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Abstrakt 

Tato práce se zabývá modelováním náhodných heterogenních 

mikrostruktur. Zvláštní důraz je pak kladen na materiálové domény, které 

tvoří kruhové nebo kulové částice v základní materiálové matrici. Na mikro 

a nano úrovni jsou tyto mikrostruktury nejčastěji tvořeny pomocí 

opakujících se kopií jedné buňky s periodickými okrajovými podmínkami. 

Na druhé straně existují úlohy na poli materiálového inženýrství, které 

vyžadují zachování heterogenity a minimalizace periodických artefaktů. 

Pro ty je vhodnější využít konceptu Wangova dláždění, který umožňuje 

vygenerovat aperiodické nekonečné plochy pomocí konečného počtu 

dlaždic. 

Pro úlohy rekonstrukce nebo komprese náhodných materiálových 

struktur není prakticky nutné tvořit striktně aperidocká dláždění. Postačí 

využít konceptu stochastického dláždění. Konkrétně v této práci 

je stochastické Wangovo dláždění s osmi dlaždicemi v základním setu 

použito na rekonstrukci výše uvedených domén. Vzhledem k typu částic 

je součástí algoritmu generování dlaždic i molekulární dynamika. Zároveň 

je představen nový typ okrajových podmínek – Adaptivní stěny, který 

redukuje periodické artefakty i pro malý počet dlaždic v setu a také 

zachovává kompatibilitu dláždění bez přiřazování částic hraničním 

oblastem. Tyto teze jsou ověřeny na sadách testovacích domén pro 2D 

mono i polydiseperzní struktury spolu s realizací 3D monodisperzního 

vzorku. 

Rekonstrukce jak umělých, tak reálných materiálových domén zde 

tvoří optimalizační úlohu. Pro její řešení je vybrána optimalizační metoda 

rojem částic – Particle Swarm Optimization method. Tato metoda je dále 

modifikována pro účely kompatibility s Wangovým dlážděním 

a molekulární dynamikou. Poté je výsledný algoritmus otestován na sadě 

umělých a dvou reálných mikrostruktur. Hodnocení výsledků a doporučení 

pro další vývoj jsou součástí závěrečné diskuze.  

 

Klíčová slova: Náhodné heterogenní materiály, Wangovo dláždění, 

molekulární dynamika, Particle Swarm Optimization, Adaptivní stěny 
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Abstract 

This work deals with the modeling of random heterogeneous 

microstructures. Special emphasis is placed on material domains, which are 

formed by circular or spherical particles in the matrix of basic material. 

These materials are formed at micro and nano level mostly with copies 

of just one tile with periodic boundary conditions. On the other hand, there 

are problems in the field of material engineering which require 

preservation of heterogeneity and minimization of periodicity artefacts. 

Here it is preferable to use concept of the Wang tiling, which is able 

to generate infinite aperiodic areas with finite number of tiles. 

For the tasks of reconstruction or compression of random material 

structures it is not necessary to create strictly aperiodic tiling. It is sufficient 

to use a concept of stochastic tiling. In this work the stochastic Wang tiling 

with basic set of eight tiles servers for reconstruction of the above domains. 

A molecular dynamics is included to the algorithm for generation of tiles 

because of the type of particles. Concurently a new type of boundary 

condition is introduced – Adaptive walls, which reduces periodicity 

artefacts even for small number of tiles in a set and keep the compatibility 

of tiling without assigment of particles to tile edges. These theses are 

verified on sets of test domains for 2D mono and polydisperse structures 

together with a realization of 3D monodispersion sample.   

A reconstruction of both artificial and real microstructure domains 

forms an optimization task. The Particle Swarm Optimization (PSO) method 

is chosen to solve this kind of problem. This method is further modified in 

order to be compatible with both Wang tiling and molecular dynamics. 

Then the final algorithm is tested on a set of artificial and two real 

microstructures. Evaluation of results and recommendations for further 

development are parts of the discussion chapter. 

 

Key words: Random heterogeneous materials, Wang tiling, molecular 

dynamics, Particle Swarm Optimization, Adaptive Walls 
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1 Introduction 

The term “Heterogeneous” comes originally from the Medieval Latin 

(Ancient Greek) and consists of two words heteros – “another” or “different” 

and genos – “kind”. One of the definitions in material engineering 

designates heterogeneous materials as domains (i) of different phases 

(materials) or (ii) of the same material in different states [1]. This work deals 

with the first group and its representatives – composites. If we focus on 

definition of composites with emphasis on the design philosophy, 

composites are heterogeneous materials where a single structure is 

created after mixing materials with very different properties. The final 

structure shows additional or better properties than each of individual 

components or simple mixture of such components. This phenomenon is 

called synergism [2]. 

Deeper knowledge in the field of material studies in micro level 

together with computer technologies enables both effective usage 

of traditional heterogeneous structures such as wood, sandstone, soils, 

or bones and a design of new synthetic ones, for example concrete, foams, 

cellular solids, fibre or particular composites. Experimental testing and 

optimization of material properties using already made samples is very 

expensive concept in terms of time and money demands. On the other hand 

approaches, which utilize computer modelling, numerical or analytical 

methods and at a later stage verification on physical samples, are able to 

significantly reduce these costs.  

The Periodic Unit Cell (the PUC) or the Statistical Equivalent Periodic 

Unit Cell (the SEPUC) respectively are the most widespread concepts for 

modelling of heterogeneous materials in micro and nano level. They used 

to serve as building blocks for numerical methods on upper scale, where 

the main issue is to obtain effective properties of reference or 

reconstructed structures. On the other hand there are tasks of material 

engineering, which require preservation of heterogeneity with eliminated 

or minimized periodic artefacts. 

The modelling of the random heterogeneous microstructures can be 

understood as a creation of 2D surfaces or 3D spaces of finite dimensions 

with specific boundary conditions and required final properties. Similar 

tasks have been solved also in other fields of science. The texture synthesis 

and a design of large areas with low computer demands are challenges in 

computer graphics or game industry [3], [4]. Also medicine face similar 

issues, let us mention contributions dealing with assembly of DNA string 

[5]  [6]. These works utilize the Wang tiling approach [7], [8] to overcome 

problems with randomness.  Over the last few years principles of the Wang 

tiling concept have been taken over and incorporated into material 

engineering as well. Now, researches are able to reduce unwanted 

periodicity artefacts when dealing with random heterogeneous 

microstructures in comparison with traditional methods based on 

periodical repetition of just one cell [9], [10], or [11].   
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1.1 Thesis objectives 

This doctoral thesis focuses on Wang tiling concept and its application 

to random heterogeneous material microstructures, which 2D or 3D sample 

are composed of discrete hard inpenetrable circular/spherical particles in 

a continuous phase. Representatives of such a material domain are 

composites reinforced with unidirectional fibres. When searching for the 

term “unidirectional fibre composites”, google scholar as a web search 

engine of scholarly literature (including results from databeses Scopus or 

Web of Science) offers more than 4800 results from the January, 2018 up to 

the January, 2019. This fact together with usage of the the traditional PUC 

for modelling of random heterogeneous materials in most of contemporary 

works makes the topic actual and desirable. 

The main objective of the doctoral thesis is to create algorithms for 

generation of random heterogeneous domains with hard spherical/ circular 

particles via system of stochastic Wang tiles.  Partial objectives are 

following: 

1. To develop algorithms for general tiling and to implement 

molecular dynamics principles for material structures with 

circular/ spherical inclusions. 

2. To create algorithms for generation of Wang tiles based on 

modified molecular dynamics, to define boundary conditions 

for efficient reduction of unwanted periodicity artefacts and to 

implement statistical descriptors for comparison of tiled 

domains. 

3. To implement and/or modify optimization methods into 

algorithms for tile generation, to verify these algorithms on 

artificial samples, and to reconstruct real random 

heterogeneous material microstructures. 

This thesis is organized as follows. The second chapter as a theoretical 

part introduces Wang tiling concept and its history, methods for modelling 

of particle domains together with restrictions given by packing problem of 

circles in a rectangular container, and statistical descriptors which are 

utilized in practical part. The third chapter defines modified molecular 

dynamics approach for particle motion and compares 3 types of boundary 

conditions in terms of periodicity artefacts reduction. The traditional 

concept with periodic repetition of just one tile is extended with Volume 

Walls and brand new Adaptive Walls technique. The fourth chapter aims at 

reconstruction of both artificial and real microstructures. In previous 

chapters material domains are generated with random distribution of 

particles, but match with reference sample requires usage of optimization 

mechanisms. In our case modified Particle Swarm Optimization method is 

introduced, verified on artificial samples and applied on reconstruction of 

two real microstructures. Later, we briefly dicsuss given results and outline 

possible improvements. The highlights of the thesis are summarized in 

conclusion. 
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2 Theoretical background1 

2.1 Wang tiling 

The origin of Wang Tiling is associated with search for a general 

algorithm that can decide validity of a statement. This 

Entsheidungsproblem (the decision problem) was firstly posed by German 

mathematician David Hilbert in 1928. Alan Turing in [12] and Alonzo Church 

[13] proved non-existence of such algorithm on the Halting problem. Later 

a mathematician Hao Wang introduced set of tiles as a tool for the study of 

the decision problem [7], [8]. During the tiling process, tiles were not 

permitted to rotate or reflect. The question was to find an effective 

procedure, which can decide whether copies of squares from the finite set 

are able to cover a whole plane (infinite plane) with restriction of adjoining 

edges – colours. This generalized game of dominos leads to finding 

periodically repeated areas. He proved that a part of such plane that is 

periodic can be stacked with a finite tile set. 

Through the years researches proved that there exist sets of tiles 

enabling to cover a plate even without periodic repetition of a certain group 

of tiles and the competition was to find the smallest set. Wang’s student 

Robert Berger found out that strictly aperiodic plane can be tiled with set 

of 20 426 tiles [14]. He later reduced in his thesis this set to 104 tiles. The 

last two smallest sets, up on the best author’s knowledge, are shown in 

Fig. 2-1. The first set consists of 13 individuals with 5 different colours on 

edges [15]. The second set includes 11 tiles over only 4 codes [16]. Note the 

same codes on both vertical and horizontal edges in comparison with the 

Stochastic Wang tiling concept, which is described in detail within 

following subsection. 

 
Fig. 2-1 Minimal sets for aperiodic tilings 

Left – 13 tiles over 5 codes [15] Right – 11 tiles over 4 codes [16] 

  

                                                            
1 Parts of this chapter are reproduced from author’s contributions: [I],  [II],  [III],  [IV],  [V]  
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2.1.1 Stochastic tiling 

The main reason for implementation of Wang tiling principles to the 

tasks of material engineering is to create naturally looking domains. 

Moreover real heterogeneous material microstructures might include 

periodic artefacts as well, representing for example clusters of pores or 

regularly arranged particles. Thus, the requirement for utilization of 

presented aperiodic tiling is quite strict and therefore substituted with 

principles of the stochastic Cohen-Shade-Hiller-Deussen (CSHD) tiling 

algorithm [4]. 

Tiles from a basic tiling set in 2D are placed into a regular lattice of cells 

with the same dimension column by column and row by row. The tiling 

algorithm starts with the first tile of a set that is randomly chosen and 

placed in the corner of the grid. In a general position of the process, the 

system has to propose at least two individuals for the next step in order to 

be called stochastic. Similar requirements with number of codes on 

appropriate edge define minimal number of tiles in the set. When 

considering nx and ny as numbers of different colours/codes on vertical and 

horizontal edges respectively, the full or complete Wang tile set includes  

nx
2 ∙ nz

2 tiles, whereas the minimal set forms 2 ∙ nx ∙ nz tiles. In this work 

minimal set of stochastic Wang tiles for 2D applications applies two 

different codes on both horizontal and vertical edges, unless otherwise 

indicated. Therefore the final set consists of 8 tiles. A visualization of both 

full and minimal set together with tiling process in two dimensions are 

shown in Fig. 2-2. 

 

 
 

Fig. 2-2 Sets for 2D stochastic tilings 

Left – full set W16/2-2, Right – minimal set W8/2-2 with tiling algorithm 
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Extension to the 3D system is straightforward. If we consider nx, ny and 

nz as numbers of different colours on walls in main coordinate directions, 

the full set consists of nx
2 ∙ ny

2 ∙ nz
2 3D tiles – cubes. The tiling algorithm starts 

with the first cube randomly chosen and placed to the grid of a material 

domain. The system then adds cubes gradually row by row, column by 

column within a layer and then layer by layer. A choice between two 

individuals for any combination of codes in main coordinate system results 

in minimal set of 2 ∙ nx ∙ ny ∙ nz cubes. If we have two codes for every set of 

walls in main directions, the minimal set for 3D stochastic tiling, designated 

W16/2-2-2, include 16 Wang cubes, Fig 2-3. 

The nomenclature of tiles follows [9]. Here general tile description is 

defined as Wnt/n1c-n2c, where Wnt designates number of tiles in a set and ni 

number of codes on edges. The lower index 1 is attributed to codes on 

horizontal edges while 2 on vertical edges. Extension for 3D application is 

straightforward. 

In this work sequence of numbers which describe each tile in the set 

depends on designation of independent tile edges/walls. The string follows 

the definition and position of the main tile coordinate system, unless 

otherwise indicated. The centre of coordinate system lies in the centre of 

gravity of each tile/cube. The direction of axis goes to the centre 

of appropriate edge/wall. A sequention of numbers is based on code on 

negative and positive side of axis X, Y, and Z respectively. This procedure 

substitute the description based on world sites. 

 

 
 

Fig. 2-3 Minimal set for 3D stochastic tiling W16/2-2-2 with tiling algorithm 
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2.2 Particle systems 

As a first step, before both compression and reconstruction of 

microstructure domains, we need to select method, which is suitable for 

investigated type of random particle system. This contribution focuses 

mainly on geometrical and physics based computer methods. A reference 

sample is considered to be an input, therefore experimental testing and 

imaging techiques like X-ray tomography or optical microscopy are not in 

scope of this work. An interested reader is referred to [17] or [18], where is 

inter alia brief state of the art of these methods. 

2.2.1 Modelling methods 

Both geometrical and physics based methods require sorting of 

particle systems according to various criteria. The first one is a shape 

of particles (spherical, cylindrical, cubical) influencing mainly the number of 

parameters for description of particle position or movement. The second 

criterion represents mutual possible particle position (overlapping,  

non-overlapping) decisive for required volume fraction and repulsive or 

attractive forces between particles. A similar effect has a decision whether 

simulated system is composed of isolated particles with rare contact or 

most of particles are in contact. Such a system requires knowledge of 

mechanical stable states as well as particle packing problems. Another 

property is a type of particle distribution (random, regular) connected with 

time demands on a simulation. This preprocessing enables succesfull 

dealing with the main taks of boths methods: to create models with similar 

stastistical information. 

The simplest algorithms for generation of “random” particle systems 

are the Simple Sequential Inhibition model (SSI) and Random Sequential 

Adsorption model (RSA), where particles are randomly and sequentaly 

placed into area of prescribed size. If another particle in a sequence overlap 

with any of already placed, this inclusion is discarded followed with a new 

trial. The stopping criterion used to be reaching required volume fraction 

connected with maximal number of successfully placed particles. Such 

systems are able to create domains with lower volume fractions. But works 

perfectly as a starting systems for further investigation. Detailed 

description with various modification can be found in [19]. 

More effective, from the packing posibilites point of view, are 

sedimentation algorithms and their modifications. Here for 3D aplications, 

a small set of initial particles are randomly generated and arranged usually 

on the bottom of the container. After this step next particles are 

sequentially added (dropped) into container and their motion follows 

principles of gravity until a stable system is reached. This process with 

addition of one particle is called drop-and-roll [20]. Contrary a mechanical 

contraction system [21] starts with simultaneously generated group of 

particles, but principles of their later motion are the same as in the previous 

work. 
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A group of Collective rearrangement algorithms improves the results 

achieved by the above methods, not only with regard to the maximum 

possible volume fraction and dense packings. The initial position of a given 

number of particles, which can overlap, can be created by adsorption or 

sedimentation methods. Then the entire system or just a part of it is 

released and the particles move or shrink their dimensions to obtain more 

advantageous schemes. The rearrangement can be done using different 

methods based on physical principles (molecular dynamics, spring systems, 

attractive and repulsive forces) or optmization heuristic techniques with 

artificial schemes. For a more detailed description of methods an interested 

reader is reffered to [17] or [18]. Following paragraphs offer brief set of 

historical contributions that have a direct impact on algorithms utilized in 

this work. 

Jodrey-Tory [22] algorithm, in original form, divides particles (spheres) 

into two parts: the first rigid one, which defines the minimal distance of 

a pair of particles and the second, soft or deforming one, representing 

a repulsive core. In the course of the algorithm, the external part is reduced 

until only the inner part remained, and the system reached dense packing. 

The initial complex geometric scheme was later replaced by a simple and 

efficient force-biased algorithm [23]. This was later extended for generation 

of non-spherical particles. Such an algorithm represents an optimization 

method where the goal is to minimized energy of a system with reduction 

of outer/inner particle parts. 

Molecular dynamics, as an algorithm for generation of random 

systems or simulation of particles behaviour, was invented at the beginning 

of seventies [24]. Here, Newton’s motion laws were aplicated to every single 

member of a set. Particles moved based on artificial attractive forces. There 

has to be implementation of contact algorithms in order to prevent particle 

overlapping. 

When we are dealing with dynamics and particles that work in whole 

process as individuals, we have to mention the Discrete (or distinct) 

Element Method (DEM). Its origin date back to the early eighties, and was 

used to analyze rock-mechanical problems [25]. Now it works as a universal 

numerical method for solid mechanics when solving more than just 

problems with dynamical processes. Therefore, it is a core of both 

commercial and open-source softwares [26]. The DEM principles were used 

even for generation of particle domains with Wang tiling [27]. 

Nevertheless, this work utilizes molecular dynamics for generation of 

particle domains, namely the modified Lubachevsky-Stillinger [28], [29]. 

Here, in the beginning of the whole process, particles are randomly thrown 

into a container with originally periodic boundary conditions. As a next 

step, particles are assigned with velocity vectors. After releasing particles 

move, grow up and collide with both walls and each other until the stopping 

criterion is reached.   
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2.2.2 Hard packing of monodisperse particles 

Placement of hard particles within Wang Tile/Cube is limited via type 

of a packing problem. In preprocessing we need to decide how many 

particle of given radii are able to be placed into rectangular tiles or tile parts 

with specific dimension in order to be below maximal values of given 

particle packing states. Fundamental for solution of this problem is 

knowledge of traditional packing algorithms such as packing of hard 

particles into an arbitrary shaped container, ordered and disordered 

packing issues like random loose or close packing. 

A packing problem was presented as 18th out of 23 mathematical 

problems by David Hilbert in 1900. He asked: How one can arrange most 

densely in space an infinite number of equal solids of given form that is how 

can one so fit them together that the ratio of the filled to the unfilled space 

may be as great as possible? [30]. But the earliest studies on the packing 

problem appeared already in 1661 within the Kepler Conjecture – the 

problem of maximum packing density of identical spheres.  

A classification of packing problems (dense packing problems) can be 

according to various criteria. The first one is a shape of rigid particles - disc, 

rectangles, spheres, spheroids etc. Next criterion is an equality of 

investigated particles, whether they are equal or unequal. However, in the 

majority of contributions we meet concepts of ordered and disordered 

packing. 

Ordered packing can be achieved with arranging the particles in 

regular structures using e.g. lattices. Disordered packing can be divided 

into two groups – random close packing and random loose packing. 

Random close packing should occur when the packing contains no 

statistically significant order and any decrease in density from this state 

leads to ensembles of particles which need not to be closed packed. This 

definition is for hard disc and hard spheres. We can achieve this state 

experimentally by shaking and vibrating of a container with particles. 

Random loose packing is then defined as a state where each particle is 

touching several others [31]. 

Packing of spheres and circles with equal radii has been studied for 

many years. Scientist used them to explain and understand structural and 

kinetic matters. Johannes Kepler in already mentioned Kepler Conjecture in 

1661 believed, that the face-centred cubic lattice is the densest packing 

structure for spheres. A packing density was in this case π / 18 ≈ 0.7405. The 

same values stated Berryman in [31]. This value for ordered close packing 

was proved by Hales in [32]. Ordered close packing of hard spheres occurs 

when the packing fraction is about 0.7405. For discs in 2D the determinate 

packing fraction is approximately 0.9069. A packing fraction of random 

close packing occurs with a fraction around 0.64 and for random loose 

packing of spheres the value is 0.60. Similar values are reported for other 

important sphere densities by Weitz [33]. 
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For Wang tile generation more important are results in a field 

of particle packing into arbitrary, rectangular or even squared containers. 

Before particles are assigned to appropriate tile or tile size, one has to know 

the possibility of placement the given number of inclusions into a tile 

of certain size. This issue goes to the forefront especially with a set where 

each tile include different number of particles. Considering particle system 

with wang tiling, see following sections. Here, any of particle is able to cross 

border with a part of its surface. But extreme position of particle is given 

by range of possible movement of its centre. Therefore we still face the 

problem how to place n circles into a square. This problem is equivalent 

to the problem of scattering n points in a unit square such as the minimum 

distance between any two-points becomes as large as possible. This task 

for 2-9 discs was already solved in 1964 [34]. For 10 discs Schlüter [35]find 

the best solution that was later confirmed. In Fig. 2-4 are shown solutions 

for some number of circles up to 20 [36]. Investigation of more discs within 

square can be found in [37], but for the purpose of this work the packing 

of maximally 20 circles sufficient. A reader who is interested also in packing 

of polydisperse particles in a square is referred to [38], [39] or [40].  

 

  
 

Fig. 2-4 Best known packing of equalsized circles in a square [36] 
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2.3 Microstructure characterization 

One of the main goals of this thesis is to create a Wang tile based 

microstructure which mimics the statistical description of a reference 

domain. In order to successfully accomplish this task, we introduce a new 

concept for tile boundary conditions. First we have to put basis of 

microstructure characterization before any further investigation. 

When facing random heterogeneous materials problems we use to 

deal with a set of representatives (micrographs) which are different from 

the microscopic detail point of view but identical in macroscopic detail. 

Such a system of realizations, if is large enough, forms the ensamble or 

sample space S, for detailed description see [41] or [42]. Considering an 

individual sample of this space α which occupies a spatial (possibly 

infinitely large) domain Ω, then the probability of finding a realization α in 

space S is p(α). With this concept all spatial descriptors are understood as 

expectations of chosen n-point microstructural functions. We consider, for 

simplicity and with emphasis on investigated material microstructures in 

this work, only two dimensional space, two phase medium and two-point 

probability functions. Another assumption leading to efficient computing 

of spatial descriptors is the statistical uniformity or homogeneity of a 

microstructure. With this hypothesis the ensamble average of any functions 

remains the same with any translation of the coordinate system within 

domain Ω. With this simplification we omit the calculation of probability of 

realization α in space S. Moreover we consider the ergodic hypothesis. Here 

the ensamble average coincides with spacial domain average over Ω. But 

this works only if domain Ω is formaly infinite. Such a premision is fulfilled 

when there is a periodic extension of smaller domain. In general stochastic 

Wang tiling process is able to create periodically repeated regions. 

As stated above we focuse in this constribution on two-point probality 

functions which indicates probability of finding two-points in given phase, 

specifficaly the one occupied by particles. Therefore, this descriptor can be 

designated as two-point autocorellation function [43]. Detailed 

characterization of other lower order descriptors (Lineal path, Cluster 

function) as well as those of higher order (3 point probability function) can 

be found in [1]. When considering hypothesis of ergodicity together with 

statistical homogeneity, the two-point probability function has following 

form: 

     

        (2.1) 

 

where r and s designate phases. We can easily observe that for y=0 the 

probality of finding two-points merge into one point probability function 

and corresponds to the volume fraction of the sample. When the second 

point is theoretically in infinite distance, there is no corrrelation 

of investigated points and the equation is reduced to combined probability 

of two independent phenomena. 
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3 Tilings2 

This section introduces and describes algorithm for generation of 

Wang tile set with emphasis on general particle motion and tile boundary 

conditions. Proposed improvements and methods are later compared on 

several artificial microstructures in order to find the best approach for tasks 

of random heterogeneous microstructures modelling and reconstruction. 

3.1 Molecular dynamics 

The main parts of dynamics that occur during the algorithm are 

collisions. They are of two types, bounce from the tile edges and rebounds 

of discs. To ensure proper movement involving boundary conditions of 

Wang tiles, it is necessary to determine when these phenomena occur.  

The earliest time of bounce ∆𝑡𝑒 depends on the current discs position 

and a velocity vector of each particle. Calculation of ∆𝑡𝑒 in two dimensions 

is according to following equation: 

∆𝒕𝒆 = 𝒎𝒊𝒏{− 𝒅𝒙𝒊,𝒓𝒊 𝒗𝒙𝒊⁄ ; 𝒅𝒙𝒊,𝒍𝒆 𝒗𝒙𝒊⁄ ; − 𝒅𝒛𝒊,𝒍𝒐 𝒗𝒛𝒊⁄ ; 𝒅𝒛𝒊,𝒖𝒑 𝒗𝒛𝒊⁄ } ,         (3.1) 

  

where ∆𝑡𝑒 is the earliest time of reflection since the previous event or time 

step, 𝑑𝑥𝑖,𝑟𝑖, 𝑑𝑥𝑖,𝑙𝑒, 𝑑𝑧𝑖,𝑙𝑜, 𝑑𝑧𝑖,𝑢𝑝 are distances of a disc centre to the appropriate 

borders. Velocities of the i-th disc in x and z directions are labelled with 𝑣𝑥𝑖 

and 𝑣𝑧𝑖 respectively. The same principle is for bounce in 3D where equation 

(3.1) is extended by the velocities and edges in the third dimension. 

The earliest time of the second type of a collision, disc rebounds, can 

be determined as time from certain moment until disc centres will be in the 

distance of their mutual radii. Such a time can be defined with the following 

formulas: 

 (𝒙𝒋 − 𝒙𝒊)
𝟐 + (𝒛𝒋 − 𝒛𝒊)

𝟐 = (𝒓𝒋 + 𝒓𝒊)
𝟐 (3.2) 

  

𝒙𝒊 = 𝒙𝒊
𝒕 + 𝒗𝒙𝒊

𝒕 ∙ ∆𝒕𝒄, 𝒛𝒊 = 𝒛𝒊
𝒕 + 𝒗𝒛𝒊

𝒕 ∙ ∆𝒕𝒄, 𝒓𝒊 = 𝒓𝒊
𝒕 + 𝒅𝒓𝒊 ∙ ∆𝒕𝒄,     (3.3), (3.4), (3.5) 

  

𝒙𝒋 = 𝒙𝒋
𝒕 + 𝒗𝒙𝒋

𝒕 ∙ ∆𝒕𝒄, 𝒛𝒋 = 𝒛𝒋
𝒕 + 𝒗𝒛𝒋

𝒕 ∙ ∆𝒕𝒄, 𝒓𝒋 = 𝒓𝒋
𝒕 + 𝒅𝒓𝒋 ∙ ∆𝒕𝒄,  (3.6), (3.7), (3.8) 

  

where 𝑥𝑖 , 𝑦𝑖 ,  𝑥𝑗 ,  𝑦𝑗 are collision disc coordinates, 𝑥𝑖
𝑡 , 𝑦𝑖

𝑡 , 𝑥𝑗
𝑡 , 𝑦𝑗

𝑡 disc 

coordinates and 𝑣𝑥𝑖
𝑡 , 𝑣𝑦𝑖

𝑡 , 𝑣𝑥𝑗
𝑡 , 𝑣𝑦j

t disc velocities at time t; 𝑟𝑖 , 𝑟𝑗 , 𝑟𝑖
𝑡 , 𝑟𝑗

𝑡 are 

collision discs radii. The growth rate of particles is determined by a variable 

𝑑𝑟 and ∆𝑡𝑐 is time elapsed since time t. Next collision time is in this case 

designated as minimum of real positive roots of equation (3.2). As for disc 

collisions in 3D the equation (3.2) includes difference of spheres’ 

coordinates also in y direction. Nevertheless, (3.2) still remains a square 

function. In case of rebound a change of velocity vector follows a law of 

impact and rebound.  

                                                            
2 Parts of this chapter are reproduced from author’s contributions: [I],  [II],  [IV],  [V] 
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3.2 Boundary conditions 

This subsection present three types of boundary conditions for 

particle motion while using molecular dynamics for Wang tiles generation. 

The new Volume and Adaptive walls approaches enrich the traditional 

concept of periodic conditions. The main goal of new improvements is to 

reduce unwanted periodicity artefacts while keeping compatibility of tiles 

on both edges and corners. 

3.2.1 Periodic Unit Cell 

The concept of a periodic unit cell is based on consideration that the 

final medium is stacked with identical cells which on the edges meets the 

conditions of periodicity. The shape of such cells in two dimensions can be 

regular polygons, mostly squares and rectangles or crystal lattices of given 

materials. In 3D cubes, blocks and appropriate crystals represent periodic 

unit cell can be used in accordance to a characteristic shape of material.  

If the reconstructed heterogeneous medium has been already 

periodic, a size and distribution of particles within a unit cell corresponds 

to the material grid. When the reconstructed heterogeneous composite 

exhibits a random distribution of particles, parameters of the PUC must be 

set according to prescriptions that satisfy statistical conditions of the RVE. 

This basically defines an optimization issues. 

The concept of a periodic unit cell establishes periodic boundary 

conditions on the edges of the cell. From the molecular dynamics point of 

view, this concept is based on the main central cell surrounded by its nine 

images that guarantee periodic boundary conditions Fig. 3-5. 

 

Fig. 3-5 Molecular dynamics and boundary conditions for the PUC concept 

 

If any particle crosses with its surface any of vertical or horizontal tile 

edge, the copy of the same particle appears on the opposite side. The 

particle movement continuous until particle centre reaches the edge and 

rebound or any other inclusion force the original one to change the velocity 

vector back to the tile. The similar algorithm works for three dimensional 

problems, only edges in the definition above are changed to walls of the 

cube. Note that minimal set of stochastic Wang tiles include tiles with the 

same codes on opposite sites, which can be designated as PUCs.  
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3.2.2 Periodicity and tiling artefacts 

In this contribution the principles of stochastic tiling build bases for 

random heterogeneous material models. The nature of classical Wang tiles 

with codes on edges together with application on material domains 

composed of arbitrary shaped particles within matrix result to corner 

problem. If there has to be ensured compatibility of tiling on edges, any 

particle cannot even touch the corner of tile. Discussed problem can be 

solved in different ways. 

The first solution enables to have tiles directly without particles in 

corners. But such approach head to periodicity artefacts underlining tiling 

grid of composed space. In [44] Lagae and Dutré introduced a concept of 

corner tiles as an alternative for Wang tiling. Corner tiles take the form of 

squares with coloured corners in comparison with Wang tiles where colours 

are assigned to edges. This method enables to stack a final domain with 

respect to every of eight neighbour tiles. There is need to say that within 

our application the problem with dead space where particle centres are 

forbidden to be located has just moved to centres of tile edges. In general 

the problem is caused by the nature of molecular dynamics and principles 

of both Wang and corner tiling, Fig. 3-6. 

 
 

Fig. 3-6 Corner problem 

a) Wang tiles without corner particles – dead spaces and grid periodicity,  

b) Wang tiles with corner particle – no corner information = overlaps,  

c) Corner tiles with central particle – no central infromation = overlaps  

(hatch is only for ilustration) 

While set of eight tiles is generated, particles grow, collide with each 

other and bounce of the tile walls. Considering the algorithm that prevent 

particle crossing a tile edge final plane will be composed using eight 

different tiles. With such simplification whole tiling is ordered and exhibits 

grid periodicity because there is no interaction between tiles. If particles 

can leave the tile during motion, it has to be copied into all prototiles with 

possibility of shared edge within tiled material domain. This approach leads 

to unwanted variation of volume fraction. We seek the algorithm 

modification which allows interference of particles to other tiles with no 

changes in a volume fraction. The first proposed modification is to divide 

each Wang tile into border and central parts – Wang tiling with Volume 

Walls. The second approach uses deformation of tile edges and creates 

a puzzle system – Wang tiling with Adaptive Walls. 
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3.2.3 Stochastic Wang tilings – Volume Walls 

The situation with boundary conditions for molecular dynamics gets 

difficult considering material with hard particles together with the Wang 

tiling approach. When particle tends to leave the mother tile through the 

edge with a certain code, it has to be copied to every edge designated with 

the same code on any other tile in order to meet the requirements of the 

stochastic tiling. Such a permission leads to unwanted increasing of overall 

volume fractions. Therefore we present a concept with Volume Walls (VW), 

where volume fraction of the tile set remains the same over the whole 

process. 

In the beginning of the generation, before particle centres are thrown 

into tiles, each tile is divided into central and border parts of certain volume 

– Volume Wall (VW). The width of the VW is equal to the diameter of the 

largest particle in a model. The height of the VW equals to the size of a tile 

edge reduced by diameter of the largest particle in a set. One half of the VW 

is inside the tile, the other is outside and physically belongs to the 

neighbour tile in a final domain, Fig 3-7. This division defines corner parts of 

a tile – dead spaces – where particle centre can never go to. 

 

      
 

Fig. 3-7 Division of Wang tile with Volume Walls 

Wang tile set W8/2-2 with Volume Walls with one border inclusion 

The number of particles within border and central parts usually follows 

the ratio of its areas and prescribed volume fractions. The border parts have 

the same areas. Therefore the number of particles within these parts should 

be the same, no matter of the code, to avoid unwanted cluster artefacts 

in the final microstructure. This assumption works fine for tilings with the 

same number of inclusions in tiles. Even though there are rigid barriers 

between the tile parts, central particles can collide with the border ones. 

The border are valid for their centres, not for their surfaces. The rebound 

occurs only when the particle centre reaches the barrier. In the  

Fig. 3-8 there is a set of tiles for 2D application with one particle inside each 

VW and 3 individuals inside the central parts. The extension to 3D wang tile 

cubes with VW is straightforward, Fig. 3-8 right.  
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Fig. 3-8 Wang tiling with volume walls - VW:  

Left – 2D set, Right – division of one 3D tile into appropriate parts 

Note the corner parts, where particle centres never get to. This 

modification prevents copying of particles to the tile which has no common 

boundary part with the master one. If there is no dead space, particle 

leaving tile through the corner finds its copies all over the set. 

Aforementioned state is called corner problem, which might be solved in 

general case with corner tiles [44]. Unfortunately corner tiling do not fit to 

our case when the tile set is generated via molecular dynamics. The nature 

of the algorithm only removes the problem to the middle of tile edges. 

3.2.4 Stochastic Wang tilings – Adaptive Walls 

Random heterogeneous material domains generated via concept of 

the PUCs consist of copies of just one tile, which brings great periodicity 

number. The Wang tiling method with Volume Walls reduces significantly 

periodicity of the domain due to the stochastic tiling based on set of 

different tiles. Notwithstanding this success, still parts of tiles 

corresponding to the number of different codes on edges cause artificial 

periodicity artefacts. These artefacts get more significant with higher 

volume fraction of the domain. 

The main task for the improvement of tile sets generated via molecular 

dynamics is how to keep the compatibility of tiles without repetition of tile 

parts. One of the solutions that fulfil this condition is to prevent any particle 

transition across the tile edge. Such a system leads to material domains 

composed of independent blocks forming lattice of vertical and horizontal 

lines without any particle. Contrary, a method similar to the puzzle system 

seems promising. 
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Consider a typical set of eight Wang tiles where each tile edge is 

designated with only one of four colours according to the principle of 

stochastic tiling. In the next step particle centres are sequentially thrown 

into tiles related to the required volume fractions of composed 

heterogeneous material. Each particle centre is equipped with a random 

velocity vector and a growth rate based on the final particle radii and time 

steps of simulation duration. Once the process begins particles move and 

collide with each other and particle centres bound of the tile walls. Graphic 

form of tile borders changes in time with respect to following rules. 

When particle contour leaves the tile, appropriate edge copies this 

contour. The particle centre reaches original walls, rebounds and goes back 

to tile. The tile edge adapts to particle contour until whole particle is inside 

the tile, Fig. 3-9. In order to keep compatibility of tiling, adaptive 

boundaries have to be the same on every tile edge designated with the 

same colour. 

  
 

Fig. 3-9 Wang tiling with Adaptive Walls – AW 

Top – principles of wall modifiation, 

Bottom – Wang Tile set W8/2-2 with one master and other slave tiles 

A similar process runs when particle simultaneously reach two corner 

edges or interferes diagonal tile (of tiled area), Fig. 3-10. There is a master 

tile where the leaving particle originally belongs. The edges adaptation of 

this tile manage all other tiles in set in terms of tiling compatibility. The 

modification of edges on slave tiles could be divided into three steps. 

Within the first step the shape of all edges, designated with the same colour 

as modified master tile walls, are unified. In the next step a corner 

deformation of a diagonal tile (in final tiling) is copied to all tiles. The most 

critical issue for proper modification of boundaries is to find all possible 

neighbour tilling of the master tile. In the last step corner deformation is 

copied to opposite side of each tile (either horizontal or vertical but the 

same for all tiles). This modification server inter alia for reduction of dead 

spaces. Unfortunately, there is still a bit of space without any particle – 

small closed corners occurring in half of tile set, see Fig. 3-10 the third step 

tiles IV., VI., VII., and VIII. 
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Fig. 3-10 Adaptive Walls – corner particle, algorithm of tile edges modification 

 

The tiling then represents a puzzle system. In fact the algorithm 

considers eight master Wang tiles surrounded with all possible 

combination of neighbour slave tiles to affect changes caused by 

trespassed particle and to ensure compatibility of tiling, Fig. 3-11. The 

phenomena of particle-particle and particle-tile boundary collision for all 

these combinations are calculated simultaneously. 
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Fig. 3-11 Adaptive Walls – combinations of master and slave tiles 

 

Adaptive walls of tiles where trespassing particle is trying to get to are 

dynamic in order to keep interacting system.  If there occurs a collision of 

either concave or convex adapted tile wall with particle inside the tile, 

velocity vectors of these objects (as well as original particle which caused 

a deformation of tiles walls) are calculated according to the Momentum 

conservation law and the Conservation of the energy law. The entire 

process of the Wang tile set generation is terminated when particles grow 

to the desired size. The extension to the 3D space is straightforward. The 

modification of edges is transferred to the walls, Fig 3-12. 

 
 

Fig. 3-12 Wang tiling with Adaptive Walls for 2D and 3D applications 

Left – 2D set, Right – visualization of AW algorithm in 3D (master cube + one slave cube) 
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3.2.5 Comparison 

This subchapter aims at comparison of the Wang tiling process with 

the concept of the PUC. We show the contrast in both visual and statistical 

way using lower order descriptor, namely the two-point probability 

function. I has to be noted that at this stage of research structures are not 

optimized in term of complete statistical information, we only focus on 

reduction of significant accompanying phenomenon – secondary peaks – 

applying different boundary conditions. 

3.2.5.1 Monodisperse 2D sets 

Every single example consists of four randomly generated samples: 

an original one with required properties and three tilings assembled by 

tiles with the PUC, the VW and the AW boundary conditions. The lattice of 

eight by eight tiles represents every tiled microstructure. The sequence of 

tiles is similar for each tiling within one comparable example. All tiles from 

the basic set in Wang tiling samples have the same number in a final 

domain. Only one group of samples for each example are shown for the 

purposes of visual comparison. The first artificial modelled microstructures 

contain equal sized hard discs of radius 15 pixels. We have here domains of 

three different particle volume fractions: 0.2, 0.4, and 0,6. The tile edge size 

is 100 pixels, in accordance with dynamic algorithm definition from the 

previous section of this work. The numbers of particles in samples and/or 

tiles are summarized in Tab. 3-1. While number of particles in the PUCs and 

the Wang tiles with the AW corresponds proportionally to the overall 

volume fractions, the situation on tiles with the VW differs. If we consider 

two neighbour tiles with certain code/colour on edges, in the system with 

the VW particles in common border parts completely overlap. Therefore the 

real number of particles per the VW tile equals to the sum of inclusions in 

the central part and the half of inclusions in all four border parts. The 

following figure Fig. 3-13 shows all three modelled states. 

 

Tab. 3-1: Settings for comparison of boundary conditions – monodisperse sets 

Volume  

fraction app. 
Method 

Particles  

per tile 

Total number 

of tiles 

Total number 

of particles 

0.2 

sample -- -- 256 

PUC 4 64 256 

VW 5 64 256 

AW 4 64 256 

0.4 

sample -- -- 512 

PUC 8 64 512 

VW 11 64 512 

AW 4 64 512 

0.6 

sample -- -- 768 

PUC 12 64 768 

VW 17 64 768 

AW 12 64 768 
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Fig. 3-13 Generated sets with monodisperse particles 

Artificial sample; the PUC tiling; the Wang tilings W8/2-2 Volume Walls, Adaptive Walls. 

Upper frame – 4 particles/tile; middle – 8 particles/tile, lower – 12 particles/tile 
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The visual evaluation focuses on the artificial periodicity artefacts in 

line with the task of this contribution. We briefly comment the results for 

each algorithm and point out problems. We are aware of the distortion due 

to the number of realizations for the visual comparison. Despite this fact, 

with these tests we gain rough insight into the behaviour of the algorithms 

and its benefits and disadvantages. The first column of samples represents 

initial domain with random distribution of particles without significant 

particle clusters or regular lattice. 

On the other hand, samples in the second column exhibit clearly 

visible lattice of repeating areas given by the nature of the PUC concept. 

This phenomenon is supported by the same size of tile for all samples of any 

volume fractions. The PUC for the last case includes twelve particles 

whereas for the first one only four. Without input changes, representing tile 

size and number of particles within, the PUC approach cannot compete with 

Wang tiling in terms of visual results. Contrary, the lower number of 

particles in motion leads to savings of computer demands due to the 

probability of particle collisions. Such an assumption prefers the PUC 

(4 particles needed for the first example) from the VW (26) and the AW (32). 

The concept of Wang tiles with the VW seems promising, especially for 

examples with a lower volume fraction. Generally, if we want to reduce 

periodically repeating areas, we have to minimize the number of particles 

in the border parts of tiles. The best way is to set this number to zero. Such 

a limit value is possible in fact only for cases with very low volume fractions. 

If similar consideration was applied to the second analysed example of 

particle fraction 0.4, we would have a system with visible lattice of particle-

free regions. Instead, we assigned particles to certain tile parts according 

to its area ratio. Despite the restriction, dead spaces in final tiling arises 

with increasing sum of particles as a consequence of the algorithm nature. 

The last group of tilings with the AW exhibits the greatest visual match 

with the artificial samples. The visible repetition is primarily given by the 

number of tiles in the basic set, since each tile is completely different. The 

only exception represent tile corners. If there is a master tile where any 

particle finds its position in the corner, the space in all other corners over 

the whole tile set remain free until any other particle fill this area. This result 

of the game of probabilities is more visible in samples with higher volume 

fractions. Despite the increasing probability of filling, free corner spaces (if 

any) cannot hide between other places without particles. Contrary, dilution 

of artefacts is possible for domains with lower number of inclusion. Thus 

these reconstructions visually match more with random reference medium. 

We evaluate the artificial periodicity artefacts also via microstructure 

statistical description. Special emphasis is placed on secondary peaks in 

two-point probability function plots. The graphic form of generated 

samples is divided into pixels, where number of pixels per tile edge equals 

to the size of tile. Pixels are designated with white colour if distance from 

their midpoint to the certain particle centre is lower than the appropriate 

radius, see Fig. 3-14 – 3-16. Therefore some particles may look incomplete. 
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Fig. 3-14 Analysis of 2D monodisperse samples of volume fraction approximately 0.2 

Systems from top to bottom: artificial sample, PUC, Wang tiling – VW, Wang tiling – AW.  

 Right – one randomly chosen realization, Left – S2 function (average of all realizations). 
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Fig. 3-15 Analysis of 2D monodisperse samples of volume fraction approximately 0.4 

Systems from top to bottom: artificial sample, PUC, Wang tiling – VW, Wang tiling – AW. 

 Right – one randomly chosen realization, Left – S2 function (average of all realizations). 
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Fig. 3-16 Analysis of 2D monodisperse samples of volume fraction approximately 0.6 

Systems from top to bottom: artificial sample, PUC, Wang tiling – VW, Wang tiling – AW. 

 Right – one randomly chosen realization, Left – S2 function (average of all realizations). 
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The principle when each particle has a general template was not 

implemented here due to the particle motion together with final random 

position. The range of statistical description is reduced to 400x400 points 

in order to keep results clear and simple. Long range dependencies give no 

information that would influence the assessment of observed artefacts. The 

two-point statistics for artificial sample and tiling made of the PUCs 

correspond to the binary representation of domains from Fig. 3-13, shown 

in left column. Whereas plotted results for Wang tiling represent average of 

five realization. The binary representation next to means one of the 

realizations and fits the microstructure in Fig. 3-13. 

The word description of graphic results consider mainly the first and 

the group of secondary extremes complementing differences in methods 

of tiles generation. The highest value in every graph represents the volume 

fraction of certain sample in accordance with the description definition. The 

first extreme is the same for all samples due to the identical total number 

particles. However, the prescribed condition of volume fraction is met with 

an error given by the integer number of particles. Secondary extremes fully 

reflect the periodicity in the samples. There is no significant secondary peak 

in the first artificial samples, situation is different in tiled domains. If we 

look at the PUC system, here every particle in a cell repeats in main 

coordinate system in a distance of the tile size with the same probability. 

Tertiary and other extremes express the geometric relationship between 

the particles in one cell with the contribution of tile copies in diagonal 

direction. 

The secondary peaks in domains based on the VW are caused mainly 

by two phenomena: the regular repetition of boundary particles and the 

usage of the same tiles. The occurrence probability of both situations is 

lower than for the PUC system. The first indicated factor does not affects 

the results of the samples with the AW. An oscillation around the squared 

volume fraction appears in every tested type of boundary condition as 

a consequence of the descriptor definition. The comparison in terms of the 

secondary and tertiary extremes in graphs of statistics is in favour of 

the AW system. 

3.2.5.2 Polydisperse 2D sets 

The algorithms for generation of the PUC and Wang tiles are capable 

to work with particles of different radii. Therefore another group of tested 

sets represent polydispersible material structures. The overall volume 

fraction remains the same as for the previous set, but inclusion are of two 

radii. Their relative volume ratio is approximately 60 percent for the first 

radius of 12.5 pixels and 40 percent for particles of radius 7.5 pixels. The 

other settings of both material domains and algorithms remain unchanged. 

The visualization of tilings and appropriate microstructures without tile 

edges are shown in Fig. 3-17. The sample labels are supplemented with the 

number of particles of given radii in each tile. 
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Fig. 3-17 Generated sets with polydisperse particles 

Artificial sample; the PUC tiling; the Wang tilings W8/2-2 Volume Walls, Adaptive Walls. 

 upper frame – 3+3 particles/tile, middle – 5+9 particles/tile,lower – 8+12 particles/tile 



3 Tilings 

 

43 
 

The set of polydisperse microstructures for visual comparison includes 

artificial sample and tiled domains of the PUC and Wang tiling with both the 

VW and AW conditions. The benefits and disadvantages for monodisperse 

sets are generally valid in these cases as well. An emphasis has to be on 

prescribed volume fraction and volume ratio of particles of different radii. 

If we consider still the same tile size, the real volume fraction error gets up 

to ten percent for systems with the lowest tile particle number. This issue 

can be solved by modification of tile size according to an integral 

combination of particles with certain radii. We decided to keep the same 

tile size because of the main subchapter purpose – comparison of methods 

for tile set generation. 

The lengths of tile edge, or dimensions of border areas respectively, 

are the decisive parameters for the size of dead spaces. The width of border 

areas equals the maximal particle diameter. Thus, if the centre of small 

particle reaches the corner, its surface is unable to cover a sufficient free 

area of the corner dead space. In this manner is formed visually regular 

lattice of islands without inclusions. This phenomenon appears with higher 

volume fraction and lower ratio of the largest particles to other ones. It can 

be found in our tested samples, particularly in domains of volume fraction 

0.4 and 0.6, see Fig. 3-19 and Fig. 3-20.  

On the contrary, polydisperse materials are more suitable for the 

method with the AW when solving the corner problem. Consider 

the particle of maximal radius which is located in a corner of the master tile. 

The deformation occurs in every corner of every tile from the set. One corner 

in the master tile is occupied with a particle while all others represent a free 

space only. These spaces are filled in the easiest way with particles of lower 

radii. Such a particle is “protected” by the master corner inclusion. 

A collision of the corner master particle with any other particle from slave 

tiles come earlier than a collision of these particles with the protected one. 

This advantage of the AW boundary conditions is visible in modelled states 

with both monodisperse Fig. 3-13 and polydisperse domains, Fig. 3-17. 

The following pictures Fig. 3-18 – 3-20 complement the visualization 

with statistical information. The description of the first two examples of 

each volume fraction set corresponds to the binary representation located 

next to a certain graph. The binary form of Wang tiling examples symbolize 

only one of five realization, which are used for the statistics. All of these 

monochrome figures coincide with samples for visual comparison in  

Fig. 3-17. If we focus on the secondary extremes of function, we gain 

considerable reduction in the Wang tiling compared to the PUC. It is caused 

in particular by two circumstances. The first one is, naturally, usage of 

different boundary conditions. The second one is ability to create different 

tilings via just one set of tiles. Multiple realizations of material domains 

based on the PUC concept are not needed. Considering a statistically 

homogeneous microstructure, the two-point probability depends only on 

the relative position of tested points. The differences between statistics 

would only be inside tiles.  However, the extremes of the final sample would 

be the same when there is no change of the tile size. 
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Fig. 3-18 Analysis of 2D polydisperse samples of volume fraction approximately 0.2 

Systems from top to bottom: artificial sample, PUC, Wang tiling – VW, Wang tiling – AW. 

 Right – one randomly chosen realization, Left – S2 function (average of all realizations). 
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Fig. 3-19 Analysis of 2D polydisperse samples of volume fraction approximately 0.4 

Systems from top to bottom: artificial sample, PUC, Wang tiling – VW, Wang tiling – AW. 

 Right – one randomly chosen realization, Left – S2 function (average of all realizations). 
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Fig. 3-20 Analysis of 2D polydisperse samples of volume fraction approximately 0.6 

Systems from top to bottom: artificial sample, PUC, Wang tiling – VW, Wang tiling – AW. 

 Right – one randomly chosen realization, Left – S2 function (average of all realizations). 
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3.2.5.3 Monodisperse 3D sets 

The Wang tiling extension allows creation of 3D structures. The 

samples represent monodisperse impenetrable hard spheres in 

a continuous phase. Generated structures are composed of the PUCs and 

the Wang cubes with both the VW and the AW boundary conditions. The 

comparison of approaches is in terms of unwanted artefacts of artificial 

periodicity. The final position of inclusions is randomized, or in other words 

depends on initial random velocity vectors. The tested tiling sequence has 

a shape of cube and consist of 125 individual 3D tiles. Each cube has a size 

of 40 pixels and contain 12 particles with radius of 5 pixels. Such 

a description is valid for tiles with periodic and the Wang tiles with the AW 

boundary conditions. Tiles with the VW follow similar rules as for 2D 

applications. Duplicated particles in border areas are reduced in final tiling. 

But in the beginning of the generation algorithm particles are distributed 

as follows: one sphere to every border part and the others to the central 

part. Contrary to the 2D samples, the ratio of particle number in border 

regions to the sum of particles in central parts is lower than the ratio of 

these tile part volumes. This scheme has been chosen deliberately in order 

to demonstrate benefits of tiling with the VW and to reduce periodicity.  

The results of the two-point probability descriptor for 3D applications 

are hardly visually interpretable. Therefore a histogram reflecting the 

number of particles in the spherical shell at a distance r from the certain 

particle centre is chosen to describe basic statistics, Fig 3-21. Concurrently, 

the last tested spherical shell is in distance equal to the tile dimension, 

which is sufficient from the tiling periodicity point of view.  

The observed periodicity phenomenon can be retrieved from the data 

in the last column as well as from the graph trends. Moreover, the situation, 

when any column is much higher than its nearest neighbours, indicate 

observed phenomenon as well. Mentioned events can be seen from the 

statistic of the PUC structure. The last column corresponds to the cube size 

and include sphere copies in main orthogonal directions. Higher values in 

zone 13, 17, 24, or 29 contain distances of particles in two closest cubes, but 

they are significantly affected with copies of particles inside one periodic 

cell. 

The frequency of particles with relative distance equal to the cube size 

is significantly lower for Wang tiling with VW in comparison with the PUC 

concept. The difference level is based on the number of particles in border 

volume space. In general, marginal role plays also a structure of tiling. 

Despite the stochastic tiling process, the final sequence may include 

neighbours of the same cubes. In our case such a sequence occurs in less 

than six percent of the neighbours. The histogram for Wang tiling with the 

AW is in agreement with the goal to reduce periodicity artefacts. In here the 

frequency in the last column is the lowest from the generated structures. 

Moreover the growth rate is fluent indicating uniform distribution without 

extremes. 
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Fig. 3-21 Analysis of 3D monodisperse samples of volume fraction approximately 0.08 

 Right: Realizations with system of PUC, Wang cubes with VW, Wang Cubes with AW,  

Left: appropriate histograms of particle distances 
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3.3 Tile size 

Consider six structures with monodisperse discs of identical particle 

fraction composed with stochastic Wang tiling. Each tile set W8/2-2 of 

generated structures is created via proposed modified molecular dynamic 

algorithm with Adaptive Walls approach as described in previous chapters. 

The algorithm stops when particles reach the final radii of 7.5 pixels. Every 

single sample contains 900 particles, whereas size and number of tiles in 

tiling differs. The first sample form grid of 900 tiles with just one particle 

inside. Each tile in other samples contain 4, 9, 25, 36, and 100 particles 

respectively.  

It is obvious from the Fig. 3-22 with 3 of representatives, that the first 

simulation (1 particle/tile) represents S arrangement, whereas the second 

(9 particles/tile) and the third tiling (100 particles/tile) forms rather 

R arrangement [45]. The term R arrangement means random particle 

placement and S represents regular or uniform particle positioning over 

whole area. One can also easily observe differences in the degree of 

heterogeneity, where in the first sample there are visible interferences and 

the structure is closer to the ordered system in comparison with the last 

tiling with both particle clusters and rattlers. The main goal of this part is to 

provide simulations and build up recommendations for particle-tile size 

relation with emphasis on specific range of volume fraction similar to 

optimized structure within next chapter, overall arrangement and different 

states of heterogeneity for structures. 

       
 

Fig. 3-22 Samples of tiling for tile size investigation 

1 inclusion/tile (30×30 tiles), 4 inclusions/tile (15×15 tiles), 36 inclusions/tile (5×5 tiles); 

Wang tiling set W8/2-2. 

In general every tile within the Wang tiling concept used to be of unit 

size. But for modelling practice, the base block has to have a size of certain 

value or at least to be in the certain ratio with other structural dimensions. 

The determination of the tile size can be divided into two consecutive steps. 

In the first one there is need to define minimal geometry demands, in order 

to be able to reach various states of packings. Within the second step the 

size of tiles as well as tiling is compared to the characteristic structural sizes 

of a modelled sample and/or modified with emphasis on overall required 

material properties. We focus, in this stage of investigation, mostly on the 

first condition.  
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The very first issue for a definition of the tile size is identification of 

possible packing states. When a required material is fully packed or domain 

should have clusters of particles, it is necessary to cogitate the close dense 

packing. Since the dynamic algorithm involves Adaptive Walls, it is 

theoretically possible to achieve the maximal hexagonal dense packing of 

equal-sized inclusions with the volume fraction of 0.9069. But for real 

random heterogeneous microstructures more common are limits of 

jammed states (mechanical stable states) or random jammed state 

respectively [18]. The most disordered jammed state used to be called 

maximally random. Nevertheless in our simulation we aim at tiling with 

lower particle fraction in order to simulate specific range of structural 

domains with higher degree of freedom and R arrangement. 

Two assumptions, the same number of particles in every tile and 

probability of accepting a tile from the appropriate pair of possible tiles, 

assure overall required volume fraction. The term volume fraction, or in this 

case a packing fraction, is defined as ratio of the sum of particle areas to 

overall space. The dimension of space is relative to tile size, therefore the 

number of particles within a tile defines (with respect to the required 

packing fraction) the size of each tile. In the following examples, where are 

different number of particles in tiles, we will compare how this setting 

affects tiled model in terms of simplified basic statistical description. 

For all analysed cases the packing fraction is 0.442. The size of a final 

tiling is 600×600 pixels/microns. There are 6 examples where the tile size 

increases gradually. In the first case we have only one inclusion in every tile. 

Since the size of tile is 20 pixels, the final tiling consists of 30×30 tiles. The 

table Tab 3-2 summarizes investigated cases with appropriate settings. 

Figures Fig 3-23 – 3-28 show one tiling set with appropriate tiled structure 

for given settings and pore size distribution histogram [46] from five 

different realizations. In this case one realization represents domain with 

the same tiling sequence but different random particle positions in 

comparison with other structures within particular tile size. The separation 

of pores uses watershed segmentation algorithm [47]. Since these are test 

files, microns in pore size distribution equals to pixels. 

 

Tab. 3-2: Settings for comparison of tile sizes 

Set No. Tile lattice 
Total number 

of tiles 

Particles per 

tile 

Total number 

of particles 

1 30x30 900 1 900 

2 15x15 225 4 900 

3 10x10 100 9 900 

4 6x6 36 25 900 

5 5x5 25 36 900 

6 3x3 9 100 900 
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Fig. 3-23 Particle distribution – 1st example 1 inclusion/tile:  

one sample of Wang tile set with tiling (30×30 tiles),  

average pore size distribution over 5 realizations 

  

 

  

 

 

Fig. 3-24 Particle distribution – 2nd example 4 inclusions/tile  

one sample of Wang tile set with tiling (15×15 tiles),  

average pore size distribution over 5 realizations  
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Fig. 3-25 Particle distribution – 3rd example 9 inclusions/tile 

one sample of Wang tile set with tiling (10×10 tiles),  

average pore size distribution over 5 realizations 

 

 

 

 

 
 

Fig. 3-26 Particle distribution – 4th example 25 inclusions/tile 

one sample of Wang tile set with tiling (6×6 tiles),  

average pore size distribution over 5 realizations 



3 Tilings 

 

53 
 

 

 

 

 

Fig. 3-27 Particle distribution – 5th example 36 inclusions/tile 

one sample of Wang tile set with tiling (5×5 tiles),  

average pore size distribution over 5 realizations 

 

 

 

 

 

 

 

Fig. 3-28 Particle distribution – 6th example 100 inclusions/tile 

one sample of Wang tile set with tiling (3×3 tiles),  

average pore size distribution over 5 realizations 
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In the first case, the tiling exhibits similarity to the material with 

lattice. The particles in every tile have limited freedom given by the tile size-

particle radius ratio which is 0.375. Thus the pore size histogram is quite 

narrow without existence of large pores. Such setting is valid only for 

a reconstruction of domain with high-ordered particle system or with 

a periodic arrangement.  

The second simulation with 4 particles in a tile enables to create 

structures with wider pore distribution. This was achieved mainly due to 

larger space for particle motion. Nevertheless there is still a dominated 

pore size indicating lower level of disordering. Moreover in visualisation of 

one structure occur many local particle clusters caused by small particle 

number in a tile and the nature of the stochastic tiling. 

The histograms from the third and the fourth tested settings display 

quite similar results in term of range of pore size and maximal relative 

frequency. Differences in height of bars is given by the size of tile (ability of 

achieving various states) and relatively low number of tests. Despite the 

fact of randomized particle positions, the samples of the set with 9 particles 

in a tile exhibits similarity and therefore pores with size of 12 pixels appear 

more often than pores with size of 10 pixels. This phenomenon has its origin 

in relatively small number of tested samples. 

 The results of last two tested settings (36 and 100 particles per tile) 

bring no significant benefits in comparison with the previous ones 

(9 and 25 particles per tile), except the ability to reach larger pores but with 

very low frequency. The shapes of outer curve connecting relative 

frequencies and capturing the trends of plots are nearly the same. 

In general the larger tiles are, keeping the same volume fraction, the 

greater heterogeneity in terms of pore size we can get. This assumption fits 

random domains especialy with higher volume fraction. In our case the 

volume fraction is 0.442. We can observe from results that satisfying degree 

of heterogeneity for given volume fraction is achieved with particle radii to 

tile size ratio in range from 0.125 (9 inclusions per tile) to 0.075 (25 

inclustions per tile). Benefits in form of larger pores for higher number of 

particles disappears when taking into account increasing of computer 

demands. 

The resolution is the same for all tested cases, therefore computer 

demands on calculation of the two-point probability remains the same as 

well. The main difference for demands on computer power for sets with 

different tile sizes lies on recalculation of velocity vectors and collision 

times. The occurrance of these phenomena is affected by initial velocity 

vectors (direction and magnitude), initial positions of particles, and number 

of particles in tiles. In order to eliminate influence of the first two settings, 

we arranged particles reguralrly and assigned them with the same initial 

velocity vector magnitude. But the number of collisions grew exponentialy. 

Despite the best of author efforts, algorithm is not fully optimized and the 

recalculation of the time dependent phenomena takes the greatest time. 
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There are several ways how to deal with this problem. One is to 

implement principles of parallelization and compute each tile separately 

with transfer of knowledge about particle tending to leave the tile. Another 

solution is based on selection particles only from the nearest 

neighbourhood while checking collision. With these improvement the 

worst time dependency may migrate to other parts of the algorithm.  

The tested sets consist of tiles with the same number of particles. 

If a reconstructed sample has particle high degree of heterogeneity, it may 

require Wang tiling with different number of particles in tiles. The Fig. 3-29 

shows a visualisation of such a domain with large pores. But with different 

tile particle packing other issues arise. The most critical one is design of 

tiling algorithm in terms of prescribed overall volume fraction. When the set 

includes very varying tiles and tiling is made of small number of tiles, the 

tiling algorithm cannot assure required volume fraction because of the 

uniform acceptance probability. This problem can be solved with 

observation of tiling process, where acceptance probability varies over tile 

set. After a certain part of the Wang tiling is complete, the temporary 

packing fraction can be recalculated and tiles will be assigned with an 

updated acceptance probability. Another solution but with similar main 

idea is to scan reference medium with a tile of given size. Then provide a tile 

volume fraction histogram, where number of bins equals the number of 

tiles in the Wang tile set. After this sorting a tiling sequence is made based 

on histogram values and overall volume fraction. Such an algorithm has 

been used for reconstruction of real material domains in following chapter. 

  

 

 

 

Fig. 3-29 Particle distribution – different number of particles in Wang tiles 

one sample of Wang tile set with tiling (10×10 tiles), appropriate Pore size distribution 
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4 Optimization 

The final microstructures, which were created in the preceding 

chapters using Wang tiling with adaptive edges and molecular dynamics, 

depended on random initial velocity vectors and initial positions. The 

stopping criterion was to achieve maximum particle sizes, which 

represented one of input parameters of the entire algorithm. When 

comparing the two-point probability descriptor of the reference and 

generated structures, only the primary tops of the graphs were in 

agreement. These represented the probability of two-points lying on each 

other are located in the observed phase. The nature of the descriptor 

indicates, that these values represent a volume fraction that remained 

unchanged for the investigated sets. The error in comparing descriptors 

nearby primary extremes is infinitial for monodispersion sets with very low 

volume fraction. The probability of finding two pixels in the same phase in 

this area corresponds to the particle size. However, if we want to construct 

real-time tiling, which would have a minimal error with the reference 

sample when comparing descriptors, it is necessary to incorporate 

elements of optimization techniques into the algorithm. 

In the case of a general microstructure, the process of searching for 

a corresponding sample is based on changing the phase of the selected 

pixels [1], [10]. The complexity of the problem then mainly lies on the binary 

representation of the media. Here it is necessary to think of a mistake on 

the statistical descriptor, which arises with the gross binary representation 

of media [48]. In view of the above, it is necessary to choose from robust 

optimization methods, which are able to work with the discrete problem 

and have the possibility to escape from the local extrema. For example [1] 

uses the simulated anealing method [49] [50] for the reconstruction of 

random media. If it is possible to simply define particles in a microstructure, 

then pixel scattering and compatibility check of particles are ineffective. In 

[10] an optimization problem with Wang tiles includes two criteria, which 

were combined into the objective function with weighting principles. Here 

hard particles in a matrix form reconstructed medium. The change of 

objective function occurs after a shift of the whole particle template not 

only one pixel. 

The optimization process of domain reconstruction via Wang tiling 

could be divided into four phases. The first is to find the size of the tile which 

reflects structural lengths or clusters. The second one defines particle 

numbers in tiles. The third focuses on optimization of tiling sequence, while 

the last one deals with the position of particles within each tile. In our case, 

with respect to the types of reconstructed media, the size of the tile is 

determined in certain relation with the size of the particle. The number of 

prarticles in tiles follow the histogram after scenning of reference domain. 

The tiling sequence for reconstructed samples remains unchanged for 

appropriate material domain. But the final position of particles is based up 

on the modified Particle Swarm Optimization method.   
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4.1 Particle swarm optimization 

The definition of the optimization problem for the task of the 

reconstruction of random heterogeneous structures with circular particles 

can be written as follows: Find the position of the inclusions in the Wang set 

which minimize the error on the static descriptor between the final tile and 

the reference sample. In general case the final position of the particle is 

determined by its initial position and velocity vector, when boundary 

conditions and the principle of elastic collision are met. It can be seen, by 

its physical nature, as a flock of an individual searching a space to find the 

best position. With regard to this visual form, the optimization problem is 

solved via Particle Swarm Optimization (PSO) with certain modifications. 

4.1.1 History 

The PSO belongs to a family of evolutionary techniques that are based 

on the behavior of the individuals living in the nature. Roots of the PSO 

reach the second half of the 80's, when Reynolds established the basic rules 

of individual behavior simulating the movement of flocks in flight phases: 

Avoid collision with your neighbours, try to balance your speed with your 

nearest colleagues and stay at their neighbourhood [51]. Later in 1995 

Kennedy and Eberhart extended and modified the work of Reynlods and 

use it to optimize continuous non-linear functions [52]. The behavior of their 

population corresponded more closely with the principles of intelligence of 

the swarm, as presented by Millonas [53]. Hence, the term Particle Swarm 

Optimization.  

In the PSO each individual represents a potential solution which 

depends on its own experiences as well as on knowledge of its neighbours. 

In the beginning population of particles is assigned with random positions 

and random velocities. The position and velocity vector of each individual 

are adjusted within every iteration step. In original approach, these 

parameters of particle motion in iteration k + 1 are defined as follows: 

        

(4.9) 

 

 

         (4.10) 

 

where 𝑥𝑖𝑑
𝑘  and 𝑣𝑖𝑑

𝑘
 is a position and velocity of a particle I in iteration 

k and 𝑝𝑖𝑑 stands for the personal best position so far while  𝑝𝑔𝑑 means global 

best postion of a swarm.  Coeficients 𝑐1 and 𝑐2 represents cognitive and 

social factor respectively. Rand designates a member from uniform 

distributed randomized numbers in range from 0 to 1. Finaly w is a weigted 

factor, which missed in the original form or can be set to 1. Over the years 

basic PSO definition has been modified in various ways. A list of 

improvements can be found in [54], [55], [56] or [57]. Here we discuss only 

modifications which have direct impact to finalized version of PSO utilized 

in next parts of this work. 
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4.1.2 Modification 

Modifications and improvements of the method have different 

purposes.  Someof them can only be used for specific tasks, for example, to 

increase the speed of convergence or to find global extreme. Others try to 

improve the behavior of the method independently on the type of 

optimization task. A general modification was proposed by Shi and 

Eberhard, which introduced inertia weight factor omega as a tool for swarm 

velocity control and method stability. This parameter is responsible for 

exploration whereas cognitive and social factors are responsible for 

attraction and convergence [58]. 

It is necessary to note that in our case the bearer of the objective 

function is not each particle, but it depends on position of all particles in the 

Wang tiles set at any given time. This, in general, leads to a so-called social 

model where cognitive part is eliminated [49]. In order to be able to search 

large space in the beginning of the algorithm, the social factor 𝑐2 is defined 

with linear growth rate and maximal value of 1.5. This is set with regard to 

recommendations from contribution where Clerk and Kennedy studied the 

stability and convergence of the PSO [60]. Because of the absence of 

classical cognitive factor, the weight factor in this work is different from 

their proposal and set to 1. Thus the inclusions move only in direction 

defined by their initial velocity vectors. In order to be able to escape from 

local extremes, each particle in every iteration is assigned with random 

velocity vector in the range 0-5 multiplied by coefficient for the initial 

velocity relative to the dimension of the tile. This parameter prevents too 

fast movement of the inclusions at the beginning of the process, where 

these can move maximaly by five hundredths of the tile size. The velocity 

vectors of the whole system are then reduced linearly with a decreasing 

coefficient which is 1 in the beginning of the algorithm and ends with 0.5. 

The velocity vectors and position of particles for the next time step are 

according to following formulas. 

𝑣𝑖𝑑
𝑘+1 = (𝑣𝑖𝑑

𝑘 + 𝑐1 ∙ Rand +
𝑐2

𝑡𝑚𝑎𝑥
∙ 𝑡𝑘 ∙ Rand ∙ ( 𝑝𝑔𝑑 − 𝑥𝑖𝑑

𝑘 )) ∙ (1 −
0.5

𝑡𝑚𝑎𝑥
∙ 𝑡𝑘)         (4.11) 

 

𝑥𝑖𝑑
𝑘+1 = 𝑥𝑖𝑑

𝑘 + 𝑣𝑖𝑑
𝑘 ∙ 𝑑𝑡                    (4.12) 

 

Not only the PSO parameter settings but also the number of particles 

affect results. It is recommended to use maximally 100 individuals [57] In 

our work we follow this recommendation as well. The tile dimension for 

following optimization tasks equals four diameters of the largest particle in 

a domain. Overal volume fraction of benchmarks and real microstructures 

is below 60%, this means the average number of particles in a tile is below 

12.2. The total number of individals for the modified PSO method with 

assumptions like this do not exceed 98 and the requirement is fulfilled.  
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4.2 Verification 

Before generation of real sample reconstruction, the algorithm should 

be tested for a series of basic artificial microstructures. This will give us an 

overview of the algorithm and help us to set specific parameters to get. In 

accordance to the results from subchapter 3.2, which compared marginal 

conditions with respect to the size and the secondary extremes of the 

statistical descriptor, all of generated samples uses Wang tiling approach 

with Adaptive Walls. 

4.2.1 Reference structure via Periodic Unit Cells 

The first test reference medium represents the tiling of periodic unit 

cells in a regular lattice of 64 cells. The cell has a size of 100 pixels and 

contains only one particle with a radius of 12.5 pixels. The volume fraction 

is therefore 0.049. The sequence of tiles for the generated sample is 

consistent with the samples from Fig. 3-13 up to Fig. 3-20. Due to the nature 

of the unit cell approach, the number of inclusions in each Wang tile is the 

same. These inputs reduce the task of finding optimal particle positions on 

the basis of the two-point probability function to process of reaching 

constant distance between particles. This assumption is fulfilled whenever 

the inclusion in each of the tiles are in the same position. However, for the 

purpose of the algorithm verification for complex systems, the objective 

function is defined as a sum of the quadratic differential of two-point 

probabilities.  

The algorithm for tile generation calculates with the particles 

gradually growing to their final desired size. But in order to eliminate the 

error on the descriptor by different particle size during the algorithm, the 

compared medium has the current particle positions but with the final 

dimensions. This may lead to the theoretical overlap if a pair of particles 

centres are closer than the sum of their final radii. Anyhow this problem is 

solved automatically in the end of a trial due to the nature of molecular 

dynamics. Alternatively, it is possible to build up a function for overlapping 

penalty.  

For the first test case, when we have a very small volume fraction and 

only one part in a tile, the overlapping can only occure when a particle cross 

with its surface a tile edge. Therefore no penalty is applied here. The 

dimension of compared descriptor areas is reduced to 400x400 pixels. The 

reduction would be higher in the case of the reference medium with 

periodic repetition. Nevertheless, more complex structures requires 

comparison of larger areas. That is why we have decided to keep this size 

the same even for the first example. The basic setting of both the algorithm 

and the optimization method is summarized in Tab. 4-3. Summary of results 

is in Tab. 4-4. In the Fig. 4-30 is shown the reference and reconstructed tiling 

with corresponding graphical form of the descriptor. 
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Tab. 4-3: Settings for reference structure via Periodic Unit Cells 1 

Settings of algorithm Settings of optimization method 

Initial velocity factor: 0.05 Constant weight factor: 1.00 

Random velocity factor: 0.25 Constant social factor: 1.50 

Number of time steps: 1000 Random social range 0.0 – 1.0 

 

Tab. 4-4: Results for reference structure via Periodic Unit Cells 1 

Number of realizations 5 

Minimal value of objective function 1.6 e-4 

Average value of objective function 5.2 e-4 

 

 

  

 

  
 

 

Fig. 4-30 Verification of optimization – Reference structure via Periodic Unit Cells 1 

Top: Reference tiling and appropriate statistical descriptor 

Bottom: The best arrangement and appropriate statistical descriptor 

Visual comparison of both binary representation of the microstructure 

and statistical descriptor confirm success of optimization technique for this 

type of domain. The distance between particles has been minimized which 

forms the regular lattice of particles. The exact position of particles in 

reconstructed microstructure differs from the reference one by a certain 

value. But this has no negative effect since we set statistical homogeneity 

for statistical description. That means independence of the system of any 

shifting. 

  



4 Optimization 

 

61 
 

The second artificial samples is composed with repetition of one cell 

as well. Now it contains two inclusions. The sequence of tiling for 

reconstruction is similar to the first tested domain. Again, each tile is 

assigned with the same number of particles. The position of particles in 

reference domain forbids simple reduction of the problem to minimization 

of mutual particle distance. The comparison is made on a reduced of 

400x400 pixels. The algorithm settings is the same as for previous test, see 

Tab. 4-3. The results are shown on Tab. 4-5. The results are shown on Fig. 4-

31, where both reference and optimized structure binary representation is 

completed with a grapf of appropriate descriptor function. 

 

Tab. 4-5: Results for reference structure via Periodic Unit Cells 2 

Number of realizations 5 

Minimal value of objective function 3.5 

Average value of objective function 4.2 

 

  

 

  

Fig. 4-31 Verification of optimization – Reference structure via Periodic Unit Cells 2 

Top: Reference tiling and appropriate statistical descriptor 

Bottom: The best arrangement and appropriate statistical descriptor 

The result of the second case are not so satisfactory. Obviously we get 

a microstructure with local minimal difference between compared 

statistical descriptors. The most of tiles contain particles with the same 

mutual distance as in reference sample. But some of them are closer. This 

points to a possible reserve in parameters settings since the algorithm 

cannot force badly placed particle to move to better position in the end of 

the process. 
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4.2.2 Reference structure via Wang tiling 

The third specimen is composed of Wang tiles. The sequence of tiles is 

the same as for domains that served for comparison of various boundary 

conditions. Concretely the last sample from the Fig. 3-15, where Wang tiles 

meet the boundary conditions of Adaptive Walls, has been chosen. The 

reconstructed tiling consists of the same number, sequence and tile 

dimensions. Each cell of the set includes 8 particles of radius 12.5 pixel. 

Finial tiling contain total number of 512 particles placed in a matrix phase. 

An optimization task can be reduced for this type of reference to problem 

of finding identical copies of original set. However, optimization algorithm 

should be blind and work in general sense. The precondition would only 

lead to trivial solution, which requires even less robust methods. The 

algorithm setings are still the same, see Tab. 4-3, except total number of 

time steps which is 5000. The results are summarized in the Tab. 4-6. A 

graphical form of reference and one optimized sample with two-point 

probability function are shown  

on Fig. 4-32. 

Tab. 4-6: Results for reference structure via Wang tiling 

Number of realizations 5 

Minimal value of objective function 1,9 

Average value of objective function 2,4 

 

  

 

  

 

Fig. 4-32 Verification of optimization – Reference structure via Wang tiling 

Top: Reference tiling and appropriate statistical descriptor 

Bottom: The best arrangement and appropriate statistical descriptor 
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There is no obvious visual match of the optimized domain with the 

reference one as in previous two examples. Therefore the best result is 

compared with other artificial samples with particular inclustion positions. 

The first artificial structure is composed of tile set, where particle positions 

are the same for every tile. Thus the final domain is equvivalent with the 

system of the Periodic Unit Cell. Moreover particles are arranged to regular 

form corresponding with the tile shape.  

The Wang tile set for the second case include randomly arranged 

particles. Such a domain can be achived by means of sequential adsorbtion 

or with utilization of the proposed algorithm for tile set generation but 

without modificiation of velocities during the process. 

The third and the fourth comparative samples are based on the 

original reference media. The first modification rests on shift of randomly 

chosen particle in each tile by approximately particle radius. With the 

second modification on half of shifted inclusion from the previous case turn 

back to the original positions. Since a number of each tile copies in the final 

tiling is the same, the set modificiatios are proportionally identical to the 

number of adjusted positions of all particles. The error on descriptor 

comparison is given by 12.5% shifted particles (from all particles in the 

tiling) for the first case and by 6.25% for the second case. The Wang tile set 

of the observed cases are shown on Fig. 4-33. The next figure, Fig. 4-34, 

displays binary form and descriptor of a realization for each case under 

investigation. 

 
 

Fig. 4-33 Wang tile sets for verification of optimization technique 
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Fig. 4-34 Tilings for verification of optimization technique  

regular distribution of particles, random dibstribution of particles,  

12.5 % particles moved, 6.25% particles moved (both in comparison with reference tiling) 
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Comprisons of the error of the individual tests together with the 

optimized solution are in Tab. 4-7. It is obvious that the optimized solution 

by its error on the statistical desktoptor corresponds to the realization of 

the sample, in which less than 6% of the particles have been shifted 

compared to particle arrangement of the reference tile set. With proposed 

algorithm we get a state which can be designated as a local optimum. The 

reaching of the global one is not in scope of this work. 

In Fig. 4-35 is the convergence of the optimization method or the 

objective function respectively for a single realization. The secondary 

image maps the overlap of particles with final dimension during the 

algorithm. Here, the overlap represents the sum of the differences between 

the theoretical minimal and the current distance distance of centres of 

investigated particle pair. The trends of the graphs correspond to each 

other. In order to prefer those solution, which offers minimal or zero 

overlap, a total overlap is increased tenfold and this value is added to the 

objective function as a penalty.   

 

Tab. 4-7: Results for reference structure via Wang tiling - comparison 

Regular particle distribution 296.6 

Random particle distribution 20.1 

12.5 % particles moved 5.5 

6.25 % particles moved 2.3 

Number of optimized realizations 5 

Minimal value of objective function 1.9 

Average value of objective function 2.4 

 

 

 
 

 

 

Fig. 4-35 Convergence of optimization and overlapping   
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4.3 Microstructure reconstruction 

This part of the thesis deals with models of real material structures 

using knowledge of the previous chapters. Here we have two samples that 

represent systems where the base material is reinforced with long 

unidirectional fibers. Specifically, the first material is a ceramic matrix 

composite reinforced with silicon carbide fibers [61]. The second sample is 

the aluminium basic material reinforced with carbon fibres [62]. By their 

very nature, both samples represent 2D microstructure with circular hard 

monodisperse particles in a matrix. Our main goal is to create a Wang tiling 

sample, which corresponds the original one when compared statistical 

descriptions.  

4.3.1 Ceramic composite – settings 

The first microstructure in Fig. 4-36 contains 207 inclusions. We count 

to this value only particles with centres inside the sample. Inclusions with 

center out of the micrograph are excluded from any other investigation. 

Thus the volume fraction is approximately 0.31. The arrangement of 

inclusion is not uniform, but fibres form both clusters and areas with 

rattlers. This is confirmed by the pore size histogram in Fig. 4-36. The size of 

the sample and number of inclusions within allows to mimic microstructure 

with just one tile or a cell. But we do not leave the idea of utilization of small 

Wang tile set W8/2-2 with low number of individuals inside. If we compare 

the pore size histogram to samples where tile size has been investigated, 

subchapter 3.3, the number of particles has to be different for at least some 

of tiles from the set. 

 

  

 

 

 

Fig. 4-36 The first reference [61] and apropriate pore size distribution  
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To determine the number of particles in every individual tiles we use 

the concept where the reference sample is scanned by a frame of the tile 

size. This can be done with several ways. The first option is to place a frame 

randomly, for example with Monte Carlo principles, in the area of reference 

sample and count for every iteration the number of particles inside. 

Simplifying version requires division of the medium into a lattice, where 

size of cells equal size of tiles. Recording the number of particles and 

creation of a frequency histogram are the same for both principles. Here we 

use the second option. Since the dimension of the reference sample does 

not correspond exactly to any multiple of tile size, its peripheral areas have 

been cut off. The graphic form of the whole process is shown in FIG 4-37, 

including the number of inclusions inside the cells. Here, again, particle is 

assigned to certain cell only if its center lies inside. The number of particles 

varies in range from 2 to 11, but 10 particles include no tile. Now we have 

9 types of cells based on a number of inclusions, Wang tiling W8/2-2 offers 

only 8 tiles. In addition, the first and the last number shows up only once in 

the whole lattice, while the cells with 7 particles can be found eight times. 

Therefore, it is necessary to determine the individual tile volume franctions 

with emphasis on both the range and the frequency of particle numbers. 

 
 

Fig. 4-37 The first reference – partition for estimation of particle number in tiles    

from upper left row by row to lower rIght: reference sample, cut off for tiling,  

tiling lattice, number of particles in a cell 
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Determining the number of particles in the set of tiles is according to 

the following algorithm. Sequences of cells from the reduced and divided 

reference sample are assembled ascending based on the number 

of inclusions contained therein. This string of cells is divided into number 

of parts corresponding with the number of tiles in Wang tile set, where each 

portion include the same number of cells (not necessarily integers). Then 

we calculate the weighted average for each part. These values after 

rounding define the number of particles in each tile. An exception is the last 

tile where the number of inclusions prefers the highest number in lattice. 

Final tiling for the reconstruction of the first real sample include 30 tiles. 

This number is not completely divisible by the number of tiles in Wang tiling 

set. Therefore it is not possible to reach the same probability of occurrence 

of all tile types. The basic set of Wang tiles is shown in Fig. 4-38 together 

with tiling sequence that will enter the optimization process. The particle 

arrangement is here only illustrative but exhibits real number of particles 

assigned to appropriate tile. The radius of inclusion is 12.5 pixels and size 

of each tile edge is 100 pixels in order to keep the system clear and simple 

with possible comparison to tilings in previous chapters. 

  

 
 

Fig. 4-38 The first reference – definition of Wang tile set W8/2-2, tiling sequence  
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4.3.2 Ceramic composite – results  

The reference samples for verification of the optimization process 

consist of Periodic Unit Cell or utilize Wang tile set W8/2-2, see subchapter 

4.2 Verification. The results of the two-point probability descriptor for the 

reference and optimized sample have taken into account secondary 

extremes. If we compare tiling of the same type and sequence, the error on 

the descriptor in these areas is minimal compared to situation, where the 

reference sample represents a real microstructure. Therefore optimization 

procedure on real samples is divided into three subtasks. First two cases 

enables to check the results visualy by comparison of descriptor on parts 

of 2D sections. The first monitors variance on the descriptor only in the area 

defined by the particle diameter from one side and the size of the tile on 

the other side and only in one direction. Therefore, the issue is reduced to 

optimization of 2D curve of given region. Because of these conditions, the 

algorithm focuses primarily on the inner region of each tile and its closest 

neighbors. At the same time, the effect of the difference on primary 

extremes is eliminated. These parts represent the overlapping and the error 

on the binary representation or volume fraction respectively. 

The results of this task are shown of Fig. 4-39. Graphic form of 

descriptor for 3 structures are depicted here. One respresents the reference 

sample, while the others are based on Wang tiling. The red curve 

corresponds to reference sample, the green one to the best optimized 

structure and the last (blue one) represents one realization of system with 

randomized particle positions. The right side graph shows results in 

perpendicular direction in order to underline optimized results from the left 

diagram. The initial part of the graph for all systems is the same due to the 

nature of descriptor and monodispersed particles. In the observed area and 

direction the reference and reconstructed medium coincide and indicates 

the success of the algorithm. Conversely, in the second direction without 

optimization exhibits significant secondary extremes. 

 
 

Fig. 4-39 The first reference – optimization only in horizontal direction 

left: descriptor in horizontal direction; right: descriptor in vertial direction 



Stochastic Hard Packing for Heterogeneous Material Modelling via Wang Tilings 

 

70 
 

The second case focuses on representatives of both horizontal and 

vertical direction. The objective fuction is based on comparison of two sets 

both with the same importance. Moreover there is no reduction of observed 

area. Results take into account both initial area, where particle can overlap 

during the algorithm, and secondary peaks caused by tiling nature. The 

diagram on Fig. 4-40 shows curves of three microstructures: the reference 

one, the best of optimization process, and one with randomized particles. 

The reconstructed medium with its statistical description trace the 

reference one. The main difference is in area that corresponds to the size of 

the tile. Nevertheless, this effect is considerably reduced in comparison 

with system of random particle positions. Such a reduction can be reached 

because of Adaptive Walls concept but also due to the low overall tile 

numbers.   

 
 

Fig. 4-40 The first reference – optimization in both horizontal and vertical direction 

left: descriptor in horizontal direction; right: descriptor in vertial direction 

In order to generate optimal images of the real microstructure, the 

desired areas of exploration are extended to all directions. The following 

Fig. 4-41 presents binary form and appropriate probability function of 

reference, best optimized, and randomized domains. The distribution of 

pore size or matrix islands respectievely appears in the Fig. 4-42. 

Unfortunately, the visual analysis of these results is not conclusive in terms 

of confirmation of optimization usefullness. The two-point probability 

graph is smoothed in the area of secondary extremes, but pore size 

distribution exhibits random behavior than corresponing to the reference 

medium. As a comparable parameter serves value of objective function as 

definied in the beginning of this chapter. These characteristics for 10 runs 

of optimized process are summarized in Tab. 4-8.  

Tab. 4-8: Results of optimization for the first real sample 

Number of realizations 10 

Minimal value of objective function 7,7 

Average value of objective function 10,1 

Objective function for random arrangement 20.1 
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Fig. 4-41 The first reference – results: S2 descriptor comparison 

from top: reference sample – cutout, Wang tiling after optimization, Wang tiling random 

 

 

   
 

Fig. 4-42 The first reference – results: pore size distribution comparison 

from left: reference sample – cutout, Wang tiling after optimization, Wang tiling random  
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4.3.3 Metal composite – settings 

The second real micrograph symbolizes composite where carbon 

fibres reinforce aluminium matrix. The fragment is smaller than for the first 

case, but the particle volume fraction is higher. Although the range of pore 

size and its frequency is not as diverse as in the first sample, it is still 

necessary to define a base tile set with a different number of particles 

within. All of this with assumption of normalized 25 pixel diameter and the 

100 pixel edge of the tile. The principle of determining the number of 

particles in each tile is analogous to the previous case. This time there is a 

lattice of 3x4 cells, thus the tiling consists of 12 tiles. Further investigation 

is done on reduced sample with total number of particles equal to 125. 

Separation of inclusions to cells build basis for estimation of volume 

fractions for Wang tile set. 

The graphical form of above described process is on Fig. 4-43, while 

pore size histogram is shown on Fig. 4-44. And finaly Fig. 4-45 illustrates the 

creation of tile set in terms of particle numbers and displays tiling sequence 

for microstructures under optimization procedure. The number of discs in 

appropriate tile is defined by weighted average after division of order cell 

string. An exception is the fifth member of the set that reflects both the 

weighted average and representative numbers in cells of original domain. 

 
 

Fig. 4-43 The second reference – partition for estimation of particle number in tiles    

from upper left row by row to lower rIght: reference sample [62] cut off for tiling,  

tiling lattice, number of particles in a cell 
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Fig. 4-44 The second reference – pore size distribution 

Reference sample [62] and pore size distribution 

 

 
 

Fig. 4-45 The second reference – definition of Wang tile set W8/2-2, tiling sequence 

 

The particle arrangement in tiles is illustrative. The initial positions 

of particles remain randomized. Because of the small size of the reference 

and the chosen tiling sequence, one half of tiles is used in tiling just once. 

Therefore benefits of Adaptive Walls on final optimized domain are reduced 

in comparison with tests of boundary conditions, see subchapter 3.2. 

  



Stochastic Hard Packing for Heterogeneous Material Modelling via Wang Tilings 

 

74 
 

4.3.4 Metal composite – results 

We use for the second real domain the same optimization schemes as 

for the previous one. The first objective function observes descriptors in 

horizontal direction in range of 25-100 pixels. This setting does not take 

into account the differences in volume fractions due to the theoretical 

overlaps of particles with final sizes in the course of the algorithm. On the 

contrary, the range is chosen to cover the size of the tile and related 

secondary extremes, if they occur. The results of the first optimization 

process are shown in Fig. 4-45. This figure exhibits, in addition to curves for 

the reference and optimized sample, result for randomized microstructure. 

Here, the term randomized represents microstructure composed via Wang 

tiling of the same tiling sequence as the optimized one but with random 

positions of non-overlaped particles. This arrangement is achieved by 

proposed principles for Wang tiling with molecular dynamics but without 

modification of velocity vectors. In order to highlight the results, the second 

group of curves on Fig. 4-45 displays statistical description of described 

domain in direction which is not a part of the optimization process. 

The recorded results are the best known in the course of the algoritm, 

but they are not the final ones. Since the first part of the diagram has not 

been considered or penalized, the curves are slightly diverted in this area. 

However, in the investigated area, the reference and generated medium, 

respectively their statistical description, coincides. The curves differ both in 

the end part of the first plot and completely in the opposite direction. 

 
 

Fig. 4-46 The second reference – optimization only in horizontal direction 

left: descriptor in horizontal direction; right: descriptor in vertial direction 

An expansion of the area for objective function definition is a part 

of the second case. The optimization process include information from 

comparison of both horizontal and vertical direction. The range 

of compared area is 0-150 pixels. Such a settings takes into account both 

reduction of secondary extremes and theoretical overlapping during the 

optimization. 
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The best match for the observed area is achieved with an arrangement 

that do not contain overlapping particles. Comparing the curves for random 

and optimal microstructure, we can detect minimization of the secondary 

extremes. However, in these areas, which corresponds to the dimension of 

the tile, still remains the most striking difference between the compared 

trajectories. This phenomenon is based on the nature of the tiling and its 

influence in general cases can only be minimized, not eliminated. 

 

 

Fig. 4-47 The second reference – optimization in both horizontal and vertical direction 

left: descriptor in horizontal direction; right: descriptor in vertial direction 

The objective function for the last case take into account description 

square area in range from -150 to 150. The binary representation is 

displayed in the Fig. 4-46 together with appropriate two-point probability 

function. Again we have here reference, best optimized and randomized 

structure. The arrangements of generated systems are the final ones. The 

next Fig. 4-47 shows the pore size distributions of binarized domains. Here 

the last randomized microstructure exhibits narrow range of pore sizes. 

This result corresponds to the binary scheme, where particles are arranged 

more or less in homogenized form with similar distances between each 

other. But this is just matter of randomization and has no corresponding 

value. On the other hand reduction of secondary extremes when compared 

optimized and randomized structure underline benefits of proposed 

approach. The comparison of the final values of the objective function 

serves as one of the best guide of optimization method success, Tab. 4-9. 

Despite the significant reduction of observed values, there is still a space 

for improvement, which is discussed in following part of this work. 

 

Tab. 4-9: Results of optimization for the second real sample 

Number of realizations 10 

Minimal value of objective function 7,2 

Average value of objective function 9,8 

Objective function for random arrangement 27.7 
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Fig. 4-48 The second reference – results: S2 descriptor comparison 

from top: reference sample – cutout, Wang tiling after optimization, Wang tiling random 

 

 

 

   
 

Fig. 4-49 The second reference – results: pore size distribution comparison 

from left: reference sample – cutout, Wang tiling after optimization, Wang tiling random  
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4.4 Discussion 

Despite the best author efforts, the optimization as well as tiling 

process suffer from some shortcoming. In this subchapter we discuss 

possible reasons why this phenomena occurred and outline possible ways 

how to eliminate or at least minimized them.  

4.4.1 Microstructure description issues  

The reference rectangular samples have normalized size 

of approximately 500x600 or 300x400 pixels. Within these reduced areas 

of original micrographs we have 193 or 125 particles respectively. Contrary 

both the pioneer work with Wang tiling approach in material engineering 

[9] and following contributions [10], [11] deal with multiple times larger 

samples. The reduction has been made in order to prepare a lattice of tiles 

of certain dimension. The definition of two-point probability function with 

hypothesis of ergodicity contains “infinite” sample volume area [1] REF 2-

41 This reqirement can be replaced with periodical extension. But in our 

case we keep the reduced sample dimensions. This simplification leads 

inter alia to absence of graph convergence to combined probability for 

large distances of tested pair of pixels. In order to stay consistent, 

optimized samples are based on the same assumptions as the reference 

ones. The optimization algorithm focuses only on relative values of 

compared statistics and therefore simplification of reference sample has no 

direct impact on evaluation of success of proposed approaches. 

On the other hand improvement could be in the form of a reduction of 

the pixel mesh fineness. In general cases meshes with lower number 

of pixels cause distorsion and neglection of information on statistical 

description [48]. But for particle systems with hard inpenetrable circles the 

resolution affects mainly possibilities in inclusion motion. In our case 

the diameter of particles has 25 pixels, Novak et al. in [9] work with 

template where circle has a diameter of 10 pixels. Similar assumptions 

reduce the degree of freedom of the searching space in optimization 

process and may help to reach better conformity of the reconstructed 

microstructure with the reference one. In our case there is space for 

improvement just in the field of optimization containing information from 

all direction in comparison with tasks, where objective function observe 

results in one or two cetain directions. 

4.4.2 Improvement in optimization 

In the preface of the fourth chapter, general optimization process has 

been divied into four optimization tasks: optimization of tile size, number 

of particles in tiles, tiling sequence, and position of particles in tiles. This 

thesis deals mostly with the last member and here we briefly comment also 

other issues from the package.  

  



Stochastic Hard Packing for Heterogeneous Material Modelling via Wang Tilings 

 

78 
 

The tile size has a constat value based on investigation of particle 

arrangements, particle geometry and recommendations for the Particle 

Swarm Optimization techniques. Specifically, it equals to four diameters of 

the largest particle size, which allows to be with the specified volume 

fraction in the area of the R arrangement. The overall number of particles is 

bellow maximal number of individuals for space searching of the traditional 

PSO. It is important to note that the number of inclusions in the tile set 

varied based on the material scan. But if we want to create a set with the 

same number of particles, it is necessary to choose the size of the tile with 

respect to the required volume fraction. In general, the size of the tile is 

another variable in deffinion of the tile set and corresponding realizations 

of reference sample. In contribution [10] authors observed the particle size 

dependence on the results of the optimization task with objective function 

consisting of the two-point probability statistical descriptor and a 

mechanical compatibility. In general, the increase of tile size also shifts the 

secondary extremes of the two-point probability function. Nevertheless, 

new proposed Adaptive Walls concept of boundary conditions allows to 

reduce these influences and tile size as well. The secondary advantage of 

this proposal lies on savings of computer demands. 

The number of particles in the tile and their optimal arrangement is 

closely related to the tile size. Either with regards to dense packing or 

general volume fractions. If the medium exhibits higher heterogeneity, the 

problem of particle numbers in tile can be solved in two ways. The first is 

based on mirrostructure lengths and the total volume fraction, where each 

tile of the set contains the same number of inclusions. This approach leads 

to relatively large tiles and to higher computational demands. The second 

option allows to have a set with tiles of different volume fractions. In this 

case, it is necessary to track the tiling algorithm in order to meet the 

conditions of both the total and partial volume fractions. The number of 

particles in each individual tile can be based on the scan of reference 

sample. Here we offer also two options. The first one requires sufficient 

number of randomly thrown epty tiles in the microstructure while with the 

second one the reference fragment is divided into lattice of cells with the 

dimension of Wang tile. Both principles later work with histogram of 

number of particles inside these cells. This approach together with 

weighted averge allows to create tile set for highly heterogeneous 

microstructures. 

The principles of the stochastic tiing enables to create various 

realizations of different tile sequences with usage of a single tiles set, 

where particles has certain positions. The tilings in this work have relatively 

small number of tiles and optimization procedure works on specific 

sequence of tiles. Moreover we used tile set with different individual tile 

volume fractions. This modification together with Adaotive Walls approach 

easily minimized periodicity artefacts. But for general cases stochastic 

tiling produces areas with multiple copies of the same tile. 
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This phenomenon can be solved with modification of tiling algorithms. 

On one hand there is a possibility to enlarge tiling set, either with full sets 

or with additional colours (codes) on tile edges. The other group of solutions 

deals with tiling process. When we track a sequence of tiles and observe tile 

neighbourhood, the probability of acceptance of certain tile can be 

modified [63]. Another option is to involve optimization techniques to 

tilings [64]. The last but not least solution replaces stochastic tiling with 

aperiodic tiling [15], [16]. 

The technique for optimization of paticle positions proposed in this 

work can be improved in several ways. The first is setting of the PSO 

parameters. In our implementation parameters follow general 

recommendation. But the part of general algorithm, which reflects the best 

position of the individual is replaced in our formulation with a random 

vector in order to escape from local optima. If we focus on convergence of 

the best so far solution over 4000 time steps of one optimization trial for 

the task of reduced comparable area Fig. 4-50, obviously the penalty for 

overlap particles is too small. The absolute minimum has been achieved 

after approximately 70% of total time steps. But if we equip the penalty 

with a large value, optimization algorithm became blind. The degree of 

blindness would depend on tile volume fractions. Materials with high 

volume fractions and small number of particles in tile exhibits first 

arrangement without overlapping usualy too late and algorithm converges 

to this local optimum. Similar behaviour occurs when we set initial 

arrangement without overlapping particles. Such a system can be 

generated via proposed algorithms but without velocities optimization.  

But this solution is preffered to others and proposed optimization 

technique find the best positions in neighbourhood of initial values. 

An interesting and promising option is implementation of hybrid 

techniques or even optimization algorithms based on population of 

individuals [54]. 

 
 

Fig. 4-50 Convergence of optimization technique for the first real sample 

reduced comparable area  
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4.4.3 Application of the algorithms 

This work deals with optimization of just one function based on 

comparison of statistical descriptors. But for some issues in material 

engineering such comparison is inadequate [10]. However, the whole 

proposed algorithm works in a general sense if we are able to define an 

objective function. The remaining questions are convergence speed or 

reaching either local or global extremes of an objective function. These 

results depend on settings of an optimization method and initial and 

boundary conditions as well. In order to obtain valid results, we have to 

define parameters for wide range of optimization tasks or to perform test 

and gain exact values for settings applicable only to specific function. 

The Adaptive Walls approach has been used in this work only for Wang 

tiling set W8/2-2 for 2D application and W16/2-2-2 for single illustration for 

3D case. But the definition allows to use this type of boundary conditions to 

sets with more edge information or even aperiodic tilings. Nevertheless, we 

have to keep on mind, especially in connection with molecular dynamics, 

that faultless behaviour requires check of every possible combination of 

neighbour tiles where particles tend to leave. Thus any extension of edge 

information leads to increased computational demands. This disadvantage 

might be reduced with utilization of parallelization techniques. Then each 

tile can be solved separately until any particle cross the tile edge. But after 

recalculation of velocity vector tiles can live their own lives. 

In this work we focuse on materials which include circular or spherical 

particles. But the greatest benefit of this work – Adaptive Walls – is able to 

be incorporated to modelling of materials with various particle shapes. If 

we implement border areas where phases of pixels can be switched, the 

method became universal and capable to deal with models even without 

particles or with particles of general form. A simplified visualization of 

Wang tiling set W8/2-2 is shown in Fig. 4-51 with Adaptive Walls concept 

and particles of various shapes. 

 
 

Fig. 4-51 Wang tiling with Adaptive Walls – particles of various shape 
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5 Conclusions 

This work deals with modeling of random heterogeneous 

microstructures. Particular emphasis is placed on particle material 

domains, where circular or spherical inclusions are arranged in the matrix. 

Traditionally, such structures are modeled by a system of the same cells 

with periodic boundary conditions. However, in material engineering there 

are tasks where it is necessary to keep sample heterogeneity and minimize 

periodic artifacts. The solution, how to preserve randomness and 

heterogeneity is an application of the Wang tiling. This method is able to 

generate infinite aperiodic tiling via a small finite set of tiles. In the field of 

material engineering, we are satisfied with the stochastic tiling, which was 

also implemented in this work. 

With respect to the type of microstructure, the basic set of tiles is 

generated by molecular dynamics. Although the tiling itself reduces the 

periodicity compared to the Periodic Unit Cell concept, the edge 

information (particle beyond the tile edge) is repeated with every single 

occurrence of the same colour on the edge. With a new type of boundary 

conditions - Adaptive Wall - it is no longer necessary to assign the particles 

to the edges. This significantly reduces extremes on two point probability 

function even for tile set with low number of particles. The veracity of these 

theses was tested on a number of artificial 2D microstructures both mono 

and polydisperse and on a single sample of 3D spherical microstructure. 

In the next part of the thesis we focused on generation of optimal 

microstructures via comparing the statistical descriptors with the reference 

medium. It was represented by both 2D artificial samples and chosen real 

composite microstructures. We introduced the principles of the modified 

Particle Swarm Optimization (PSO) method into molecular dynamics. The 

modification consisted of the absence of the cognitive part replace by 

random vectors, but also of the other control parameters settings. The 

generated microstructures coincided with the reference, if this is an 

artificial samples composed of tiles. For real microstructure, the algorithm 

was highly reliable in optimizing statistical descriptor segments. There is 

a space for improvement especialy for tasks with comparison of large 

areas, but proposed algorithm determined local minimum even for this kind 

of problem. 

The most of proposed procedures and algorithms are valid for a wider 

range of types of material structures. Thus in further investigation it would 

be appropriate to extend modelled particle microstructures by including 

different inclusion shapes or to implement algorithms to non-particle 

material domains. This would, however, make the tasks more 

computationally demanding. Such a problem would be successfully solved 

by implementation of parallelization techniques. Last but not least we need 

to focus on the optimization method in order to reach global extremes of 

investigated functions. 
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