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Dynamics of Heat Transfer During Cooling of Overheated Surfaces

Introduction

Cooling of overheated surfaces also known as quenching is still not well-known. Quenching is defined as an Goals
onset of rapid temperature decrease within cooled geometry by relatively cold liquid. The contact between
cooled surface and coolant is not a straightforward process. If the surface temperature is high enough, liquid
can’t touch the surface directly, but it is separated by stable vapor layer. The layer acts as a thermal insulation
barrier and the resulting heat transfer is very limited until surface temperature fails bellow so-called Leidenfrost
temperature. It is a very chaotic transition process where every new experimental study is an important piece of
the puzzle on the way to fully understand the phenomenon. The motivation for this study is to propose a
detailed view on the quenching phenomenon, specifically bottom reflooding of an annular channel with a
heated model of nuclear fuel pin. The result can serve as an input for other analytical studies in the field and it
can point out several side effects accompanying the process of reflooding. These outputs can improve
predictions of processes where quenching takes place, especially processes related to LOCA accident in nuclear
reactor safety analyses.

- Build an experimental loop for investigation of quenching phenomenon in a flooded annular channel with three changeable
tubes for consideration of accumulated heat and more real uneven heat generation

- Collect a large number of new experimental data with all relevant variables influencing the process

- Development of new approaches for experimental data evaluation and self-operational code for batch processing of
individual quenching data with a built-in algorithm for correlation development

* Propose correlations for guenching and nucleate boiling temperatures, which are the main breakpoints in the process

* Propose formulas for calculations of heat transfer coefficients during the process

- Development of three-regional quenching model for further analytical studies

- Development of a correlation (or full set of correlations) for prediction of quenchfront velocity

- To point out the accompanying phenomena such as the influence of spacers and pressure peaks on the bottom flooding
process
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3) Absolute quench front velocity Fig.14: Validation of the correlation against

Heat transfer coefficients experimental data and correlation by Saxena [1]

Calculation of the heat transfer coefficient is the
most tricky part of the process. The dry and
two-phase region are assumed as regions
cooled by steam or water-steam mixture at
saturation temperature, heat transfer
coefficients behind the quench front are Quench front velocities
calculated through coolant temperature

_____________________________________________________________________________________

Ugp = Uab * Cinab

a sb -C d e f g9 h
T§.67. zf. Cgee- Pges- Kgee- Peo- Cin le27

Fig.11: Correlated quenching temperatures

Conclusions

The presented experimental study was focused on the rewetting phenomenon in the annular
channel with bottom flooding configuration. Over 400 experiments were performed in order to
obtain sufficient information about the process. The most important results are solutions for
quenching and nucleate boiling temperatures, which are accompanied by correlations for heat
transfer coefficients in the main individual points and regions along the flooded geometry.
Quenching temperature correlation is also main input for the solution of quench front velocity
prediction. A surprising finding related to quench front velocity is, that relative front velocity to

! , inlet velocity of the coolant is not dependent on actual flow rate. It follows that the percentage
— 1c2 (@3mmm) o — sama iy inlet velocity value can be calculated only through initial wall temperature, quenching
—_ 1o U3smm N T temperature, and wall thickness. The set of correlations developed in this study showed good

NN | | ’ agreement with acquired experimental data through all models and initial parameters (Fig.14).

Fulfilled Goals

ISR S AT a g - New experimental loop with changeable 1.7 m high test section
’ ’ - ’ - New experimental data for a wide range of initial wall temperatures, flow rates, and wall thickness
- Set of new, fully automated scripts for data processing, with custom-built correlation script
- Improved detection of important temperature points and data approximation/filtration
- Heat transfer coefficients for every measured point throughout the time-spatial scale
- Correlations for HTC at important temperature points (quenching, critical heat flux, nucleate boiling)
» Correlations for HTC within each region between important temperature points
- Correlations for quenching and nucleate boiling temperature
- Suggestion of three regional rewetting model
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Fig.10: Temperature profiles with marked
quenching temperatures

_ _ . ) _ Quench front velocity is defined as a known pitch of two thermocouples overcome
obtained via new ‘cascade’ algorithm. The ;3 measured time interval (Fig.12). The quench front velocity mainly rises with

resuljc _iS a detailed map Of heat tr_ansfer lower initial wall temperature, lower quenching temperature and it decreases with
coefficients for all measured points (e.g. Fig.9). thicker wall (Fig.13).

Dt: TC1 -> TC2
Dt: TC2 -> TC3

400 -

J L A
HENN

~ '~
\\\\\

Temperature [°C]

~—
~—
~

—
~
L\

0.0 I T T T T T t 1 t

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
T_oa.T_qb.gc

Fig.13: Correlated quench front velocity data
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Fig.9: Heat transfer coefficients for model B
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