2)|, and 8 is the smallest probability of sampling any
single leaf in the subtree of the root node.

Proof. The proof is composed of two observations. First, the whole game tree is eventually built by the algorithm. A direct
consequence of [59, Lemma 40] is that the tree of depth D is built with probability (1 — p1) in less than

A1 .
16D o max(D, 4logpy" +4) (20)

iterations by an algorithm with a fixed exploration y. This is the number of iterations needed for each leaf in the game to
be visited at least D times.

Second, during these and the following iterations, the algorithm performs exactly the same updates in the nodes con-
tained in memory, as the Outcome Sampling (0S) MCCFR [58]. If some nodes below a state were not added to the tree
yet, a uniform strategy is assumed in these states for the regret updates. Since CFR minimizes the counterfactual regret in
an individual information set regardless of the strategies in other information sets, the samples acquired during the tree
building cannot have a negative impact on the rate of regret minimization in individual states. Therefore, we can use [74,
Theorem 4] that bounds the number of iterations needed for OS as an offline solver with the complete game in the memory,

starting after the tree has been built with a high probability. It states that with probability (1 — p;) an €-NE is reached after

S 272
O(%) iterations.
We can see that the OS bound dominates the time required to build the tree. A single explorative action is taken with
probability y /|.A|, and when sampling a terminal z only due to exploration, } = (‘yﬂ)w, and D2 < |A|?P € 0(|S|) for any
A, and we can set p; = p2 = p/2. Then the probability that both the tree will be built and the convergence will be achieved

can be bounded by (1 —p1)(1—p2)>(1—p). O
As for computational complexity, the time cost as well as the memory required per node is linear in |.4;| in SM-OOS.
5. Online search

In this section, we describe online adaptations of the algorithms described in the previous section and their application
to any-time search given a limited time budget.

5.1. Iterative deepening backward induction algorithms

Minimax search [5] has been used with much success in sequential perfect information games, leading to super-human
chess Al, one of the key advances of artificial intelligence [1]. Minimax search is an online application of backward induction
run on a heuristically approximated game. The game is approximated by searching to a fixed depth limit d, treating the
states at depth d as terminal states, evaluating their values using a heuristic evaluation function, eval(s). The main focus is
to compute an optimal strategy for this heuristic approximation of the original game.

Similarly to the perfect information case, we can modify our algorithms based on backward induction for simultaneous
move games. Under the limited time settings, a search algorithm is given a fixed time budget to compute a strategy. We use
the classic approach of iterative deepening [5] that runs several depth-limited searches, starting at a low depth and iteratively
increasing the depth of each successive search. Note that the depth limit of d means that the algorithm evaluates d joint
actions (i.e., pairs of simultaneous actions) possibly preceded by a chance outcome if present.

In iterative deepening, the algorithm by default starts at depth d =1 and gradually increases d until there is no more
time. In our implementation of iterative deepening we follow a natural observation that saves the computation time between
different searches: a solution computed in state s by player i to depth d contains an optimal solution on d — 1 approximation
of subgames starting in possible next states 7 (s,r,c), where r is the action selected for the player performing the search
and c is the action of the opponent. Therefore, when the iterative deepening algorithm starts a new search in state s’ €
T (s,r,c), it can often begin at depth d. This can require space exponential in the depth d in the worst case, but it is
beneficial in practical experiments. When information is missing due to pruning, then a search starts with the lowest
possible depth d = 1.

5.2. Online search using sampling algorithms

Using sampling algorithms in the online settings is simpler than with the algorithms based on backward induction, since
no significant changes are needed and the algorithms do not need an evaluation function. The algorithms are stopped after
a given time limit and the move to play or the complete strategy is extracted as described for each sampling algorithm in
Section 4.
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There are two concepts that have to be discussed. First, the algorithms can re-use all information and statistics gained in
the previous iterations; hence, after returning a move and advancing to a succeeding state of the game s’, the subtree of the
incrementally built tree rooted in s’ is preserved and used in the next iterations. Note that reusing the previously gathered
statistics in the sub-tree rooted in s’ has no potentially negative effect on any variant of the MCTS algorithms since the
behavior of the algorithms is exactly the same when the iteration is started in this node, and if this node is reached from
its predecessor. This is also true in SM-OOS because of the structure of simultaneous move games; a similar adaptation of
the algorithm is not possible in more general imperfect information games [13].

Second, even though the sampling algorithms do not require the use of domain-specific knowledge for online search,
they often incorporate this type of knowledge to better guide the sampling and thus to evaluate more relevant parts of the
state space [75-79]. When directly comparing approximative sampling algorithms with the backward induction algorithms
using an evaluation function, the outcome of such a comparison strictly depends on the quality of the evaluation function.
In a very large game, an accurate evaluation function greatly benefits the backward induction algorithm. Therefore, we also
use sampling algorithms combined with an evaluation function. The integration is done via replacing the random rollout
by directly using the value of the evaluation function in the current state for MCTS and OOS algorithms; i.e., Rollout(s) in
line 14 of Algorithm 5 or line 18 of Algorithm 6 is replaced by eval(s). This has been commonly used in several previous
works in Monte Carlo search [76,78-81].

Again, such a modification does not generally affect theoretical properties of the algorithms - the proofs of the con-
vergence assume that a whole game tree is eventually built and any statistics in the nodes collected before (either by
random rollouts or evaluation functions) can eventually be over-weighted. For MCTS algorithms, there is no reason to be-
lieve that a good evaluation function would give a worse estimate of the quality of a sub-tree using random play-outs.
The only complication could be with the way the probabilities are computed in OOS. The weight of the sample in Equa-
tion (19) is multiplied by the probability of reaching the terminal state z from some history h, 7 (h, z). However, the “tail”
probability is canceled because the rollout policy is fixed and so its contribution to q(z) is identical to its contribution
to w9 (h, 2).

6. Empirical evaluation

We now present a thorough experimental evaluation of the described algorithms. We analyze both the offline and the
online case on a collection of games inspired by previous work, and randomly generated games. After describing rules and
properties of the games, we present the results for the offline strategy computation and we follow with the online game

playing.
6.1. Experimental settings

We start with an experimental evaluation of a well-known example of Biased Rock, Paper, Scissors [14] that often serves
as an example that MCTS with UCT selection function does not converge to a Nash equilibrium. We reproduce this ex-
periment and show the differences in performance of the sampling algorithms - primarily the impact of randomization in
UCT. Then, we compare the offline performance of the algorithms on other domains. For each domain, we first analyze the
exact algorithms and measure the computation time taken to solve a particular instance of the game. Afterward, we analyze
the convergence of the approximative algorithms. At a specified time step the algorithm produces strategies (o1, 02). Using
best responses we compute error(oi, 03) = MaX,/ ey, IEZN(J{,GZ)[ul(z)] + MaXe 5, IEZN(Jl,GZ/)[uz(z)], which is equal to 0 at
a Nash equilibrium. In each offline convergence setting, the reported values are means over at least 20 runs of each sam-
pling algorithm on a single instance of the game. We compared at least 3 different settings for each exploration parameter
and present the result only for the best exploration parameter. For 00S, Exp3, and RM the best values for the parameters
were almost always 0.6, 0.1, and 0.1, respectively. The only exception was Goofspiel with chance, where both Exp3 and RM
converge faster with the parameter set to 0.3. We give the optimal value for UCT constant C in each setting.

Finally, we turn to the comparison of the algorithms in the online setting and we present results from head-to-head
tournaments in each game. Here, we use larger instances of each game and compare the algorithms based on actual game
play with a limited time for each move. The algorithms based on backward induction need to use a domain-specific eval-
uation function in the online setting. This may give these algorithms an advantage if the evaluation function is accurate.
Therefore, we also run the sampling-based algorithms with an evaluation function for selected domains to compare the
algorithms in a fairer setting. Moreover, we have also tuned parameters for the sampling algorithms specifically for each
domain. Reported results are means over at least 1000 matches for each pair of algorithms.

Each of the described algorithms was implemented in a generic framework for modeling and solving extensive-form
games.® We are interested in the performance of the algorithms and their ability to find or approximate the optimal be-
havior. Therefore, with the exception of the evaluation function used in selected online experiments, no algorithm uses any
domain-specific knowledge.

6 Source code is available at the web page of the authors. We use IBM CPLEX 12.5 to solve the linear programs.
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Fig. 7. Biased Rock, Paper, Scissors matrix game from [14].
6.2. Domains

In this subsection, we describe the six domains used in our experiments. The games in our collection differ in charac-
teristics, such as the number of available actions for each player (i.e., the branching factor), the maximal depth, and the
number of possible utility values. Moreover, the games also differ in the randomization factor - i.e., how often it is necessary
to use mixed strategies and whether this randomization occurs at the beginning of the game, near the end of the game, or
is spread throughout the whole course of the game.

For each domain we also describe the evaluation function used in the online experiments. Note that we are not seeking
the best-performing algorithm for a particular game; hence, we have not aimed for the most accurate evaluation functions
for each game. We intentionally use evaluation functions of different quality that allow us to compare the differences
between the algorithms from this perspective as well.

Biased Rock, Paper, Scissors. BRPS is a payoff-skewed version of the one-shot game Rock, Paper, Scissors shown in Fig. 7.
This game was introduced in [14], and it was shown that the visit count distribution of UCT converges to a fixed balanced
situation, but not one that corresponds to the optimal mixed strategy of (11—6, %, %).

Goofspiel. Goofspiel is a card game that appears as a common example of a simultaneous move game (e.g., [11,35,37,38]).
There are 3 identical decks of d cards with values {0, ..., (d — 1)}, one for chance and one for each player, where d is a
parameter of the game. Standard Goofspiel is played with 13 cards. The game is played in rounds: at the beginning of each
round, chance reveals one card from its deck and both players bid for the card by simultaneously selecting (and removing)
a card from their hands. A player that selects a higher card wins the round and receives a number of points equal to the
value of the chance’s card. In case both players select the card with the same value, the chance’s card is discarded. When
there are no more cards to be played, the winner of the game is chosen based on the sum of card values he received during
the whole game.

There are two parameters of the game that can be altered to create four different variants of Goofspiel. The first pa-
rameter determines whether or not the chance player is included. We can use an assumption made in the previous work
that used Goofspiel as a benchmark for evaluation of the exact offline algorithms [38], where the sequence of the cards is
randomly chosen at the beginning of the game and it is known to both players. We refer to this setting as the fixed sequence
of cards. Alternatively, we can treat chance in the standard way, where chance nodes determine the card that gets drawn.
We refer to this setting as the stochastic sequence. The games are fairly similar in terms of performance of the algorithms,
however, the second variant induces a considerably larger game tree. The second parameter relates to the utility functions.
Either we treat the game as a win-tie-lose game (i.e., the players receive utility from {—1,0, 1}), or the utility values for
the players are equal to the points they gain during the game.

Goofspiel forms game trees with interesting properties. First unique feature is that the number of actions for each player
is uniformly decreasing by 1 with the depth. Secondly, algorithms must randomize in NE strategies, and this randomization
is present throughout the whole course of the game. As an example, the following table depicts the number of states with
pure strategies and mixed strategies for each depth in a subgame-perfect NE calculated by backward induction for Goofspiel
with 5 cards and a fixed sequence of cards:

Depth 0 1 2 3 4
Pure 0 17 334 3,354 14,400
Mixed 1 8 66 246 0

We can see that the relative number of states with mixed strategies slowly decreases, however, players need to mix
throughout the whole game. In the last round, each player has only a single card; hence, there cannot be any mixed
strategy.

Our hand-tuned evaluation function used in Goofspiel takes into consideration the remaining cards in the deck weighted
by a chance of winning these cards depending on the remaining cards in hand for each player. Moreover, if the position is
clearly winning for one of the players (there is not enough cards to change the current score), the evaluation function is set
to maximal (or minimal) value. The formal definition follows (c; is the sum of values of the remaining cards of player i):

u1(s) ifc1+c2=0;

tanh (ﬁ

Cy .
v Wdﬂ)) otherwise.

eval(s) = {
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For the win-tie-lose case we use tanh to scale the evaluation function into the interval [—1, 1]; this function is omitted in
the exact point case.

Oshi-Zumo. Oshi-Zumo (also called Alesia in [22]) is a board game that has been analyzed from the perspective of computa-
tional game theory in [36]. There are two players in the game, both starting with N coins, and there is a board represented
as a one-dimensional playing field with 2K + 1 locations (indexed O,...,2K). At the beginning, there is a stone (or a
wrestler) located in the center of the playing field (i.e., at position K). During each move, both players simultaneously place
their bid from the amount of coins they have (but at least M if they still have some coins). Afterward, the bids are revealed,
both bids are subtracted from the number of coins of the players, and the highest bidder can push the wrestler one location
towards the opponent’s side. If the bids are the same, the wrestler does not move. The game proceeds until the money
runs out for both players, or the wrestler is pushed out of the field. The winner is determined based on the position of
the wrestler — the player in whose half the wrestler is located loses the game. If the final position of the wrestler is the
center, the game is a draw. Again, we have examined two different settings of the utility values: they are either restricted
to win-tie-lose values {—1, 0, 1}, or they correspond to the relative position of the wrestler {wrestler — K, K — wrestler}. In
the experiments we varied the number of coins and parameter K.

Many instances of the Oshi-Zumo game have a pure Nash equilibrium. With the increasing number of the coins the
players need to use mixed strategies, however, mixing is typically required only at the beginning of the game. As an ex-
ample, the following table depicts the number of states with pure strategies and mixed strategies in a subgame-perfect NE
calculated by backward induction for Oshi-Zumo with N = 10 coins, K = 3, and minimal bid M = 1. The results show that
there are very few states where mixed strategies are required, and they are present only at the beginning of the game tree.
Also note, that contrary to Goofspiel, not all branches have the same length.

Depth 0 1 2 3 4 5 6 7 8 9
Pure 1 98 2,012 14,767 48,538 79,926 69,938 33,538 8,351 861
Mixed 0 1 4 17 8 0 0 0 0 0

The evaluation function used in Oshi-Zumo takes into consideration two components: (1) the current position of the
wrestler and, (2) the remaining coins for each player. Formally:

2 3

where b =1 if coins; > coins; and wrestler > K, and at least one of the inequalities is strict; or b = —1 if coins; < coins;
and wrestler < K, and at least one of the inequalities is strict; b = 0 otherwise. Again, we use tanh to scale the value into
the interval [—1, 1] only in the win-tie-lose case.

1 (coins] — coinsy

b
eval(s) = tanh (— + = M + wrestler — K)) ,

Pursuit-evasion games. Another important class of games is pursuit-evasion games (for example, see [82]). There is a single
evader and a pursuer that controls 2 pursuing units on a four-connected grid in our pursuit-evasion game. Since all units
move simultaneously, the game has larger branching factor than Goofspiel (up to 16 actions for the pursuer). The evader
wins if she successfully avoids the units of the pursuer for the whole game. The pursuer wins if her units successfully
capture the evader. The evader is captured if either her position is the same as the position of a pursuing unit, or the
evader used the same edge as a pursuing unit (in the opposite direction). The game is win-loss and the players receive
utility from the set {—1, 1}. We use 3 different square four-connected grid-graphs (with the size of a side 4, 5, and 10
nodes) for the experiments without any obstacles or holes. In the experiments we varied the maximum length of the game
d and we altered the starting positions of the players (the distance between the pursuers and the evader was always at

most %d moves, in order to provide a possibility for the pursuers to capture the evader).

Similarly to Oshi-Zumo, many instances of pursuit-evasion games have a pure Nash equilibrium. However, the random-
ization can be required towards the actual end of the game in order to capture the evader. Therefore, depending on the
length of the game and the distance between the units, there might be many states that do not require mixed strategies
(the units of the pursuers are simply going towards the evader). Once the units are close to each other, the game may
require mixed strategies for the final coordination. This can be seen on our small example on a graph with 4 x 4 nodes and
depth 5:

Depth 0 1 2 3 4
Pure 1 12 261 7,656 241,986
Mixed 0 0 63 1,008 6,726

The evaluation function used in pursuit-evasion games takes into consideration the distance between the units of the
pursuer and the evader (denoted distance; for the distance in moves of the game between the jth unit of the pursuer and
the evader). Formally:
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eval(s) = min(distance;, distance;) + 0.01 - max(distance;, distance;)
a 1.01-(w+1) ’

where w and [ are dimensions of the grid graph.

Random/synthetic games. Finally, we also use randomly generated games to be able to experiment with additional param-
eters of the game, mainly larger utility values and their correlation. In randomly generated games, we fixed the number of
actions that the players can play in each stage to 4 and 5 (the results were similar for different branching factors) and we
varied the depth of the game tree. We use 2 different methods for randomly assigning the utility values to the terminal
states of the game: (1) the utility values are uniformly selected from the interval [0, 1]; (2) we randomly assign either —1,
0, or +1 value to each joint action (pair of actions) and the utility value in a leaf is a sum of all the values on the edges on
the path from the root of the game tree to the leaf. The first method produces extremely difficult games for pruning using
either alpha-beta, or the double-oracle algorithm, since there is no correlation between actions and utility values in sibling
leaves. The latter method is based on random P-games [83] and creates more realistic games using the intuition of good and
bad moves.

Randomly generated games represent games that require mixed strategies in most of the states. This holds even for
the games of the second type with correlated utility values in the leaves. The following table shows the number of states
depending on the depth for a randomly generated game of depth 5 with 4 actions available to both players in each state:

Depth 0 1 2 3 4
Pure 0 2 29 665 20,093
Mixed 1 14 227 3,431 45,443

Only the second type of randomly generated games is used in the online setting. The evaluation function used in this
case is computed similarly to the utility value and it is equal to the sum of values on the edges from the root to the current
node.

Tron. Tron is a two-player simultaneous move game played on a discrete grid, possibly obstructed by walls [55,57,60]. At
each step, both players move to adjacent nodes and a wall is placed to the original positions of the players. If a player hits
the wall or the opponent, the game ends. The goal of both players is to survive as long as possible. If both players move
into a wall, off the board, or into each other on the same turn, the game ends in a draw. The utility is +1 for a win, 0 for
a draw, and —1 for a loss. In the experiments, we used an empty grid with no obstacles and various sizes of the grid.

Similarly to pursuit-evasion games, there are many instances of Tron that have pure NE. However, even if mixed strate-
gies are required, they appear in the middle of the game once both players reach the center of the board and compete over
the advantage of possibly being able to occupy more squares. Once this is determined, the endgame can be solved in pure
strategies since it typically consists of filling the available space in an optimal ordering one square at a time. The following
table comparing the number of states demonstrates this characteristics of Tron on a 5 x 6 grid:

Depth 0 1 2 3 4 5
Pure 1 4 14 100 565 2,598
Mixed 0 0 2 0 9 7
6 7 8 9 10 11 12 13
9,508 25,964 54,304 83,624 87,009 63,642 23,296 3,127
51 92 106 121 74 0 0 0

The evaluation function is based on how much space is “owned” by each player, which is a more accurate version of the
space estimation heuristic [84] that was used in [60]. A cell is owned by player i if it can be reached by player i before
the opponent. These values are computed using an efficient flood-fill algorithm whose sources start from the two players’
current positions:

d; — d
eval(s):tanh(ownte 1~ owne 2)

5
6.3. Non-convergence and random tie-breaking in UCT

We first revisit the counter-example given in [14] showing that UCT does not converge to an equilibrium strategy in
Biased Rock, Paper, Scissors when using a mixed strategy created by normalizing the visit counts. We expand on this
result, showing the effect of the synchronization occurring when the UCT selection mechanism is fully deterministic (see
Subsection 4.4.1).
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Fig. 8. Exploitability of strategies of recommended by MCTS-UCT over time in Biased Rock, Paper, Scissors. Vertical axis represents exploitability.

We run SM-MCTS with UCT, Exp3, and Regret Matching selection functions on Biased Rock, Paper, Scissors for 100 million
(108) iterations, measuring the exploitability of the strategy recommended by each variant at regular intervals. The results
are shown in Figs. 8 and 9.

The first observation is that deterministic UCT does not seem to converge to a low-exploitability strategy (see Fig. 8, top
figure). The exploitability of the strategies of Exp3 and RM variants do converge to low-exploitability strategies (see Fig. 9),
and the resulting approximation depends on the amount of exploration. If less exploration is used, then the resulting
strategy is less exploitable, which is natural in the case of a single state. RM does seem to converge slightly faster than
Exp3, as we will see in the remaining domains as well.

We then tried adding a stochastic tie-breaking rule to the UCT selection mechanism typically used in MCTS implemen-
tations, which chooses an action randomly when the scores of the best values are “tied” (less than 0.01 apart). The bottom
figure in Fig. 8 shows the convergence. One particularly striking observation is that this simple addition leads to a large
drop in the resulting exploitability, where the exploitability ranges from [0.5,0.8] in the deterministic case, compared to
[0.01, 0.05] with the stochastic tie-breaking. Therefore, the stochastic tie-breaking is enabled in all of our experiments.

In summary, with this randomization UCT appears to be converging to an approximate equilibrium in this game but not
to an exact equilibrium, which is similar to results of a variant of UCT in Kuhn poker [85].

6.4. Offline equilibrium computation

We now compare the offline performance of the algorithm on all the remaining games. We measure the overall com-
putation time for each of the algorithms and the number of evaluated nodes - i.e., the nodes for which the main method
of the backward induction algorithm executed (nodes evaluated by serialized alpha-beta algorithms are not included in this

count, since they may be evaluated repeatedly). Unless otherwise stated, each data point represents a mean over at least 30
runs.

6.4.1. Goofspiel
We now describe the results for the card game Goofspiel. First, we analyze the games with fixed sequences of the cards.

Exact algorithms with fixed sequences. The results are depicted in Fig. 10 (note the logarithmic vertical scale), where the left
subfigure depicts the results for win-tie-lose utilities and the right subfigure depicts the results for point utilities. We
present the mean results over 10 different fixed sequences. The comparison on the win-tie-lose variant shows that there
is a significant number of subgames with a pure Nash equilibrium that can be computed using the serialized alpha-beta
algorithms. Therefore, the performance of Bl and DO« is fairly similar and the gap only slowly increases in favor of
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Fig. 10. Running times of the exact algorithms on Goofspiel with fixed sequences of cards for increasing size of the deck; subfigure (a) depicts the results
with win-tie-lose utilities, (b) depicts the results with point difference utilities.

DO« S with the increasing size of the game. Since serialized alpha-beta is able to solve a large portion of subgames, both
of these algorithms significantly reduce the number of the states visited by the backward induction algorithm. While BI
evaluates 3.2 x 107 nodes in the setting with 7 cards in more than 2.5 hours, BlaB evaluates only 198,986 nodes in less
than 4 minutes. The performance is further improved by DO« that evaluates on average 79,105 nodes in less than 3
minutes. The overhead is slightly higher in case of DO« 8; hence, the time difference between DO« and Bla 8 is relatively
small compared to the difference in evaluated nodes. Finally, the results show that even the DO algorithm without the
serialized alpha-beta search can improve the performance of Bl. In the setting with 7 cards, DO evaluates more than 6 x 10°
nodes which takes on average almost 30 minutes.

The results for the point utilities are the same for BI, while DO is slightly worse. On the other hand, the success of
serialized alpha-beta algorithms is significantly lower and it takes both algorithms much more time to solve the games of
the same size. With 7 cards, Blae8 evaluates more than 2 x 10® nodes and it takes the algorithm on average 32 minutes to
find the solution. DO« g is still the fastest and it evaluates more than 3 x 10° nodes in less than 13 minutes on average.

The performance of algorithms Bla8 and DO« represent a significant improvement over the results of the pruning
algorithm SMAB presented in [38]. In their work, the number of evaluated nodes was at best around 29%, and the running
time improvement was only marginal.
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Fig. 12. Convergence of the sampling algorithms on Goofspiel with 5 cards and a fixed sequence of cards. The vertical lines correspond to the computation
times for the exact algorithms. (Top) Goofspiel with win-tie-lose utility values; (bottom) Goofspiel with point utilities.

Exact algorithms with a stochastic sequence. Next we compare the exact algorithms in the variant of Goofspiel with standard
chance nodes. Introducing another branching due to moves by chance causes a significant increase in the size of the game
tree. For 7 cards, the game tree has more than 10! nodes, which is 4 orders of magnitude more than in the case with
fixed sequences of cards. The results depicted in Fig. 11 show that the games become quickly too large to solve exactly
and the fastest algorithms solved games with at most 6 cards. Relative performance of the algorithms, however, is similar
to the case with fixed sequences. With win-tie-lose utilities, serialized alpha-beta is again able to find pure NE in most
of the subgames and prunes out a large fraction of the states. For the game with 5 cards, BI evaluates more than 2 x 10°
nodes in almost 10 minutes, while Blaeg evaluates only 17,315 nodes in 27 seconds and DO« evaluates 6,980 nodes in 23
seconds. As before, the serialized alpha-beta algorithm is less helpful in the case with point utilities. Again with 5 cards,
Bla B evaluates 91,419 nodes in more than 100 seconds and DO« 8 evaluates 14,536 nodes in almost 55 seconds.

Sampling algorithms with fixed sequences. We now turn to the analysis of the convergence of the sampling algorithms - i.e.,
their ability to approximate Nash equilibrium strategies of the complete game. Fig. 12 depicts the results for Goofspiel game
with 5 cards with fixed sequence of cards (note the logarithmic horizontal scale). We compare MCTS algorithms with three
different selection functions (UCT, Exp3, and RM), and OOS. The results are means over 30 runs of each algorithm. Due to
the different selection and update functions, the algorithms differ in the number of iterations per second. RM is the fastest
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with more than 2.6 x 10° iterations per second, OOS has around 2 x 10° iterations, UCT 1.9 x 10°, and Exp3 only 5.4 x 10*
iterations.

The results show that OOS converges the fastest out of all sampling algorithms. This is especially noticeable in the
point-utility settings, where none of the other sampling algorithms were approaching zero error due to the exploration.
MCTS with RM selection function is only slightly slower in the win-tie-lose case, however, the other two selection functions
perform worse. While Exp3 eventually converges close to 0 in the win-tie-lose case, the exploitability of UCT decreases
rather slowly and it was still over 0.35 at the time limit of 500 seconds. The best C constant for UCT was 5 in the
win-tie-lose setting, and 10 in the point utility setting. While setting lower constant typically improves the convergence
rate slightly during the first iterations, the final error was always larger. The vertical lines represent the times for the exact
algorithms. In the win-tie-lose case, Bla g is slightly faster and finishes first in 0.64 seconds, followed by DO« B (0.69
seconds), DO (3.1 seconds), and BI (6 seconds). In the point case, DO«g is the fastest (0.97 seconds), followed by Bla g
(1.3 seconds), followed by DO and BI with similar times as in the previous case.

Sampling algorithms with a stochastic sequence. We also performed the experiments in the setting with chance nodes. Due to
the size of the game tree, we have reduced the number of cards to 4, since the size of this game tree is comparable to the
case with 5 cards and a fixed sequence of cards. The results depicted in Fig. 13 show a similar behavior of the sampling
algorithms as observed in the previous case. OOS converges the fastest, followed by RM, and Exp3. The main difference is in
the convergence of UCT, however, this is mostly due to the fact that a pure NE exists in Goofspiel with 4 cards; hence, UCT
can better identify the best action to play and converges faster to a less exploitable strategy than in the case with 5 cards.
Surprisingly, the convergence rates of the algorithms do not change that dramatically with the introduction of point utilities
as in the previous case. The main reason is that the range of the utility values is smaller compared to the previous case
(there is one card less in the present setting and the missing cards has the highest value). For comparison, we again use the
vertical lines to denote times of exact algorithms. Bla8 and DO« 8 are almost equally fast, with DO« 8 being slightly faster,
followed by DO and BL

6.4.2. Pursuit—evasion games

The results on pursuit-evasion games show more significant improvement when comparing DO« 8 and Bla 8 (see Fig. 14).
In all settings, DO« S is significantly the fastest. When we compare the performance on a 5 x 5 graph with depth set to 6,
BI evaluates more than 4.9 x 107 nodes taking more than 13 hours. On the other hand, Bloef evaluates on average 42,001
nodes taking almost 10 minutes (584 seconds). Interestingly, the benefits of a pure integration with alpha-beta search is not
that helpful in this game. This is apparent from the results of DO algorithm that evaluates less than 2 x 10° nodes but it
takes slightly over 9 minutes on average (547 seconds). Finally, DO« S evaluates only 6,692 nodes and it takes the algorithm
less than 3 minutes.
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Fig. 15. Convergence of the sampling algorithms on a pursuit-evasion game, on a 4 x 4 graph, with depth set to 4. The vertical lines correspond to the
computation times for the exact algorithms.

Large parts of these pursuit-evasion games can be solved by the serialized alpha-beta algorithms. These parts typically
correspond to clearly winning, or clearly losing positions for a player; hence, the serialized alpha-beta algorithms are able to
prune a substantial portion of the space. However, since there are only two pursuit units, it is still necessary to use mixed
strategies for a final coordination (capturing the evader close to edge of the graph), and thus mixing strategy occurs near
the end of the game tree. Therefore, serialized alpha-beta is not able to solve all subgames, while double-oracle provides
additional pruning since many of the actions in the subgames are leading to the same outcome and not all of them required
finding equilibrium strategies. This leads to additional reductions in the computation time for DO« 8 compared to Bla8 and
all the other algorithms.

We now turn to the convergence of the sampling algorithms. In terms of the number of iterations per second, again RM
was the fastest and 00S the second fastest with similar performance as in Goofspiel. UCT achieved slightly less (1.7 x 10°
iterations per second), and Exp3 only 2.6 x 10# iterations. The results are depicted in Fig. 15 for the smaller, 4 x 4 graph and
4 moves for each player (note again the logarithmic horizontal scale). The starting positions were selected such that there
does not exist a pure NE strategy in the game. The results again show that OOS is overall the fastest out of all sampling
algorithms. During the first iterations, RM preforms similarly, however, OOS is able to maintain its convergence rate, and
RM starts converging more slowly. UCT again converges to an exploitable strategy with error 1.16 at best in the time limit
of 500 seconds (C = 2). Finally, Exp3 is converging even more slowly than in Goofspiel. The main difference between the
games is the size of the branching factor for the second player (the pursuer controls two simultaneously moving units),
which can cause more difficulties for the sampling algorithms to estimate good strategies.

As before, the vertical lines represent the times for the exact algorithms. In a pursuit-evasion game of this setting,
DO« g is slightly faster and finishes first in 2.77 seconds, following by Bla 8 (2.89 seconds), DO (5.48 seconds), and BI (12.5
seconds).

6.4.3. Oshi-Zumo

Many instances of the Oshi-Zumo game have Nash equilibria in pure strategies regardless of the type of the utility
function. Although this does not hold for all the instances, the sizes of the subgames with pure NE are rather large and
cause a dramatic computation speed-up for both algorithms using the serialized alpha-beta search. If the game does not
have equilibria in pure strategies, the mixed strategies are still required only near the root node and large end-games
are solved using alpha-beta search. Note that this is different than in the pursuit-evasion games, where mixed strategies
were necessary close to the end of the game tree. Fig. 16 depicts the results with the parameter K set to 4 and for
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Fig. 16. Running times of the exact algorithms on Oshi-Zumo with K set to 4 and an increasing number of coins: subfigure (a) depicts the results for binary
utilities, (b) depicts the results with point utilities.

two different settings of the utility function’; either win-tie-lose utilities (left subfigure) or point difference utilities (right
subfigure). In both cases, the graphs show the breaking points when the game stops having an equilibrium in pure strategies
(> 15 coins for each player). The advantage of Bl and DO S algorithms that exploit the serialized variants of alpha-beta
algorithms is dramatic. We can see that both BI and DO scale rather badly. The algorithms were able to scale up to 13
coins in a reasonable time. For setting with K =4 and 13 coins, it takes almost 2 hours for Bl to solve the game (the
algorithm evaluates 1.5 x 107 nodes) regardless of the utility values. DO improves the performance (the algorithm evaluates
2.8 x 10° nodes in 17 minutes for win-tie-lose utilities; the performance is slightly worse for point utilities: 5 x 10° nodes
in 23 minutes). Both Bl and DO« 8, however, solved a single alpha-beta search on each serialization finding a pure NE.
Therefore, their performance is identical and it takes around 1.5 seconds to solve the game for both types of utilities.
Although with an increasing number of coins the algorithms BleS and DO« 8 need to find a mixed Nash equilibrium, their
performance is very similar for both types of utilities. As expected, the case with point utilities is more challenging and the
algorithms scale worse - for 18 coins both algorithms solve the game with win-tie-lose utilities in approximately 1 hour
(Bleg in 50 minutes, DO« in 64). It takes the algorithms around 3 hours to solve the case with point utilities (Bl in
191 minutes, DO« B in 172 minutes).

Turning to the sampling algorithms reveals that the game is difficult to approximate even in the win-tie-lose setting.
Fig. 17 depicts the results for the observed convergence rates of the sampling algorithms for the game with 10 coins, K set
to 3 and the minimum bid set to 1. This is an easy game for DO« and BlaB8 with a pure NE and both of these algorithms
are able to solve the game in less than a second (0.73). However, due to a large branching factor for both players (10 actions
at the root node for each player) all sampling algorithms converge extremely slowly. The performance of the algorithms in
terms of iterations per second is similar to the previous games, however, 00S is slightly better in this case with 1.9 x 10°
iterations per second compared to the RM with 1.6 x 10° iterations per second.

As before, OOS is the best converging algorithm, however, in a given time limit (500 seconds) the reached error was
only slightly below 0.3 (0.29). On the other hand, all of the other sampling algorithms perform significantly worse - RM
ends with error slightly over 1, UCT (C = 2) with 1.50, and Exp3 with 1.88. This confirms our findings from the previous
experiment that increasing the branching factor slows down the convergence rate. Secondly, since there is a pure Nash
equilibrium in this particular game configuration, the convergence of the algorithms is also slower since they essentially
mix the strategy during the iterations in order to explore the unvisited parts of the game tree. Since none of the sampling
algorithms can directly exploit this fact, their performance in offline solving of games like Oshi-Zumo is not compelling. On
the other hand, the existence of pure NE explains the better performance of UCT compared to Exp3 that is forced to explore
more broadly. Moreover, the convergence takes even more time in the point utility case, since the range of the utility values
is larger. OOS is again the fastest and converges to error 0.45 within the time limit, RM to 1.41, UCT (C =4) to 3.1, and
Exp3 to 3.7.

6.4.4. Random games

In the first variant of the randomly generated games we used games with utility values randomly drawn from a uniform
distribution on [0, 1]. Such games represent an extreme case, where neither alpha-beta nor the double-oracle algorithm
can save much computation time, since each action can lead to arbitrarily good or bad terminal states. In these games, BI
is typically the fastest. Even though both Blag and DO« S evaluate marginally fewer nodes (less than 90%), the overhead
of the algorithms (repeated computations of the serialized alpha-beta algorithm, repeatedly solving linear programs, etc.)
causes a slower run time performance in this case.

However, completely random games are rarely instances that need to be solved in practice. The situation changes, when
we use the intuition of good and bad moves and thus add correlation to the utility values. Fig. 18 depicts the results for
two different branching factors 4 and 5 for each player and increasing depth. The results show that DO« outperforms all

7 We have also performed the same experiments with K set to 3, but the conclusions were the same as in case K = 4.
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Fig. 17. Convergence of the sampling algorithms on Oshi-Zumo game with 10 coins, K = 3, and M = 1. The vertical lines correspond to the computation
times for the exact algorithms. (Top) Oshi-Zumo with win-tie-lose utility values; (bottom) Oshi-Zumo with point utilities.

10*1
w10% Algorithm Algorithm
‘;. . BI B[?! R BI BB
e Blo e Blo
£10% 4 DO 4 DO
it DO *DOop
10"
10°1
4

5 6
Depth [-]
(a)

Fig. 18. Running times of the exact algorithms on randomly generated games with increasing depth: subfigure (a) depicts the results with branching factor
set to 4 actions for each player, (b) depicts the results with branching factor 5.

remaining algorithms, although the difference is rather small (still statistically significant). On the other hand, DO without
serialized alpha-beta is not able to outperform BI. This is most likely caused by a larger number of undominated actions
that forces the double-oracle algorithm to enumerate most of the actions in each state. Moreover, this is also demonstrated
by the performance of Bla g that is only slightly better compared to B

The fact that serialized alpha-beta is less successful in randomly generated games is noticeable also when comparing the
number of evaluated nodes. For the case with branching factor set to 4 for both players and depth 7, BI evaluates almost
1.8 x 107 nodes in almost 3.5 hours, while Bl evaluates more than 1 x 107 nodes in almost 3 hours. DO evaluates even
more nodes compared to Bl (1.2 x 107) and it is slower compared to both BI and Blwg. Finally, DOxg evaluates 2 x 106
nodes on average and it takes the algorithm slightly over 80 minutes.

Fig. 19 depicts the results for convergence of the sampling algorithms for a random game with correlated utility values,
branching factor set to 4 and depth 5. The number of iterations per second is similar to the situation in Goofspiel, with
Exp3 being the exception able to achieve more than 6.5 x 10* iterations per second, which is still the lowest number
of iterations. Interestingly, there is a much less difference between the performance of the sampling algorithms in these
games. Since these games are generally more mixed (i.e., NE require to use mixed strategies in many states of the games),
they are much more suitable for the sampling algorithms. OOS can be considered the winner in this setting, however, the
performance of RM is very similar. Again, since the game is more mixed, Exp3 outperforms UCT in the longer run. The
exploration constant for UCT was set to 12 due to a larger utility variance in this setting.
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Fig. 20. Running times of the exact algorithms on Tron with increasing width of the grid graph: subfigure (a) depicts the results with height of the graph
set to width — 1, (b) depicts the results with height = width.

6.4.5. Tron

Performance of the exact algorithms in Tron is affected by the fact that pure NE exist in all smaller instances (the results
are depicted for two different ratios of dimensions of the grid in Fig. 20). Therefore, Bl and DO« 8 are essentially the
same since serialized alpha-beta is able to solve the game. Moreover, since the size of the game increases dramatically with
the increasing size of the grid (the longest branch of the game tree has (0.5 w -1 — 1) joint actions, where w and I are the
dimensions of the grid), the performance of standard BI is very poor. While BI is able to solve the grid 5 x 6 in 96 seconds,
it takes around 30 minutes to solve the 6 x 6 grid. By comparison, DO solves the 6 x 6 instance in 235 seconds, and both
Bla and DO B in 0.6 seconds. Bl and DO« S scale much better and the largest graph these algorithms solved had size
9 x 9 taking almost 2 days to solve.

The size of the game tree in Tron also causes a slow convergence for the sampling algorithms. This is apparent also
in the number of iterations that is lower than before. 0OS is the fastest performing 1.3 x 10° iterations per second, RM
achieves 1.2 x 10°, UCT only 8 x 104, and Exp3 is again the slowest with 7.8 x 10# iterations per second. Fig. 21 depicts
the results for the grid 5 x 6. Consistently with the previous results, OOS performs the best and it is able to converge very
close to an exact solution in 300 seconds. Similarly, both RM and Exp3 are again eventually able to converge to a very small
error, however, it takes them more time and in the time limit they achieve error 0.05, or 0.02 respectively. Finally, UCT
(C =5) performs reasonably well during the first 10 seconds, where the exploitability is better than both RM and Exp3.
This is most likely due to the existence of pure NE, however, the length of the game tree prohibits UCT from converging
and the best error the algorithm was able to achieve in the time limit was equal to 0.68.

6.4.6. Summary of the offline equilibrium computation experiments

The offline comparison of the algorithms offer several conclusions. Among the exact algorithms, DO« is clearly the
best algorithm, since it typically outperforms all other algorithms (especially in pursuit-evasion games and random games).
Although for smaller games (e.g., Goofspiel with 5 cards) Bla8 can be slightly faster, this difference is not significant and
DOw g is never significantly slower compared to BloS.

Among the sampling algorithms, OOS is the clear winner since it is often able to quickly converge to a very small
error and significantly outperforms all variants of MCTS. On the other hand, comparing OOS and DO« g, the exact DO« S
algorithm is always faster and it is able to find an exact solution much faster compared to OOS. Moreover, DO« has
significantly lower memory requirements since it is a depth-first search algorithm and does not use any form of global
cache, while OOS iteratively constructs the game tree in memory.
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exact algorithms.

6.5. Online search

We now compare the performance of the algorithms in head-to-head matches in the same games as in the offline
equilibrium computation experiments, but we use much larger instances of these games. Each algorithm has a strictly
limited computation time per move set to 1 second. After this time, the algorithm outputs an action to be played in the
current game state, receives information about the action selected by its opponent, and the game proceeds to the next
state. As described in Section 5, each algorithm keeps results of previous computations and does not start from scratch in
the next state. We have also performed a large set of experiments with 5 seconds of computation time per move, however,
the results are very similar to the results with 1 second per move. Therefore, we presents the results with 1 second in detail
and only comment on the 5-second results where the additional time leads to an interesting difference.

We compare all of the approximative sampling algorithms and DO« as a representative of backward induction algo-
rithms, because it was clearly the fastest algorithm in all of the considered games. Finally, we also include a random player
(denoted RAND) into the tournament to confirm that the algorithms choose much better strategies than the simple random
game play. We report expected rewards and win rates of the algorithms, in which a tie counts as half of a win. The param-
eters of the algorithms are tuned for each domain separately. We first present the comparison of different algorithms and
we discuss the influence of the parameters in Subsection 6.5.6.

In this subsection, we show cross tables of each algorithm (in each row) matched up against each competitor algorithm
(in each column). Each entry represents a mean of at least 1000 matches with the half of the width of the 95% confidence
interval shown in parentheses, e.g., 52.9(0.3) refers to 52.9% 4 0.3%. The result shown is the win rate for the row player, so
as an example in the standard game of Goofspiel (top of Table 1) DO« wins 67.2% + 1.4% of games against the random
player. All evaluated games except the pursuit-evasion game are symmetric from the perspective of the first and the second
player. We made even the random games symmetric by always playing matches on the same game instance in pairs with
alternating players’ positions. However, for easier comparison of the algorithms, we mirror the same results to both fields
corresponding to a pair of players in the cross tables.

6.5.1. Goofspiel

In the head-to-head comparisons, our focus is primarily on the standard Goofspiel with 13 cards and chance nodes.
Additionally, for the sake of consistency with the offline results, we also evaluate the variant with a fixed known sequence
of cards. The full game has more than 2.4 x 10%° terminal states and the variant with a fixed sequence has still more than
3.8 x 109 terminal states. The results are presented in Table 1, where the top table shows the win rates of the algorithms
in the full game and the other two tables show the win rates and the expected number of points gained by the algorithms
in the game with a fixed point card sequence. The results for the fixed card sequence are means over 10 fixed random
sequences. For each table, the algorithms were set up to optimize the presented measure (i.e., win rate or points) and the
exploration parameters were tuned to the values presented in the header of the table.

First, we can see that finding a good strategy in Goofspiel is difficult for all the algorithms. This is noticeable from the
results of the RAND player, that performs reasonably well (RAND typically loses almost every match in all the remaining
game domains). Next, we analyze the results of the DO« S algorithm compared to the sampling algorithms. The results
show that even though DOx S uses a domain-specific heuristic evaluation function, it does not win significantly against any
of the sampling algorithms that do not use any domain knowledge. The difference is always statistically significant with a
large margin. When optimizing win percentage, DO« 8 loses the least against UCT while in optimizing the expected reward,
UCT performs significantly best. The performance of the other sampling algorithms is very similar against DO« 8, with Exp3
winning the least in the reward optimization.
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Table 1
Results of head-to-head matches in Goofspiel variants with exploration parameter settings indicated in the table headers.

Goofspiel: 13 cards, stochastic sequence of cards, win rate

DOw B 005(0.2) UCT(0.6) EXP3(0.3) RM(0.1) RAND
DO . 26.6(2.7) 36.0(2.9) 26.1(2.7) 25.9(2.7) 67.2(1.4)
005 73.4(2.7) . 51.2(2.1) 52.5(2.2) 475(3.0) 81.4(1.7)
ucT 64.0(2.9) 48.8(2.1) . 55.6(2.1) 49.7(3.0) 77.3(1.8)
EXP3 73.8(2.7) 475(2.2) 44.4(21) . 411(3.0) 86.1(1.5)
RM 741(2.7) 52.5(3.0) 50.3(3.0) 58.9(3.0) . 85.2(2.2)
RAND 32.8(14) 18.6(1.7) 22.7(1.8) 13.9(1.5) 14.8(2.2) .

Goofspiel: 13 cards, known sequence of cards, win rate

DOw B 005(0.3) UCT(0.8) EXP3(0.2) RM(0.1) RAND
DO . 28.2(2.8) 35.0(2.9) 30.1(2.8) 31.5(2.8) 67.2(2.9)
00s 71.8(2.8) . 46.2(3.0) 51.8(3.0) 49.6(3.0) 83.8(2.3)
ucT 65.0(2.9) 53.8(3.0) . 57.1(2.9) 48.6(2.9) 79.5(2.5)
EXP3 70.0(2.8) 48.2(3.0) 42.9(2.9) . 46.5(3.0) 85.8(2.1)
RM 68.5(2.8) 50.4(3.0) 51.4(2.9) 53.5(3.0) . 84.2(2.2)
RAND 32.8(2.9) 16.2(2.3) 20.5(2.5) 142(2.1) 15.8(2.2) .

Goofspiel: 13 cards, known sequence of cards, point utilities

DOu B 005(0.3) UCT(0.8) EXP3(0.2) RM(0.1) RAND
DO . —7.74(0.94) —8.89(0.91) —6.45(0.94) —7.88(0.96) 6.67(0.99)
00S 7.74(0.94) . 1.19(0.78) 3.27(0.82) 0.35(0.76) 14.42(0.96)
ucT 8.89(0.91) —1.19(0.78) . 1.72(0.80) —1.94(0.73) 13.30(1.00)
EXP3 6.45(0.94) —3.27(0.82) —1.72(0.80) . —5.02(0.79) 14.79(0.97)
RM 7.88(0.96) —0.35(0.76) 1.94(0.73) 5.02(0.79) . 14.20(0.98)
RAND —6.67(0.99) —14.42(0.96) —13.30(1.00) —14.79(0.97) —14.20(0.98) .

We compare the sampling algorithms in the game variants in the order of the presented tables. The differences in the
performance of the sampling algorithms are relatively small between each other. They are more noticeable mainly against
the weaker players, which are outperformed by all sampling algorithms. In the game with stochastic point card sequence,
00S, UCT and RM make approximately 10 x 103 iterations in the 1 second time limit in the root of the game. Exp3 is
slightly slower with 8 x 10? iterations. The best algorithm in this game variant is RM, which wins against all other sampling
algorithms and wins most often against DO« 8 and Exp3. The second best algorithm is OOS, which loses only against RM
and Exp3 is the weakest algorithm losing against all other sampling algorithms.

The sampling algorithms in the second game variant (without chance) perform the same number of samples as in the
first variant, with the exception of UCT, which performs 12 x 103 iterations per second. However, they each build a consider-
ably deeper search tree, since the game tree is less wide. The exploration parameters were tuned to slightly larger numbers,
which indicate that more exploration is beneficial in smaller games. The results are similar to the previous game variant.
RM is still winning against all opponents, but it is not able to win more often against weaker players, which is consistent
with playing close to a Nash equilibrium. UCT loses only against RM in this variant and it significantly outperforms OOS and
Exp3. This indicates that UCT was able to better focus on the relevant part of the smaller game, which is supported also
by a larger number of simulations, which can be caused by shorter random simulations after leaving the part of the search
tree stored in memory.

When the players optimize the expected point difference, the differences between the algorithms are larger. We can
see that RM and OOS perform significantly better than UCT and Exp3. O0S wins against all opponents and RM loses only
against 00S. An important reason behind the decrease of the performance of Exp3 is that after normalizing the reward to
unit interval, the important differences in values for reasonably good strategies become much smaller, which slows down
the learning of the algorithm. UCT compensates the range of the rewards by the choice of the exploration parameter, but
different nodes would benefit from different exploration parameters, which causes more inefficiencies with more variable
rewards. An important advantage of O0S and RM is that their behavior is practically independent of the utility range.

In summary, RM is the only algorithm that did not lose significantly against any other sampling algorithm in any of
the game variants and it often wins significantly. Exp3 is overall the weakest algorithm, losing to all other algorithms in
all Goofspiel variants. Interestingly, Exp3 always performs the best against the random player, which indicates a slower
convergence against more sophisticated strategies.

6.5.2. Oshi-Zumo

In Oshi-Zumo, we use the setting with 50 coins, 2 -3 4+ 1 =7 fields of the board (i.e., K = 3), and the minimal bet of 1.
The size of the game is large with strictly more than 10! terminal states and 50 actions for each player in the root.

The results are depicted in Table 2. As in the case of Goofspiel, we show the results for both the win rate as well as the
point utilities. Moreover, our evaluation function in Oshi-Zumo is much more accurate than the one in Goofspiel and DO« 3
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Table 2
Results of head-to-head matches in Oshi-Zumo variants with exploration parameter settings indicated in the header. In the first two tables only DO« uses
a heuristic evaluation function and in the third table all algorithms use the evaluation function.

Oshi-Zumo: 50 coins, K = 3, win rate

DOuf 005(0.2) UCT(0.4) EXP3(0.8) RM(0.1) RAND
DOa B o 79.2(2.5) 77.6(2.6) 84.8(2.2) 84.0(2.3) 98.8(0.5)
00s 20.9(2.5) . 27.7(2.6) 57.1(2.1) 51.2(2.1) 98.9(0.4)
ucT 22.4(2.6) 72.3(2.6) . 83.0(2.0) 70.3(2.6) 99.9(0.2)
EXP3 15.2(2.2) 42.9(2.1) 17.0(2.0) . 445(2.8) 98.5(0.5)
RM 16.0(2.3) 48.8(2.1) 29.6(2.6) 55.5(2.8) . 99.0(0.4)
RAND 1.2(0.5) 1.1(0.4) 0.1(0.2) 1.5(0.5) 1.0(0.4) .

Oshi-Zumo: 50 coins, K = 3, point utilities

DOwp 005(0.2) UCT(0.4) EXP3(0.8) RM(0.1) RAND
DOa B . 2.33(0.19) 2.27(0.20) 3.62(0.10) 2.85(0.17) 3.65(0.09)
00S —2.33(0.19) . —0.53(0.19) 3.46(0.10) 0.25(0.20) 3.87(0.05)
UCT —2.27(0.20) 0.53(0.19) . 3.68(0.07) 0.58(0.17) 3.93(0.02)
EXP3 —3.62(0.10) —3.46(0.10) —3.68(0.07) . —3.53(0.09) 1.31(0.17)
RM —2.85(0.17) —0.25(0.20) —0.58(0.17) 3.53(0.09) . 3.87(0.04)
RAND —3.65(0.09) —3.87(0.05) —3.93(0.02) —1.31(0.17) —3.87(0.04) .
Oshi-Zumo: 50 coins, K = 3, win rate, evaluation function
DO« B 005(0.3) UCT(0.8) EXP3(0.8) RM(0.1) RAND
DOa B . 63.0(2.1) 11.8(1.3) 52.9(2.2) 61.7(2.1) 98.6(0.5)
00S 37.0(2.1) . 24.8(1.9) 33.4(2.0) 43.6(2.1) 99.6(0.3)
UCT 88.2(1.3) 75.2(1.9) . 80.5(1.7) 71.1(2.0) 99.8(0.2)
EXP3 471(22) 66.6(2.0) 19.5(1.7) . 58.7(2.1) 98.7(0.5)
RM 38.3(2.1) 56.4(2.1) 28.9(2.0) 41.3(2.1) . 99.6(0.3)
RAND 1.4(0.5) 0.4(0.3) 0.2(0.2) 1.3(0.5) 0.4(0.3) .

is clearly outperforming all sampling algorithms when they do not use any domain specific knowledge. Therefore we also
run experiments where the sampling algorithms also use an evaluation function instead of random rollout simulations.

In the offline experiment (Fig. 17), none of the sampling algorithms were able to converge anywhere close to the equi-
librium in a short time. Moreover, the game used in the offline experiments was orders of magnitude smaller (there were
only 10 coins for each player). In spite of the negative results in the offline experiments, all sampling algorithms are able to
find a reasonably good strategy. UCT is clearly the strongest sampling algorithm in all variants. In the win rate setting, the
strongest opponent of UCT among the sampling algorithms is RM (UCT wins 70.3% of games), followed by OOS performing
only slightly worse (UCT wins 72.3% of games). Finally, Exp3 is clearly the weakest of all sampling algorithms. A possible
reason may be that Exp3 manages to perform around 2.5 x 10° iterations per second in the root, while the other algo-
rithms perform ten times more. This is caused by the quadratic dependence of its computational complexity on the number
of actions, which is relatively high in this game. The situation remains similar when the algorithms optimize the point
utilities.

We now turn to the experiments with the evaluation function, the results of which are presented in the third table of
Table 2. The results show that the quality of play of all sampling algorithms is significantly improved. With this modification,
UCT already significantly outperforms all algorithms including DOa 8. DOx B is the second best and still winning over the
remaining sampling algorithms. Exp3 benefits from the evaluation function more than OOS and RM, which are relatively
weaker with the evaluation function.

The reason why UCT performs well in this game is that the game mostly requires pure strategies, rather than precise
mixing between multiple strategies (see Subsection 6.2). UCT is able to quickly disregard other actions, if a single action
is optimal. So, the evaluation function generally helps every algorithm, but can make significant changes in ranking of the
algorithms.

6.5.3. Random games

The next set of matches was played on 10 different random games with each player having 5 actions in each stage and
depth 15. Hence, the game has more than 9.3 x 1020 terminal states. In order to compute the win-rates as in the other
games, we use the sign of the utility value defined in Subsection 6.2. The results are presented in Table 3.

The clearly best performing algorithm in this domain is UCT that significantly outperforms the other sampling algorithms,
and ties with DO« 8 that uses a rather strong evaluation function. This is true even though UCT performs around 11 x 103
iterations per second, which is the least form all sampling algorithms. DO« 8 wins over all other sampling algorithms.
0O0S has the weakest performance in spite of good convergence results in the offline settings (see Fig. 19). The reason is
the quickly growing variance and decreasing number of samples in longer games, which we discuss in more details in
Subsection 6.6. 00S performs 20 x 10° iterations per second and only around 3 x 103 of them actually update the regrets
in the root. All the other iterations return with zero tail probability (x;) in the root, which leads to no change in the regret
values.
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Table 3
Win-rate in head-to-head matches of random games with 5 actions for each player in each move and depth of 15 moves.
DO« B 005(0.1) UCT(1.5) EXP3(0.6) RM(0.3) RAND

DO« B . 57.4(2.9) 49.6(2.8) 53.4(2.8) 51.3(2.8) 88.3(1.8)
00S 42.6(2.9) . 33.5(2.5) 43.5(2.7) 42.5(2.8) 85.0(2.4)
UCT 50.4(2.8) 66.5(2.5) . 67.4(2.5) 55.7(2.6) 95.9(1.2)
EXP3 46.6(2.8) 56.5(2.7) 32.6(2.5) . 42.9(2.7) 96.0(1.1)
RM 48.7(2.8) 57.5(2.8) 44.3(2.6) 57.1(2.7) . 93.1(1.5)
RAND 11.2(1.8) 15.02.4) 41(1.2) 4.0(1.1) 6.9(1.5) .

Table 4
Win-rate in head-to-head matches of Tron with random simulations (top) and evaluation function in the sampling algorithms (bottom).

Tron: 13 x 13 grid, win rate

DO« 00S(0.1) UCT(0.6) EXP3(0.5) RM(0.1) RAND
DO« B . 78.2(2.0) 53.8(2.0) 66.6(2.3) 65.0(2.2) 98.6(0.5)
00S 21.8(2.0) . 29.4(2.2) 46.1(1.8) 38.0(2.2) 97.2(0.5)
UCT 46.2(2.0) 70.6(2.2) . 64.8(2.2) 57.0(2.1) 98.0(0.6)
EXP3 33.4(2.3) 53.9(1.8) 35.1(2.2) . 44.3(2.3) 97.7(0.5)
RM 35.0(2.2) 62.0(2.2) 43.0(2.1) 55.7(2.3) . 97.6(0.9)
RAND 1.4(0.5) 2.9(0.5) 2.0(0.6) 2.3(0.5) 2.4(0.9) .

Tron: 13 x 13 grid, win rate, evaluation function

DO« B 005(0.1) UCT(2) EXP3(0.1) RM(0.2) RAND
DO« . 50.2(1.3) 42.7(1.5) 53.1(1.6) 46.3(1.6) 98.8(0.4)
00S 49.8(1.3) . 53.0(0.9) 54.7(0.8) 52.2(0.8) 97.9(0.4)
UCT 57.3(1.5) 47.0(0.9) . 49.7(0.5) 46.7(0.6) 98.8(0.3)
EXP3 46.9(1.6) 45.3(0.8) 50.3(0.5) . 45.8(0.6) 98.2(0.4)
RM 53.7(1.6) 47.3(0.8) 53.3(0.6) 54.2(0.6) . 98.5(0.4)
RAND 1.2(0.4) 2.1(0.4) 1.2(0.3) 1.8(0.4) 1.5(0.4) .

6.5.4. Tron

The large variant of Tron in our evaluation was played on an empty 13 x 13 board. The branching factor of this game
is up to 4 for each player and its depth is up to 83 moves. This variant of Tron has more than 102! terminal states.® The
results are shown in Table 4.

The evaluation function in Tron approximates the situation in the game fairly well; hence, DOx S strongly outperforms
all other algorithms when they do not use the evaluation function (top). Its win-rates are even higher with more time per
move. UCT is the strongest opponent for DO« - UCT loses 53.8% of matches and wins over all other sampling algorithms
in mutual matches. This is again because of the low need for mixed strategies in this game (see Subsection 6.2). Again, O0OS
performs the worst despite its clearly fastest convergence on the smaller game variant in the offline setting due to the great
depth of the game tree in this setting. It won only 21.8% matches against DO« 8 and 29.4% matches against UCT. In this
game, the variance of the regret updates is likely not the key factor, since it is between 20 and 40. However, only 1 x 103
out of 12 x 103 iterations per second update regrets in the root.

The good performance of DO« S is consistent with the previous analysis in Tron where the best-performing algorithms,
including the winner of the 2011 Google Al Challenge, were based on depth-limited minimax searches [57,84].

As in the case of Oshi-Zumo, we also run the matches with the evaluation function in place of the random rollout
simulation in the sampling algorithms. We present the results in the second table of Table 4. Using the evaluation function
improves the performance of all sampling algorithms against DO« 8 and it decreases the differences in performance between
each algorithm. The difference is most notable for OOS, since using the evaluation function strongly reduces the length of
the game. In this setting, both RM and UCT outperform DO« 8. Interestingly, while UCT performs quite well against DO«
and wins 57.3% of matches, it is not winning against any other sampling algorithm. Even Exp3 which loses against all other
algorithms manages to slightly outperform it. OOS practically ties with DO« S, but it wins significantly against all sampling
algorithms. RM loses to OOS, but wins significantly against all other algorithms.

6.5.5. Pursuit-evasion game

Finally, we compare the algorithms on the pursuit-evasion game on an empty 10 x 10 grid with 15 moves time limit
and 10 different randomly selected initial positions of the units. The branching factor is at most 12, causing the number of
terminal states to be less than 10'6.

The results in Table 5 show that the game is strongly biased towards the first player, which is the evader. The self-play
results on the diagonal show that DO« won over 81.5% matches against itself as the evader. Adding more computational
time typically improves the play of the pursuer in self-play. This is caused by a more complex optimal strategy of the

8 The number only estimates the number of possible paths when both players stay on their half of the board.
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Table 5
Win-rate in head-to-head matches of pursuit-evasion games with time limit of 15 moves and 10 x 10 grid board. The evader is the row player and pursuer
is the column player.

DO 005(0.3) UCT(0.8) EXP3(0.5) RM(0.1) RAND
DOu B 81.5(2.4) 89.1(1.9) 61.8(3.0) 91.2(1.8) 77.2(2.6) 100.0(0.0)
005(0.2) 77.5(2.6) 91.2(1.8) 57.8(3.1) 85.8(2.2) 79.3(2.5) 99.8(0.3)
UCT(1.5) 77.1(2.6) 94.2(1.4) 57.6(3.1) 88.9(1.9) 82.2(2.4) 100.0(0.0)
EXP3(0.2) 65.1(3.0) 92.1(1.7) 53.1(3.1) 83.9(2.3) 75.1(2.7) 99.8(0.3)
RM(0.1) 81.8(2.4) 92.7(1.6) 58.5(3.1) 86.7(2.1) 78.6(2.5) 99.8(0.3)
RAND 51(14) 28.8(2.8) 5.8(14) 1.7(0.8) 31(11) 71.1(2.8)

pursuer. This optimal strategy is more difficult to find due to a larger branching factor (recall that the pursuer controls two
units) and the requirement for a more precise execution (a single move played incorrectly can cause an escape of the evader
and can result in losing the game due to the time limit).

We first look at the differences in the performance of the algorithms on the side of the pursuer, which are more con-
sistent. We need to compare the different columns, in which the pursuer tries to minimize the values. The clear winner is
UCT that generally captures the evaders in approximately 40% of the matches. The second best pursuer is DO« S and the
weakest is OOS that captures the non-random opponents in less than 10% of the cases.

The situation is less clear for the evader. Different algorithms performed best against different opponents. UCT was the
best against OOS and RM, but DO« 8 was the best against UCT and Exp3. Exp3 is the weakest evader.

6.5.6. Parameter tuning

The exploration parameters can have a significant influence on the performance of the algorithm. We choose the pa-
rameters individually for each domain by running mutual matches with a pre-selected fixed pool of opponents. This pool
includes DO« 8 and each of the sampling algorithms with one setting of the parameter selected based on the results of the
offline experiments. These values are 0.6 for OOS, 2 for UCT, 0.2 for Exp3 and 0.1 for RM. For each domain, we created a
table such as the two examples in Table 6. We then picked the parameter for the final cross tables presented above as the
parameter with the best mean performance against all the fixed opponents.

In the presented variant of Goofspiel, the choice of the exploration parameter has a rather large influence on the per-
formance against DO« 8. This is often the case for weaker players. The selection of the exploration parameter for OOS has
little effect on the mean performance, with a noticeable drop in performance for 0.1. In UCT, less exploration is generally
better, but the sudden drop of performance against Exp3 causes the optimum to be at 0.6. In Exp3, the optimal exploration
parameter against DO« would be even greater than 0.5, while the optimum against O0S would be 0.2. These kinds of
inconsistencies are common with the Exp3 algorithm. In the mean over all opponents, the optimum is 0.3. With RM, the
optimal exploration parameter against individual opponents stays around 0.1 and it is clearly the best value in the mean.

Parameter selection is generally more important when facing weaker players. The differences are more noticeable in
matches against other algorithms, but since the optimal parameters vary depending on the different opponents, the mean
performance presented in the last column does not vary much. OOS is consistently the least sensitive to different parameter
settings, while the performance differences in the other algorithms from changing exploration strongly depends on the
specific domains.

The differences between various parameter settings are larger in smaller games and mainly if an evaluation function
is used. Consider the results for Oshi-Zumo in Table 6. For OOS, the exploration parameter of 0.3 is consistently the best
against all opponents, with the exception of Exp3, which loses slightly more to OOS with exploration 0.4. However, the
difference is far from significant even after 1000 matches. The differences in performance of UCT with different parameters
are more often statistically significant. Overall, the best parameter is 0.8, even though the performance is significantly
better against DO« with smaller exploration and against UCT(2) with higher exploration. The best performance for Exp3
was surprisingly achieved with a very high exploration. The best of the tested values was 0.8, which means that 80% of the
time, the next action to sample is selected randomly regardless of the collected statistics about move qualities. The higher
values were consistently better for all opponents. RM seems to be quite sensitive to the parameter choice in this domain
and the results for specific opponents are more inconclusive than for the other algorithms. When playing DO« 8, RM wins
7% more matches with parameter 0.3 than with the overall optimal 0.1. On the other hand, when playing OOS, an even
smaller parameter value would be preferable.

The presented parameter tuning tables are representative of the behavior of the algorithms with different parameters.
The choices of the optimal parameters generally depend much more on the domain than the selected opponent, but in some
cases the optimal choice for one opponent is far from the optimum for another opponent. Especially with Exp3 and UCT,
very different parameters are optimal for different domains. While in the presented results in Oshi-Zumo with evaluation
function, 0.8 is best for Exp3, in Tron with evaluation function, the optimal parameter for Exp3 is 0.1. The range of optimal
parameters is much smaller for OOS and RM, which were always between 0.1 and 0.3. This can be a notable advantage for
playing previously unknown games without a sufficient time to tune the parameters for the specific domain.
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Table 6
Sample parameter tuning tables for Goofspiel with stochastic point cards sequence and Oshi-Zumo.

Goofspiel: 13 cards, stochastic point card sequence

DO 005(0.6) UCT(2) EXP3(0.2) RM(0.1) Mean
00S 0.5 73.8(2.7) 50.2(3.0) 54.4(4.2) 54.9(3.0) 49.4(3.0) 56.54
00S 04 72.0(2.8) 50.5(3.0) 56.4(4.2) 54.1(3.0) 475(3.0) 56.1
00S 03 73.0(2.7) 47.6(3.0) 58.4(4.2) 54.3(3.0) 48.0(3.1) 56.26
00S 0.2 73.5(2.7) 50.2(3.0) 58.7(4.2) 54.3(3.0) 47.9(3.0) 56.92
00S 01 70.2(2.8) 47.4(3.1) 53.4(4.3) 48.6(3.0) 43.9(3.0) 52.7
ucT 15 52.2(3.1) 45.4(3.0) 52.4(3.2) 53.9(3.9) 39.4(4.6) 48.66
ucT 1 52.5(3.0) 49.9(3.0) 58.3(3.2) 56.1(3.8) 43.1(4.6) 51.98
ucT 08 52.5(3.0) 51.1(3.0) 60.8(3.2) 59.7(3.8) 46.8(4.7) 5418
ucT 0.6 54.2(3.0) 53.9(3.0) 612(3.1) 62.3(3.8) 46.6(4.7) 55.64
ucT 0.4 58.6(3.0) 54.9(3.0) 61.6(3.1) 58.6(3.8) 49.5(4.8) 55.04
EXP3 0.5 771(2.6) 42.6(3.0) 44.4(3.0) 474(3.0) 40.1(3.0) 50.32
EXP3 04 76.2(2.6) 44.8(3.0) 48.4(3.0) 49.5(3.0) 39.5(3.0) 51.68
EXP3 03 73.2(2.7) 44.5(3.0) 51.8(3.0) 51.1(3.0) 41.0(3.0) 52.32
EXP3 02 73.5(2.7) 472(3.0) 47.6(3.0) 50.0(3.0) 413(3.0) 51.92
EXP3 01 712(2.8) 44.9(3.0) 48.9(3.0) 51.2(3.0) 40.9(3.0) 51.42
RM 0.5 77.7(2.5) 44.9(3.0) 43.9(3.0) 46.9(3.0) 42.4(3.0) 5116
RM 03 73.2(2.7) 49.3(3.0) 57.9(2.9) 53.9(3.0) 48.5(3.0) 56.56
RM 02 70.8(2.8) 50.7(3.0) 63.8(2.9) 57.8(3.0) 48.2(3.0) 58.26
RM 01 74.0(2.7) 54.1(3.0) 61.2(2.9) 58.1(3.0) 51.2(3.0) 59.72
RM 0.05 74.5(2.7) 51.6(3.0) 60.1(2.9) 59.0(3.0) 49.0(3.1) 58.84

Oshi-Zumo: 50 coins, K = 3, win rate, evaluation function

DO 005(0.6) UCT(2) EXP3(0.2) RM(0.1) Mean
00S 0.5 35.3(2.9) 50.9(3.6) 28.5(3.3) 54.9(3.6) 43.7(3.5) 42.66
00S 04 35.0(2.9) 56.0(3.6) 26.6(3.2) 56.1(3.6) 42.6(3.6) 43.26
00s 0.3 36.5(3.0) 57.8(3.5) 27.7(3.2) 55.7(3.6) 44.8(3.6) 445
00sS 02 35.0(2.9) 53.1(3.6) 26.8(3.2) 54.1(3.6) 414(3.5) 42.08
005 01 34.6(2.9) 55.6(3.6) 241(3.1) 56.2(3.6) 43.0(3.6) 427
ucT 15 83.2(2.2) 74.0(3.8) 79.1(2.9) 87.4(2.9) 70.6(3.9) 78.86
ucT 1 83.8(2.1) 74.8(3.7) 81.4(2.7) 89.8(2.6) 68.8(4.0) 79.72
ucT 0.8 86.5(2.0) 77.9(3.6) 771(3.0) 89.2(2.7) 741(3.8) 80.96
ucT 0.6 89.4(1.8) 75.7(3.7) 54.9(3.9) 90.0(2.6) 741(3.7) 76.82
ucT 04 75.8(2.6) 75.0(3.7) 314(3.7) 89.8(2.6) 70.6(3.9) 68.52
EXP3 0.9 47.8(31) 68.2(2.8) 23.1(2.4) 67.2(2.8) 55.2(2.8) 523
EXP3 038 46.9(3.1) 68.4(3.6) 23.0(3.1) 742(3.4) 61.5(3.7) 54.8
EXP3 0.6 42.5(31) 67.6(3.7) 20.4(3.1) 65.4(3.7) 59.4(3.8) 51.06
EXP3 0.5 38.7(3.0) 60.9(3.8) 151(2.7) 64.7(3.7) 52.9(3.9) 46.46
EXP3 04 35.9(3.0) 57.5(3.9) 17.5(3.0) 64.1(3.8) 54.9(3.9) 45.98
RM 0.5 44.5(3.0) 411(3.5) 31.7(3.3) 49.4(3.6) 343(3.3) 40.2
RM 03 42.8(3.0) 52.1(3.5) 33.8(3.4) 61.2(3.5) 43.7(3.5) 46.72
RM 0.2 41.8(3.0) 55.7(3.6) 30.7(3.3) 59.2(3.5) 46.4(3.6) 46.76
RM 01 37.0(2.9) 58.1(3.5) 34.9(3.4) 57.6(3.6) 54.1(3.6) 48.34
RM 0.05 36.4(3.0) 59.6(3.5) 29.7(3.3) 59.3(3.5) 511(3.6) 4722

6.5.7. Summary of the online search experiments

Several conclusions can be made from the head-to-head comparisons of the algorithms in larger games. First, the fast
convergence and low exploitability of OOS in the smaller variants of the games is not a very good predictor of its perfor-
mance in the online setting. 00S was often not the best algorithm in the online setting. In random games and Tron without
the evaluation function, it was the worst performing algorithm. We discuss the possible reasons in detail in Subsection 6.6.

Second, DO« B with a good evaluation function often wins over the sampling algorithms without a domain specific
knowledge. This is not the case with a weaker evaluation function, as we can see in Goofspiel. Moreover, when the sam-
pling algorithms are allowed to use the evaluation functions, DO«g is outperformed by UCT in both domains tested with
evaluation function and also by RM in Tron. Using a good evaluation function instead of random simulations helps all
sampling algorithms, but the amount of improvement is different for individual algorithms in different domains.

Third, the novel RM and OOS algorithms have proven efficient in a wider range of domains. Besides Goofspiel used
for evaluating earlier versions of the algorithms in [11], RM showed strong performance in random games and both RM
and O0S were the best performing algorithms in Tron with the evaluation function. These algorithms did not exploit the
weaker opponents the most but often won against all other competitors. A notable advantage of these algorithms is a
lower sensitivity for the parameter tuning, since they perform well in a wide range of domains with similar exploration
parameters.
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Table 7
Measure of variances of estimated regret quantities in OOS and Regret Matching at the root of each game. T is
the number of iterations each algorithm runs for, and Run marks the run number (instance).

Game Run Toos \75'005 TRM \7a\rRM

Goofspiel(13) 1 12,582 32,939.94 11,939 283.03
Goofspiel(13) 2 13,888 26,737.95 7,160 359.96
Goofspiel(13) 3 13,906 27,283.47 7,897 552.24
0Z(50,3,1) 1 34,900 1,010.73 25,654 9.19
0Z(50,3,1) 2 40,876 1,225.89 26,719 7.93
0Z(50,3,1) 3 40,306 1,016.42 26,121 7.99
Tron(13, 13) 1 11,222 40.23 11,634 0.84
Tron(13, 13) 2 12,526 3591 11,134 0.83
Tron(13, 13) 3 13,000 22.23 10,075 0.75

Fourth, when the algorithms have five times more time for finding a move to play, the differences between win rates
of the sampling algorithms get smaller. Longer thinking time also has the same effect on parameter tuning and it also
significantly improves the performance of the sampling algorithms against backward induction. This is expected, since the
difference is too small for the DO« B algorithm to reach a greater depth, while it is sufficient for the sampling algorithms to
execute five times more iterations improving their strategy.

Finally, the performance of Exp3 is the weakest in general. Its main problems are its larger computational complexity and
problematic normalization for wider ranges of payoffs. Exp3 was significantly worse than other algorithms in both domains
where we evaluated the point difference optimization and it performs an order of magnitude fewer iterations in Oshi-Zumo,
compared to all other sampling algorithms.

6.6. Online Outcome Sampling versus Regret Matching

Given the similar nature of OOS and RM, one might wonder why RM typically performs better than OOS in online
search, despite OOS being the only algorithm with provable convergence properties and the fastest converging algorithm in
the offline setting. In this subsection, we investigate this phenomenon and present the results of additional experiments.

We need to look at the convergence properties of O0S, which is essentially an application of outcome sampling MCCFR.
From the convergence bound of outcome sampling MCCFR presented in [86], after T iterations the strategy produced by the
algorithm is an €-Nash equilibrium with probability 1 — p and

c<0 Af|8|+ Var+Cov
- JT pT  p )’

where A; is determined by the structure of the game, and Var and Cov are the maximal variance and covariance of the
differences between the exact value of a regret of an action and its estimate computed based on the selected sample
(rf(s,a) — (s, a)) over all states, actions, and time steps. Computing these quantities exactly is prohibitively expensive, and
since the scale of the exact regrets is bounded by a relatively small range of utilities, we can estimate the variance of
the difference by the variance of the sampled regrets, which has often a very large range due to the importance sampling
correction (see Section 4.5). We measure the estimate Var = Var[maXxqe 4(s) 7 (s, a)] in the root of the games, since they
have the largest range of possible values of 7 (s, a). Regret matching also computes a quantity similar to 7 (s, a). The only
difference is that they are not counterfactual, i.e., they take into account only the value of the current sample and not the
expected value of the strategy used throughout the entire game. We show these variances for Goofspiel(13), 0Z(50, 3, 1),
and Tron(13, 13) in Table 7.

The results show that the variance of OOS is significantly higher than in case of RM. As such, even though RM may
be introducing some kind of bias by bootstrapping value estimates from its own subgame, when there are so few samples
this trade-off may be worthwhile to avoid the uncertainty introduced by the variance. This problem is not apparent in the
smaller games, because the higher probability of sampling individual terminal histories causes smaller variance and OOS
performs enough samples to make the regret estimates sufficiently close to the true values. For example, in Goofspiel(5)
used for offline convergence experiments, OOS performs approximately 2 x 10° iterations per second and the variance is
only around 350.

7. Conclusion and future research

In this paper, we provide an extensive analysis of algorithms for solving and playing zero-sum extensive-form games with
perfect information and simultaneous moves. We describe a collection of exact algorithms based on backward induction
as well as a collection of Monte Carlo tree search algorithms including our novel algorithms DO«j, BloeS, SM-O0S and
SM-MCTS with regret matching selection function.
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We empirically compare the performance of these algorithms on six substantially different games in two different set-
tings. In the offline equilibrium computation setting, we show that our novel algorithm based on backward induction, DO« S,
is able to prune large parts of the search space. In most games, DO« S is several orders of magnitude faster than the classical
backward induction and it is never significantly outperformed by any of its competitors. The only benefit of the sampling
algorithms in the offline setting is a to get a rough approximation of the equilibrium solution in a short time. Their results
are often inconsistent with short computation times. Given enough time, the results clearly show that SM-OO0S achieves
the fastest convergence to a Nash equilibrium. Finally, our offline experiments also explained different behavior reported in
variants of SM-MCTS with UCT selection. We have shown that adding randomization to tie-breaking rules can significantly
improve the performance of this algorithm.

The success in the offline equilibrium computation is, however, not a very good indicator of the game playing perfor-
mance in the online setting of head-to-head matches. First of all, the sizes of the games used for online experiments are too
large for exact algorithms to be applicable without a domain-specific evaluation function. Performance of the representative
of the exact algorithms, DO« 8, depends heavily on the accuracy of the used evaluation function. Secondly, in spite of the
fastest convergence of SM-O0S among the sampling algorithms, SM-OOS does not always perform well in the online game
playing. This is mainly due to the large variance of the regret updates that increases significantly in these large games.
Among the remaining sampling algorithms, SM-MCTS based on regret matching is often very good, but sometimes it was
outperformed by SM-MCTS with UCT selection, especially in games that require less randomized strategies.

Our work opens several interesting directions for future research. After introducing a strong pruning algorithm, it is of
interest to formally study the limitations of pruning for this class of games, similarly to the theory developed for games
with sequential moves. Future work could show if these pruning techniques can be substantially improved or if they are in
some sense optimal. The main prerequisite is, however, estimating the expected number of iterations of the double-oracle
algorithms for single step matrix games, which still remains an open problem. Furthermore, running large head-to-head
tournaments for evaluating the game playing performance is time consuming, sensitive to setting correct parameters, and
provides only limited insights into the performance of the algorithms. Proximity to the Nash equilibrium is not always
a good indicator of game playing performance; hence, it is interesting to study alternative measures of quality of the
algorithms that would better predict their game-playing performance in large games.
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recall games result from an abstraction algorithm that simplifies a large game with perfect
recall. Solving imperfect recall games is known to be a hard problem, and thus it is useful
to search for a subclass of imperfect recall games which offers sufficient memory savings
while being efficiently solvable. The abstraction process can then be guided to result in a

i;?;v:;)fredcst. recall game from this class. We focus on a subclass of imperfect recall games called A-loss recall
Abstraction games. First, we provide a complete picture of the complexity of solving imperfect recall
Maxmin strategy and A-loss recall games. We show that the A-loss recall property allows us to compute a
A-loss recall best response in polynomial time (computing a best response is NP-hard in imperfect recall

games). This allows us to create a practical algorithm for approximating maxmin strategies
in two-player games where the maximizing player has imperfect recall and the minimizing
player has A-loss recall. This algorithm is capable of solving some games with up to 5 - 10°
states in approximately 1 hour. Finally, we demonstrate that the use of imperfect recall
abstraction can reduce the size of the strategy representation to as low as 0.03% of the
size of the strategy representation in the original perfect recall game without sacrificing
the quality of the maxmin strategy obtained by solving this abstraction.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Extensive-form games (EFGs) are a model of dynamic games with a finite number of moves and are capable of describing
scenarios with stochastic events and imperfect information. EFGs can model recreational games, such as poker, as well as
real-world situations in physical security [1], auctions [2], or medicine [3]. EFGs are represented as game trees where
nodes correspond to states of the game and edges to actions of players. Imperfect information is modeled by grouping
indistinguishable states into information sets.

There are two approaches to making decisions in EFGs. First, there are online (or game-playing) algorithms which given
the observations of the game state compute the action to be played. Second, there are offline algorithms which compute
(approximate) the strategy in the whole game and play according to this strategy. The latter algorithms typically provide
a better approximation of equilibrium strategies in large games compared to online algorithms [4]. One exception is the
recently introduced continual resolving algorithm used in DeepStack [5], which provides less exploitable strategies than
existing offline algorithms in heads-up no-limit Texas Hold’em poker. The main caveat of this algorithm is that it exploits
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the specific structure of poker where all actions of players are observable and its generalization to other games is not
straightforward. Therefore, we focus on offline algorithms.

The offline algorithms are useful in real-world applications since the strategy (a probabilistic distribution over actions in
each information set) is precomputed and can be simply stored on any device. It can then be accessed by deployed units
such as park rangers (see, e.g., [6]) without the need of large computational resources or good internet connection necessary
when using online algorithms. The main complication of offline algorithms is, however, the size of the strategy that needs
to be stored. Most of the existing offline algorithms [7-9] require that players remember all the information gained during
the game - a property denoted as a perfect recall. The main disadvantage of perfect recall is that the size of the strategy
grows exponentially with the number of moves, as the perfect memory allows the player to condition his behavior on
all his actions taken in the past. Therefore, a popular approach is to use abstractions [10] - create an abstracted game by
merging certain information sets to reduce the size of the strategy representation, solve the abstracted game, and translate
the resulting strategy back to the original game. The majority of existing algorithms (e.g., see [11-13]) create perfect recall
abstractions, where the requirement of perfect memory severely limits possible reductions in the size of strategies, as it still
grows exponentially with the increasing number of moves in the abstracted game. To achieve additional memory savings,
the assumption of perfect recall may need to be violated in the abstracted game resulting in an imperfect recall game.

Solving imperfect recall games is known to be a difficult problem (see, e.g., [14-16]). Since we are interested mainly in
solving imperfect recall games created by an abstraction algorithm, we focus on finding an efficiently solvable subclass of
imperfect recall games. The abstraction algorithm can then be guided to result in a game from this class. Existing approaches
create very specific abstracted games, so that perfect recall algorithms are still applicable: e.g., in chance relaxed skew well-
formed games [17,18] or in normal-form games with sequential strategies [19,1]. The restrictions posed by these classes are
unnecessarily strict, which can prevent us from fully exploiting the possibilities of abstractions and compact representation
of dynamic games. We focus on a different subclass of imperfect recall games called A-loss recall games [20,21] where each
loss of a memory of a player can be traced back to forgetting his own actions.

We provide the following contributions. We present a complete picture of the problem of solving imperfect recall games
and show which computational tasks become easier when restricting to A-loss recall. Next, we use the properties of the
A-loss recall to provide the first family of algorithms capable of approximating the strategies with the best worst-case
expected outcome (maxmin strategies). In order to achieve this result, we require only the minimizing player to have
A-loss recall, while the maximizing player is allowed to have imperfect recall. Finally, we experimentally demonstrate the
effectiveness of the use of imperfect recall abstractions to reduce the size of strategies to be stored.

One of the most important theoretical properties discussed in this paper is the complexity of computing a best response
since it is a subproblem of many algorithms solving EFGs. In general, it is NP-hard to find a best response in imperfect
recall game. In games where the best responding player has A-loss recall, however, finding a best response can be done
using the same algorithm as in the perfect recall case. Hence the problem is polynomially solvable [20,21]. We use this
property to design the first family of algorithms for approximating maxmin strategies in imperfect recall games where the
maximizing player has imperfect recall and the minimizing player has A-loss recall. Additionally, we provide novel necessary
and sufficient (i.e., if and only if) condition for the existence of a Nash equilibrium (NE) in behavioral strategies in A-loss
recall games, making A-loss recall games the only subclass of imperfect recall games for which such condition is known.
Thus we show that A-loss recall forms an interesting subclass of imperfect recall. On the other hand, we extend the known
hardness results of computing solution concepts in imperfect recall games due to Koller and Meggido [15] and Hansen [16]
to A-loss recall games.!

From the computational perspective, we provide a novel approximate algorithm, denoted IRABNB (Imperfect Recall Ab-
straction Branch-and-Bound algorithm), for computing maxmin strategies in imperfect recall games where the maximizing
player has imperfect recall and the minimizing player has A-loss recall.? We base the algorithm on the sequence-form linear
program for computing maxmin strategies in perfect recall games [7,24]| extended by bilinear constraints necessary for the
correct representation of strategies of the maximizing player in imperfect recall games. We approximate the bilinear terms
using recent Multiparametric Disaggregation Technique (MDT) [25] and provide a mixed-integer linear program (MILP) for
approximating maxmin strategies. We propose a novel branch-and-bound algorithm that repeatedly solves the linear relax-
ation of the MILP. It simultaneously tightens the constraints that approximate bilinear terms and searches for the optimal
assignment to the relaxed binary variables from the MILP. We prove that the algorithm has guaranteed convergence to
maxmin strategy and we provide a bound on the number of steps needed.

We further extend the IRABNB algorithm by incremental strategy generation technique. The resulting algorithm is de-
noted DOIRABNB? (Double Oracle Imperfect Recall Abstraction Branch-and-Bound algorithm). While such techniques exist

T A part of this work appeared in [22]. Here we significantly improve the proofs and overall presentation. We further strengthen the relationship between
A-loss recall games and chance relaxed skew well-formed games and provide more examples.

2 A part of this work appeared in [23]. Here we mainly improve the description of the algorithm and proofs. We also provide a discussion of the
heuristics used (section 5.2.1). Notice that in this paper we refer to the BNB algorithm from [23] as IRABNB to remove the naming clash with general
branch-and-bound algorithm.

3 A part of this work appeared in [26]. Here, we provide an improved version of the DOIRABNB algorithm which is more efficient. Furthermore, we
significantly improve the description of the algorithm and the proof of correctness. Finally, we extend the experimental evaluation of the algorithm. Notice
that in this paper we refer to the DOBNB algorithm from [26] as DOIRABNB to improve the clarity of presentation.
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Fig. 1. (Left) An imperfect recall game. (Right) Its coarsest perfect recall refinement. Circle nodes represent the states of the game, numbers in the circles
show which player acts in that node (player 1, player 2 or chance player N), dashed lines represent indistinguishable states and box nodes are the terminal
states with utility value for player 1 (the game is zero-sum, hence player 1 maximizes the utility, player 2 minimizes it).

for perfect recall games [27], transferring the ideas to imperfect recall games presents a number of challenges that we
address in this paper. First, we define the restricted EFG that is a subset of the original EFG. Second, we describe how the
restricted game is solved via the IRABNB search and describe the details of the integration of these two iterative algorithms.
Third, we describe how to expand the restricted EFG so that our algorithm preserves guarantees for approximating maxmin
strategies. The experimental evaluation shows that DOIRABNB significantly improves the scalability of IRABNB. The algorithm
is capable of solving some games with up to 5- 10° states in approximately 1 hour.

Finally, we experimentally demonstrate the effectiveness of the use of imperfect recall abstractions to reduce the size of
strategies to be stored. We show that employing simple abstractions which still allow us to compute the maxmin strategy
of the original game can lead to strategies with the relative size as low as 0.03% of the size of the strategy in the original
unabstracted game.

2. Extensive-form games

A two-player extensive-form game (EFG) is a tuple G = (N, H, Z, A, u, C,T), which is commonly visualized as a game
tree (see Fig. 1). A" ={1,2} is a set of players, by i we refer to one of the players, and by —i to his opponent. Additionally,
the chance player (or nature) N represents the stochastic environment of the game. A denotes the set of all actions labeling
the edges of the game tree. 7 is a finite set of histories of actions taken by all players and the chance player from the root of
the game. Each history corresponds to a node in the game tree; hence, we use the terms history and node interchangeably.
Z CH is the set of all terminal states of the game corresponding to the leaves of the game tree. For each z€ Z and i e N/
we define a utility function u; : Z — R. If uj(z) = —u_;(z) for all z € Z, we say that the game is zero-sum. Chance player
selects actions based on a fixed probability distribution known to all players. Function C : H — [0, 1] is the probability of
reaching h obtained as the product of probabilities of actions of chance player preceding h. Imperfect observation of player i
is modeled via information sets Z; that form a partition over h € H where i takes action. Player i cannot distinguish between
nodes in any I; € Z;. We represent the information sets as nodes connected by dashed lines in the examples. A(I;) denotes
actions available in each h € I;. The action a uniquely identifies the information set where it is available, i.e., for all distinct
I,I' e T Yae A(l) Vd' € A(I') a+#d’. An ordered list of all actions of player i from the root to node h is referred to as a
sequence, o; = seqi(h). Xj is a set of all sequences of player i. We use seq;(I;) as a set of all sequences of player i leading to
I;. We use infi(o;) as a set of all information sets to which sequence o; leads. A game has perfect recall iff Vi e N VI; € Z;,
for all h, h’ € I; holds that seq;(h) = seq;(h’). If there exists at least one information set where this does not hold (denoted
as imperfect recall information set), the game has imperfect recall. We use I{R as a set of all imperfect recall information sets
of player i.

Finally, to be able to discuss the effect of imperfect recall in any given imperfect recall game G, we need to be able to
construct a corresponding perfect recall game G’ by adding the minimum amount of information for players to have perfect
recall in G. We denote G’ as the coarsest perfect recall refinement of G. To do this, we first define a partition H(I;) of states
in every information set I; of some imperfect recall game G to the largest possible subsets, not causing imperfect recall.
More formally, let H(I;) = {Hq, ..., Hy} be a disjoint partition of all h € I;, where U?:] Hj=1; and YH; € H(I;) Yhi, h €
Hj : seqj(hy) = seq;(h), additionally for all distinct Hy, H; € H(I;) : seq;(Hy) # seq;(H)).

Definition 1. The coarsest perfect recall refinement G’ of the imperfect recall game G = WV, H, Z, A, u,C,Z) is a tuple
WN,H,Z,A',u,C,T'), where Vi ¢ N VI; € Z;, H(I;) defines the information set partition Z’. A’ is a modification of A,
which guarantees that VI € 7' Vhy, h; € I A'(h) = A’ (h;), while for all distinct I¥, I' € 7/ Vak € A(¥) Val € A" a* #£d. We
can limit the coarsest perfect recall refinement to player i and leave the information set structure of —i unchanged.

In Fig. 1 we show an example of an imperfect recall game (left) and its coarsest perfect recall refinement (right).
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Fig. 2. An A-loss recall game where the Nash equilibrium in behavioral strategies does not exist (from [14]).

Notice, that in the Definition 1 we change the labeling of actions described by A to A’, since we modify the structure
of the imperfect information Z to Z’ (e.g., actions g, h in Fig. 1 (left) being relabel to g, h and i, j due to the split of
the information set in Fig. 1 (right)). Let E be the set of all edges of the game tree of G corresponding to actions of all
players except the chance player. By &' : E — A’ we denote a function which for an edge e € E returns its action label in
G’, similarly we define ® : E — A. When we talk about the equivalence of arbitrary strategy representation in G and G’, we
talk about the equivalence with respect to ® and ®’. Same goes for applying the strategy from G to G’ and vice versa.

2.1. Strategies in imperfect recall games

There are several representations of strategies in EFGs. A pure strategy s; for player i is a mapping assigning VI; € Z; an
element of A(I;). S; is a set of all pure strategies for player i. A mixed strategy m; is a probability distribution over S;, set
of all mixed strategies of i is denoted as M. Behavioral strategy b; assigns a probability distribution over A(I;) for each I;.
B is a set of all behavioral strategies for i, Bf C B; is the set of deterministic behavioral strategies for i. A strategy profile is
a set of strategies, one strategy for each player.

Definition 2. A pair of strategies x;, y; of player i with arbitrary representation is realization equivalent if Vz € Z : nix" (2) =

niy (2), where nix i(2) is a probability that z is reached due to strategy x; of player i when the rest of the players play to
reach z.

We overload the notation and use u; as the expected utility of i when the players play according to pure (mixed,
behavioral) strategies.

Behavioral strategies and mixed strategies have the same expressive power in perfect recall games, but it can differ in
imperfect recall games [28].

Example 1. Consider the game depicted in Fig. 2. This game has 4 pure strategies for player 1 &1 = {(a, ¢), (a,d), (b, 0),
(b,d)}. A mixed strategy can condition the actions of players on information that the players should no longer have available.
For example, a mixed strategy where (a, c) and (b, d) are played with a uniform probability 0.5 allows player 1 to condition
playing ¢ and d on the outcome of his stochastic choice in the root of the game, and thus randomize between the leftmost
and the rightmost state in information set of player 2. Note that one cannot model the same behavior using a behavioral
strategy that assigns a probability distribution over the actions available in every decision point without conditioning on
any previous knowledge. Therefore no additional information can be disclosed to the player.

Moreover, the size of these representations differs significantly. Mixed strategies of player i state probability distribution
over S;, where |S;j| € O(2/21), behavioral strategies create probability distribution over the set of actions (note that its size
is proportional to the number of information sets, which can be exponentially smaller than | Z|). Hence when one wants to
exploit the space savings caused by the reduced number of information sets in imperfect recall games, behavioral strategies
need to be used.

Next, we define the maxmin strategy and Nash equilibrium in behavioral strategies.

Definition 3. We say that b} is a maxmin strategy iff

bf =argmax min u;(b;,b_;).
bieB; b-i€B
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Fig. 3. (Left) A well-formed game which does not have A-loss recall. (Right) An A-loss recall game which is not chance relaxed skew well-formed.

Informally, maxmin strategy of player i maximizes the worst case expected outcome with respect to the behavior of —i.*

Definition 4. We say that strategy profile b = {b}, b*;} is a Nash equilibrium (NE) in behavioral strategies iff Vi eN Vb € B; :
ui(b;ka bil) Z ul’(bgs bil)

Informally, a strategy profile is a NE if no player wants to deviate to a different strategy.

Finally, we define the exploitability of a strategy.

Definition 5. We define the exploitability of a strategy b; as

min u,-(b,-, b_i).
b_ijeB_;

Informally, the exploitability of a strategy b; is the worst case utility of i achievable when playing b;.
2.2. A-loss recall games

In this section we formally define the subclass of imperfect recall games called A-loss recall games [20,21] and show the
relationship of A-loss recall games to the only known subclasses of imperfect recall games being solved in the literature,
namely well-formed games, skew well-formed games and chance relaxed skew well-formed games [17,18].

Definition 6. Player i has A-loss recall if and only if for every I € Z; and nodes h, h’ € I it holds either (1) seq;(h) = seq;(h’),
or (2) 3I' € Z; and two distinct actions a, a’ € A;(I'),a # a’ such that a € seq;(h) A a’ € seq;(h’).

Condition (1) in the definition says that if player i has perfect recall then she also has A-loss recall. Condition (2) can be
interpreted as requiring that each loss of memory of A-loss recall player can be traced back to some loss of memory of the
player’s own previous actions in one information set.

2.2.1. Well-formed games

The only known subclasses of imperfect recall games using the imperfect recall to reduce the memory requirements
of strategy representation are chance relaxed skew well-formed games (CRSWFG) and their subsets well-formed games
(WFG) and skew well-formed (SWFG) [17,18]. These classes of games restrict the structure of imperfect recall by requiring
similarity of the states included in one imperfect recall information set both in the structure of past and future moves
as well as the utilities reachable from the states. As a consequence, the perfect recall algorithms (namely Counterfactual
regret minimization (CFR) [8]) are still guaranteed to converge to (£-)NE in these games (see Appendix F for more details
on applying CFR to imperfect recall games and CRSWFG).

Definition 7. We say that the imperfect recall game G is well-formed with respect to some perfect recall refinement G’
of G if for all ie NV, I € Z;, I, 1" (where I',I” are information sets in G’ which are unified to I) there exists a bijection
o : Zp — Zp and constants kp v, Iy € [0, oo) such that for all z€ Zp:

L uij(2) =kp rui(ee(2)),

2. C(2) =1y pC(a(2),

4 Notice, that in maxmin the minimizing player takes into account only the utility of the maximizing player. Hence, we do not restrict the results
concerning maxmin in the following sections to zero-sum games, as the utility of the minimizing player can be arbitrary.
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3. in G, seq_ij(z) = seq_i(a(z)), and
4. in G, seqi(z[I'], 2) = seqi(x(2)[I"], x(2)),

where Z; stands for terminal states reachable from states in I, z[I] denotes the state in I reached when moving from the
root of the game to z and seq;(h, h’) is a sequence of actions needed to reach h’ from h. We say that G is well-formed game
if it is well-formed with respect to some perfect recall refinement.

Both SWFG and CRSWFG relax only condition (1) and (2) in the well-formed game definition and still require condition
(3) and (4) to hold (see [17,18] for more details).

While A-loss recall games restrict the structure of the game only above the imperfect recall information set (the require-
ment of being able to connect any loss of memory to forgetting player’s own actions), the WFG, SWFG, and CRSWFG restrict
the structure above, below and also the structure of the utilities. In the case of games with no chance, we can formally
define the relationship between A-loss recall games and WFG, SWFG, and CRSWFG.

Lemma 1. In games with no chance, the WFG, SWFG, and CRSWFG form a strict subset of A-loss recall games.

Proof. We first prove the Lemma for WFG and then show that it extends to both SWFG and CRSWEFG.

The only requirement in A-loss recall games is that players are able to connect any loss of memory to forgetting their
own actions, hence the restriction in the information set I always concerns only the part of the tree above I. We, therefore,
focus on condition (3) in the definition of WFG, since it is the only one restricting the upper part of the game tree.
Condition (3) requires that for each h’ € I’ there must exist h” € I” such that seq_;(h") = seq_;(h”), which, combined with
the assumption that there is no chance player, implies that there must exist difference in seq;(h’) and seq;(h”). Furthermore,
since seq_;(h') = seq_;(h”") we are sure that there must exist I € Z; and distinct a,a’ € A(I) such that a € seq;(h’) and
a’ € seq;(h”) which is exactly the condition (2) in the A-loss recall property. The rest of the requirements of the WFG
restricts utilities and parts of the tree not restricted in A-loss recall games. Therefore the WFG form a subset of A-loss recall
games.

Notice that the Lemma also holds for SWFG and CRSWEFG, since they provide relaxations in conditions (1) and (2)
only. O

In Fig. 3 (left) we show a WFG (with « : {zp — z4,z3 — z5}) with chance which does not have A-loss recall. The game
does not have A-loss recall since player 1 forgets the information about the move of chance in the root of the game. Finally,
in Fig. 3 (right) we present an A-loss recall game which is not CRSWFG. The game is not CRSWFG since the leaves z; and
z3 reachable from h; cannot be mapped to any leaf after h, without breaking condition 3 in Definition 7. Notice that when
assuming rational player 2, however, it is safe to include hi and h, to one information set, since the expected utilities
after every action available in hi, hy are equal, and so any behavior optimal in h; is optimal in hy. Hence CRSWFG are
unnecessarily conservative in the restrictions posed on the game tree.

2.3. Best response computation

One of the main computational components in algorithmic game theory is the problem of computing a best response.
Formally, a strategy of a player (e.g., pure, mixed, behavioral) is a best response to a given strategy of his opponent if its
expected utility is maximal against this strategy compared to all other strategies from the particular class. To denote the
best response regardless of the type of the strategy (i.e., regardless whether we consider mixed or behavioral strategies), we
use the term ex-ante best response.

In perfect recall EFGs, it is sufficient to consider a pure best response. However, this is no longer true in imperfect recall
EFGs. Consider a one-player game called the absentminded driver [29] depicted on the left in Fig. 4. We see that by playing
any pure, or even a mixed strategy, the player cannot reach outcome higher than 1. Note that in a mixed strategy a player
samples a pure strategy from the given distribution before the game begins; hence, there is no randomization when the
information set is reached, and player 1 always follows the pure strategy sampled from the mixed strategy. When using a
behavioral strategy, however, player samples the action from a given distribution independently every time an information
set is reached. Hence, the ex-ante optimal strategy is a behavioral strategy b(s) = % that reaches the expected value of %.
In general, we need to consider randomized best responses in so-called absent minded games (games where there exists a
path from the root of the game tree to some leaf such that at least one information set I; € Z; is visited more than once).
In the following text, we will assume that the games are without absentmindedness, where it is sufficient to consider only
pure strategies to find an ex-ante best response.

Lemma 2. Let G be an imperfect recall game without absentmindedness and by strategy of player 1. There exists an ex-ante pure best
response of player 2.

The proof is based on the fact that we search for an optimum of a multilinear function with independent variables over
a convex polytope with vertices corresponding to pure strategies (see Appendix A for full proof).
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Fig. 4. (Left) Absentminded Driver. (Right) An EFG without A-loss recall where a time consistent best response (playing the best action in an information
set) is not necessarily the ex-ante best response.

The problem of finding an ex-ante best response in games without absentmindedness is still NP-hard (follows from
complexity results in [15]) while the problem is easy (polynomial) in perfect recall games. The main difference is that in
imperfect recall games an ex-ante best response cannot be found by selecting an action with the highest expected utility
to be played in each information set (called a time consistent strategy [21]). This is caused by the fact that the belief in an
information set of a player is not perfectly determined by the strategy of the opponent and nature, but also by the strategy
of the best-responding player.

Consider the game in Fig. 4 (right) between player 1 and chance. The ex-ante best response of player 1 in this game is
to play B,D,F getting the utility of 5%8 Note, however, that since the belief of player 1 in his imperfect recall information
sets depends on his behavior above the information set, one can reach a time consistent strategy playing B,C,E with the
expected utility of 2. This strategy is time consistent since when checking every information set separately, there is no
deviation of player 1, which could increase his expected value. Note that player 1 does not have A-loss recall in the game
in Fig. 4 (right) since parents of the nodes in the information set I3 are in two distinct information sets Iy, I and their
common predecessor is a chance node.

The equivalence between time consistent strategies and ex-ante best responses is shown to hold in A-loss recall games.
Consequently, the computation of the best response is in P in A-loss recall games [20,21]. The following lemmas are a
consequence of these facts.

Lemma 3. Let G be an imperfect recall game where player i has A-loss recall. Let G’ be the coarsest perfect recall refinement of G for
player i. Every pure behavioral strategy b’ of player i from G’ has realization equivalent pure behavioral strategy b; in G and vice versa.

Lemma 4. Let G be an imperfect recall game where player 2 has A-loss recall and b1 a strategy of player 1. Let G’ be the coarsest perfect
recall refinement of G for player 2. Let b', be a pure best response to by in G’ and let b, be a realization equivalent behavioral strategy
to b}, in G, then by is a pure best response to by in G.

The proofs of both lemmas can be found in Appendix A.
Lemma 4 allows us to formulate the concise mathematical program described in Section 4 which is used as the core of
algorithms discussed in Section 5.

3. NE and maxmin strategies in A-loss recall games

To provide a complete picture of the complexity of solving A-loss recall games, we discuss the existence, numerical
representation and computational complexity of maxmin and NE behavioral strategies in A-loss recall games.

3.1. Existence of NE in A-loss recall games

The guarantee of the existence of NE in finite games due to Nash [30] assumes mixed strategy representation only.
Hence, this guarantee does not extend to NE in behavioral strategies in imperfect recall games because of the different
descriptive power of mixed and behavioral strategies there [14]. Here, we discuss the necessary and sufficient condition for
the existence of NE in behavioral strategies in A-loss recall games. First, we show an example of the imperfect recall game
due to Wichardt [14] which does not have a NE in behavioral strategies and show that it has A-loss recall, which implies
that A-loss recall games need not have NE in behavioral strategies. We then provide novel sufficient and necessary (i.e., if
and only if) condition for the existence of NE in behavioral strategies in two-player A-loss recall games. Note, that thanks to
this result, A-loss recall games are the only subclass of imperfect recall games, for which such condition is known (the only
exception are well-formed games, where NE in behavioral strategies always exists, and so the condition is trivial).
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Fig. 5. An A-loss recall game where all maxmin strategies and NE require irrational numbers [15].

Informally, Theorem 1 states that A-loss recall game G has a NE in behavioral strategies if and only if there exists a
behavioral NE in its coarsest perfect recall refinement G’ which prescribes the same behavior in every information set
which is connected to some imperfect recall information set of G.

Proposition 1. The existence of NE in behavioral strategies is not guaranteed even in two-player zero-sum A-loss recall games.

Proof. In Fig. 2 we present the imperfect recall game where there is no NE in behavioral strategies due to Wichardt [14].
This game has A-loss recall since only player 1 has imperfect recall and he forgets only his own choice in the root. This
implies that the existence of NE is not guaranteed even in two-player zero-sum A-loss recall games. 0O

Theorem 1. An A-loss recall game G has a NE in behavioral strategies if and only if there exists a NE strategy profile b in behavioral
strategies of the coarsest perfect recall refinement G’ of G, such that VI € Z of G, VHy, H; € H(I) : b(Hy) = b(H,), where b(H) stands
for the behavioral strategy in the information set of G’ formed by states in H.

Proof. First, since b is a NE of G’ we know that there exists no incentive for any player to deviate to any pure behavioral
strategy in G’. From Lemma 3, it follows that there can exist no pure behavioral strategy in G to which any of the players
want to deviate either. Additionally, from Lemma 2 it is sufficient to consider deviations to pure strategies in G since none
of the players is absentminded. This, in combination with the fact, that b prescribes valid strategy in G implies that b is a
NE in behavioral strategies of G.

Second, we prove that there exists no NE b’ in behavioral strategies of G which is not a NE of G’. Let us assume that
such b’ exists. This would imply that there is no pure behavioral strategy in G to which players want to deviate when
playing according to b’, and therefore no pure behavioral strategy in G’ either (Lemma 3), implying that b’ is a NE in G'.
This contradicts the assumption and completes the proof. O

Note that in general imperfect recall game this equivalence no longer holds. Consider the game in left subfigure of
Fig. 1. Here the only NE in behavioral strategies is playing d and e deterministically and mixing uniformly between g, h.
The only NE of its coarsest perfect recall refinement (shown in right subfigure of Fig. 1) is, however, playing d, e, h and i
deterministically. For more details about the existence of NE in general imperfect recall games see Appendix B.

3.2. Representation of Nash equilibrium and maxmin strategies

In this section, we state negative results concerning strategy representation in A-loss recall games. In two-player perfect
recall games with rational payoffs, there always exists a maxmin behavioral strategy which uses only rational probabili-
ties [15]. In imperfect recall games, this no longer holds [15]. We present the example of the imperfect recall game provided
in [15], where all maxmin strategies require irrational numbers and show that this game has A-loss recall. Moreover, since
the maxmin strategies form a part of all the NE strategies of this game, we extend this result also to NE of A-loss recall
games. It follows that computing exact maxmin and NE strategies requires exact representation of irrational numbers even
in A-loss recall games.

Theorem 2. All the maxmin strategies may require irrational numbers, even in two-player zero-sum A-loss recall game with rational
payoffs.

Proof. The example of the imperfect recall game used in [15] is depicted in Fig. 5. The maxmin strategy of player 2 is trying
to maximize

min{3bz(d)bz(f),3(1 —bz2(d))(1 —b2(f)), b2(d)(1 = b2(f)) + (1 — b2(d)b2(f)}. (1)
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Fig. 6. An A-loss recall game reduction from Theorem 4 of 3-SAT problem x; V —X3 V X4 A —X2 V X3 V —X4.

This is maximized when

3ba(d)b2(f) =3(1 — ba(d))(1 = ba(f)) =b2(d)(1 — b2(f)) + (1 — ba(d))b2(f), (2)

which leads to by (d) = 0.1(5 & +/5).
This game has A-loss recall since the only information player 2 forgets is his own choice in his first information set. O

Theorem 3. All the Nash equilibrium strategies may require irrational numbers, even in two-player zero-sum A-loss recall game with
rational payoffs.

Proof. Strategy profiles bi(a) = b1 (b) = 0.2, by(d) = by(g) = 0.1(5 £ +/5) form all the Nash equilibria of the game in Fig. 5.
This holds since none of the players wants to deviate and the strategies for player 2 are the only solutions of eq. (2). Hence,
it follows that any other strategy of player 2 has worse expected value against the best responding opponent, and therefore
cannot be stable. O

3.3. Computational complexity in imperfect recall games

Now we turn to the computational complexity of solving imperfect recall games. Computing maxmin strategies is
NP-hard in imperfect recall games [15] and it is NP-hard to decide whether there exists a NE in behavioral strategies
in imperfect recall games [16] (both theorems and their proofs are presented in Appendix C for completeness). We show
that both negative results directly translate to A-loss recall games. Notice that unlike ours, the reduction used in [16] re-
quires a game with absentmindedness, hence we significantly extend the class of games for which it is known that deciding
whether there exists a NE in behavioral strategies is NP-hard.

Theorem 4. The problem of deciding whether player 2 having an A-loss recall can guarantee an expected payoff of at least A is NP-hard
even if player 1 has perfect recall, there are no chance moves, and the game is zero-sum.

Proof. The proof is made by reduction from the 3-SAT problem. It is a modification of the original proof of Koller [15] for
imperfect recall games. The example of the reduction is given in Fig. 6. Given n clauses x; 1 V Xj 2 V Xj 3 we create a two
person zero-sum game in the following way. In the root of the game player 2 chooses between n actions, each corresponding
to one clause. Player 1 plays next with no information about the action chosen by player 2. He has again n actions, each
corresponding to one clause. In every state of player 1, n — 1 actions lead directly to a terminal state with utility 0 for
player 1 and one action (corresponding to the same clause as the action of player 2 preceding this state) leads to a state of
player 2. Every such state of player 2 corresponds to the variable x; 1 where j is the index of the clause chosen in the root
of the game. Every such state has actions Ty, ,, Fx;, available. These actions correspond to setting the variable x; 1 to true or
false respectively. After both Ty, ,, Fx;, in xj1 we reach the state representing the assignment to x;» with the same setup
(state representing the assignment to x; 3 is reached after that). After the assignment to x;3 we reach the terminal state
with utility —nA for player 1 if the assignment to xj 1, ;2 and x; 3 satisfies the clause x; 1 Vv Xj 3 V x; 3, 0 otherwise. The
information sets of player 2 group together all the states corresponding to the assignment to one variable in the original
3-SAT problem (note that we assume that the order of variables in every clause follows some complete ordering on the
whole set of variables in the 3-SAT problem).
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Fig. 7. An A-loss recall game reduction from Theorem 5 of 3-SAT problem x; V —X3 V X4 A =X V X3 V —X4.

We will show that player 2 can guarantee the worst case expected value A if and only if the original 3-SAT problem is
satisfiable. First, we show that if the original 3-SAT problem is satisfiable player 2 can guarantee the worst case expected
value XA. The worst case expected value A is achieved when player 2 mixes uniformly in the root of the game and plays
according to the assignment which satisfies the original 3-SAT problem in the rest of the tree.

Next, we show that if player 2 can guarantee the worst case expected value A, the original 3-SAT problem has to be
satisfiable. There are two cases we need to discuss.

Case 1: Player 2 plays a non-uniform strategy b, in the root. In this case player 1 will play action a € A; corresponding to
the same clause as the action apin € argminge 4, roor) b2(a). Since by is non-uniform in the root we know that by (amin) < %

and hence the expected value of player 2 must be lower than % no matter what happens in the rest of the game.

Case 2: The last chance to guarantee expected value A is when player 2 plays a uniform strategy b, in the root. Here
we show that A can be guaranteed only when the corresponding 3-SAT problem is satisfiable. If the 3-SAT problem is not
satisfiable, that means that there always exists a state h of player 2 after the action of player 1, where ug(bz) < ni, where
ug(bz) stands for the expected value in h when player 2 plays according to b,. By playing action leading to this state,
player 1 guarantees that the expected value for player 2 is lower than % If the 3-SAT is satisfiable on the other hand, the
uniform b, in the root and playing according to the assignment satisfying the 3-SAT guarantees the expected value A.

The reduction is polynomial, since the game has n(n — 1) + 23n leaves.

The last thing which remains to be shown is that player 2 has A-loss recall. This is satisfied since any loss of information
about actions of player 1 can be tracked back to forgetting his own action taken in the root or to setting some of the SAT
variables to true or false. O

We leave the question whether the problem stated in Theorem 4 belongs to NP as an open problem. Even though Theo-
rem 2 states that the solution to this problem might require irrational numbers, it is not a sufficient argument for showing
that this problem does not belong to NP. From this perspective, the problem from Theorem 4 is similar to square-root sum
problem, since the square-root sum problem also requires operations with irrational numbers. However, deciding whether
square root sum problem belongs to NP is a major open problem [31] and there are known connections of square-root sum
problem to other problems in game theory, e.g., computing Nash equilibrium in 3-player games [32].

Theorem 5. It is NP-hard to check whether there exists a Nash equilibrium in behavioral strategies in two-player A-loss recall games
even if player 1 has perfect recall, there are no chance moves, and the game is zero-sum.

Proof. The proof is made by reduction from the 3-SAT problem. The reduction results in a two-player zero-sum game
similar to the one in proof of Theorem 4. The only change in the game is the substitution of the utility in the leaves directly
following actions of player 1 by —1 for player 1 and in the leaves corresponding to satisfying the given clause by —0.5 for
player 1. The example of the reduction is shown in Fig. 7.

We will show that a NE in behavioral strategies exists if and only if the corresponding 3-SAT problem is satisfiable. First,
if the 3-SAT problem is satisfiable, this game has a NE where both players mix uniformly in first two levels of the game,
and the player 2 plays according to the assignment of variables satisfying this problem.

Next, we show that if the NE exists, the corresponding 3-SAT problem has to be satisfiable. There are two cases we need
to discuss.

Case 1: Player 1 plays a non-uniform strategy bq. In this case, player 2 will always prefer to play action a € Aj;(root)
which corresponds to the same clause as amin € argming 4, b1(a) deterministically in the root and make the clause corre-
sponding to anj, satisfiable. This way player 2 maximizes the probability that the immediate worst possible outcome —1
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for player 1 will be reached and minimizes the value player 1 gets when the following state of player 2 is reached. Hence
by is not stable against a best responding opponent.

Case 2: The last chance for NE to exist is when player 1 plays a uniform strategy b;. Here we show that in this case, the
NE exists only when the corresponding 3-SAT problem is satisfiable. If the original 3-SAT problem is not satisfiable player 2
will prefer to play a subset of actions A, C Az (root) in the root corresponding to a subset of clauses that can be satisfied at
the same time, while playing the assignment satisfying these clauses in the rest of the tree. In this case, however, player 1
wants to deviate to playing any distribution over his actions corresponding to the clauses of actions in A). If the 3-SAT is
satisfiable on the other hand, the uniform b; forms a part of NE when player 2 plays a uniform strategy in the root and
according to the assignment satisfying the 3-SAT in the rest of the tree. O

4. The mathematical program for approximating maxmin strategies in imperfect recall games

In this section, we present a mathematical program approximating maxmin strategies for two player games without
absentmindedness where the maximizing player has imperfect recall, first when assuming that the minimizing player has
A-loss recall, followed by its generalization where there are no restrictions for the minimizing player. Recall that computing
exact maxmin strategy in this class of games requires exact representation of irrational numbers (Theorem 2) and so ap-
proximating maxmin strategies is the only alternative. The main idea behind this formulation is to add bilinear constraints
into the sequence form LP [7] to restrict to imperfect recall strategies of the maximizing player. First, we present the exact
bilinear program, followed by explanation of Multiparametric Disaggregation Technique (MDT) [25] which will be used for
approximating bilinear terms. Next, we provide the mixed integer linear program (MILP) resulting from the application of
the MDT to the bilinear reformulation of the sequence form LP. Finally, we discuss how to use the result of this MILP to
construct a strategy with a bounded difference of its expected worst case utility from the maxmin value.

4.1. Exact bilinear sequence form against A-loss recall opponent

max v (root, @) (3a)
X,r,V
s.t. r@=1 (3b)
0<r(op) <1 Vo1 € X1 (3c)
Z r(o1a) =r(o1) Vo1 € X1, VI €infi(o1) (3d)
ac A(I)
> x@=1 Vi e iR (3e)
ac A(I)
0<x@<1 vl e 7R, va € A(I) (3f)
r(o1) - x(a) =r(o1a) VIEZ'R,Vae.A(I),
Vo1 e seqi(I) (3g)
Y gloromron+ Y, vl oa)=v(,02) VeI Vae A,
1€ I'einfy(092a)
Yo, € seqa(l) (3h)

The mathematical program (3) is a bilinear reformulation of the sequence-form LP [7] applied to the information set
structure of a game G where the player 1 has imperfect recall and the player 2 has A-loss recall. The objective of player 1
is to find a strategy that maximizes the expected utility against the best responding opponent in G. The strategy of the
maximizing player is represented as a realization plan (variables r) that assigns the probability to a sequence: r(oq) is the
probability that o7 € X1 will be played assuming that information sets in which actions of the sequence oy are applicable
are reached due to player 2. The realization plan r must satisfy the network flow Constraints (3b)-(3d). Finally, a strategy of
player 1 is constrained by the best-responding opponent that selects an action minimizing the expected value of player 1 in
each I € 7, and for each oy € seq,(I) that was used to reach I (Constraint (3h)). These constraints ensure that the opponent
plays the best response in the coarsest perfect recall refinement of G and thus also in G by Lemma 4. The expected utility
for each action in Constraint (3h) is a sum of the expected utility values from immediately reachable information sets
I’ and from immediately reachable leaves. For the latter we use generalized utility function g: ¥1 x X3 — R defined as
8(01,02) = 3¢ 2 seqy (2)=01 nseqy (2)=0, U1(2)C(2). In imperfect recall games, multiple o; can lead to some imperfect recall

information set I; € Ii’R; hence, realization plans over these sequences do not have to induce the same behavioral strategy

for I;. Therefore, for each I I{R and each a € A(I1) we define behavioral strategy x(a) (Constraints (3e)-(3f)). To ensure
that the realization probabilities induce the same behavioral strategy in I, we add bilinear constraint r(o1a) = x(a) - r(o1)
for every o1 € seq1(I1) (Constraint (3g)).
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Lemma 5. Let G be a two-player game where the maximizing player has imperfect recall and the minimizing player has A-loss recall.
The assignment to r variables satisfies constraints (3b)-(3g) if and only if there exists a behavioral strategy b1 € By in G realization
equivalent tor.

Proof. First, we show that for every by € By there exists an assignment to r variables that satisfies constraints (3b)-(3g).
For every sequence o1 € X1 we can compute such r(o1) as

r(o1) = ! . "
[ 4o, b1(a), otherwise.

The network flow constraints (3b)-(3d) are satisfied from the construction of r in (4). Constraints (3e)-(3g) are satisfied
since by is a probability distribution over actions in information sets of G, and VI I{R Va € A(I) by(a) = x(a).

Second, we show that for every assignment to r satisfying constraints (3b)-(3g) there exists realization equivalent
by € By. Such by can be constructed from r in the following way. In each I € 7; \I{R, and for each a € A(l), b(a) =
r(seqi(Da)/r(seqi(I)). In case of I € I{R, however, seq1(I) is no longer a singleton. But from constraints (3e)-(3g) we know
that

Vo1, 0, € seqi(I)Va € A(I) r(o1a)/r(o1) =r(oqa)/r(o7) = x(a),

hence we can use bi(a) = x(a) for any I € I]’R and a € A(I). Finally, from constraints (3b)-(3d) follows that such b; is a
probability distribution over actions in information sets of G. O

Lemma 6. Let G be a two-player game where the maximizing player has imperfect recall and the minimizing player has A-loss recall.
Assume that we fix r variables to arbitrary values in the mathematical program (3) applied to G, such that r satisfies constraints
(3b)-(3g). The optimal objective value of such program corresponds to the worst case expected value of player 1, when playing according
tor.

Proof. We need to show that the objective value of the mathematical program (3) applied to G with the fixed r corresponds
to the expected value of the player 1 playing r against the best responding player 2 minimizing the expected value of
player 1.

Let G’ be the coarsest perfect recall refinement of G for the minimizing player 2. From Lemma 4 we know that when
searching for a best response to any by in G, it is sufficient to find a pure best response to by in G’. The sequence-form LP
applied to G’ ensures that the minimizing player plays a best response using constraints

Y glon, oo+ Y, vd)=v() VIeTyVaeAl), (5)

01€% I'einf,(030)

where 0, = seq,(I). The fact that player 2 plays a best response in the solution of the mathematical program (3) for G is
ensured by constraints (3h) which are identical to constraints (5) applied to G’. This holds since all the pairs {(I, 02)| I €
Iy A 0y € seqa(I)} for player 2 in G exactly correspond to information sets of player 2 in G’ (definition of A-loss recall).
Hence, variables v and the quantifiers in (3h) for G exactly correspond to variables v and the quantifiers in (5) for G’.
Finally, also the left sides of (3h) for G and (5) for G’ are equal, since the extended utility function is the same in G and
G’ and the pairs (I, 02a) in the second sum of (3h) correspond to I’ in the second sum of (5). Hence, the objective value
corresponds to the expected utility of player 1 playing r against the best responding player 2 minimizing the expected value
of player 1 in G’ and therefore also in G. O

Theorem 6. Let G be a two-player game where the maximizing player has imperfect recall and the minimizing player has A-loss recall.
Realization plan r is a part of some optimal solution® of the mathematical program (3) if and only if r is @ maxmin strategy for the
maximizing player in G.

Proof. Let b be a behavioral strategy realization equivalent to r. We need to show that r is a part of some optimal solution
of the mathematical program (3) if and only if for by holds that

b1 € argmax min uq (b}, b2). (6)
bjeB; b2eB2

First, we prove that if r is a part of an optimal solution of the mathematical program (3) then the eq. (6) holds for
behavioral strategy bq realization equivalent to r (such strategy always exists from Lemma 5). This follows from the fact

5 ris only a part of the optimal solution since the r variables form a strict subset of all the variables present in (3).
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that the mathematical program maximizes the worst case expected value of player 1 (Lemma 6) over all possible strategies
of player 1 (Lemma 5). Hence, b1 is a maxmin strategy of player 1 in G.

Finally, we prove that if the eq. (6) holds for a behavioral strategy b1, then the realization plan r, realization equivalent to
by, is a part of the optimal solution of the mathematical program (3). Let’s assume that such r is not a part of any optimal
solution of the mathematical program (3). Since r satisfies constraints (3b)-(3g) (Lemma 5), it is a part of a valid solution
of (3). This would imply that the mathematical program (3) found r’ which guarantees higher worst case expected value
(Lemma 6), and hence by would not be a maxmin strategy for player 1. O

4.2. Player 2 without A-loss recall

If player 2 does not have A-loss recall, the mathematical program must use each possible pure best response of player 2
(hence in the worst case each s; € Sy) as a constraint since the time consistent strategy of player 2, ensured by constraint
(3h) in the previous case, need not be his ex ante best response (as discussed in Section 2.3). This results in the following
bilinear program with size exponential in the size of the solved game.

1)‘(nra§ v(root) (7a)
Constraints (3b)-(3g)
Z u1(2)C(2)r(seq1(z)) = v(root) Vs € Sy, (7b)

2€Z | 1,2 (2)=1

where nzsz (2) is 1 if sy prescribes all actions in seqy(z), 0 otherwise. Since the mathematical program (7) does not change
the parts of the program related to the approximation of strategies of player 1, all the following approximation methods,
theorems, and the branch-and-bound algorithm can also be applied to (7). However, the scalability would be significantly
worse for the mathematical program (7), since even the subproblem of computing the best response of the minimizing
player is NP-hard (follows from complexity results in [15]), and hence it requires exponential number of constraints (7b).
The algorithm presented in Section 5.2 iteratively solves the mathematical program, hence when using the formulation (7)
every iteration of the algorithm would require solving exponentially larger mathematical program compared to the case
where the minimizing player has A-loss recall.

4.3. Approximating bilinear terms

The final technical tool that we use to formulate the mathematical program is the approximation of bilinear terms
by Multiparametric Disaggregation Technique (MDT) [25]. The main idea of the approximation is to use a digit-wise dis-
cretization of one of the variables from a bilinear term. The main advantage of this approximation is a low number of
newly introduced integer variables and an experimentally confirmed speed-up over the standard technique of piecewise
McCormick envelopes [25].

Let a = bc be a bilinear term. MDT discretizes the variable b and introduces new binary variables wy , that indicate
whether the digit k is on ¢-th position.

9
D wie=1 Lel (8a)
kZO
. wy,¢ €{0,1} (8b)
DY 10" k- wie=b (8¢)
LeZ k=0
chowie<Ge<c¥wig V¢ € 7, Vk € {0..9} (8d)
9
Zéu =c VleZ (8e)
9 k=0
Y Y10 k- Ge=a (8f)
LeZ k=0

Constraint (8a) ensures that for each position ¢ there is exactly one digit chosen. All digits used according to wy
variables must sum to b (Constraint (8c)). Next, we introduce variables i, that are equal to ¢ for such k and ¢ where
wy =1, and Cy ¢ = 0 otherwise (egs. (8d), (8e)). cl and ¢V are bounds on the value of variable c. The value of a is given by
Constraint (8f).

This is an exact formulation that requires infinite sums and an infinite number of constraints. By restricting the set of
all possible positions ¢ to a finite set {Py,..., Py} we get a lower bound approximation. Following the approach in [25] we
can extend the lower bound formulation to compute an upper bound:



J. Cermdk et al. / International Journal of Approximate Reasoning 93 (2018) 290-326 303

Constraints (8a), (8b), (8d), (8e)

2: fémew-why+Ab=b (9a)
Le(Py,..., PU}k:Z 0<Ab<10™ (9b)
> D100 kGt Aa=a (9¢)
te{Py,...,Py} k=0 b Ab<Aa<cY . Ab (9d)
<C—CU>-10”L+c”-Ab§Aa (9e)
(c—c)-10% +c- b= Aa (9N

Here, Ab is assigned to every discretized variable b allowing it to take up the value between the discretization points
(Constraints (9a)-(9b)). Similarly, we allow the product variable a to be increased with variable Aa = Ab - c. To approximate
the product of the delta variables, we use the McCormick envelope defined by Constraints (9c)-(9f).

4.4. Upper bound MILP approximation

We are now ready to state the main MILP for computing the upper bound on the optimal value of the bilinear program
(3) and hence also on the maxmin value of the solved game. The MILP formulation follows the MDT example and uses ideas
from Section 4.3 to approximate the bilinear term r(oq)x(a) in Constraint (3g). In accord with the MDT, we represent every
variable x(a) using a finite number of digits of precision. Since x(a) is a probability, we use dig(£) as the function which for
every precision ¢ € {—P..0} returns the set of digits used to represent x(a), i.e.,

{0,1},if¢=0

dig(t) =
18(6) {0, ..., 9} otherwise.

Binary variables w,i1 f correspond to wy o variables from (9) and are used for the digit-wise discretization of x(a). Finally,
?(m)i , variables correspond to Cr.¢ variables from (9). To allow variable x(a) to attain an arbitrary value from [0, 1] interval
using a finite number of digits of precision, we add an additional real variable 0 < Ax(a) < 10~" that can span the gap
between two adjacent discretization points. Constraints (10d) and (10e) describe this loosening. Variables Ax(a) also have
to be propagated to bilinear terms r(o7) - x(a) involving x(a). We cannot represent the product Ar(oia) =r(oq1) - Ax(a)
exactly and therefore we give bounds based on the McCormick envelope (Constraints (10i)-(10j)).

max v(root, ¥) (10a)
X,1,V

s.t. Constraints (3b)-(3f), (3h)

Wit o) ez vae A, ov)
Vee{—P..—1},Vk edig(l)
T wh = VI e TR, Va e A(D), (10c)
kedig(f) Ve e {—P..0}
0
Y 10k wki 4 ax@ =x@  VIeTif Vae Al (10d)
L=—P kedig(?)
0 < Ax(@) <1077 VI e IiR, va e A(I) (10e)
0 <o), <w Ve g, va < AD. "o
Vo e seqq(I), Ve € {—P..0},
Vk e dig(f)
Y #o), =r0) VI e 7}, Vo € sequ(l) (108)
. kedig(e) Ve e {—P..0}
> > 10° -k i)}, + Ar(oa) =r(00) VI e Z{", Ya e A(D), (10h)

£=—P kedig(¢) Yo € seqi(I)



304 J. Cermdk et al. / International Journal of Approximate Reasoning 93 (2018) 290-326

(r(o)—1)-10"" 4+ Ax(a) < Ar(ca) <10~ " . r(o) VI e 7R va e A(I), (10i)
Yo eseqqi(I)
0 < Ar(oa) < Ax(a) vI e TR Vo e seqi(I), (10j)
Va e A(l)

Note that the MILP has both the number of variables and the number of constraints bounded by O (|Z| - |X| - P), where
|2| is the number of sequences of both players. The number of binary variables is equal to 10 - |I{R| - AT . P, where
AT = max; zix [ A1 (D).

4.5. Theoretical analysis of the Upper Bound MILP

Here we show how to use the result of the Upper Bound MILP to construct a strategy with a bounded difference of its
expected worst case utility from the maxmin value of the solved game.

The variables Ax(a) and Ar(o) ensure that the optimal value of the MILP is an upper bound on the value of the bilinear
program (3) and therefore also on the maxmin value. The drawback of using Ax(a) and Ar(o) is that the realization proba-
bilities do not have to induce a valid strategy in the imperfect recall game G, i.e., if o1, o2 are two sequences leading to an
imperfect recall information set I7 € I{R where action a € A(I1) can be played, r(c'a)/r(c!) need not equal r(c2a)/r(c?).
In the following text we will show how to create a valid corrected strategy in G from r which decreases the expected value
against a best responding opponent by at most &€ compared to the value of the Upper Bound MILP (10), while deriving
bound on this &.

Let b} (1), ..., b’{(I 1) be behavioral strategies in the imperfect recall information set I; € I{R corresponding to realization
probabilities of continuations of sequences ol,...,0 e seqqi(11) leading to I;. These behavioral strategies can be obtained
from the realization plan as by (I1,a) =r(o/a)/r(c/) for all o/ € seqi(I1) and a € A(I7). We will omit the information set
and use bq(a) whenever it is clear from the context. Since the imperfect recall is violated in Iq, b{ (a) may not be equal to

bl] (a) for some j, | and action a € A(I4).

Proposition 2. Using any of the b} (1), ..., b’l‘(h) as the corrected strategy b, (I1) in every I € Z7 ensures that ||b1(I1) — b{ I <
lAI1)| - 10~P for every b{ (Ih) e {b} (I), ..., b’l‘(h)}, where P is the number of digits used to approximate the bilinear terms.®

Proof. Let us first show that probabilities of playing action a in b1, b’l‘ can differ by at most 1077, i.. |b{ (a) — bl] ()| <
10~P for every j,I and action a € A(I1). This is based on the MDT we used to discretize the bilinear program.
Let us denote

0
ro= Y Y 10°-k-F(onf, (11)
{=—P kedig(t)
0
x(hooy= Y > 10" k-w, (12)
£=—P kedig(0)
as the part of the strategy representation without the Ar and Ax variables. Notice that constraints (10f) and (10g) ensure
that r(o1a) =r(o1) - x(I1, a). Hence, the difference in b'(I1), ..., b*(I;) is caused solely by the Ar(cia) variables. Further-
more, we know that Ar(oja) < 10~P-r(o7) (Constraint (10i)) which ensures that the maximum difference in b} (a), ..., b’]< (a)
for any a is at most 10~". Taking any of the behavioral strategies bl,...,b’]< as the corrected behavioral strategy bi(I),

therefore satisfies

b1y —biapli < Y. 1077 =14apl-107P. o
acA(ly)

We now connect the distance of the corrected strategy bi(I1) from the set of behavioral strategies b}(ll),...,b’]‘(h)
in I € I{R to the maximum possible distance in worst case expected values. First, we show this on the level of a single
history. Finally, we extend this result to the distance of the worst case expected value of the corrected strategy b; from the
maxmin value.

6 The L1 norm is taken as [|x; — X2||1 = Zae./—\(ll) |x1(a) — x2(a)].
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Lemma 7. Let h € Iy be a history and b}, b% be behavioral strategies prescribing different behavior in I but prescribing the same
behavior in all subsequent states h T h'. Let vy (h) and vmin (h) be maximal and minimal utility of player 1 in the subtree of h. Then
the following holds:

h) — vimin(h
max |ui]I(b1,b%) _ ufl’(bz, b%)| < Vmax(N) — Vmin (h)
bl.b2eB; 2

-Ib}(I1) = bB2(ID)1,

where u’]’(b1 , by) is the expected utility of player 1, when starting in h and playing according to b1, b;.

The proof can be found in Appendix D.
Now we are ready to bound the distance of the worst case expected value of the corrected strategy b; from the maxmin
value.

Theorem 7. The distance of the worst case expected value of the corrected strategy by from the maxmin value is bounded by
Vinax(#) — Vimin (D)
2

where d is the maximum number of player 1's imperfect recall information sets on any path from the root to a terminal node, AT* =
max;, c7ir |A(I7)| is the maximal branching factor and v pmin (¥), vmaex(9) are the lowest and highest utilities for player 1 in the whole

game, respectively.

e=10"".d. AT,

’

Proof. We show an inductive way to compute the upper bound on the distance of the worst case expected value of the
corrected strategy by from the maxmin value. Throughout the derivation we assume that all players play to maximize the
bound to guarantee that we obtain a valid upper bound. We proceed in a bottom-up fashion over the nodes in the game
tree, computing the bound L(h) on the maximum loss player 1 could have accumulated by correcting his behavioral strategy
in the subtree of h. The ¢ is obtained as the value of this bound in the root of the game. The bound L(h) in every h € H is
guaranteed to be higher or equal to

max [uf(y1, b)) — ul(by, b2)|, (13)

bl.bieB;

where y1 is created by joining all b}(ll), e b’{(h) from the solution of the Upper Bound MILP for all I1 € Z7 (y1 prescribes
behavior only on a level of sequences since b{(h), o, b'{(ll) can specify different behavior for every sequence leading to
11, by y(o1,a) we denote the probability that a will be played after sequence o), by is the strategy created by correcting
y1 in the whole tree.

The description of the computation of L(h) follows in a case to case manner.

(1) In leaves, L(h) =0 as there is no correction made.

(2) In node h where player 2 or nature acts,

L(h) = max L(h-a),
acA(h)

since there can be no loss accumulated and in the worst case the direct successor with the highest loss is chosen.

(3) In player 1's node h, which is not a part of an imperfect recall information set, no corrective steps need to be
taken. The expected bound at node h is therefore ), Alh) y1(seqi(h),a)L(h - a). In the worst case player 1's behavioral
strategy y1(seqq(h)) selects deterministically the direct successor with the highest bound, therefore again we use the bound
L(h) = MmaXge Ah) L(h-a).

(4) In player 1's node h, which is a part of an imperfect recall information set, the correction step may have to be taken.
Let yl_h be the strategy created from y; by taking corrective steps in all successors of h and let us construct a strategy yq

from y;h by correcting it also in h. We know that the loss caused by changing y; to y;h is at most maxge A L(h - a),
hence

—h
max [uf(y1,b3) —uj(y;".b3)| < max L(h-a).
b;.b5€B; acA(h)

Now we have to take the corrective step in the node h and construct strategy y’l’. When using the corrected strategy from
Proposition 2, we get the following bound (Lemma 7):

_ vaiff (h) _
max |u’;<y1”,b;>—u’}<yﬁ‘,b§>|s%-10 P AL (D)

b;,b%elgz

- Viff (D)

< 10 P,
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It follows that

max [ufl(y1,bd) — ul (¥, b))

b%,b%EBz
< max |uj(y;".b) —uf(y]. b+ max [uf(y1,b}) —uf(y;". b))l
bl.beB; bl.beB,
< Yt D 0P gmex | max Lh-a),

acA(h)

hence we use

L(h) = Vdifé @)

-107P AMX 1 max L(h - a).
acA(h)
Finally, we provide a bound on the loss in the root node

L) > max |ui(y1.b3) —ui (b1, b3)l. (14)

b),b2eB,

We have shown that in order to prove the worst case bound it suffices to consider deterministic choice of action at every
node h - this means that a single path in the game tree is pursued during the propagation of the bound. The bound is
increased exclusively in nodes which are a part of some imperfect recall information set. We can encounter at most d such
nodes on any path from the root. The increase of the bound in each such node is bounded by

Vinax(@) — Vinin (9)
2

therefore the bound in the root is

e =1 = ) > Vmin®) 110+ g

From eq. (14) follows that ¢ is guaranteed to be higher or equal to the actual difference of worst case expected values of yq
and b1, since it forms an upper bound even in the case where we maximize the difference of the expected values over all
pairs of player 2’s strategies, while in case of the worst case expected value player 2 is restricted to playing a best response.
It follows that the worst case expected value of the strategy we have found lies within the interval [v* — g, v*], where v* is
the worst case expected value of y1, and therefore the optimal value of the Upper Bound MILP. As v* is an upper bound on
the solution of the original bilinear program and therefore also on the maxmin value, no strategy can have a better worst
case expected value than v*. Hence the strategy b guarantees the ¢ distance from the maxmin value. O

. ]O—PAT{IGX’

5. Algorithms for approximating maxmin strategies in imperfect recall games

Algorithms for solving perfect recall games are either not applicable to imperfect recall games and A-loss recall games or
they do not provide any guarantees on the quality of the obtained solutions (see Appendix F for more details). Hence, new
algorithms for solving this class of games are required. In this section we describe a family of algorithms that use the Upper
Bound MILP formulation (10) introduced in the previous section to approximate the maxmin strategy in two-player games
where the maximizing player has imperfect recall and the minimizing player has A-loss recall. First, we describe a simple
approach (denoted as BASE). BASE starts with some initial precision of the representation of bilinear terms and iteratively
increases the precision until the distance of the corrected strategy obtained from the solution of the Upper Bound MILP with
the current precision from the maxmin value is below a given threshold. Next, to reduce the number of binary variables
and hence to improve the scalability of BASE we present a branch-and-bound based algorithm (denoted as IRABNB). IRABNB
works on a linear relaxation of the Upper Bound MILP and simultaneously searches the possible precision improvements of
bilinear terms and the assignment to the relaxed binary variables until the error in the worst case expected value is below
a given threshold. Finally, to reduce the size of the mathematical program that needs to be solved, we extend IRABNB with
incremental strategy generation technique (the algorithm is denoted as DOIRABNB).

Notice, that the restriction to A-loss recall minimizing player leads to a following properties in all the algorithms.

Proposition 3. Let G be a two player game where the maximizing player has imperfect recall and the minimizing player has A-loss
recall. Let G’ be the coarsest perfect recall refinement of G for the minimizing player with no modifications to the information set
structure of the maximizing player. Computing the maxmin strategy in G reduces to computing the maxmin strategy in G'.

Proof. Follows directly from Lemma 4. 0O
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Corollary 1. Let G be a two-player game where the maximizing player has imperfect recall and the minimizing player has A-loss recall.
Let’s assume that G is created as an imperfect recall abstraction of some perfect recall game G', such that G’ is the coarsest perfect
recall refinement of G for the minimizing player. When computing maxmin strategy in G we effectively compute the least exploitable
strategy in any game with more refined information set structure of the maximizing player (hence also in G’) that can be represented
inG.

Consequently, the maxmin value computed in G gives us the exploitability of the resulting strategy directly in G’, hence
the value can be used to evaluate the quality of the abstraction (the further the maxmin value of G is from the maxmin
value of G’, the more exploitable strategies resulting from solving G are).

5.1. Iterative precision refining MILP

Here we describe the BAsg algorithm, using the Upper Bound MILP formulation (10) to approximate the maxmin strate-
gies in two-player games where the maximizing player has imperfect recall and the minimizing player has A-loss recall.

The distance of the worst case expected value of the corrected strategy b; from the maxmin value is a function of P,
which is the precision of all approximations of bilinear terms. We design the following algorithm (denoted as BASE): (1) start
with the precision set to 0 for all bilinear terms, (2) for each approximation of a bilinear term calculate the current error
contribution (the difference between Ar(oia) and r(o1)Ax(a) multiplied by the expected utility). Choose from the terms
which do not yet have maximal allowed precision the term that contributes to the overall error the most and increase the
precision of its representation by 1. The algorithm terminates when none of the terms which do not yet have maximal
allowed precision contributes to the error.

5.2. Branch-and-bound algorithm

We now introduce a branch-and-bound search (denoted as IRABNB, Imperfect Recall Abstraction Branch-and-Bound al-

gorithm) for approximating maxmin strategies of two-player games where the maximizing player has imperfect recall and
the minimizing player has A-loss recall. We follow the standard practice in solving MILPS and apply the branch-and-bound
search to the linear relaxation of the Upper Bound MILP. Recall, that we linearize the Wk y % variables that control digit-wise
discretization of x(a). Furthermore, we exploit the following observation in the IRABNB.
Observation 1. Even if the current assignment to variables wk1 L,a is not feasible (they are not set to binary values), we can
correct the resulting strategy as described in Sectlon 5.2.1 and use it to estimate the lower bound on the maxmin value of
player 1 without a complete assignment of all wk “ variables to either 0 or 1. The lower bound is computed as the expected
value of the corrected strategy against a best response to it.

The IRABNB algorithm starts with the linear relaxation of the Upper Bound MILP with bilinear terms approximated using
0 digits of precision. It builds and searches a branch and bound tree. In every node n of the branch and bound tree, the
algorithm solves the LP corresponding to n, heuristically selects the information set I and action a contributing to the
current approximation error the most, and creates successors of n by restricting the probability by (I, a) that a is played in
I. The successors are created by adding new constraints to the LP corresponding to n depending on the value of by (I, a) by
constraining (and/or introducing new) relaxed binary variables W,[c . This way, the algorithm simultaneously searches for
the optimal approximation of bilinear terms as well as the assignment to binary variables. The algorithm terminates when
g-optimal maxmin strategy is found (using the difference of the global upper bound computed by solving the LP relaxation
and the lower bound computed as described in Observation 1).

Algorithm 1 depicts the complete IRABNB algorithm. The algorithm creates and traverses nodes of the branch and bound
tree. Every node n has associated LP with the strategy of player 1 restricted to a certain degree of precision. Additionally, n
keeps the lower bound on the overall maxmin value of player 1 and the upper bound on the values of the LPs achievable in
the subtree of n. The algorithm starts in the root of the branch and bound tree, where the maxmin strategy is approximated
using O digits of precision after the decimal point (i.e., precision P(I1,a) =0 for every variable x(a)). The algorithm main-
tains a set of active branch-and-bound nodes (fringe) and a node opt with the highest guaranteed expected value of player 1
against the best responding opponent that corresponds to the global lower bound on the worst-case guaranteed expected
value. In each iteration, the algorithm selects the node with the highest upper bound from fringe (lines 4-5). If there is no
potential for improvement in the unexplored parts of the branch and bound tree (i.e., all the nodes in the fringe have upper
bound lower than the lower bound in opt), the current best solution is returned (line 7) (upper bounds of the nodes added
to the fringe in the future will never be higher than the current upper bound). Next, the algorithm checks whether the
current solution has better lower bound than opt, if yes, the opt is replaced by the current node (line 9). Since the algorithm
always selects the most promising node with respect to the upper bound, we are sure that if the lower bound and upper
bound have distance at most ¢, the algorithm found an e-optimal solution and it can terminate (line 11) (upper bounds of
the nodes added to the fringe in the future will never be higher than the current upper bound). Otherwise, the algorithm
heuristically selects an action having the highest effect on the gap between the upper and lower bound in the selected
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Algorithm 1: IRABNB algorithm.

input : Initial LP relaxation LPg of Upper Bound MILP using a P = 0 discretization
output : ¢-optimal strategy for a player having imperfect recall
parameters: Bound on maximum error &, precision bounds for x(a) variables Ppax(I1, a)

1 fringe <~ {CreateNode (LPy)}

2 opt < (nil, —o0, 00)

3 while fringe # @ do

4 (LP, Ib, ub) «— arg maxcfringe 1-Ub

5 fringe <— fringe \ (LP, Ib, ub)

6 if opt.lb > ub then

7 return ReconstructStrategy (opt)

8 if opt.lb < Ib then

9 | opt <« (LP, Ib, ub)
10 if ub — Ib < & then
11 | return ReconstructStrategy (opt)
12 else
13 (I1,a) < SelectAction(LP)
14 P < number of digits of precision representing x(a) in LP

AybFap
15 fringe < fringe U {CreateNode (LP U {ZIE:OZ Ie w,’{fb“ =1} }
16 fringe < fringe U {CreateNode (LPU {Z]?:Laub;albjp W/?i)a =1})}
17 if P < Ppax(I7,a) then
18 fringe < fringe U {CreateNode (LP U {Will;flx(a),p,l) =1, introduce vars W(I)l, Patsees Wé{ p1 and corresponding constraints
from MDT }) }

19 return ReconstructStrategy (opt)

20 function CreateNode (LP)

21 ub < Solve (LP)

22 b1 < ReconstructStrategy (LP)
23 Ib <~ u1(b1, BestResponse(by))

24 return (LP, Ib, ub)

node n (line 13, as described in Section 5.2.1). Next, it retrieves the precision used to represent behavioral probability of
this action. By default, two successors of the current branch-and-bound node n are added, each with one of the following
constraints. x(a) < LWJP (line 15) and x(a) > LWJF (line 16), where | - ], is flooring of a number towards p digits
of precision and a,p and aj, are the lowest and highest allowed probabilities of playing x(a). This step performs binary
halving restricting allowed values of x(a) in the current precision. Additionally, if the current precision is lower than the
maximal allowed precision Pnqx(I1,a) the gap between bounds may be caused by the lack of discretization points; hence,
the algorithm adds one more successor with constraint |v]p < x(a) < [v]p, where v is the current probability of playing
a, while increasing the precision used for representing x(a) (line 18) (all the restriction to x(a) in all 3 cases are done via
w,’il’“ variables).

The function CreateNode computes the upper bound on the values achievable in the subtree of the current node by
solving the given LP (line 21) and the lower bound on the overall maxmin value of player 1 as described in Observation 1, by
using the heuristic construction of a valid strategy b1 from the solution of the given LP (line 22, as described in Section 5.2.1)
and computing the expected value of b against a best response to it.

5.2.1. LP for strategy reconstruction and action selection

We provide a linear program that is used as a heuristic to compute a corrected behavioral strategy in a given I1 € Z; and
to estimate the contribution of the actions to the overall approximation error. It takes into account the realization probabil-
ities r(alj ) of sequences 011 € seqq(I1) leading to I as well as errors that can be accumulated in the subtrees of individual
histories h € I7. Let us denote by {1, ..., k} the set of indices of all sequences in seqi(I7). By b{, for each je{1,...,k} we
denote the behavioral strategy corresponding to the realization probability of sequence 01] and its continuations. by is the
final corrected behavioral strategy.

: J j
min r(o;)-L(o 15a
min E (07)-L(o}) (15a)
o eseqi(Iy)

st. L(o{.a) = [b](@) — b1@] - Vmax(0 - @) Vie{l,....k}.Vae Adl) (15b)
Lo}, @) = [b1@ = b] @] - (~vmin(0] @) Vje{l,....k}Yae A (15¢)
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Lo)= > Loj.a Voi e seqi(Ih) (15d)
ac A(ly)
bi@= Y  a(o])-bl@ va e A(ly) (15e)
je{l,....k}
0<a(oi) <1 Vo e seqi(Ih) (15f)
Y a))=1 (158)

o eseqi(I1)

The LP finds a strategy minimizing the estimated error in the following way. Constraints (15b), (15c) compute the maximum
cost L(o*lj ,a) of changing the probability that action a is played after o*lj , assuming that the worst possible outcome in the
subtree following playing alj a is reached. Constraint (15d) computes the estimated errors L(olj ) for every U]j by summing
all the L(olj ,a) for all relevant a. The sum of L(or]j ) weighted by the realization probability of corresponding sequences is

minimized in the objective. Constraints (15e) to (15g) make sure that the result will be a convex combination of all the b{
strategies, with the « variables being the coefficients of the convex combination.

The bound from Theorem 7 on the error of a strategy constructed in this way holds, since we have shown that the
L1 distance of any pair of behavioral strategies b' ,b{ obtained from realization plans in I; is at most 10~ "|.4;(I1)| — the
distance to their convex combination by cannot be larger. Hence, the algorithm uses this LP to construct a valid strategy b4
in every imperfect recall information set where the results prescribe inconsistent behavior.

Finally, we use

Z L(alk, a)

ofeseqi(l)

as the heuristic estimate of the contribution of action a to the overall approximation error. The function SelectAction returns
the action with the highest such estimate over all I; € ZIR.

5.2.2. Theoretical properties of the IRABNB algorithm

The IRABNB algorithm takes the error bound & as the input. First, we provide a method for setting the Ppux(I1,a)
parameters to guarantee that IRABNB returns e-maxmin strategy for player 1. Finally, we provide a bound on the number of
iterations the algorithm needs to terminate. Notice that the NP-hardness result from Theorem 11 applies to both settings
where IRABNB is applicable.

Theorem 8. Let Prygx(11) be the maximum number of digits of precision used for representing variables x(a), Va € A(Iy) set as

[[A(I1)] - d - Vinax(h) — Vmin(h)—‘

2¢

where Vpin(9), vmax(?) are the lowest and highest utilities for player 1 in the whole game, respectively. With this setting IRABNB is
guaranteed to return an g-optimal maxmin strategy for player 1.

Prax(I1) = lrmaXlOglo
heh

Proof. Let us first show that the limits on the number of refinements P (I1) are sufficient to allow representation of
&-maxmin strategy of player 1. The proof is conducted in the same case by case manner as the proof of Theorem 7. Here we
focus only on the case 4 from the proof of Theorem 7, which handles histories from some imperfect recall information set.
In the rest of the cases, we again assume that players play such that the action leading to the child with maximal bound
on loss is chosen.

Let I1 € I{R and h € I;. We know that when using Ppgx(I1) of digits to represent the strategy in I;, the L1 distance
between behavioral strategies in I is at most 10~Pmax(I) .| _A(I7)| (Proposition 2). This means that the bound in h from case
4 in the proof of Theorem 7 is modified to:

max  [ul(y1, b)) —ul (¥t b3))|

bl.b3eB,
< max |uf(yy" b3) —uf (¥}, b3+ max |uf(y1,b)) —ul(y7" b3
bl.b3eB; bl.b3eB,
vgirr(h
< Yarr ) oPua) | A1) + max Lih-a)
2 acA(h)

vaiff () A(ID)] - 2¢
= : + max L(h-a
2 TAUD - vayr @) T acan H

£
=—+ max L(t-a).
d acAm)
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Similarly to the proof of Theorem 7, it suffices to assume that players choose actions deterministically in every node to
obtain the upper bound on the error. The path induced by these choices contains at most d imperfect recall nodes, thus
LW)=d-e/d=¢.

Finally, we show that IRABNB is guaranteed to reach the precision guarantees which result in £-optimal maxmin strategy.
This holds since (1) the upper and lower bound on the best worst case value of player 1's strategy with a given precision
restrictions are correct (follows directly from their computation), hence the branch-and-bound search never prunes away
the branch with the optimal solution, (2) the IRABNB always retrieves the node with the highest upper bound from the
fringe and (3) the algorithm terminates only when an ¢-maxmin strategy for player 1 is found. O

Theorem 9. When using Ppmax(11) from Theorem 8 for all I € I{R and all a € A(Iy), the number of iterations of the IRABNB algorithm
needed to find an e-optimal solution is in

34logio(S1)+4 S1
o 2
&

where Sy = |Z}R| AT,

The proof is based on bounding the number of nodes in the branch and bound tree as a function of Ppg(I7) and
computing the final bound by substituting the Ppax(I1) from Theorem 8 (see Appendix E for detailed proof).

The main disadvantage of IRABNB is that the size of the LP solved in every iteration is linear in the size of the game
and the algorithm can refine the precision of bilinear term approximation in parts of the game that may not be relevant
for the final solution. To reduce the size of the solved LP and to focus the refinements of the precision of bilinear term
approximation to relevant parts of the game, an incremental strategy-generation technique modified for imperfect recall
EFGs can be employed.

5.3. Double oracle for perfect recall EFGs

The double oracle algorithm for solving perfect recall EFGs (DOEFG, [27]) is an adaptation of column/constraint generation
techniques for EFGs. The main idea of DOEFG is to create a restricted game where only a subset of actions is allowed to
be played by players and then incrementally expand this restricted game by allowing new actions. The restricted game is
solved as a standard zero-sum extensive-form game using the sequence-form linear program [24,7]. Afterward, best response
algorithms search the original unrestricted game to find new sequences to add to the restricted game for each player. The
algorithm terminates when the best response calculated on the unrestricted game provides no improvement to the solution
of the restricted game for either of the players.

DOEFG uses two main ideas: (1) the algorithm assumes that players play some pure default strategy outside the restricted
game (e.g., playing the first action in each information set given some ordering), (2) temporary utility values are assigned to
leaves in the restricted game that correspond to inner nodes in the original unrestricted game (so-called temporary leaves),
which form an upper bound on the expected utility.

5.4. Double oracle IRABNB for imperfect recall EFGs

In this section, we introduce the DOIRABNB (Double Oracle Imperfect Recall Abstraction Branch-and-Bound) algorithm
combining ideas of IRABNB and DOEFG. Adapting the ideas of DOEFG for games with imperfect recall poses several chal-
lenges that we need to address. To solve the restricted game means to compute the maxmin strategy for player 1. However,
solving the restricted game requires calling IRABNB search that iteratively refines the approximation of bilinear terms in-
stead of solving a single (or a pair of) LPs in DOEFG for perfect recall games. DOIRABNB thus makes an integration of two
iterative methods and decides when to expand the restricted game and when to refine the approximation of bilinear terms
already in the restricted game.

We first provide the pseudocode of the algorithm with its description, followed by formal definitions of all the necessary
components of the algorithm.

In Algorithm 2 we present the DOIRABNB algorithm. Similarly to IRABNB, the algorithm performs a branch and bound
search. Every branch and bound node n stores the LP with corresponding precision adjustments to the bilinear term ap-
proximation, lower bound on the maxmin value of player 1 and an upper bound on the value achievable in the whole
game in the subtree of n. The list of currently active nodes is stored in the fringe. The node with the highest lower bound
encountered is stored in opt. There are two differences from IRABNB: (1) through the run, DOIRABNB incrementally builds
the restricted game G, and when solving the LP for any branch and bound node, the LP is always built to solve the cur-
rent G. (2) DOIRABNB uses function Add to add any node to the fringe. The function 2dd (lines 20 to 29) repeatedly uses
the maximizing player oracle (line 24, Section 5.4.2) to make sure that before adding the node to the fringe we first update
the restricted game so that solving the LP for G and current precision restriction gives an upper bound on the value of the



J. Cermdk et al. / International Journal of Approximate Reasoning 93 (2018) 290-326 311

LP applied to the original game with the same precision restrictions (see Section 5.4.3 for more details). This is required to
guarantee the convergence of the algorithm to ¢-maxmin strategy for player 1.

Note that DOIRABNB does not simply use the double oracle approach to solve LP in every single node to optimality, in-
stead it applies the oracles of the maximizing and minimizing player separately to avoid increasing the size of the restricted
game unnecessarily, while making sure that the algorithm works with valid upper bound on the value in the original game.

Algorithm 2: DOIRABNB algorithm.

input : Initial LP relaxation LPgy of Upper Bound MILP, Initial restricted game G
output : e-optimal strategy for the maximizing player
parameters: Bound on maximum error &, bound Py for bilinear term precision approximation

1 fringe < {(LPg, —00, 00)}

2 opt < (LPg, —00, 00)

3 while fringe # & do

4 (LP, Ib, ub) «— arg maxcfrnge n-ub

5 fringe < fringe \ (LP, Ib, ub)

6 if opt.Ib > ub then

7 return ReconstructStrategy (opt)

8 if opt.lb < Ib then

9 | opt < (LP,Ib, ub)
10 if ub — Ib < ¢ then
11 | return ReconstructStrategy (opt)

12 if FromSmallerG (G,LP) then

13 | G<2dda(G,LP)

14 else if ExpandableByMinPlayerOracle (G, LP) then
15 (é, LP) « ExpandByMinPlayerOracle (G, LP)
16 ‘ G «<Add (G, LP)

17 else

18 (I1,a) < SelectAction(LP)
19 AddSuccessors (LP, I1, @, Pmax, G)

20 function Add (G, LP)

21 LPg <~ LP, t <1

22 (Ib, ub, l%%) <« Resolve (G, LPg)
23 while t =1 || LP;_y #LP;_1 do

24 (G, LP;) < ExpandByMaxPlayerOracle (G, LP:_1, l%g)
25 (G,LP;) < UpdateUtilities (G,LP, B5)

26 (Ib, ub, B5"") < Resolve (G, LP;)

27 BY < BLUByT bt +1

28 fringe < fringe U (LP;_1, Ib, ub)
29 return G

The algorithm starts with an empty restricted game G. Lines 1 to 11 are the same as in the IRABNB algorithm. Ad-
ditionally, in every iteration, DOIRABNB checks whether the bounds in the current node were computed in some smaller
restricted game than the current G (line 12). If yes, DOIRABNB recomputes the bounds on the current restricted game,
returns the node to the fringe (line 13) and continues with the next iteration. This is done to make sure that DOIRABNB
does not make unnecessary precision adjustments due to imprecise bounds. Else, if bounds come from the same game as
the current restricted game G, the algorithm checks whether G can be expanded by the minimizing player oracle (line 14,
see Section 5.4.2). If G can be expanded, we expand it, resolve with the current precision restrictions and return the node
to the fringe (lines 15, 16). Note that we do not use the maximizing player oracle at this point, because the expansion by
maximizing player oracle is used when adding the node to the fringe in function Add (as described in Section 5.4.3). Oth-
erwise, if G cannot be expanded, the algorithm continues in the same way as IRABNB. It heuristically selects bilinear terms
corresponding to action a from the current restricted game G (line 18, as described in Section 5.2.1). The algorithm then
creates new nodes and adds new variables and constraints into the LPs in these nodes that further restrict possible values
of x(a). Next, if the maximal allowed precision permits, DOIRABNB creates an additional node with increased precision of
representation of x(a). Finally, it adds the new nodes to the fringe (line 19) using the Add function.

5.4.1. The restricted game . o .
This section formally defines the restrigted game G = (N, H, Z,A,u,C,7) of the original unrestricted game G =

W »H,2Z, A u,C,T). The restricted game G is built to guarantee that solving the LP with a given precision restrictions
for G gives an upper bound on the solution of the LP for the original game with the same precision restrictions, when the



312 J. Cermdk et al. / International Journal of Approximate Reasoning 93 (2018) 290-326

player 2 plays some strategy from a set B,. By B, we denote a subset of all strategies of player 2 from the restricted game
G extended by the default strategy (playing first action available in each decision point). In Section 5.4.2 we present the
oracles used to construct the restricted game to guarantee such bound. In Section 5.4.3 we explain how to iteratively build
B, which combined with the use of the oracles guarantees that the solution of the LP gives an upper bound, this time when
the player 2 can play any strategy from the original game G.

The restricted game is limited by a set of allowed sequences ® C ¥, that are returned by the oracles. An allowed
sequence o; € ® might not be playable to the full length due to missing compatible sequences of the opponent. Therefore,
the restricted game is defined using the maximal compatible set of sequences ¥ € ®. Formally

Si={o; € ®;|30_; € d_; Ih € H : seqi(h) = 0; Aseq_ij(h) =o_;},Vie N. (16)

The sets #, A are the subsets of #, .A reachable when playing sequences from ¥. Z defines the same partition as Z on
the reduced set 7, i.e., for all h, h’ € H, holds that h, h’ € I for some I € Z in the restricted game if and only if h, i’ € I for
some I € Z in the original game. The set of leaves in G is a union of leaf nodes of G present in G and inner nodes from G
that do not have a valid continuation in X

Z=(ZNH)UheH\ Z|Ah)=0}. (17)

We refer to the members of the set Z\ Z as temporary leaves. Note that if not stated otherwise, when we operate with a
strategy from the restricted game in the whole unrestricted game, we automatically assume that it is extended by a default
strategy playing the first action available as in DOEFG.

We define the temporary utility value in every z € Z as i1 (z, l’;‘z) so that uq(z, l’;‘z) is an upper bound on the value the
player 1 can guarantee in the original game G in z, when the minimizing player plays any strategy from the set B,. Formally,
we use

it1(z, By) = max @4 (by),Vz € Z, (18)
bzeéz

where ﬁ% (by) stands for the expected value of player 1 in the original game G when starting in z and playing a strategy from
the coarsest perfect recall refinement of G maximizing the expected value in z against b, (remember that b, is extended
by the default strategy). We define fﬁ (by) in such way since the best response of player 1 against b, in the coarsest
perfect recall refinement is easy to compute as shown in Lemma 4 (player 1 has imperfect recall in G hence computing
the best response there is NP-hard). Furthermore, since we give more information to player 1 in the coarsest perfect recall
refinement, ﬁﬁ(bz) is guaranteed to be an upper bound on the maximal expected value in z achievable by player 1 against
by € By in G. The set B, is built in function Add using best responses of player 2 taken from the solution of the LP by
finding actions corresponding to active Constraint (3h) (see Section 5.4.2 for details). Notice that the u; might differ in every
iteration of the algorithm, since B, can change.

5.4.2. Updating the restricted game

In this section we discuss the oracles used in DOIRABNB and the way their results are used to expand the restricted
game (lines 15 and 24 in Algorithm 2). Note that the oracle of the maximizing player is given 3, (see Section 5.4.3 for
details on construction of 3;) and expands the restricted game with respect to the strategies in ;.

Minimizing player oracle. The minimizing player plays a best response in the final maxmin solution of the game, hence,
similarly to DOEFG we use the best response computation as the oracle of player 2. In every iteration we compute b‘;R €
BR;»(b1) in the original game G, where b1 is the strategy of player 1 computed by DOIRABNB in the current node and current
restricted game extended by the default strategy. The algorithm extends &, by all the valid continuations of o3 € ®, by
actions in b5® and update ¥ accordingly.

Maximizing player oracle. The best response is not a sufficient oracle of the maximizing player 1 since his maxmin strategy
does not have to consist of best responses to pure strategies of the minimizing player.

Example 2. Consider the game in Fig. 8. The maxmin strategy for player 1 is playing b and e deterministically, guaranteeing
the maxmin value —1. Notice, however, that playing b and e is not a best response to any pure strategy of player 2. Since
during the run the DOIRABNB only computes pure best responses of player 2, the best response oracle for the maximizing
player 1 would never add states hy and h; and so the DOIRABNB would never find the correct solution.

To fix this, the algorithm keeps track of possible extensions of the restricted game by taking actions in states of the
maximizing player 1. To do that, the algorithm uses a set of pending states

Hp=1{heH\H|FN e H13aec A(W'):h'a=h}, (19)
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Fig. 9. Games for demonstration of the necessity of the Add function.

which contains all the states h not in the restricted game, whose parent h’ is in the restricted game and player 1 makes
decision in h’. Since we build G to find strategy of player 1, which is optimal against the strategies from 5, there is no
point in adding h € H, which are not reachable by any b, € 3. Hence, we take a subset va C Hp such that all h e 7—[;, are

reachable by some b; € é%' Furthermore, we can exclude pending states which cannot improve the expected value of the
player 1 against any by € ;. Formally, by H}; we denote a subset of #,, where for all h € H}; holds that

ity (h, By) = min ufl (b1, by),
szBz

where h’ is the parent of h, by is the strategy of player 1 from the current LP extended by the default strategy and ufl’(bl ,b2)
stands for the expected value in state h when players play according to by, bz. When expanding the restricted game, we
add to ¢ all the sequences leading to all h € Hj.

Example 2 (continued). When using the pending states as an oracle of player 1 in the game in Fig. 8, we always add the
states hy and hs. For example when h; is not a part of the restricted game, player 1 cannot play action b. h; is then added
by the maximizing player oracle since all the strategies of player 1 not playing action b can guarantee the expected value
of at most —2 in the hy against the worst case opponent. On the other hand, u1(hy, By) > —1,V3; and so h; is added to
the restricted game.

Finally, let us explain the functions used in Algorithm 2. ExpandableByMinPlayerOracle checks whether the ora-
cle of the minimizing player suggests any sequence to be added to the restricted game. ExpandByMinPlayerOracle and
ExpandableByMaxPlayerOracle add to the restricted game all the sequences suggested by the minimizing player or-
acle and the maximizing player oracle respectively.

5.4.3. Adding nodes to the fringe

There are two requirements G needs to fulfill before adding any given node to the fringe in function Add (lines 20 to 29)
in order to guarantee that solving the LP for G and given precision restrictions gives an upper bound on the value of the
LP for the original game with the same precision restrictions. (1) The function Add needs to make sure that the restricted
game is built so that player 1 has no deviation outside of the restricted game, which could increase his expected value. Let
us demonstrate this in the following example.

Example 3. Consider the game in Fig. 9 (left). Assume that the restricted game G consists of states {hi, hy, h3, z1, 22, 23, Z4)
and there are no precision restrictions. If we solve the restricted game we obtain the value O for player 1, however, maxmin
strategy for player 1 is to play x guaranteeing the expected value 1.
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(2) The utility ii; in all z € Z, which is going to be used to construct the LP must be an upper bound on the worst case
utility of player 1 against all the possible best responses b, € Bép corresponding to active Constraints (3h) after solving
this LP. Hence the utility must be set according to the possible behavior of the minimizing player, which depends on the
utility in question. This is required since strategies b, € BéP can define behavior also outside of the restricted game due to
information sets of player 2 that can be only partially present in the restricted game. It is, therefore, insufficient to assume
that player 2 plays using only default strategy in every information set outside of the restricted game. Since the algorithm
sets the utility in the Z\ Z to a fixed value (therefore not reflecting the changing behavior of player 2 in the LP), it needs
to make sure that the value is an upper bound against all possible strategies player 1 can face to obtain the required upper
bound by solving the LP. Let us demonstrate this in the following example.

Example 4. Consider the game in Fig. 9 (right). Assume that the restricted game G consists of states {hi, ha, h3, z3, z4} and
there are no precision restrictions. hy is a temporary leaf in G, hence we need to compute a temporary utility value for it.
Let us first discuss what would happen if we do not consider the behavior in the restricted game and use the value from the
leaf reachable after the default strategy (playing the first action in every state). The default strategy leads to the terminal
state z; with utility —2. Solving the restricted game using —2 as the temporary utility value for h, leads to strategy with
the worst case expected value —2. However, the maxmin value of player 1 in the original game is 0 achievable by playing
uniformly in h1.

In the function Add we iteratively update the restricted game until we are guaranteed to obtain a correct upper bound.

. . . . . AT . LP; . .
To do that, the function Add builds in every iteration T a set 3, as a union of all the B, obtained by solving the LP;
in every iteration t € {(_), ..., T —1} (lines 26, 27) in the current invocation of the fuqction Add. In every iteration T the
function Add expands G using the oracle of the maximizing player for the current set 132T (line 24) and updates the utilities

in G again using the current set l§2T (line 25). The algorithm iterates in function Add until the LPs from last two iterations
are equal, and only then is the given node added to the fringe.

Example 3 (continued). Consider again the game in Fig. 9 (left). The function Add will ensure that zs is added to G since
z5 € Hj, and so it will be added by the maximizing player oracle.

Example 4 (continued). Consider again the game in Fig. 9 (right). We did not receive a correct upper bound by solving the
restricted game, since setting the temporary utility value to —2 in hy is incorrect. Player 2 plays action d in the solution of
the LPy to force the resulting value to be —2 but the —2 in h, was obtained assuming that player 2 will play c as a part
of his default strategy (playing ¢ and d is mutually exclusive). To solve this, the function Add performs another iteration,
where it sets the utility in hy to uq(hy, B}), where l’;’; = Bépo is the singleton containing the strategy playing d obtained as

the best response from the solution of the LPy. In this iteration the algorithm correctly sets i (hy, l’;’z) = 2. After solving G
we get value 2, which is the desired upper bound on the maxmin value in the original game with no precision restrictions.

5.4.4. Theoretical properties
Here we demonstrate that if IRABNB is guaranteed to find e-optimal maxmin strategy for some precision parameters
Pmax, DOIRABNB is also guaranteed to find e-optimal maxmin strategy for the same Pqy.

Lemma 8. Every node n € fringe in every iteration of DOIRABNB has a valid lower bound on the maxmin value of player 1 in the
original game G.

Proof. The lower bound is valid, since it is computed as uq (b1, by), where by is the current solution of the LP corresponding
to n applied to the current restricted game G, extended by the default strategy and b, € BRy(b1) in the original game G.
Since the maxmin strategy b} of player 1 maximizes its expected value assuming the worst case opponent, u1 (b1, by) must
be lower or equal to the maxmin value of the game. O

Lemma 9. The upper bound in every node n € fringe for the corresponding precision restrictions in every iteration of DOIRABNB forms
an upper bound on the value of the LP with the same precision restrictions applied to the original game G, hence the upper bound in
the node n is higher or equal to the upper bound in the node used in IRABNB applied to G with the same precision restrictions.

Proof. We add all nodes to the fringe using function Add. Since we iterate in function Add until the LP7 in the current

iteration T is equal to the LPr_, we are sure that there is no deviation of the player 1 outside of G which can increase his
worst case expected value against any b € BéPH, since adding any pending state would cause LPt to be different from
LPr_1. Additionally, since the LPt and LPy_q are equal, we are sure that none of the b, € BéPT" change the utility structure

created using 82T ~1 hence

i1(z, B) Y > i1(2, BE ), vz e 2. (20)
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Player 1 cannot increase his expected value by playing outside of the restricted game against any b; € Bﬁpr‘1. Further-

more, every z € Z has assigned an upper bound on the expected value player 1 can guarantee in z against any b, € Béprq

in the original game. Hence, the value of the LP7_1 is an upper bound on the value of the LP with the same precision
restrictions in G. Finally, since LP7 is equal to LP7_1 the same holds for the value of LPr. O

Theorem 10. If the IRABNB algorithm is guaranteed to return e-optimal maxmin strategy for precision parameters Prqy, the
DOIRABNB returns e-optimal maxmin strategy for the same precision parameters Ppqy.

Proof. When DOIRABNB reaches a node where the upper and lower bound are at most ¢ distant, we are sure that we have
found an e-optimal solution of the original game. This holds since (1) the node has correct bounds on the value achievable
in the original game with given precision restrictions (Lemmas 8, 9), (2) the DOIRABNB always retrieves the node with the
highest upper bound from the fringe (line 4). Additionally, DOIRABNB is guaranteed to reach this node, since it never prunes
away the branch containing the optimal solution in the space of precision restrictions (again from the correctness of the
upper and lower bound from Lemmas 8, 9).

When DOIRABNB reaches the node with the precision restrictions guaranteeing an g-optimal solution in the original
game, the bounds might be more than ¢ distant due to the insufficiently built restricted game. This is caused by the
temporary leaves z € Z\ Z. The DOIRABNB assigns to every z € Z\ Z a temporary utility which is an upper bound on the
actual utility which player 1 can guarantee against worst-case opponent in z in the original game. Hence the strategy b,
computed for the current restricted game can prefer some temporary leaf z € Z \ Z based on this possibly overestimated
utility value. However, when computing the bgR € BR(b1) where b; is extended by the default strategy in the original game,
the value u%(bl,be) can be significantly smaller than the temporary utility value in z. The oracle of the minimizing player,
however, expands G by actions in b5R. Since b5® exploits the difference in the temporary utility in z and the actual expected
value in z obtained when playing according to b1,b§R, z has to be reached when playing according to these strategies. The
restricted game is, therefore, expanded by the action a € A(z) played in bgR and z is no longer a temporary leaf after the
expansion. The expansion of the temporary leaves continues until there is no temporary leaf where player 2 can exploit
the overestimated value of the temporary utility (lines 14, 24 in Algorithm 2). Hence the reason for the difference in the
bounds directly implies that the expansion of the restricted game on line 14 will occur. The DOIRABNB terminates when
the restricted game is built sufficiently to allow the distance of bounds to decrease to at most ¢. This must happen after a
finite number of steps since in the worst case the algorithm builds the entire original game.

Finally, the fact that there is e-optimal solution when using given precision parameters Ppqy is guaranteed by the as-
sumption that IRABNB is guaranteed to find the e-optimal solution for the same parameters in the original game. O

6. Experiments

In this section, we provide an experimental evaluation of the performance of DOIRABNB, IRABNB and the BASE. Further-
more, we demonstrate the possible space savings in the size of the strategy representation when employing imperfect recall
abstractions and discuss the quality of strategies resulting from solving these abstractions. Since there is no standardized
collection of benchmark EFGs, the experiments are conducted on a set of Random games, an imperfect recall search game
and an imperfect recall variant of OshiZumo. All algorithms were implemented in Java, each algorithm uses a single thread,
8 GB memory limit and we use IBM ILOG CPLEX 12.6.2 to solve all LPs/MILPs.

Random games. We use randomly generated games to obtain statistically significant results. We randomly generate a per-
fect recall game with varying branching factor and fixed depth of 6. To control the information set structure, we use
observations assigned to every action - for player i, nodes h with the same observations generated by all actions in history
belong to the same information set. To obtain imperfect recall games with a non-trivial information set structure, we run a
random abstraction algorithm which merges information sets for all i € N according to parameter p in the following way.
Let {Ii], ..., 1"} be the largest possible disjoint subsets of Z; of the perfect recall game such that

VI e (T}, ... . TV, I} € If|seqi(I)| = |seqi (ID| A |AU)| = |AUI,

.....

a random element I € Ilf‘. We iterate over all I’ € I{‘ \ I, and add I’ to J with probability p. To create the abstraction
we iteratively choose the subset 7 of I{‘. create abstracted set containing all elements of 7, and remove 7 from I!‘.
This procedure repeats until I{‘ is empty and is performed for all Z{‘ € {I},...,Z?}. We further update the abstraction
by splitting the information sets of the minimizing player to make sure that he has A-loss recall. We generate a set of
experimental instances by varying the branching factor and the parameter p. Our random games are rather difficult to solve
since (1) information sets can span multiple levels of the game tree (i.e., the nodes in an information set often have histories
with differing sizes) and (2) actions can easily lead to leaves with very different utility values.
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Fig. 10. Graph for the Search game. The attacker starts in the node S and tries to reach the node G. The defender operates two units, each moving in one
of the shaded areas.

OshiZumo. We use a modification of OshiZumo described, e.g., in [33]. The game is played by two players; both start with
a given number of coins. At the beginning of a game, a sumo wrestler is positioned at the center of a one-dimensional
playing field which consists of 7 positions. In every turn of the game, each player uses some amount of his coins to place
a bid. The highest bidder pushes the wrestler one location towards the opponent’s side. If the bids are equal, the wrestler
does not move. Either way, both players lose all the coins they used to make the bid and the game proceeds until the
money runs out or the wrestler is pushed off the field. The players observe only their bid and whether they won or not.
The bid of the opponent is never revealed. It is a zero-sum game, where the final position of the wrestler determines the
winner: if he is located at the center, the game result is a draw. Otherwise, the player in whose half the wrestler is located
gets a negative utility equal to the number of positions between the wrestler and the center of the playing field. In this
paper, we create different instances of OshiZumo by changing the number of coins available to players.

To create the imperfect recall abstraction of the OshiZumo, we give the maximizing player only the information about
the number of coins he has left, and whether he has won in each of the previous rounds, hence he does not remember the
exact bids he had made. The minimizing player remembers both his bids and whether he won in each round. Notice that
we do not modify the information set structure of the minimizing player, and so the original game is the coarsest perfect
recall refinement of this abstraction for the minimizing player.

Search game. Our third domain is an instance of search (or pursuit-evasion) game, used, e.g., in [27]. Search games are
commonly used for evaluating incremental algorithms [34]. The game is played on a directed graph shown in Fig. 10
between attacker and defender. The attacker tries to cross from the starting node S to his destination G. The attacker can
either move every turn, leaving tracks in each node he visits, or he can move every other turn without leaving any tracks.
The defender operates two units, each moving in one of the shaded areas, trying to intercept the attacker by capturing him
in a node. The defender observes only the tracks left by the attacker and only in case one of his units steps on the node
with the track. The attacker does not have any information about the defender units. The players move simultaneously.
It is a zero-sum game, where the attacker obtains utility 1 for reaching his destination and defender obtains utility 1 for
intercepting the attacker. If a given number of moves is depleted without either of the events happening, the game is
considered a draw and both obtain utility 0. We assume the defender to be the maximizing player.

To create an imperfect recall abstraction of the Search game, we give the defender only information about the tracks
he currently observes and the position of both of his units without remembering the history of moves leading there. The
attacker knows only the sequence of his actions in the past. Notice that we do not modify the information set structure
of the minimizing player, and hence the original game is the coarsest perfect recall refinement of this abstraction for the
minimizing player.

6.1. Results

The main experiments are divided into 2 parts. (1) We compare the BAsg, IRABNB and DOIRABNB algorithms to show
how the different components used in the algorithms influence the scalability. The results show that DOIRABNB outperforms
IRABNB and Bask on smaller domains while providing significantly better scalability than the rest thanks to the fact that the
incremental strategy generation keeps the LP being solved small while focusing the precision adjustments to relevant parts
of the game tree. (2) We demonstrate the immense space savings in the strategy representation achievable by employing
the simple imperfect recall abstractions described above. Additionally, we show that solving these abstractions results in
finding the maxmin strategy of the original unabstracted game.

The ¢ in all the experiments was set to 10™% - U;qx, Where Umgy is the maximal utility of the solved game.

6.1.1. Runtime comparison

Random games. In Fig. 11 we present the runtime results in seconds obtained on random games. Every plot depicts the cu-
mulative relative number of instances (y-axis) solved under a given time limit (logarithmic x-axis). There were 100 instances
of random games solved for every setting. The rows contain results for random games with varying p, the first column for
branching factor 3, second for branching factor 4. The runtime of the algorithms was limited to 2 hours on every instance,
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Fig. 11. Results for random games showing the relative cumulative number of instances (y-axis) solved under a given time limit (x-axis) and the relative
amount of instances terminated due to the exceeded runtime in bars labeled cutoff. Rows contain results for p =0.3, p = 0.6, p = 0.9, columns show results
for branching factor 3 and 4.

Table 1
Average relative amount of sequences for maximizing and minimizing player respectively,
added to the restricted game by DOIRABNB in random games.

p\b. 3 4

0.3 46.1% £2.9%, 22.2% £ 1.8% 62.5% +3.1%, 17.5% - 2.2%
0.6 58.9% + 2.8%, 23.3% +2.0% 71.7% £ 2.8% 17.1% = 2.1%
0.9 68.2% + 2.5%, 24.0% +=1.8% 76.6% +2.9%, 18.5% +1.1%

the relative number of instances terminated after this limit is reported in the bars labeled cutoff. The IRABNB usually domi-
nates the other two algorithms in the number of instances solved in the first time interval. As the runtime grows, however,
the performance of IRABNB decreases. This is because IRABNB tends to spend a lot of time making adjustments in the
irrelevant parts of the game tree. On the other hand, the DOIRABNB outperforms the other two algorithms across all the
settings, and we can see a significant decrease in the number of instances not solved in a given 2-hour limit, compared to
Base and IRABNB. This is because the DOIRABNB focuses adjustments to approximation precision to the relevant parts of
the game tree present in the restricted game while keeping the underlying LP smaller. Note that the random games form
an unfavorable scenario for all the presented algorithms since the construction of the abstraction is completely random,
which makes conflicting behavior in merged information sets common. As we can see, however, even in these scenarios
the DOIRABNB is capable of solving the majority of instances with branching factor 4 which have ~ 3000 nodes in under
2 hours.

In Table 1 we present the average relative amount of sequences for each player needed by DOIRABNB to solve the
random games for each setting along with the standard error. The relative amount of sequences needed by the minimizing
player is consistently smaller because the restricted game is built to compute maximizing player’s robust strategy, while the
minimizing player only plays best responses during the computation. Even though the size of the restricted game remains
similar across all values of p, we observe an increase in the relative size, since the number of sequences decreases as p
increases.

OshiZumo. The DOIRABNB solved the game with 11 coins in 44 minutes using 0.9% sequences for the maximizing
player and 0.2% sequences for the minimizing player. The game has 3.5 - 10° states, 2.8 - 10° and 1.4 - 10° sequences
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Table 2
The relative amount of information sets of the maximizing player in the imperfect recall abstractions with
different number of remembered moves w.r.t. the number of information sets of the maximizing player in the
original game for the OshiZumo with 10 and 11 coins (left) and the Search game with depth 6 and 7 (right).

c\rm 0 1 2 d \rm 0 1 2
10 3.27% 5.54% 9.30% 6 0.10% 0.46% 1.81%
11 1.90% 3.27% 5.64% 7 0.03% 0.11% 0.42%
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Fig. 12. The first column shows the convergence of the lower and upper bound in DOIRABNB on OshiZumo with 11 coins as a function of iterations, each
row for a different number of remembered moves. Second column shows the convergence of the lower and upper bound in DOIRABNB on Search game
with depth 7 as a function of iterations, each row for a different number of remembered moves.

for the maximizing and minimizing player respectively. IRABNB and BASE were able to solve the game with 9 coins in 20
seconds and 2 hours respectively, however, on the game with 10 coins none of the two algorithms finished in 10 hours.

Search game. In case of Search game, the DOIRABNB was able to solve a game with 10 moves allowed for each player (with
~5.10° states, ~ 2-10* sequences for the attacker and ~ 4 - 107 sequences for the defender) using 0.002% of sequences
for the defender and 0.2% sequences for the attacker in 1.2 hours. IRABNB and BASE were able to solve the game with 5
moves for every player in 12 seconds and 40 minutes respectively, however, on the game with 6 moves none of the two
algorithms finished in 10 hours.

The presented results show that DOIRABNB provides scalability which cannot be achieved by IRABNB and BASE because
of their requirement to build the entire game. Furthermore, the results on random games show that even on small games,
where IRABNB and BASE can be used, DOIRABNB provides the best performance and hence it is the most efficient algorithm.

6.1.2. Size of strategy representation and quality of resulting strategies

Here, we discuss the size of strategy representation needed in imperfect recall abstractions compared to their perfect
recall counterparts. Note that we use the number of information sets of the maximizing player present in a given game for
this purpose since in the worst case a strategy needs to define behavior in each of them. Additionally, we provide results
showing the quality of the strategy resulting from solving these abstractions in the original unabstracted game.

In Table 2 we present the relative amount of information sets of the maximizing player in a specific abstraction compared
to the unabstracted game for OshiZumo (left) and Search game (right). In both domains, we use the perfect recall game and
its imperfect recall abstraction with rules described earlier in this section. Moreover, in both domains, we experiment with
refining the abstraction by giving the maximizing player information about the last k moves he has made in the past (k is
specified in the first row of every column). In the case of OshiZumo, each row of the table represents the setting with the
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number of coins specified in the first column. In the case of Search game, every row corresponds to a different number of
moves allowed for every player specified in the first column. As you can see the number of information sets is dramatically
smaller in all the presented settings, showing that the use of imperfect recall abstractions can lead to significant space
savings. Additionally, the results suggest that the relative size will further decrease with the increase in the size of the
original unabstracted games.

Finally, we provide results showing the actual bounds on the maxmin value computed during the run of DOIRABNB and
the quality of the resulting strategies.

In the first column of Fig. 12 we present more detailed results of DOIRABNB in OshiZumo with 11 coins. The plots depict
the bounds on the maxmin value in every iteration of the DOIRABNB algorithm, each row for an instance with different
number of remembered moves. As we can see DOIRABNB in all the abstractions converges to a strategy with exploitability
0. Since the maxmin value of the original game is also 0 and all the assumptions in Corollary 1 are satisfied, it follows that
the maxmin strategy obtained by solving the abstraction is the maxmin strategy of the original game. In the second column
of Fig. 12 we show similar results for Search game with 7 moves for every player. The DOIRABNB in all the abstractions
converges to a strategy with exploitability —% which is again the maxmin value of the original perfect recall game. Since
all the assumptions in Corollary 1 are satisfied, it follows that the maxmin strategy obtained by solving the abstraction is
the maxmin strategy of the original game.

7. Conclusion

In this paper, we are interested in exploring the possible limitations and the space savings achievable by the use of
imperfect recall abstractions in the size of strategy representation. We focus on A-loss recall games, a subclass of imperfect
recall games where each loss of memory of a player can be tracked to loosing information about his actions [20,21]. We
provide a complete picture of solving imperfect recall and A-loss recall games. We show that most of the hardness results
known for imperfect recall games still hold in A-loss recall games. On the other hand, we provide sufficient and necessary
(i.e., if and only if) condition for the existence of Nash equilibrium in A-loss recall games. This result makes the A-loss recall
games the only subset of imperfect recall games, where such conditions are known. Additionally, we show that A-loss recall
property allows us to compute a best response in polynomial time (computing best response is NP-hard in imperfect recall
games), which in turn allows us to create the first set of algorithm for approximating maxmin strategy of a player having
imperfect recall, when the minimizing player has A-loss recall. More specifically, we introduce a bilinear program with size
linear to the size of the game for approximating the maxmin strategy, and we approximate this bilinear program using
Multiparametric Disaggregation Technique (MDT) [25]. MDT uses a digitwise approximation of the bilinear terms using a
specified number of digits, which results in a mixed integer linear program (MILP). We first devise an algorithm, denoted as
IRABNB, which employs branch-and-bound search on the linear relaxation of this MILP. IRABNB simultaneously searches for
the assignment to binary variables and improves the precision of the bilinear term approximation until the desired approx-
imation of the maxmin strategy is reached. To increase the scalability, we further extend IRABNB with incremental strategy
generation (the resulting algorithm is denoted DOIRABNB). To create DOIRABNB, we provide a non-trivial combination of
two iterative procedures (the incremental strategy generation and the IRABNB) and provide guarantees of convergence of
this algorithm to ¢-maxmin strategy. We show that DOIRABNB is capable of solving games with up to 5-10° states in
approximately 1 hour.

Finally, we experimentally demonstrate that employing simple imperfect recall abstractions which still allow us to com-
pute the maxmin strategy of the original game can lead to strategies with the relative size as low as 0.03% of the size of
the strategy in the original unabstracted game.
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Appendix A. Supplementary material for Section 2.3

Lemma 2. Let G be an imperfect recall game without absentmindedness and b1 strategy of player 1. There exists an ex ante pure best
response of player 2.

Proof. If the strategy of player 1 is fixed, finding the best response for player 2 corresponds to finding an optimum of a
function over a closed convex polytope of all possible behavioral strategies of player 2 created by constraining the strategy
by

> by@=1.VIeD.
acA(l)
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Vertices of this polytope are formed by pure behavioral strategies. Since each action can be chosen at most once in a game
without absentmindedness, the objective function is multilinear in a form

Y C@bi@ua@ [] ba@.

zeZ aeseq;(z)

Notice that, thanks to the assumption of no absentmindedness, the variables b, (a) in every product always describe behavior
at most once for one information set and so the variables are independent. Hence, an optimum must be in one of the
vertices of this polytope - that is a pure behavioral strategy. O

Lemma 3. Let G be an imperfect recall game where player i has A-loss recall. Let G’ be the coarsest perfect recall refinement of G for
player i. Every pure behavioral strategy b; of player i from G’ has realization equivalent pure behavioral strategy b; in G and vice versa.

Proof. First we show how b; is constructed from b;. Consider an information set I of player i in G and corresponding
information sets I, ..., I/ created according to H(I) in the coarsest perfect refinement G’ of G.

Let us first show that at most one of information sets I', ..., I/ can be reached when players play according to strategy
profile (b}, b_;), for every b_; € B_; in G'. Due to A-loss recall of player i, for every pair of nodes hy, h; from two different
information sets I%, I' € {I', ..., I}, there exists an information set I’ of player i and two distinct actions a,a’ € A;(I'),a #d’
such that a € seq;(hy) Ad’ € seq;(h;). However, since b; is a pure strategy, only one action among the pair of actions a,a’ can
be played with a non-zero probability and consequently, only one information set in every pair I¥, I' € {I', ..., I/} can be
reached.

We use this property to construct b;. For information set I from G that is divided into information sets I',..., I/ in G’
we define b;(I,a) =1 for action a € A(I¥), where b/(I¥,a) =1 and I is the only reachable set from I',..., I’ as shown
above. If no information set from I', ..., I’ is reachable, we set b; in I arbitrarily. For all information sets I’ € Z’ that are
not split in the coarsest perfect recall refinement (and therefore are the same as in G), we set b;(I') = b; (I'). Due to the
construction, the realization equivalence between b; and b; follows immediately.

The same construction yields realization equivalent strategy also in the opposite direction. O

Lemma 4. Let G be an imperfect recall game where player 2 has A-loss recall and by a strategy of player 1. Let G’ be the coarsest perfect
recall refinement of G for player 2. Let b', be a pure best response to by in G’ and let by be a realization equivalent behavioral strategy
to b}, in G, then by is a pure best response to by in G.

Proof. Note that b; is a valid strategy in both games since the information set structure for player 1 in G and G’ is identical.
Since player 2 is not absentminded in G, it is enough to consider pure behavioral strategies (Lemma 2) as a best response
to by in G. Furthermore from Lemma 3 we know that every pure behavioral strategy b/, from G’ has realization equivalent
pure behavioral strategy 52 in G, hence also the expected utility u1(b1,13’2) in G’ is equal to u1(b1,52) in G. Since bj, is a
best response to by in G/, it holds that for every pure behavioral strategy B’z in G’ and its realization equivalent counterpart
by in G,

Uz (b1, by) = ua(by, by) < uy(by,bh) =uy(by, by).

Finally, since also every pure behavioral strategy Bz in G has realization equivalent pure behavioral strategy in G’
(Lemma 3), there can be no by for which uy(b1, by) > uy(b1,by). O

Appendix B. Supplementary material for Section 3.1

In this section, we provide a sufficient condition for the existence of NE in general imperfect recall games.

Corollary 2. An imperfect recall game G (not restricted to A-loss recall) has a Nash equilibrium in behavioral strategies if there exists a
Nash equilibrium strategy profile b in behavioral strategies of the coarsest perfect recall refinement G’ of G, such that VI € T® YHy, H; €
H(I) : b(Hy) = b(H;), where b(H) stands for the behavioral strategy in the information set of G’ formed by states in H, the opposite
does not hold.

Proof. The proof follows from the fact that every pure behavioral strategy of G has realization equivalent pure behavioral
strategy in G’ since we only merge information sets in G’ to obtain G. The merging of information sets eliminates pure
behavioral strategies with mutually exclusive behavior in these sets. Since b is a Nash Equilibrium of G’, we know that
there exists no incentive for any player to deviate to any pure behavioral strategy in G’ and therefore also no incentive to
deviate to any pure behavioral strategy in G. This, in combination with the fact, that b prescribes valid strategy in G implies
that b is a Nash Equilibrium in behavioral strategies of G.
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Fig. C.13. An imperfect recall game reduction from Theorem 11 of 3-SAT problem xj V —=X3 V X4 A —X2 V X3 V —X4.

Finally, we provide a counter-example showing that the opposite direction of the implication does not hold. Consider the
game in left subfigure of Fig. 1. Here the only Nash equilibrium in behavioral strategies is playing d and e deterministically
and mixing uniformly between g, h. The only Nash equilibrium of its coarsest perfect recall refinement (shown in right
subfigure of Fig. 1) is, however, playing d, e, h and i deterministically. O

Appendix C. Supplementary material for Section 3.3

Theorem 11. The problem of deciding whether player 2 having an imperfect recall can guarantee an expected payoff of at least A is
NP-hard even if player 1 has perfect recall, there are no chance moves and the game is zero-sum [15].

Proof. The proof is made by reduction from 3-SAT problem. The example of the reduction is shown in Fig. C.13. Given
n clauses xj1 Vv xj2 V Xj3 we create a two-player zero-sum game in a following way. In the root of the game player 1
chooses between n actions, each corresponding to one clause. Each action of player 1 leads to a state of player 2. Every such
state of player 2 corresponds to the variable xj ; where j is the index of the clause chosen in the root of the game. Every
such state has actions Ty, ,, Fx;, available, these actions correspond to setting the variable x; 1 to true or false respectively.
After both Ty, ,, Fx;, in xj1 we reach the state representing the assignment to x; , with the same setup (state representing
the assignment to x; 3 is reached after that). After the assignment to x;3 we reach the terminal state with utility —A for
player 1 if the assignment to x; 1, Xj» and x; 3 satisfies the clause x;; V Xj 2 V X 3, 0 otherwise. The information sets of
player 2 group together all the states corresponding to the assignment to one variable in the original 3-SAT problem (note
that we assume that the order of variables in every clause follows some complete ordering on the whole set of variables in
the 3-SAT problem).

We will show that player 2 can guarantee the worst case expected value A if and only if the original 3-SAT problem is
satisfiable. First, we show that if the original 3-SAT problem is satisfiable player 2 can guarantee the worst case expected
value A. The worst case expected value A is achieved when player 2 plays according to the assignment which satisfies the
original 3-SAT problem. Next, we show that if player 2 can guarantee the worst case expected value A, the original 3-SAT
problem has to be satisfiable. This holds since if there would be at least one clause not satisfied, player 1 will always choose
the action corresponding to this clause, causing the expected value smaller than A.

The reduction is polynomial, since the game has 23n leaves. O

Theorem 12. It is NP-hard to check whether there exists a Nash equilibrium in behavioral strategies in two player imperfect recall
games even if the game is zero-sum and there are no chance moves [16].

Proof. The proof is by reduction from 3-SAT. Given a 3-CNF formula F with n clauses we construct a zero-sum two-
player game G as follows. Player 1 (the max-player) starts the game by making two actions, each time choosing one of n
clauses of F. We put all corresponding n + 1 nodes (the root plus n nodes in the next layer) in one information set. If he
fails to choose the same clause twice, he receives a payoff of —n® and the game stops. Otherwise, the game continues in
the same way as in the proof of Theorem 11. If the choices of player 2 satisfy the clause, player 1 receives payoff 0. If none
of them do, player 1 receives payoff 1. An example of the reduction is shown in Fig. C.14.

The proof is now concluded by the following claim: G has an equilibrium in behavior strategies if and only if F is
satisfiable. Assume first that F is satisfiable. G then has the following equilibrium (which happens to be pure): player 2
plays according to a satisfying assignment while player 1 uses an arbitrary pure strategy. The payoff is O for both players,
and no player can modify their behavior to improve this, so we have an equilibrium. Next, assume that G has an equilibrium.
We shall argue that F has a satisfying assignment. We first observe that player 1 in equilibrium must have expected payoff
at least 0. If not, he could switch to an arbitrary pure strategy and would be guaranteed a payoff of at least 0. Now, look
at the two actions (i.e., clauses) that player 1 is most likely to choose. Let clause i be the most likely and let clause j be
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1 2 1 2
X1 Fr1 Tx2 Fy2
Tx3 Fx3 Tx3 Fx3 Tx3 Fx3 Tx3 Fx3

Fig. C.14. An A-loss recall game reduction from Theorem 12 of 3-SAT problem x; V —X3 V X4 A =X V X3 V —X4.

the second-most likely. If player 1 chooses i and then j, he gets a payoff of —n3. His maximum possible payoff is 1, and his
expected payoff is at least 0. Hence, we must have that —n3pipj +1>0. Since p; > % we have that p; < nl—z Since clause j
was the second most likely choice, we in fact have that p; >1— (n — 1)(nl2) >1-— % Thus, there is one clause that player 1
plays with probability above 1 — % Player 2 could then guarantee an expected payoff of less than % for player 1 by playing
any assignment satisfying this clause. Since we are playing an equilibrium, this would not decrease the payoff of player 1
so player 1 currently has an expected payoff less than % Now, look at the assignment defined by the most likely choices
of player 2 (i.e., the choices he makes with probability at least 0.5, breaking ties in an arbitrary way). We claim that this
assignment satisfies F. Suppose not. Then there is some clause not satisfied by F. If player 1 changes his current strategy to
the pure strategy choosing this clause, he obtains an expected payoff of at least (%)3 > % (supposing, wlog, that n > 8). This
contradicts the equilibrium property, and we conclude that the assignment, in fact, does satisfy F. 0O

Appendix D. Supplementary material for Section 4.5

Lemma 7. Let h € I be a history and b%, b% be behavioral strategies prescribing different behavior in 11 but prescribing the same
behavior in all subsequent states h = h'. Let Viax(h) and vmin(h) be maximal and minimal utility of player 1 in the subtree of h. Then
the following holds:

h) — vimin(h
max qu(bl,b%)—u’f(bz,bgﬂg Vmax(h) — Vin(h)

-Ib}(I1) — bI1)I1,
b}, b2eB, 2 ! !

where u’l‘(bl , by) is the expected utility of player 1, when starting in h and playing according to b1, b;.

Proof. When comparing b} and b%, we can identify two subsets of A(I1) - a set of actions A* where the probability of
playing the action in b? is higher than in b} and A~ where the probability in b? is lower than in b]. Let us denote

Ct=>"|bi(lh.a) — b}y, a)| (D.1)
acA+

C™= > bi(l.a) — b}y, )| (D.2)
acA—

We know that C* = C~, moreover ||b} (I1) — b%(h) l1 =CT 4+ C~. In the worst case, decreasing the probability of playing
action a € A~ results in the decrease of the expected value

Vinax(h) - Y b} (I, @) = b3 (11, @)| = Vinax(h) - C™.
acA~
Similarly the increase of the probabilities of actions in A™ can add in the worst case vy (h) - CT to the expected value of
the strategy. Hence,
max [u} (b}, b3) — uf (b3, b3)| < Vimax(h) - C~ — Vinin(h) - C*
bl.b2eB;

= [Vinax(h) — vmin(h)] - ct
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_ Vmax(h) ; Vmin(h) 2+
_ Vinax(h) — Viin(h)

2

b1 = bidDI. D
Appendix E. Supplementary material for Section 5.2.2

Theorem 9. When using Pax(11) from Theorem 8 for all I € I{R and all a € A(Iy), the number of iterations of the IRABNB algorithm
needed to find an g-optimal solution is in

34logio(S)+4\ !
o 2
€

where Sy = |Z}R| AT,

Proof. We start by proving that there is n € O(3*%1147" Pnax) nodes in the BnB tree, where AT® = max;ziz, | A(I)| and
Pmax = max;czir, Pmax(D). This holds since in the worst case we branch for every action in every information set, hence
|Z'R4 | AT® branchings. We can bound the number of branchings for a fixed action by 4 - Piax, since there are 10 digits on
which we use binary halving and at most Pmg number of digits of precision are required. 4|Z7| AT Py is, therefore, the
maximum depth of the branch-and-bound tree. Finally, the branching factor of the branch-and-bound tree is at most 3 (we
add at most 3 successors in every iteration of Algorithm 1).

By substituting

[ |A(11)|'d'vdiff(h)—‘
max | maxlog;q
lheZy | hely 2&

for Ppgx in the above bound (Theorem 8), we obtain

[AI]-dvgife(h)
451 max e7, lrmaxhell logyo zislff

ne® -‘ , where S = |Z; | AT™

[AI)|-d-vgirr (@)
3451 Max;, e7, lrlogm #ﬁ-‘

eO

S1vdiff(ﬂ)
4S1 maxy, ez lrlogm 5
c0|3 = ¢

S1-vgifrr (D)
451 ’710310 L] e ‘é’gff —‘
eO|3

S1-vgirr ()
45 (1og10 %H)
€0O|3

cO <3451(1og]0(51-vd,-ff(@))—loglo(za)+1)>

c (3451 10g10(S1-Vaifs (9)+1) 3451 logm(Zs))

m

(@)

m

logz (2¢)
O (3451 log1o(S1- leff(ﬂ))+1)3_451 1og§<m))
(3451 10810(S1-Vaifs (9)+1) (2¢) 10g3(10)>

c O (3451 (logio(S1- vmff<@>>+1)(28)—2sl>

m

o
) (3451 10g10(S1Vaiss (9)+1) 251 5—251)
o

c O (3451 10810(S1-vaifs () 34519251 8—251>
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cO <3451 0g19(S1-Vaiff (1) 91 51 5451)

3410g10(S1-Vaifs (D) +4 51
€0
82

Finally, we can substitute vgifr(¥) by 1, since we can modify the utility structure of the game to have utilities in [0, 1]
interval. O

Appendix F. CFR in imperfect recall games

In this section we discuss the problems which prevent the convergence of Counterfactual regret minimization algorithm
[8] (CFR) in imperfect recall games. First, we briefly describe the ideas behind external regret and CFR. Finally, we discuss
why CFR does not have to converge to no-regret strategies in imperfect recall games and show an example where CFR can
converge to a strategy profile with arbitrarily worse expected value than the maxmin value of the game.

FE1. External regret

Given a sequence of behavioral strategy profiles b', ..., bT, the external regret for player i,
= max Z(u (b}, b* ;) —u;i(bt, bt ), (F1)
bieBi 3
is the amount of utility player i could have gained if he played the best possible strategy across all time steps t € {1,...,T}.

An algorithm is a no-regret algorithm for player i, if the average positive regret approaches zero; i.e.

T,+
lim —-—— =0,
Tooo T

where RiT’+ = max(R/, 0).
E2. Counterfactual regret minimization

Counterfactual regret is defined for each iteration t, player i, information set I € Z; and action a € A(I) as rf (I,a) =

vi(bi_ .. ) — vi(b", I), where b}__  is the strategy profile b* except for I, where a is played and

v(b,) =Y ui@n; (N’ @l 2),

AVA|

I—a

where 772(h) is the probability that h will be reached when players play according to the strategy profile b, with nib being
the contribution of player i and 7 i - the contribution of —i and chance. z[I] is state h which is visited in I in order to

reach leaf z. Finally, 7w?(h, h’) stands for the probability that " will be reached from h when players play according to b.
The immediate counterfactual regret is defined as

Rzimm(l) = ¥ar£ax Zr (I, a).

In games having perfect recall, minimizing the immediate counterfactual regrets at every information set minimizes the
average external regret. This holds because perfect recall implies that the external regret is bounded by the sum of positive
parts of immediate counterfactual regrets [8],

RiT < max RT *,a), (E2)
acA(l)
IeZ;
and thus
R _ MIZIVIAT (£3)
T = T ’

where |A;| = max;ez; | A(I]. In imperfect recall games, however, equations (F.2) and (F.3) are not guaranteed to hold.
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Fig. F15. An A-loss recall game where CFR finds a strategy with the expected utility arbitrarily worse than the maxmin value.
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Fig. F.16. The exploitability of the average strategy computed by the CFR with outcome sampling (y-axis) with increasing number of iterations (logarithmic
x-axis) for 5 different seeds.

The no-regret learning cannot work in general in imperfect recall games since the loss function
I'(bi) = ui(bt, b ;) — ui(bi, b)) (F4)

used in equation (F.1) can be non-convex over the probability simplex of behavioral strategies (the loss function must be
convex for no-regret learning to have convergence guarantees [35]).

Example 5. Assume we are in the step T of a no-regret learning algorithm solving the game from Fig. F.15, and we evaluate
the loss from eq. (F.4) of some strategy by in step t < T. Let b (a) = b’ (g) = 0.5 and b} (d) = b5 (e) = 1. Let b1 (a) =b1(g) =1,
b} (b) = by (h) =1, and b{(a) = b{(g) = 0.5. The losses of these strategies are I'(b1) = —x, I'(b}) = —x, I(b]) = 0. Since b
is a convex combination of by and bﬁ with uniform weights, it follows that the loss function is non-convex, hence the
convergence guarantees used in CFR due to Gordon [35] no longer apply. By increasing x > 2 in the game from Fig. F15,
the CFR can find a strategy with its exploitability arbitrarily worse than the maxmin value —1 (we show the exploitability
of strategies resulting from CFR in the next section), since mixing between actions a and b can yield the expected value
strictly worse than the expected value reached by deterministic samples containing a and b if player 2 plays d and e with
positive probability. The game has A-loss recall and has 2 NE, playing (a, g) or (b, h) deterministically for player 1 and (c, f)
for player 2 (no mix between these two NE strategies for player 1 is a NE).

The non-convexity of the loss function shown in Example 5 will never appear in case of perfect recall games since the
behavior of i after any a, a’ € A(l;) is independent VI € Z;. Furthermore, the guarantee of convergence of CFR to (&-)optimal
strategies in chance relaxed skew well-formed games [17] is based on bounding the non-convexity of the loss function.

E3. Experimental evaluation of strategies computed by CFR

Here, we empirically demonstrate the performance of the outcome-sampling version of CFR [36] on the example game
from Fig. F.15. Fig. F16 depicts the exploitability of the average strategy computed by the CFR (logarithmic x-axis shows the
number of iterations, the y-axis shows the exploitability for the average strategy of player 1, every line represents one run
for a given seed). The algorithm does not converge to any fixed strategy, moreover, the exploitability differs significantly
from the maxmin value of —1 for player 1. Note that vanilla CFR (see, e.g., [36], page 22) does not work either, since for
example when initialized to uniform strategy, player 1 will never change his strategy since the expected values after his
actions are always equal.
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Abstract

Security problems can be modeled as two-player partially ob-
servable stochastic games with one-sided partial observabil-
ity and infinite horizon (one-sided POSGs). We seek for op-
timal strategies of player 1 that correspond to robust strate-
gies against the worst-case opponent (player 2) that is as-
sumed to have a perfect information about the game. We
present a novel algorithm for approximately solving one-
sided POSGs based on the heuristic search value iteration
(HSVI) for POMDPs. Our results include (1) theoretical
properties of one-sided POSGs and their value functions, (2)
guarantees showing the convergence of our algorithm to op-
timal strategies, and (3) practical demonstration of applica-
bility and scalability of our algorithm on three different do-
mains: pursuit-evasion, patrolling, and search games.

Introduction

Game theory is widely used in security problems and strate-
gies from game-theoretic models are applied to protect crit-
ical infrastructures (Pita et al. 2008; Kiekintveld et al. 2009;
Shieh et al. 2012), computer networks (Vanek et al. 2012) or
wildlife (Fang, Stone, and Tambe 2015; Fang et al. 2016).
Many real-world situations, however, contain a dynamic
strategic interaction between the players that has to be ad-
dressed in the models. Players can observe (possibly im-
perfectly) information about actions of their opponent and
react to these observations. Examples include patrolling
games (Basilico, Gatti, and Amigoni 2009; Vorobeychik
et al. 2014; Basilico, Nittis, and Gatti 2016), where a de-
fender protects a set of targets against an attacker, pursuit-
evasion (Chung, Hollinger, and Isler 2011), or search games,
where a defender is trying to find and capture an attacker.

Finding optimal strategies in such dynamic games with
imperfect information is often computationally challenging.
If the horizon of the interaction is restricted, we can use
the extensive-form games formulation. Typically, the size of
this representation grows exponentially with the horizon and
prohibits us from solving large games. If the horizon is infi-
nite (or indefinite), we can use partially observable stochas-
tic games (POSGs). In POSGs, however, many problems are
undecidable (Madani, Hanks, and Condon 1999) even when
we use a discount factor to restrict future gains.

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, real-world security scenarios naturally require
partial observability and no strictly defined horizon. The
goal is to find best robust strategies that provide guaran-
tees on the expected outcome for one player (the defender)
against any opponent (the attacker). Therefore, we focus
on discounted two-player zero-sum POSGs with concurrent
moves and one-sided partial observability where it is as-
sumed that the attacker has full information about the game
— the attacker knows the state of the game as well as the
history of actions played. One-sided partial observability
has been used in specific domains such as patrolling games,
e.g. (Vorobeychik et al. 2014), or pursuit-evasion games,
e.g. (Horak and Bosansky 2016). We generalize this con-
cept to a broad class of POSGs.

Our main contribution is the first domain-independent al-
gorithm that has guarantees to approximate optimal strate-
gies in one-sided POSGs. Our algorithm is a general-
ization of the heuristic search value iteration algorithm
(HSVI) for Partially Observable Markov Decision Processes
(POMDPs). Similarly to POMDPs, one-sided POSGs al-
low us to compactly represent strategies and value func-
tions representing values of the game based on the belief
the first player has about the state of the game. Contrary to
POMDPs, the presence of the opponent player causes sig-
nificant technical challenges that we address in this paper.
First, we show that the assumption of the one-sided partial
observability guarantees that the value functions are convex.
Second, we define a value backup operator and show that
an iterative application of this operator converges to the op-
timal values. Third, we generalize the ideas behind HSVI
towards one-sided POSGs, and show that our algorithm ap-
proximates optimal strategies. Finally, we demonstrate the
applicability and scalability of our algorithm on three differ-
ent domains — patrolling games (including the variant with
alarms), pursuit-evasion games, and search games. The re-
sults show that our algorithm can closely approximate solu-
tions of large games with more than 4000 states.

Related Work

There are only a few relevant algorithms for computing
strategies in POSGs. An algorithm for computing strategies
in POSGs where all players have imperfect information was
proposed in (Hansen, Bernstein, and Zilberstein 2004). The
algorithm approximates an infinite horizon game by increas-



ing the horizon in a finite-horizon game and uses dynamic
programming to incrementally construct a set of relevant
pure strategies by eliminating dominated strategies. The set
of such strategies is then used to form a normal-form (or ma-
trix) representation of the POSG. However, the exponential
transformation to the normal form prevents this algorithm
from scaling up. One-sided partial observability allows us
to avoid such enumeration of pure strategies.

The closest works related to the algorithm presented in
this paper are two works on a specific subclass of one-
sided POSGs — pursuit-evasion games (PEGs). First, a class
of one-sided partially observable PEGs was presented and
theoretical results on the shape of the value functions and
the definition of the value backup operator were provided
in (Horak and Bosansky 2017). Second, an HSVI-based al-
gorithm was introduced in (Horak and Bosansky 2016).

Our algorithm can be seen as a significant generalization
of this approach to a broader class of one-sided POSGs.
First, the set of observations is very limited in PEGs —
player 1 is able to observe his own actions only and the
only direct information about the position of the opponent
is given when player 2 is captured. Considering general ob-
servations presents additional challenges for the model and
the algorithm which we address in this paper. Secondly, the
previous work relied on a uniform sampling of belief points
to guarantee the convergence, our algorithm approximates
the solution in a deterministic manner.

Two-Player One-Sided POSGs

A one-sided partially observable stochastic game G is a tu-
ple G = (S, A1, A2,0,T,R). The game is played for an
infinite number of stages. At each stage, the game is in one
of the states s € S and players choose their actions a € Ay
and o’ € A, simultaneously. An initial state of the game is
drawn from a probability distribution b° € A(S), which we
treat as a parameter of the game and term the initial belief.

The choice of actions determines the outcome of the cur-
rent stage: Player 1 gets an observation o € O and the
game moves to a state s’ € S with probability T 4.4 (0, s'),
where s is the current state. Furthermore he gets a reward
R(s,a,a’) for this transition. We assume the zero-sum case,
hence player 2 receives —R (s, a, a’), and we assume that the
rewards are discounted over time with discount factor y < 1.
Players do not observe their rewards during the game.

We assume perfect recall, hence both players remember
their respective histories. A history of the first player is
formed by actions he played and observations he received,
i.e. (A1 x Q). The second player has complete observation,
hence S x (A; x A2 x O x 8)" is a set of her histories. The
strategies 01, oo of the players map each of their histories to
a distribution over their actions.

Value of a Strategy and Value of the Game

In this section, we show that the value of a strategy (the ex-
pected reward of the first player playing o1 when the oppo-
nent plays her best response) has a linear dependence on the
belief.

The value of the game G is the value of the best strategy
available for each of the initial beliefs b° € A(S). We rep-
resent the value of a game (based on the initial belief) as a
value function. This function is a pointwise maximum taken
over values of all strategies of the first player, which, since
the value of every strategy is linear, forms a convex function.

In the convergence proof of our algorithm, we exploit that
the rate of change in the value function is bounded in terms
of minimum and maximum rewards of G, i.e. the value func-
tion is Lipschitz continuous.

Definition 1 (Value functions). The value of a strategy o1
of the first player is a function vy, : A(S) — R which
assigns the expected utility v,, (b°) of the player 1 in the
game with initial belief b° when the first player follows o1
and the second player best-responds. The value function of
the game G is a function v* : A(S) — R that assigns the
value v*(b°) of the best strategy of the first player for each
of the beliefs, i.e. v*(b°) = sup,, vy, (b°)

Lemma 1. The value v, of a fixed strategy o, of the first
player is linear in the initial belief.

The proof relies on the fact that the player 2 knows the ini-
tial state of the game; hence, the initial belief forms a convex
combination of values of best responses for individual states.
Due to the space constraints, full proofs of all lemmas can
be found in the full version of the paper.

We say that a function f is K-Lipschitz if it satisfies
|f(z) = f(y)] < K - ||z — y||2. The key observation to
derive the Lipschitz continuity is that the value of the game
lies in a bounded interval [L, U] where

L= mm Z'yR(saa) U= maxZ’yRsaa

(s,a,a’)

The proof of the following lemma then relies on defining
the value of the strategy by assigning these extreme values
to the vertices of the belief simplex and identifying the con-
figuration with the largest rate of change.

Lemma 2. Value function v,, of a fixed strategy o, of
player 1 is (U — L)-Lipschitz.

Theorem 1. Value function v* of the game G is convex in
the initial belief and (U — L)-Lipschitz.

Proof. The value function v* is the supremum taken over
a set of (U — L)-Lipschitz functions corresponding to val-
ues of strategies available to player 1 (Def. 1, Lemma 2).
Supremum taken over a family of bounded (U—L)-Lipschitz
continuous functions is (U—L)-Lipschitz continuous. More-
over since these functions are linear (Lemma 1), the result-
ing value function is convex. O

Value Backup

Now we present a value iteration algorithm for solving one-
sided POSGs. The algorithm approximates the value func-
tion v* of the infinite horizon game G by considering value



functions of the game with a restricted horizon. Each itera-
tion of the algorithm improves the approximation by increas-
ing the horizon by one step using the value backup opera-
tor (denoted H). Applying this operator means that players
choose their Nash equilibrium strategies in the current step
while assuming that the value of the subsequent stage is rep-
resented by the value function from the previous iteration.

The algorithm constructs a sequence {v'}$2,, starting
with a value function v° of a game where only immediate
rewards are considered. First, we discuss application of the
operator in a single stage. Afterward we show the conver-
gence when the operator is applied repeatedly.

Value Backup Operator

The value backup operator H evaluated at belief b —
[Hv](b)— corresponds to solving a stage game where play-
ers choose their Nash equilibrium strategies for one stage of
the game (in latter text we use [Hv](b) to refer to this game
as well). We denote strategies for one stage m; € A(A;)
for the first player and 75 : & — A(Ag) for the player 2.
The utilities in [Hv](b) depend both on the immediate re-
wards R and the discounted value of the subsequent game
represented by value function v. The immediate rewards part
depends solely on the actions played by the players:

Rifwe =2, 2 D be)m(@)m(s,a) R(s,a,a) ()

s€Sa€Ay a’€ Ay

The first player both knows the action a he played and ob-
serves observation o. He can use this information to derive
his belief for the subsequent game:

b (s) = Prlo]a, 7T2]Z ZT a.ar(0,8)b(s)-m2(s,a") (2)

s€ES a’€ Ay

The value of the subsequent game is then the expectation
taken over individual action-observation pairs (a,0) of the
first player from the values of a game starting in belief b3’

Ry, ()= Y > ml(a)- Profa,ma] - v(b5)) . ()

ac€Ay 0€O

Since the value function is convex, utility of playing strat-
egy profile (71, m2) is convex when 7y is fixed and linear
when we fix 5. The minimax theorem (von Neumann 1928;
Nikaido 1954) applies and the Nash equilibrium strategy is
solved by maximin/minimax:

[Hv](b) = rr71rlQn max (R;f;"frz + - Rfr”lbf;z (v)) . 4)

Computation of Value Backup Operator

Finally, we present the way of computing [Hv](b). When
the value function v is piecewise linear and convex (PWLC),
it can be represented by a set I' of a-vectors and the value
backup [Hv](b) can be evaluated by means of linear pro-
gramming. Each a-vector « € T is an |S|-tuple representing

the affine value function v,, of a fixed strategy o by spec-
ifying its values in each of the pure beliefs («(s) for each
s € S). We focus on the problem of solving the problem
from the perspective of the second player first, who has to
choose her strategy mo such that the utility V' of the best
responding player 1 (who chooses his pure best response
a € Aj) is minimized.

The value of playing strategy mo against action a € A
equals RI™™ 4 ~RU(y), which allows us to construct a

a,mo a,mo

set of best-response constraints (one for each action a)

V=303 b(s)

s€ES a’€Asz

+ Z Prlola, m2] - v(b%y) . 5)

0cO

-ma(s,a’) - R(s,a,a’) +

Assuming that the value function v is represented by a
set I' of a-vectors, such that v(b) = maxaer(a,b) ((-,-)
denotes an inner product), its value can be rewritten by a set
of inequalities

v(bgy) > Z a(s’) - b3 (s")
s'eS
where 02:°(s’) is represented by linear constraints cor-
responding to Eq. (2). The term Pr[o|a, 73] occuring in
Eqgs. (2) and (5) cancels out to form the resulting linear pro-
gram.

Va €T (©6)

Strategy of the First Player One way to approximate the
value function by a PWLC function is to use a finite subset of
strategies of the first player. Value functions of these strate-
gies are linear (Lemma 1), and the pointwise maximum from
these linear functions gives us the desired PWLC approxi-
mation. In such a case, each of the vectors in I' corresponds
to the value function of one of the strategies. The dual linear
program is used to find the optimal control strategy of the
first player, when duals of Eq. (5) correspond to the strategy
to play in the first stage (when the history of the first player
is empty) and duals of Eq. (6) prescribes what strategy to
follow when (a, 0) was observed in the first stage.

Convergence of the Value Backup Operator

In this section we show that a repetitive application of the
value backup operator H converges to the same value func-
tion v* of the infinite horizon game regardless of what value
function it is applied on. We show this by demonstrating that
the operator H is a contraction mapping with a factor v < 1.

Lemma 3. Let v, v’ be value functions, b € A(S) be a belief
and 1, To (resp. ™, mh) be equilibrial strategies in [Hv](b)
(resp. [Hv'|(b)). Assume that for every action-observation
pair (a, o) of the first player, |v(b%°) — v'(b3°)| < p. Then
|[Hv](b) — [HO)(0)] < yp.

The lemma is proven by modyfing Nash equilibrium strat-
egy profiles in games [Hv](b) and [Hv'](b) and bounding
the difference by the difference of their expected utilities.

Theorem 2. The operator H is a contraction mapping un-
der the norm ||v — v'|| = maxyea(s) [v(b) — v (D). It thus
has a unique fixpoint — the value function of the infinite hori-
zon game.



Data: Game (S, A1, A3, O, T, R), initial belief £°,
discount factor -, desired precision € > 0,
neighborhood parameter R

Result: Approximate value function ©

1 Initialize ©

2 while gap(9(b°)) > € do

3 ‘ Explore (0% ¢ R,0)

4 return v

5 procedure Explore (b,¢, R, 1)

6 9 <— optimal strategy of player 2 in [Hv](b)

7 (a,0) + select according to forward exploration

heuristic
8 if excess(0(b%°),t 4 1) > 0 then
9 | Explore (b €, R,t+1)

10 L« TU{LT(b)}
1 YT <+ YU{UTY(b)} and make v (U — L)-Lipschitz
Algorithm 1: HSVI algorithm for one-sided POSGs

Proof. Let ||[v—v'|| < p. Then for every b%:° from Lemma 3
[o(by?) — o' (b%°)| < w and for every belief b, |[Hv](b) —
[Hv' f(b)\ < 4pu. The uniqueness of the fixpoint and the
convergence properties follow from the Banach’s fixed point

theorem (Ciesielski 2007). ]

HSVI Algorithm for POSGs

Similarly to POMDPs, the value iteration algorithm can-
not scale for practical problems. We thus present a point-
based algorithm (Algorithm 1) that by sampling the be-
lief space bounds and approximates the true value func-
tion v* of the game by a pair of PWLC functions v (lower
bound), represented by a set of a-vectors I', and v (upper
bound) represented as a lower envelope of a set of points
T. We refer to these functions jointly as ©. The goal of
the algorithm is to ensure that the gap in the initial belief
b0 of the game induced by the approximation defined as
gap(0(b)) = v(b) — v(b) is no higher than the required pre-
cision. Functions ¥ are refined by adding new elements to
their sets. These new elements result from point-based up-
dates of operator H at a single belief point b.

The algorithm is initialized with v (and I') corresponding
to the value of a uniform strategy of the first player and the
upper bound v (and T) results from solving a perfect infor-
mation refinement of the game. In every iteration, a finite
set of beliefs is updated by forward exploration (lines 6-9).
Beliefs selected by this process contribute to the fact that the
gap at b° is not sufficiently small, and hence the approxima-
tion in these beliefs needs to be improved by applying point-
based updates (lines 10 and 11). We now describe how the
updates are performed, followed by the description of the
forward exploration search.

Point-Based Updates

A point-based update at belief point b updates the lower and
upper bound functions v and v using the optimal strategies
in games [Hv](b) and [H7](b). In order to prove the con-
vergence, we require that the functions v and v are (U — L)-
Lipschitz; hence, the update has to preserve this property.

The update of v adds an a-vector corresponding to the
value of a Nash equilibrium strategy of the first player in
[Hv](b) (denoted LT'(b)) computed from duals of the linear
program (Egs. (5)-(6)). The value of such strategy is linear
and (U—L)-Lipschitz (Lemma 2), hence the expansion of T’
by LT'(b) preserves (U — L)-Lipschitz continuity of v.

The upper bound function v is represented by a set of
points Y. Update of upper bound adds one point, UY (b) =
b — [H7u)(b), that corresponds to the evaluation of the value
backup at belief b. We cannot use the linear program out-
lined in Egs. (5)-(6) to compute [H7](b) directly since the
function v is not represented using a-vectors. We, there-
fore, use a transformation presented in (Horak and Bosan-
sky 2016) which performs projections of beliefs to the lower
envelope of U while preserving linearity of the constraints.

Adding a point to T can break the (U—L)-Lipschitz conti-
nuity of v. We can fix this by constructing a piecewise linear
approximation of a lower (U — L)-Lipschitz envelope:

o(b) = inf {o() + (U-L) - [Ib=V'll2} - @

The resulting function is ¢(U—L)-Lipschitz when ¢ depends
on the accuracy of the approximation and can be arbitrarily
close to 1.

Forward Exploration

The value backup operator H expresses the value in belief b
in terms of values of subsequent beliefs b%,°. When applied
to value functions 9, it also propagates the approximation
error. In order to minimize the gap in the initial belief b°, we
need to achieve sufficient accuracy also in beliefs encoun-
tered at a later time.

The forward exploration simulates a play between the
players while assuming that the second player follows a
strategy obtained from the application of H on the lower
bound v (i.e. she is overly optimistic with her strategy).
When a belief b is encountered at time ¢ (we term such a
pair (b,t) a timed belief) and its approximation 0(b) is not
sufficiently accurate, we say that it has positive excess gap.

Definition 2 (Excess gap). Let € be the desired precision
and R > 0 be a neighborhood parameter. Let

t
pt) =ey" =Y 2RU—-L)y". ®)

i=1

We define the excess gap of a timed belief (b, t) as

excess(b,t) = gap(0(b)) — p(t) . )

Later we show that if all subsequent timed beliefs
(b%° t + 1) have negative excess gap, a point-based update
at (b, t) makes the excess gap excess(b, t) negative as well
(in fact, excess(b,t) < —2R(U —L); we then term (b, ¢) as
closed). If this does not hold for the belief (b,t) currently
explored, the forward exploration process selects one of the
subsequent beliefs (b%:°,¢ + 1) with a positive excess gap
for further exploration and the process is repeated with the
timed belief (b2, ¢+1). If all subsequent beliefs have a neg-
ative excess gap, the forward exploration process terminates.



The termination is guaranteed if the neighborhood parame-
ter R is chosen so that the sequence p(t) is monotonically
increasing in ¢ and unbounded.

Forward Exploration Heuristic A positive excess gap of
a belief contributes to the approximation error in the ini-
tial belief. If there are multiple subsequent timed beliefs
(b%2,t + 1) with a positive excess gap, we select the one
with the highest weighted excess gap which is similar to
the weighted excess heuristic used in (Smith and Simmons
2004). The excess gap is weighted by both the observation
probability and the probability that the first player plays a
given action when using the strategy obtained from the up-
per bound value function v (i.e. according to the strategy
71 from the game [H®|(b)). The action observation pair
(a,0) selected in timed belief (b,t) for the further explo-
ration maximizes 7y (a) - Pr[o|a, 73] - excess(by?,t 4 1).

Convergence of the Algorithm

The goal of the HSVI algorithm is to make the excess gap
negative in all reachable timed beliefs and thus sufficiently
decrease the gap in the initial belief. Contrary to POMDPs,
reachable beliefs in POSGs are influenced by the strategy of
the second player — she can change her strategy to reach a
belief (b',t) with a positive excess gap instead of a closed
belief (b, t), while b’ stays arbitrarily close to b.

We avoid this by ensuring that if (b',t) with a positive
excess gap is reached by the forward exploration, it lies suf-
ficiently far from all previously closed beliefs at time ¢ — the
minimum distance between the beliefs being controlled by
the neighborhood parameter R > 0 from the definition of
the excess gap. Unlike in POMDPs, our modified defini-
tion of the excess gap ensures that not only a closed belief
itself gets a negative excess gap: all beliefs within its R-
neighborhood get a negative excess gap as well (Lemma 4).
The convergence of the algorithm follows since there is only
a finite number of such R-separated belief points.

Lemma 4. Let (b, t) be a timed belief and 7 be the optimal
strategy of the second player in [Hv](b). If excess(by,’,t +
1) < 0 for all action-observation pairs (a,0) of the first
player, then after performing a point-based update at b it
holds that (i) excess(b,t) < —2R(U — L) and (ii) all belief
points b in the R-neighborhood of b (i.e. ||b —b'|2 < R)
have a negative excess gap excess(b', t).

The first part of the lemma follows from Lemma 3, the lat-

ter follows from 2(U — L)-Lipschitz continuity of difference
of (U —L)-Lipschitz functions v and T.

Definition 3. Let t be time. The set of all beliefs with nega-
tive excess gap at time t is denoted V;

Wy ={be A(S) | gap(d(b)) < p(t)} - (10)
Theorem 3. HSVI algorithm converges to the precision e.

Proof. In each iteration, the algorithm performs a forward
exploration until it encounters a timed belief (b, t) such that
all subsequent timed beliefs (b3, ¢ + 1) have a negative ex-
cess gap. Since gap(b%;’) is bounded by U—L, this happens
after at most ¢,,,x Steps, where

-L 11—+t
s = [l (5 e angr )

When the terminal timed belief (b,¢) is reached, then
b ¢ W, and all subsequent timed beliefs have negative ex-
cess gap. After performing the point-based update at (b, t),
the excess gap of (b, t), as well as of all timed beliefs in the
R-neighborhood of (b, t), is negative (Lemma 4) and U, is
expanded. We show that the expansion of the sets ¥, guar-
antees that eventually ¥y = A(S) for all times ¢’ < #pax,
unless the desired precision ¢ is achieved beforehand.

The distance of b from the nearest belief ' in W, previ-
ously closed by the algorithm is at least R, since all points
in the R-neighborhood of b’ have a negative excess gap and
thus are in W,. In each iteration, ¥, is expanded by at least
one belief and (at least) its R-neighborhood.

The number of such expansions of timed beliefs is finite.
In fact, the problem of finding maximum set of R-separated
beliefs can be seen as a hypersphere packing (a higher di-
mensional version of the sphere packing (Hales 2011)) fill-
ing the belief simplex using non-overlapping hyperspheres
of radius R/2, since the hyperspheres do not overlap exactly
when the distance between their centers is at least R. When
no hypersphere can be further inserted, it means that we
cannot find any belief with a positive excess gap, hence we
reached the desired precision in the whole belief space. [

Experiments

We demonstrate application possibilities and scalability of
our algorithm on three types of games: pursuit-evasion
games (e.g., evaluated in (Horak and Bosansky 2016)), in-
trusion search games (e.g., see (Bosansky et al. 2014)), and
patrolling games with a discount factor (e.g., see (Vorobey-
chik et al. 2014)). Each player is assigned a team of units
(either one or multiple units) located in vertices of a graph
and he or she controls their movement on the graph. A move
consists of moving the units simultaneously to vertices adja-
cent to their current positions, or they can wait.

The utilities are scaled so that the values of the games lies
in the interval [0, 100] (or [—100, 0], respectively). Unless
stated otherwise the discount factor is v = 0.95 and we ran
the algorithm until gap(9(b°)) < 1.

Algorithm Settings

We initialize the value functions by solving the perfect-
information refinement of the game (for v) and as a best re-
sponse to a uniform strategy of player 1 (for v). We use stan-
dard value iteration for stochastic games, or MDPs, respec-
tively, and terminate the initialization when either change
in valuations between iterations is lower than 0.025, or 20s
time limit has expired. The initialization time is included in
the computation times of the algorithms.

Similarly to (Smith and Simmons 2004), we adjust € in
each iteration using formula e = 0.25+n(gap(9(b"))—0.25)
with 7 = 0.9. We set the neighborhood parameter R to the
largest value satisfying p(t) > 0.25y7" for all t < tyax
from the proof of Theorem 3.
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Figure 1: (a) Intrusion-search game: W = 3, configuration 1-1: A denotes initial position of the attacker, D initial posi-
tions of defender’s units, T is attacker’s target (b) Intrusion-search games with 2 zones, each with W vertices: Time to reach
gap(9(b°)) < 1 (c) Patrolling games played on graphs generated from ER(0.25): Time to reach gap(4(b°)) < 1 (only suc-
cessfully solved instances within 10 hours) (d) Patrolling games played on graphs generated from EFR(0.25): Percentage of
successfully solved instances with ¢, = 4 and the gap on failed instances after 10 hours

Finally, we remove dominated points and vectors from
sets I' and Y whenever their size grows by 20% to reduce
the size of the linear programs. Again, this is similar to
POMDPs (Smith and Simmons 2004).

Pursuit-Evasion Games (PEGs)

A team of centrally controlled pursuers aims to locate and
capture the evader, and receive the utility of +100; the evader
aims for the opposite. We consider 3 x N grid graphs (we
vary the number of columns V), two pursuing units start in
top left positions, the evader starts in bottom right corner.
Our algorithm achieves similar scalability as the existing al-
gorithm designed specifically for one-sided PEGs (Horak
and Bosansky 2016) and displays exponential dependence
of the runtime on the width of the grid N. The game with
N = 3 was solved in 9s on average, the game with N = 6
took 3.5 hours to be solved to the gap 1. A graph depict-
ing the dependence of the runtime on /V can be found in the
full version of the paper. Sizes of the games range from 143
states and 2671 transitions to 1299 states and 34807 transi-
tions.

Search Games

In search games that model intrusion, the defender patrols
checkpoint zones (see Figure 1a, the zones are marked with
box). The attacker aims to cross the graph, while not being
captured by the defender. If the attacker crosses the graph
unharmed, the defender receives a utility of -100. Whenever
the attacker enters a node, she leaves a trace and the defender
can later detect it. She can either wait for one move to con-
ceal her presence (and clean up the trace), or move further.
We consider games with 2 checkpoint zones with varying
sizes W (i.e. width of the graph) and 2 configurations of the
defending forces — with one defender in each of the check-
point zones (denoted 1-1), and 2 defenders in the first zone
while just 1 defender being in the second one (denoted 2-
1). The results are shown in Figure 1b (with 5 runs for each
parameterization, the confidence intervals mark the standard
error in our graphs). The largest game (W = 5 and 2 defend-
ers in the first zone) has 4656 states and 121239 transitions
and can be solved within 27 minutes. This case highlights
that our algorithm can solve even large games. However, a
much smaller game with the configuration 1-1 (964 states

and 9633 transitions) is more challenging, since the coor-
dination problem with just 1 defender in the first zone is
harder, and is solved within 3.5 hours.

Patrolling Games

In patrolling games (Basilico, Gatti, and Amigoni 2009;
Vorobeychik et al. 2014) the patroller patrols vertices of a
graph by moving over the graph. The attacker decides the
vertex she will attack and the time she will do so. The pa-
troller does not know if an attack has started, however, he
has a limited time (termed attack time, denoted t ) to reach
the vertex under the attack. Otherwise, the vertex is success-
fully attacked and the patroller receives a negative reward
associated to that vertex.

Following the setting in (Vorobeychik et al. 2014), we fo-
cus on graphs generated from Erdos-Renyi model (Newman
2010) with parameter p = 0.25 (denoted FR(0.25)) with
attack times 3 and 4 and number of vertices |V| ranging
from 7 to 15. Each instance with attack time t, = 3 was
solved by our algorithm in less than 12 minutes (see Fig-
ure 1c). This result generally outperforms the computation
times reported for tailored algorithm for solving discounted
patrolling games (Vorobeychik et al. 2014). For attack time
tw = 4, however, some number of instances failed to reach
the precision gap(#(h°)) < 1 within the time limit of 10
hours. For the most difficult setting, |V| = 13, the algo-
rithm reached desired precision in 60% of instances (see
Figure 1d). For unsolved instances, mean gap((b°)) after
the cutoff after 10 hours is however reasonably small (also
depicted in Figure 1d, see the solid line and right y-axes).
The results include games with up to 856 states and 6409
transitions.

Since our algorithm is domain-independent, it can also
solve variants of patrolling games with alarms (Basilico,
Nittis, and Gatti 2016), including all types of imprecise sig-
nals (false positives, false negatives). The results for this
setting can be found in the full version of the paper.

Conclusions

We focus on two-player zero-sum partially observable
stochastic games (POSGs) with discounted rewards and one-
sided observability where the second player has perfect in-
formation about the game. We propose the first approximate



algorithm that generalizes the ideas behind point-based al-
gorithms designed for Partially Observable Markov Deci-
sion Processes (POMDPs) and transfers these techniques to
POSGs. We provide theoretical guarantees as well as an ex-
perimental evaluation of our algorithm on three fundamen-
tally different games.

Our work opens a completely new direction in research
of POSGs and sequential decision making and allows to de-
sign new scalable algorithm for one-sided POSGs that can
be applied in many real-world scenarios. While the current
scalability of our algorithm is limited, it is the first step in a
new direction of research. Many heuristics proven useful for
POMDPs can be translated and evaluated in this new setting,
and can further improve the scalability and applicability of
our results.
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Abstract

In many real-world problems, there is a dynamic interaction
between competitive agents. Partially observable stochastic
games (POSGs) are among the most general formal mod-
els that capture such dynamic scenarios. The model captures
stochastic events, partial information of players about the en-
vironment, and the scenario does not have a fixed horizon.
Solving POSGs in the most general setting is intractable.
Therefore, the research has been focused on subclasses of
POSGs that have a value of the game and admit designing
(approximate) optimal algorithms. We propose such a sub-
class for two-player zero-sum games with discounted-sum
objective function—POSGs with public observations (PO-
POSGs)—where each player is able to reconstruct beliefs of
the other player over the unobserved states. Our results in-
clude: (1) theoretical analysis of PO-POSGs and their value
functions showing convexity (concavity) in beliefs of maxi-
mizing (minimizing) player, (2) a novel algorithm for approx-
imating the value of the game, and (3) a practical demon-
stration of scalability of our algorithm. Experimental results
show that our algorithm can closely approximate the value of
non-trivial games with hundreds of states.

Introduction

Game theory describes the optimal behavior of rational
agents and is recently widely applied to solving security
problems. Game-theoretic strategies are used to protect crit-
ical infrastructures (Pita et al. 2008; Kiekintveld et al. 2009;
Shieh et al. 2012), secure computer networks (Vanek et
al. 2012; Nguyen, Wellman, and Singh 2017; Durkota et
al. 2017) or wildlife (Fang, Stone, and Tambe 2015; Fang
et al. 2016). In many real-world situations, there is a dy-
namic strategic interaction between the players, and the
players do not have perfect information about the environ-
ment. Moreover, a pre-defined horizon (number of moves in
the scenario) is only rarely given in practice and thus these
games belong to the class of partially observable stochastic
games (POSGs). Examples include patrolling games (Basil-
ico, Gatti, and Amigoni 2009; Vorobeychik et al. 2014;
Basilico, Nittis, and Gatti 2016; Brazdil, Kucera, and Rehak
2018), where a defender protects a set of targets against an
attacker, pursuit-evasion (Chung, Hollinger, and Isler 2011),
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or search games, where a defender is trying to find and cap-
ture an attacker.

We focus on two-player zero-sum POSGs, and even with
this restriction it is intractable to compute optimal strate-
gies in the most general case. Since the players do not per-
fectly observe the environment, each player has a belief over
possible states of the environment. However, the reward the
player receives for choosing some action(s) also depends on
the action of the other player who decides based on their
belief. Therefore, player 1 has to consider also the belief of
player 2 and belief that player 2 has about player 1, and so
on. This reasoning is called nested beliefs (e.g., in (Mac-
Dermed 2013)) and it causes a doubly-exponential number
of histories to consider for each agent.

However, real-world security scenarios require partial ob-
servability without a strictly defined horizon. Therefore,
one can restrict to subclasses of POSGs where games have
a value (i.e., the value of the game exists) and (approx-
imate) optimal algorithms can be designed. Examples of
such works are stochastic games in which both the play-
ers’ actions and observations are public (Ghosh, McDon-
ald, and Sinha 2004), games in which the support of pri-
vate/public observations does not depend on states and ac-
tions (Cole and Kocherlakota 2001), or games where only
one player has imperfect information (also called One-
Sided) (Chatterjee and Doyen 2014; Basu and Stettner 2015;
Horak, Bosansky, and Pechoucek 2017). The practical moti-
vation for such subclasses is to compute robust strategies for
the defender assuming the worst case scenario where the at-
tacker has additional information (Vorobeychik et al. 2014;
Horak and Bosansky 2016).

In this paper, we propose a new subclass of POSGs
in which we avoid the problem of nested beliefs, called
POSGs with public observations (PO-POSGs), that gener-
alizes previous subclasses. In this model, each player is able
to exactly reconstruct the belief of the opponent. The key
characteristics are: (1) the state space is factored — each
player observes his private state, but the state of the other
player is not observed; (2) each observation that modifies
belief about the state of the other player is public (both
players are aware of this observation); (3) the true state
of the player is observed privately by that player. We re-
strict to two-players zero-sum games with discounted fu-
ture rewards and give the following contributions: (1) We



show that games in this class have a value; (2) We show
that the value function of PO-POSGs is convex in the be-
lief of the maximizing player and concave in the belief
of the minimizing player; (3) We introduce a novel algo-
rithm based on Heuristic Value Iteration Search (HSVI) for
One-Sided POSGs (Horak, Bosansky, and Pechoucek 2017;
Smith and Simmons 2004) and show that this algorithm con-
verges to the (approximate) optimal values.

We demonstrate our algorithm on two different domains —
a patrolling game, where the attacker has imprecise informa-
tion about the position of the defender (Basilico et al. 2009),
and a lasertag game based on a single-player variant (Pineau,
Gordon, and Thrun 2003). The results show that, for the first
time, there is a practical domain-independent algorithm able
to closely approximate optimal values of non-trivial infinite-
horizon POSGs with hundreds of states where both players
have partial information about the environment.

Related Work

The notion of public actions and observations is common
in dynamic games. For finite horizon games, the concept
of public states and publicly observed actions creates sep-
arated subgames that allow designing limited-lookahead al-
gorithms for imperfect information games (Moravcik et al.
2017; Brown, Sandholm, and Amos 2018).

In games with an infinite horizon, the problem with nested
beliefs prevents one from designing an (approximate) op-
timal algorithm for fully general settings. Nested beliefs
can be tackled directly with histories — one of few such
approaches is a bottom-up dynamic programming for con-
structing relevant finite-horizon policy trees for individual
players while pruning-out dominated strategies (Hansen,
Bernstein, and Zilberstein 2004; Kumar and Zilberstein
2009). However, due to the explicit dependence on the his-
tories, the scalability in the horizon is very limited.

A more common approach is to focus on a subclass of
POSGs. In (Ghosh, McDonald, and Sinha 2004), zero-sum
POSGs with public actions and observations are considered.
The authors show that the value of the game exists and
present an algorithm that exploits the transformation of such
a model into a game with complete information. In our ap-
proach, we assume only public observations (i.e., actions are
private to the players). Moreover, we factor the state space
according to the players (i.e., each player has his own state
that is perfectly observable to this player, and the state of
the opponent is unknown). Similar factorization of the state
space is used also in (Cole and Kocherlakota 2001), how-
ever, in this work the authors assume that the support of
observations cannot change due to states or actions of the
players. We remove this assumption and actions and obser-
vations can be generated in states arbitrarily. Alternatively,
some works assume that only one player has partial informa-
tion (Chatterjee and Doyen 2014; Basu and Stettner 2015;
Horak, Bosansky, and Pechoucek 2017). Again, we remove
this assumption and allow both players to have partial in-
formation about the states of the other player. While our al-
gorithm is based on the algorithm for the one-sided case,
we provide significant generalizations of the previous work,

especially in the representation of value function, definition
and algorithms for computing value-backup operator.

Finally, (MacDermed 2013) gives a transformation of
POSGs to Markov Games of Incomplete Information
(MaGllIs) as a more efficient representation if observations
have Markov property. While the examples of games that we
consider satisfy this property, the author demonstrates the
benefits of this representation for the common-payoff case
of Dec-POMDPs only. We solve zero-sum games, which is
a more complex problem and since there is no apparent way
to exploit MaGlIIs, we use a more common formalism.

POSGs with Public Observations

Definition 1. A partially observable stochastic game with

public observations (PO-POSG) is a two-player zero-sum

game (played by players i € {1,2}) represented by a tuple

(Si Ai, O3, Zi, Ty, R,b” 7). where

S, is a finite set of (private) states of player ¢

A; is a finite set of actions available to player 4

O; is a finite set of observations for player ¢

Z;(0i|s—;a—;) is the probability to generate observation

o; for player i, given that his opponent' —i played an ac-

tion a_; in state s_;

o T;(s}|s;a;0;0_;) is the probability to transition from s; to
s—; when player ¢ played a; and observations o; and o_;
have been generated

o R(s1s2a1a2) is the reward of player 1 when actions
(a1, az) have been jointly played in the joint state (s1, s2)

. bgo) € A(S_;) is the initial belief of player ¢ over states
S_; of his opponent
v € [0,1) is the discount factor.

A play in a PO-POSG proceeds as follows. First, the

initial joint state (sgl),sél)) is drawn with probability

bgo) (sgl)) : bgo) (sgl)). Then, in each round ¢, players observe

their current private state (player ¢ observes sgt), but not s(_tz

of his opponent). Based on this information (and history),
each player ¢ chooses an action agt) € A, independently of
the decision of his opponent —i. As a consequence of this
choice, player 1 receives reward r(*) = R(sgt)sg)agt)ag))

and player 2 receives negated reward fR(sgt)sét)agt)agt)).

Furthermore, an observation ogt) for each player is generated
and made publicly known to both players with probability

(1) of each player

i

Z; (ogt) |3(_tZa(_t)) and a new private state s

is drawn from T; (- \sgt)a@)o(.t)o(t)-

, 0, 0_;). We consider discounted
setting and the utility of player 1 is thus ;= | =17 (and

negative value for the opponent as the game is zero-sum).

Definition 2. The history of player ¢ up to time 7T is a se-

quence {sl(-t) agt)oz(-t) 0(2 Yioasi

Definition 3. The (history-dependent) strategy of player 7 is
a mapping o; : (5;4,0,0_;)*S; — A(A;) from histories
of player ¢ to randomized decisions.

'As it is commonly used, —i denotes opponent of player i.



Observe that in PO-POSGs, the player ¢ updates his be-
lief solely on the information about the public observations
(0i,0_;) and the knowledge of the strategy used by the ad-
versary for the current stage only—we denote such one-
stage strategy by m_; as opposed to the full strategy o_;.
Assuming that the adversary —¢ chooses an action a_; in a
state s_; with probability m_;(a_;|s_;) in the current stage
of the game (given the information available to him) and that
observations (0;, 0_;) have been generated, player 7 can up-
date his belief b; € A(S_;) to a belief 7,_, (b;0;0_;) where
the updated probability of being in a state s’_; is

Tr_.(bjoj0_;)(s_;) = ﬁ Z bi(s—i) - €))

— i, —j
cm_i(a_i|s_s) - Z(os|s_s0_3) - T(s"_;|s_sa_;0_;0;) .

Since both the strategy w_; and the public observations
(0i, 0—;) are known to player —i as well, she can reconstruct
Tr_, (bjo;0_;), and the belief update is essentially public.

Value of PO-POSGs

We now establish the value function V* to capture the utility
of playing optimal strategies in a PO-POSG (i.e., the value
of the game) based on the beliefs the players have.

Definition 4. The optimal value function of a PO-POSG is a
function V* : A(S2) x A(S1) — R mapping each possible
initial belief (b1, b2) of the game to the expected utility of
player 1 in the equilibrium (i.e., the value of the game).

Since any finite-horizon approximation of a PO-POSGs
has a value (von Neumann 1928) and discounted-sum utili-
ties are considered, the value of a PO-POSG is well defined.

Theorem 1. The value of the game exists in PO-POSGs.

Proof (sketch). Denote v the value of a finite approxima-
tion with horizon T' € N. The approximation considers
all rewards from the first 7" steps. The equilibrial strategies
in vp can thus only be inferior in the full, infinite-horizon
game, when rewards after T steps are considered. Hence

vr + Y Y min R(-) < V*[bgo)’ béO)] <
Svr+ e Y max R(-) . )

As T — o0, the bounds converge to V* [bgo), bgo)]. O

Contrary to previous works, the optimal value function
V* is neither convex nor concave. We show, however, that
due to the factorization of the state space, V* is convex in
the belief b; of the maximizing player 1 and concave in the
belief b, of the minimizing player 2.

Lemma 1. Let o; be a strategy of player i, and b_; be the
belief of the adversary. Then the expected utility Vilb—i -
A(S_;) = R of playing o; against the best-responding op-
ponent —i parametrized by the belief of player i is linear
and (U — L) /\/2-Lipschitz continuous.

Proof (sketch). Player —i knows o; as well as his true state
S_i, and his only uncertainty is about the state s; (the prob-
ability of which is b_;(s;)). It is thus possible to focus on

the best response for each state s_; separately. Let us de-
note the expected utility of playing the best response against
o; starting from s_; (when s; ~ b_;) by &(s_;). Since
the strategy o; is fixed (and thus does not depend on b;),
the expected utility of playing o; against the best response
of the adversary is the expectation over the values &