
Meta-optimizations for Cluster Analysis

by

Tomáš Bartoň

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Informatics
Department of Applied Mathematics

Prague, July 2019

Supervisor:
doc. Ing. Pavel Kordík, Ph.D.
Department of Applied Mathematics
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Copyright c© 2019 Tomáš Bartoň

ii

Abstract and contributions

This dissertation thesis deals with advances in automation of cluster analysis, that belongs
to a group of unsupervised methods in Machine Learning field. Over more that 60 years
numerous methods have been developed and successfully applied in many areas that deals
with data processing. As data analysis area is attracting more users, the necessity of
organizing clustering algorithms and its results becomes more important. Moreover, each
clustering algorithm is controlled by set of hyper-parameters that are difficult to optimize,
because we cannot use external criteria as in case of supervised methods.

In this thesis, we investigate how unsupervised clustering criteria can help us to select
most appropriate clustering algorithm or ensemble. We also work towards AutoML in
clustering which is much more challenging than in other machine learning domains.

In particular, main contributions of the dissertation thesis are as follows:

1. Chameleon 2: a multi-objective hierarchical algorithm.

2. A visualization method for comparing the rankings of two evaluation measures.

3. Multi-objective ranking as a Pareto optimization.

4. A framework for automatic meta learning clustering based on meta features to de-
scribe the dataset.

Keywords:
clustering, cluster analysis, clustering validation, unsupervised learning, clustering

evaluation, meta-optimization, cluster ensembles.

iii

Acknowledgements

I would like to thank to my supervisor doc. Ing. Pavel Kordík, Ph.D. for his patience
and guidance, to prof. Ing. RNDr. Martin Holeňa, CSc. for advises in my research and
corrections of many drafts. To Ing. Tomáš Brůna belongs huge thanks for enthusiasm,
hard-work and constant optimism. I am grateful to Prof. George Karypis for motivation
to continue in my research. Furthermore I would like to thank to Prof. Jan Vitek for kinds
words and support in my work and to Dr. Arthur Zimek for detailed review and tolerance
to many mistakes committed.

Finally, I would like to thank my wife Marcela for the endless patience she had in
bearing with me for all these years.

v

Contents

Abbreviations xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Previous Results . 2
1.4 Contributions of the Dissertation Thesis 2
1.5 Structure of the Dissertation thesis . 2

2 Clustering Background 5
2.1 Definition of a cluster . 5
2.2 Preprocessing . 6
2.3 Measuring distance . 7
2.4 Algorithms . 8

2.4.1 Partitioning algorithms . 8
2.4.2 Hierarchical Clustering . 13

2.5 Probabilistic Models for Clustering . 18
2.5.1 Gaussian Mixture Model . 19

2.6 Density-based methods . 21
2.6.1 DBSCAN . 21

2.7 Graph based methods . 23
2.7.1 Chameleon . 23

2.8 Multi-objective clustering . 25
2.9 User’s guidance . 26
2.10 Stability of clustering . 27
2.11 Scalable clustering algorithms . 27
2.12 Most challenging clustering problems . 28

3 Chameleon 2 29

vi

Contents

3.1 Refined Similarity . 29
3.2 Summary . 31

4 Clustering evaluation 33
4.1 External Validation Criteria . 34

4.1.1 Counting pairs . 35
4.1.2 Information Theory Based Criteria 39

4.2 Internal clustering validation . 41
4.2.1 Akaike Information Criterion (AIC) 43
4.2.2 Bayesian Information Criterion (BIC) 45
4.2.3 TraceW index . 45
4.2.4 Ball-Hall index . 45
4.2.5 Calinski-Harabasz Index (VRC) . 46
4.2.6 Banfeld-Raftery . 46
4.2.7 Det Ratio |T |/|W | . 46
4.2.8 Log Det Ratio . 46
4.2.9 Friedman (TraceWiB) . 47
4.2.10 Rubin . 47
4.2.11 KsqDetW k2|W | . 47
4.2.12 Log SS Ratio . 47
4.2.13 Scott-Symons . 47
4.2.14 Krzanowski-Lai index . 47
4.2.15 C-index . 48
4.2.16 McClain-Rao index . 48
4.2.17 Baker-Hubert Gamma index . 48
4.2.18 G+ index . 49
4.2.19 Tau index . 49
4.2.20 Silhouette Width Criterion . 50
4.2.21 Simplified Silhouette index . 51
4.2.22 Alternate Simplified Silhouette . 51
4.2.23 Dunn’s index . 51
4.2.24 Generalized Dunn Index (GDI) . 52
4.2.25 Davies-Bouldin index . 52
4.2.26 Ratkowsky-Lance index C/

√
k . 52

4.2.27 Point Biserial . 53
4.2.28 SD index . 53
4.2.29 S_Dbw . 54
4.2.30 The Ray-Turi index . 56
4.2.31 The Xie-Beni index . 56
4.2.32 The PBM index . 56
4.2.33 Wemmert-Gancarski index . 57
4.2.34 Overall deviation . 57
4.2.35 Compactness . 59

vii

Contents

4.2.36 Connectivity . 60
4.2.37 Sum of Average Pairwise Similarities 60

4.3 Summary . 60

5 Cluster Ensembles 63
5.1 Ensemble Generation Strategies . 64

5.1.1 Consensus Functions . 64
5.2 Cluster Ensemble Methods . 65
5.3 Summary . 67

6 AutoML Clustering 69
6.1 Meta-Search . 69
6.2 Measuring similarity between clusterings 71
6.3 Combining Internal Criteria . 72

6.3.1 Visual Comparison of Ranking Strategies 72
6.3.2 Score-based Strategies . 74
6.3.3 Rank-base Strategies . 77

6.4 Comparing Ranking Strategies . 80
6.5 AutoML Clustering . 81

6.5.1 Internal Metric Selection . 81
6.5.2 Exploration . 82

6.6 Summary . 85

7 Conclusions 93
7.1 Summary . 93
7.2 Contributions of the Dissertation Thesis 93
7.3 Future Work . 93

Bibliography 95

Reviewed Publications of the Author Relevant to the Thesis 109

Remaining Publications of the Author Relevant to the Thesis 111

A Datasets 113
A.1 Artificial . 113
A.2 Other results . 115

viii

List of Figures

2.1 Single k-means runs on the long1 dataset using k = 2. K-Means algorithm
fails to reveal non-spherical clusters. Both supervised indexes Ajusted Rand
Index and NMI assigns this clustering score 0.0, even though there is 50%
assignment error. 10

2.2 Cluster proximity definitions . 15
2.3 DBSCAN: clustering data with noise . 22
2.4 DBSCAN clustering of dense-disk-5k dataset with best configuration found

(minPts = 5, ε = 0.28) includes many nonsense clusters, because DBSCAN
cannot handle different densities of clusters. 22

2.5 An overview of the Chameleon approach . 23
2.6 Bisection . 24

3.1 A Chameleon 2 result on a toy dataset, inspired by Jain et al., who suggest
that it cannot be solved by a clustering algorithm. Our proposed algorithm
gives a solution very close to human judgment. 31

4.1 Comparing clusterings . 36

6.1 Vision of clustering subspaces . 70
6.2 Ranking visualization . 73
6.3 Iris clusterings ranking (part 1) . 75
6.4 Iris clusterings ranking (part 1) . 76
6.5 Pareto front visualization . 79
6.6 Iris clusterings MO ranking . 80
6.7 AutoML meta-search pipeline. 82
6.8 Clustering of dataset ranking and unsupervised criteria 83
6.9 AutoML on Flame dataset using AIC and PointBiSerial 84
6.10 AutoML on Flame dataset using AIC and PointBiSerial 85

A.1 Visualization of datasets used in experiments with ground truth assignments. . 116

ix

List of Figures

A.2 Visualization of datasets used in experiments with ground truth assignments,
second part. 117

A.3 Inspection tool in Clueminer enabling deep analysis of clustering results 118
A.4 Chameleon 2 performs well on multidimensional data 119
A.5 Results of NSGA2 on Iris data set clustering 120
A.6 First step of the Chameleon2 algorithm - graph based on k-similarities 121
A.7 Evolution of Iris clusterings driven by an unsupervised criterion Silhouette . . 122
A.8 Scalability of graph based algorithms with different partitioning algorithms . . 123

x

List of Tables

2.1 Lance-Williams formula’s parameters values for different linkage methods [1]. . 16

4.1 Contingency Table . 34
4.2 Classification categories used in supervised learning and our corresponding sets 35
4.3 All possibilities of pairs placement when comparing two clusterings. Notation

with TP (true positive) is sometimes also used. 35
4.4 Overview of external validation criteria, sorted alphabetically. The column

Concept tries to capture core idea behind each criterion. 58
4.5 Second part of Table 4.4 with relative evaluation indexes overview. 59

6.1 Average correlation between NMI ranking and best single-objective ranking of
200 clusterings with varying quality (no limitation on number of clusters) on
datasets commonly used in the literature. See Appendix A for more informa-
tion about datasets. 86

6.2 Average correlation between NMI ranking and best multi-objective ranking of
200 clusterings with varying quality. See Appendix A for more information
about datasets. 87

6.3 Ranking strategies comparison on flame dataset. Table shows best average cor-
relations computed to a ranking computed by an external validation NMIsqrt on
10 independent runs. Each run included 40 to 240 clusterings having k <

√
N

found by diverse algorithms within a time limit. Table shows best performing
strategies from 38k evaluated approaches. Abbreviations for internal criteria
can be found in Table 4.4 and 4.5. 88

6.4 Ranking strategies comparison on iris dataset. Table shows best average corre-
lations computed to a ranking computed by an external validation NMIsqrt on
10 independent runs. Each run included 60 to 300 clusterings having k <

√
N

found by diverse algorithms within a time limit. Table shows best performing
strategies from 38k evaluated approaches. Abbreviations for internal criteria
can be found in Table 4.4 and 4.5. 89

xi

List of Tables

6.5 Ranking strategies comparison on jain dataset. Table shows best average cor-
relations computed to a ranking computed by an external validation NMIsqrt on
10 independent runs. Each run included 71 to 292 clusterings having k <

√
N

found by diverse algorithms within a time limit. Table shows best performing
strategies from 38k evaluated approaches. Abbreviations for internal criteria
can be found in Table 4.4 and 4.5. 90

6.6 Ranking strategies comparison on zoo dataset. Table shows best average corre-
lations computed to a ranking computed by an external validation NMIsqrt on
10 independent runs. Each run included 60 to 200 clusterings having k <

√
N

found by diverse algorithms within a time limit. Table shows best performing
strategies from 38k evaluated approaches. Abbreviations for internal criteria
can be found in Table 4.4 and 4.5. 91

A.1 Datasets used for our experiments: most contain patterns easily distinguish-
able by humans. 8 datasets contain noisy clusters. 114

xii

List of Algorithms

2.1 k-means . 9
2.2 k-medoids algorithm . 11
2.3 CLARANS algorithm . 11
2.4 Mean Shift algorithm . 12
2.5 Divisive clustering algorithm . 14
2.6 Hierarchical agglomerative clustering algorithm 14
2.7 EM for Gaussian Mixture Models . 21
6.1 AutoML Clustering . 84

xiii

Abbreviations

Common notation

N Total number of data points (instances) in the dataset
D Dataset dimensionality (size of observation vector)
C A set of K clusters, commonly refered as a clustering
K Total number of clusters in clustering C, same as |C|
Ck k-th cluster in clustering C
N Natural numbers set
nk size of k-th cluster
ck Centroid of cluster Ck
X Input dataset containing N vectors of size D
xk Data vector of size D
Nt Total number of pairs of data points in the dataset
Nw Total number of pairs of data points belonging to the same cluster
Nb Total number of pairs of observations belonging to different clusters

xv

Abbreviations

Common Mathematical Functions and Operators

x Vector x
bi the i th element of vector b
||b|| Norm of vector b
dim b Dimension of vector b
A Matrix A
ai, j Element of matrix A at the i th row, and the j th column
A−1 Inverse matrix to matrix A
Aᵀ Transposed matrix to matrix A
||A|| Norm of matrix A
Tr(A) Trace of an n-by-n square matrix A
rank A Rank of matrix A — how many independent rows/columns it has
max {a, b} Maximum of a and b, a when a ≥ b, b when a < b

min {a, b} Minimum of a and b, a when a ≤ b, b when a > b

O(x) The big O notation
Θ(x) The big Θ notation

xvi

Basic Definitions

The standard deviation σx is computed as:

σx =
√

1
n

(
(x1 − x)2 + (x2 − x)2 + · · ·+ (xn − x)2

)
=
√√√√ 1
n

n∑
k=1

(xk − x)2

where x is arithmetic mean or average defined as1:

x = 1
n

(x1 + x2 + · · ·+ xn) = 1
n

n∑
k=1

xk

The mean absolute deviation, sometimes referred to also as mean absolute error :

σAx = 1
n

(|x1 − x|+ |x2 − x|+ · · ·+ |xn − x|) = 1
n

n∑
k=1

(|xk − x|)

Miscellaneous Abbreviations

AIC Akaike Information Criterion
ARFF Attribute-Relation File Format
BIC Bayesian Information Criterion
NMI Normalized Mutual Information
NSGA Non-dominated Sorting Genetic Algorithm
PCA Principal Component Analysis
SOM Self-Organizing Map

1Different authors use various notation, this definitions are just for making clear notation used in here.

xvii

Chapter 1
Introduction

“Begin at the beginning,” the King said gravely, “and
go on till you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

1.1 Motivation
The goal of this dissertation thesis is to introduce a methodology for a systematic explo-
ration of clustering space and to propose an automated unsupervised approach for data
clustering. Nowadays anyone who tries to cluster data, whether a data-mining expert or
a common user, is faced with an unclear decision over which algorithm to use and how to
configure its (many) parameters. It is extremely difficult for users to decide which algo-
rithm would be the best choice for a given set of data [2]. The following chapters set out
guidelines that should make clustering algorithms easier to use and to evaluate. Currently,
many data scientists choose a particular algorithm rather for its speed or thanks to their
previous experience with that algorithm on a completely different problem. Cluster analy-
sis is typically employed in the initial phase of exploring raw data, where prior knowledge
is minimal. Having automated methods is crucial, especially in the the modern era of “big
data” where manual data investigation would be overwhelming.

1.2 Problem Statement
Clustering methods have been developed since the 1960s, yet there is still no universal
method or methodology for selecting an appropriate clustering algorithm for given data.
With the growing amounts of data available online and more being generated every second
comes higher demand for fast and scalable clustering algorithms. Exploring full state
space with all algorithms available and its meaningful configurations manually is simply
not feasible with larger datasets.

1

1. Introduction

In the machine learning field there is only a limited amount of labeled data, but almost
an unlimited supply of unlabeled data. Simplifying the clustering task may help to solve
other related problems, such as pattern classification and rule extraction from data.

1.3 Previous Results
This work follows on from my Master’s Thesis topic which was “Cluster analysis of cell
profile responses” and dealt with processing time-series data for the Institute of Molecular
Genetics of the Czech Academy of Sciences1. I participated in the CZ-OPENSCREEN
project where the methods described here are tested on real data. This project dealt with
High-Throughput Screening where methods for fast processing of large datasets are needed.

1.4 Contributions of the Dissertation Thesis
Following the original goals proposed in [3] the main contributions can be summarized as:

1. Chameleon 2: a multi-objective hierarchical algorithm.

2. A visualization method for comparing the rankings of two evaluation measures.

3. Multi-objective ranking as a Pareto optimization.

4. A framework for automatic meta learning clustering based on meta features to de-
scribe the dataset.

1.5 Structure of the Dissertation thesis
The dissertation thesis is organized into 5 chapters as follows:

1. Introduction: Describes the motivation behind improving the clustering process.

2. Clustering Background: Introduces the reader to the necessary theoretical back-
ground and surveys the current state-of-the-art.

3. Chameleon 2 : Briefly describes published clustering algorithm.

4. Clustering Evaluation: Summarizes methods for evaluating clustering results and
introduces a multi-objective ranking.

5. Clustering Ensembles: Describes commonly used ensemble techniques in the cluster-
ing context.

1http://www.img.cas.cz/

2

http://www.img.cas.cz/

1.5. Structure of the Dissertation thesis

6. AutoML Clustering: Describes proposed meta-learning framework that builds up on
previous chapters.

7. Conclusions: Summarizes possibilities of further research.

3

Chapter 2
Clustering Background

Clustering techniques partition objects into groups of clusters so that objects within a
cluster are similar to one another and dissimilar to objects in other clusters. Similarity
is commonly defined in terms of how “close” the objects are in space, based on a distance
function [4].

In real-world application clustering can be misled by the assumption of uniqueness
of the solution. Because of noise, intrinsic ambiguity in data and optimization models
attempting to maximize a fitness function [5]. Most clustering algorithm search for one
optimal solution based on a pre-specified clustering criterion [6].

According to Pang-Ning Tan [7] clustering can be used for utility or understanding.
Clustering for utility is used when we need to get an abstraction from group of individual
objects. By understanding is meant a discovery of data groups that share common char-
acteristics. However clustering might be applied during an early stage of data exploration,
before users know the data well enough to define a suitable clustering criteria. Result-
ing clustering could be negatively influenced by user’s (strong) assumption about data.
This creates a chicken-or-the-egg problem where knowing how to define a good clustering
criterion requires understanding the data. And on the other hand clustering is used to
understand the data [6].

Grouping items is a very elemental task that found applications in many areas including
many scientific areas like astronomy, artificial intelligence, biology [8], chemistry, customer
relationship management [9], history, information retrieval [10], image processing [11], pat-
tern recognition, psychology [12] or recommender systems [13]. Clustering has also been
successfully applied in many real-world scenarios in areas like geography, marketing [14]
or medicine. Although the terminology and data processing pipelines differs, the base
algorithms itself have wide range of applications.

2.1 Definition of a cluster
As it was mentioned above, there is no universal definition for the term cluster. Here we
have some definitions that are commonly used [15]:

5

2. Clustering Background

1. Well-separated cluster: A cluster is a set of objects such, that any object in a
cluster is closer (or more similar) to every other object in the cluster, than to any
object not in the cluster.

2. Center-based cluster: A cluster is a set of objects such, that an object in a cluster
is closer (or more similar) to the center of a cluster, than to the center in any other
cluster. The center of a cluster is often a centroid, the average of all the objects in
the cluster, or a medoid, the most “representative” object of a cluster.

3. Contiguous cluster: A cluster is a set of objects such, that a point in a cluster
is closer (or more similar) to one or more other objects in the cluster, than to any
object not in the cluster.

4. Density-based cluster: A cluster is a dense region of points which is separated by
low-density regions, from other regions of high density. This definition is more often
used when the clusters are irregular or intertwined, and when the noise of outliers is
present.

5. Similarity-based cluster: A cluster is a set of objects that are similar and objects
in other clusters are dissimilar. A variation of this is to define a cluster as a set of
objects, that together create a region with uniform local property, e.g. density or
shape.

2.2 Preprocessing
Changing units or scale may lead to different ranges for each parameter and thus it might
change the whole clustering structure. In some cases a user might want to put higher
significance on a specific parameter, but generally parameter ranges should be standardized.
Standardizing will give all parameters an equal weight [4].

Now we can apply standardization to our data matrix. In what follows xi is a vector
with D values, representing a sample or a ith row of the data matrix. xij is a value of jth
parameter of the ith sample and xij ′ is a standardized value.

For standardization we can use the following:

1. Maximum value – Divide each attribute value of an object by the maximum value
of that attribute. This will put all values at an interval between −1 and 1.

xij
′ = xij

max |xj|
(2.1)

2. Z-score normalization – For each value subtract the mean xj of that parameter
and divide by its standard deviation.

xij
′ = xij − xj

σj
(2.2)

6

2.3. Measuring distance

If data are normally distributed, then most attribute values will lie between −1 and 1.

3. Standardized measurement – For each value subtract the mean xj of that pa-
rameter and divide by parameter’s mean absolute deviation:

xij
′ = xij − xj

σAj
(2.3)

4. Min-max normalization – Performs a linear transformation of values into a range
between rmin and rmax. This could be helpful when we want to get rid of negative
values or simply unify ranges of values to whatever interval that suits our needs [4].

xij
′ = (xij −min |xj|) ∗

rmax − rmin
max |xj| −min |xj|

+ rmin (2.4)

This is basically a generalized version of Maximum value standardization.

All of them are unit-less because both the numerator and the denominator are expressed
in the same units. The first approach might not produce good results unless the parameters
are uniformly distributed, but both first and second approaches are sensitive to outliers.
The third approach is the most robust in the presence of outliers, although elimination of
outliers should be done in the data cleaning phase, if it is possible [15].

The preceding description might convey the impression that standardization is neces-
sary for all data, however it is just one possibility data preprocessing. If input data are all
in the same units, or they have an absolute meaning, they should not be standardized [16].

2.3 Measuring distance
Measuring distance (or more generally proximity) is one of the key parameters of a cluster-
ing method, many users might know names of these metrics but it is important to realize
also their advantages and disadvantages and use them wisely.

There are many ways to measure quantitative variables, the most common is Euclidean
distance. Suppose we have two vectors x = (x1, . . . , xD) and y = (y1, . . . , yD) in an
Euclidean D-dimensional space.

Euclidean distance Euclidean distance is a function p : RD × RD → RD that assigns
to any two vectors in Euclidean D-space the number:

p(x,y) =

√√√√√ D∑
j=1

(xj − yj)2 (2.5)

and so gives the “standard” distance between any two vectors in RD[17].

7

2. Clustering Background

Cosine distance Cosine distance sometimes also called coefficient of correlation, repre-
sents an angle between two vectors. The angle is computed as a product of two vectors
divided by the product of their length:

cosφ = x y
|x| |y|

(2.6)

The length of a vector is the root of square of its coordinates:

|x| =
√
x2

1 + x2
2 + · · ·+ x2

D (2.7)

Putting all together we get:

cosφ = x1 y1 + x2 y2 + · · ·+ xn yn√
x2

1 + x2
2 + · · ·+ x2

D

√
y2

1 + y2
2 + · · ·+ y2

D

(2.8)

When we change the notation of vectors into coordinates, we get:

cosφ =

D∑
j=1

xj yj√√√√ D∑
j=1

(xj yj)2

(2.9)

While there are many other ways of measuring distance, most methods are designed
to work with either Euclidean or Cosine distances. Switching between distance functions
during clustering process might have undesired consequences. Thus in the following parts
Euclidean distance is used, unless stated otherwise.

2.4 Algorithms
Throughout the data analysis history many clustering algorithms with different charac-
teristics and different purposes have been proposed and investigated [18]. Most of the
clustering algorithms, in particular the most traditional and popular ones, require that the
number of clusters be defined either a priori or a posteriori by the user [19]. Examples
are the well-known k-means [20], EM (Expectation Maximization) [21], and hierarchical
clustering algorithms [1].

2.4.1 Partitioning algorithms
2.4.1.1 K-means clustering

K -means [20, 22] is probably the most simple exclusive clustering algorithm. Each object
is assigned precisely to one cluster, that means an exclusive, partitioning algorithm. At

8

2.4. Algorithms

the beginning we have to decide how many clusters we want, and this value is called k;
obviously k must be much smaller than the total number of objects, otherwise there is
nothing to divide. We select k objects and assign each of them to a separate cluster. We
can select those objects randomly, or probably the most intuitive method would be to
choose objects that lie from each other as far as possible.

Then we iterate over all data points, for each of them we find the nearest cluster
center (centroid), after assigning the data point to a cluster, centroids location must be
updated. Note that the center of a cluster is usually a non-existing object. This process
continues until either maximum number of iterations is reached or the criterion function
converges. K-means clustering is a greedy algorithm which is guaranteed to converge to a
local minimum, but the minimization is known to be NP-Hard problem [23]. For instance
as a criterion function a squared-error could be used:

E =
K∑
k=1

∑
x∈Ck

|x− ck|2 (2.10)

where x is the point representing the object in space, ck is the mean of cluster Ck.

Algorithm 2.1 k-means
1: procedure KMeans(dataset)
2: Select k objects as initial centroids
3: while convergence criterion not reached do
4: (re)assign each object to the cluster to which is object most similar
5: re-calculate cluster center
6: calculate criterion function (squared-error)
7: end while
8: end procedure

This algorithm works well when clusters are compact and rather separated from one
another. The method is relatively scalable and efficient in processing large amounts of
data, the space requirements are basically O(N ∗ D), where N is the number of objects
and D is the number of attributes. The computational complexity is O(I ∗ K ∗ N ∗ D),
where K is the number of clusters and I is a number of iterations. Normally, K � N and
I � D [4, 15].

The result of this algorithm mainly depends on appropriate selection of initial clusters,
when we randomly select more points from one region, we will probably obtain unexpected
results. The algorithm might converge to a local minimum without finding the global
minimum. This depends again on initialization. Furthermore, the probability of choosing
an element from each cluster is pretty low, especially when we consider that the numbers
of objects in each cluster are not equal (we might have a cluster with very few objects).

The k-means method has problems when desired cluster has either different size or
shape other than spherical, or it contains noise and outliers (see Figure 2.1). The main

9

2. Clustering Background

Figure 2.1: Single k-means runs on the long1 dataset using k = 2. K-Means algorithm
fails to reveal non-spherical clusters. Both supervised indexes Ajusted Rand Index and
NMI assigns this clustering score 0.0, even though there is 50% assignment error.

disadvantage is that we have to specify the number of clusters before starting the process,
so that it cannot be used for discovering new groups in unknown data. However, it is one
of the fastest methods with low memory requirement.

Many extensions and attempts to improve the k-means algorithm have been proposed.
K -means++ [24] attempts to carefully select the initial centroids in order to avoid ending
up in a local minimum. The algorithm follows a simple probability-based approach: the
first centroid is selected randomly while the next one is the farthest away choice. The
centroid selection is decided based on a weighted probability score. Elkan [25] tried to
accelerate k-means by avoiding distance computation to centroids that are too far away.
Kanungo [26] proposed to store data points in a kd-tree structure, in order to speed-up
computations.

2.4.1.2 K-medoids clustering

A k-medoids method tries to find a non-overlapping set of clusters such that each cluster
has a most representative point, that means a point that is located in the centre with
respect to some measurement (e.g. distance). These representatives are called medoids.

The cost of each cluster could be evaluated as follow:

costi =
ni∑
j=1

p(ci,xj) (2.11)

where costi is a cost for ith cluster, p(ci,xj) is a proximity between medoid in ith cluster
and jth object in this cluster. For similarities (respective dissimilarities) we would like to
have this sum as small (respective large) as possible.

10

2.4. Algorithms

Algorithm 2.2 k-medoids algorithm
1: procedure KMedoids(dataset)
2: choose K objects
3: while has new configuration? do
4: consider replacing medoids with non-medoids objects
5: calculate cost for each cluster
6: select configuration with best (lowest or highest) cost
7: end while
8: associate non-medoids objects with closest medoids
9: end procedure

Finding the best medoids requires trying all possibilities, which is computationally
expensive. And the same disadvantage as for k-means, we have to know the number of
clusters before starting [15].

2.4.1.3 CLARANS

CLARANS [27] is a method that was developed as a mixture of k-medoid method called
PAM [16] (Partitioning Around Medoids) and CLARA (Clustering LARge Applications),
which repeatedly samples subsets of data and in a few iterations tries to optimize the cost
of selected medoids.

CLARANS uses randomized search to improve both previously mentioned, the method
is described in Algorithm 2.3 output.

Algorithm 2.3 CLARANS algorithm
1: procedure CLARANS(dataset)
2: j := 0
3: while j < 2 do
4: randomly choose k objects as medoids
5: while i < max(250, k ∗ (m− k)) do
6: randomly swap medoids for non-medoids
7: calculate cost for each cluster
8: if found better configuration then
9: apply configuration
10: end if
11: i := i+ 1
12: end while
13: end while
14: associate non-medoids objects with closest medoids
15: end procedure

Unlike PAM, CLARANS does not consider all possible swaps, but only a random se-

11

2. Clustering Background

lection. It differs from CLARA in that it works with all data objects. The algorithm was
meant for use in spatial data mining.

Neither CLARANS nor k-means are able to find the clusters non-spherical clusters (in
2D). However, CLARANS seems to be a suitable version of k-medoid method, which does
not guarantee finding best solution, but might provide quite a good solution in reasonable
time [28].

2.4.1.4 Mean Shift

Mean Shift clustering [29] is a non-parametric method that has been successfully applied
in computer vision and pattern recognition. The mean shift procedure tries to determine
the local maxima or modes present in the data distribution. The algorithm is based on
the Parzen window kernel density estimation method. It starts with each point and then
performs a gradient ascent procedure until convergence [30]. The algorithm is outlined in
Algorithm 2.4. The multi-variate Parzen window kernel density estimate f(x) is obtained
with kernel Q(x) and window radius h:

f(x) = 1
NhD

Q
(
x− xi
h

)
(2.12)

mh(x) =

N∑
i=1

xi · g
(∥∥∥∥x− xih

∥∥∥∥2
)

N∑
i=1

g

(∥∥∥∥x− xih

∥∥∥∥2
) (2.13)

Algorithm 2.4 Mean Shift algorithm
1: procedure MeanShift(dataset)
2: Select K random points as the modes of the distribution
3: while Modes not converged do
4: For each given mode x calculate the mean shift vector mh(x)
5: Update the point x = mh(x)
6: end while
7: end procedure

2.4.1.5 Self-organizing maps (SOM)

Self-organizing (SOM) maps were developed by Kohonen [31] and belongs to one of the
most popular neural network models. It is an unsupervised learning algorithm with a
simple structure and computational form, and is motivated by the retina-cortex mapping.
In a similar manner like k-means, the data points are assigned to their closest centroids.

The basic algorithm can includes following steps:

12

2.4. Algorithms

1. Initialize k cluster centers, i.e. C = {c1, . . . , ck}

2. For each data point xi ∈ X:

a) Assign xi to a cluster Cj with minimal distance between xi and its cluster
center cj

b) Update the cluster center cj, which is the weight vector of SOM’s output units:

cj = cj + h[xi − cj] (2.14)

where h ∈ [0, 1] is the degree of neighbourhood. In addition to updating the
center cj of the cluster that xi belongs to, all the cluster centers that are in the
neighborhood of cj on the grid map are also updated. This neighborhood-based
propagation is controlled by h, which can be specified using the neighbourhood
functions such as the bell-shaped (Gaussian-like) and the square. This process
is repeated for all xi ∈ X.

Despite its innovative concept and reported success, the major disadvantage of SOM
remains its high computational complexity. Many variations of SOM have been introduced
in the literature, see [32, 33] as examples of more recent modifications.

2.4.2 Hierarchical Clustering
A hierarchical clustering method groups objects into trees of clusters, we can further divide
them into two groups, depending whether the decomposition is done by top-down (divisive)
or bottom-up (agglomerative) approach. There is one important drawback (against k-
means, e.g.), once we divide (or join) two clusters this decision can not be adjusted.

In either agglomerative or divisive hierarchical clustering, one can specify the desired
number of clusters as a terminating condition so that the hierarchical clustering process will
terminate when the process reaches the desired number of clusters, but it is not necessary
to do so, as in the case of k-means [4].

The result of clustering is often graphically displayed in a tree-like diagram called a
dendrogram.

2.4.2.1 Divisive Hierarchical Clustering

Divisive clustering starts with all objects in one cluster, subdividing them into smaller
pieces until each object has its own cluster or until it satisfies some criteria, such as a
desired number of clusters or the distance between two closest clusters is below a certain
threshold distance.

A simple version of a divisive approach is shown in Algorithm 2.5.
Divisive methods are not frequently used because of the difficulty of making the right

decision at the top level.

13

2. Clustering Background

Algorithm 2.5 Divisive clustering algorithm
1: procedure DivisiveHC(dataset)
2: while has free objects do
3: compute minimum spanning tree for the proximity graph
4: create a new cluster by breaking the link to furthest object
5: end while
6: end procedure

2.4.2.2 Agglomerative Hierarchical Clustering

The idea behind this algorithm is simple. We start with each object as a separate clus-
ter, and incrementally we join the closest pair of clusters together, until we end-up with
one super-cluster, which contains everything. Most hierarchical algorithms belong to this
category, they differ in metric used for computing proximity.

Algorithm 2.6 Hierarchical agglomerative clustering algorithm
1: procedure DivisiveHC(dataset)
2: assign each object to its own cluster
3: repeat
4: calculate (update) distance between each pair of clusters
5: select closes pair of clusters and join them into one
6: until all clusters are joined into single cluster
7: end procedure

It would be very inefficient to calculate the proximity (distance) between each pair of
clusters for each pass though the loop, especially when only two objects are changed. The
common approach is to create a proximity matrix, which records the distances between all
clusters [34].

2.4.2.3 Proximity between clusters

For simplifying the computation of distances sometimes not all members of the cluster
are taken into consideration. We can choose the closest members of those clusters, then
it is called MIN or the furthest member, which would be MAX. However when the same
approach is applied to counting similarity, the most similar objects (closest) would be called
MAX and the other way round, which becomes confusing. For that reason we usually use
a single link for closest and most similar objects, and a complete link for the opposite [7].

Single link The similarity of two clusters is the similarity of their most similar mem-
bers. You start with all clusters and add links between them, with the strongest links
first, then these single links combines the closest clusters. A single link is good at handling
non-elliptical shapes, but it is sensitive to noise and outliers.

14

2.4. Algorithms

Figure 2.2: Cluster proximity definitions. Image credits: [7].

Complete link The similarity of two clusters is the similarity of their most dissimilar
members. You start with all clusters and add links between them, strongest first, until
all clusters are completely linked (i.e. clusters form a clique1). A complete link is less
susceptible to noise and outliers. But on the other hand, it can break large clusters and
has trouble with convex shapes.

Group average Another approach is the group average, which counts the average of all
pairs of points from two clusters (see 2.2). This is an intermediate approach between single
and complete link.

Centroid link Yet another way is using the centroid link, which computes the distance
between a single pair of two cluster’s centroids.

Ward’s method Ward’s method [35] uses for defining proximity the increase in the
squared error (see 2.10), that is computed when two clusters are merged. That is the same
method as k-means uses (2.4.1.1).

The following are the widely used distance measurement, where ci is the mean for
cluster Ci, ni is the number of objects in cluster Ci and |p− p′| is the distance between an
object in cluster Ci and another object in cluster Cj.

dmin(Ci, Cj) = min
p∈Ci, p′∈Cj

|p− p′| (2.15)

dcentroid(Ci, Cj) = |ci − cj| (2.16)

davg(Ci, Cj) = 1
ninj

∑
p∈Ci,p′∈Cj

|p− p′| (2.17)

dmax(Ci, Cj) = max
p∈Ci,p′∈Cj

|p− p′| (2.18)

The Lance-Williams formula for cluster proximity The proximity between clusters
Q and R, where R is formed by merging clusters A and B is defined by Lance-Williams
formula [36]:

1from graph theory, sets of elements where each pair of elements is connected

15

2. Clustering Background

Clustering method αA αB β γ

single link 1
2

1
2 0 −1

2

complete link 1
2

1
2 0 1

2

group average nA
nA + nB

nB
nA + nB

0 0

centroid link nA
nA + nB

nB
nA + nB

−nAnB
(nA + nB)2 0

Ward’s method nA + nk
nA + nB + nk

nB + nk
nA + nB + nk

−nk
nA + nB + nk

0

Table 2.1: Lance-Williams formula’s parameters values for different linkage methods [1].

p(R,Q) = αA p(A,Q) + αB p(B,Q) + β p(A,Q) + γ |p(A,Q)− p(B,Q)| (2.19)

In words, this formula says that if you merge clusters A and B to form cluster R, then
the distance of the new cluster R to existing cluster Q is a linear function of distances
between Q and the original clusters A and B.

As you can see in Table 2.1, in Ward’s method, no matter how different it seems, the
proximities values will be very similar to group average method. nA stands for the number
of elements in cluster CA and nk is a total number of elements.

2.4.2.4 Complexity

The storage of a proximity matrix, which is usually used by hierarchical clustering algo-
rithms, requires storage of N2 proximities, where N is a number of objects. When we
consider just a triangular matrix it is (N2 − N)/2, which is anyway is still O(N2). It
would be possible to count the proximities on the fly, however it would require repeated
calculations and therefore more time. Generally the hierarchical clustering requires O(N3)
computational time, as the proximity matrix needs to be updated each time two clusters
are joined.

Sibson [37] proposed a SLINK algorithm that is optimally efficient and implements
single-linkage clustering with time complexity O(N2) and space complexity O(N). The
algorithm introduces a compact pointer representation of dendrogram using pointers, which
allows faster computation.

16

2.4. Algorithms

Inspired by SLINK, Defays [38] described CLINK algorithm for complete-linkage with
time complexity O(N2) as well.

Hierarchical clustering can not be viewed as globally optimizing an objective function.
Instead, algorithms decide locally at each step which cluster should be merged or divided.
This approach avoids solving hard optimization problems (which are solved in k-means),
furthermore it does not have problems with local minima or difficulties with choosing initial
points.

On the other hand, the space and time complexity O(N2) could be limiting in some
cases, and as mentioned before, assigning to a cluster cannot be changed later, which
could be a problem because a good local decision might not be a good global decision.
Agglomerative clustering techniques have problems with noise, outliers, non-convex shapes
and have a tendency to break large clusters.

2.4.2.5 CURE

CURE (CLustering using Representatives) [39] is a clustering algorithm that uses a variety
of different techniques to remedy the drawbacks, of an agglomerative clustering method.

CURE represents a cluster by multiple points from the cluster. The first point to be
chosen is the furthest point from the centre of the cluster. The remaining points are chosen
in order be the farthest points from each other. Selecting points this way we might obtain
pretty good distribution of points over the cluster. However if a selected point is an outlier
(which are the farthest points), the description of the cluster becomes imprecise. The
number of chosen points in each cluster is a parameter c, and it works well for c ≥ 10.

Once representatives are chosen, all points are shrunk towards the centre of the cluster
by a factor α, 0 < α < 1. This helps to moderate the effect of outliers, the absolute value
of moving each point will be bigger for points lying farther out.

As a clustering method uses hierarchical agglomerative clustering (see Section 2.4.2.2
for more details), with distance function counting the minimum of any two representative
points between two clusters. However, this algorithm requires specification of k, the number
of clusters we would like to find.

There are two phases of eliminating outliers. The first one occurs when approximately
1/3 of the desired k clusters is reached. Clusters, which are growing slowly, are removed
because they might potentially contain just outliers. The second phase of elimination is
done when the desired number of clusters are discovered. At this point all small clusters
are removed.

Complexity The time complexity would be in the worst case O(N2log N), when the
dimensionality of data points is small, it can be further reduced to O(N2). For storing
data a heap is used and the required space is O(N).

Optimization CURE uses two techniques to speed up the process, because the time
complexity is high. Firstly, it takes a random sample of points and performs a clustering.

17

2. Clustering Background

This is followed by a final pass, that assigns each of remaining points to the cluster with
the closest representative.

The second phase eventually occurs when the sample required for clustering is still too
large. Then the Divide & Conquer approach is applied. The data points are divided into
N/p parts, in each clustering is performed and then the results are merged.

CURE is more robust to outliers than a hierarchical agglomerative clustering algorithm,
and also it manages to identify clusters that have a non-spherical shape and wide variances
in size.

2.5 Probabilistic Models for Clustering
Model-based clustering algorithms try to optimize the fit between the observed data and
some mathematical model built using probabilistic approach. Typically such algorithm
expect each cluster to follow certain distribution, such as Gaussian distribution or a mixture
of underlying distributions. Then the clustering problem is transformed into a parameter
estimation problem since the entire data could be modeled by a mixture of K components.

Suppose our dataset X = x1,x2, . . . ,xN is formed by a D dimensional random vari-
able x. The random variable xn is assumed to be distributed according to mixture of K
components (i.e. clusters). Formally the probability density function of xn can be written
as:

p(xn) =
K∑
k=1

πkp(xn|θk) (2.20)

where π1, π2, . . . , πk are the mixing probabilities, each θk is the set of parameters speci-
fying the kth component and p(xn|θk) is the component distribution. In order to have valid
probabilities {πk} must satisfy:

0 ≤ πk ≤ 1(k = 1, . . . , K) (2.21)
K∑
k=1

πk = 1 (2.22)

We need to infer a set of parameters from the observation, including the mixing prob-
abilities {πk} and the parameters for component distributions {θk}. Generally number of
clusters k is considered as fixed parameter however some algorithms estimate k as part
of integral part of model training [40]. The overall parameters for mixture model are:
Θ = {π1, . . . , πK , θ1, . . . , θK}. Assuming that the data points are drawn independently
from the distribution, then the probability of generating all the data points is:

p(X,Θ) =
N∏
n=1

K∑
k=1

πkp(xn|θk) (2.23)

18

2.5. Probabilistic Models for Clustering

Maximum likelihood estimation (ML) [21, 41] is an important statistical approach for
parameter estimation:

ΘML = arg max
Θ
{log p(X|Θ)} (2.24)

which considers the best estimate the one that maximizes the probability of generating
all observations. The ML estimate cannot be found analytically [40]. The same applies for
the Bayesian maximum a posteriori (MAP) criterion:

ΘMAP = arg max
Θ
{log p(X|Θ) + log p(Θ)} (2.25)

that requires a priori information p(Θ) about the parameters.

2.5.1 Gaussian Mixture Model
Gaussian Mixture model (GMM) [42] represent each component as normal distribution.
For a single variable x the Gaussian distribution can be written as:

N (x|µ, σ2) = 1√
2πσ2

exp
{
− 1

2σ2 (x− µ)2
}

(2.26)

where µ is the mean and σ2 is the variance.
For a D-dimensional vector x the multivariate Gaussian distribution takes form:

N (x|µ,Σ) = 1√
(2π)D|Σ|

exp
{
−1

2(x− µ)ᵀΣ(x− µ)
}

(2.27)

where µ is a D-dimensional vector, Σ is a D ×D covariance matrix, and |Σ| denotes
determinant of Σ.

In the Gaussian mixture model, each component is represented by the parameters of
a multivariate Gaussian distribution p(xn|θk) = N (xn|µ,Σk). Based on Eq. 2.20, the
Gaussian mixture distribution can be written as:

p(xn|Θ) = p(xn|π,µ,Σ) =
K∑
k=1

πkN (xn|µk,Σk) (2.28)

Then the log-likelihood function is given by:

`(Θ) = log p(X,Θ) =
N∑
n=1

log p(xn|Θ) =
N∑
n=1

log
K∑
k=1

πkN (xn|µk,Σk). (2.29)

We introduce a K-dimensional random variable zn that has a 1-of-K representation,
where one element znk equals to 1 and all other are set to 0. Using Bayes’ theorem, we can
obtain the conditional probability of znk = 1 given xn:

19

2. Clustering Background

p(znk = 1|xn) = p(znk = 1)p(xn|znk = 1)∑K
j=1 p(znj = 1)p(xn|znj = 1)

= πkp(xn|θk)∑K
j=1 πjp(xn|θj)

(2.30)

In order to find maximum likelihood solutions that are valid at local maximum, the
derivatives of log p(X|π,µ,Σ) with respect to πk, µk and Σk respectively needs to be
computed [30]:

∂`

∂µk
=

N∑
n=1

πkN (xn|µk,Σk)∑K
n=1 πj N (xn|µj,Σj)

Σ−1
k (xn − µk) =

N∑
n=0

γ(znk)Σ−1
k (xn − µk) (2.31)

By setting derivative to zero and multiplying by Σk we obtain:

µk =
∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

(2.32)

γ(znk) = πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

(2.33)

Similarly, we set the derivative of log p(X, π,µ,Σ) with respect to Σk to 0 and we get:

Σk =
∑N
n=1 γ(znk)(xn − µk)(xn − µk)ᵀ∑N

n=1 γ(znk)
(2.34)

Values of πk are constrained to be positive and sum to one, this might be handled using
a Lagrange multiplier. After simplifying we get [30]:

πk =
∑N
n=1 γ(znk)
N

(2.35)

so that the mixing probabilities for the kth component are given by the average respon-
sibility that the component takes for explaining the data points.

Maximizing the log-likelihood function for a Gaussian mixture model turns out to be
a very complex problem. An elegant solution is called Expectation-Maximization algo-
rithm [21] that is outlined in Algorithm 2.7.

The algorithm starts by initialization with guesses about means, covariances and mixing
probabilities. Then alternates between the expectation step and maximization step. In E-
step current parameters are used to calculate the posterior probabilities (responsibilities),
while in M-step the log-likelihood is maximized using the updated responsibilities, also
means, covariances and mixing probabilities are being re-estimated.

Compared to k-means, the EM algorithm requires much more iterations [43]. It is
common to run k-means in order to find suitable initialization and speed-up EM algorithm
convergence.

20

2.6. Density-based methods

Algorithm 2.7 EM for Gaussian Mixture Models
1: procedure EM-GMM(dataset)
2: Initialize µ0

k, Σ0
k, π0

k

3: while convergence criterion not reached do
4: E-step: calculate γ(znk) using current parameters based on Eq.2.33
5: M-step: update µk using Eq. 2.32, then calculate Σ0

k using Eq. 2.34 and finally
re-estimate π0

k with Eq. 2.35, calculate log-likelihood using Eq. 2.28
6: end while
7: end procedure

2.6 Density-based methods
Methods developed on the notion of density. Typically clusters are considered as dense
regions of objects in the feature space that are separated by regions with relatively low
density. These methods are capable of discovering clusters of arbitrary shapes. Unfor-
tunately, in general the amount of data required to estimate the local density at a given
level of accuracy increases exponentially with the number of data dimensions [44]. This
phenomena is well known as the curse-of-dimensionality.

2.6.1 DBSCAN
One of first approaches that measures similarity by the number of shared neighbors was
proposed by [45].

The later DBSCAN2 algorithm [46] takes a very similar approach; the algorithm is
capable of discovering arbitrarily shaped clusters if the cluster density can be determined
beforehand and each cluster has a uniform distribution. A cluster is defined as a maximum
set of density-connected points, where every core point in a cluster must have at least a
minimum number of points (minPts) within a given radius (ε).

All points within one cluster can be reached by traversing a path of density-connected
points. The algorithm itself can be relatively fast, however in order to configure its parame-
ters properly, prior knowledge of the dataset or landmarking by k-NN algorithm is required.
DBSCAN is capable of detecting noise in data, an example is shown on Figure 2.3. The
main disadvantage of DBSCAN is its sensitivity to parameter values: even a small modi-
fication of the ε parameter could cause all data points to be assigned to a single cluster.
Moreover, the algorithm will fail on datasets with non-uniform distribution (as illustrated
in Figure 2.6.1). The original paper incorrectly states O (n log(n)) time complexity that
could be achieved only in 2D space. For d ≥ 3 the problem requires Ω(n4/3) time to solve
as [47] showed. Later a hierarchical (and improved) version called HDBSCAN [48, 49] was
proposed, that provides a complete density-based hierarchy from which most significant
clusters can be extracted.

2A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise

21

2. Clustering Background

Figure 2.3: A successful DBSCAN clustering (MinPts = 20, ε = 5) on xclara dataset.
Data points marked with triangles are considered as outliers. The algorithm is very sensi-
tive to even small modification of parameters’ values.

Figure 2.4: DBSCAN clustering of dense-disk-5k dataset with best configuration found
(minPts = 5, ε = 0.28) includes many nonsense clusters, because DBSCAN cannot handle
different densities of clusters.

22

2.7. Graph based methods

Figure 2.5: An overview of Chameleon family approaches. All these algorithms could be
considered hybrid in terms of the traditional division between agglomerative and partition-
ing algorithms. These algorithms combine the partitioning phase with the agglomerative
phase while producing a hierarchical result.

2.7 Graph based methods
Graph based methods are popular not only in domains where data is represent as a network,
such as social network analysis or graph databases. Any dataset could be converted to a
graph by connecting data points with their closest neighbors (basically running K-NN
algorithm). In that case graph based method might be considered very similar to density
based approaches as constructed graph is just another way of representing local density.

2.7.1 Chameleon
The Chameleon algorithm [28] operates on a graph representation of data. At first, we
construct a graph based on k nearest neighbors. A data point, represented by a node in
graph, is connected with its k closest neighbors by an edge that is given weight equal to
inversion of their distance. If a graph is provided, we can skip this step and continue with
the second one.

The second step partitions the previously created graph. The goal of partitioning is
to produce equal-sized partitions and minimize the number of edges cut. In this man-
ner, many small clusters are formed with a few highly connected nodes in each cluster.
For partitioning, Karypis et al. use their own hyper-graph partitioning algorithm called
hMETIS, which is a multilevel partitioning algorithm working with a coarsened version of
the graph. Coarsening is non-deterministic, thus for each run we might obtain a slightly
different result (for further details see [50] and [51]).

The final and most important step merges the partitioned clusters using Chameleon’s
dynamic modeling framework, starting with the most similar pair of clusters. This pro-
cedure is common for all agglomerative algorithms: the most similar pair of all possible

23

2. Clustering Background

Figure 2.6: All nodes in this graph belong to a single cluster Ci, in order to compute
bisection φ(Ci) we are looking for a set of edges BCi

(marked with dashed line) whose
removal would split the cluster into two roughly equal parts.

pairs of clusters is selected and merged to form a larger cluster. There are n · (n − 1)/2
such pairs, thus the time and memory complexity is O (n2), however thanks to the previous
partitioning we are merging clusters containing multiple items, so the number of merges is
far smaller than in traditional hierarchical clustering3. There are many ways of computing
similarities between clusters, e.g. based solely on the distance between two points (single-
link, complete-link, the distance from a cluster’s centroid, etc.) or using multiple points
(e.g. average-link). Chameleon’s approach belongs to the latter category, but in addition
to computing distances between clusters it also accounts for intra-cluster distances. This
idea is not entirely new; there are many examples between cluster validation metrics (such
as [52] or [53]) which compute the ratio between cluster compactness and cluster separa-
tion. Nonetheless, in Chameleon both similarity metrics are computed during the merging
phase, while in other approaches evaluation metrics are typically used for external result
evaluation only.

During merging, Chameleon tries to merge clusters of similar densities. Density esti-
mation relies on graph bisection, i.e. the division of a cluster (graph) into two roughly
equal parts by cutting a minimal number of edges. The quality of the bisection algorithm
used has major impact on merging order thus influences final clustering result.

Firstly we introduce a notation used for similarity metrics definition, each cluster is
represented as a graph. BCi

= bisect(Ci) is a set of edges selected by a bisection algo-
rithm. w(e) is the weight (typically Euclidean distance inversion) of a given edge that was
computed by the k-NN algorithm.

φ(Ci) =
∑
e∈BCi

w(e) (2.36)

φ̄(Ci) = 1
|BCi
|
φ(Ci) (2.37)

3The actual speed-up depends on the number of neighbors in the initial graph (parameter k) and the
separation of items in the dataset. In case the dataset contains many isolated points, after partitioning
each of those points will form an individual cluster, which has to be compared to all other clusters.

24

2.8. Multi-objective clustering

Where φ(Ci) represents the sum of the edges’ weights in BCi
and the average edge

weight is noted as φ̄(Ci) (an example is shown in Figure 2.6).
The between-cluster metrics are defined in a similar manner: the sum of the between-

cluster edges’ weights s(Ci, Cj) and the average weight of all edges between clusters s̄(Ci, Cj),
except that computing a bisection is not necessary in this case, because we already have
two clusters.

The first measure employed by Chameleon is called relative closeness:

RCL(Ci, Cj) = s̄(Ci, Cj)
|ECi

|
|ECi

|+|ECj
| φ̄(Ci) + |ECj

|
|ECi

|+|ECj
| φ̄(Cj)

(2.38)

Where |ECi
|, respective |ECj

| is the number of edges inside cluster Ci, respective Cj.
The numerator is similar to the average link method, but only distances between nodes
connected by an edge are included. The denominator uses average inter-cluster distances,
which are normalized by the relative number of edges in each cluster (again an edge must
be present between pairs in a cluster, in order to be included in this denominator). Using
the same notation we define relative interconnectivity:

RIC(Ci, Cj) = s(Ci, Cj)
φ(Ci)+φ(Cj)

2

(2.39)

High values of interconnectivity indicate that clusters Ci and Cj should be merged.
The sum of the edges’ weight between clusters is compared to the sum of the weights after
cluster bisection. This normalization drives Chameleon to merge clusters with similar
densities.

Finally, the Ch1 similarity function between two clusters (Ci and Cj) is computed
as [28]:

SCh1(Ci, Cj) = RCL(Ci, Cj)α ·RIC(Ci, Cj)β (2.40)

where α, β are user specified parameters that give higher importance either to rela-
tive closeness (compact clusters) or to relative interconnectivity (well-separated clusters).
Default values are α = 2.0, β = 1.0.

2.8 Multi-objective clustering
Multi-objective clustering usually optimizes two objective functions. Using more than a
few objectives is not usual because the whole process of optimization becomes less effective.

The first multi-objective evolutionary clustering algorithm was introduced in 2004 by
Handl and Knowles [55] and is called VIENNA (the Voronoi Initialized Evolutionary
Nearest-Neighbour Algorithm).

25

2. Clustering Background

Subsequently, in 2007 Handl and Knowles published a Pareto-based multi-objective
evolutionary clustering algorithm called MOCK [56] (Multi-Objective Clustering with au-
tomatic K -determination). Each individual in MOCK is represented as a directed graph
which is then translated into a clustering. The genotype is encoded as an array of integers
whose length is same as the number of instances in the dataset. Each number is a pointer
to another instance (an edge in the graph), since it is connected to the instance at a given
index. This easily enables the application of mutation and crossover operations.

As a Multi-Objective Evolutionary Algorithm (MOEA), MOCK employs the Pareto
Envelope-based Selection Algorithm version 2 (PESA-II) [57], which keeps two populations,
an internal population of fixed size and a larger external population which is exploited to
explore good solutions. Two complementary objectives, deviation and connectivity, are
used as objectives in the evolutionary process.

A clear disadvantage of MOCK is its computation complexity, which is a typical char-
acteristic of evolutionary algorithms. Nevertheless, the computation time spent on MOCK
should result in high-quality solutions. Faceli et al. [58] reported that for some high-
dimensional data it is not guaranteed that the algorithm will complete, unless the control
front distribution has been adjusted for the given data set.

Faceli et al. [58] combined a multi-objective approach to clustering with ensemble
methods and the resulting algorithm is called MOCLE (Muli-Objective Clustering Ensem-
ble Algorithm). The objectives used in the MOCLE algorithm are the same as those used
in MOCK [56]: deviation and connectivity. Unlike MOCK, in this case the evolutionary
algorithm used is NSGA-II [59].

2.9 User’s guidance
There are many possible ways of clustering a dataset, choosing the one which would match
user’s expectation is almost impossible. Several approaches has been introduced to tackle
this problem. A semi-supervised methods might use a trained classification algorithm [60],
constraint-based restrictions [61] or seeding and constraints [62].

Constraint-based For constraint clustering algorithms an initial background knowledge
must be provided, which is afterwards used during clustering process. There are two-types
of constraints:

◦ must-link – two instances have to be together in the same cluster

◦ cannot-link – two instances must be in different clusters

Generated partitioning will satisfy all given constraints, if it is possible. Wangstaff et al.
introduced a constrained version of k-Means called COP-KMeans [61].

A problem with constrains might arise when specified constrains are contradictory.
According to [63], algorithms preform better with the lower number of constrains, in many
cases constrains might decrease accuracy.

26

2.10. Stability of clustering

2.10 Stability of clustering
A common problem with many clustering algorithms is sensitivity to small changes in input
values which might results in a major reordering of the clustering result. To overcome
problems connected to this issue several approaches has been proposed.

Consensus clustering is used for obtaining stable clusterings. The problem of unstable
clusters arises especially with random initialization of an algorithm. But also a small
change of parameter could cause significant changes in resulting clustering. Usually there
are many objects that tends to stay together. These objects will produce stable clusters
and the rest of items might end up in a noisy cluster or their assignment could be almost
random.

Ensemble clustering is tightly connected to consensus clustering. An ensemble might
be composed of several different algorithms or the same algorithm but its parameters will
vary. To obtain a final solution we need a consensus function.

2.11 Scalable clustering algorithms
Scalability is an important issue for data-mining and in last years is getting even more
attention. There are basically three aspects that could be considered. Firstly we have
scalability in terms of records number N . For large datasets records has to be kept in
secondary memory and therefore it is desirable to minimize disk accesses.

Secondly we can scale to number of dimensions d. High-dimensional spaces have strange
properties which causes problems to methods that reliably perform in lower dimensions.

Lastly there is an aspect of scalability to number of processors, P . Ideally the amount
of data could be split into P near equal parts that could be executed in parallel with nearly
linear speedup.

Clustering algorithms are not inherently scalable, mainly because of computing dis-
tances between all points or at least all clusters can not simply use divide and conquer
principle. The problem of large datasets has been approached in many ways, for example
CURE [39] is using only a random sample of data set in order to maintain scalability.

In the literature probably most attention was paid to improving the popular k-means
algorithm [20]. When the number of clusters k and number of dimensions d is fixed the
complexity is

O
(
ndk+1 log(n)

)
where n is the number of objects to be clustered [64]. The “standard” version of algo-

rithm which is usually referenced as k-means is the Lloyd’s implementation [22]. It starts
with random initialization of exactly k clusters, which is a parameter of the algorithm.

It has been shown that after first few iterations of the algorithm centroids become
pretty much stable and their position in space does not change much. With usage of

27

2. Clustering Background

triangular inequality Elkan managed to significantly speed up k-means algorithm [25]. Due
to elimination of unnecessary computation of distances from each single point to cluster
centers which are located far away (and therefore it’s not likely that a point would we
assigned to that cluster). This approach was later improved by Hamerly [65], at the expense
of keeping more boundaries in memory many computation were eliminated and especially
on higher dimensional datasets (d > 100) significantly outperforms other implementations.

2.12 Most challenging clustering problems
There are many challenging problems in clustering field that researchers have been trying
to tackle during past decades. Part of these issues are described in Jain’s “Data Clustering:
50 Years Beyond K-Means” [66].

◦ Clustering algorithm will always cluster data no matter whether there is a natural
grouping or not.

◦ While clustering belongs to an unsupervised learning (“learning without a teacher”)
group where there is no teacher to tell us which assignment is correct. At least
approximated guidance by an evaluation function for clustering results could improve
clustering quality significantly.

◦ Two or three dimensional data can be easily inspected by a human. However in higher
dimensions humans fails miserably. There is a need for a projection or dimensionality
reduction that might deteriorate distances between objects.

28

Chapter 3
Chameleon 2

Although Chameleon [28] is considered to be one of the best hierarchical clustering algo-
rithms [30], our experiments reveal several deficiencies in the final clustering. The main
drawback of the algorithm is its inability to handle singleton clusters (clusters containing
one or few items). Moreover, unlike DBSCAN and CURE, Chameleon does not handle
noise at all. To overcome these issues we developed a Chameleon 2 algorithm [54]. A
Chameleon 2 result is shown on Figure 3.1.

3.1 Refined Similarity
Original Chameleon has an issue with many disconnected clusters in low density regions
after hMETIS partitioning. The solution is contaminated with many singleton clusters
that should be assigned to neighboring clusters instead of forming individual clusters.
This is not solely an issue of partitioning, but also a sign that the similarity metric does
not successfully capture the notion of a point’s neighborhood, because close points are
not merged together. Most problematic is the RIC definition. The sum of bisected edges
penalizes clusters that can be easily divided into two parts.

Instead of relying on metrics computed from bisection we base similarity on the ratio
between the average weight of all edges across two clusters and the sum of weights inside
those clusters, denoted as:

s(Ci) =
∑
e∈Ci

w(e) (3.1)

s̄(Ci) = 1
|ECi
|
s(Ci) (3.2)

and s̄(Ci, Cj) is computed in the same manner using the average of the inter-cluster
edge weights between cluster Ci and Cj. Thus, closeness is similar to the original one in
Equation 2.38:

29

3. Chameleon 2

RCL2(Ci, Cj) =

mfact ·

s̄(Ci, Cj)
s(Ci) + s(Cj)

for |ECi
| ∨ |ECj

| = 0(
|ECi
|+ |ECj

|
)
· s̄(Ci, Cj)
s(Ci) + s(Cj)

for |ECi
| ∧ |ECj

| > 0
(3.3)

Modified interconnectivity considers only the ratio between the number of edges, instead
of relying on edge weights (Equation 2.39):

RIC2(Ci, Cj) =

1 for |ECi

| ∨ |ECj
| = 0

|ECi,j
|

min
{
|ECi
|, |ECj

|
} · ρ(Ci, Cj)β for |ECi

| ∧ |ECj
| > 0 (3.4)

Where |ECi,j
| represents the number of edges between clusters Ci and Cj. This part of

the equation encourages merging of clusters connected by a large number of edges relative
to the number of edges inside the clusters.

The last addition is the ρ factor, which discourages the algorithm from merging clusters
with different densities: both clusters should have similar average between-point distances.
The β parameter serves to modify the weight of the ρ factor.

ρ(Ci, Cj) = min{s̄(Ci), s̄(Cj)}
max{s̄(Ci), s̄(Cj)}

(3.5)

For both interconnectivity and closeness we have to handle a special case: a cluster
containing an individual node. In that case, the cluster contains no edges, which leads to
zero similarity. Such clusters are often merged incorrectly, worsening the overall result.
Even when the partitioning algorithm is configured to make strictly balanced partitions
with the same number of items in each cluster, this problem persists. Therefore, this issue
has to be handled during the merging phase.

When computing the similarity of a cluster pair where one of the clusters contains
no edges, we compute only the pair’s RCL2. Then we multiply the RCL2 by a constant
mfact to obtain the final cluster similarity. This process increases the similarity of all pairs
containing single-item clusters and causes the clusters to merge with their neighbors in the
early stages of the merging process, avoiding problems later on.

The resulting similarity is a product of modified closeness and interconnectivity – as in
the case of the original Chameleon. Then Chameleon 2 base similarity is defined as:

SCh2(Ci, Cj) = RCL2(Ci, Cj)α ·RIC2(Ci, Cj) (3.6)

Another problem is the absence of an algorithm for the extraction of high-quality par-
titioning from hierarchical structures created by the merging process. This problem is
common to all agglomerative algorithms. In order to overcome this issue, we developed a
heuristic for flat partitioning extraction that is called First Jump. A detailed description
can be in [54].

30

3.2. Summary

Figure 3.1: A Chameleon 2 result on a toy dataset, inspired by Jain et al., who suggest
that it cannot be solved by a clustering algorithm. Our proposed algorithm gives a solution
very close to human judgment.

3.2 Summary
Chameleon 2 corrects issues present in previous version and pushes further boundaries
of single-run clustering algorithms aiming for high-quality partitions. The algorithm per-
forms well on complex datasets without necessity of fine-tuning its parameters. The main
disadvantage is its complexity that comes from k-NN graph construction and consequent
hierarchical merging. When Chameleon 2 is employed in more sophisticated pipeline the
k-NN graph could be shared between multiple algorithms. Compared to classical hierarchi-
cal clustering Chameleon perform less merges as the smallest leaf in dendrogram already
represents multiple points.

31

Chapter 4
Clustering evaluation

“Without a strong effort in this direction, cluster
analysis will remain a black art accessible only to those
true believers who have experience and great courage.”

— Jain and Dubes [1], 1988

More striking than the statement above is the fact that it still holds true after 28
years [67]. Despite all the progress that has been made, quality assessment of models in
unsupervised learning and clustering verification in particular have been a long-standing
problem in the machine learning research [68].

Assuming we have a clustering C and yet another clustering C′ . How are we supposed
to tell which one is better or whether they are the same? Clustering are typically stored as
a list with cluster numbers, e.g. C = (1, 1, 2, 2, 3, 3) and C′ = (3, 3, 1, 1, 2, 2) are supposed
to be considered the same. This property is called relabeling invariance.

Cluster validation measures are typically divided into there categories [69]:

◦ External Criteria – Measure similarity of clusterings against a priori known class
labels. Since real-world datasets do not have labels these criteria could be used for
controlled experiments only.

◦ Internal Criteria – Measure partitioning quality based e.g. on data distribution,
distances to cluster centers, distances between clusters, etc.

◦ Relative Criteria – Compare two clusterings in order to determine their similarity
in relative terms. Most external criteria meet this requirement, but the term relative
validity criteria often refers to internal criteria that are also relative [70].

In this text we use following conventions:

Feature vector or an instance is a set of attributes which are used by clustering algo-
rithm for grouping

33

4. Clustering evaluation

C \ C′
C

′
1 C

′
2 . . . C

′
l Sums

C1 M11 M12 . . . M1l u1
C2 M21 M22 . . . M2l u2
...
Ck Mk1 Mk2 . . . nkl uk

Sums v1 v2 . . . vl
∑
ijMij = N

Table 4.1: Contingency Table (also called Confusion Matrix)

Attribute (or feature) is one value from the feature vector which is represented by a
number1

Distance measure is a metric for computing distance between two feature vectors

Let X be a finite set of instances with cardinality |X| = N . A clustering C is a set
{C1, C2, . . . , Ck} of non-empty subsets of X, so that the union is equal to X:

X =
k⋃
i=1

Ci

Each vector of X has D attributes (features). This could be represented by a data
matrix ZN×D.

Let C′ = {C ′1, . . . , C ′l} denote a second clustering of X with number of clusters equal
to l. The contingency table (or confusion matrix) M of pairs C,C′ is a k× l matrix whose
ij-th entry equals the number of elements in the intersection of clusters Ci and C ′j:

Mij =
∣∣∣Ci ∩ C ′j∣∣∣ , 1 ≤ i ≤ k, 1 ≤ j ≤ l

as shown in Table 4.1.

4.1 External Validation Criteria
From definition in unsupervised learning such as clustering we should not have labels.
Nonetheless in some cases like verification of an algorithm these labels are necessary. Then
we can use traditional metrics for effectiveness, recall and precision. Recall signifies the
proportion of correct assignments in result clustering. Let A be a set of “correct” clustering
and B is a set of clustering produced by an algorithm. What we get is criteria for supervised
learning [34]:

1generally also strings or boolean values are acceptable however it is out of scope of this work

34

4.1. External Validation Criteria

actual class

predicted
class

True Positive False Positive
S11 S01

correct result incorrect result
False Negative True Negative

S10 S00

missing result correct absence

Table 4.2: Classification categories used in supervised learning and our corresponding sets

recall = P (B|A) = P (A ∪B)
P (A) = n11

n11 + n10
= TP

TP + FN

precision = P (A|B) = P (A ∪B)
P (B) = n11

n11 + n01
= TP

TP + FP

Precision and recall are frequently used in other fields like information retrieval, super-
vised learning or recommender systems.

4.1.1 Counting pairs
A very intuitive approach of comparing clusterings is counting pairs of instances in each
clustering. We can divide our set of instances into 4 subsets which are specified in Table
4.3

S11 a TP pairs in the same cluster under C and C′

S10 b FP pairs in the same cluster under C and in different under C′

S01 c FN pairs in the same cluster under C′ and in different cluster under C
S00 d TN pairs in different cluster under both C and C′

Table 4.3: All possibilities of pairs placement when comparing two clusterings. Notation
with TP (true positive) is sometimes also used.

With cardinality |X| = N , the number of different pairs we can choose from a set is

35

4. Clustering evaluation

S11S10 S01

Ci C ′j S00

Figure 4.1: When comparing cluster Ci in clustering C with cluster C ′j in clustering C′
four cases can occur: an item is assigned to both clusters (S11), an item is in cluster Ci
but not in C ′j (S10), an item is not in Ci but it is in C ′j (S01) and lastly item is not in any
of clusters (S00).

given by the combination number:(
n

2

)
= |S11|+ |S10|+ |S01|+ |S00|

= a+ b+ c+ d

4.1.1.1 Chi Squared (χ2) Coefficient

This is probably the oldest measure coefficient widely used by statisticians. It is defined
as:

χ (C,C′) =
k∑
i=1

l∑
j=1

= (Mij − Eij)2

Eij

where Eij =
|Ci||C ′j|

n

Originally it was suggested by Pearson in 1900 for testing independence in a bivariate
distribution, not for evaluating association.

The problem of using such a measure for comparing clusterings is the fact that we
have to assume independence of the two clusterings. In general this is not true, espe-
cially when we compare two clusterings produced by the same algorithm but with different
parameters [71].

4.1.1.2 Rand Index

General Rand Index This index for originally proposed for measuring precision of
supervised classification algorithms. Where the fraction between correctly classified (re-
spectively misclassified) elements to all elements is calculated. For comparing clusterings

36

4.1. External Validation Criteria

we count pairs of elements instead of single elements. The Rand Index is defined as [72]:

Rand(C,C′) = 2(S11 + S00)
n(n− 1) = S11 + S00

S11 + S10 + S01 + S00
= S11 + S00(

n

2

)

When no pair is classified the same way under both clustering Rand has value 0. For
identical clusterings it would be 1. However the Rand index converges to 1 as the number
of clusters is increased which is undesirable for a similarity measure [73]. Therefore the
adjusted version was proposed by Hubert and Arabie.

Adjusted Rand Index The Adjusted Rand Index [74] assumes a generalized hyperge-
ometric distribution as null hypothesis: the two clusterings are drawn randomly with a
fixed number of clusters and a fixed number of elements in each cluster (the number of
clusters in each clustering need not be the same). Then the Adjusted Rand Index is the
(normalized) difference of the Rand Index and its expected value under the null hypothesis.
It is defined as follows:

AdjRand(C,C′) =

k∑
i=1

l∑
j=1

(
mij

2

)
− t3

1
2(t1 + t2)− t3

where t1 =
k∑
i=1

(
|Ci|
2

)
,

t2 =
l∑

j=1

(
|C ′j|

2

)
,

t3 = 2t1t2
n(n− 1)

The significance of this measure has to be put into question because of the strong
assumption it makes on the distribution [71]. An undesired property is that ARI can take
negative values. For perfect match AdjRand(C,C′) = 1.

Also following definition is possible:

AdjRand(C,C′) = S10 + S01

S11 + S10 + S01 + S00

4.1.1.3 Jaccard Index

The Jaccard Index [75] is very similar to the Rand Index, however it disregards the number
of elements that are in different clusters. It is defined as follows:

J(C,C′) = S11

S11 + S10 + S01
(4.1)

37

4. Clustering evaluation

or definition based on sets:

J(C,C′) = |C ∩ C′|
|C ∪ C′|

4.1.1.4 Folkes and Mallows

Folkes and Mallows [73] proposed yet another evaluation metric based on counting pairs.
The index is directly proportional to the number of true positives (S11), higher index value
means greater similarity between two clusterings.

m1 = S11 + S10,

m2 = S01 + S00,

pfm = a
√
m1 ·m2

= S11√
(S11 + S10) · (S01 + S00)

With growing number of cluster the index converges to 0 (unlike e.g. Rand Index from
Section 4.1.1.2). The index is the geometric mean of the precision and recall, thus it is also
known as the G-Measure, while the F-measure is their harmonic mean [74].

4.1.1.5 F-measure

F-measure (also known as F-score or F1 score, the Sørensen–Dice coefficient or Dice simi-
larity coefficient) balances precision P and recall R [76]:

F1(C,C′) = 2PR
P +R

= 2S11

2S11 + S10 + S01

that was originally introduced by Rijsbergen [77] as effectiveness measure. The general
formula for positive real β is:

Fβ(C,C′) = (1 + β2)P ·R
β2 · P +R

where the other commonly used values are β = 2, which weights recall higher than
precision and β = 0.5 that has the opposite effect.

4.1.1.6 Partition difference

The Partition Difference simply counts pairs elements that belong to different clusters
under both clusterings:

PD(C,C′) = S00

38

4.1. External Validation Criteria

This measurement tries to express the difference of clustering however it does not capture
number of elements placed in same cluster moreover is sensitive to clustering sizes and it’s
hard to interpret. In our opinion this measure should not be used at all.

4.1.1.7 Cluster difference

Cluster difference [6] is related to the Rand index, it counts pairs which are in the same
cluster in clustering C, but in different clusters under C′ (or the other way round).

ClusterDiff(C,C′) = 2(S10 + S01)
N · (N − 1)

4.1.1.8 Mirkin metric

Mirkin metric [78] is another form of Rand Index. It could be expressed as:

M(C,C′) = 2(S01 + S10) = N · (N − 1) (1− Rand(C,C′))

The metric corresponds to the Hamming distance for binary vectors if the set of all
pairs of elements is enumerated and a clustering is represented by a binary vector defined
on this enumeration [78].

4.1.2 Information Theory Based Criteria

Many clustering criteria comes from Information Theory background where the amount
of shared information between two clusterings is computed. In order to compute such
measure for external labels, we create a virtual (reference) clustering.

4.1.2.1 Normalized Mutual Information

Normalized Mutual Information (NMI) comes from Information Theory background [79]
where it accounts for shared information. In clustering context NMI computes agreement
between cluster assignments and ground truth labels. Given two clusterings C and C′ , their
entropies, joint entropy, conditional entropies and mutual information (MI) are defined via
the marginal and joint distributions of data items in C and C′ respectively as:

39

4. Clustering evaluation

H(C) = −
K∑
i=1

ui
n

log ui
N
, (4.2)

H(C,C′) = −
K∑
i=1

K
′∑

j=1

Mij

N
log Mij

N
, (4.3)

H(C|C′) = −
K∑
i=1

K
′∑

j=1

Mij

N
log Mij/N

vj/N
, (4.4)

I(C,C′) =
K∑
i=1

K
′∑

j=1

Mij

N
log Mij/N

uivj/N2 , (4.5)

Where M is the contingency table and Mij is the number of data points that are
assigned to cluster Ci in clustering C and to Cj in clustering C′ .

Then NMIsqrt is according to [80] defined as:

NMIsqrt(C,C
′) = I(C,C′)√

H(C)H(C′)
(4.6)

while [79] proposed several variants with diferent normalization. Most frequently
NMImax and NMIavg are used:

NMImax(C,C′) = I(C,C′)
max{H(C), H(C′)} (4.7)

NMIavg(C,C′) = 2I(C,C′)
H(C) +H(C′) (4.8)

4.1.2.2 Variation of Information (VI)

Meilă [81] proposed another criterion VI that is defined as:

VI(C,C′) = H(C|C′) +H(C′ |C) (4.9)
= 2H(C|C′)−H(C) −H(C′) (4.10)

and is designed to measure lost and gained information in changing from clustering C
to clustering C′ .

4.1.2.3 V-Measure

V-Measure [82] is another cluster evaluation measure based on entropy. The value is com-
puted as weighted harmonic mean of two components named completeness and homogenity:

40

4.2. Internal clustering validation

h(C,C′) =

1 if H(C,C′) = 0

1− H(C|C′)
H(C) otherwise

(4.11)

c(C,C′) =

1 if H(C′

,C) = 0

1− H(C′ |C)
H(C′) otherwise

(4.12)

Vβ(C,C′) = (1 + β) · h(C,C′) · c(C,C′)
(β · h(C,C′)) + c(C,C′) (4.13)

Both VI and V-Measure satisfy desirable mathematical properties described by Dom [83].
With β = 1, Vβ is highly correlated with NMIavg.

4.2 Internal clustering validation
Firstly we introduce commonly used notation with several concepts that are commonly
used in many clustering validation critera.

Nt . . . total number of pairs of data points in the dataset X

Nt = N(N − 1)
2 (4.14)

Nw . . . total number of pairs of data points belonging to the same cluster

Nw =
K∑
k=1

nk(nk − 1)
2 (4.15)

Nb . . . total number of pairs of observations belonging to different clusters

Nb = Nt −Nw (4.16)

Sw . . . sum of the within-cluster distances:

Sw =
K∑
k=1

∑
xi,xj∈Ck
i<j

d(xi, xj) (4.17)

Sb . . . sum of the between-cluster distances:

41

4. Clustering evaluation

Sb =
K−1∑
k=1

K∑
l=k+1

∑
xi∈Ck
xj∈Cl

d(xi, xj) (4.18)

Bq . . . between-group dispersion matrix:

Bq = BGSS = Tr(B) =
K∑
k=1

nk (x̄− ck) (x̄− ck)ᵀ (4.19)

where x̄ is the overall dataset mean.
T . . . total dispersion matrix is equal to N times the variance-covariance matrix.

T = XᵀX (4.20)

The general term of T can be written:

tij = N × Cov(Vi, Vj) (4.21)

where Vj is the column vector (1 ≤ j ≤ D) of data matrix X.
The total scattering T SS (total sum of squares) is the trace of the matrix T :

T SS = Tr(T) = N
D∑
j=1

Var(Vj) (4.22)

W . . . within-group scatter matrix is a square symmetric matrix with dimensions D×D
defined for each cluster:

W =
K∑
k=1

W{k} (4.23)

where the general term could be written as:

w
{k}
ij =

(
V
{k}
i − µ{k}i

) (
V
{k}
j − µ{k}j

)ᵀ
(4.24)

or in terms of variance and covariance:

w
{k}
ij = nk × Cov

(
V
{k}
i , V

{k}
j

)
w
{k}
ii = nk × Var

(
V
{k}
i

) (4.25)

42

4.2. Internal clustering validation

Wq . . . within-group dispersion:

Wq = WGSS = Tr(W) =
K∑
k=1

∑
xi∈Ck

(xi − ck) (xi − ck)ᵀ (4.26)

=
K∑
k=1

∑
xi∈Ck

‖xi − ck‖2 (4.27)

4.2.1 Akaike Information Criterion (AIC)
Akaike information criterion [84, 85] is typically used in supervised learning when trying
to estimate model error. Basically it tries to estimate the optimism of the model with m
parameters and then add it to the error [86].

AIC(C) = −2 · lnL(θ) + 2 ·m (4.28)

The first term is a maximum likelihood of a model L(θ) that stands for the penalty of
badness of fit when the maximum likelihood estimators of the parameters of the model are
used. The second term in the definition of AIC, on the other hand, stands for the penalty
of increased unreliability or compensation for the bias in the first term as a consequence
of increasing number of parameters [87].

There are multiple variants of AIC for cluster analysis. A simplified model might
consider share covariance matrix Σ for all groups (clusters).

The likelihood for a clustering is given by:

L(µ,Σ|X) =
K∏
g=1
Lg(µg,Σg|Xg) (4.29)

The model assumes that data vectors are independent and identically distributed ac-
cording to a multivariate normal distribution Nd(µ,Σ). Where µ is a d dimensional
mean vector and Σ is a d × d covariance matrix. In terms of parameters the the multi-
variate analysis of variance (MANOVA) assumes θ = (µ1,µ2, . . . ,µK ,Σ1,Σ2, . . . ,ΣK)
with m = Kd+ d(d+ 1)/2 parameters where K is the number of clusters and d is the data
vector dimensionality.

The log likelihood function is given by [87]:

`(µg,Σg|Xg) ≡ logL(µg,Σg|Xg) (4.30)

= Nd

2 log 2π − 1
2

K∑
g=1

ln |Σg| −
1
2

K∑
g=1

ng Tr
(
Σ−1
g

)
Ag (4.31)

− 1
2

K∑
g=1

ng
(
xg − µg

)ᵀ (
xg − µg

)
(4.32)

43

4. Clustering evaluation

The maximum likelihood estimation (MLE) of µg and Σg are:

µ̂g = xg, g = 1, 2, . . . K (4.33)

Σ̂g = Ag

ng
(4.34)

Substituting these back and simplifying, the maximized likelihood becomes:

`(µ̂g, Σ̂g|X̂g) ≡ logL(µ̂g, Σ̂g|Xg) (4.35)

= −Nd2 log 2π − 1
2

K∑
g=1

ng log
∣∣∣∣∣Ag

ng

∣∣∣∣∣− Nd

2 (4.36)

Then AIC is becomes:

AIC(C) = Nd ln(2π) +
K∑
g=1

ng ln
∣∣∣∣∣Ag

ng

∣∣∣∣∣+Nd+ 2 ·
(
Kd+ Kd(d+ 1)

2

)
(4.37)

where ng is the size of g-th cluster
|Ag| the determinant of matrix Ag = ∑

xi∈Cg
(xi − cg) (xi − cg)ᵀ

cg is a mean vector for cluster Cg
d is data dimensionality
K is number of clusters

A sum of Ag would give us within-group scatter matrix (defined in 4.23):

W =
K∑
g=1
Ag (4.38)

AIC definition 4.37 becomes problematic in edge case clustering (e.g. clusters with
single item) when determinant |Ag| is ≤ 0. The logarithm is not defined for such value
which leads to an undefined value for the whole clustering. Therefore we introduce a
correction:

I(Cg) =
{|n−1

g Ag| if |Ag| > 0
1 otherwise

(4.39)

Finally we get:

AIC(C) = Nd ln(2π) +
K∑
g=1

ng ln (I(Cg)) +Nd+ 2 ·
(
Kd+ Kd(d+ 1)

2

)
(4.40)

AIC with varying µ and Σ assumes normal distribution for all clusters which could be
strong assumption for all data. Nonetheless it is a statistically solid criteria with penalty
for small clusters.

On similar principle works also other statistics like Cp or BIC.

44

4.2. Internal clustering validation

4.2.2 Bayesian Information Criterion (BIC)
Bayesian information criterion is suitable for application where the fitting is carried out
by maximization of a log-likelihood. The BIC statistic (times 1/2) is also known as the
Schwarz criterion [88].

BIC(C) = −2 · lnL(θ) +m · ln(N) (4.41)

where lnL(θ) is the maximum likelihood of a model
with m parameters based on a sample of size n.

Using same approach as for AIC 4.40 we get:

BIC(C) = Nd ln(2π) +
K∑
g=1

ng ln (I(Cg)) +Nd+ ·
(
Kd+ Kd(d+ 1)

2

)
ln(N) (4.42)

BIC will select the correct model approaches one as the sample size n → ∞. This is
not the case for AIC, which tends to choose models which are too complex as n→∞. On
the other hand, for finite samples, BIC often chooses models that are too simple, because
of its heavy penalty on complexity [86].

For clustering evaluation BIC gives higher penalty on high number of clusters, which
makes BIC better choice for datasets where we prefer clusterings with few clusters.

4.2.3 TraceW index
Originally proposed by Edwards et al. [89], used to be one of the most popular indexes in
clustering literature [90, 91, 92, 93] defined simply as:

TrW(C) = Tr(W) = WGSS (4.43)

The criterion increases monotonically with fewer clusters.

4.2.4 Ball-Hall index
The mean dispersion of a cluster is the mean of the squared distances of the points of the
cluster with respect to their centroid. The Ball-Hall index is the mean through all the
clusters of their mean dispersion [94]:

BallHall(C) = 1
K

∑
Ck∈C

1
nk

∑
x∈Ck

‖x, ck‖2 = WGSS

K
(4.44)

where ck is the centroid of cluster Ck.

45

4. Clustering evaluation

4.2.5 Calinski-Harabasz Index (VRC)
Calinski-Harabasz Index [53], sometimes called the Variance Ratio Criterion (VRC), makes
usage of cluster centers. Defined as:

VRC(C) = Tr(B)
Tr(W) ·

N −K
K − 1 = BGSS

WGSS

· N −K
K − 1 (4.45)

where W is the within-group defined in 4.26 and B is the between-group matrix from
equation 4.19.

The trace is computed as a sum of elements on diagonal. Small and compact clusters
are expected to have small values of Tr(W) and large values of Tr(B). Hence, the better the
data partition the greater the value of the VRC. The normalization term (N −K)/(K−1)
prevents this index to increase monotonically with the number of clusters.

4.2.6 Banfeld-Raftery
This index is the weighted sum of the logarithms of the traces of the variance-covariance
matrix of each cluster [42].

BR(C) =
K∑
k=1

nk log
Tr

(
W{k}

)
nk

 =
K∑
k=1

nk log
W {k}

GSS

nk

 (4.46)

When cluster contains only a single data point, the trace is equal to 0 and the logarithm
is undefined.

4.2.7 Det Ratio |T |/|W |
The Det Ratio index [90, 95] is defined as ratio between determinant of total scatter and
within-group matrices:

DetRatio(C) = det(T)
det(W) (4.47)

4.2.8 Log Det Ratio
A logarithmic variant of the Det Ratio index [95]:

LDR(C) = N log
(

det(T)
det(W)

)
(4.48)

46

4.2. Internal clustering validation

4.2.9 Friedman (TraceWiB)
An index proposed by Friedman and Rubin [90].

fri(C) = Tr(W−1B) (4.49)

4.2.10 Rubin
Another index proposed by Friedman and Rubin [90].

rub(C) = Tr(T)
Tr(W) (4.50)

4.2.11 KsqDetW k2|W |
The KsqDetW index [96] (also denoted as k2|W |) is computed as determinant of within
group scatter matrix multiplied by number of clusters squared:

KsqDetW(C) = K2 det(W) (4.51)

4.2.12 Log SS Ratio
A ratio between between and withing group traces [97]:

LogSS(C) = log
(
BGSS

WGSS

)
(4.52)

4.2.13 Scott-Symons
The Scott-Symons index [95] is defined as weighted sum of the logarithms of the determi-
nants of the variance-covariance matrix of each cluster:

Scott(C) =
K∑
k=1

nk log det
(
W {k}

nk

)
(4.53)

4.2.14 Krzanowski-Lai index
Krzanowski and Lai proposed [98] index similar to Calinski-Harabasz.

47

4. Clustering evaluation

4.2.15 C-index
The C-index was published by Hubert and Levin [99] in 1976. It is computed as

Cindex(C) = Sw − Smin
Smax − Smin

(4.54)

where

◦ Sw is the sum of the within cluster distances (equation 4.17).

◦ Smin is the sum of the Nw smallest distances between all the pairs of points in the
entire dataset. There are Nt such pairs.

◦ Smax is the sum of the Nw larges distances between all the pairs of points in the
entire dataset.

The index was found to exhibit excellent recovery characteristics by Milligan [100].
The minimum value across the hierarchy levels was used to indicate the optimal number
of clusters [93].

4.2.16 McClain-Rao index
The McClain-Rao index was introduced in [101]. It is defined as the ratio between the
mean within-cluster and between-cluster distances:

fMcR(C) = Sw/Nw

Sb/Nb

= Nb

Nw

Sw
Sb

(4.55)

4.2.17 Baker-Hubert Gamma index
This index represents an adaptation of Goodman and Kruskal’s Gamma statistic [102],
that was originally proposed for ranking. Baker and Hubert [103] modified Γ for use in
a clustering situation. Comparisons are made between all within-cluster distances and all
between-cluster distances. A comparison is considered to be concordant (s+) if a within-
cluster distance is strictly less than a between-cluster distance, on the other hand we get
a disconcordant (s−) comparison when a within-cluster distance is strictly greater than a
between-cluster distance. The index is computed as

Γ (C) = s+ − s−

s+ + s−
(4.56)

Its value is between −1 and 1. Maximum values were taken to represent the correct
hierarchy level [93].

48

4.2. Internal clustering validation

4.2.18 G+ index
Using same notation as for the Baker-Hubert Γ index (Section 4.2.17), we can write the
G+ index [104] as:

fg+(C) = s−

Nt(Nt − 1)
2

= 2s−
Nt(Nt − 1) (4.57)

4.2.19 Tau index
This index is based on the Kendall’s rank correlation coefficient [105] and it was reviewed
by Rohlf [104] for clustering case in 1974. Still following the same notation as for Gamma
and G+ index, the Kendall’s τ between two vectors of length Nt is defined in statistics as
the quantity:

τa = s+ − s−
Nt(Nt − 1)

2

= 2(s+ − s−)
Nt(Nt − 1) (4.58)

The τa does not account ties, so if a between-cluster distance and a within-cluster
distance are equal, they do not enter in the numerator. In order to take ties into account,
one modifies the denominator and defines the Kendall’s τb:

τb = s+ − s−√
(ν0 − ν1)(ν0 − ν2)

(4.59)

with

ν0 = Nt(Nt − 1)
2 (4.60)

ν1 =
∑
i

ti(ti − 1)
2 (4.61)

ν2 =
∑
j

uj(uj − 1)
2 (4.62)

The first vector t consists of between pair distances while the second one (u) is a binary
one, having value 1 when a pair is located in the same cluster and 0 otherwise.

where
s+ . . . number of concordant pairs
s− . . . number of disconcordant pairs
ti . . . number tied values in the ith group
uj . . . number tied values in the jth group

49

4. Clustering evaluation

Then the τc index is defined as:

ftau(C) = s+ − s−√
NbNw

Nt(Nt − 1)
2

(4.63)

4.2.20 Silhouette Width Criterion
Silhouette [106] combines criteria for cohesion and separation of clusters. It is computed
individually for each object in dataset. Computing could be divided into following steps:

1. For the object x, calculate its average distance to all other objects in its cluster. We
call this value a(x).

a(x) = 1
|Ck| − 1

∑
y∈Ck,y 6=x

d(x,y) (4.64)

2. For the object x and any cluster not containing this object, calculate object’s average
distance to all the objects in the given cluster. Find the minimum value and call it b.

b(x) = min
j,j 6=k

 1
|Cj|

∑
y∈Cj

d(x,y)
 (4.65)

3. For the object x, the Silhouette coefficient is

s(x) = b(x)− a(x)
max{b(x), a(x)} (4.66)

4. Repeat previous steps for all objects in cluster, to get an average cluster’s value.

5. Afterwards sum cluster’s Silhouettes and divide by number of clusters.

Sil(C) = 1
|C|

|C|∑
k=1

 1
|Ck|

∑
x∈Ck

s(x)
 (4.67)

= 1
N

N∑
i=1

s(xi) (4.68)

The value of the Silhouette is in range between −1 and 1. A negative value is unde-
sirable, because it means that the average distance within cluster is greater than minimal
distance to other cluster.

The Silhouette coefficient is the default evaluation criterion in MATLAB. In order to
obtain same numerical results as in MATLAB, one must use Euclidean distances without
applying square root.

50

4.2. Internal clustering validation

4.2.21 Simplified Silhouette index
The original index depends on computation of distances between all objects. The compu-
tation could be simplified for centroid based algorithms (e.g. k-means) by counting only
distance to the cluster center (centroid) [107].

Instead of using average distance as defined in equation 4.64, distance to centriod is
computed as:

ac(x) = d(x, x̄c) (4.69)

Then the index for each object is defined as:

sc(x) = b(x)− ac(x)
max{b(x), ac(x)} (4.70)

And the index averaged for the whole dataset:

SS = 1
N

N∑
i=1

sc(xi) (4.71)

Simplified Silhouette is limited to numerical datasets only, for categorical attributes
medoids could be used or the original Silhouette Width Criterion.

4.2.22 Alternate Simplified Silhouette
Another variant of simplified Silhouette redefines coefficient for individual object [107]:

sa(x) = b(x)
ac(x) + ε

(4.72)

where ε is a small constant (e.g. 10−6 for normalized data) used to avoid division by
zero when ac(x) = 0. The main difference should lie in non-linear behavior.

4.2.23 Dunn’s index
Dunn’s index [108] is another validity criterion that is based on geometrical measures of
cluster compactness and separation. It is defined as:

Dunn(C) = min
i,j∈{1,...,k}

i 6=j

 d(Ci, Cj)
max
l=1...k

diam(Cl)

 (4.73)

51

4. Clustering evaluation

where d(Ci, Cj) is the distance between clusters, which was originally defined as the
minimum distance between pair of objects across cluster Ci and Cj (this corresponds to
definition of single-linkage distance in hierarchical clustering), whereas diam(Cl) is the
maximum distance within a cluster.

If the dataset contains compact and well-separated clusters, the distance between the
clusters is expected to be large and the diameter of the cluster is expected to be small,
therefore compact and separated clusters will have large value of Dunn’s index.

Evaluation of large dataset with many clusters might be difficult because of considerable
time complexity, also index is sensitive to noise.

4.2.24 Generalized Dunn Index (GDI)
Bezdek et al. [109] derived from Dunn’s index 17 other variations by using different defini-
tions of distance (distance between clusters is defined as complete-linkage, average-linkage
etc.).

4.2.25 Davies-Bouldin index
Davies-Bouldin index [52] combines two measures, one related to dispersion and the other
to the separation between different clusters. Mathematically,

fDB(C) = 1
K

K∑
i=1

max
i 6=j

(
d̄i + d̄j
d(ci, cj)

)
(4.74)

where d(ci, cj) corresponds to the distance between the center of clusters Ci and Cj, d̄i
is the average within-group distance for cluster Ci.

d̄i = 1
|Ci|

|Ci|∑
l=1

d(xi(l), x̄i)

It is desirable for the clusters to have minimum possible similarity to each other, there-
fore we seek clustering that minimizes Davies-Bouldin index.

4.2.26 Ratkowsky-Lance index C/
√
k

The Ratkowsky-Lance index [110] (sometimes referred as C/
√
k) is computed from ratios

considering between group scatter and overall variance in each dimension.
Let us denote for dimension j:

52

4.2. Internal clustering validation

BGSS(j) =
K∑
k=1

nk
(
µkj − µj

)2
(4.75)

TSS(j) = N × V ar(Vj) = N

N − 1

N∑
i=1

(xij − µj)2 (4.76)

where Vj is a column vector of dataset X, there are M such vectors, each having size
N .

Then:

RL(C) = 1
M
√
K

M∑
j=1

BGSS(j)
TSS(j) (4.77)

Compact clusters tend to have low within-group variances which will produce high
values of BGSS/TSS. Thus higher values will indicate better clustering.

4.2.27 Point Biserial
Point Biserial was originally proposed by Brogden [111] and later adapted by Milligan [100].

Simplified version can be expressed as:

PBSsimpl(C) =
(
Sb
Nb

− Sw
Nw

)
·
√
Nw ·Nb

Nw +Nb

(4.78)

while the normalized version would account standard deviation for all distances:

PBS(C) =
(
Sb
Nb

− Sw
Nw

)
·
√
Nw ·Nb

Nw +Nb

· 1
σ

(4.79)

4.2.28 SD index
The SD index was introduced in 2000 by Halkidi et al. [112] and it is based on concepts of
average clusters scattering and total separation of clusters which were previously used by
Rezaee et al. [113] for evaluation of fuzzy clusterings.

The average scattering is defined as:

Scatt(k) = 1
k

k∑
i=1

‖σ(c̄i)‖
‖σ(X)‖ (4.80)

where ‖x‖ is a norm of a vector,
c̄i is a centroid of i-th cluster,
σ(X) is the variance of the input dataset.

53

4. Clustering evaluation

σ(X) ∈ Rm with m being the number of dataset dimensions. Variance for a dimension
d (σd) is defined as:

σd = 1
n

n∑
i=1

(
xdi − x̄d

)2

‖σ(X)‖ =
√√√√ m∑
i=1

(σd)2

The total separation is given by:

Dis(k) = Dmax

Dmin

k∑
i=1

 k∑
j=1
‖c̄i − c̄j‖

−1

(4.81)

where Dmax is the maximum distance and Dmin is the minimum distance between
cluster centers (c̄i) and k is the number of clusters.

Dmax = max
i,j∈{1,...,k}

i 6=j

(‖c̄i − c̄j‖) (4.82)

Dmin = min
i,j∈{1,...,k}

i 6=j

(‖c̄i − c̄j‖) (4.83)

Then we can define SD validity index as follows:

fSD(C) = α · Scat(k) +Dis(k) (4.84)

where α should be a weighting factor equal to Dis(cmax) with cmax being the maximum
number of clusters [112]. This makes perfect sense for fuzzy clustering (as it was proposed
in [113]), however it is rather unclear how to compute cmax in case of crisp clustering when
cmax � k without running clustering with cmax as requested number of clusters. Nonethe-
less, [112] mentions that “SD proposes an optimal number of clusters almost irrespectively
of cmax, the maximum number of clusters”, thus we consider special case where cmax = k:

fSD(C) = Dis(k) · Scat(k) +Dis(k) (4.85)
= Dis(k) · (Scat(k) + 1) (4.86)

4.2.29 S_Dbw
S_Dbw [114] is a validity index that considers also cluster density. In order to compute
the index we have to define its two components.

Firstly, the average scattering is defined as:

54

4.2. Internal clustering validation

Scatt(k) = 1
k

k∑
i=1

‖σ(c̄i)‖
‖σ(X)‖ (4.87)

where ‖x‖ is a norm of a vector,
c̄i is a centroid of i-th cluster,
σ(X) is the variance of the input dataset.

σ(X) ∈ Rm with m being the number of dataset dimensions. Variance for a dimension
d (σd) is defined as:

σd = 1
n

n∑
i=1

(
xdi − x̄d

)2

‖σ(X)‖ =
√√√√ m∑
i=1

(σd)2

Secondly, the Inter-cluster density is defined:

Dens_bw(C) = 1
k · (k − 1)

k∑
i=1

 k∑
j=1
i 6=j

δ(xij)
max |δ(ci), δ(cj)|

 (4.88)

(4.89)

where k is the number of clusters and δ is computed from the neighborhood of a data
point u:

δ(x) =
N∑
i=1

f(x, yi) (4.90)

with

f(x, y) =
{

0 if d(x, y) > stdev
1 otherwise (4.91)

where stdev is standard deviation computed over all clusters.
Then we can define S_Dbw validity index as follows:

fS_Dbw(C) = Scat(C) +Dens_bw(C) (4.92)

55

4. Clustering evaluation

4.2.30 The Ray-Turi index
This index is defined as ratio between sum of squared within cluster distances (Eq. 4.26)
and the minimal clusters distance.

Let us denote the minimal squared distances between all cluster centriods:

Dmin = min
k<k′

∆2
kk′ = min

k<k′
‖d(ck, ck′)‖2 (4.93)

So, then we can write the Ray-Turi index as [115]:

fRT(C) = 1
N

WGSS

Dmin

(4.94)

4.2.31 The Xie-Beni index
The Xie-Beni index [116] was originally proposed for case of fuzzy clustering, but is also
applicable to a crisp clustering.

It is defined as a quotient between the mean quadratic error and the minimum of
minimal squared distances between the items the clusters. The concept is very similar
to the Ray-Turi index (section 4.2.30), except the denominator part. In case of Xie-Beni
the minimal distance between any two items in clusters is used. This distance is usually
reffered as a single-link distance.

δSL(C,C ′) = min
xi∈C
xj∈C

′

d(xi,xj) (4.95)

Then, the Xie-Beni is defined as:

XB(C) = 1
N

WGSS

min
k<k′

δSL(Ck, Ck′)2 (4.96)

4.2.32 The PBM index
The PBM index [117] (name is an acronym constituted from initials of its authors, Pakhira,
Bandyopadhyay and Maulik) is calculated using the distances between the items and their
centroids and the distances between the centriod themselves.

Let us denote by Dmax the largest distance between two cluster centroids:

Dmax = max
k<k′

d(ck, ck′) (4.97)

56

4.2. Internal clustering validation

EW is the sum of distances of the instances to their cluster centroid and ET is the sum
of distances of all instances to the global centroid of whole dataset:

EW =
K∑
k=1

∑
x∈Ck

d(x, ck) (4.98)

ET =
N∑
i=1

d(xi,g) (4.99)

Then the PBM index is defined as:

fPBM =
(
Dmax

K

ET
EW

)2
(4.100)

4.2.33 Wemmert-Gancarski index
The Wemmert-Gançarski index [118] is computed from ratios between distances to cen-
troids. For a datapoint x beloging to a cluster Ck the R quotient is computed as ratio
between distance from this point to the center and distance to the closest centroid from
remaining clusters:

R(x) = ‖x− ck‖
min
k′ 6=k
‖x− ck‖

(4.101)

Then coefficient Jk is defined mean R in kth cluster Ck:

Jk = max

0, 1− 1
|Ck|

∑
xi∈Ck

R(xi)

 (4.102)

Finally the Wemmert-Gançarski index is defined as weighted mean of Jk quotients:

WG(C) = 1
N

K∑
k=1

Jk (4.103)

4.2.34 Overall deviation
Overall deviation is used to measure compactness of clustering. Sum of values for each
cluster gives the score. If we would optimize clustering algorithm just according to this
criteria the resulting clustering could have the same number of clusters as data points.
Which is obviously not a useful clustering (in fact that is what we have as input data).

57

4. Clustering evaluation

Table 4.4: Overview of external validation criteria, sorted alphabetically. The column
Concept tries to capture core idea behind each criterion.

Index Date Ref. Concept Opt. Short

AIC 1974 Sec. 4.2.1 likelihood min AIC

Ball-Hall 1965 Sec. 4.2.4 compactness min BH

Banfeld-Raftery 1993 Sec. 4.2.6 variance max BR

BIC 1978 Sec. 4.2.2 likelihood min BIC

C-index 1976 Sec. 4.2.15 compactness
separation min C

Calinski-Harabasz 1974 Sec. 4.2.5 variance max VRC

Compactness 2007 Sec. 4.2.35 compactness min com

Connectivity 2007 Sec. 4.2.36 connectedness max con

Davies-Bouldin 1979 Sec. 4.2.25 compactness
separation min DB

DetRatio 1967 Sec. 4.2.7 variance min dr

Dunn index 1974 Sec. 4.2.23 separation
compactness max dun

Dunn gen. 1998 Sec. 4.2.24 separation
compactness max GDI

Friedman 1967 Sec. 4.2.9 variance max fri

G+ 1974 Sec. 4.2.18 disconcordant pairs min G+

Gamma 1976 Sec. 4.2.17 (dis)concordant pairs max bhg

KsqDetW 1971 Sec. 4.2.11 variance max ksq

Krzanowski-Lai 1988 Sec. 4.2.14 variance max KL

Log Det Ratio 1971 Sec. 4.2.8 variance min ldr

Log SS Ratio 1975 Sec. 4.2.12 variance min lss

McClain-Rao 1975 Sec. 4.2.16 compactness
separation min McR

Overall deviation 2007 Sec. 4.2.34 compactness min dev

PBM 2004 Sec. 4.2.32 separation
compactness max PBM

PointBiserial 1949 Sec. 4.2.27 separation - compactness max PBS

Ratkowsky-Lance 1978 Sec. 4.2.26 variance max RL

Ray-Turi 1999 Sec. 4.2.30 compactness
separation min RT

Rubin 1967 Sec. 4.2.10 variance max rub
58

4.2. Internal clustering validation

Table 4.5: Second part of Table 4.4 with relative evaluation indexes overview.

Index Date Ref. Concept Opt. Short

S_Dbw 2001 Sec. 4.2.29 compactness
separation min SDb

SAS 2005 Sec. 4.2.37 compactness min SAS

SCS 2005 Sec. 4.2.34 compactness min SAS

Scott-Symons 1971 Sec. 4.2.13 variance max sct

Silhouette 1987 Sec. 4.2.20 compactness
separation max sil

Silhouette (no sqrt) 1987 Sec. 4.2.20 compactness
separation max siq

Simpl. Silhouette 2004 Sec. 4.2.21 compactness
separation max ss

Simpl. Silhouette Alt. 2004 Sec. 4.2.22 compactness
separation max ssa

SD index 2000 Sec. 4.2.28 compactness
separation min SD

Tau 1974 Sec. 4.2.19 (dis)concordant pairs max Tau

TraceW 1965 Sec. 4.2.3 variance max trw

Wemmert-Gançarski 2000 Sec. 4.2.33 compactness
separation max WG

Xie-Beni 1991 Sec. 4.2.31 compactness
separation min XB

Dev(C) =
∑
Ck∈C

∑
xi∈Ck

d(xi, ck) (4.104)

where ck is the centroid of cluster Ck, d(x, y) is a chosen distance function2. Sometimes
this measure is referred as variance criterion.

Handl and Knowles maximized overall deviation in multi-objective clustering together
with measurement called connectivity [56].

The same criterion uses Zhao et al. [119], except in their case only cosine distance is
considered. Sometimes it is called Sum of Centroid Similarities (SCS).

4.2.35 Compactness
In many cases a compact cluster is a sign of a good clustering. However the solution
preferred by user could be a compromise between compactness and e.g. connectedness of
clusters.

2e.g. Euclidean distance or any other function that suits the domain

59

4. Clustering evaluation

Compact(C) = 1
n
·
k∑
i=1
|Ci| ·

|Ci|−1∑
r=1

|Ci|∑
s=r+1

drs

|Ci| · (|Ci| − 1)
2

= 1
n
·
k∑
i=1

2 ·

|Ci|−1∑
r=1

|Ci|∑
s=r+1

drs

|Ci| − 1

drs is distance between points r-th and s-th point in cluster Ci. Compactness measures
average pairwise distance between points in the same cluster [6].

4.2.36 Connectivity
Connectivity [56] is reflecting connectedness of items in a cluster. Clusterings with low
value of connectivity might have arbitrary shapes (non-spherical shapes, unlike solutions
typically produced by algorithms like k-means). Connectivity evaluates the degree to which
neighbouring data-points have been placed in the same cluster. It is computed as:

Conn(C) =
N∑
i=1

 L∑
j=1

xi,nnij

 , (4.105)

where

xr,s =

1
j
, if @Ck : r ∈ Ck ∧ s ∈ Ck

0, otherwise,
nnij is the jth nearest neighbour of item i, N is the size of the data set and L is

a parameter determining the number of neighbours that contribute to he connectivity
measure.

4.2.37 Sum of Average Pairwise Similarities
Criterion I1 used by Zhao et al. [119]. Sums average within cluster distances using co-
sine distance. Originally proposed for document clustering where high dimensionality is
common, thus applying cosine distance is a natural choice.

SAS(C) =
K∑
k=1

1
|Ck|

∑
xi,xj∈Ck

cos(xi,xj) (4.106)

4.3 Summary
There are numerous cluster evaluation criteria described in the literature. This chapter
attempts to map some of the most popular. While the list is definitely not complete
it should give the reader some idea about various approaches to unsupervised clustering
evaluation.

60

4.3. Summary

From practical perspective it is necessary to consider objective’s computational com-
plexity. Evaluation measures based on counting disconcordant pairs (Gamma – Sec-
tion 4.2.17), G+ – Section 4.2.18 and Tau – Section 4.2.19) are the most expensive measures
where evaluating clustering result has polynomial complexity.

For computing s+ and s− values we have to perform many comparisons:

Nb ×Nw = N(N − 1)
2 ×

K∑
k=1

nk(nk − 1)
2 (4.107)

thus making these indexes infeasible for larger datasets, therefore these measures are
not included in further experiments.

Moreover there are no results available suggesting that such expensive measure would
bear more value than other measures.

61

Chapter 5
Cluster Ensembles

Cluster ensembles are aimed to combine different clustering techniques in order to provide
more robust and stable solution across different domains [120, 121, 122]. Although a
large number of clustering algorithms have been proposed in the literature (some of them
are described in 2.4), the No Free Lunch theorem suggests [123] that there is no single
clustering algorithm that would outperform the all the others on all datasets (clustering
could be seen as an optimization problem that is attempting to find optimal set of clusters
for given dataset). Each algorithm has its strengths for certain type of data, choosing
appropriate algorithm for given data could be extremely difficult even for a skilled user.
Automating algorithm selection could be done by ensemble techniques or by meta-learning
that is discussed in Chapter 6.

The main objective of cluster ensembles is to combine multiple clusterings into one,
preferably high-quality solution.

Let X = {x1, x2, . . . , xN} be a set of N data points, where each xi ∈ X is represented
by a vector of D attributes. A cluster ensemble is defined as Π = {π1, π2, . . . , πM} with
M clusterings. Each base clustering πi consists of a set of clusters πi = {Ci

1, C
i
2, . . . , C

i
ki
},

such that ∪ki
j=1C

i
j = X, where ki is the number of clusters in a given ensemble member (it

does not have to be the same for all members).

The problem is how to obtain a final clustering π∗ = {C∗1 , C∗2 , . . . , C∗K}, where K is the
number of clusters in the result and π∗ summarizes the information from ensemble Π.

The process consists of two major steps. Firstly, we need to generate a set of clustering
solutions and secondly we need to combine the information from these solutions. A typical
result of the ensemble process is a single clustering. It has been shown in supervised
ensembles that the best results are achieved when using a set of predictors whose errors are
dissimilar [124]. Thus it is desirable to introduce diversity between ensemble members [125].
Using random initialization of the same algorithm (e.g. k-means) is usually not sufficient
to introduce enough diversity into ensemble. The ensemble members might agree in most
cases, thus the overall improvement might be insignificant.

63

5. Cluster Ensembles

5.1 Ensemble Generation Strategies
Many approaches have been used to initialize clustering solutions in order to create an
ensemble that utilizes different cluster models and various data partitions.

◦ Homogeneous ensembles Base clusterings are created using repeated runs of a
single clustering algorithm with varying sets of parameters. This is quite a popular
approach, especially repeated runs of k-means with different center initialization have
been used in [120, 126, 127]. When using k-means the number of clusters is typically
fixed to d

√
ne, where n is the size of the dataset [128].

◦ Varying k Repeated runs of k-means with random initialization and k [126], a golden
standard is using k in the range from 2 to d

√
ne.

◦ Random subspacing/sampling An ensemble is created from base clusterings that
use different initial data. This could be achieved by projecting data onto different
subspaces [129], [130] choosing different subsets of features [80], [131], or using data
sampling techniques [132].

◦ Heterogeneous ensembles Diversity of solutions is introduced by applying dif-
ferent algorithms on the same dataset [133, 134]. The idea is that each algorithm
might be better at detecting certain cluster type, thus each cluster might be build
on different concept.

◦ Mixed heuristics Any combination of mentioned methods. E.g. [80] use several
clustering algorithms with multiple subspaces of data.

5.1.1 Consensus Functions
Having multiple clusterings in an ensemble, one needs to come to an agreement on number
of clusters and data points’ assignment. Many functions have been proposed to derive a
final clustering. When only one solution is considered as the result, it is usually referred
as a consensus function, unlike meta clustering where the output is a set of multiple
clusterings [6].

There are several approaches as to how to represent information contained in these
base clusterings, some use matrices while others use graph representation. Firstly there is
label-assignment matrix with dimensions N ×M that for each data point hold label for
each ensemble.

Another option is to represent associations using pairwise similarity matrix of size
N ×N . That is a symmetrical matrix with zeros on diagonal that counts data point pair
co-occurrences in the same cluster. E.g. for two data points (x1, x2) a value 2/3 would
mean that in two out of three evaluated ensembles these data points were in the same
cluster.

64

5.2. Cluster Ensemble Methods

Finally, binary cluster-association matrix could be used, where data points are in rows
and clusters from each ensemble member are in rows. Data points will be assigned 1 for
clusters where they are members. For all other clusters value is set to 0.

The main consensus approaches usually fall into one of these categories:

◦ Direct matching Approaches using some voting scheme that proved to be useful in
supervised learning domain [135].

◦ Pairwise similarities A pairwise similarity matrix is created and afterwards a clus-
tering algorithm (e.g. hierarchical agglomerative clustering) is applied to group to-
gether items that were most frequently together in the same cluster in all the base
clusterings [120]. The Cluster-based Similarity Partitioning Algorithm (CSPA) from
Strehl and Ghosh [80] uses METIS [136] for partitioning a similarity matrix into k
components.

◦ Feature-based approach The ensemble problem is formulated as categorical data
clustering. For each data point an m-dimensional vector containing labels in base
clusterings is created. The goal is to find a partition π∗ which summarizes the
information gathered from the partitions Π [137], [121], [138].

◦ Graph based Many methods use graph representation for capturing relationships
between base clusterings. Strehl and Ghosh [80] also proposed the HyperGraph-
Partitioning Algorithm (HGPA), where vertices correspond to data points and a
hyperedge represents clusters. Another approach chooses COMUSA [139] which in-
creases the weight of the edge for each occurrence of data pairs in the same cluster.
Afterwards the nodes are sorted by the attachment score, which is defined as the ratio
between the sum of the node’s weights and its number of incident edges. The nodes
with the highest attachment score are then used as a foundation for new clusters.
This approach is relatively fast to compute, however it might fail to capture complex
relationships between very diverse clusterings.

5.2 Cluster Ensemble Methods
Simple Voting Most methods falling into this category require the same number of clus-
ters for all ensemble members (clusterings). The process starts with creating a contingency
matrix Ω ∈ RK×K from reference πr and to-be relabeled πt partitions. Each entry Ω(l, l′)
that denotes number of co-occurrences between labels l ∈ πr and l

′ ∈ πt:

Ω(l, l′) =
N∑
n=1

ω(xi) (5.1)

where

ω(xi) =
{

1 if Cr(xi) = l ∧ Ct(xi) = l
′

0 otherwise.

65

5. Cluster Ensembles

Having Ω, the label correspondence is solved by maximizing:

K∑
l=1

K∑
l′=1

Ω(l, l′)Θ(l, l′) (5.2)

where Θ ∈ RK×K is another matrix representing correspondence amongst labels of
partitions πr and πt. An entry Θ(l, l′) = 1 if label l ∈ πr corresponds to l

′ ∈ πt, otherwise
Θ(l, l′) = 0.

According to Topchy et al. [140] the process is equivalent to maximum weight bipartite
matching. A solution to this optimization problem can be also found using the Hungarian
algorithm [141]. The algorithm has complexity O (n3).

Incremental Voting The incremental voting scheme is build by incrementally adding
ensemble members while updating statistics [142, 143]. A matrix N ×K is used to accu-
mulate frequency that a label is assigned to a data point.

Iterative Voting Consensus A feature-base method developed by Nguyen et al. [137]
aims to obtain the consensus partition π∗ of data points X from the label-assignment
matrix. In each iteration IVC estimates the center of each cluster by computing a majority
label for given set of points (cluster). After obtaining centers each data point is reassigned
to the closest cluster center, based on Hamming distance between M-dimensional data
points and cluster centers. The iterative process continues until there is no change in the
target clustering π∗.

Clustering Aggregation The idea of clustering aggregation [126] is to minimize dis-
agreement between ensemble members. A measure of disagreement between two clusterings
πa, πb ∈ Π with respect to two specific data points xi, xj ∈ X is defined as follows:

dxi,xj
(πa, πb) =

1 if (Ca(xi) = Ca(xj) ∧ Cb(xi) 6= Cb(xj))∨

(Ca(xi) 6= Ca(xj) ∧ Cb(xi) = Cb(xj))
0 otherwise.

where Ca(xi) denotes that the label is assigned to data point xi ∈ X.
Then the distance between two clusterings is defined as:

dX(πa, πb) =
∑

∀(xi,xj)∈X
dxi,xj

(πa, πb) (5.3)

The goal of aggregation clustering is to find a partition π∗ that minimize distance to
all ensemble members:

D(π∗) =
M∑
m=1

dX(πm, π∗) (5.4)

66

5.3. Summary

5.3 Summary
This chapter presents several clustering ensemble approaches that has been studies in the
literature. Described approaches usually manages to deliver more accurate partitions. De-
spite of higher computation complexity, cluster ensembles might find many applications
in areas where high quality partitions are required. Also in many cases tedious parame-
ter optimization of classical algorithms might not pay of, instead more efficient ensemble
approach can be applied.

The scope of users for ensemble techniques seems to be limited as there is very little
support for such algorithms in well-known data mining tools.

67

Chapter 6
AutoML Clustering

“Space. It seems to go on and on forever. But then you
get to the end and a gorilla starts throwing barrels at
you.”

— Futurama, Space Pilot 3000

Current data mining tools are characterized by a plethora of algorithms but a lack of
guidelines to select the right method according to the problem under analysis [144]. One of
most difficult tasks is to predict when an algorithm is better than the other to solve a given
problem [145]. Meta-learning approaches has been successfully applied supervised learning
domain [146], transferring similar approach to an unsupervised domain is a challenging
task.

The term meta-learning is typically used to describe automated process of obtaining
knowledge about performance of algorithms and adapting itself in case that the system is
presented again with the same task.

Every dataset might have very different underlying structure which is the reason why
some algorithms perform better at given dataset than other. However determining the
best matching structure of cluster is a challenging problem. A very simplified illustration
of various input data type is shown on Figure 6.1 (inspired by [147]). The general idea is
that we need to be able to describe connectedness and shape of clusters in order to be able
to choose appropriate algorithm with adequate configuration.

6.1 Meta-Search
Features describing the problem are usually called meta-features or meta-attributes. Such
features are either derived from an input data or relate to performance characteristic. A
meta-database is a storage for keeping a knowledge database to learn from previous data
exploration runs.

69

6. AutoML Clustering

Figure 6.1: A simplified vision of clustering subspaces. For each segment different algorithm
might perform better. A compact spherical cluster, on which k-means perform very well,
is the easiest one to detect.

A meta-learner is a system that is given a set of meta-features and based on them
predicts performance of given configuration (template) on data described by these features.
In context of supervised learning basic statistics describing the dataset are commonly used.
Examples of these statistics are: size of the dataset, number of attributes, correlation
between attributes or class entropy [148, 149]. The idea is to gather descriptors about the
data distribution that would correlate well with the perform of learned models [144].

Meta-features applicable to unsupervised learning can be divided into several groups.
Obviously class related features frequently used in supervised learning needs to be omitted:

◦ Simple descriptors, such as input data dimensions describing basic dataset struc-
ture [150, 151, 152, 153].

◦ Dimensionality reduction parameters from methods like PCA [154].

◦ Statistical features attempting to capture data distribution, such as the kurtosis [150].

◦ Landmarking features computed from running fast machine learning algorithms [151].

Using only basic statistics proved to be insufficient for unsupervised problems. For
numerical datasets the proposed meta-learning system is using following features:

70

6.2. Measuring similarity between clusterings

◦ log2N Input data size.

◦ log2D Number of attributes.

◦ AV – Average attribute variance (σ).

◦ CV – Coefficient of variation (CV) defined as the ratio of the standard deviation σ
to the attribute mean.

◦ CVQ1-4 Standard deviation of all attribute’s first quartiles divided by their means.

◦ SKEW – The Pearson median skewness

◦ KURT – Kurtosis (min,max, mean, std).

◦ KNN4 – Average distance to 4th nearest neighbor.

◦ N2ER – Node to edge ratio after k-NN graph bisection.

◦ PCA – Basic statistics of the principal component.

Besides commonly used features the system is using descriptors computed from k-NN
graph. Graph computation is quite expensive nonetheless the precomputed graph could
be later reused by several algorithms. Distance to 4th neighbor was proposed Sander et
al. [155] as part of a heuristic for determining optimal configuration for DBSCAN algorithm.
The KNN4 proved to have hight weight for base algorithm selection.

6.2 Measuring similarity between clusterings
One of key concepts in cluster analysis, is measuring similarity between clusterings. The
lack of universally applicable cluster validity score often makes the algorithm selection and
hyperparameter evaluation a tough guess [68]. Most of evaluation metrics were made on
same presumptions as the algorithms which are to be validated. This task seems to be very
natural, we would like to know which algorithm is giving more precise results. However
creating a universal measure that would be suitable for comparing any two clusterings
seems to be an impossible task.

Many different relative clustering validity criteria exist and new criteria have been pro-
posed from time to time. And also many comparative studies between different measures
has been published since 1980s. One of most extensive is work done by Milligan and
Cooper [93], however there are certain conceptual flaws in used methodology. Firstly, it
relies on the assumption that the accuracy of a criterion can be quantified by the num-
ber of times it indicates as the best partition. Another problem is that it relies on the
assumption that a mistake made by a certain validity criterion when assessing a collection
of candidate partitions of a data set can be quantified by the absolute difference between
the right (known) number of clusters in the data and the number of clusters contained in
the partition elected as the best one [19].

71

6. AutoML Clustering

Evaluation of clustering solutions is based on criteria described in Chapter 4. However
in order to obtain meaningful clusterings it is important to maintain a diversity in clustering
population. Diversity is defined using Normalized Mutual Information as:

Diversity(C,C′) = 1− NMI(C,C′) (6.1)

which ensures that the same clustering C would have Diversity(C,C) = 0.

6.3 Combining Internal Criteria
There has been many studies trying to compare and select optimal evaluation measure
[100, 93, 156, 157, 158, 19, 159]. Both Milligan [93] and later Shim [158] agreed that
one of the top performing indices is Calinski-Harabasz index (Section 4.2.5), nonetheless
both of the studies used artificially generated data that might not be enough to draw
conclusions for real-world scenarios. Previous works have shown that there is no single
cluster validation measure that would outperform the rest [109].

As Bezdek suggested [109] one possible approach to overcome limitations of single
validity criterion is to combine multiple criteria. Surprisingly not many researchers consider
combinations of clustering objectives.

Albalate et al. [160] proposed a method based on quantiles to detect optimal algorithm,
distance function and number of clusters using 5 arbitrary selected validation indexes. Best
configuration is decided based on simple voting.

Jaskowiak et al. [161] consider more systematic approach into combination of cluster-
ing criteria, their work presents probably most elaborated study in the clustering criteria
ensembles. The authors evaluate 28 internal validity measures, although many considered
criteria are highly correlated, thus one can hardly expect improvement in overall stabil-
ity and clustering quality. The study includes 18 variants of Dunn index (Section 4.2.23,
4.2.24) and 4 variants of Silhouette index (Section 4.2.20). Unlike Clustering ensembles
described in Chapter 5, ensembles of validation criteria are applied in the evaluation phase.

There are many ways how could be internal clustering criteria combined together.
Following sections describe combination strategies for aggregating clustering objectives.

6.3.1 Visual Comparison of Ranking Strategies
Ranking clustering results is important for ensemble approaches, evolutionary algorithms or
generally for any cluster analysis where more than one result need to be compared. In any
case such strategy should be based on a stable unsupervised criteria that is highly correlated
with a ranking made by a human. Obtaining a human-sorted clustering ranking would
be highly expensive and probably biased as well. Following experiments were conducted
on already labeled data, where as the expected (human) ranking is considered ranking
produced by an external criterion. Although there are multiple methods for computing

72

6.3. Combining Internal Criteria

(a) Ranking by an ideal objective (b) Ranking by Silhouette

Figure 6.2: Plots showing ranking abilities of unsupervised evaluation measures. Each
clustering is represented by one column where its height is proportional to supervised
metric and its position on x axis corresponds to ranking by an unsupervised objective
(best result should be placed left-most). Yellow bar represents clustering according to
labels (highest NMI possible) 6.2a Optimal ranking when the same objective is used on
both axes, green color indicates high correlation between objectives. Ideally first and third
quadrant should be empty. 6.2b Clusterings ranked by Silhouette, left-most dark bars
represent average solutions that are placed between top solutions while best solutions are
placed somewhere in middle near yellow bar (expected clustering).

external validation mentioned in Section 4.1 the differences are subtle when compared to
differences between rankings produced by various internal criteria (Section 4.2).

To demonstrate single criteria ranking abilities, series of benchmarks were performed
on a set of clusterings produced by 15 clustering algorithms with various configuration.
An ideal ranking criteria should be able to distinguish between good and bad results. As
a reference to “correct” ranking external class labels that are not used during clustering
process were used.

Figure 6.2 shows a ranking visualization. Each column represents a clustering result
and height of a column is proportional to a supervised metric (Adjusted Rand Index –
Section 4.1.1.2 or NMI – Section 4.1.2.1) and position on axis x corresponds to an un-
supervised sorting. Best results should be leftmost placed, worst result rightmost. In an
ideal case ranked clusterings would look like visualization on Figure 6.2a.

Using single (unsupervised) evaluation metric to rank a set of clusterings appears to be
a hard problem, that does not seem to have a universal solution. Judging simply by number
of proposed internal metrics, we can see that there does not seem to be any consensus in
the clustering literature either.

Figure 6.2b shows ranking by commonly used Silhouette criterion. Left-most boxes in

73

6. AutoML Clustering

black color represents clusterings considered as top results, while in reality such results
are worser than a median result. While Silhouette on Iris clusterings is unable to find top
results, remaining ranking is quite close to expected NMI ranking.

Ranking using Davies-Bouldin index [52] (Figure 6.4a) would place clusterings with low
NMI value next to items with high NMI value. Red columns signifies incorrect placement
as you can see in case of Log Det Ratio ranking on Figure 6.3c (on a green-black-red scale),
clusterings ranked as top results are basically worst ones in the set. This makes Log Det
Ratio or Dunn index (Figure 6.3d) unusable (at least for Iris data set) because we it can
not distinguish between good and bad solutions.

Looking at Figure 6.3a we can notice between top results on left side few false positive
results marked with red color, however the expected clustering (yellow bar) obtained high
AIC value. It should be noted that AIC does not project all results to a single value
but clusterings are almost evenly divided in the range, which is a necessary attribute of a
good evaluation metric (unlike Calinski-Harabasz on Figure 6.4b where most clusterings
are projected into a narrow interval).

From C-index [99] visualization on Figure 6.3b we can tell that clusterings with high
C-index would not correlate with high NMI values. Arguably best rankings can be found
on Figures 6.4c and 6.4d where clustering were ranked by PointBiserial respective by
Ratkowsky-Lance criterion. Both criteria does not rank highly expected clustering (marked
with yellow bar), however excel in ranking low-quality clusterings. It would be premature
to draw any hard conclusions from this observations, nonetheless the visualization could
be used to empathize the differences between commonly used clustering metrics.

Comparing different relative validation indexes is complicated for many reasons. First
of all, the absence of unanimous reference scale is not helping. Then, each index might
be suitable for different type of data. To demonstrate properties of relative clustering
validation indexes we have chosen a visualization because comparing an index with another
index is not illustrative enough. After seeing such results a reader might get impression
that a single objective function for ranking a set of clusterings does not exist. Apart
from simple toy datasets with well separated cluster it is hard to find single criterion that
correlates with external criteria.

6.3.2 Score-based Strategies
While the idea itself is fairly trivial the practical implementation requires score normal-
ization and finding a way how to turn a minimization problem into maximization (or the
other way round). This could be implemented by flipping values around their mean in
cases when all score values are known in advance. Adding newly evaluated clustering to a
set might require re-computation of all values. Vendramin et al. [70] proposed 4 strategies
for score based combination: Mean, Harmonic Mean, Mean-2 and Median.

As most internal clustering criteria have unbounded definition range (meaning that the
criterion might have value e.g. between 0 and∞), all score values needs to be normalized so
that all criteria contribute with the same weight. Moreover we replace all unknown values
by worst known value for given criterion on predefined set of clusterings we are about to

74

6.3. Combining Internal Criteria

(a) AIC (b) C-Index

(c) LogDet Ratio (d) Dunn

Figure 6.3: Visualization of Iris dataset clustering results ranking by internal validation in-
dex compared to external (supervised) validation index. Color of columns (on green-black-
red scale) signifies distance from expected placement (green – correct, black – misplaced
by half the scale, red – incorrect placement). Yellow column represents ideal clustering
done according to external labels.

75

6. AutoML Clustering

(a) Davies-Bouldin (b) Calinski-Harabasz

(c) PointBiserial (d) Ratkowsky-Lance

Figure 6.4: Visualization of Iris data set clustering results ranked by internal validation in-
dex compared to external (supervised) validation index. Color of columns (on green-black-
red scale) signifies distance from expected placement (green – correct, black – misplaced
by half the scale, red – incorrect placement). Yellow column represents ideal clustering
done according to external labels.

76

6.3. Combining Internal Criteria

evaluate. Finally the score value is scaled using Min-max normalization (Equation 2.4) to
range [1, 10] with best possible clustering having mean score equal to 1.

Mean Is simply computed as an arithmetic mean of all score outcomes.

Harmonic Mean Strongly penalize clusterings with at least one low score, given a score
vector s of size n:

hm(s) = n ·
(

n∑
i=1

1
si

)−1

(6.2)

where n is the number of objectives we are using for evaluation. In [70] the score is
demonstrated on an example where clustering with score vector (0.00, 1.00, 0.94) obtains
harmonic mean score 0.00. Although it is rather unclear how the operation of dividing by
zero is performed, described approach appears to annul harmonic score when one criterion
has 0.0 value. In the follow-up experiments each score is scaled to [1, 10] so that division by
zero is avoided. However after such modification the results might differ from [70] where
this method provides best results.

Mean-2 Aims to remove the most discrepant value, that might be result of possibly
inaccurate evaluation [70]. At least three criteria are needed in order to obtain meaningful
results.

Median Sort all normalized evaluations outcomes and take the median as result. Also
at least 3 criteria are needed.

6.3.3 Rank-base Strategies
Rank base strategies represent one way of avoiding a tricky score normalization, instead at-
tempts to aggregate ordering from multiple rankings. Given a ranked list τ = {C1,C2, . . . ,CM}
of M clusterings, the rank on an clustering C = τ(i) is the position i of C in τ . Starting
from 1 for the highest ranked clustering to M , for the worst clustering.

Borda count The Borda Count [162, 163] is a classical voting scheme. Given a list of
M elements, the last preference should be given 1 point, the second worst option 2 points,
etc. In our case the points are assigned in inversed order, but the principle remains the
same. Once all lists are ranked, the final rank for each element is computed as the mean
value.

Median rank Similar approach as Borda count, except instead of mean value for the
final rank, median is used.

77

6. AutoML Clustering

Reciprocal Rank Fusion The Reciprocal Rank fusion method (RRF) [164] uses simple
formula to aggregate ranks. Given a set of ranked lists T = {τ1, . . . , τt}, we compute RRF
for an element i as:

RRF (T (i)) =
∑
τ∈T

1
ε+ τ(i) (6.3)

where ε is a real-valued constant. The authors suggested a value ε = 60. The reasoning
behind the constant is to eliminate outliers.

6.3.3.1 Multi-objective Ranking

Maximizing just one of these criteria would probably lead to a trivial solution (each point is
a separate cluster). When using multi-objective criteria we usually want to have orthogonal
measures, so that we would maximize (or minimize) properties that are contradictory.

Figure 6.5 shows an example of a Pareto front where we are optimizing two objective
functions. Resulting Pareto front features equally good solutions from which we can not
choose single solution that would outperform all others.

Previous section demonstrates that a single internal evaluation metrics usually does
not rank clusterings as expected. Especially difficult is recognizing low quality clusterings.
To overcome this issue I developed a multi-objective ranking method.

The idea behind multi-objective ranking is fairly simple: a good clustering should
obtain good scores from multiple metrics. Ideally such metrics should be orthogonal. A
good example of such multi-objective approach is the Chameleon algorithm mentioned
earlier. However Chameleon uses a linear combination of two metrics (connectivity and
separation) that can be expressed as a single number. Such algorithm can perform well on
certain data type but it is hard to generalize for any data type. Also any modification to
the objective function might have unpredictable behavior. Generalization of such approach
turns out to be complicated.

Combining multiple existing clustering evaluation metrics is hard, as some metrics are
maximized, other minimized and hardly any metric has limited range of values. Pareto
optimization offers mechanism for combining objective functions where one can be max-
imized and other minimized. Nonetheless we end up with several Pareto fronts (similar
to front on Figure 6.5) where all solutions on the same Pareto front are considered to be
equal. Proposed multi-objective ranking algorithm requires at least 3 objectives (unsuper-
vised evaluation functions) where first 2 are used for building Pareto fronts and the last
one independently sorts each front.

Computing such ranking could become very expensive with continuous functions. In
case of clustering metrics the situation is much simplified and many comparisons can be
avoided. The method is designed for exploring large state spaces and only a top solutions
are kept sorted all the time. Remaining solutions are stored as an unsorted set.

Table 6.2 shows correlation between multi-objective rankings and expected supervised
NMI ranking. For most of the datasets the correlation is above 0.9 which is quite impressive

78

6.3. Combining Internal Criteria

Figure 6.5: An example of a Pareto optimization. Dots represents individual solutions
while on axis are shown objectives that we are trying to minimize. Typically ideal solution
is unreachable, solutions connected with red line are part of the Pareto front – all of them
are considered equally good.

in the area of unsupervised learning. When compared to correlations given by single
objective metrics in Table 6.1, we can see that there is always a multi-objective metric
that supersedes best single-objective ranking metric. The difference becomes even more
obvious when set of clustering to rank contains low-quality clusterings.

Although many studies [100, 109, 19] focus on selecting optimal clustering evaluation
criterion based on compactness/separation concept (see Table 4.4), a robust needs to con-
sider multiple concepts.

AIC or BIC criteria proved to be beneficial for the multi-objective optimization and in
combination with Silhouette, PointBiserial, Ratkowski-Lance can successfully navigate the
search to a set of high-quality clusterings. Although it is hard to find orthogonal clustering
objectives as a rule of thumb works using clustering evaluation based on completely different
concepts. Like AIC – information theory based criterion and any other criterion that uses
compactness (distances to cluster centroids).

79

6. AutoML Clustering

(a) AIC & Ratkowski-Lance (b) AIC & PointBiserial

Figure 6.6: Visualization of Iris dataset clustering results ranking by a multi-objective
ranking algorithm.

6.4 Comparing Ranking Strategies
Given the number of internal validation measures described before and number of ranking
strategies available, there are numerous ranking configurations. While choosing optimal
clustering algorithm and internal validation criteria is a difficult task for end-user, choosing
optimal ranking strategy and set of internal validation criteria is infeasible.

Each evaluated dataset has class labels and expected ranking is based on external
validation metric NMIsqrt. Any other external criteria could be used, all ranking were
evaluated against NMIsqrt, ARI, VI and V-Measure. For consistency reasons only NMIsqrt
results are reported. Although this scenario might seem unrealistic for a real-world dataset
it is essential to evaluate criterion selection on datasets with known labels before we try
to transfer the knowledge to unknown datasets. For evaluation of ranking strategies was
applied similar methodology to Jaskowiak et al. [161] approach. It can be summarized in
a few steps:

1. Generate various clusterings using a set of clustering algorithms while fulfilling cri-
teria for number of clusters d

√
Ne.

2. Compute the internal and external validity criteria for all clusterings.

3. Compute correlation between ranking computed by external and internal criteria.

4. Repeat the process in order to verify repeatability of results.

The clustering algorithms used in experiments included k-means [20], agglomerative hi-
erarchical clustering with several variants (single linkage, complete linkage, average linkage

80

6.5. AutoML Clustering

and Ward’s linkage), PAM [16], DBSCAN [46], CURE [39], Fast-Community [165], Chinese
Whispers [166], Affinity Propagation [167] and Chameleon 2 [54]. For non-deterministic
algorithms each run was repeated 5 times. Each algorithm was given certain CPU time
based on input data size, thus faster algorithms were more likely to be included in results.
During each run approximately 500 algorithm configurations were evaluated with randomly
initialized parameters. Many clusterings were rejected due to high number of clusters or
did not finish within given time limit. Resulting clusterings might were produced by unique
algorithm configuration, but might include clusterings with identical partitions.

As internal validation criteria were used 39 metrics described in Section 4.2. From
ranking strategies were evaluated single objective ranking, Borda count (combinations of 3
criteria), Harmonic Mean (combinations of 2 criteria), Mean (combinations of 2 criteria),
Mean-2 (combinations of 3 criteria), Reciprocal Rank Fusion - RRF (combinations of 2
criteria) and Multi-Objective Ranking - MO Rank (combinations of 3 criteria). That
makes altogether over 38k possible ranking configurations.

Results on flame, iris, jain and zoo dataset are shown in Table 6.3, 6.4, 6.5, 6.6, respec-
tively. There are large deviations between repeated results reported by the same strategy.
This is mostly caused by differences in quality and size during each run. Sometimes only
40 valid clusterings were found, while in other cases over 300 clusterings were evaluated.

Aggregation of correlations over different datasets is not meaningful under the No Free
Lunch theorem assumption. Performance data about internal validation serve as a training
set for internal criteria selection. E.g. on iris results in Table 6.4 we can observe frequent
appearances of certain criteria: Scott-Symons (sct), Ball-Hall (BH), Banfeld-Raftery (BR)
that seems to agree with single-objective correlations in Figure 6.8 for iris dataset. It
should be noted that internal criteria ensembles performed better on all tested datasets
than single criterion ranking method.

6.5 AutoML Clustering
The AutoML Clustering exploration algorithm is based on a ability to rank a population
of clusterings as was described in Section 6.3. A high-level scheme of the process is shown
on Figure 6.7. As in case any other meta-learning system, proper functionality requires
trained predictors. The effectiveness of meta-learner increases the more data has processed.
Firstly meta-features described in Section 6.1 are extracted from the input dataset.

6.5.1 Internal Metric Selection
Before starting clustering space exploration a set of evaluation metrics needs to be specified.
These criteria are either given by the user or automatically predicted from meta-features.
The space of possible multi-objective ranking metrics is extremely large – around 38k pos-
sible configurations. Nonetheless many configurations are highly correlated or suboptimal
and can be easily avoided when predictor for ranking metrics is used. Figure 6.8 is a visual
confirmation of No Free Lunch theorem [123] for internal clustering validation: there is no

81

6. AutoML Clustering

Figure 6.7: AutoML meta-search pipeline.

single criteria that would outperform all other criterion on all datasets. There are several
distinguishable clusters of datasets like chainlink, jain (see Appendix A, Figure A.1d, Fig-
ure A.2d) that are based on different notion of cluster than e.g. iris and ds-850 datasets.
The first group has curved shapes and clusters based on connectedness in certain dimen-
sions while the latter one contains compact and well-separated clusters. As expected for
each group different set of internal validation measures performs well. Identifying meta-
features that would correlate with suitability of internal metric is a crucial step towards
automated clustering.

Figure 6.9 shows result of AutoML process when incorrect ranking function is used.
While on Figure 6.10 ranking function includes as on of the measures Connectivity. We
can see that the top-left clustering is very close to expected labeling (see Appendix A,
Figure A.2b for expected Flame dataset labels). Evaluation criterion with notion of con-
nectedness are needed for clusters that are not just round and compact.

6.5.2 Exploration
After setting up ranking, landmarking process is initiated. Landmarking runs mostly fast
algorithms (e.g. k-means) and remaining of the initial clustering population is filled with
clusterings produced by top-N configurations from the meta-database.

Each clustering is evaluated and meta-data such as runtime and unsupervised evaluation
metrics are stored in the meta-database. Before accepting a clustering into main population
several validations for ensuring correctness of clustering are performed. Also new solution
needs to meet minimal diversity-threshold against all solutions in current population. The
default threshold value is 0.1 and can be adjusted by user. This way we are making
sure that we would obtain different views on the data instead of getting multiple similar
clusterings produced by different algorithms.

Finally the algorithm reaches exploration phase. As in case of simulated annealing, at
the beginning there is higher probability of accepting bigger changes or starting algorithm
with higher complexity, meta-search also tends not to make large modification while getting
closer to given limit. The parameters of each clustering might be very different. Unlike
simple evolution with containing individuals with fixed binary encoded genom, in case of
clustering each mutation must be done while considering parameter range for the base

82

6.5. AutoML Clustering

Figure 6.8: The heatmap shows ranking correlation between ranking of hierarchical clus-
tering results by NMI and unsupervised metrics on various clustering datasets used in the
literature.

83

6. AutoML Clustering

Algorithm 6.1 AutoML Clustering
1: procedure AutomlClustering(dataset)
2: extract meta-features
3: choose ranking metric(s)
4: landmarking - run fast templates
5: find top-N templates based on meta-features
6: rank clusterings
7: while max. explored states not reached or time limit not reached do
8: expand top performing templates
9: ensemble diverse clusterings
10: remove worst solution from population
11: end while
12: end procedure

Figure 6.9: AutoML clustering using AIC and PointBiSerial for multi-objective search.
Top-left clustering is supposed to be the best one, obviously this combination of objectives
is not optimal.

algorithm. Thus implementing crossover for clustering algorithms would not be trivial.
Currently the AutoML clustering search is mutating only single parameter at the time, as
many algorithm are sensitive to even small changes and the evaluation function behaves
more like in case of a discrete optimization problem. The initial version of the algorithm
was inspired by NSGA-II [59].

84

6.6. Summary

Figure 6.10: AutoML clustering using AIC and Connectivity for multi-objective search. It
is apparent that Connectivity is better objective for curved-shaped clusters. The top-left
solution (the best result found) is very close to human judgement (NMI = 0.91).

6.6 Summary
Implemented AutoML clustering algorithm is able to find reasonable clusterings while
navigating through wast clustering space. The meta-search process is able to eliminate
invalid clusterings and for many datasets produce high-quality solutions, while minimizing
the number of evaluated states. Choosing the appropriate clustering is up to the end-user.

85

6. AutoML Clustering

Table 6.1: Average correlation between NMI ranking and best single-objective ranking
of 200 clusterings with varying quality (no limitation on number of clusters) on datasets
commonly used in the literature. See Appendix A for more information about datasets.

Dataset Best single-objective ranking Correlation
aggregation Deviation 0.84
atom AIC 0.81
chainlink PointBiserial 0.83
compound PointBiserial 0.85
dermatology Friedman 0.83
dpc Dunn 0.85
ds-577 Deviation 0.85
ds-850 TrcovW 0.81
ecoli Log-SS-Ratio 0.84
flame SCS 0.94
glass SAPS 0.82
ionosphere Rubin 0.82
iris Compactness 0.91
jain PointBiserial-Norm 0.82
long1 PointBiserial 0.61
longsquare AIC 0.82
lsun TraceW 0.85
new-thyroid Log-SS-Ratio 0.85
pathbased Friedman 0.83
spiralsquare TrcovW 0.69
target TrcovW 0.84
triangle1 PointBiserial-Norm 0.82
twodiamonds PointBiserial 0.85
wine Ratkowsky-Lance 0.81
wingnut PointBiserial 0.83
zelnik4 McClain-Rao 0.84
zoo SAPS 0.81

86

6.6. Summary

Table 6.2: Average correlation between NMI ranking and best multi-objective ranking of
200 clusterings with varying quality. See Appendix A for more information about datasets.

Dataset Best MO ranking Correlation
aggregation Compactness & TraceW & TrcovW 0.92
atom PointBiserial & PointBiserial-Norm & AIC 0.96
chainlink AIC & BIC & C-index 0.95
compound Friedman & TraceSM & PointBiserial 0.90
d31 Banfeld-Raftery & Compactness & AIC 1.00
dermatology Rubin & SSE & AIC 0.98
dpc Silhouette-simpl & TraceSM & PointBiserial-Norm 0.85
ds-577 AIC & BIC & C-index 0.94
ds-850 AIC & BIC & AIC 0.96
ecoli KsqDetW & Silhouette-simpl & Scott-Symons 0.97
flame Banfeld-Raftery & SAPS & SCS 0.92
glass PointBiserial & PointBiserial-Norm & AIC 0.97
ionosphere Friedman & Ratkowsky-Lance & AIC 1.00
iris Banfeld-Raftery & SSE & Connectivity 0.97
jain DetRatio & Log-Det-Ratio & AIC 0.97
long1 Scott-Symons & TraceW & Connectivity 0.84
longsquare McClain-Rao & TraceW & Deviation 0.93
lsun DetRatio & Log-Det-Ratio & C-index 0.98
new-thyroid Rubin & SSE & AIC 0.99
pathbased Rubin & SSE & TrcovW 0.95
smile1 Rubin & SSE & AIC 0.97
sonar Compactness & Rubin & HCS 0.82
spiralsquare Silhouette & Silhouette-sqrt & KsqDetW 0.91
target PointBiserial & PointBiserial-Norm & AIC 0.99
triangle1 Ball-Hall & TraceW & PointBiserial-Norm 0.98
twodiamonds DetRatio & Log-Det-Ratio & C-index 0.96
wine TraceW & TrcovW & AIC 0.93
wingnut PointBiserial & PointBiserial-Norm & C-index 0.95
zelnik4 AIC & BIC & AIC 0.96
zoo Rubin & SSE & AIC 0.96

87

6. AutoML Clustering

Table 6.3: Ranking strategies comparison on flame dataset. Table shows best average
correlations computed to a ranking computed by an external validation NMIsqrt on 10
independent runs. Each run included 40 to 240 clusterings having k <

√
N found by

diverse algorithms within a time limit. Table shows best performing strategies from 38k
evaluated approaches. Abbreviations for internal criteria can be found in Table 4.4 and
4.5.

Method Objectives Correlation σ

MO Rank C,PBS,SCS 0.221 0.222
MO Rank fri,PBM,SD 0.211 0.209
MO Rank McR,RT,siq 0.209 0.251
Mean-2 McR,ssa,WG 0.206 0.268
Mean-2 fri,RL,RT 0.206 0.235
Mean-2 C,ksq,trw 0.205 0.204
Median dun,fri,XB 0.205 0.250
Median RL,SAS,tsm 0.204 0.183
Median dev,ksq,tsm 0.203 0.232
Mean-2 C,McR,XB 0.203 0.212
Median ldr,McR,PBS 0.202 0.250
Mean-2 McR,ss,ssa 0.202 0.274
MO Rank PBM,RL,SAS 0.202 0.230
Median dun,fri,ldr 0.202 0.253
Harmonic Mean VRC,McR 0.201 0.298
Median fri,lsr,ss 0.201 0.193
Mean C,PBS 0.201 0.214
Mean dev,McR 0.200 0.301
Median BR,fri,McR 0.200 0.259
Median dev,ksq,SCS 0.200 0.254
Mean-2 C,PBM,XB 0.200 0.224
Median fri,PBS,RL 0.200 0.238
MO Rank fri,PBM,tcw 0.200 0.181
Mean-2 fri,McR,RL 0.199 0.245
Median VRC,fri,lsr 0.198 0.237
Mean-2 C,dun,XB 0.198 0.190
Mean-2 C,VRC,XB 0.198 0.236
Median lsr,McR,SSE 0.197 0.227

88

6.6. Summary

Table 6.4: Ranking strategies comparison on iris dataset. Table shows best average correla-
tions computed to a ranking computed by an external validation NMIsqrt on 10 independent
runs. Each run included 60 to 300 clusterings having k <

√
N found by diverse algorithms

within a time limit. Table shows best performing strategies from 38k evaluated approaches.
Abbreviations for internal criteria can be found in Table 4.4 and 4.5.

Method Objectives Correlation σ

MO Rank AIC,SDb,SD 0.185 0.233
MO Rank dun,sct,ssa 0.185 0.195
Harmonic Mean BR,XB 0.182 0.155
Mean-2 fri,McR,sil 0.176 0.182
Mean-2 com,RL,XB 0.173 0.211
MO Rank SDb,sct,XB 0.172 0.213
Mean dun,fri 0.171 0.172
MO Rank BH,SDb,ss 0.170 0.154
Mean-2 PBM,SAS,XB 0.168 0.149
Harmonic Mean BR,PBS 0.168 0.163
Median BH,BR,WG 0.168 0.172
Median lsr,sil,XB 0.167 0.172
Median BR,DB,SDb 0.166 0.196
Median BR,SAS,WG 0.165 0.177
MO Rank BH,SDb,ssa 0.165 0.232
Mean-2 BR,lsr,siq 0.164 0.160
Mean-2 PBM,RL,XB 0.164 0.181
MO Rank dun,sct,SAS 0.164 0.186
Median fri,RL,SCS 0.163 0.137
MO Rank VRC,siq,SSE 0.163 0.149
Mean-2 VRC,RL,ssa 0.163 0.179
Median lsr,RL,XB 0.162 0.178
Harmonic Mean lsr,PBS 0.162 0.193
Median McR,ss,SAS 0.160 0.175
Mean-2 DB,PBM,SSE 0.160 0.183
MO Rank rub,SSE,tsm 0.160 0.179
MO Rank BH,lsr,SCS 0.159 0.199
Median BR,com,WG 0.159 0.154
Mean-2 BIC,DB,WG 0.159 0.123

89

6. AutoML Clustering

Table 6.5: Ranking strategies comparison on jain dataset. Table shows best average cor-
relations computed to a ranking computed by an external validation NMIsqrt on 10 inde-
pendent runs. Each run included 71 to 292 clusterings having k <

√
N found by diverse

algorithms within a time limit. Table shows best performing strategies from 38k evaluated
approaches. Abbreviations for internal criteria can be found in Table 4.4 and 4.5.

Method Objectives Correlation σ

Mean-2 sct,ssa,WG 0.347 0.252
Mean-2 BIC,tcw,WG 0.346 0.207
Mean-2 C,RL,tcw 0.340 0.221
Median BR,SDb,SAS 0.336 0.190
Mean-2 AIC,sil,ssa 0.334 0.221
MO Rank con,PBS,SD 0.333 0.116
Mean-2 BH,BR,SDb 0.329 0.209
Mean-2 AIC,PBM,ssa 0.329 0.260
Mean-2 SDb,siq,tsm 0.325 0.201
MO Rank con,SD,ssa 0.324 0.204
Median BIC,BH,ldr 0.322 0.172
Mean-2 AIC,ssa,WG 0.322 0.252
MO Rank con,PBS,WG 0.319 0.189
Mean-2 dr,tsm,WG 0.317 0.219
Mean-2 BIC,ssa,WG 0.315 0.257
Mean SD,trw 0.315 0.188
Mean-2 BH,SDb,sct 0.314 0.230
Median BH,BR,dr 0.314 0.228
MO Rank PBS,RL,tsm 0.312 0.186
Mean-2 BIC,PBM,ssa 0.312 0.248
Mean-2 BIC,BH,ldr 0.309 0.224
Median BR,ldr,WG 0.306 0.203
Median BR,com,SDb 0.305 0.202
Median BH,BR,ldr 0.304 0.160
Mean-2 RL,tsm,tcw 0.304 0.182
Mean-2 BH,BR,dr 0.304 0.255
Harmonic Mean BH,SDb 0.304 0.295
Mean-2 sct,sil,ssa 0.304 0.235
Median dr,tsm,WG 0.303 0.188

90

6.6. Summary

Table 6.6: Ranking strategies comparison on zoo dataset. Table shows best average correla-
tions computed to a ranking computed by an external validation NMIsqrt on 10 independent
runs. Each run included 60 to 200 clusterings having k <

√
N found by diverse algorithms

within a time limit. Table shows best performing strategies from 38k evaluated approaches.
Abbreviations for internal criteria can be found in Table 4.4 and 4.5.

Method Objectives Correlation σ

MO Rank sil,SAS,WG 0.227 0.183
MO Rank sil,SCS,WG 0.208 0.224
MO Rank BH,lsr,SDb 0.196 0.141
MO Rank sil,SAS,SSE 0.193 0.202
MO Rank BR,dun,RL 0.187 0.124
Median ldr,lsr,WG 0.185 0.144
Mean-2 com,DB,dun 0.184 0.116
MO Rank lsr,PBS,SD 0.182 0.171
MO Rank BR,ss,WG 0.182 0.173
MO Rank com,ss,WG 0.180 0.214
Mean-2 PBM,trw,WG 0.178 0.107
Median BR,PBS,sil 0.175 0.223
Mean-2 SD,ss,ssa 0.171 0.223
Median PBS,ss,WG 0.170 0.140
Mean-2 dev,lsr,RT 0.170 0.132
Mean-2 BIC,dun,PBS 0.170 0.229
Median VRC,sil,SAS 0.170 0.194
MO Rank BR,dun,SAS 0.168 0.103
Median PBS,siq,WG 0.168 0.138
Mean-2 SDb,SD,ss 0.167 0.175
Mean-2 dr,PBS,SCS 0.167 0.216
Median VRC,ldr,SCS 0.165 0.212
Median VRC,com,sil 0.165 0.200
MO Rank com,dun,ssa 0.164 0.141
Median BH,VRC,sil 0.164 0.190
Mean-2 DB,dun,ksq 0.164 0.133
Mean-2 PBS,SD,ss 0.164 0.191
Median dr,PBS,SCS 0.163 0.195
Median DB,McR,XB 0.163 0.110

91

Chapter 7
Conclusions

7.1 Summary
This dissertation deals with advances in the automation of data-mining processes, more
specifically with unsupervised clustering algorithms, their configuration and evaluation of
clustering results.

7.2 Contributions of the Dissertation Thesis
This dissertation contributes to multiple areas that concerns clustering analysis.

Firstly, the Chameleon 2 algorithms push the boundaries of existing clustering algo-
rithms with human-like clustering capabilities. Chameleon 2 uses a fine-tuned linear com-
bination of two clustering objectives, thanks to which the algorithm is able to recognize
connected clusters of various shapes.

In the area of clustering evaluation, the introduction of multi-objective ranking signifi-
cantly improves the quality of discovered clusterings. Using multiple objectives turns out
to be beneficial especially for low quality clusterings generated by various search methods.
A visual method for inspecting ranking has also been developed.

Finally the AutoML framework has been introduced and shows promising results on
clustering benchmarks. This method should simplify data clustering and will help discover
an effective configuration for a given dataset.

7.3 Future Work
The author of the dissertation thesis suggests that future research should:

◦ Explore automated clustering methods on larger datasets with special stress on com-
puting effectiveness.

93

7. Conclusions

◦ Consider using data subsamples for the meta-search and afterwards running full data
clustering on the original dataset.

◦ Publish AutoML results with a concise benchmark suite.

94

Bibliography

[1] Jain, A. K.; Dubes, R. C. Algorithms for clustering data. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1988, ISBN 0-13-022278-X.

[2] Boongoen, T.; Iam-On, N. Cluster ensembles: A survey of approaches with recent
extensions and applications. Computer Science Review, volume 28, 2018: pp. 1–25.

[3] Barton, T. An Evolutionary approach for exploring clustering subspaces . Technical
report, Faculty of Information Technology, Thakurova 9, 2013.

[4] Han, J.; Kamber, M. Data mining: concepts and techniques. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2000, ISBN 1-55860-489-8.

[5] Bifulco, I.; Fedullo, C.; Napolitano, F.; et al. Global optimization, meta clustering
and consensus clustering for class prediction. In Proceedings of the 2009 international
joint conference on Neural Networks, IJCNN’09, Piscataway, NJ, USA: IEEE Press,
2009, ISBN 978-1-4244-3549-4, pp. 1463–1470.

[6] Caruana, R.; Elhawary, M.; Nguyen, N.; et al. Meta Clustering. In Proceedings of
the Sixth International Conference on Data Mining, ICDM ’06, Washington, DC,
USA: IEEE Computer Society, 2006, ISBN 0-7695-2701-9, pp. 107–118, doi:10.1109/
ICDM.2006.103.

[7] Tan, P.; Steinbach, M.; Kumar, V. Introduction to Data Mining. Addison Wesley,
first edition, May 2005, ISBN 0321321367.

[8] Jiang, D.; Tang, C.; Zhang, A. Cluster analysis for gene expression data: a survey.
IEEE Transactions on knowledge and data engineering, volume 16, no. 11, 2004: pp.
1370–1386.

[9] Ngai, E. W.; Xiu, L.; Chau, D. C. Application of data mining techniques in customer
relationship management: A literature review and classification. Expert systems with
applications, volume 36, no. 2, 2009: pp. 2592–2602.

95

Bibliography

[10] Bhatia, S. K.; Deogun, J. S. Conceptual clustering in information retrieval. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, volume 28,
no. 3, 1998: pp. 427–436.

[11] Tao, H.; Huang, T. S. Color image edge detection using cluster analysis. In Image
Processing, 1997. Proceedings., International Conference on, volume 1, IEEE, 1997,
pp. 834–836.

[12] Henry, D. B.; Tolan, P. H.; Gorman-Smith, D. Cluster analysis in family psychology
research. Journal of Family Psychology, volume 19, no. 1, 2005: p. 121.

[13] Kim, K.-j.; Ahn, H. A recommender system using GA K-means clustering in an
online shopping market. Expert systems with applications, volume 34, no. 2, 2008:
pp. 1200–1209.

[14] Sheppard, A. G. The sequence of factor analysis and cluster analysis: Differences in
segmentation and dimensionality through the use of raw and factor scores. Tourism
Analysis, volume 1, no. 1, 1996: pp. 49–57.

[15] Kumar, V. An Introduction to Cluster Analysis for Data Mining.
February 2000. Available from: http://www.cs.umn.edu/~han/dmclass/
cluster_survey_10_02_00.pdf

[16] Kaufman, L.; Rousseeuw, P. J. Finding Groups in Data: An Introduction to Cluster
Analysis. A John Wiley & Sons, Inc., 1990.

[17] Weisstein, E. W. Euclidean Metric. MathWorld – A Wolfram Web Resource, 1999.
Available from: http://mathworld.wolfram.com/EuclideanMetric.html

[18] Jain, A. K.; Murty, M. N.; Flynn, P. J. Data clustering: a review. ACM computing
surveys (CSUR), volume 31, no. 3, 1999: pp. 264–323.

[19] Vendramin, L.; Campello, R.; Hruschka, E. R. On the comparison of relative cluster-
ing validity criteria. In Proceedings of the SIAM International Conference on Data
Mining, SIAM, 2009, pp. 733–744.

[20] MacQueen, J. B. Some Methods for Classification and Analysis of MultiVariate Ob-
servations. In Proc. of the fifth Berkeley Symposium on Mathematical Statistics and
Probability, volume 1, edited by L. M. L. Cam; J. Neyman, University of California
Press, 1967, pp. 281–297.

[21] Dempster, A. P.; Laird, N. M.; Rubin, D. B. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 1977: pp. 1–38.

[22] Lloyd, S. Least squares quantization in PCM. Information Theory, IEEE Transac-
tions on, volume 28, no. 2, 1982: pp. 129–137.

96

http://www.cs.umn.edu/~han/dmclass/cluster_survey_10_02_00.pdf
http://www.cs.umn.edu/~han/dmclass/cluster_survey_10_02_00.pdf
http://mathworld.wolfram.com/EuclideanMetric.html

Bibliography

[23] Manning, C.; Raghavan, P.; Schutze, H. Introduction to information retrieval, vol-
ume 16. Cambridge university press, 2010.

[24] Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Pro-
ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[25] Elkan, C. Using the triangle inequality to accelerate k-means. In MACHINE
LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-, volume 20,
2003, p. 147.

[26] Kanungo, T.; Mount, D. M.; Netanyahu, N. S.; et al. An efficient k-means clustering
algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis &
Machine Intelligence, volume 1, no. 7, 2002: pp. 881–892.

[27] Ng, R. T.; Han, J. Efficient and Effective Clustering Methods for Spatial Data
Mining. In Proceedings of the 20th International Conference on Very Large Data
Bases, VLDB ’94, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1994, ISBN 1-55860-153-8, pp. 144–155. Available from: http://portal.acm.org/
citation.cfm?id=645920.672827

[28] Karypis, G.; Han, E.; Kumar, V. Chameleon: Hierarchical Clustering Using Dynamic
Modeling. Computer, volume 32, no. 8, August 1999: pp. 68–75, ISSN 0018-9162.

[29] Cheng, Y. Mean shift, mode seeking, and clustering. IEEE transactions on pattern
analysis and machine intelligence, volume 17, no. 8, 1995: pp. 790–799.

[30] Aggarwal, C. C.; Reddy, C. K. (editors). Data Clustering: Algorithms and Applica-
tions. CRC Press, 2013, ISBN 978-1-46-655821-2.

[31] Kohonen, T. Self-organized formation of topologically correct feature maps. Biological
Cybernetics, volume 43, no. 1, Jan 1982: pp. 59–69, ISSN 0340-1200, doi:10.1007/
BF00337288.

[32] Furukawa, T. SOM of SOMs. Neural Networks, volume 22, no. 4, 2009: pp. 463–478.

[33] Tokunaga, K.; Furukawa, T. Modular network SOM. Neural Networks, volume 22,
no. 1, 2009: pp. 82–90.

[34] Bramer, M. Principles of Data Mining. Springer, 2007, ISBN 1-84628-765-0.

[35] Ward, J. H. Hierarchical Grouping to Optimize an Objective Function. Journal of
the American Statistical Association, volume 58, no. 301, 1963: pp. 236–244.

[36] Lance, G. N.; Williams, W. T. A General Theory of Classificatory Sorting Strate-
gies. The Computer Journal, volume 9, no. 4, 1967: pp. 373–380, http://
comjnl.oxfordjournals.org/content/9/4/373.full.pdf+html.

97

http://portal.acm.org/citation.cfm?id=645920.672827
http://portal.acm.org/citation.cfm?id=645920.672827
http://comjnl.oxfordjournals.org/content/9/4/373.full.pdf+html
http://comjnl.oxfordjournals.org/content/9/4/373.full.pdf+html

Bibliography

[37] Sibson, R. SLINK: an optimally efficient algorithm for the single-link cluster method.
The computer journal, volume 16, no. 1, 1973: pp. 30–34.

[38] Defays, D. An efficient algorithm for a complete link method. The Computer Journal,
volume 20, no. 4, 1977: pp. 364–366.

[39] Guha, S.; Rastogi, R.; Shim, K. CURE: an efficient clustering algorithm for large
databases. In ACM SIGMOD Record, volume 27, ACM, 1998, pp. 73–84.

[40] Figueiredo, M. A. T.; Jain, A. K. Unsupervised learning of finite mixture models.
IEEE Transactions on Pattern Analysis & Machine Intelligence, volume 1, no. 3,
2002: pp. 381–396.

[41] Kleinbaum, D. G.; Klein, M. Maximum likelihood techniques: An overview. In Lo-
gistic regression, Springer, 2010, pp. 103–127.

[42] Banfield, J. D.; Raftery, A. E. Model-based Gaussian and non-Gaussian clustering.
Biometrics, volume 49, 1993: pp. 803–821.

[43] Park, H.; Ozeki, T. Singularity and slow convergence of the EM algorithm for gaus-
sian mixtures. Neural processing letters, volume 29, no. 1, 2009: pp. 45–59.

[44] (ed. Nong Ye), J. G. Handbook of Data Mining, chapter 10. Lawrence Ealbaum
Assoc., 2003, pp. 247–277.

[45] Jarvis, R. A.; Patrick, E. A. Clustering using a similarity measure based on shared
near neighbors. Computers, IEEE Transactions on, volume 100, no. 11, 1973: pp.
1025–1034.

[46] Ester, M.; Kriegel, H.; Sander, J.; et al. A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In KDD, edited by E. Simoudis;
J. Han; U. M. Fayyad, AAAI Press, 1996, ISBN 1-57735-004-9, pp. 226–231.

[47] Gan, J.; Tao, Y. DBSCAN revisited: mis-claim, un-fixability, and approximation. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, ACM, 2015, pp. 519–530.

[48] Campello, R. J.; Moulavi, D.; Sander, J. Density-based clustering based on hierar-
chical density estimates. In Pacific-Asia conference on knowledge discovery and data
mining, Springer, 2013, pp. 160–172.

[49] Campello, R. J.; Moulavi, D.; Zimek, A.; et al. Hierarchical density estimates for
data clustering, visualization, and outlier detection. ACM Transactions on Knowledge
Discovery from Data (TKDD), volume 10, no. 1, 2015: p. 5.

[50] Karypis, G.; Aggarwal, R.; Kumar, V.; et al. Multilevel Hypergraph Partitioning:
Applications in VLSI Domain. IEEE Trans. Very Large Scale Integr. Syst., volume 7,
no. 1, Mar. 1999: pp. 69–79, ISSN 1063-8210, doi:10.1109/92.748202.

98

Bibliography

[51] Karypis, G.; Kumar, V. Multilevel k-way Hypergraph Partitioning. In DAC, 1999,
pp. 343–348.

[52] Davies, D. L.; Bouldin, D. W. A cluster separation measure. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, volume 1, no. 2, 1979: pp. 224–227.

[53] Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Communications
in Statistics-theory and Methods, volume 3, no. 1, 1974: pp. 1–27.

[54] Barton, T.; Bruna, T.; Kordik, P. Chameleon 2: An Improved Graph-Based Clus-
tering Algorithm. ACM Transactions on Knowledge Discovery from Data (TKDD),
volume 13, no. 1, 2019: p. 10.

[55] Handl, J.; Knowles, J. Evolutionary Multiobjective Clustering. Parallel Problem Solv-
ing from Nature - PPSN VIII, 2004: pp. 1081–1091.

[56] Handl, J.; Knowles, J. An evolutionary approach to multiobjective clustering. Evo-
lutionary Computation, IEEE Transactions on, volume 11, no. 1, 2007: pp. 56–76.

[57] Corne, D.; Jerram, N.; Knowles, J.; et al. PESA-II: region-based selection in evolu-
tionary multiobjective optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), 2001.

[58] Faceli, K.; de Souto, M. C. P.; de Araujo, D. S. A.; et al. Multi-objective clustering
ensemble for gene expression data analysis. Neurocomputing, volume 72, no. 13-15,
2009: pp. 2763–2774.

[59] Deb, K.; Pratap, A.; Agarwal, S.; et al. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, volume 6,
no. 2, 2002: pp. 182–197, doi:10.1109/4235.996017.

[60] Demiriz, A.; Bennett, K. P.; Embrechts, M. J. A genetic algorithm approach for semi-
supervised clustering. International Journal of Smart Engineering System Design,
volume 4, no. 1, 2002: pp. 21–30.

[61] Wagstaff, K.; Cardie, C.; Rogers, S.; et al. Constrained k-means clustering with back-
ground knowledge. In MACHINE LEARNING-INTERNATIONAL WORKSHOP
THEN CONFERENCE-, 2001, pp. 577–584.

[62] Basu, S.; Banerjee, A.; Mooney, R. Semi-supervised clustering by seeding. In
MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-
, 2002, pp. 19–26.

[63] Davidson, I.; Wagstaff, K. L.; Basu, S. Measuring constraint-set utility for parti-
tional clustering algorithms. In European conference on principles of data mining
and knowledge discovery, Springer, 2006, pp. 115–126.

99

Bibliography

[64] Inaba, M.; Katoh, N.; Imai, H. Applications of weighted Voronoi diagrams and
randomization to variance-based k-clustering: (extended abstract). In Proceedings of
the tenth annual symposium on Computational geometry, SCG ’94, New York, NY,
USA: ACM, 1994, ISBN 0-89791-648-4, pp. 332–339, doi:10.1145/177424.178042.

[65] Hamerly, G. Making k-means even faster. In SIAM International Conference on Data
Mining, 2010, pp. 130–140.

[66] Jain, A. K. Data Clustering : 50 Years Beyond K-Means. Pattern Recognition Letters,
2010.

[67] Moulavi, D.; Jaskowiak, P. A.; Campello, R. J. G. B.; et al. Density-Based Clustering
Validation. In SDM, edited by M. J. Zaki; Z. Obradovic; P.-N. Tan; A. Banerjee;
C. Kamath; S. Parthasarathy, SIAM, 2014, ISBN 978-1-61197-344-0, pp. 839–847.

[68] Helfmann, L.; Mollenhauer, M.; von Lindheim, J.; et al. On Hyperparameter Search
in Cluster Ensembles. arXiv:stat.ML, volume 1803, no. 11008v1, 2018.

[69] Theodoridis, S.; Koutroumbas, K. Pattern recognition. Academic Press, 1999, ISBN
978-0-12-686140-2, I–XIV, 1–625 pp.

[70] Vendramin, L.; Jaskowiak, P. A.; Campello, R. J. On the combination of relative
clustering validity criteria. In Proceedings of the 25th International Conference on
Scientific and Statistical Database Management, ACM, 2013, pp. 4–15.

[71] Wagner, S.; Wagner, D. Comparing Clusterings: An Overview. Jan. 2007.

[72] Rand, W. M. Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical association, volume 66, no. 336, 1971: pp. 846–850.

[73] Fowlkes, E. B.; Mallows, C. L. A method for comparing two hierarchical clusterings.
Journal of the American statistical association, volume 1, no. 383, 1983: pp. 553–569.

[74] Hubert, L.; Arabie, P. Comparing partitions. Journal of Classification, volume 2,
no. 1, 1985: pp. 193–218.

[75] Jaccard, P. Distribution de la flore alpine dans le Bassin des Dranses et dans quelques
regions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, volume 37,
1901: pp. 241–272.

[76] Chinchor, N. MUC-4 evaluation metrics. In Proceedings of the 4th conference on
Message understanding, Association for Computational Linguistics, 1992, pp. 22–29.

[77] Rijsbergen, C. Information retrieval. 1979. Available from: http:
//www.dcs.gla.ac.uk/Keith/pdf/Chapter7.pdf

[78] Mirkin, B. Mathematical classification and clustering. 1996.

100

http://www.dcs.gla.ac.uk/Keith/pdf/Chapter7.pdf
http://www.dcs.gla.ac.uk/Keith/pdf/Chapter7.pdf

Bibliography

[79] Kvålseth, T. O. Entropy and Correlation: Some Comments. IEEE Transactions on
Systems, Man, and Cybernetics, volume 17, no. 3, 1987: pp. 517–519.

[80] Strehl, A.; Ghosh, J. Cluster Ensembles: A Knowledge Reuse Framework for Combin-
ing Multiple Partitions. Journal on Machine Learning Research, volume 3, December
2002: pp. 583–617, ISSN 1533-7928.

[81] Meilă, M. Comparing clusterings—an information based distance. Journal of multi-
variate analysis, , no. 5, 2007: pp. 873–895.

[82] Rosenberg, A.; Hirschberg, J. V-measure: A conditional entropy-based external clus-
ter evaluation measure. In Proceedings of the 2007 joint conference on empirical
methods in natural language processing and computational natural language learning
(EMNLP-CoNLL), 2007.

[83] Dom, B. E. An information-theoretic external cluster-validity measure. In Proceed-
ings of the Eighteenth conference on Uncertainty in artificial intelligence, Morgan
Kaufmann Publishers Inc., 2002, pp. 137–145.

[84] Akaike, H. Information Theory and an Extension of the Maximum Likelihood Prin-
ciple. 2nd International Symposium on Information Theory, 1973: pp. 267–281.

[85] Akaike, H. A new look at the statistical model identification. IEEE Transactions on
Automatic Control, volume 19, no. 6, December 1974: pp. 716–723, ISSN 0018-9286.

[86] Hastie, T.; Tibshirani, R.; Friedman, J.; et al. The Elements of Statistical Learning.
Dordrecht: Springer, 2009, ISBN 9780387848587 0387848584.

[87] Bozdogan, H.; Sclove, S. L. Multi-sample cluster analysis using Akaike’s information
criterion. Annals of the Institute of Statistical Mathematics, volume 36, no. 1, 1984:
pp. 163–180.

[88] Schwarz, G. Estimating the dimension of a model. Annals of Statistics, volume 6,
1978: pp. 461–464.

[89] Edwards, A. W.; Cavalli-Sforza, L. L. A method for cluster analysis. Biometrics,
1965: pp. 362–375.

[90] Friedman, H. P.; Rubin, J. On some invariant criteria for grouping data. Journal of
the American Statistical Association, volume 62, no. 320, 1967: pp. 1159–1178.

[91] Orloci, L. An agglomerative method for classification of plant communities. The
Journal of Ecology, 1967: pp. 193–206.

[92] Fukunaga, K.; Koontz, W. L. G. A Criterion and an Algorithm for Grouping Data.
IEEE Trans. Computers, volume 19, no. 10, 1970: pp. 917–923.

101

Bibliography

[93] Milligan, G. W.; Cooper, M. C. An Examination Of Procedures For Determining
The Number Of Clusters In A Dataset. Psychometrika, volume 50, no. 2, June 1985:
pp. 159–179.

[94] Ball, G. H.; Hall, D. J. ISODATA, a novel method of data analysis and pattern
classification. Technical report, DTIC Document, 1965.

[95] Scott, A. J.; Symons, M. J. Clustering methods based on likelihood ratio criteria.
Biometrics, 1971: pp. 387–397.

[96] Marriott, F. Practical problems in a method of cluster analysis. Biometrics, 1971:
pp. 501–514.

[97] Hartigan, J. A. Clustering algorithms. Wiley, 1975.

[98] Krzanowski, W. J.; Lai, Y. A criterion for determining the number of groups in a
data set using sum-of-squares clustering. Biometrics, 1988: pp. 23–34.

[99] Hubert, L.; Levin, J. A general statistical framework for assessing categorical clus-
tering in free recall. Psychological Bulletin, volume 83, no. 6, 1976: p. 1072.

[100] Milligan, G. W. A Monte Carlo study of thirty internal criterion measures for cluster
analysis. Psychometrika, volume 46, no. 2, 1981: pp. 187–199.

[101] McClain, J. O.; Rao, V. R. Clustisz: A program to test for the quality of clustering
of a set of objects. JMR, Journal of Marketing Research (pre-1986), volume 12, no.
000004, 1975: p. 456.

[102] Goodman, L. A.; Kruskal, W. H. Measures of Association for Cross Classifications.
Journal of the American Statistical Association, volume 49, no. 268, 1954: pp. pp.
732–764, ISSN 01621459.

[103] Baker, F.; Hubert, L. A graph-theoretic approach to goodness-of-fit in complete-link
hierarchical clustering. Journal of the American Statistical Association, 1976: pp.
870–878.

[104] Rohlf, F. J. Methods of comparing classifications. Annual Review of Ecology and
Systematics, volume 5, 1974: pp. 101–113.

[105] Kendall, M. G. A New Measure of Rank Correlation. Biometrika, volume 30, no.
1/2, 1938: pp. pp. 81–93, ISSN 00063444.

[106] Rousseeuw, P. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. J. Comput. Appl. Math., volume 20, no. 1, 1987: pp. 53–65, ISSN
0377-0427, doi:10.1016/0377-0427(87)90125-7.

102

Bibliography

[107] Hruschka, Eduardo R and de Castro, Leandro Nunes and Campello, Ricardo JGB.
Evolutionary algorithms for clustering gene-expression data. In Fourth IEEE Inter-
national Conference on Data Mining (ICDM’04), IEEE, 2004, pp. 403–406.

[108] Dunn, J. C. Well-separated clusters and optimal fuzzy partitions. Journal of cyber-
netics, volume 4, no. 1, 1974: pp. 95–104.

[109] Bezdek, J. C.; Pal, N. R. Some new indexes of cluster validity. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, volume 28, no. 3, 1998:
pp. 301–315.

[110] Ratkowsky, D.; Lance, G. A criterion for determining the number of groups in a
classification. Australian Computer Journal, volume 10, no. 3, 1978: pp. 115–117.

[111] Brogden, H. E. A new coefficient: Application to biserial correlation and to estima-
tion of selective efficiency. Psychometrika, volume 14, no. 3, 1949: pp. 169–182.

[112] Halkidi, M.; Vazirgiannis, M.; Batistakis, Y. Quality Scheme Assessment in the
Clustering Process. In PKDD, Lecture Notes in Computer Science, volume 1910,
edited by D. A. Zighed; H. J. Komorowski; J. M. Zytkow, Springer, 2000, ISBN
3-540-41066-X, pp. 265–276.

[113] Rezaee, M. R.; Lelieveldt, B.; Reiber, J. A new cluster validity index for the fuzzy
c-mean. Pattern Recognition Letters, volume 19, no. 3-4, 1998: pp. 237–246, ISSN
0167-8655, doi:10.1016/S0167-8655(97)00168-2.

[114] Halkidi, M.; Vazirgiannis, M. Clustering Validity Assessment: Finding the Optimal
Partitioning of a Data Set. In ICDM, edited by N. Cercone; T. Y. Lin; X. Wu, IEEE
Computer Society, 2001, ISBN 0-7695-1119-8, pp. 187–194.

[115] Ray, S.; Turi, R. H. Determination of number of clusters in k-means clustering and
application in colour image segmentation. In Proceedings of the 4th international
conference on advances in pattern recognition and digital techniques, India, 1999, pp.
137–143.

[116] Xie, X. L.; Beni, G. A Validity Measure for Fuzzy Clustering. IEEE Trans. Pattern
Anal. Mach. Intell., volume 13, no. 8, 1991: pp. 841–847.

[117] Pakhira, M. K.; Bandyopadhyay, S.; Maulik, U. Validity index for crisp and fuzzy
clusters. Pattern Recognition, volume 37, no. 3, 2004: pp. 487–501.

[118] Wemmert, C.; Gançarski, P.; Korczak, J. J. A collaborative approach to combine
multiple learning methods. International Journal on Artificial Intelligence Tools, vol-
ume 9, no. 01, 2000: pp. 59–78.

[119] Zhao, Y.; Karypis, G.; Fayyad, U. Hierarchical clustering algorithms for document
datasets. Data mining and knowledge discovery, volume 10, no. 2, 2005: pp. 141–168.

103

Bibliography

[120] Fred, A. L. N.; Jain, A. K. Combining Multiple Clusterings Using Evidence Accu-
mulation. IEEE Trans. Pattern Anal. Mach. Intell., volume 27, no. 6, 2005: pp.
835–850.

[121] Topchy, A. P.; Jain, A. K.; Punch, W. F. Clustering Ensembles: Models of Consensus
and Weak Partitions. IEEE Trans. Pattern Anal. Mach. Intell., volume 27, no. 12,
2005: pp. 1866–1881.

[122] Iam-On, N.; Boongoen, T.; Garrett, S. LCE: a link-based cluster ensemble method
for improved gene expression data analysis. Bioinformatics, volume 26, no. 12, 2010:
pp. 1513–1519.

[123] Wolpert, D. H.; Macready, W. G. No Free Lunch Theorem for Optimization. IEEE
Transactions on Evolutionary Computation, volume 1, no. 1, 1997.

[124] Kittler, J.; Hatef, M.; Duin, R. P. W. Combining Classifiers. In Proceedings of the
Sixth International Conference on Pattern Recognition, Silver Spring, MD: IEEE
Computer Society Press, 1996, pp. 897–901.

[125] Kuncheva, L. I.; Vetrov, D. P. Evaluation of stability of k-means cluster ensembles
with respect to random initialization. IEEE transactions on pattern analysis and
machine intelligence, volume 28, no. 11, 2006: pp. 1798–1808.

[126] Gionis, A.; Mannila, H.; Tsaparas, P. Clustering aggregation. TKDD, volume 1, no. 1,
2007.

[127] Iam-On, N.; Boongoen, T.; Garrett, S. Refining pairwise similarity matrix for cluster
ensemble problem with cluster relations. In International Conference on Discovery
Science, Springer, 2008, pp. 222–233.

[128] Iam-on, N.; Boongoen, T. Improved link-based cluster ensembles. In IJCNN, IEEE,
2012, ISBN 978-1-4673-1488-6, pp. 1–8.

[129] Fern, X. Z.; Brodley, C. E. Random Projection for High Dimensional Data Clustering:
A Cluster Ensemble Approach. In ICML, edited by T. Fawcett; N. Mishra, AAAI
Press, 2003, ISBN 1-57735-189-4, pp. 186–193.

[130] Gullo, F.; Domeniconi, C.; Tagarelli, A. Projective clustering ensembles. Data Min.
Knowl. Discov., volume 26, no. 3, 2013: pp. 452–511.

[131] Yu, Z.; Wong, H.-S.; Wang, H.-Q. Graph-based consensus clustering for class dis-
covery from gene expression data. Bioinformatics, volume 23, no. 21, 2007: pp.
2888–2896.

[132] Dudoit, S.; Fridlyand, J. Bagging to Improve the Accuracy of A Clustering Procedure.
Bioinformatics, volume 19, no. 9, 2003: pp. 1090–1099.

104

Bibliography

[133] Ayad, H.; Kamel, M. Finding natural clusters using multi-clusterer combiner based on
shared nearest neighbors. In International Workshop on Multiple Classifier Systems,
Springer, 2003, pp. 166–175.

[134] Law, M. H. C.; Topchy, A. P.; Jain, A. K. Multiobjective Data Clustering. In CVPR
(2), 2004, pp. 424–430.

[135] Bauer, E.; Kohavi, R. Machine learning, volume 36, no. 1-2, 1999: pp. 105–139.

[136] Karypis, G.; Kumar, V. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM J. Sci. Comput., volume 20, December 1998: pp. 359–392,
ISSN 1064-8275, doi:10.1137/S1064827595287997.

[137] Nguyen, N.; Caruana, R. Consensus Clusterings. In ICDM, IEEE Computer Society,
2007, ISBN 0-7695-3018-4, pp. 607–612.

[138] Boulis, C.; Ostendorf, M. Combining Multiple Clustering Systems. In PKDD, Lecture
Notes in Computer Science, volume 3202, edited by J.-F. Boulicaut; F. Esposito;
F. Giannotti; D. Pedreschi, Springer, 2004, ISBN 3-540-23108-0, pp. 63–74.

[139] Mimaroglu, S.; Erdil, E. Obtaining better quality final clustering by merging a col-
lection of clusterings. Bioinformatics, volume 26, no. 20, 2010: pp. 2645–2646.

[140] Topchy, A. P.; Law, M. H.; Jain, A. K.; et al. IEEE, 2004, pp. 225–232.

[141] Munkres, J. Algorithms for the assignment and transportation problems. Journal of
the society for industrial and applied mathematics, volume 5, no. 1, 1957: pp. 32–38.

[142] Dimitriadou, E.; Weingessel, A.; Hornik, K. Voting-merging: An ensemble method
for clustering. In International Conference on Artificial Neural Networks, Springer,
2001, pp. 217–224.

[143] Ayad, H. G.; Kamel, M. S. Cluster-based cumulative ensembles. In International
Workshop on Multiple Classifier Systems, Springer, 2005, pp. 236–245.

[144] Brazdil, P.; Carrier, C. G.; Soares, C.; et al. Metalearning: Applications to data
mining. Springer Science & Business Media, 2008.

[145] Kalousis, A.; Gama, J.; Hilario, M. On data and algorithms: Understanding inductive
performance. Machine learning, volume 54, no. 3, 2004: pp. 275–312.

[146] Giraud-Carrier, C.; Vilalta, R.; Brazdil, P. Introduction to the special issue on meta-
learning. Machine learning, volume 54, no. 3, 2004: pp. 187–193.

[147] von Luxburg, U.; Williamson, R. C.; Guyon, I. Clustering: Science or Art? In
ICML Unsupervised and Transfer Learning, JMLR Proceedings, volume 27, edited
by I. Guyon; G. Dror; V. Lemaire; G. W. Taylor; D. L. Silver, JMLR.org, 2012, pp.
65–80.

105

Bibliography

[148] Engels, R.; Theusinger, C. Using a Data Metric for Preprocessing Advice for Data
Mining Applications. In ECAI, 1998, pp. 430–434.

[149] Brazdil, P. B.; Soares, C.; Da Costa, J. P. Ranking learning algorithms: Using IBL
and meta-learning on accuracy and time results. Machine Learning, volume 50, no. 3,
2003: pp. 251–277.

[150] Michie, D.; Spiegelhalter, D. J.; Taylor, C.; et al. Machine learning. Neural and
Statistical Classification, volume 13, 1994.

[151] Pfahringer, B.; Bensusan, H.; Giraud-Carrier, C. G. Meta-Learning by Landmarking
Various Learning Algorithms. In ICML, 2000, pp. 743–750.

[152] Kalousis, A. Algorithm selection via meta-learning. Dissertation thesis, University of
Geneva, 2002.

[153] Yogatama, D.; Mann, G. Efficient transfer learning method for automatic hyperpa-
rameter tuning. In Artificial intelligence and statistics, 2014, pp. 1077–1085.

[154] Bardenet, R.; Brendel, M.; Kégl, B.; et al. Collaborative hyperparameter tuning. In
International conference on machine learning, 2013, pp. 199–207.

[155] Sander, J.; Ester, M.; Kriegel, H.; et al. Density-Based Clustering in Spa-
tial Databases: The Algorithm GDBSCAN and Its Applications. Data Mining
and Knowledge Discovery, volume 2, no. 2, 1998: pp. 169–194, ISSN 1384-
5810, 10.1023/A:1009745219419. Available from: http://dx.doi.org/10.1023/A:
1009745219419

[156] Weingessel, A.; Dimitriadou, E.; Dolnicar, S. An examination of indexes for deter-
mining the number of clusters in binary data sets. Technical report Working Paper 29,
SFB “Adaptive Information Systems and Modeling in Economics and Management
Science”, 1999.

[157] Maulik, U.; Bandyopadhyay, S. Performance evaluation of some clustering algorithms
and validity indices. IEEE Transactions on pattern analysis and machine intelligence,
, no. 12, 2002: pp. 1650–1654.

[158] Shim, Y.; Chung, J.-W.; Choi, I.-C. A Comparison Study of Cluster Validity Indices
Using a Nonhierarchical Clustering Algorithm. In CIMCA/IAWTIC, IEEE Computer
Society, 2005, ISBN 0-7695-2504-0, pp. 199–204.

[159] Vendramin, L.; Campello, R. J.; Hruschka, E. R. Relative clustering validity criteria:
A comparative overview. Statistical analysis and data mining: the ASA data science
journal, , no. 4, 2010: pp. 209–235.

[160] Albalate, A.; Suendermann, D. A combination approach to cluster validation based
on statistical quantiles. In 2009 International Joint Conference on Bioinformatics,
Systems Biology and Intelligent Computing, IEEE, 2009, pp. 549–555.

106

http://dx.doi.org/10.1023/A:1009745219419
http://dx.doi.org/10.1023/A:1009745219419

Bibliography

[161] Jaskowiak, P. A.; Moulavi, D.; Furtado, A. C.; et al. On strategies for building
effective ensembles of relative clustering validity criteria. Knowledge and Information
Systems, volume 47, no. 2, 2016: pp. 329–354.

[162] Borda, J. Mémoire sur les élections au scrutin, Histoire de l’Académie royale des
sciences pour 1781. Paris (English Translation by De Grazia, A. 1953. Isis 44), 1784.

[163] Emerson, P. The original Borda count and partial voting. Social Choice and Welfare,
volume 40, no. 2, 2013: pp. 353–358.

[164] Cormack, G. V.; Clarke, C. L.; Buettcher, S. Reciprocal rank fusion outperforms
condorcet and individual rank learning methods. In SIGIR, volume 9, 2009, pp.
758–759.

[165] Newman, M. E. Fast algorithm for detecting community structure in networks. Phys-
ical review E, volume 69, no. 6, 2004: p. 066133.

[166] Biemann, C. Chinese Whispers - an Efficient Graph Clustering Algorithm and its
Application to Natural Language Processing Problems. In Proceedings of TextGraphs:
the Second Workshop on Graph Based Methods for Natural Language Processing, New
York City, USA, 2006, pp. 73–80.

[167] Frey, B. J. J.; Dueck, D. Clustering by Passing Messages Between Data Points.
Science, January 2007, ISSN 1095-9203, doi:10.1126/science.1136800.

[168] Chang, H.; Yeung, D.-Y. Robust path-based spectral clustering. Pattern Recognition,
volume 41, no. 1, 2008: pp. 191–203.

[169] Ultsch, A.; Mörchen, F. ESOM-Maps: tools for clustering, visualization, and clas-
sification with Emergent SOM. Technical Report No. 46, Dept. of Mathematics and
Computer Science, University of Marburg, Germany, 2005.

[170] Karypis, G. Karypis Lab - CLUTO’s datasets.

[171] Zahn, C. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters.
IEEE Trans. on Computers, volume C-20, no. 1, jan 1971: pp. 68–86.

[172] Veenman, C. J.; Reinders, M. J. T.; Backer, E. A Maximum Variance Cluster Al-
gorithm. IEEE Trans. Pattern Anal. Mach. Intell., volume 24, no. 9, 2002: pp.
1273–1280.

[173] Shatovska, T.; Safonova, T.; Tarasov, I. A Modified Multilevel Approach to the
Dynamic Hierarchical Clustering for Complex types of Shapes. In ISTA, LNI, volume
107, edited by H. C. Mayr; D. Karagiannis, GI, 2007, pp. 176–186.

[174] Su, M.-C.; Chou, C.-H.; Hsieh, C.-C. Fuzzy C-means algorithm with a point sym-
metry distance. International Journal of Fuzzy Systems, volume 7, no. 4, 2005: pp.
175–181.

107

Bibliography

[175] Salvador, S.; Chan, P. Determining the Number of Clusters/Segments in Hierarchi-
cal Clustering/Segmentation Algorithms. In ICTAI, IEEE Computer Society, 2004,
ISBN 0-7695-2236-X, pp. 576–584.

[176] Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science,
volume 344, no. 6191, 2014: pp. 1492–1496.

[177] Fu, L.; Medico, E. FLAME, a novel fuzzy clustering method for the analysis of DNA
microarray data. BMC Bioinformatics, volume 8, 2007.

[178] Jain, A. K.; Law, M. H. C. Data Clustering: A User’s Dilemma. In PReMI, Lecture
Notes in Computer Science, volume 3776, edited by S. K. Pal; S. Bandyopadhyay;
S. Biswas, Springer, 2005, ISBN 3-540-30506-8, pp. 1–10.

[179] Fränti, P.; Virmajoki, O. Iterative shrinking method for clustering problems. Pattern
Recognition, volume 39, no. 5, 2006: pp. 761–775.

[180] Zelnik-Manor, L.; Perona, P. Self-Tuning Spectral Clustering. In Neural Information
Processing Systems (NIPS), 2004, pp. 1601–1608.

[181] Bartoň, T.; Kordík, P. Evaluation of Relative Indexes for Multi-objective Clustering.
In Hybrid Artificial Intelligent Systems, Lecture Notes in Computer Science, volume
9121, edited by E. Onieva; I. Santos; E. Osaba; H. Quintián; E. Corchado, Springer
International Publishing, 2015, ISBN 978-3-319-19643-5, pp. 465–476, doi:10.1007/
978-3-319-19644-2_39.

108

Reviewed Publications of the Author
Relevant to the Thesis

[1] Barton, T., Bruna, T., Kordik, P. Chameleon 2: An Improved Graph Based Clus-
tering Algorithm. ACM Transactions on Knowledge Discovery from Data (TKDD)
2019, 13.1: 10

[2] Barton, T., Bruna, T., Kordik, P. MoCham: Robust Hierarchical Clustering Based
on Multi-objective Optimization, Data Mining Workshops (ICDMW), 2016 IEEE
16th International Conference on, p. 831–838, 2016

[3] Barton, T., Kordik, P. Evaluation of Relative Indexes for Multi-objective Clustering.
Hybrid Artificial Intelligent Systems – Lecture Notes in Computer Science, vol. 9121,
p. 465-476, ISBN: 978-3-319-19643-5, Springer International Publishing, 2015

[4] Barton, T., Kordik, P. Using Multi-Objective Optimization for the Selection of En-
semble Members.. CEUR Workshop Proceedings, vol. 1422, p. 108-114 ISBN: 978-
1-5151-2065-0, CEUR-WS.org, 2015

[5] Barton T., Kordik, P. Encoding Time Series Data for Better Clustering Re-
sults. International Joint Conference CISIS‘12-ICEUTE‘12-SOCO‘12 Special Ses-
sions Springer Berlin Heidelberg, 2013

109

Remaining Publications of the Author
Relevant to the Thesis

[1] Barton, T. An Evolutionary approach for exploring clustering subspaces. Ph.D.
Minimum Thesis, Faculty of Information Technology, Prague, Czech Republic, 2013.

[2] Barton T. Cluster analysis of cell profile responses. Master Thesis, Faculty of Elec-
trical Engineering, Czech Technical University in Prague 2011.

111

Appendix A
Datasets

A.1 Artificial
Datasets used for benchmarking clustering algorithms. Intentionally contains 2D and 3D
datasets with clear human-distinguishable structures in the data; some datasets are con-
taminated with noise to test the robustness of the algorithm (see Table A.1). All data files
are available online1.

The same datasets that were used in the Chameleon paper [28], however the datasets
referred to as DS1 and DS2 were not available. The first one comes from CURE [39]2. In-
stead of DS2 the visually similar dataset twodiamonds was included. For CLUTO datasets
(t4.8k, t5.8k, t7.10k – marked as DS3 in [28], t8.8k – DS4 in [28]), which did not contain
any labels, we assigned labels based on our intuition3. Visualization of all datasets colored
by reference labels can be found in the Supplementary material.

Another group of 6 datasets (atom, chainlink, lsun, target, twodiamonds and wingnut)
comes from the FCPS4 [169], which should serve as an elementary benchmark of clustering
algorithms. The datasets were manually created in such a way that none of the traditional
clustering algorithms would be able to solve them all.

On the pathbased dataset, which consists of an incomplete circle and two Gaussian dis-
tributed clusters inside, [168] demonstrated the limitations of standard spectral clustering.
Their proposed path-based spectral clustering method provides a better result, though still
not perfect.

Evaluating the quality of clustering algorithms is hard, and numerous approaches have
been applied in relevant studies. While unsupervised criteria can be used during cluster-
ing [181], their performance is data dependent. The prevailing approach is to evaluate

1https://github.com/deric/clustering-benchmark
2Data was generated based on visual similarity to an image in the referred paper, we were unable to

obtain the dataset from the original author.
3 The Labels were added manually, the original dataset did not contain any. A visualization of the

assigned labels can be found in the Supplementary material.
4Fundamental Clustering Problems Suite

113

https://github.com/deric/clustering-benchmark

A. Datasets

Table A.1: Datasets used for our experiments: most contain patterns easily distinguishable
by humans. 8 datasets contain noisy clusters.

Dataset d n noise size (%) classes source
3-spiral 2 312 - 3 [168]
aggregation 2 788 - 7 [126]
atom 3 800 - 2 [169]
chainlink 3 1000 - 2 [169]
cluto-t4.8k 2 8000 764 (9.55%) 73 [170]
cluto-t5.8k 2 8000 1153 (14.41%) 93 [170]
cluto-t7.10k 2 10000 792 (9.92%) 83 [170]
cluto-t8.8k 2 8000 323 (4.04%) 83 [170]
compound 2 399 - 6 [171]
cure-t2-4k 2 4000 200 (4.76%) 7 [39]2

D31 2 3100 - 31 [172]
dense-disk-5k 2 5000 - 2 [173]2

DS-850 2 850 - 5 [174]
diamond9 2 3000 - 9 [175]
disk-in-disk 2 4600 - 2 [173]2

dpb 2 4000 657 (16.43%) 63 [176]
flame 2 240 - 2 [177]
impossible 2 3673 78 (2.12%) 8 [66]2

jain 2 373 - 2 [178]
long1 2 1000 - 2 [56]
longsquare 2 900 - 6 [56]
lsun 2 400 - 3 [169]
pathbased 2 300 - 3 [168]
s-set1 2 5000 - 153 [179]
sizes1 2 1000 - 4 [56]
smile1 2 1000 - 4 [56]
spiralsquare 2 1500 - 6 [56]
target 2 770 - 6 [169]
twodiamonds 2 800 - 2 [169]
wingnut 2 1016 - 2 [169]
zelnik4 2 622 138 (22.19%) 5 [180]

114

A.2. Other results

clustering outcomes against external (ground truth) labels. In this paper, we provide la-
bels for every dataset in the benchmark (all datasets are listed in Table A.1), therefore the
quality of clustering can be evaluated using supervised criteria.

A.2 Other results

115

A. Datasets

(a) Dataset 3-spiral. (b) Dataset aggregation. (c) Dataset atom.

(d) Dataset chainlink. (e) Dataset cluto-t4.8k. (f) Dataset cluto-t5.8k.

(g) Dataset cluto-t7.10k. (h) Dataset cluto-t8.8k. (i) Dataset compound.

(j) Dataset cure-t2-4k. (k) Dataset D31. (l) Dataset dense-disk-5k.

(m) Dataset diamond9. (n) Dataset disk-in-disk. (o) Dataset dpb.

Figure A.1: Visualization of datasets used in experiments with ground truth assignments.

116

A.2. Other results

(a) Dataset DS-850. (b) Dataset flame. (c) Dataset impossible.

(d) Dataset jain. (e) Dataset long1. (f) Dataset longsquare.

(g) Dataset lsun. (h) Dataset pathbased. (i) Dataset s-set1.

(j) Dataset smile1. (k) Dataset spiralsquare. (l) Dataset target.

(m) Dataset twodiamonds. (n) Dataset wingnut. (o) Dataset zelnik4.

Figure A.2: Visualization of datasets used in experiments with ground truth assignments,
second part. 117

A. Datasets

Figure A.3: Inspection tool in Clueminer displays various criteria. This particular cluster-
ing result demonstrates that the algorithm was unable to deal with noise.

118

A.2. Other results

Figure A.4: We demonstrated that our Chameleon2 algorithm works well for most of low
dimensional benchmarking datasets. In this particular example we show, that it is also
capable to perform well on multidimensional data (grayscale vectors of face pixels).

119

A. Datasets

Figure A.5: When a multiobjective search is performed using NSGA2 for BIC and DB
index, we are able to discover interesting clusterings on the Pareto front. Black points
are clusterings with two clusters (setosa and virginica+versicolor) having quite high score
for unsupervised criteria, but scoring low in ARAND index due to mixing virginica and
versicolor class.

120

A.2. Other results

Figure A.6: Inspection tool implemented in Clueminer enables to explore individual steps
of proposed Chameleon2 algorithm. In this particular case you can display a graph con-
structed from data vectors using their k-similarities.

121

A. Datasets

Figure A.7: Evolutionary algorithm explore the space of possible clusterings (and config-
urations of clustering algorithms) with an objective to maximize the Silhouette criterion
(in this particular case). External criterion (overlap with external labels) is not improving
much during the search.

122

A.2. Other results

Figure A.8: We have made a lot of experiments enabling us to improve scalability of
clustering algorithms implemented in Clueminer.

123

	Abbreviations
	Introduction
	Motivation
	Problem Statement
	Previous Results
	Contributions of the Dissertation Thesis
	Structure of the Dissertation thesis

	Clustering Background
	Definition of a cluster
	Preprocessing
	Measuring distance
	Algorithms
	Partitioning algorithms
	Hierarchical Clustering

	Probabilistic Models for Clustering
	Gaussian Mixture Model

	Density-based methods
	DBSCAN

	Graph based methods
	Chameleon

	Multi-objective clustering
	User's guidance
	Stability of clustering
	Scalable clustering algorithms
	Most challenging clustering problems

	Chameleon 2
	Refined Similarity
	Summary

	Clustering evaluation
	External Validation Criteria
	Counting pairs
	Information Theory Based Criteria

	Internal clustering validation
	Akaike Information Criterion (AIC)
	Bayesian Information Criterion (BIC)
	TraceW index
	Ball-Hall index
	Calinski-Harabasz Index (VRC)
	Banfeld-Raftery
	Det Ratio |T|/|W|
	Log Det Ratio
	Friedman (TraceWiB)
	Rubin
	KsqDetW k2|W|
	Log SS Ratio
	Scott-Symons
	Krzanowski-Lai index
	C-index
	McClain-Rao index
	Baker-Hubert Gamma index
	G+ index
	Tau index
	Silhouette Width Criterion
	Simplified Silhouette index
	Alternate Simplified Silhouette
	Dunn's index
	Generalized Dunn Index (GDI)
	Davies-Bouldin index
	Ratkowsky-Lance index C/k
	Point Biserial
	SD index
	S_Dbw
	The Ray-Turi index
	The Xie-Beni index
	The PBM index
	Wemmert-Gancarski index
	Overall deviation
	Compactness
	Connectivity
	Sum of Average Pairwise Similarities

	Summary

	Cluster Ensembles
	Ensemble Generation Strategies
	Consensus Functions

	Cluster Ensemble Methods
	Summary

	AutoML Clustering
	Meta-Search
	Measuring similarity between clusterings
	Combining Internal Criteria
	Visual Comparison of Ranking Strategies
	Score-based Strategies
	Rank-base Strategies

	Comparing Ranking Strategies
	AutoML Clustering
	Internal Metric Selection
	Exploration

	Summary

	Conclusions
	Summary
	Contributions of the Dissertation Thesis
	Future Work

	Bibliography
	Reviewed Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author Relevant to the Thesis
	Datasets
	Artificial
	Other results

