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A B S T R A C T - E N

The goal of this habilitation thesis is to aggregate our research on stabilization and con-
trol of cooperating robots in real environments without the need to build a dedicated
infrastructure. The thesis presents methodologies and enabling techniques for controlling
teams of autonomous robots acting in a shared working space, using onboard localization
sensors only.

The main contribution of this work lies in the design of methods for motion planning
and stabilization of formations of ground and aerial robots, and for bio-inspired behav-
ioral control patterns for swarms of multi-rotor micro aerial vehicles (MAVs). All pre-
sented approaches are designed to satisfy the constraints imposed by a system of onboard
relative localization of teammates, which was designed as the main sensor to enable the
deployment of groups of cooperating robots in environments without external localiza-
tion. The attached publications present theoretical studies specifying the requirements for
the relative localization sensor to satisfy the stability of MAV swarms and convergence of
motion of compact formations.

In addition to the theoretical contribution, a large part of this document is dedicated to
applications of the methodologies, since robotics is an application-oriented and application-
motivated scientific field. Most of the methods presented here have been verified experi-
mentally in environments reflecting the target applications. Continuous experimental ver-
ification of the methods is an added value of the results that have been achieved. Direct
interconnection between the methods designed for MAV group control and stabilization
and the properties of the MAV sensors described in the real-world experiments is a crucial
attribute of the work presented here. It has enabled the scientific results to be transferred
into real deployment and into industrial applications, as has been shown in numerous
examples in the thesis. Intensive validation of system performance in demanding envi-
ronments was also a key factor in the MBZIRC 2017 competition, where our solution for
a multi-robot challenge outperformed the results of all other competitors, most of whom
had relied on laboratory testing only. Cohesive linkage between theoretical principles, on
the one hand, and real experience and industrial solutions, on the other, has also provided
a decisive competitive advantage for students of our team in their further career.





A B S T R A C T - C Z

Cı́lem této habilitačnı́ práce je shrnout výzkum směřujı́cı́ k možnosti stabilizovat a řı́dit
skupiny spolupracujı́cı́ch robotů v reálném prostředı́ bez nutnosti budovat speciálnı́ in-
frastrukturu. Práce prezentuje metodologii a jednotlivé nutné technologie umožňujı́cı́ řı́dit
týmy autonomnı́ch robotů ve sdı́leném pracovnı́m prostoru pouze s využitı́m palubnı́ch
senzorů pro jejich lokalizaci.

Hlavnı́m přı́nosem práce je návrh metod plánovánı́ pohybu a stabilizace formacı́ pozem-
nı́ch a vzdušných robotů a přı́rodou inspirovaných vzorců chovánı́ rojů malých bezpi-
lotnı́ch helikoptér (v práci značených zkratkou MAV - z ang. Micro Aerial Vehicle).
Všechny tyto přı́stupy jsou navrhovány s cı́lem respektovat omezenı́ daná systémem palubnı́
relativnı́ lokalizace sousednı́ch helikoptér skupiny. Systém relativnı́ lokalizace byl navržen
a je postupně inovován s cı́lem umožnit nasazenı́ skupin spolupracujı́cı́ch robotů v prostředı́
bez externı́ lokalizace. V publikacı́ch přiložených k této práci jsou uvedeny teoretické
studie specifikujı́cı́ požadavky na tento senzor, které zajistı́ stabilitu MAV roje a konver-
genci pohybu kompaktnı́ formace do požadovaného cı́le.

Kromě teoretického přı́nosu práce se jejı́ velká část zabývá konkrétnı́mi aplikacemi
navržené metodologie, protože robotika je aplikačně orientovaná a motivovaná vědecká
disciplı́na. Naprostá většina prezentovaných metod byla kromě teoretických analýz též
experimentálně verifikována v prostředı́ch maximálně odpovı́dajı́cı́ch cı́lové aplikaci. Kon-
tinuálnı́ experimentálnı́ verifikace vyvı́jených metod odlišuje dosažené výsledky od většiny
publikovaných přı́stupů skupinové robotiky, které často nerespektujı́ omezenı́ reálných
systémů. Právě přı́má provázanost metod řı́zenı́ a stabilizace MAV týmů s vlastnostmi
jejich senzorů je klı́čový prvek umožňujı́cı́ transfer výsledků prezentovaného základnı́ho
výzkumu do reálného nasazenı́ a průmyslových aplikacı́, což je v práci demonstrováno na
několika konkrétnı́ch přı́kladech. Intenzivnı́ průběžné ověřovánı́ funkcionalit vyvı́jených
přı́stupů v reálných prostředı́ch se také ukázalo jako rozdı́lový faktor v soutěži MBZIRC
2017, kde naše řešenı́ vı́cerobotických úloh převýšilo výsledky ostatnı́ch týmů testujı́cı́ch
své systémy převážně v laboratořı́ch. Kombinace teoretických přı́stupů s reálnou praxı́ a
průmyslovými řešenı́mi se také ukázala jako velká konkurenčnı́ výhoda našich studentů
na trhu práce.





C A N D I D AT E ’ S C O N T R I B U T I O N S I N PA RT I C U L A R PA P E R S

Papers presented in Appendices A, B, C, D, E and I summarize the candidate’s theoret-
ical work in formations and swarms control. The candidate is the main author in these
publications, and the work was carried out with the help of his colleagues and students
mainly related to experimental verification. Papers presented in Appendixes F, H, J, and
K summarize the most important contributions of the candidate’s students. The candi-
date’s main contribution was in providing the initial motivation for the entire work, the
theoretical design of the methodologies, ongoing advisory work on implementation and
experimental verification, and support and direct contributions in the publication phase.
The paper presented in Appendix G is an interesting example of joint work carried out
by three groups, led by Tomas Krajnik, Jan Faigl, and the candidate, which influenced
further scientific work of all co-authors. Candidate’s contribution was mainly in the initial
design, and in motivating the entire work. He also significantly helped with experimental
verification of the system and with its deployment in numerous real-world scenarios.

The exact specification of the contributions to each paper is expressed as a percentage
in the attached list of publications, based on an agreement with the co-authors.
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1
I N T R O D U C T I O N

Autonomous control of Micro Aerial Vehicles (MAVs) and stabilization of groups of MAVs
are currently fast-growing research fields in mobile robotics. This area may be considered
as an intersection and a continuation of the massive research endeavour given to mul-
tirobot systems of cooperating Unmanned Ground Vehicles (UGV), and the progress in
technologies of Unmanned Aerial Vehicles (UAVs) together with their miniaturization to-
wards small-size MAVs. In this habilitation thesis, contributions to the coordination and
stabilization of groups of ground and aerial autonomous robots and precise control and
motion planning of micro aerial robots with limited computational and sensory capabili-
ties will be summarized and situated into the context of state-of-the-art robotic research
(see Fig. 1).

Figure 1: Examples of the deployment of the presented systems in real-world environ-
ments. Upper left: A formation documenting the Church of St. Moritz in Olo-
mouc using a smart lighting technique (see section 5.1 for details). Upper right:
Tests of enabling technologies for swarming in forest-like work-spaces (section
3.1). Bottom: A compact formation of self-stabilized MAVs (section 2).

The deployment of groups of MAVs has been motivated by the increasing robustness of
robotic systems, and it has motivated research of methods for using UGV teams since the
beginning of this century. Researchers can take advantage of the possible redundancy of
small and cheap vehicles and fusion information from distributed simple sensors, instead
of using a single well equipped aerial vehicle. In addition, small flying robots enable better
manoeuvrability and better reachability of desired locations in a cluttered workspace, for
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which they are especially appealing. Moreover, there are numerous applications that
cannot be solved by a single vehicle, and multirobot deployment is required (see section
5 for examples).

Current research on multi-MAV systems is often limited to approaches applicable only
in laboratory conditions using a precise motion capture system (e.g. Vicon - http://

www.vicon.com/). This enables MAVs to be localised with precision within fractions of
millimetres, but requires the installation of fast cameras in the environment prior to the
mission [44, 45, 46, 47, 48]. In rare cases, simple methods of MAV cooperation are de-
signed for use with Global Navigation Satellite Systems (GNSS) [49, 50, 51, 52]. Reliance
on GNSS, such as GPS, limits the deployment of MAV teams in workspaces with obstacles
(urban environment, forests, canyons) and indoors (underground mines, caves, factory
halls, warehouses). Nevertheless, MAVs are much better suited exactly for these environ-
ments than larger UAVs designed for open sky missions, where a GNSS signal is required.
Another significant disadvantage of using GNSS as the main localization system is its lim-
ited precision and reliability, which makes it impossible to form compact formations and
swarms flying close to obstacles.

The overall objective of the research achievements presented here, and also the main
research agenda of the candidate’s Multi-robot systems group at CTU in Prague (http:
//mrs.felk.cvut.cz/) is to focus on aspects of the deployment of self-stabilized MAV
groups in GNSS-denied environments. In particular, we are focused on designing and
analysing systems that rely only on onboard sensors and computational power, using di-
rect visual relative localization among the cooperating robots. Methods for direct visual
localization [12, 13], which we are also focused on, are tools being used by the applicant
and his group for stabilizing MAV formations in fixed relative positions [14, 15], for sta-
bilizing dynamic MAV swarms [16, 17, 18, 19], and stabilizing heterogeneous teams of
MAVs and UGVs [1, 2], [20, 21] in an arbitrary (indoor and outdoor) GPS-denied environ-
ment and with no external localization. Aspects of all these various multi-MAV systems
will be discussed in this thesis, together with a theory that specifies the requirements for
their deployment in real-world conditions.

In the presented work, two main streams of multi-robot stabilization and control are
followed: centralized formations and decentralized swarms (see Fig. 1 for examples). The
required mutual positions for all robots within the team are given and the overall shape
of the group is specified by high-level planning in the first control scheme, for which the
term formation is used here. This approach enables us to estimate the future behaviour of
the group as well as of particular robots, and to analyse properties of the system, including
its robustness, its convergence into the required equilibrium, and its stability. However,
these methods often require communication between the robots, centralized coordination,
and they are sensitive to the failure of a single robot, mainly in the frequently used leader-
follower scheme [53, 54, 55, 56, 57, 58, 59].

The second stream that has been investigated, and that stands as the main motivation
for the research agenda of the candidate’s team, is focused on fully-decentralized MAV
stabilization with no direct communication between the robots in the team. This approach
to MAV group control, which is called swarming in this work, brings high scalability
and adaptability [49, 60, 61, 62]. We have even shown that increasing the number of
robots in the team increases the group stability, while keeping the same complexity of
swarming rules and computational requirements. The possibility of group stabilization
and coordinated motion without a need for communication is a crucial factor in robustness
to external environmental conditions. In hundreds of multi-robot experiments that have
been realised, we have observed that communication within large multi-MAV teams is
the main bottleneck in current robotic technology. In real-world conditions, a problematic
task is to establish a robust communication mesh even for groups of just 4-5 flying robots,
and keeping connectivity in a larger group is impossible with currently available devices.

http://www.vicon.com/
http://www.vicon.com/
http://mrs.felk.cvut.cz/
http://mrs.felk.cvut.cz/


2
C O M PA C T M U T U A L LY S TA B I L I Z E D F O R M AT I O N S

The first example of stabilizing multiple closely-cooperating robots is a centralized ap-
proach to formation movement, where the robots keep required mutual positions within
the group. In this approach, all robots assigned as followers follow the path of a real or
virtual leader at a given distance behind the leader and within a given deviation from the
path. This allows us to reliably compose a formation of arbitrary shape if there are safe
distances between the robots satisfied (see Fig. 2 for an example of such defined formation
and Fig. 3 for examples of an experimental deployment of the system).

Figure 2: Positions of robots in heterogeneous formations defined in a curvilinear coordi-
nate system with axes p, q, h. Left: A formation with a real leader. Right: A for-
mation with two virtual leaders, VL1 for forward motion and VL2 for backward
motion. For more details and examples of the deployment of such formations,
see [1]. Source: [1].

2.1 heterogeneous formations of cooperating aerial and ground robots

The simplest case of achieving a compact formation-flying ability with onboard sensors
and limited computational resources is multi-robot cooperation within heterogeneous
teams of ground and aerial vehicles. In such a system, unmanned ground vehicles (UGVs)
help to stabilize the overall formation relatively to the surrounding environment and to re-
press undesired motion oscillations. The MAVs in the formation do not need information
on their velocity relatively to the environment, which is difficult to achieve. Knowledge
of the current velocity is crucial for stabilization of a single MAV as well as for stabiliza-
tion of groups composed of MAVs only. The basic ideas of our approach to the planning
and stabilization of heterogeneous MAV-UGV formations are presented in [21] and ex-
tended with experiments and convergence analyses in [1]. In Appendix A (paper [1]), a
leader-follower formation driving approach adapted for onboard visual relative localiza-
tion of heterogeneous teams of unmanned helicopters (quadrotors) and ground robots is
described. The main motivation for the work in [1] is the deployment of large teams of
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Figure 3: Examples of an MAV formation flying in an outdoor workspace.

unmanned vehicles in real-world search and rescue (SAR) missions, where a multi-robot
system has to explore large areas cooperatively in a short time, and where precise relative
localization among the robots is required. In these tasks, robots cannot rely on a pre-
installed global localization infrastructure, which is usually not available, or is damaged,
in sites under SAR exploration. The deployment of multi-robot systems in environments
where external localization is not available is an objective that runs through this entire
document.

In [1], the localization system required for group stabilization and its movement in a co-
ordinated manner is based on simple light-weight bottom cameras mounted on the MAVs
and identification patterns used for the mutual localization sensor placed on both the
UGVs and the MAVs. With this top-view approach, the problem of loss of direct visibility,
which is a common source of localization uncertainty in SAR missions, can be better tack-
led. This type of problem occurs if visual relative localization systems are employed for
ground robots operating in a workspace with scattered obstacles, as is common in SAR
scenarios. The ability to localize robots from the top view increases the robustness and the
precision of determining the relative position. The live video stream from the flying cam-
eras can be an additional useful source of information for human operators supervising
the SAR mission.

The proposed MAV-UGV standalone system provides a light-weight, low-cost and ef-
ficient solution, and could be an enabling technology for extensive utilization of simple
micro-scale robots in demanding scenarios. Article [1] focuses on theoretical and imple-
mentation aspects of the formation driving mechanism suited for the real-world deploy-
ment of autonomous robots relying on top-view relative localization (referred to as the
“hawk-eye concept” in [1]). The formation driving approach relies on Model Predictive
Control (MPC), which allows the involvement of constraints imposed by vehicles (mobil-
ity constraints), obstacles (environment constraints), and inter-vehicle relations into the
formation driving. The inter-vehicle relations are specified by the shape of the formation
feasible for the hawk-eye like relative localization approach.

The MPC technique is used for stabilizing the followers in their desired positions behind
the leader, and for planning the leader trajectory into the desired goal area. A new MPC
concept combining trajectory planning into the desired goal region and immediate control
of the formation in a single optimization process was proposed in [1]. This research
extends the candidate’s previous work on stabilization of formations of ground robots (for
the technical and implementation details of the UGV formation driving system, see [22, 23,
24, 25, 26, 27, 28], while the theoretical aspects and analyses of convergence are presented
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in [29, 30, 31]). The method proposed in [1] can respond continuously to changes in the
vicinity of the formation while keeping the cohesion of the actual control inputs with the
directions of movement of the MAV-UGV formation in the future. Furthermore, a new
obstacle avoidance function for multi-vehicle trajectory planning, which includes a model
of the group that respects the restrictions of the hawk-eye concept, was integrated into the
MPC schema. The obstacle avoidance function ensures direct visibility between MAVs
and UGVs, which is a crucial requirement for the top-view relative localization approach.
In addition to the novel MPC schema, sound theoretical analyses of the convergence of
the entire system were provided in [1] to be able to specify requirements for practical
utilization of the method, taking into account functional properties of onboard sensors
and actuators.

2.2 fault-tolerant formation flying

As stated above, and discussed more in greater detail in the concluding remarks of this
thesis summary, the main disadvantage of the leader-follower approach is its limited ro-
bustness to MAV failures in comparison with the fully decentralized swarming systems
described in section 3. Possibilities of increasing the robustness of such formation flying
approaches are presented in Appendix B (paper [2]), where a fault-tolerant method for sta-
bilization and navigation of heterogeneous formations is proposed. Article [2] is a journal
extension of paper [20], which received the main best paper award at the largest confer-
ence exclusively dedicated to aerial vehicles. The fault detection and recovery mechanism
introduced in [2] relies on identifying sensor and actuator faults, or even a failure of a
team member. This information is used to adapt the group behaviour to maintain the
system performance with limited capabilities. A scenario of multi-robot surveillance was
used to present this ability in realistic missions, where a formation of autonomous vehi-
cles has to drive repeatedly through a workspace in a phalanx to cover a large operating
space. The use of heterogeneous teams of MAVs and UGVs allows us to consider their
deployment in surveillance missions that cannot be carried out solely by teams of MAVs
or UGVs, or in which these teams would not be efficient without their direct cooperation.
MAVs can reach locations inaccessible by UGVs and may provide a top view survey of
the scene as discussed in the previous section. On the contrary, UGVs may operate in
workspaces constrained by obstacles (e.g., in abundant vegetation) and can carry a much
heavier payload, which means that they can employ more powerful surveillance sensors.
UGVs have a larger operational range, and they may even provide an additional power
source for MAVs through a mobile heliport (see our work in [32]) and prolong their flight
time.

The work presented in [2] and [20] extends the paper [1], discussed in section 2.1, in
the following aspects. The primary extension consists in the fault diagnosis and recovery
mechanism. Malfunctions of any follower are automatically identified by analysing the
cost function values applied in the MPC control of the followers, and by comparing the
progress of the cost function with the predicted cost values. If a deviation of a follower
behaviour from the expected operational mode is detected, this follower is considered
as a dynamic obstacle in the formation stabilization process. Another contribution of
the work presented in [2] is a new obstacle avoidance function, which enables dynamic
obstacle avoidance of external moving objects as well as inter-vehicle avoidance of faulty
formation members. Finally, the formation stabilization approach was adapted to the use
of a vision-based technique, which enables repeated formation navigation along a given
path required by the surveillance task.

The formation driving method in [2] relies on a navigation approach called GeNav [63],
which uses features detected in images that are gathered by a monocular camera carried
by a UGV. This very simple method enables the group to be robustly navigated along a
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pre-learnt path consisting of a sequence of straight segments (for a proof of stability, see
[63]). This combination of top-view relative localization and visual navigation provides a
lightweight, low-cost, easy-to-deploy and efficient solution for simple MAVs with limited
sensory equipment. The formation control approach adapted for stabilization along a
required path follows our research on UGV formations driving along a spline reference
path (see [31]). In comparison with the system discussed in [1], the global trajectory
planning mechanism does not need to be integrated into the formation control in the
surveillance task defined in this way, and a shorter planning horizon coupled with the
desired path is preferred. The shorter horizon reduces the dimension of the optimization
process and speeds up the control loop, which is essential for a fast response to dynamic
obstacles and failures of team-mates, but it still allows us to prove convergence of the
system into equilibrium and to specify requirements on system stability. For proof of
convergence of the planning approach based on the Lyapunov theorem of stability, see
our work in [31].

2.3 compact formations of aerial unmanned vehicles

The first work addressing the problems of stabilization of compact teams of aerial vehi-
cles with limited onboard sensing and processing capabilities is introduced in Appendix
C (paper [3]). The deployment of the system, which includes MAV control, motion plan-
ning, stabilization, and trajectory planning, is discussed for three different realistic robotic
scenarios. The primary objective of the paper is to determine the advantages and disadvan-
tages of using onboard relative localization systems in various techniques of MAV-group
control.

The first scenario is an extension of the MAV-UGV formation stabilization system intro-
duced in the previous section. In this scenario, a formation of multiple MAVs follows a
virtual leader into the desired target region in a complex 3D environment with obstacles
(the movement of the MAV-UGV formation in [1] was constrained into a plane). Similarly,
as in [1], stabilization of the MAV followers is integrated with an obstacle avoidance abil-
ity into a global trajectory planning mechanism that leads the entire formation into the
desired goal area. This inclusion of global planning directly into the formation control
mechanism is essential for ensuring the feasibility of obtained solutions of the formation
motion planning task with respect to onboard relative visual localization. In the case of
an MAV formation flying freely in a 3D space, the required direct visibility among team
members may be ensured by analysing collisions between obstacles and a 2D convex hull
of the positions of the followers, as proposed in [3]. The 2D convex hull, which represents
the 3D formation, is obtained as a projection of the positions of the followers into a plane
that is orthogonal to the trajectory of a virtual leader in its current position (see Fig. 4).

The second scenario in [3] is motivated by tasks connected with searching for extremes
(locations in a 3D environment) of a measured physical value, e.g., locations with a mini-
mum GSM signal in difficult-to-reach areas. Swarm intelligence is applied to speed up the
process of searching for extremes in the measured intensity. In particular, a modification
of the bio-inspired Fish Search School (FSS) technique [64] is used to define the motion of
an MAV group based on the actual state of the particles (individual MAVs). Each particle
in the FSS swarm defines its future movement based on its current state and the states of
neighbours, obtained by onboard systems only. This approach is preferable to most of the
other evolutionary approaches, such as Particle Swarm Optimization (PSO), where new
desired positions of MAVs are determined based on the best-achieved position of a parti-
cle in the swarm so far (the global best) and the best-achieved positions of each particle
(the personal best). This requires these locations in the environment to be remembered or
denoted and to be localized relative to the actual positions of the team members. Using
the FSS control rules, the proposed relative localization approach can be directly used for
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Figure 4: 3D visualization of the convex hull of a heterogeneous formation projected along
the leader’s trajectory planned through an environment with obstacles. Source:
[3].

steering a compact aerial swarm if each MAV is considered as an FSS particle. In such tan-
gible FSS method, information about the global position of MAVs in the environment is
not necessary, as the group is steered by the distribution of the measured signal intensity
only.

Finally, the third scenario demonstrates the deployment of the proposed system in a
cooperative surveillance task (see [18] for implementation details of this method). This
application is used as an example of robotic problems, where the MAV trajectories have
to be purposely computed prior to the mission to enable verification of their safeness and
feasibility by a human supervisor. In the scenario, a set of goals (areas) is assigned to a
limited number of MAVs with the aim to find a static swarm configuration that can guard
the areas, and to maximize the information that is acquired there. Similarly, as in all of
the previous cases, the MAV swarm has to respect the motion, localization and sensing
constraints that have to be satisfied in the final static swarm distribution as well as during
the swarm deployment to these locations.

To sum up, the proposed methodology is designed for finding a feasible static shape of
the swarm and a feasible plan of motion from the initial configuration to this target shape,
i.e., locations of particular swarm entities optimized to solve the surveillance task and
trajectories for all MAVs to enable the swarm to be deployed to the obtained locations. To
ensure collision-free motion and to satisfy the localization constraints, a motion planning
technique needs to be integrated directly into the core of a multi-objective optimization
engine. In [3], this problem is solved by employing particle swarm optimization (PSO),
in which each PSO particle represents the entire MAV swarm. This means that all MAV
positions are encoded into a single optimization vector. Since the motion, localization
and obstacle-avoidance constraints can be checked in each PSO step, the history of the
evolution of the best particle (the obtained solution of the optimization problem) can be
directly used as a feasible motion plan for all MAVs to solve the surveillance mission.

Let us compare these three different approaches regarding the performance of the on-
board localization system. The FSS-based approach is very robust to an inaccuracy in the
measurement of relative distances, but it is sensitive to a dropout of the localization sys-
tem, which is used directly in the FSS swarming rules. Conversely, the formation flying
and swarm deployment approaches are robust to a dropout of the localization method,
and are sensitive to an inaccuracy in the measurements of the relative positions. In these
scenarios, the onboard visual relative localization method is used to unify the local refer-
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ence frames of the MAVs. In case of a temporary dropout of the relative localization, the
MAVs can safely continue in their mission based on visual odometry. However, if the pre-
cision of the relative localization is low, the performance of formation flying and swarm
deployment may be even worse than when only the odometry outputs of particular MAVs
are used.

As mentioned in the introduction, the mutual localization information provided by the
onboard sensory system significantly reduces the communication traffic necessary for co-
ordinating MAVs. From this point of view, the most efficient approach is the FSS-based
method, where almost no communication is required (the advantages of bio-inspired
swarming approaches are discussed in greater detail in section 3.1). In the surveillance
scenario, a communication channel is required at the beginning of the mission, where
plans for all MAVs are distributed within the team, and then group coordination relies
on the mutual localization method only. On the contrary, in the leader-follower approach,
the required trajectories in a short-term control horizon have to be sent frequently to all
followers, which requires a constant flow of data between the robots in the formation.

2.4 complex manoeuvres of compact mav formations

The work in Appendix D (paper [4]) is aimed at exploiting one of the main advantages of
MAVs, which is possible deployment in a cluttered workspace, flying close to obstacles,
and achieving inter-vehicle coordination of MAVs in small relative distances. In [4], a
novel concept of motion planning and stabilization of MAV formations in cluttered GPS-
denied environments based on a dynamic virtual leader was designed and experimentally
evaluated.

Figure 5: An MAV formation following a migrating virtual leader through a corridor.

The proposed method enables the autonomous design of complex manoeuvres of a
compact MAV team in a virtual-leader-follower scheme by migrating a virtual leader
along a hull surrounding the formation. This enables a sudden change in formation
motion in all directions, independent of the actual orientation of the formation. The
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required high manoeuvrability is again achieved by including model predictive control
(MPC) and planning the trajectories that are feasible for MAV formations into a single
optimization process. This extension of the classical leader-follower concept enables us
to rely on the well-conducted theory of the leader-follower control technique and to guar-
antee the stability of the group. For experimental verification of this approach, see video
https://youtu.be/slzlHtve3kY and snapshots in Fig. 5.

https://youtu.be/slzlHtve3kY
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S WA R M S O F C L O S E LY S TA B I L I Z E D M I C R O A E R I A L V E H I C L E S

The motivation for the research on swarms of MAVs presented in this section is to find a
methodology for stabilization of large groups of very simple and small-size aerial robots
in real-world conditions, and to investigate the minimal sensory, communication and com-
putational requirements for safe flocking. A practical inspiration for conducting this basic
research on swarming principles is the need for systems that enable robust cooperative
flying in the event of a complete dropout of communication among the vehicles within
the group and external global positioning systems (e.g. GNSS). This system enables us to
realize a safety mechanism for more complex systems to overcome temporarily sensory
dropouts, while still retaining cohesion of the group, and to continue in an autonomous
multi-robot mission with limited performance. Swarming behaviour independent of exter-
nal localization systems and communication availability is also desirable for cooperative
flying in demanding environments with obstacles, and in scenarios where a transition
between a GNSS environment and a GNSS-denied environment is required. In these
situations, robots cannot rely on GNSS and, in addition, communication malfunction is
expected to occur mainly in the case of large groups. Moreover, a communication channel
and a global localization system cannot be applied in numerous industrial, security, and
defence applications.

3.1 bio-inspired boids swarming model

An algorithm for stabilization of swarms of Micro Aerial Vehicles (MAVs) in a compact
shape and for their navigation through a complex environment with obstacles is presented
in Appendix E (paper [5]). The proposed method relies strictly on onboard sensors, with
no need for global localization and communication, which enables the multi-MAV system
to be used independent of preinstalled infrastructures. The major source of information
applied for group stabilization provides visual localization modules carried by all MAVs
to estimate the relative positions of neighbours in the swarm (see section 4 for details
on relative localization systems). The guess about the positions of neighbouring MAVs
and the information on the relative positions of the obstacles are integrated into group
stabilization rules via the bio-inspired Reynold’s boids model of swarm behaviour [65].
This approach requires only limited information on the local proximity of each swarm
particle for designing a control law in a distributed way. An important advantage of this
method is the possibility to stabilize a swarm without sharing global knowledge between
the particles. Only the start command needs to be distributed within the group, and this
can be realized indirectly using, for example, a start sign detected by the vision modules
if no communication infrastructure is available.

The relative localization system uses monocular cameras carried by all MAVs and (pos-
sibly) only simple localization patterns attached to all MAVs for a more precise and robust
estimate of their mutual positions. See section 4 for various approaches to mutual localiza-
tion with various levels of precision, reliability, and requirements on localization patterns
and onboard HW. The new usage of onboard relative localization allows us to gain in-
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Figure 6: An MAV swarm stabilized via the boids model in an “artificial” forest. Control
and motion planning are realized onboard the MAVs in a decentralized way.

formation on the proximity of each MAV, similarly as it is done in swarms of animals in
nature. The relative localization sensors have characteristics similar to those of the sense
organs of birds and fish. In both cases, animals may observe only neighbours in swarms
under a limited viewing angle, the information acquired on a relative position of these
neighbours is quite precise, and only a rough guess about their motion prediction is avail-
able. Nature-inspired control principles could be an ideal starting point for swarming
research and they have also provided promising results, despite their simplicity, in our
real-world experimental tests (see Fig. 6 and video https://youtu.be/roX7bqRozNM for
swarming in an environment with obstacles).

Our research endeavor presented in papers [5] and [16] aims to satisfy the requirements
for swarms, as listed in [66]: scalability for large groups, high redundancy and fault tol-
erance, usability in tasks not solvable by a single robot, and locally limited sensing and
communication abilities. This definition specifies some research constraints, and enables
a rigid analysis of swarming properties. It also perfectly meets the requirements for real
applications, where the swarm technology could be efficiently applied. Although several
research teams investigated the swarming abilities for ground robots in a planar environ-
ment [52, 67, 68, 69, 70, 71, 72], and some teams have even used the Reynold’s boids model
for swarm control [73, 74, 75], most of these systems were designed for use in laboratory
conditions, or even for use of simulated robots often considered as dimensionless points
only. These approaches therefore frequently ignore constraints encountered in the real
deployment of swarms, and they cannot be applied in real-world applications outside the
laboratory.

Our experience has demonstrated that motion, stabilization, communication and sens-
ing constraints have to be included directly into the swarming model in order to achieve
reliable behaviour. Although our aim is to design a simple light-weight solution, a mech-
anism fusing data from multiple available sensors is a key technique that needs to be
involved to provide state estimation of single entities as well as the entire group. Mainly
because simple, light and cheap sensors are used, perfectly reliable behaviour for all
critical control inputs cannot be expected and redundancy needs to be available. In
the case of swarming, redundancy can be considered not only on an individual level,

https://youtu.be/roX7bqRozNM
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but we can also take advantage of group behaviour, and we can fuse information from
multiple entities together. Merging information from multiple decentralized units is
a challenging task if a direct communication channel cannot be used, and if an indi-
rect information exchange via observation of behaviour of neighbours is required (see
video https://youtu.be/RYOMuk05Yt0 and Fig. 7, for an experimental deployment of the
swarming approach without direct communication). To be more specific, we have for
example theoretically analysed and experimentally verified that a short-term drop-out of
measurements of speed relative to the ground based on optical flow, which is a crucial
control input for single vehicle stabilization, can be compensated through observation of
neighbours if their speed measurement sensors work properly. For details on using optical
flow information in low-level control, see [33, 34].

Figure 7: An MAV swarm stabilized via the boids model using a UVDAR (Ultravio-
let Direction and Ranging) localization system (described in section 4.2) with-
out any explicit communication between the robots (see https://youtu.be/

RYOMuk05Yt0 for a video of the experiment).

Another interesting way to use the results of observations of neighbouring entities in the
swarm is estimating the state of their behaviour, which is important for dynamic swarming
if no communication channels are available. Our theoretical studies and numerical simula-
tion have shown that various behavioural patterns may be propagated through the group
without direct communication. This enables us to implement a low-level escape behaviour
functionality [76]. Similarly as in nature, once an individual entity identifies a threat (a
predator in the case of fish/birds, and a moving object/person in the case of MAVs) that
evokes an avoidance manoeuvre, other teammates can identify this avoidance pattern. In
these individuals, the avoidance manoeuvre can be activated without seeing the potential
danger. See examples of the propagation of such an escape behaviour state through a
group of MAVs using onboard sensing in a video https://youtu.be/Md5eV823I4o.

https://youtu.be/RYOMuk05Yt0
https://youtu.be/RYOMuk05Yt0
https://youtu.be/RYOMuk05Yt0
https://youtu.be/Md5eV823I4o
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Similarly, start and end mission commands can be propagated through the group by
influencing only a limited number of entities, which are then followed by other group
members using mutual localization information only. This approach enables large swarms
to be commanded without a direct communication channel from an operation station to
MAVs and between the MAVs.

3.2 coherent swarming with minimum sensory requirements

In this research stream, we go even further in our objective to minimize the sensory infor-
mation required for group stabilization. The algorithm proposed in Appendix F (paper
[6]) enables a compact group to be stabilized and navigated using even less data than is
required for the boids model. Methods based on the boids model involve complete in-
formation (bearing and distance) about all neighbours in a 360-degree view, which needs
at least three cameras of the mutual localization system to be used onboard each vehi-
cle (see section 4 for details on the vision-based localization system). Using the method
proposed in [6], swarm coherence can be achieved with a single camera and using only
binary information on distances to neighbours. Our theoretical analyses and practical
tests verified that a single camera with a 120-degree field of view is sufficient for group
stabilization. Moreover, no exact information on mutual distances to the detected neigh-
bours is required by the system in [6], and only a decision whenever the localized object
(another teammate or an obstacle) is closer to or further than a given threshold is used.
To provide this sensory information, we purposely designed a very robust smart sensor
using a single onboard camera and UV LED lights. This could be an enabling technology
for stabilization of large swarms (see section 4.2 for details).

This information is applied for controlling thetransitions between three behavioural
states, forward (the default setting for all MAVs), coherence, and avoidance, which are the
core elements of the swarming model proposed for MAV-group stabilization in [6]. MAVs
in the forward state continue flying towards mission objectives as long as they are forced to
move to another state, using the results of the onboard mutual localization system. Each
MAV stays in the forward state as long as at least α neighbours are kept within a given
localization distance. A proper value of parameter α, which is the required number of
localized neighbouring agents, depends on the required density of the swarm and sensory
model of the localization device. If less than α neighbours remain within the required
distance, the MAV enters into the coherence state, in which it turns back to restore the lost
connection. Once the required number of neighbours appears back in the localization
range, the particular MAV transfers back into the forward state and may continue in the
mission. A proper setting of α is important mainly for large swarms, which we are focused
on, where it is not possible to keep the localization constraints between all pairs of MAVs.
Accurately defined α enables a broader and better-structured swarm, where (ideally) each
robot has precisely α neighbours and the swarm forms a stable regular net, which is not
precomputed and arises autonomously.

If an MAV gets closer to another MAV/other MAVs or an obstacle than a given thresh-
old, an evasive manoeuvre has to be performed, and the MAV enters into the avoidance
state. In the avoidance state, a simple strategy for finding a new safe motion direction is
applied using the immediate knowledge of all objects that are closer than the avoidance
distance. This simple reactive approach, if performed by all teammates simultaneously
in a strictly distributed way, provides safe and coherent flocking even in a complex en-
vironment with obstacles (see the results of complex simulations in [6] and in a video
https://youtu.be/MINM-dB_Ku4). Based on theoretical and experimental analyses, we
have found that the group coherence even increases with the number of swarm members,
and the requirements on the mutual localization system are decreased. This observation

https://youtu.be/MINM-dB_Ku4
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is a fundamental and promising result towards designing a large compact group of coop-
erating light and simple MAVs.

The main contribution of this approach is the possibility to stabilize an MAV swarm
in environments with obstacles, without the need for global positioning systems and ex-
plicit wireless communication, and with significantly limited computational and sensory
requirements. Using this method in a comprehensive analysis of the achieved swarming
behaviour, we have been able to confirm/disprove a set of hypotheses assumed in the
swarm robotics literature or being compiled on the basis of our experience with the boids
model used for MAV swarm control (for the set of investigated hypotheses, see [6]). We
have shown that using even such limited sensory data the swarm intelligence is beneficial
for keeping coherence, decreasing the number of collisions and increasing the reliability
of the system. Again, the crucial part of this approach was the integration of motion and
localization constraints directly into the swarming rules. Statistical tests in various robotic
simulators and environments were carried out to analyse the algorithm performance in
its different configurations and to verify its reliability, taking into account the limitations
of the designed system of mutual localization of swarm members.
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M U T U A L O N B O A R D L O C A L I Z AT I O N O F M U LT I P L E
C O O P E R AT I N G R O B O T S

Systems of multiple closely cooperating aerial robots require numerous challenging tech-
niques to be solved, including precise stabilization control, motion planning, coordination,
sensor fusion, obstacle avoidance, in some cases communication, and always precise mu-
tual localization. Although, all these challenges had to be tackled and solved during our
long-term research towards fully autonomous MAV swarms, mainly the mutual onboard
localization of neighbouring entities is the most relevant tool for stabilization of compact
MAV groups in real-world scenarios, where GNSS information is not sufficiently precise
and motion capture systems are not available. A single chapter is therefore dedicated to
this research stream in this manuscript.

4.1 localization patterns detectable in the visible spectrum

Our preliminary attempts to design a system that can estimate the states of neighbouring
robots (aerial and ground) relatively to a robot carrying the localization sensors (relative
distance, bearing, orientation) were focused on using color detection patterns and cameras.
This approach can solve the relative localization problem using the limited computational
power of onboard microprocessors in real time, i.e., with minimal latency and more than
30 times per second, which is a common requirement for MAV controllers. Although we
have been able to stabilize compact MAV swarms and heterogeneous MAV-UGV forma-
tions (see Fig. 8 and [15, 19, 20, 21] for examples), our experience has shown that such a
vision system is highly dependent on the light conditions.

Figure 8: Snapshots from a formation driving experiment with 3 UGVs and 1 MAV using
color detection patterns. Source: [1].
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Figure 9: Examples of the deployment of the circle pattern detector published in [12] and
[7]. This picture was composed with the help of Tomas Krajnik, the main author
of the circle detector [7], and other co-authors.

The color map used for segmenting the image pixels and for identifying the color blobs
adherent to parts of the localization pattern had to be re-calibrated after any change in
intensity or in the source of illumination. Often, several different color maps had to be
used in different areas of one room, which limited the usability of the system to simple
laboratory experiments. This did not satisfy our primary intention to take MAV swarms
out of the laboratory and into real application scenarios.

Significant progress towards this long-term objective was achieved by employing black
and white patterns of known shape and dimensions. In particular, circular planar ring
patterns (roundels) were used. This approach, presented in Appendix G (paper [7]), is
robust to variable lighting conditions, achieves sub-pixel precision, and its computational
complexity is independent of the size of the processed image. Such a setup achieves pre-
cision in the order of millimetres for target distances in the order of meters, and can track
hundreds of targets at camera frame-rate onboard computationally restricted platforms.
The fast update rate allows the localization system to be employed directly in the feed-
back loop of MAVs in swarms and formations. An important outcome of our research
in [7] is a model of the localization sensor arising from theoretical analyses of the vision
system and an experimental evaluation of the system performance in real scenarios. As
was mentioned in previous sections, this model needs to be integrated into the motion
constraints of MAVs acting together in a group to achieve the required system stability.

Algorithm [7] outperforms other pattern detectors [77, 78, 79, 80, 81] in terms of speed
by an order of magnitude, while achieving similar precision and robustness. These proper-
ties are achieved by searching images for circular black and white objects using a combina-
tion of flood-fill techniques, on-demand thresholding, and on-the-fly statistics calculation.
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The statistical information gathered on-the-fly is used to test whether the continuous areas
of pixels are likely to represent the searched pattern, and quickly reject false candidates.
The main advantage of the method is that it can be initiated from any position in the image
without a performance penalty, which facilitates the implementation of pattern tracking.
In a typical situation, the algorithm processes only the area that is occupied by the pattern
itself, which results in a significant performance boost.

This approach goes beyond usual computer vision techniques, which require high com-
putational time and rarely enable a frame rate higher than one frame per second with
onboard processors, although they present incredible performance and reliability in ob-
ject detection even without a need for purposely placed localization patterns. The work
in [7] was therefore considered as one of the first techniques enabling onboard mutual
localization of MAVs in the robotic community, and its authors have counted more than
20 examples of its real deployment (see Fig. 9 for examples) by leading robotic groups,
including the University of Pennsylvania, the University of Birmingham, Technical Uni-
versity Vienna, the University of Lincoln, the University of Buenos Aires, etc.

4.2 ultraviolet-based relative localization

Another important step towards reliable mutual onboard localization completely indepen-
dent of light conditions and the type of work-space is the research of using onboard
ultraviolet-based markers and cameras. This approach exploits the evidence that the
spectrum of sunlight, which is the most significant outdoor illumination source, shows
a marked decrease in intensity in near ultraviolet wavelengths in comparison with visi-
ble light. The decrease in intensity is faster near the visible range than on the infrared
side. The environment at daylight is therefore dark in the ultraviolet range, as the appear-
ance of UV light is limited to reflected and refracted sunlight only. Artificial radiation
sources with strong UV emissions are rare, making this wavelength range very attractive
for mutual localization with active markers.

Localization markers composed from artificial UV light sources (UV LEDs) can be ob-
served through optical band-pass filters, where particular LEDs are simply detected as
isolated bright spots on a dark background. Using the filter significantly reduces the
complexity of markers detection by removing additional information in images. In the al-
gorithm presented in Appendix H (paper [8]), positions of bright spots that represent the
markers are found by image thresholding and consequent computationally efficient FAST-
like surroundings comparison (see video https://youtu.be/rY7bPYMAWKo for neighbour-
ing MAV localization from an onboard camera in demanding outdoor conditions).

Two possible methods for relative position estimation are proposed in [35], where the
system we call UVDAR (Ultraviolet Direction and Ranging) is described (in [8], UVDAR
was used for formation flying). In the first setup, multiple UV LED lights are used to create
a localization marker ( see Fig. 10). To increase the precision of the distance estimation by
maximizing the pixel distance of the bright spots in the image, the UV LEDs are positioned
on the ends of each arm of a multirotor-type MAV. For analyses of various configurations
chosen according to the specific application requirements, see [13]. The mutual position
between two MAVs (the bearing towards the detected MAV and the relative distance) is
calculated using the known geometrical layout of the markers in this approach. In the
second approach, only a single MAV is used for the mutual localization. In this case,
the process of estimating the relative distance to the neighbouring robot exploits the fact
that the light from UV LEDs affects multiple pixels in the image if the detected MAV is
close to the MAV that is carrying a camera. With increasing distance, the area of pixels
with non-zero measured intensity decreases, and it becomes a single pixel if a particular
distance between the camera and the light source is reached. The correlation between
the size of the blob and the distance is not reliable, and depends significantly on multiple

https://youtu.be/rY7bPYMAWKo
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Figure 10: A demonstration of the UV-based localization system. Above: A drone flying
in front of cars is very difficult to recognize in the visible spectrum, while it
can be easily recognized in UV. Below left: An MAV equipped with an onboard
camera with a filter made by a red circle and UV LEDs in green. Below right:
The principle of distance measurements from multiple detected UV lights. For
more details, see [8], [35] and [13].

factors, such as the light conditions, the relative orientation of the LED and the camera, the
setting of the camera and the lens, etc. Nevertheless, the transition between sensing a blob
composed of multiple pixels and detecting a single pixel is usually sharp, and indicates
precisely that the neighbouring MAV is closer than the threshold. As described in section
3.2, such binary information can be sufficient for safe and reliable swarming, and it can
be obtained with the use of minimum computational resources and equipment.

As has been mentioned, the only source of UV light in nature is the sun, which can be
simply excluded by using its known size in the image and also its position relative to the
MAV, if a compass measurement is available. Nevertheless, specular reflections of direct
sunlight can occur on rare occasions, and can be identified as false positive detections.
We have experienced disturbing reflections from car windows, for example. Therefore,
additional information has been encoded in the markers by modulating the LEDs bright-
ness by blinking to exclude false positive detections, and an algorithm for retrieving such
information from a set of consecutive images was developed. The algorithm (described in
[35]) is based on a special implementation of the 3D Time-Position Hough transform for
tracking periodically appearing objects in time.

The frequency of the blinking signal retrieved from the markers may be used as an iden-
tifier for the given marker to be able to distinguish among multiple MAVs, if required. If
multiple blinking frequencies are used for LEDs in a single pattern, unambiguity of rel-
ative orientation can be achieved. Another advantage of the UVDAR approach is that
the images need to be obtained with a short exposure time to maintain a high contrast
between the markers and the ambient illumination. This enables us to achieve a high
frame-rate, which is required for stabilizing dynamic systems, such as the MAV forma-
tions [14, 15] and swarms [16, 18, 19]). See videos https://youtu.be/RYOMuk05Yt0 and

https://youtu.be/RYOMuk05Yt0
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Figure 11: A simple leader-follower experiment showing the performance of the UVDAR
relative localization system used in MAV control feedback in demanding out-
door conditions without any explicit communication between the robots. The
neighbouring MAV is robustly localized in various light conditions and against
a changing background (see https://youtu.be/ixNeOye_O2I for a video of the
experiment). Source: [8].

https://youtu.be/ixNeOye_O2I (with snapshots in Fig. 7 and Fig. 11, respectively) for
the latest experimental results.

4.3 localization without patterns purposely placed on vehicles that

are being localized

Finally, let us mention our ongoing research on fast onboard relative localization without
any purposely placed markers. Although the UV LED lights used in the system [8] are
lightweight and have low power consumption, the MAV body needs to be modified, e.g.
by installing wiring, by attaching LED mounts, and by adding a board in order to control
the required blinking frequency. However, the more dominant motivation for the research
presented in this section is the requirement for relative localization of objects/flying vehi-
cles on which a compatible marker cannot be installed. An application for air protection
against unauthorized drones can be mentioned as an example. For our preliminary re-
sults in this scenario, and for results related to the first challenge of the MBZIRC 2020

competition 1, which was also motivated by this task, and in which our team participates,
see Fig. 12 and videos https://youtu.be/Z4lSam-lpN8, https://youtu.be/RTzac8PLpkY,
https://youtu.be/D1lygdYu0m0.

In the first approach that we are investigating, a Convolutional Neural Network (CNN)
is employed for relative localization of objects from images gathered by an onboard cam-
era. Using CNN YOLO object detection [82, 83], our system can keep to the 30Hz limit
for image processing with an onboard MAV computer. Although this approach brings
promising results and can be applied for most swarming and formation flying scenarios,

1 https://www.mbzirc.com/challenge/2020

https://youtu.be/ixNeOye_O2I
https://youtu.be/ixNeOye_O2I
https://youtu.be/Z4lSam-lpN8
https://youtu.be/RTzac8PLpkY
https://youtu.be/D1lygdYu0m0
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Figure 12: Demonstration of hunting for an unauthorized drone with the use of a net. The
target drone is detected in real-time using an onboard 3D camera. Examples
of pictures captured by the 3D camera are shown in the upper left corners of
images captured from an onboard RGB camera.

its reliability may depend on the working space. The background of images strongly in-
fluences the frequency of false positive detections (see examples of MAV detection with
various image backgrounds in Fig. 13). Moreover, the localization range is limited, as
the CNN detector requires a sufficiently large image of detected objects in the pictures.
Although the bearing information is sufficiently precise with this method, the distance es-
timation of the identified objects (a bounding box of the detected object is used) requires a
priori knowledge of the size of the localized object. For the MAV detection task, a general
image of the drone can be learned using a set of pictures of different drones in various
situations, but various drones with similar shapes can have different dimensions.

A more robust and precise solution provides processing data from onboard 3D cameras
(see examples of an MAV detected in an image from an Intel Realsense Depth Camera
in Fig. 13). This approach to MAV localization is very reliable, mainly in an open space,
which is a situation often encountered in scenarios of protection against unauthorized
drones. Then, the flying object can easily be recognized from a distant background. Ther-
mal cameras can provide another interesting source of sensory information, which enables
to detect motors and onboard computers as a significant pattern in the case of multi-rotor
MAVs (see Fig. 14). Thermal cameras are valuable mainly when there is limited visibil-
ity. Finally, we have tested radar-based methods for drone detection, which theoretically
promise a long range and high reliability. However, have not yet achieved successful
results with these methods.

To conclude this section, let us compare the available methods from the application
point of view. The method with the black and white circular pattern is efficient for simple
proof of concepts, laboratory experiments, and deployment in a stable environment, such
as an office space, where the active markers, such as the UV lights, could distract working
people. One of the main advantages of using circular patterns is straightforward deploya-
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Figure 13: Examples of pictures obtained by onboard cameras for visual drone detection.
Left: images taken by an RGB camera. Right: images taken by Intel RealSense
Depth Camera. The red blobs represent the detected drone, while the blue
blobs are caused by propellers and are not considered in the object detection
algorithm.

Figure 14: Examples of pictures obtained by various onboard cameras for visual drone
detection. Left: RGB camera. Middle: 3D camera. Right: Thermal camera.
Based on different background and distance to the detected object, different
cameras provide reliable results, and therefore a fusion of multiple sensors is
required.
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bility, as it is only necessary to print the pattern, to use any camera attached to a PC, and
to download and run the open-source software that is provided.

The approach on the basis of UV lights is an efficient tool for multi-robot applications
irrespective of environmental and lighting conditions. It provides the best performance
and reliability in nature, urban, indoor, and outdoor workspaces, at night as well as in
direct sunlight. The main limitation is the requirement for specialized hardware. A camera
with a filter has to be integrated onboard the controlled MAV platform, and UV LEDs need
to be installed onboard the MAV that is to be localized.

The vision-based CNN approach may be an exciting technique enabling to employ tiny,
lightweight and cheap MAV swarms. Although it is not mature enough to provide high
reliability, initial experiments indicated a possibility of short-term stabilization of large
groups, since some swarming techniques can rely on unreliable sensory information tak-
ing advantage of shared group knowledge (see section 3.2 for details).

To achieve robust perception in the application of protection against unauthorized
drones, a fusion of multiple sources of information seems to be necessary. A combina-
tion of the depth camera, the thermal camera and CNN-based computer vision provides
high reliability in various light conditions, together with high precision. Cameras in the
visible spectrum usually have higher resolution than depth cameras and thermal cameras,
and therefore provide more precise information on a vector towards the identified object.
However, the relative distance to the detected object is obtained most precisely using a
depth camera, which does not require any a priori information on the object dimensions.
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A P P L I C AT I O N S O F T H E P R O P O S E D C O N C E P T S

Although motion planning, control, stabilization, and mutual relative localization of com-
pact MAV teams acting in a cluttered GPS-denied environment are demanding scientific
tasks with numerous basic research challenges, robotics is an application-motivated sci-
ence, and the requirements for real deployment should be considered during the entire
research pipeline. In our scientific endeavour, we are focused on designing principles and
key technologies that enable us to tackle tasks that are difficult or even impossible to solve
with a single-robot system (see Fig. 15 for an example). Only this kind of motivation
can bring a sufficient added value to justify the usage of multi-robot systems with their
high-complexity.

Figure 15: Illustration of the Three Points Lighting technique and its application by an
MAV formation. Source: [9].
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5.1 documentation of dark areas of historical buildings with the use

of mav formations

One of the most significant examples, in which considerable added value can be provided
by applying MAV teams in a cluttered GPS-denied environment is in documenting hardly
accessible areas of large historical buildings, where an MAV group is able to deal with
limited light conditions (see Fig. 16 for motivation). In Appendix I (paper [9]), a method
for filming and visual inspection in dark conditions by a self-stabilized formation of multi-
rotor helicopters is employed. The setup, in which one of the MAVs carries a camera and
neighbouring MAVs carry a source of light, aims to autonomously realize two techniques
often used by historians and restorers for manual inspection of the interiors of historical
monuments nowadays. The first technique, the so-called Three Point Lighting approach [84,
85], is a filming technique in which 1-3 light sources are used in different locations relative
to the camera optical axis (see Fig. 15). The method enables to create an illusion of a three-
dimensional object in a two-dimensional image and to illuminate the object being shot
(such as sculptures in historical buildings), while controlling the shadows produced by
the lighting. This property is essential for presenting the interiors of historical monuments
to the broad public. This lighting technique removes the boring flatness from the images
and videos, and it adds value to the consequent analysis of sensory data gathered with
MAVs by historians.

Figure 16: The motivation for using MAVs in the inspection task in the interiors of histor-
ical objects. Left: Scaffolding in the church in Šternberk required for manual
inspection. The church was closed for four months for services and tourists.
Right: The same work in the same church conducted by our MAVs eight years
later. The church was closed for four hours only.

The second technique frequently used by restorers employs a strong side-light for illu-
minating flat objects, such as walls with parget and mosaics. In this method, a strong light
needs to be placed as close as possible to the scanned plane, which makes visible shadows
in the image when the surface is rough. Restorers and conservationists can detect from
such illuminated pictures if a tile in the mosaic is not fixed correctly, or if a painting is
affected by a humidity, which is indicated by buckling of the wall surface.

None of these techniques can be realized using a single MAV only. The light source
(or even sources) needs to be placed at a relatively long distance from the position of
the camera. Illumination from the ground is not sufficient, as has been found out in
numerous preliminary experiments in real historical buildings with the support of histo-
rians and restorers (see the outputs from these campaigns at http://mrs.felk.cvut.cz/
research/historical-monuments-documentation). We implemented these two methods
using formations of autonomous unmanned helicopters. MAV formations enable the use
of these methods in locations in the interiors of large historical objects (e.g., churches)

http://mrs.felk.cvut.cz/research/historical-monuments-documentation
http://mrs.felk.cvut.cz/research/historical-monuments-documentation
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Figure 17: The first (most probably worldwide) deployment of an autonomous formation
of MAVs inside a historical building (church in Štenberk).

that are not accessible without installation some costly staging (see Fig. 16). In cooper-
ation with restorers and filmmakers, we defined the Three Point Lighting and Strong Side
Lighting techniques as multi-objective optimization problems in the MPC framework. The
MPC approach is used for controlling all formation members, taking into account task
objectives as well as the following constraints. The formation motion constraints ensure
obstacle avoidance and mutual collision avoidance abilities. Low-level MAV stabilization
constraints include motion and actuators constraints (see [34] for details on the control
scheme and the constraints). In addition, constraints due to the limited camera field of
view and the requirement for all MAVs to be kept out of the images are taken into account.
Finally, the illumination constraints ensure that the intensity of the lighting is within the
required range and that the allowed range of angle between the light and the camera axis
is kept.

The proposed solution for this application arises from our long-term application work
in historical buildings. More than 10 historical buildings with different structures and en-
vironmental properties were involved in this research, and 20 more objects are scheduled
for the next four years. This application-oriented research involved the complete pro-
cess from preliminary proofs of concept of manually-controlled MAV formations through
semi-autonomous deployment into fully autonomous stabilization of the MAV team. In
the semi-autonomous mode, the leading MAV with a camera is teleoperated, and the fol-
lowers with lights are autonomously stabilized. For the first trials of autonomous forma-
tion stabilization in a church, see video https://youtu.be/-sTUwzFf_Mk and pictures in
Fig. 17. The video in https://youtu.be/g1NuPnLCFTg and the pictures in Fig. 18 demon-
strate one of the highlight the deployment of the system in the Church of Saint Nicolas
in the Old Town Square in Prague. Interesting practical results of the cooperative light-
ing approach were achieved in an abandoned church in Stará voda. Hidden graffitos of
Soviet soldiers waiting for execution were studied on the basis of pictures obtained by
the MAV team there (see video https://youtu.be/yNc1WfebIag and pictures in Fig. 19).
During these experimental works, a new approach to simultaneous localization and map-
ping using laser scans from a simple onboard rotational laser scanner (LIDAR) was also
successfully tested (see video https://youtu.be/f0FAZYjWujI).

The biggest and most important historical object to have been documented by our sys-
tems so far is the Church of Saint Maurice in Olomouc (see video https://youtu.be/

_cXa2yBLAeY). Indoor formation flying, exterior mapping and 3D modelling were all real-

https://youtu.be/-sTUwzFf_Mk
https://youtu.be/g1NuPnLCFTg
https://youtu.be/yNc1WfebIag
https://youtu.be/f0FAZYjWujI
https://youtu.be/_cXa2yBLAeY
https://youtu.be/_cXa2yBLAeY
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Figure 18: An example of the deployment of our system in the Church of Saint Nicolas in
the Old Town Square in Prague.

Figure 19: Documentation and exploration works in a church in Stará voda village, which
was a part of the Libavá military region and training area. A formation of
cooperating MAVs provided a set of pictures of difficult-to-access parts of the
church and statues damaged by Czechoslovakian soldiers (before 1968) and by
Soviet soldiers (after 1968). The upper right picture of the graffito was captured
by a single MAV carrying both the camera and the light, while the bottom
picture was taken by a pair of MAVs, one with a camera and the other with an
external light.
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Figure 20: 3D modelling of a facade of Plumlov Castle within a project Dronument https:
//dronument.cz. Above: RGB pictures. Bottom: 3D models with a texture
gained from captured images.

ized there. A 3D model of a facade was also obtained in Plumlov Castle, using photogram-
metry combining pictures from a large UAV georeferenced via the precise RTK GPS, while
the task of a smaller MAV flying close to obstacles in a GPS shadow was to provide details
(see video https://youtu.be/TgFknWQyJnY and pictures in Fig. 20). The last historical ob-
ject that we would like to highlight in this list is a grotto in a park of Gorzanów Castle in
Poland. An MAV was able to reach a not accessible chamber above the main cupola while
carrying a rotating LIDAR and a camera, and helped to discover a unique artwork on a
floor mosaic (see video https://youtu.be/6mRYxciDLCM and pictures in Fig. 21).

In addition to the smart lighting approach, numerous other techniques that would ben-
efit from the use of cooperating flying robots are being used by restorers in historical
buildings nowadays. Cooperation between two mobile units is required for roentgen anal-
yses of the inner structure of statues located in difficult-to-access places. A mobile X-ray
emitting device carried by one of the teammates needs to be synchronized with the move-
ment of an X-ray sensitive layer, which is placed beyond the scanned object by another
MAV.

Detection of infrared light getting through a painting is used for visualizing hidden
layers on large free-hanging pictures that are difficult to remove from the churches. In
this task, an IR camera (carried by one MAV in our case) has to be synchronized with a
source of IR light placed beyond the picture (carried by another MAV). In both of these
techniques, an interruption of direct visibility between the cooperating MAVs, and there-
fore a temporary malfunction of mutual localization, has to be taken into account in the
formation stabilization system.

An even more challenging task, which requires direct cooperation of multiple MAVs, is
the use of UV light for analyses of paintings. In this technique, an external UV light is used
to excite photons from a UV sensitive painting material. The photons are detected by a
distant camera. This powerful technique for non-invasive analyses of historical paintings
can be realized only in completely dark conditions, which will bring us back into the
ground research in this project. Flying in complete darkness is a challenging research

https://dronument.cz
https://dronument.cz
https://youtu.be/TgFknWQyJnY
https://youtu.be/6mRYxciDLCM
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Figure 21: Documentation and exploration of a grotto in a park at Gorzanów Castle in
Poland. Left and bottom right images show mosaics on a floor photographed
by a down-looking camera, where pictures of animals were discovered. The
upper right picture shows an MAV flying into a not accessible chamber above
the main cupola, carrying a camera and a rotating LIDAR (see a scan from the
LIDAR in the picture).

task, since most of the state-of-the-art techniques employed for MAV stabilization rely on
vision in the visible spectrum.

5.2 autonomous landing on a moving platform

Another example of a direct application of the results of formation flying and multi-robot
coordination research is the task of autonomous landing on a moving vehicle, which was
motivated by the Mohamed Bin Zayed International Robotics Challenge1 (MBZIRC) 2017,
which is a competition organized by the Khalifa University of Science in Abu Dhabi. In
this robotic scenario, the system for onboard mutual localization of moving objects in the
proximity of a controlled robot can be employed with minor modifications only. The de-
tected object state estimation method and the MAV state estimation method, which were
required for stable MAV formation control, can also be applied together with the MPC
technique in this task. Beyond the deployment of the research results presented in sections
2 and 4, some new scientific challenges appeared in this task due to the highly dynamic
manoeuvres required mainly in the final phase of the landing. The control architecture
proposed in Appendix J (paper [10]) is tailored specifically for the task of following fast
dynamic objects with an MAV by leveraging the non-linear state controller in conjunction
with a model predictive control tracker. Future predictions of the car movement are re-
shaped by the MPC tracker into a feasible state reference, which is reflected on the states
of the real MAV by the non-linear state controller. The MPC tracker allows arbitrarily long
reference trajectories to be tracked without solving an MPC task for the whole reference.
This enables real-time and robust execution of the demanding task in real-world experi-
mental conditions. The system is robust to very challenging outdoor conditions with a

1 https://www.mbzirc.com/

https://www.mbzirc.com/
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wind speed of up to 10m/s, varying light conditions, and sand blowing in the air (the
initial tests of the system were conducted in the desert in Abu Dhabi emirate). High re-
peatability in the landing task is a crucial element for most fully autonomous missions,
e.g. periodic surveillance, reconnaissance, object carrying, and monitoring.

The system described in [10] presented the best reliability among all 142 registered
teams in the MBZIRC 2017, and it achieved the fastest performance in the entire compe-
tition. Only our system was able to land three times in the competition in autonomous
mode (see Fig. 22 for one of the successful attempts of our team). The fastest time of
landing was achieved by the proposed system during the grand challenge, in which all
MBZIRC challenges were solved simultaneously. The key component of the system that
provided this high reliability and performance in comparison with the other teams and
state-of-the-art works solving the landing task (see e.g. [86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96]) is the MAV state estimation approach integrated with a predictive trajectory tracking
technique. This scheme enables to track and predict the estimated position of a moving
target with the necessary precision and manoeuvrability to be able to follow the car even
in turns of its path. Detected positions of the car are filtered using an Unscented Kalman
Filter (UKF)-based technique with an assumed car-like model of the vehicle, while predic-
tions of future car positions takes into account the known profile of the track.

Figure 22: A sequence of images from the second trial during the MBZIRC competi-
tion. The videos and additional material, including onboard footage, can be
found at http://mrs.felk.cvut.cz/jfr2018landing. For more pictures of au-
tonomous landing in various environmental conditions, see Appendix J (paper
[10]).

Another important factor in the MBZIRC competition, which brings the designed sys-
tem closer to real deployment, is the necessity to achieve mission objectives after only a
few minutes of preparation, without an option to postpone the beginning of the time slot
allocated for each team. According to standard practice in most laboratory experiments,
no repeated tests were allowed and, moreover, the system robustness was exhibited in the
current environmental conditions (light and windy), since the teams could not influence

http://mrs.felk.cvut.cz/jfr2018landing
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the start of their trial. This even increases the demands on system robustness and imme-
diate deployment without any preparation, which is important for further applicability of
the designed solution.

Although the methodology was designed for the specific conditions of the first challenge
of MBZIRC 2017, it can be used in various MAV systems to allow vertical take-off and
landing on boats, trains or cars. This ability allows short-term flights from a mobile
helipad located close to the area of the MAV deployment, which efficiently exploits the
performance and the usability of MAVs. Combining them with a moving platform extends
their operational range, which further increases the application potential of MAVs.

5.3 cooperative autonomous search , grasping and delivering of objects

The basic research achievements presented above have also been exploited in a ”Treasure
Hunt” scenario of cooperative autonomous search, grasping and delivering of objects,
which was required in the third challenge in the MBZIRC 2017 competition. The coop-
erative autonomous search, grasping and delivering scenario that was introduced in this
challenge, requires cooperation among multiple MAVs as well as interaction with the real
environment. This is a challenging task significantly exceeding state-of-the-art robotic
solutions. The task consists of several sub-tasks that were tackled in the swarm and for-
mation flying research introduced above, such as cooperative motion planning, object de-
tection, state estimation, MAV self-localization, precise motion control, trajectory tracking,
and decentralized team coordination. New scientific challenges were discovered mainly
in relation to aerial grasping and object dropping. Reliability and fast deployability is
again a critical requirement, with even stronger impact due to the deployment of multiple
robots. This motivated our intensive research in this area as well.

Multi-rotor MAVs are suitable for tasks where a physical interaction with objects and
manipulation of objects are required, due to the ability of these MAVs to hover on the spot.
Their usage in this field has already been investigated in several research works, mainly
for a single MAV, focusing on control and object detection sub-tasks. For examples of
control techniques, see [97], where a planner for high-speed aerial grasping is introduced,
[98] using a monocular IR camera for autonomous grasping, [99, 100] for simultaneous
control of the MAV and the manipulator joints, and the works [101, 102, 103] for a vision
guidance approach using an image-based visual servo for an aerial manipulator.

A crucial scientific problem in most of these works is how to achieve flying stability
when the mass-inertia parameters of the system are changed during the object manipula-
tion. An interesting study on determining the stability bounds of a PID flight controller
in object manipulation tasks can be found in [104]. Theoretical analyses and experimental
tests indicated that the MPC mechanism that we introduced in [34] could be applied with
just a few modifications for grasping metal objects to achieve the performance required
for the treasure hunt scenario. The MPC-based approach allows integration of the MAV
state estimate (including the external forces produced by the wind, the ground effect, and
changing mass-inertia) and target state estimate (a position and velocity estimate of the
currently observed object). The system enables our robots to reach the target with a max-
imum position error of 8cm, which is the threshold determined by the diameter of the
object and the size of the gripper. For the initial tests on compensation of external forces
within the MPC framework, see video https://youtu.be/hvOueLvYGSc, which shows the
response to changing a center of mass, and video https://youtu.be/JvA62F7lUXQ, which
shows compensation of wind disturbance.

Object detection and state estimation are investigated for example in [105], where online
detection of a known object using features from images is described, and in [106], where
an object extraction mechanism based on stereo vision for autonomous grasping of objects
is presented. To detect the coloured objects in the MBZIRC challenge, we modified a

https://youtu.be/hvOueLvYGSc
https://youtu.be/JvA62F7lUXQ
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Figure 23: Pictures from the experiments on desert dunes in Abu Dhabi emirate
and the third challenge in the MBZIRC competition. Videos and addi-
tional material from the tests in various conditions and the competition it-
self, including onboard footage, can be found at http://mrs.felk.cvut.cz/

jfr2018treasurehunt. For more pictures, see Appendix K (paper [11]).

computationally efficient method that we had introduced in [7] for the mutual localization
of swarm members, and which had already proved its reliability and accuracy in real-
world conditions.

Preliminary tests of the system designed for the competition (see video reports https://
youtu.be/JYXeUrkN_cU and https://youtu.be/e1JEMmaZmDU, which qualified our team
for the MBZIRC 2017 finals) indicated that the most important element in this very com-
plex task is the need to achieve high robustness and reliability in demanding outdoor
deployment using real sensors and actuators with their uncertainties, possible failures,
and sensory dropouts. Although the rules of the MBZIRC competition allowed the use of
WiFi communication, GNSS (Global Navigation Satellite System), and the even more pre-
cise DGPS (Differential Global Positioning System), the availability of these systems was
not guaranteed. For example, GNSS information was available only intermittently, due to
interference with other transmitters located at the competition site and due to occlusion
of the satellites by the surrounding buildings. In addition, the Wi-Fi infrastructure that
was provided was very unreliable.

The low reliability of GNSS and communication motivated us to design and theoreti-
cally and experimentally evaluate a Failure recovery and Synchronization jobs Manager

http://mrs.felk.cvut.cz/jfr2018treasurehunt
http://mrs.felk.cvut.cz/jfr2018treasurehunt
https://youtu.be/JYXeUrkN_cU
https://youtu.be/JYXeUrkN_cU
https://youtu.be/e1JEMmaZmDU
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(FSM), which leverages the combination of different modes of the system based on the
availability of Wi-Fi, GNSS, and DGPS (see Appendix K - paper [11] - for details). The FSM
was used to integrate all the mission sub-tasks, to decrease the vulnerability to individual
sub-task failures in real-world conditions, and for coordinating all MAVs sharing the same
workspace. In addition to the FSM, a sensor fusion mechanism was proposed for combin-
ing information from various onboard sensors (onboard IMU, GPS, DGPS, rangefinder,
camera), which must be considered as potentially unreliable at any time.

Malfunctions of MAV subsystems, such as camera dropouts, incorrect rangefinder mea-
surements, gripper failure or gripper feedback failure, and also imprecise object gripping,
can be expected in demanding outdoor conditions. All these eventualities need to be
considered by the system to enable undisturbed operation of the remaining robots in the
event of an MAV failure, limited operation of an MAV with a faulty subsystem, or an
unsuccessful or interrupted grasping task. From this point of view, the proposed FSM
concept can be considered as a hierarchical state machine with included synchronization
and failure recovery abilities, which can be effectively re-used in any complex multi-MAV
task involving environment interaction. It is vital that the MAV may continue with the
task despite lacking some sensory data (e.g., precisely measured height above the ground)
because the competition rules did not allow any human intervention or debugging dur-
ing the trials. Reliable deployment without the possibility of mission interruption due
to a malfunction of a subsystem is also required in most real-world applications of fully
autonomous aerial systems. In this way, the MBZIRC competition contributed to robotic
state-of-the-art, as had been intended by its organizers. The theoretical results and the
FSM methodology introduced in [11] turned out to be one of our biggest contributions in
relation to the MBZIRC competition. The FSM technique has been transferred into several
other multi-robot projects, such as the cooperative scanning of historical buildings, where
safeness and system reliability are even more critical factors.

In the MBZIRC competition, the system that we have presented in [11] enabled to solve
the delivery task composed of acquisition, transport, and drop-off in its full complexity,
including searching for objects with unknown positions, grasping moving objects, and
cooperation among multiple MAVs working in concert. The system exhibited the best per-
formance among all participants in MBZIRC 2017, and our team won the third challenge
of the competition (see video https://youtu.be/-ix6nzxw2wE and Fig. 23). Our solution
achieved the best reliability, and we obtained the highest score in all four trials within the
competition.

These results are especially valuable since there were strong wind gusts in the location
between the coast and the desert. The variable external force caused by the changing wind
significantly influences the precision and the stability of the MAV controllers, particularly
in the final phase of object grasping, where it is combined with the ground effect. In addi-
tion, the light conditions (mainly the strong and variable sunshine) make the vision task
significantly more complicated than in a laboratory environment. For a summary of our
achievements in the MBZIRC competition see a video https://youtu.be/ogmQSjkqqp0,
including some fascinating experiments carried out by the MAV team in dunes near Abu
Dhabi, the fastest landing in the entire competition, and examples of objects manipulation
in the competition.

In addition, the object grasping and delivery tasks, the overall system designed for
the third MBZIRC 2017 competition has been successfully deployed in numerous multi-
MAV applications, including detection of sources of radiation and EMF fields [36] (see
videos https://youtu.be/ovp_AByx4z4, https://youtu.be/ju3YbCtXpEw and Fig. 24,25),
inspection and documentation of historical sites [9] (see section 5.1), cooperative trans-
port of large objects (see videos https://youtu.be/FQH769AnYbQ, https://youtu.be/

Pdg3j791I9c and Fig. 26).

https://youtu.be/-ix6nzxw2wE
https://youtu.be/ogmQSjkqqp0
https://youtu.be/ovp_AByx4z4
https://youtu.be/ju3YbCtXpEw
https://youtu.be/FQH769AnYbQ
https://youtu.be/Pdg3j791I9c
https://youtu.be/Pdg3j791I9c
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Figure 24: An example of an autonomous source of radiation detection and radiation map-
ping by a composed radiation sensor consisting of multiple simulated Timepix
sensors carried by MAVs. The pictures on the left side show the Timepix sensor
and a snapshot from Gazebo simulator, where we have implemented a model
of the Timepix sensor and sources of radiation to be able to verify the proposed
principles with large teams of robots. Source: [36].

Figure 25: Snapshots from experiments with a formation of MAVs carrying directive (left)
and rotating omnidirectional (middle) onboard antennas. The picture on the
right side demonstrates the influence of the localization error on the shape and
position of the formation. Source: [36].

The system has been utilized in reconnaissance and surveillance missions [37, 38, 39, 40]
(see videos https://youtu.be/5MPSAReNzJU, https://youtu.be/fwG2cvAhf3c, https://
youtu.be/QWzcXShvYIs, https://youtu.be/3PhRBCx7fQg, and https://youtu.be/gagYFLpGVC4),
to verify fast obstacle avoidance of multiple MAVs [41] (see video https://youtu.be/

cG6V5Dw0kBQ), etc.
The scientific results obtained during our preparations for the MBZIRC competition

have been published in 5 articles in well-recognized journals with impact factor [11], [10],
[42], [43], and [37]. These publications provide evidence that innovations beyond the
robotic state-of-the-art were achieved within the framework of the competition, in accor-
dance with organisers’ intentions.

https://youtu.be/5MPSAReNzJU
https://youtu.be/fwG2cvAhf3c
https://youtu.be/QWzcXShvYIs
https://youtu.be/QWzcXShvYIs
https://youtu.be/3PhRBCx7fQg
https://youtu.be/gagYFLpGVC4
https://youtu.be/cG6V5Dw0kBQ
https://youtu.be/cG6V5Dw0kBQ
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Figure 26: Snapshots from an outdoor experiment, in which a large object is transported
by a pair of MAVs through a narrow passage (left) and through a field with
cylindrical obstacles (right).



6
C O N C L U S I O N

This document consists of a compilation of the research achievements of the applicant
and his group in the areas of motion planning, localization, control, coordination, and
stabilization of compact MAV teams in GNSS-denied environments. In all of the methods
presented here, onboard mutual localization of flying robots was used to achieve reliable
and safe group stabilization in robot workspaces that are not equipped with an external
positioning system. Mutual localization can be considered as a glue connecting all the
formation flying and swarming algorithms that are presented here. However, the research
on the localization system itself is also a non-negligible contribution to the robotic commu-
nity. The scientific achievements include theoretical contributions on designing a general
methodology for stabilization of compact aerial formations and swarms, accompanied
by studies of convergence into a required equilibrium, which have enabled us to specify
the requirements for onboard sensors and actuators. Most of the theoretical foundations
have been experimentally verified in demanding real-world conditions, leading to realis-
tic assumptions and requirements for the systems. An important aspect of this work is
the transfer from basic research achievements into applications, such as cooperative docu-
mentation of historical buildings, surveillance, reconnaissance, odour source localization,
search and rescue, inspection, object transport, precise agriculture, and information gath-
ering. Our endeavour has been also focused on the deployment of MAVs in areas with
high obstacle density, e.g. research of swarming in a forest, which is one of our long-term
motivations. In these workspaces, the main capabilities of small MAVs, i.e better manoeu-
vrability then F-UAVs in a cluttered workspace, the possibility to operate in low speed,
and the ability to hover, are fully exploited.
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Abstract
An approach for coordination and control of 3D heterogeneous formations of unmanned aerial and ground vehicles under
hawk-eye-like relative localization is presented in this paper. The core of the method lies in the use of visual top-view
feedback from flying robots for the stabilization of the entire group in a leader–follower formation. We formulate a novel
model predictive control-based methodology for guiding the formation. The method is employed to solve the trajectory
planning and control of a virtual leader into a desired target region. In addition, the method is used for keeping the
following vehicles in the desired shape of the group. The approach is designed to ensure direct visibility between aerial
and ground vehicles, which is crucial for the formation stabilization using the hawk-eye-like approach. The presented
system is verified in numerous experiments inspired by search-and-rescue applications, where the formation acts as a
searching phalanx. In addition, stability and convergence analyses are provided to explicitly determine the limitations of
the method in real-world applications.

Keywords
Formation control, model predictive control, unmanned aerial vehicles, unmanned ground vehicles, trajectory planning,
obstacle avoidance, receding horizon control

1. Introduction
Precise relative localization within large teams of
unmanned vehicles is required in real-world search-
and-rescue (SAR) missions, where a multi-robot system
has to cooperatively explore large areas in a short time. In
these tasks, robots may not rely on a pre-installed global
localization infrastructure, which is usually not available,
or is damaged, in sites under SAR exploration. Systems
available worldwide (like GPS) lack the required precision
for compact formations of small robots, and lose reliability
in urban and indoor environments. A common solution
is to use systems of relative localization carried onboard
autonomous vehicles. This approach brings additional
movement constraints to the robotic team, which have to be
integrated into the formation control and stabilization.

In this paper, we present a formation-driving approach
adapted for onboard visual relative localization of het-
erogeneous teams of unmanned helicopters (quadrotors)
and ground robots. The localization is based on simple
lightweight bottom cameras mounted on unmanned micro
aerial vehicles (MAVs). Identification patterns for the local-
ization are placed on both the unmanned ground vehicles
(UGVs) and the MAVs. With this top-view approach, the

problem of loss of direct visibility can be tackled better.
Such a problem occurs if systems of visual relative local-
ization are employed for ground robots operating in a
workspace with scattered objects/obstacles, as is common
in SAR scenarios. The possibility of localizing robots from
the top view increases robustness and precision in deter-
mining the relative position. Additionally, the top view
brings another perspective for human operators supervis-
ing the mission. MAVs may also complement the team of
UGVs with their ability to visit/search places inaccessi-
ble to ground vehicles, as we demonstrated in Saska et al.
(2012b). For more opportunities and advantages to MAVs,
see the survey in Kumar and Michael (2012).

The proposed MAV–UGV stand-alone system provides a
lightweight, low-cost and efficient solution, which may act
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as an enabling technique for extensive utilization of sim-
ple micro-scale robots in demanding scenarios. This arti-
cle focuses on theoretical and implementation aspects of
the formation-driving mechanism suited for the real-world
deployment of autonomous robots relying on top-view rel-
ative localization (in this paper referred to as the hawk-eye
concept). Technical details on the visual relative localiza-
tion of team members from ‘flying cameras’ are omitted,
but they are available in Saska et al. (2012a). The main
contribution of the work presented here lies in the pro-
posed incorporation of the hawk-eye concept into formation
control and its shape stabilization. The idea of using the
hawk-eye relative localization of team members requires
new formation-driving and robot control approaches that
are presented in the rest of the paper.

The aim of our research effort is to enable the deploy-
ment of closely cooperating groups of MAVs outside labo-
ratories equipped with precise motion-capture systems (e.g.
the Vicon system) and, on the basis only of relative local-
ization, to achieve the same results obtained using these
systems nowadays (Turpin et al., 2011; Kushleyev et al.,
2012; Mellinger et al., 2012).

1.1. State-of-the-art methods and progress
beyond the current formation-driving
approaches

Formation-driving algorithms can be divided into three
main approaches: virtual structures (Beard et al., 2001;
Ren, 2008; Michael and Kumar, 2009; Ghommam et al.,
2010; Liu and Jia, 2012), behavioral techniques (Langer
et al., 1994; Lawton et al., 2003; Olfati-Saber, 2006), and
leader–follower methods (Desai et al., 2001; Fredslund and
Mataric, 2002; Das et al., 2003; Mastellone et al., 2008;
Sira-Ramiandrez and Castro-Linares, 2010; Yang et al.,
2010; Klančar et al., 2011; Min and Papanikolopoulos,
2012). For further references on distributed robotic control
see Bullo et al. (2009). In our work, we consider a modi-
fication of the leader–follower method, in which all robots
(MAVs and UGVs) of the formation follow a virtual leader.
Formation stabilization is achieved by sharing knowledge
of the virtual leader’s position within the formation.

Recently, research endeavor in the formation-driving
community has been aimed mainly at tasks of formation sta-
bilization (Hengster-Movrić et al., 2010; Dong, 2011; Liu
and Jia, 2012) and formation following a predefined path
(Xiao et al., 2009; Ghommam et al., 2010; Sira-Ramiandrez
and Castro-Linares, 2010; Do and Lau, 2011). For example,
in Dong (2011), the task of formation stabilization and con-
vergence to a desired pattern is tackled for formations with
communication delays. In Hengster-Movrić et al. (2010),
a multi-agent control system using an artificial potential
based on bell-shaped functions is proposed. In Liu and Jia
(2012), a distributed iterative learning scheme is employed
for solving formation control with a switching strategy in
the virtual structure and virtual leader–follower schemes.

The path-following problem is tackled by designing a
nonlinear formation control law in Ghommam et al. (2010).
The method based on the virtual structure approach uses
propagation of a virtual target along the path. In Do and
Lau (2011), path-following is investigated for groups of
robots with a limited sensing range. In Sira-Ramiandrez
and Castro-Linares (2010), according to the leader–follower
concept, the leader robot is forced to follow a given path,
while the followers track the leader’s path with a fixed
time delay. In Xiao et al. (2009), in addition to trajectory
tracking, the autonomous design of a desired geometric
formation pattern is discussed.

In addition to methods of formation driving for
UGVs, we should mention some approaches designed for
unmanned aerial vehicles (UAVs) (Saffarian and Fahimi,
2009; Burdakov et al., 2010; Abdessameud and Tayebi,
2011; Liu et al., 2011; No et al., 2011). In No et al. (2011),
the formation stabilization and desired-shape-keeping are
treated as a dynamic 3D tracking problem. The relative
geometry of multiple UAVs is kept via a cascade-type
guidance law under the leader–follower concept. A leader–
follower approach for stabilizing helicopter formations
using a nonlinear model predictive control (MPC) is pro-
posed in Saffarian and Fahimi (2009). This method is opti-
mized for an online embedded solution enabling a response
to the fast dynamic of UAVs in Liu et al. (2011). In Bur-
dakov et al. (2010), UAVs in a static formation form relay
chains for communication in surveillance applications. The
formation stabilization of the vertical take-off and land-
ing of UAVs in the presence of communication delays is
addressed in Abdessameud and Tayebi (2011). Finally, let
us mention Tanner and Christodoulakis (2007), who con-
sider a heterogeneous team of UAVs and UGVs. The aim
of the approach is to stabilize a formation of UAVs above
UGVs in circular orbits using interconnections of UAV and
UGV groups via ground-to-air-only communication.

In most of the approaches cited above, it is supposed that
the desired trajectory followed by the formation is designed
by a human operator or by a standard path-planning method
modified for the formation requirements. The method pre-
sented in this paper goes beyond these works. It does not
rely on following a given trajectory, as in most of the
state-of-the-art methods. The global trajectory planning is
directly integrated into the formation control mechanism.
This is necessary for finding a feasible solution for the
hawk-eye concept, where the constraints of direct visibil-
ity have to be satisfied. Direct incorporation of trajectory
planning and formation stabilization enables effective oper-
ation of the group in an environment with obstacles, while
the hawk-eye relative localization is ensured.

In the literature, direct inclusion of trajectory planning in
formation driving is rarely found. To the best of our knowl-
edge, we can mention only the leader–follower approach
based on potential fields presented in Garrido et al. (2011)
as an appropriate example. This algorithm enables both for-
mation stabilization and navigation of the formation into
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a desired goal. Although the method provides interesting
results and seems to be computationally inexpensive, it has
been developed for ground holonomic robots, and it suffers
from the usual problems of algorithms inspired by potential
fields. The authors state that their method behaved cor-
rectly in spite of the suddenly changed direction of move-
ment around the sequence of points given by the planning
method. However, it would be difficult to explicitly involve
follower mobility constraints for a formation of nonholo-
nomic robots. Further research would also be necessary
to incorporate the requirements of 3D formations, and in
particular the constraints given by the relative visual local-
ization as proposed in the method presented here. There-
fore, this method cannot be used for direct comparison with
results achieved in this paper.

Finally, we should mention the paper by Dorigo et al.
(2013), which is similar to our work in terms of deploy-
ment of eye-bots on the ceiling with the aim of provid-
ing a bird’s-eye view. In Dorigo et al. (2013), the eye-bots
are not moving together with ground robots if the top-
view localization is in operation; they are fixed with the
ceiling. Therefore, the motion coordination and formation
driving of heterogeneous teams do not need to be solved
there.

1.2. State-of-the-art methods and progress
beyond the current MPC approaches for
formation control

In our method, we rely on MPC. This allows us to involve
constraints imposed by vehicles (mobility constraints), by
obstacles (environment constraints), and by inter-vehicle
relations into the formation driving. The inter-vehicle rela-
tions are specified mainly by the shape of the formation
feasible for the hawk-eye-like relative localization.

The MPC approach is often used for stabilization of non-
linear systems with control constraints. In Saffarian and
Fahimi (2009) and Liu et al. (2011), it was shown that the
computational power of microprocessors available onboard
unmanned helicopters enables the employment of MPC
techniques also for the formation control of these highly
dynamic systems, as is proposed here.

For descriptions and for a general survey of MPC meth-
ods, see Barambones and Etxebarria (2000), Mayne et al.
(2000) and Alamir (2006) and the references therein. Early
works applying MPC to formation control are presented in
Dunbar and Murray (2006) and Franco et al. (2008). These
papers utilized MPC for formation forming in a workspace
without obstacles. Recently, researchers have taken advan-
tage of MPC to respond to changes in a dynamic environ-
ment, again, mainly in tasks including path tracking and
formation stabilization (Saffarian and Fahimi, 2009; Shin
and Kim, 2009; Chen et al., 2010; Defoort, 2010; Zhang
et al., 2010; Liu et al., 2011; Chao et al., 2012). In Chao
et al. (2012), the authors introduce a new cost penalty

into MPC optimization to guarantee obstacle avoidance. A
priority strategy is employed to ensure inter-vehicle colli-
sion avoidance. In Defoort (2010), a decentralized receding
horizon motion planner is developed to coordinate robots
using neighbor-independent planning. This is followed by
adjusting the plans with inter-team collisions using locally
exchanged information. The trajectory tracking mechanism
developed in Zhang et al. (2010) is based on integrating a
differential evolution algorithm into the MPC concept. In
Shin and Kim (2009), a heuristic approach is developed
to reduce the required computational time of MPC itera-
tions and to enable path tracking with an obstacle-avoidance
function. Formation stabilization on a pre-computed path
based on the MPC leader–follower concept is presented in
Chen et al. (2010).

In our approach, we go beyond these works in several
aspects. We apply the MPC technique to the stabilization
of followers in the desired positions behind the leader, as
well as to the trajectory planning into a desired goal area.
We propose a new MPC concept combining the trajec-
tory planning into the desired goal region and the imme-
diate control of the formation in a single optimization pro-
cess. The method can continuously respond to changes in
the vicinity, while keeping the cohesion of the immedi-
ate control inputs with the directions of movement of the
MAV–UGV formation in the future. Furthermore, we pro-
pose a novel obstacle-avoidance function for multi-vehicle
trajectory planning. The avoidance function respects the
restrictions of the proposed hawk-eye concept.

The paper is structured as follows. The problem state-
ment is summarized in Section 2. In Section 3, neces-
sary preliminaries are given. The novel methodology is
described in Section 4, focusing on the utilization of a
heterogeneous formation of UGVs and MAVs under the
hawk-eye concept. A proof of the convergence of the for-
mation into the desired target region, together with a dis-
cussion on the assumptions necessary to ensure forma-
tion stability under the hawk-eye relative localization, is
shown in Section 5. Numerical and hardware experiments
are presented in Section 6, which is followed by our con-
clusions in Section 7. A discussion on a controller for
the Ar.Drone, which was designed to enable integration of
the drone into the proposed MPC formation stabilization
scheme, can be found in the Appendix. For clarification pur-
poses, lists of variables used in this paper are summarized in
Tables 1 and 2.

The basic ideas of the planning for heterogeneous MAV–
UGV formations under hawk-eye relative localization were
presented in a conference paper (Saska et al., 2012c),
which is extended here. In comparison with Saska et al.
(2012c), we provide here a more comprehensive description
of the method, accompanied by the proof of convergence.
An additional extension is the real-world experiment and
numerical analysis verifying the robustness of the proposed
methodology.
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Table 1. List of variables and notation used in the preliminary part of the paper.

nr ∈ N Number of followers
n0 ∈ N Number of static and dynamic obstacles
L Variables related to the virtual leader
i Variables related to the ith follower
j Variables related to the jth entity, a follower or the virtual leader
C Configuration space of robots
Cobs Subspace of configurations of robots colliding with an obstacle
Cfree Subspace of feasible configurations
ol The lth obstacle
SF Desired target region
ϕj( t) ∈ R Heading of the jth entity at time t
ψj( t) ∈ R4 Configuration (position and heading) of the jth entity at time t
p̄j( t) ∈ R3 Position of the jth entity at time t
( xj( t) , yj( t) , zj( t) ) Position in Cartesian coordinates at time t
( pi, qi, hi) Position of the ith follower within the formation in curvilinear coordinates
vj( t) ∈ R Forward velocity of the jth entity at time t
Kj( t) ∈ R Curvature of the jth entity at time t
wj( t) ∈ R Ascent velocity of the jth entity at time t
ūj( t) ∈ R3 Control inputs (velocity and heading)
#t( k) ∈ R Time difference between the kth and ( k + 1)th transition points

Table 2. List of variables used for describing the method.

( )max,j Index denoting the upper bound of the control inputs of the jth entity
( )min,j Index denoting the lower bound of the control inputs of the jth entity
rs ∈ R Radius of a spherical detection boundary
ra ∈ R Radius of a spherical avoidance boundary
TN First part of the control horizon with a constant time difference between transition points: it provides the local

control
TM Second part of the control horizon with a variable time difference between transition points: it provides the

global planning
N ∈ N Number of transition points on TN
M ∈ N Number of transition points on TM
n ∈ N Number of transition points (on TN ), which are applied in each receding step
#t( ·) ∈ R Variable time difference between transition points on the time interval TM
#t Constant sampling time between transition points on the time interval TN
T #L,M ∈ RM Set of varying values of time difference between neighboring transition points on the interval TM

$L,N ∈ R4N Set of states (transition points) on TN
$L,M ∈ R4M Set of states (transition points) on TM
UL,N ∈ R3N Set of control inputs applied between the transition points on interval TN
UL,M ∈ R3M Set of control inputs applied between the transition points on interval TM
%L ∈ R7N+8M Optimization vector used for trajectory planning of the virtual leader
( )◦ Denotes results of the optimization process
$d,i ∈ R3N Set of desired states derived from %◦

L for the ith follower
$i ∈ R3N Set of states (transition points) of the ith follower
Ui ∈ R2N Set of control inputs of the ith follower applied between the transition points
%i ∈ R5N Optimization vector used for trajectory tracking of the ith follower
{xL; yL} Coordinate system in the plane orthogonal to the trajectory of the virtual leader in its current position
CH Convex hull of points, in which the followers intersect the plane orthogonal to the trajectory of the virtual leader

in its actual position
DCH The convex hull CH dilated by the detection boundary radius rs
PDCH Projection of the DCH PDCH along the leader’s trajectory
RDCH Half of the maximal width of the DCH measured in the xL coordinate
D( ·) The perturbations given by the imprecise model and actuators between two MPC planning steps

2. Problem statement
In this paper, we consider the formation-driving problem in
scenarios motivated by SAR applications. We are interested

in scenarios where a team of robots has to reach a desired
target region or a sequence of target regions given by a
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supervising expert. During the movement between these
given areas, the robots have to keep a fixed-shape formation
satisfying the mission requirements. The robots can form a
searching phalanx (a line formation) to be able to search for
victims in large areas or they can form a compact fleet of
vehicles (a formation of a general shape) for transportation
purposes.

We assume a group of simple ground nonholonomic
robots without any onboard sensors for their localiza-
tion. In addition, we assume a group of unmanned MAVs
(quadrotors) equipped with a bottom camera and an image-
processing system (Saska et al., 2012a). The image-
processing system provides information on the relative
position between the camera and the center of an identifi-
cation pattern. The patterns are carried by all UGVs and
MAVs except the one flying at the highest altitude. We
assume that one of the robots (UGV or MAV) is equipped
with a global localization (e.g. the vision-based navigation
in Krajník et al., 2010). The precision and reliability of the
system in Krajník et al. (2010) enables a rough estimation
of the position of the formation in the map, but it is not
sufficient for the coordination of the robots in a compact
formation.

We assume that the required relative distances between
the robots are significantly bigger than the precision of the
visual relative localization. The precision of the employed
system (described in Saska et al., 2012a) is ∼ 1 cm. There-
fore the minimal allowed distance between the robots is 10
cm in the experiments. Between two UAVs, the spacing usu-
ally has to be enlarged, due to airflow effects that depend on
the utilized platform. Moreover, we assume that the shape
of the formation is designed in such a way that all robots,
except the MAV follower flying at the highest altitude, are
in the field of view of at least one of the bottom cameras
mounted on the MAVs.

In the assumed scenario, the map of the environment is
partly known by all robots. The group is capable of detect-
ing unknown and dynamic obstacles using their onboard
sensors. These updates of the map are shared by the robots
via WiFi communication. The position of the target region
or a sequence of target regions and the desired shape of the
formation are also known.

In this paper, we solve the task in which the 3D forma-
tions of MAVs and UGVs have to reach a target region or a
sequence of target regions, while the requirements given by
hawk-eye relative localization are satisfied. This means that
direct visibility between the vehicles has to be maintained
during deployment of the formation.

3. Preliminaries
Let ψj( t) = {xj( t) , yj( t) , zj( t) ,ϕj( t) } ∈ C, with j ∈
{L, 1, . . . , nr}, denote configurations of a virtual leader L
and nr followers at time t. The virtual leader is positioned
in front of the formation and on the axis of the formation,
which is important for the symmetric obstacle-avoidance

(a) (b)

Fig. 1. (a) The desired shape of the formation described in curvi-
linear coordinates. (b) Coordination system of the quadrocopter.

function. C is the configuration space of the robots. The
Cartesian coordinates xj( t), yj( t), and zj( t) define the posi-
tions p̄j( t) of the robots, and ϕj( t) denotes their heading. All
MAVs and UGVs are denoted as followers in the approach
presented here. For the MAVs, the heading ϕj( t) directly
becomes the yaw (see Figure 1 for the coordinates sys-
tem of the MAVs). The roll and the pitch do not need
to be included directly in the kinematic model employed
in the MPC. They depend on the velocity and the turn-
ing curvature, as shown for a quadrotor helicopter in the
Appendix.

Let us assume that the environment of the robots con-
tains a finite number n0 of compact obstacles ol, l ∈
{1, . . . , n0}. The configuration space C can then be divided
into two segments: Cobs, representing the configurations of
the robots colliding with an obstacle, and Cfree, represent-
ing the subspace of the feasible configurations as Cfree =
C\Cobs.

Definition 3.1. (Target region.) Let us define a target
region SF as a convex compact region such that, for any
robot with position p̄j( ·) ∈ SF, the relation ψj( ·) ∈ Cfree is
satisfied.

The kinematics for any robot j in 3D is described by the
following simple nonholonomic kinematic model:

ẋj( t) = vj( t) cosϕj( t)
ẏj( t) = vj( t) sinϕj( t)
żj( t) = wj( t)
ϕ̇j( t) = Kj( t) vj( t)

(1)

Forward velocity vj( t), curvature Kj( t), and ascent
velocity wj( t) represent control inputs denoted as ūj( t) =
{vj( t) , Kj( t) , wj( t) }. For UGVs (in the presented results
for car-like robots), these control inputs can be directly
employed for steering them. (We assume that UGVs operate
on a flat surface and that zj( ·) = 0 and wj( ·) = 0 for each of
the UGVs.) In case of MAVs, vj( ·), Kj( ·), and wj( ·) values
are inputs for the controller shown in the Appendix.

Let us now define a time interval [t0, tend] containing a
finite sequence of elements of increasing time {t0, t1, . . . ,
tend−1, tend}, such that t0 < t1 < . . . < tend−1 < tend .
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The control inputs are held constant in each time interval
[tk , tk+1), where k ∈ {0, . . . , end − 1}. From this point we
may refer to tk by using its index k. By integrating the kine-
matic model over the interval [t0, tend], we can derive the
following model for transition points at which the control
inputs change:

xj( k + 1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xj( k) + 1
Kj(k+1)

[
sin
(
ϕj( k) +

Kj( k + 1) vj( k + 1)"t( k + 1)
)
−

sin
(
ϕj( k)

)]
, if Kj( k + 1) ̸= 0;

xj( k) +vj( k + 1) cos
(
ϕj( k)

)
"t( k + 1)

if Kj( k + 1) = 0

yj( k + 1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yj( k) − 1
Kj(k+1)

[
cos

(
ϕj( k) +

Kj( k + 1) vj( k + 1)"t( k + 1)
)
−

cos
(
ϕj( k)

)]
, if Kj( k + 1) ̸= 0;

yj( k) +vj( k + 1) sin
(
ϕj( k)

)
"t( k + 1) ,

if Kj( k + 1) = 0

zj( k + 1) = zj( k) +wj( k + 1)"t( k + 1)

ϕj( k + 1) = ϕj( k) +Kj( k + 1) vj( k + 1)"t( k + 1) (2)

where xj( k), yj( k), and zj( k) are Cartesian coordinates and
ϕj( k) is the heading angle at the transition point with index
k for any robot j ∈ {L, 1, . . . , nr}. The sampling time
"t( k+1) may not be uniform in the whole interval [t0, tend],
as shown below. The control inputs vj( k+1), Kj( k+1), and
wj( k + 1) are constant between the transition points with
indexes k and k + 1. For each follower i ∈ {1, . . . , nr}, the
control inputs are limited by vehicle kinematic constraints
(i.e. implied by the steering limitations and the drive sys-
tem) as vmin,i ≤ vi( k) ≤ vmax,i, |Ki( k) | ≤ Kmax,i and for the
MAVs also wmin,i ≤ wi( k) ≤ wmax,i. These values may differ
for each of the followers.

Finally, we need to define a spherical detection bound-
ary with radius rs and a spherical avoidance boundary with
radius ra, where rs > ra. Single robots should not respond
to obstacles detected outside the region with radius rs. On
the contrary, a distance between the robots and obstacles of
less than ra is considered inadmissible.

3.1. Formation-driving concept

The shape of the entire formation is maintained by a leader–
follower technique based on the method presented in Bar-
foot and Clark (2004). The approach in Barfoot and Clark
(2004) was designed for formations of UGVs working in
a planar environment. Later, it was employed in an air-
port snow-shoveling project by formations of autonomous
ploughs in Hess et al. (2009) and Saska et al. (2011).
Here, we extend the notation from Barfoot and Clark (2004)
to 3D.

In the proposed method, both types of followers, MAVs
and UGVs, follow the same trajectory of the virtual leader
in distances defined in the p, q, h curvilinear coordinate
system, as visualized in Figure 1(a). The position of each
follower i is uniquely determined: 1) by states ψL( tpi) in the
traveled distance pi from the actual position of the virtual

Fig. 2. Scheme of the complete planning and control system.

leader along the leader’s trajectory; 2) by the offset distance
qi from the trajectory in the perpendicular direction; and 3)
by the elevation hi above the trajectory. Note that tpi denotes
the time when the virtual leader was at the traveled distance
pi behind the actual position.

To convert the state of the followers in curvilinear coor-
dinates to a state in Cartesian coordinates, the following
equations can be applied:

xi( t) = xL( tpi) −qi sin(ϕL( tpi) )

yi( t) = yL( tpi) +qi cos(ϕL( tpi) )

zi( t) = zL( tpi) +hi

ϕi( t) = ϕL( tpi )

(3)

where ψL( tpi ) =
{
xL( tpi ) , yL( tpi ) , zL( tpi) ,ϕL( tpi )

}
is the

state of the virtual leader at time tpi .
The virtual leader has no constraints given by its mechan-

ical capabilities. It is a virtual point, but it must respect the
constraints of the guided formation. For the virtual leader,
the admissible control set can be determined by applying
the leader–follower approach as

Kmax,L = min
i=1,...,nr

(
Kmax,i

1 + qiKmax,i

)

Kmin,L = max
i=1,...,nr

( −Kmax,i

1 − qiKmax,i

)

vmax,L( t) = min
i=1,...,nr

(
vmax,i

1 + qiKL( t)

)

vmin,L( t) = max
i=1,...,nr

(
vmin,i

1 + qiKL( t)

)

wmax,L = min
i=1,...,nr

(
wmax,i

)

wmin,L = max
i=1,...,nr

(
wmin,i

)

(4)

These restrictions must be applied to satisfy different val-
ues for the curvature and the speed of the robots in different
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positions within the formation. Intuitively, the robot follow-
ing the inner track during turning goes more slowly but with
a bigger curvature than the robot further from the center of
the turning. The equations arise from the fact that the fol-
lowers turn around the same instantaneous center of curva-
ture (ICC) and at the same angular speed. These restrictions
ensure that the formation remains compact while turning.

The common ICC implies that robots with different posi-
tions within the formation have to turn with different curva-
tures. Therefore, the limits on the curvature of the leader’s
trajectory must ensure that all of the robots are capable of
following a curvature that depends on their position within
the formation. The constant angular speed of robots turning
with a different curvature forces the followers to move at
different velocities to be able to pass the curve at the same
time. Again, the limits on the leader’s velocity must ensure
that all of the robots are capable of going at the velocity that
is determined by their position within the formation.

4. Integrated trajectory planning and
formation stabilization under the
hawk-eye concept

4.1. Method overview

The proposed formation-driving system is divided into two
blocks: see the scheme depicted in Figure 2. In the Vir-
tual Leader part, the Trajectory Planning block provides
the complete trajectory into the target region for the vir-
tual leader. The result is feasible for the entire formation
and respects the requirements of the hawk-eye localization
via the model of the formation. For this trajectory plan-
ning and control task, we have developed a novel method
based on the MPC. The standard MPC solves a finite
horizon optimization control problem for the system rep-
resented by the kinematic model. The MPC plan starts
from the current states over the time interval ⟨t0, t0 + N!t⟩.
This interval is known as the control horizon. The sam-
pling time !t between the N transition points is constant
in this interval. We denote this horizon as TN . We have
extended this standard scheme with an additional time inter-
val ⟨t0 + N!t, t0+( N + M)!t⟩. This planning horizon is
used for planning the trajectory of the leader into the desired
target region. The time difference between the M transition
points is variable in this time interval, which is denoted
by TM . This planning algorithm respects the constraints
given by the desired shape of the formation, by the hawk-
eye localization, and by the kinematics of the followers. In
our approach, the entire horizon is divided into two seg-
ments: 1) the control horizon with a constant sampling
rate used to obtain a refined immediate control, and 2) the
planning horizon, where the time differences between the
transition points are also variables that take part in the plan-
ning problem. Details on the construction of the horizons,
with emphasis on the incorporation of the 3D formation, are
presented in Section 4.3.

The resulting trajectory obtained in the Trajectory Plan-
ning block is described by a sequence of configurations
of the virtual leader ψL( k), k ∈ {1, . . . , N + M}, and by
constant control inputs applied in the intervals between the
transition points. According to the MPC concept, only a
portion of the computed control actions is applied. This
utilized interval, ⟨t0, t0 + n!t⟩, is known as the receding
step. In the next planning step, this process is repeated on
the interval ⟨t0 + n!t, t0 + n!t + N!t⟩ as the finite hori-
zon moves by the time steps n!t, yielding a state feed-
back control scheme strategy. The output trajectory is used
as an input for the Formation Driving module in the pro-
posed system. In this module, the plan is transformed to the
desired configurations of the followers (using equation (3)).
Additionally, the plan is adapted for re-initialization of the
optimization in the next planning step.

The core of the second main block is the Trajectory Fol-
lowing module. This part enables the design of appropriate
collision-free control inputs for each of the MAV and UGV
followers. It is responsible for avoiding impending colli-
sions with obstacles or with other members of the team, and
it corrects deviations from the desired trajectory provided
by the virtual leader. Again this is ensured by the MPC con-
cept using the actual data (states of neighbors and the map)
which is shared within the team. Details on the control of
followers can be found in Section 4.4.

4.2. Convex hull representing the formation in
the trajectory planning

An important issue, which arises with the trajectory plan-
ning for heterogeneous 3D formations using the hawk-eye
relative localization, is the need to design a valuable rep-
resentation of the entire group. The aim of the represen-
tation is to incorporate the requirement of direct visibility
between the robots into the concept of the trajectory plan-
ning with obstacle avoidance and formation stabilization
functionalities.

We propose modeling the entire shape of the 3D for-
mation defined in curvilinear coordinates with a convex
hull of points representing the positions of the followers.
The points are obtained by projecting the followers’ posi-
tions into the plane, which is orthogonal to the trajectory
of the virtual leader in its actual position (see Figure 3). To
describe how to acquire these points, let us define a coordi-
nate system {xL; yL} in this plane, as sketched in Figure 4.
The projection of the ith follower’s position can then be
obtained as xL

i := qi and yL
i := hi. The convex hull of

the set of points {xL
i ; yL

i }, i ∈ {1, . . . , nr}, is an appropriate
representation of the 3D formation in the proposed leader–
follower constellation for two reasons: 1) Each follower i
intersects the plane orthogonal to the trajectory of the vir-
tual leader at the point {xL

i ; yL
i } in the future. 2) The convex

hull of this set of points denotes the borders of the area that
should remain obstacle-free. It ensures the direct visibility
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Fig. 3. Two examples of convex hulls of asymmetric formations.
The formation on the right side is utilized in the experiment in
Figure 6. The shaded contours represent projections of MAVs and
UGVs into the plane of the virtual leader.

between MAVs and UGVs that is crucial for the presented
formation-driving using the hawk-eye localization.

Moreover, for the obstacle-avoidance function presented
in Section 4.3, the convex hull needs to be dilated by the
detection boundary radius rs. This ensures that obstacles are
kept at a sufficient distance from the followers. An example
of the dilated convex hull (DCH) of a formation is depicted
in Figure 4.

4.3. Trajectory planning and control for the
virtual leader

As mentioned above, we propose solving, in a single opti-
mization step, two problems that are usually separated:
long-term trajectory planning feasible for the formation,
and computation of the immediate control sequences. To
define the trajectory planning problem over the two time
intervals (the control horizon and the planning horizon) in
a compact form, we need to gather states ψL( k), where
k ∈ {1, . . . , N}, and ψL( k) , where k ∈ {N +1, . . . , N +M},
into vectors "L,N ∈ R4N and "L,M ∈ R4M . Similarly, the
control inputs ūL( k), where k ∈ {1, . . . , N}, and ūL( k),
where k ∈ {N +1, . . . , N +M}, can be gathered into vectors
UL,N ∈ R3N and UL,M ∈ R3M , one for each of the horizons.
Finally, the values #t( k), where k ∈ {N + 1, . . . , N + M},
which become variables in the planning horizon, can be
gathered into a vector T #

L,M ∈ R. All variables that describe
the complete trajectory from the actual position of the vir-
tual leader until the target region can be collected into the
optimization vector $L = ["L,N , UL,N ,"L,M , UL,M , T #

L,M ] ∈
R7N+8M .

The trajectory planning and the dynamic obstacle avoid-
ance problem can then be transformed to minimization of
the cost function JL( ·). The function is subject to sets of
equality constraints h( ·) and inequality constraints gTN ( ·),
gTM ( ·), gSF ( ·):

min JL($L) , s.t. h( k) = 0, ∀k ∈ {0, . . . , N + M − 1}
gTN ( k) ≤ 0, ∀k ∈ {1, . . . , N}
gTM ( k) ≤ 0, ∀k ∈ {N + 1, . . . , N + M}

gSF (ψL( N + M) ) ≤ 0

(5)

Fig. 4. A color map of the function that ensures collision-free tra-
jectories for a formation operating under the hawk-eye concept.
The color map was composed for the second formation introduced
in Figure 3.

The cost function JL($L) is given by

JL($L) = JL,time($L) +αJL,obstacles($L)

=
(

N#t +
N+M∑

k=N+1

#t( k)

)

+ α

no∑

l=1

(
min

{
0,

dDCH ($L, ol)
dDCH ($L, ol) −RDCH

})2

(6)

The first part, JL,time($L), minimizes the total time to
the target region. The second term JL,obstacles($L) is an
avoidance function motivated by Stipanović et al. (2007),
where a similar approach was used for cooperative colli-
sion avoidance in multi-agent systems. In our case, the term
JL,obstacles($L) contributes to the final cost when an obstacle
is inside the DCH representing the formation. Its value (the
penalization) increases as the obstacle approaches the cen-
ter of the convex hull. The aim of this term is to penalize
solutions of the virtual leader trajectory planning in which
an obstacle is inside the DCH projected along the trajectory
that corresponds to the solution. This is to prevent colli-
sions or breakages of direct visibility between robots by
the obstacle. A breakage of direct visibility could interrupt
the relative localization necessary for steering the follow-
ers. Let us denote the projection of the DCH along the
leader’s trajectory $L as PDCH. An example of PDCH is
depicted in Figure 5. The decrease of the penalization value
with distance from the center of PDCH and its zero value at
the borders of PDCH are required properties necessary for
optimization convergence into a feasible solution.

These properties are obtained as follows. The constant
RDCH is equal to half of the maximal width of DCH mea-
sured in the xL coordinate. The meaning of RDCH is also
denoted in Figures 4 and 5. The function dDCH ($L, ol)
provides the shortest distance in the direction of the xL

coordinate from the furthermost part of obstacle ol to the
borders of PDCH. See the obstacle o1 and the denoted value
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(a) Contours of the PDCH with
denoted obstacles.

(b) 3D visualization of the PDCH
(the obstacles are hidden).

Fig. 5. An example of the DCH projected along a trajectory.
This trajectory would be infeasible for the formation under the
approach presented here, since two obstacles appear inside the
PDCH. This is penalized by the dDCH ( ·, o1) and dDCH ( ·, o2) val-
ues in the cost function. The hull overlaps due to the sharp curve
of the trajectory and therefore obstacle o2 occurs in the hull twice.
As marked, only the occurrence of the obstacle that is furthermost
from the border of the hull contributes to the penalization function
dDCH ( ·, o2).

dDCH ( ·, o1) for illustration in Figure 5. The function value is
positive if the obstacle is in PDCH and negative if the obsta-
cle is completely outside the projected hull. If an obstacle
occurs in several projections of DCH along !L (e.g. in a
sharp curve of the trajectory), it is counted only once in
equation (6). Always, only the largest value of the set of the
shortest distances from the obstacle to the border of the rele-
vant projection of DCH is used (see obstacle o2 in Figure 5).
The direction of the gradient of an avoidance function so
defined (see the values of this function depending on the
position of an obstacle in Figure 4) is to the side of DCH
in the xL coordinate. This feature is important for the con-
vergence of the optimization process into an obstacle-free
solution. If the resulting trajectory changes its shape during
the optimization with the aim of having the obstacle outside
DCH, the value of JL,obstacles(!L) decreases smoothly. This
is important for the convergence of the optimization into a
feasible solution.

The influence of both parts of the cost function is
adjusted by the constant α. The value of α needs to be
set empirically depending on the particular application. A
value within the range 100–1000 is recommended if safe-
ness of the system is preferred. Values in the range of
0.01–1 should be used in applications requiring short and
fast solutions. A compromise value α = 1 is used for the
experimental results presented in this paper.

The equality constraints h( k), ∀k ∈ {0, . . . , N + M − 1},
represent the kinematic model in equation (2) with the
initial conditions given by the actual state of the leader.
This ensures that the obtained trajectory stays feasible with
respect to the kinematics of the utilized robots. The sets of
inequality constraints gTN ( k), ∀k ∈ {1, . . . , N}, for the con-
trol horizon, and gTM ( k), ∀k ∈ {N + 1, . . . , N + M}, for
the planning horizon, characterize the limits on the control
inputs (equation (4)) of the virtual leader. Furthermore, the

constraints gTM ( k) ensure that inequalities #t( k) ≥ 0 are
satisfied for ∀k ∈ {N + 1, . . . , N + M}.

Finally, gSF (ψL( N + M) ) is a convergence constraint
guaranteeing that the found trajectory enters the target
region SF . For simplification, it is supposed that the target
region is a sphere with radius rSF and center CSF . Then, the
convergence constraint is given by

gSF (ψL( N + M) ) := ∥p̄L( N + M) −CSF ∥ − rSF (7)

Let us denote the solution of the optimization problem
in equation (5) by the symbol ( ·)◦. As mentioned above, the
vector!◦

L represents a continuous trajectory with the begin-
ning at time t1 and the end at time t2. The trajectory reaches
the desired target region and it is feasible for the formation
using the hawk-eye relative localization. Let us denote such
a trajectory as !L( t1; t2)◦, if necessary for further analysis.

Once we have obtained a feasible trajectory as a result
of the optimization process, we can write the following
remark.

Remark 4.1. Each trajectory !L( t1; t3)◦ can be split into
two parts !L( t1; t2)◦ and !L( t2; t3)◦, where t1 < t2 < t3.

This is possible due to the fact that the trajectory consists
of a sequence of transition points and a sequence of constant
control inputs applied between the points. The splitting can
be realized simply by placing a new transition point at time
t2 on the trajectory !L( t1; t3)◦. This transition point is part
of both the trajectories arising, which satisfy the constraints
in equation (5), except the gSF ( ·) convergence constraint,
which is not satisfied for the !L( t1; t2)◦ part.

Remark 4.1 is important for the convergence analysis of
the formation movement into the desired target region pre-
sented in Section 5. During the movement, always only a
part of the trajectory is followed by the formation in the
MPC concept. It is important to show that this splitting is
feasible and that the group of robots will approach the tar-
get in a sequence of replanning steps of the optimization
problem considered in equation (5).

4.4. Trajectory tracking for followers

In accordance with the leader–follower concept, the trajec-
tory of the virtual leader, which is computed as the result
of the previous section, is used as an input for trajectory
tracking for the followers. First of all, the solution needs to
be transformed for each of the following vehicles using the
transformation in equation (3). This transformation takes
place in the Formation Driving block in Figure 6. The
obtained sequences ψd,i( k) = ( p̄d,i( k) ,ϕd,i( k) ), where
k ∈ {1, . . . , N}, are then utilized as the desired states for the
trajectory tracking algorithm with the obstacle-avoidance
function for each of the followers (MAVs and UGVs). This
approach (realized in the Path Following block in Figure 2)
enables responses to events that occur in the environment
behind the actual position of the leader, and to incorrect
movement of a neighbor in the formation.
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Similarly to the leader planning in Section 4.3, the states
ψi( k) and the control vectors ūi( k), where k ∈ {1, . . . , N},
describing the trajectory of the ith follower, can be gathered
as vectors"i ∈ R4N and Ui ∈ R3N . The optimization vector
#i = ["i, Ui] ∈ R7N is then used to capture the dynamic
behavior of the discrete trajectory tracking with a collision
avoidance ability as a static optimization process under the
receding horizon scheme.

The discrete-time trajectory tracking for each follower
is then transformed to an optimization problem with the
cost function Ji( ·). The function is subject to a number of
equality constraints hi( ·) and inequality constraints gi( ·):

min Ji(#i), i ∈ {1, . . . , nr},
s.t. hi( k) = 0, ∀k ∈ {0, . . . , N − 1}

gi( k) ≤ 0, ∀k ∈ {1, . . . , N}
(8)

The proposed cost function Ji( ·) consists of three compo-
nents with their influence adjusted by constants αi and βi

(set as αi = 1 and βi = 1 in the experimental part of this
paper):

Ji(#i) =
N∑

k=1

∥∥(p̄d,i (k) − p̄i (k)
)∥∥2

+ αi

(
min

{
0,

dist(#i) −rs

dist(#i) −ra

})2

+ βi

∑

j∈n̄n

(

min

{

0,
di,j(#i,#◦

j ) −rs

di,j(#i,#◦
j ) −ra

})2

(9)

The first component penalizes deviations of the positions
p̄i( k) from the desired positions p̄d,i( k), ∀k ∈ {1, . . . , N}.
As mentioned above, the desired positions are derived from
the result of the virtual leader planning using the formation-
driving approach presented in Section 3.1. The second term
in Ji( ·) ensures that dynamic or lately detected obstacles
are avoided. The function dist(#i) provides the Euclidean
distance between the closest obstacle and the follower’s tra-
jectory. The third component of Ji( ·) is the sum of the
avoidance functions in which the other members of the
team are also considered to be dynamic obstacles. This part
protects the robots in the case of unexpected behavior of
defective neighbors. Function di,j(#i,#◦

j ) returns the min-
imal distance between the planned trajectory of follower i
and the actually used plan of other followers j ∈ n̄n, where
n̄n = {1, . . . , i − 1, i + 1, . . . , nr}. The equality constraints
hi( ·) are identical to the equality constraints h( ·) in Sec-
tion 4.3. The inequality constraints gi( ·) are identical to the
constraints gTN ( ·).

The shape of Ji(#i) allows the repositioning of follow-
ers (UGVs and MAVs) with the aim of obstacle avoid-
ance, compensation for actuators’ and sensors’ uncertainty,
or collision avoidance between neighbors. Each UGV fol-
lower i can change its position and heading by optimiz-
ing its curvature Ki and velocity vi. The MAV followers

may also change their altitude zi by optimizing their ascent
velocity wi.

Finally, we should highlight that only the first n control
inputs of the obtained solutions #◦

i are used for steering of
robots in the MPC concept. The rest of these solutions can
be recycled via the Follower Initialization module (depicted
in Figure 2) in the next iteration. This approach significantly
decreases the computational time required for optimization,
since the unused remainder of the solution only needs to
be changed due to movement of dynamic obstacles or due
to diminishing of disturbances. The influence of the ini-
tialization is even more perceivable in the leader trajectory
planning. Not only the part of control inputs on the con-
trol horizon, but also the complete solution on the planning
horizon, can be re-utilized there.

5. Analysis of formation convergence from a
feasible initial solution

This section aims to verify that the formation-driving
method is capable of navigating the formation into the target
region if feasible solutions #L( ·; ·)◦ and #i( ·; ·)◦, with i ∈
{1, . . . , nr}, are known at initial time t0. The initial feasible
solutions, which satisfy the constraints given by equations
(5) and (8), can be found by the optimization method pro-
posed herein, or provided by a high-level planning system.
In particular, this section suggests a proof that the forma-
tion will reach the target region with solution #L( ·; ·)◦ that
is always replanned after every n control steps. In addition,
it shows that the followers will be stabilized in their posi-
tions within the formation by using plans #i( ·; ·)◦, which
are updated with a period of n control steps. This periodic
replanning is important for compensation for sensor and
actuator uncertainties and for dynamic obstacle avoidance.

We should emphasize that the aim of this section is not
to prove convergence to feasible solutions for the optimiza-
tion problems introduced by equations (5) and (8). The
local convergence of these optimization processes is guar-
anteed by properties of the cost functions, which decrease
smoothly and contain local extremes that correspond to sub-
optimal trajectories. However, a global optimization method
that is always able to find the globally optimal solutions of
problems in (5) and (8) in a reasonable amount of time is not
available. Therefore, it is not possible to guarantee that fea-
sible initial solutions of problems (5) and (8) will be found
even if such feasible solutions do exist.

The aim of this analysis is the specification of the condi-
tions necessary for the reaching of the desired equilibrium
by the formation. It enables guaranteeing that the obtained
initial plan is feasible for the group. To be able to show
the convergence of the entire formation into the desired tar-
get region under the approach presented here, let us first
specify an assumption on the desired reachability.

Assumption 1. (Desired reachability.) At the initial time
t0, there exists a feasible solution of the optimization prob-
lem introduced in equation (5). The solution represents the
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(a) Initial position of the formation with
plotted plan to the target region found
by the proposed method in the first plan-
ning step.

(b) Snapshots of temporary shrinking of the
formation in a narrow passage.

(c) The formation avoiding the first overhead
obstacle.

(d) The formation with the denoted convex
hull avoiding the second overhead obsta-
cle. The rightmost follower may partly
pass under the bar and the relative visi-
bility is still kept.

(e) Replanning evoked by an obstacle that
appeared at time t = 21.5 s.

(f) A response of followers to movement of
the obstacle. The shaded contours denote
the positions of the obstacles in the pre-
vious snapshots.

Fig. 6. Simulation with eight UGVs and three MAVs verifying the performance of the proposed formation-driving algorithm.

trajectory for the formation to reach the target region. It
guarantees that the trajectory is situated at a sufficient dis-
tance from obstacles and that direct visibility between the
robots is ensured, which is a crucial aspect of relative local-
ization under the hawk-eye concept. In addition, the utilized
optimization method is capable of finding such a solution,
not necessarily globally optimal, from the initial configura-
tion ψL( t0) ∈ Cfree to any configuration ψL( tf ), with tf > t0,
which is inside the target region.

Further, we need to show that the following lemmas hold
for the cost function introduced in equation (6).

Lemma 5.1. Splitting any trajectory "L( t1; t3) with
the beginning at time t1 and the end at time t3,
which satisfies the constraints given in equation (5),
into two parts "L( t1; t2) and "L( t2; t3), where t1 <

t2 < t3, the following inequality holds: JL("L( t1; t3) ) ≤
JL("L( t1; t2) ) +JL("L( t2; t3) ).

Proof. Let us suppose that the new transition point added
at time t2 (as described in Remark 4.1) lies on the trajectory
"L( t1; t3) between the Kth and ( K + 1)th transition points.
Thus, tK < t2 < tK+1, where tK and tK+1 are the times of
the Kth and ( K + 1)th transition points, respectively.

As introduced in equation (6), the value of the first part
of the cost function of "L( t1; t3) is obtained as

JL,time("L( t1; t3) ) = N#t +
N+M∑

k=N+1

#t( k) (10)

If K < N , which means that the new transition point
is placed within the interval TN , the first part of the cost
function of the split trajectories can be expressed as

JL,time("L( t1; t2) ) = K#t + ( t2 − tK) (11)

and
JL,time("L( t2; t3)) = ( N − K − 1)#t

+( tK+1 − t2) +
N+M∑

k=N+1

#t( k) (12)

Combining equations (10), (11), and (12) together with
equation #t = tK+1 − tK , we can write

JL,time("L( t1; t2) ) +JL,time("L( t2; t3) ) = K#t +#t + N#t

−K#t −#t +
N+M∑

k=N+1

#t( k)

= JL,time("L( t1; t3) ) (13)
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If K ≥ N , which means that the new transition point
is placed within the interval TM , the first part of the cost
function of the split trajectories can be expressed as

JL,time(!L( t1; t2) ) = N"t+( t2 − tK) +
K−1∑

k=N+1

"t( k) (14)

and

JL,time(!L( t2; t3) ) = ( tK+1 − t2) +
N+M∑

k=K+1

"t( k) (15)

Considering equations (10), (14), and (15) together with
equation "t( K) = tK+1 − tK , we can again write

JL,time(!L( t1; t2) ) +JL,time(!L( t2; t3) ) = N"t +"t( K)

+
K−1∑

k=N+1

"t( k) +
N+M∑

k=K+1

"t( k)

= JL,time(!L( t1; t3) ) (16)

The second part of the cost function of !L( t1; t3) is
expressed as

JL,obstacles(!L( t1; t3) )

=
no∑

l=1

(
min

{
0,

dDCH (!L( t1; t3) , ol)
dDCH (!L( t1; t3) , ol) −RDCH

})2

(17)

and similarly

JL,obstacles(!L( t1; t2) ) +JL,obstacles(!L( t2; t3) ) =

=
no∑

l=1

(
min

{
0,

dDCH (!L( t1; t2) , ol)
dDCH (!L( t1; t2) , ol) −RDCH

})2

+

+
no∑

l=1

(
min

{
0,

dDCH (!L( t2; t3) , ol)
dDCH (!L( t2; t3) , ol) −RDCH

})2

(18)

As already mentioned, obstacles contribute to the cost func-
tion if they are placed inside the DCH projected along the
trajectory. It is clear that obstacles appearing in the projec-
tion of DCH along !L( t1; t3) must also contribute with the
same value in one of the split parts. Therefore, the value of
the sum JL,obstacles(!L( t1; t2) ) +JL,obstacles(!L( t2; t3) ) can-
not be smaller than JL,obstacles(!L( t1; t3) ). Nevertheless, it
may happen that an obstacle appears in the projection of
DCH along both parts, since these can overlap (e.g. in a
sharp turn of the trajectory, as shown in Figure 5). In this
case, the obstacle contributes to the cost functions twice
and the value of the sum is increased. This multiple appear-
ance is eliminated in JL,obstacles(!L( t1; t3) ) as follows. To
obtain the value of the function dDCH (!L( t1; t3) , ol), the
shortest distance from the border of DCH projected along
!L( t1; t3) to obstacle ol in the direction of the xL coordinate
has to be computed. If obstacle ol occurs in the projection
of DCH multiple times (e.g. like obstacle o2 in Figure 5), all

the shortest distances have to be obtained. The value of the
function dDCH (!L( t1; t3) , ol) is then the largest value from
the set of these shortest distances.

Considering these observations together with equa-
tion (13) and equation (16), we can conclude that

JL(!L( t1; t3) ) ≤ JL(!L( t1; t2) ) +JL(!L( t2; t3) ) (19)

Lemma 5.2. Splitting any trajectory!L( t1; t3), with t1 < t3
and which satisfies the constraints given in equation (5), at
the time tT of entering into the target region, the following
inequality holds: JL(!L( t1; t3) ) ≥ JL(!L( t1; tT ) ).

Proof. Since the trajectory !L( t1; t3) satisfies the con-
straints in equation (5), the following inequality holds: t1 <

tT ≤ t3.
If tT = t3, one can directly write that JL(!L( t1; t3) ) =

JL(!L( t1; tT ) ).
If tT < t3, considering equation (10) for t2 := tT and

the evident fact that JL,time(!L( tT ; t3) ) > 0 (see for exam-
ple equation (12)), one can write that JL,time(!L( t1; t3) ) >

JL,time(!L( t1; tT ) ). Taking into account the fact that only
the obstacles contributing to JL,obstacles(!L( t1; t3) ) may
also contribute to JL,obstacles(!L( t1; tT ) ), one can write that
JL,obstacles(!L( t1; t3) ) ≥ JL,obstacles(!L( t1; tT ) ). Combining
the inequalities for JL,time and JL,obstacles, we obtain the
inequality JL(!L( t1; t3) ) > JL(!L( t1; tT ) ) for situations
with tT < t3.

Remark 5.3. Considering Remark 4.1 and Lemma 5.2, we
can conclude that by splitting any trajectory, which satisfies
the constraints in equation (5), at the time of crossing the
border of the target region a feasible solution of the forma-
tion to the target region problem, evaluated by a lower (or
the same) value of the cost function, is obtained.

Now, we are prepared to show the convergence of the
formation into the target region.

Theorem 5.4. Under Assumption 1, having a feasible solu-
tion of the problem in equation (5) at time t0, the formation
is guided by the MPC scheme towards the target region if
the inequality D( k) < JL(!L( τ ; n"t + τ )◦ ), where τ =
kn"t + t0, k ∈ Z+, and k <( tT − t0) /n"t, is satisfied. D( k)
denotes the perturbations on JL(!L( ·)◦ ) and tT is the time
at which the formation approaches the target region.

Proof. Being inspired by the theory of nonlinear systems in
Chapter 4 of Khalil (2001), we can prove the convergence of
the formation into the target region if we show the decrease
in the value of the cost function introduced in equation (6)
over time. This means that we have to show the conditions
in which the following inequality holds:

JL(!L( n"t + τ ; t2)◦ ) −JL(!L( τ ; t1)◦ ) < 0 (20)
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In this equation, the term JL(!L( ·; ·)◦ ) is the cost of
the solution found by the optimization method. The vector
!L( τ ; t1)◦ represents the computed trajectory of the virtual
leader with the beginning at time τ and the end at time
t1. The term JL(!L( n#t + τ ; t2)◦ ) represents the cost of
the optimization vector found in the next control step. This
solution is used after applying the first n elements of the
trajectory with the beginning at time τ . Using an ideal opti-
mization method, which is always capable of finding the
global optimal solution, both solutions would end directly
on the border of the target region. Any trajectory contain-
ing a part inside the target region may not be optimal, which
is obvious from Remark 5.3 and Lemma 5.2. With real opti-
mization algorithms working in a finite time, it is impossible
to find the global optimal solution. The obtained solutions
that satisfy the constraints from equation (5) always termi-
nate inside the target region (not exactly on the border). The
length of the part of the trajectory inside the desired target
region can differ in each planning step of the MPC algo-
rithm. Therefore, we have to omit this part inside the region
to be able to show the convergence of the formation to the
target region by analyzing the contraction of the trajectory
between consequent MPC planning steps.

This means that we have to split the trajectories
!L( τ ; t1)◦ and !L( n#t + τ ; t2)◦ at the time when they
enter the target region. In Remarks 4.1 and 5.3 and
Lemma 5.2 it is shown that such shortened trajectories
satisfy the constraints from equation (5), and they rep-
resent solutions of the optimization problem with lower
values for the cost function. Equation (20) may then be
rewritten as

JL(!L( n#t + τ ; tT2)◦ ) −JL(!L( τ ; tT1)◦ ) < 0 (21)

where tT1 and tT2 are the time instants at which the tra-
jectories !L( τ ; t1)◦ and !L( n#t + τ ; t2)◦ enter the target
region. Further, let us split the trajectory!L( τ ; tT1)◦ at time
n#t+τ , as shown in Remark 4.1. Using Lemma 5.1, we can
write that

JL(!L( τ ; tT1)◦ ) ≤ JL(!L( τ ; n#t + τ )◦ )

+JL(!L( n#t + τ ; tT1)◦ ) (22)

Combining equations (21) and (22) we obtain

−JL(!L( τ ; n#t + τ )◦ ) −JL(!L( n#t + τ ; tT1)◦ )

+JL(!L( n#t + τ ; tT2)◦ ) < 0 (23)

Let us substitute

−JL(!L( n#t + τ ; tT1)◦ ) +JL(!L( n#t

+τ ; tT2)◦ ) := D( k) (24)

into equation (23), so that we obtain the inequality D( k) <

JL(!L( τ ; n#t + τ )◦ ), which represents limits on pertur-
bations. The inequality is satisfied if the formation is out-
side the target region, which agrees with the limitation
τ = kn#t + t0, where k ∈ Z+ and k <( t̄ − t0) /n#t, as
stated in Theorem 5.4.

5.1. Analysis of results of the convergence
proof

The aim of this subsection is to show the meaning of
the perturbations D( k) and a practical utilization of the
results of the convergence analysis presented in the previous
section.

Analyzing equation (24), one can see that perturbations
D( k) represent changes (usually an increase) in the values
of the cost function that evaluates the trajectories found in
two consecutive MPC planning steps. The trajectories, both
beginning at time n#t + τ and ending on the border of the
target region, are found by the optimization method, one at
time τ and one at time n#t + τ .

1) Let us first consider a situation without dynamic
or unknown obstacles. In this case, the increase of
the value of the second term of the cost function
(6) may be neglected: JL,obstacles(!L( n#t + τ ; tT2) )
−JL,obstacles(!L( n#t + τ ; tT1) ) .= 0, and D( k) .=
JL,time(!L( n#t+τ ; tT2)◦ ) −JL,time(!L( n#t+τ ; tT1)◦ ).
The perturbations are therefore caused mainly by impre-
cise actuators and by the simplification of the kinematic
model. This results in deviations in the position of the
formation after each MPC step. These deviations need
to be compensated for, and they prolong the total time
to the goal by the time difference T2 − T1. In situa-
tions without dynamic or unknown obstacles, this time
difference is approximately equal to the value D( k).
Considering Theorem 5.4 and the obvious fact that
JL,obstacles(!L( τ ; n#t + τ )◦ ) ≥ 0, it has to be ensured
that

D( k) < n#t (25)

It can be seen that the value of the cost function is
decreasing and the plant converges to the desired tar-
get region. This inequality is important for practical
utilization of the method.

2) In the presence of dynamic obstacles or suddenly
detected obstacles, the difference JL,obstacles(!L( n#t +
τ ; tT2) ) −JL,obstacles(!L( n#t+τ ; tT1) ) may be the dom-
inant part of the perturbations. Equation (25) may then
be violated even if the uncertainty of the actuators
is sufficiently small. In this case, the convergence to
the target region is temporarily broken, which can be
detected by the increase in the cost function value. In
real-world applications, it is sometimes necessary to
allow a temporary increase in the value of the cost
function. For example, newly detected obstacles can be
avoided by the replanning included in the MPC concept,
and the convergence is restored. A problem occurs in
the presence of dynamic obstacles that push, by their
influence via the cost function, the overall formation
from the target region. If such a situation is detected by
long-term growth of the value of the cost function, the
formation has to stop and the planning process needs to
be restarted.
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5.2. Analysis of the stability of the followers in
their desired positions within the formation

The stability of the formation in the desired shape is solved
through the distribution of transformed states of the vir-
tual leader using the formation-driving concept in Barfoot
and Clark (2004), extended here to the 3D case (see Sec-
tion 3.1). Using this approach, the formation stabilization is
transformed into the independent trajectory tracking pro-
cesses running onboard the following robots. The classi-
cal MPC approach is then employed for trajectory tracking
with the obstacle- and failing-neighbor-avoidance function-
alities. It is not the aim of this paper to analyze the perfor-
mance of the standard trajectory tracking mechanism, but
we would like to point out the overall behavior of the for-
mation. Again, let us highlight that it is not the aim of this
analysis to show the convergence of the optimization prob-
lem described in equation (8). The aim is to specify the
conditions for which the shape of the formation remains
stable (followers follow their desired position behind the
virtual leader) using periodically replanned results of the
problem in equation (8).

In an ideal state without perturbations due to dynamic
obstacles, actuator uncertainties, and sensor uncertainties,
the equality Ji(!i( ·; ·)◦ ) = 0 holds. As shown for example
in Figure 7, the value of the cost function is increased if
a robot deviates from its desired position (the first term of
equation (9) contributes) or if an obstacle or a neighbor is in
close proximity to the robot (the second term of equation (9)
contributes). Based on the values of the cost function, one
can decide that a follower or a group of followers has bro-
ken away from the formation, and has to be considered as
an independent object/sub-formation. An approach similar
to the concept utilized for the formation navigation pre-
sented in Section 4.3 may be used for such a sub-formation
to rejoin the group. This concept may be employed if it is
enabled by the relative localization (the robot is still within
the field of view of MAVs acting as hawk eyes) and by
the communication range. In this case, the area around the
desired position within the former formation has to be con-
sidered the target region. The sub-formation is then con-
trolled using the approach presented in Section 4, where
only the members of the unstuck group are considered in
the convex hull representing the formation. If only a single
robot is unstuck, the convex hull is reduced to a circle with
radius equal to the detection radius rs.

Theorem 5.4 and the related proof can be utilized for
the convergence analysis, similarly to what was done for
the static target region. Only the practical meaning of the
perturbations D( k) is changed. The uncertainty of the actu-
ators and the imprecise kinematic model are still included
in the perturbations according to equation (24). Neverthe-
less, the prolonged total time to the goal given by the time
difference T2 − T1 is caused mainly by the movement of
the former formation, which is followed by the new for-
mation. To better understand the problem, let us split the

perturbations into two parts: D( k), which represents the
perturbations given by the imprecise actuators and model,
and Ddrift( k), which includes the influence of the drift of the
dynamic target region (the required place of the unstuck fol-
lowers in the former formation). The equation Dtotal( k) =
D( k) +Ddrift( k) holds for the situation with the dynamic
target region, whereas, in the analysis in the previous sub-
section, the equations Ddrift( k) = 0 and Dtotal( k) = D( k)
hold.

During the MPC step with duration n"t, the dynamic tar-
get region moves over the distance vtargetn"t in the worst
case. The symbol vtarget denotes the maximum speed of
movement of the former formation, and therefore also the
maximum speed of the dynamic target region. This dis-
placement prolongs the expected time to the goal by the
time difference vtargetn"t/vunstuck , where vunstuck is the max-
imal feasible speed of the unstuck formation/robot. For the
dynamic target region, the requirement on the perturbations
given by the imprecise actuators and model (for the static
target region presented in equation (25)) can be expressed
as

D( k) < n"t − n"t
vtarget

vunstuck
(26)

6. Experimental results
In this section, we demonstrate the performance of the
method presented here, and we experimentally verify the
theoretical results introduced in Section 5. The response of
the planning and control mechanisms to the detected static
and dynamic obstacles, and also to failures of neighbors in
the formation, is shown in the addressed robotic scenarios.
The experiment with real robots and the computational time
analysis reflect the applicability of the system. Movies of
simulations and experiments are attached to this paper and
can be found at Saska (2013).

The presented results were obtained using the proposed
algorithm with the following parameters: n = 2, N = 4,
M = 6, α = 1, αi = 1, βi = 1, and "t = 0.25
s. We employed sequential quadratic programming (SQP)
(Nocedal and Wright, 2006) to solve the optimization prob-
lems used in the virtual leader trajectory planning and
for the stabilization of followers. This solver provided the
best performance among the available evaluated algorithms.
However, any optimization method which is able to solve
the optimization problems defined in this paper can be used.

The map of the environment, the position of the target
region, and the desired shape of the formation are always
known at the beginning of the missions in the experiments.
The positions of dynamic obstacles are unknown.

In the first experiment presented in this section, a forma-
tion of 11 followers (eight UGVs and three MAVs) has to
move into a target region through an environment with two
overhead obstacles and one dynamic obstacle. See Table 3
for the parameters of the formation and Figure 6 for snap-
shots of the experiment. Figure 7 illustrates the progress of
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Fig. 7. Progress of the values of the cost function used for the virtual leader’s trajectory planning, equation (6), and the cost function
employed for stabilization of the followers in their desired positions behind the virtual leader, equation (9). The decrease in the values
of equation (6) shows the convergence of the formation to the desired target. The deviations from the zero value of equation (9) are
caused by the narrow passage (see Figure 6(b)) and by the dynamic obstacle (see Figure 6(f)).

Fig. 8. Computational demands of the method: influence of the number of obstacles and the number of transition points at the planning
interval TM . The mean computational time of one MPC planning step was obtained from 1000 runs of the algorithm.

Table 3. Curvilinear coordinates of followers within the formation used in the experiment presented in Figure 6.

i 1 2 3 4 5 6 7 8 9 10 11

pi 1.5 3 0 0 0 0 0 2 2 4 4
qi 0.5 1 0 2 0.7 −0.7 −2 0 2 0 2
hi 5 4 4 0 0 0 0 0 0 0 0

the values of the cost function used for the virtual leader’s
trajectory planning (equation (6)) and the values of the
cost function employed for the stabilization of the followers
(equation (9)).

The initial position of the formation and the trajec-
tory obtained in the first planning loop of the presented
MPC algorithm are shown in Figure 6(a). The snapshots in
Figure 6(b) demonstrate the ability of the formation sta-
bilization algorithm to autonomously modify the desired
shape of the group if this is necessary due to restrictions
given by the robots’ workspace. The pictures show the
response of the followers’ planning algorithm to the nar-
row entrance and the consequent temporary shrinking of the
formation.

In Figure 6(c) and 6(d), the formation passes by obstacles
that verify the ability of the approach to keep direct visi-
bility between team members. Although the UGVs could
pass under the obstacles and the MAVs could fly over them
(which would decrease the time to the goal), the planned
trajectory leads around the obstacles to keep them out-
side the convex hull representing the formation. The UGVs
may partly pass under the obstacles, with the aim to follow

the trajectory that is as short as possible according to the
optimization problem specified in equation (5).

A response of the trajectory planning algorithm to obsta-
cles that suddenly appear is shown in Figure 6(e), where
a new obstacle was detected. Finally, dynamic obstacle
avoidance behavior of the method is shown in Figure 6(f).
In this situation, the virtual leader’s planning algorithm
could not respond to the movement of the obstacle behind
the position of the virtual leader. Therefore, the followers
are forced via the avoidance function in equation (9) to
deviate temporarily from their desired positions within the
formation.

The results of a statistical test of the performance of the
algorithm are presented in Table 4. The aim is to show the
reliability and the practical utilization of the method with
different values of parameter M , whose proper setting is
crucial for the deployment of the system. For the test, a set
of 1000 positions for the target region was randomly gen-
erated in the free space on the right side of the workspace
introduced in Figure 6(a). The algorithm was tested with
different values of M for each of these configurations of the
target, using Intel Core Duo CPU, 3.2 GHz, 4 GB RAM.
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Table 4. The mean time to reach the target region and the suc-
cess rate obtained from 1000 runs with random positions of the
target region. Each set of experiments was performed with a dif-
ferent setting of the number of transition points at the planning
interval TM .

M 3 4 5 6 8 10

Time to goal [s] 51.2 45.8 39.6 34.5 32.8 32.6
Success rate [%] 42.1 86.9 98.2 99.6 100 100

Fig. 9. An example of the trajectories followed by a formation of
four followers (three UGVs and one MAV). The MAV follows the
virtual leader, while it descends to avoid the top obstacle.

The simulations are counted as successful if the forma-
tion reached the desired target region without collisions
and with relative visibility kept during the entire movement.
The total time to reach the goal indicates the quality of the
solutions.

The most time-consuming part of the proposed MPC
approach is evaluation of the objective function in equa-
tion (6). This function is recalled in each iteration of
the optimization process. The second term of the func-
tion, which implements the obstacle avoidance, represents a
major contribution to the computational demands. In partic-
ular, two variables influence the computational complexity
of the formation-driving system that is proposed here: the
number of obstacles considered for the planning, and the
dimension of the optimization vector. Figure 8 shows that
the mean computational time linearly depends on the num-
ber of obstacles. This confirms the expectations, since the
distance from the convex hull is computed separately for
each of the obstacles only in the second term of equa-
tion (6). The distance-to-obstacle calculation is the most
computationally intensive part of the algorithm.

The length of the optimization vector predominantly
affects the number of iterations of the optimization pro-
cess. The mean computational time of the planning process
exponentially depends on the length of the optimization
vector (see experimental results in Figure 8 and analysis of
quadratic programming algorithms in Nocedal and Wright,
2006).

The simulation presented in Figure 9 shows the perfor-
mance of the algorithm in the situation where an obstacle
(the traverse beam under the ceiling) blocks the MAV fol-
lower from reaching the desired target region at the desired

Fig. 10. A sequence of snapshots presenting the failure tolerance
of the system by simulating a follower failure.

altitude (hi coordinate). Similarly to the previous experi-
ment, where the formation passed a narrow corridor, the
formation is forced to change its desired shape temporarily.

The experiment presented in Figure 10 demonstrates the
ability of the method to avoid collisions between the robots
in the formation. To show this functionality, the failure of
a follower (its steering was blocked) was simulated to show
the failure tolerance and the robustness of the system. The
snapshots show successful avoidance maneuvers of neigh-
boring followers as a response to predictions of possible
collisions (see the last part of equation (9) for details on
the applied avoidance function).

In the real experiment presented in Figure 11, a formation
of three ground robots and one helicopter has to move from
its initial locations into the desired target region. The trajec-
tory planning method presented in this paper was employed
to practically verify the usefulness of the visual relative
localization and consequently the stabilization of follow-
ers from flying robots. Two different UGVs, one G2Bot
platform (Chudoba et al., 2006) (the bigger robot in Fig-
ure 11) and two MMP5 platforms are used in this exper-
iment. To verify the concept of the proposed 3D forma-
tions, an Ar.Drone quadrocopter is used as a flying follower.
The MAV is equipped with a vision system to be able to
follow the proposed hawk-eye approach. It carries a bot-
tom monocular camera supplemented by a vision algorithm
(Saska et al., 2012a) that is able to identify the location and
the size of the color markers of the UGVs in the image.
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(a) (b)

Fig. 11. Snapshots from the formation-driving experiment with three UGVs and one MAV following a virtual leader.

This information is used for the relative localization of all
members of the formation. The estimated relative positions
from such hawk eyes are sent to the UGV followers over a
WiFi link as feedback to maintain the predefined formation
shape.

Beside the pictures of the experiment, a GUI monitoring
the formation deployment in the reconnaissance applica-
tions is shown in Figure 11, on the right side. The GUI
shows pictures from the cameras carried by all followers
and a schematic map of the environment. The MAV cam-
era is primarily designated as the hawk eye. Additionally,
it provides a general overview of the scene for the super-
visor of the mission. The UGVs’ cameras are employed
for reconnaissance purposes. The actual plan of the virtual
leader found by our approach and the history of the leader’s
movement are also depicted in the map. The position of the
virtual leader is estimated from the odometry of the G2Bot
follower, which is intentionally placed in the same position
as the virtual leader.

The experiment in Figure 12 demonstrates the ability of
the obstacle avoidance by temporarily shrinking the for-
mation. In the experiment, the Pioneer 3-AT robotic plat-
form with a mobile heliport, two MMP5 platforms and the
Ar.Drone MAV act as followers. The positions of the outer
UGVs within the formation are autonomously changed as
a result of the multi-criteria cost function (the first and the
second term of Ji( ·) contribute in an antagonistic way) to
pass safely through the narrow corridor.

The onboard visual localization, which was used in the
experiments, provides relative positions of robots at a frame
rate of 10–30 Hz (Faigl et al., 2013). This is significantly
less than the update rates provided by motion-capture sys-
tems (e.g. Vicon), which are often used for stabilization of
MAV groups. Therefore, a MAV low-level stabilization and
limits on the maximal speed of robots have to be employed
with the onboard localization. Internal stabilization of the
Ar.Drone platform based on optical flow obtained from
the bottom camera and the inertial measurement unit were
used in the experiments. For details, software implemen-
tation, and interfacing with Ar.Drone, see Krajnik (2013).

Fig. 12. Experiment verifying formation-shrinking while it is
driven through a narrow corridor.

The system presented in this paper enables stabilizing the
heterogeneous formation up to a speed of 0.7 m/s. For the
experimental evaluation presented here, the speed of the
leader was limited to 0.3 m/s for safety reasons.

7. Conclusion
A control methodology developed for formation driving
of 3D heterogeneous MAV–UGV formations stabilized via
hawk-eye-like visual localization is presented in this paper.
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A novel MPC scheme is introduced with an integrated
obstacle-avoidance function that ensures direct visibility
between MAVs and UGVs. Visibility between MAVs and
UGVs is crucial for the top-view relative localization of the
team members. This may act as an enabling technique for
real-world deployment of formations of micro-scale robots.
Our experiments show the performance of the method and
verify its robustness in an environment with dynamic obsta-
cles. In addition, the requirements for practical utilization of
the method are specified by sound theoretical analyses. As
a result of these analyses, we propose a simple mechanism
to detect and tackle eventual violations of the convergence
of the 3D formation’s movement into the target region.

The main contributions of this paper from the perspec-
tives of control, formation driving, and robotics in general
are the following:

1. Top-view visual relative localization, which enables
the deployment of teams of MAVs and simple ground
robots in environments without any pre-installed global
localization infrastructure.

2. The novel MPC approach with an additional planning
horizon, which is crucial for incorporating global tra-
jectory planning and local control. In addition, this
approach enables the inclusion of constraints given
by the top-view relative localization of heterogeneous
formations.

3. An extended leader–follower concept with a novel rep-
resentation of 3D formations that satisfies the require-
ments of direct visibility between the team members.
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Appendix: Low-level controller designed
for Ar. Drone
In the kinematic model described in Section 3, it is assumed
that the MAVs can follow a trajectory containing segments
with a given curvature. Further, we assume that MAVs
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are controlled using forward speed v, curvature K, and
ascent w. We used the Ar.Drone quadrocopter, which allows
changes in the speed of its rotors and consequently its pitch,
yaw, and roll angles (see Figure 1(b) for the definition of the
angles).

The forward speed of the drone can be controlled by
changing the pitch θ . Let us assume the simplified model
of the quadrocopter depicted in Figure 13. Force F is gen-
erated by the rotors. Fg denotes the gravitational force. The
forward force is then Fo = −Fg tan θ . Assuming that the
drone moves slowly, we can use an approximation Fo = c0v,
where c0 is a constant that may be simply identified experi-
mentally. The forward speed of the drone is then controlled
by changing pitch θ :

tan θ = −c0v
Fg

(27)

When the drone moves along a circular segment, the cen-
trifugal force has to be compensated for by changing roll
η. The centrifugal force can be expressed as Fc = mv2/r,
where m is the weight of the drone and r = 1/K is the radius
of the circular segment with curvature K. The centrifugal
force is compensated for by the lateral force Fd = −Fc. Fd

is controlled by changing roll as Fd = −Fg tan η, which

Fig. 13. Simplified model of the quadrocopter.

gives −Fg tan η = mv2/r. The lateral speed is then con-
trolled by

tan η = −v2K
g

(28)

When the pitch and roll angles are small, the approximation
tan x ∼ x can be used in (27) and (28). To control the drone
along a trajectory with the given curvature K and known
forward speed v, pitch θ and roll η are controlled. Further
details on Ar.Drone control can be found in Krajník et al.
(2011).
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Abstract A fault-tolerant method for stabilization
and navigation of 3D heterogeneous formations
is proposed in this paper. The presented Model
Predictive Control (MPC) based approach en-
ables to deploy compact formations of closely
cooperating autonomous aerial and ground robots
in surveillance scenarios without the necessity of
a precise external localization. Instead, the pro-
posed method relies on a top-view visual relative
localization provided by the micro aerial vehicles
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flying above the ground robots and on a simple
yet stable visual based navigation using images
from an onboard monocular camera. The MPC
based schema together with a fault detection and
recovery mechanism provide a robust solution
applicable in complex environments with static
and dynamic obstacles. The core of the proposed
leader-follower based formation driving method
consists in a representation of the entire 3D for-
mation as a convex hull projected along a de-
sired path that has to be followed by the group.
Such an approach provides non-collision solution
and respects requirements of the direct visibility
between the team members. The uninterrupted
visibility is crucial for the employed top-view lo-
calization and therefore for the stabilization of the
group. The proposed formation driving method
and the fault recovery mechanisms are verified by
simulations and hardware experiments presented
in the paper.

Keywords Mobile robots · Micro aerial vehicles ·
Formation driving · Fault detection
and recovery · Model predictive control ·
Leader-follower · Trajectory planning

1 Introduction

Integration of fault detection and recovery mech-
anisms into unmanned aerial systems is crucial
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for improving their robustness and to enable their
deployment in large closely cooperating teams.
The identification of a sensor or actuator fault or
even a failure of a team member makes possible
to adapt the group behaviour, keeping the sys-
tem operational with limited capabilities. This ap-
proach is especially appealing for formations and
swarms of autonomous aerial, but also terrestrial
vehicles, where the possibility of redundancy in
robots’ deployment is one of the key properties.

In this paper, a scenario of multi-robot sur-
veillance is investigated. In the mission, a for-
mation of autonomous vehicles has to repeatedly
drive through a workspace in a phalanx to cover
a large operating space. We propose to employ
heterogeneous teams of autonomous micro-scale
vertical take-off and landing vehicles (so called
Micro Aerial Vehicles—MAVs) and Autonomous
Ground Robots (UGVs). This allows us to con-
sider their deployment in missions, which are im-
possible for solely MAVs or UGVs teams or in
which these teams would not be efficient.

The MAVs can reach locations inaccessible by
the UGVs. Beyond, they may provide a top view
survey of the scene, which gives an important
overview for human supervisors. On the contrary,
the UGVs may operate in workspaces constrained
by obstacles (e.g. in abundant vegetation). They
can carry much heavier payload, which allows to
use more powerful sensors. The UGVs have larger
operational range and they may even provide an
additional power source for the MAVs through a
mobile heliport. These aspects attract us to take
advantage of both platforms and to employ a
heterogeneous MAVs-UGVs team. Besides, the
co-existence of ground and flying robots can pro-
vide efficient solutions of fundamental formation
driving problems, as is a precise and reliable rela-
tive localization of team members closely cooper-
ating together. This approach reduces probability
of collisions within the robotic group.

Usually, robots in reconnaissance and surveil-
lance missions may not rely on pre-installed pre-
cise global localization infrastructures and com-
monly available systems (as GPS) lack required
precision for control of compact formations. Be-
sides, GPS lacks sufficient reliability mainly in

urban and indoor environments. The proposed
formation driving approach is suited for an on-
board visual relative localization. The employed
localization system uses simple light-weight cam-
eras mounted on MAVs and identification pat-
terns placed on UGVs and MAVs. The distance
between the vehicles is then provided due to the
known size of the patterns. Details on the visual
based relative localization together with descrip-
tion of its precision and reliability is provided
in [1]. With this top-view concept, one may better
tackle the problem of loss of direct visibility that
frequently occurs in the visual relative localization
of ground robots operating in a workspace with
obstacles. The possibility of team members’ rel-
ative localization from above increases precision
and reliability of the localization and brings an-
other perspective to see the scene by operators
supervising the mission.

Beyond the visual relative localization of indi-
vidual robots, we propose to use a simple vision
based technique also for the formation naviga-
tion in the environment. The presented formation
driving method relies on a navigation approach
called GeNav [2]. GeNav method uses features
detected in images that are gathered by a monoc-
ular camera carried by a leader of the formation.
This very simple method enables to robustly navi-
gate the group along a pre-learnt path consisting
of a sequence of straight segments (a proof of
stability of this method can be found in [2]).

The combination of the top-view relative local-
ization and the visual navigation provides a light-
weight, low-cost, easy-to-deploy and efficient so-
lution, which may act as an enabling technique
for an extensive utilization of simple micro-scale
robots. This paper is focussed on theoretical and
technical aspects of the formation driving mecha-
nism suited for the real-world deployment of au-
tonomous robots under the GeNav navigation and
the top-view localization, while technical details
on the visual relative localization are available
in [3] and the GeNav navigation in [2]. In addi-
tion, the paper addresses issues of the fault iden-
tification and recovery to increase robustness of
the method. A mechanism to detect (and correct
if possible) a malfunction of a single robot as well
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as an inadvisable breakup of the group is proposed
and experimentally verified.

2 State of the Art

The research endeavor in the formation driving
community is aimed mainly at tasks of forma-
tion stabilization [4–6] and formation following a
predefined path [7–10]. For example in [4], the
task of formation stabilization and its convergence
into a desired pattern is tackled for formations
with communication delays. In [5], a multi-agent
control system using artificial potential based on
bell-shaped functions is proposed. The work in [6]
employs a distributed iterative learning scheme
for solving the formation control with switching
strategy in the virtual structure and virtual leader-
follower schemes.

The path following problem is tackled by de-
signing a nonlinear formation control law based
on the virtual structure approach via propagation
of a virtual target along the path in [8]. In [7], the
path following is investigated for groups of robots
with limited sensing ranges. In [9], according to
the leader-follower concept, the leader robot is
forced to follow a given path, while the followers
track the leaders’s path with a fixed time delay.
In [10], beyond the trajectory tracking, a possibil-
ity of an autonomous design of geometric pattern
of the desired formation is discussed.

Beside the methods of the formation driving
for UGVs, we should mention few approaches
designed for UAVs [11–14]. In [11], the formation
stabilization and keeping in the desired shape are
treated as a dynamic 3D tracking problem, where
the relative geometry of multiple UAVs is kept
via a cascade-type guidance low under the leader-
follower concept. A leader-follower approach for
stabilization of helicopter’s formations using a
nonlinear model predictive control is proposed
in [12] and optimized for on-line embedded so-
lution enabling a response to the fast dynamic of
UAVs in [13]. In [14], the formation stabilization
of vertical take-off and landing unmanned aerial
vehicles in presence of communication delays is

addressed. Finally, let us mention work in [15]
aimed at stabilization of a heterogeneous forma-
tion of UAVs above UGVs in circular orbits.

The above mentioned techniques are suited
for utilization of robots under a precise exter-
nal global localization system (for example ap-
proaches [13] are verified with the VICON sys-
tem), for UGV formations they often rely on a
dead reckoning with its cumulative error [8] or
they provide theoretical solutions verified only
by simulations [4, 5, 7, 9–12, 14], where a known
position of robots may be assumed. In our work,
the necessity of utilization of on-board systems for
robots’ localization and navigation is inherently
included in the essence of the formation driving
approach. The stabilization of the robot in the
team is suited for requirements of available robust
localization and navigation techniques, which en-
ables its utilization in real-world scenarios.

The fault detection and recovery is an impor-
tant and actual topic in the UAV (MAV) control
nowadays due to the recent boom in the deploy-
ment of small unmanned vehicles. The fault detec-
tion techniques designed for a single vehicle can
be divided into two categories: model–free and
model–based. The model–free methods are based
on analysis of the signal from sensors and do not
rely on the model of the underlying system. As an
example, let us mention an approach using neural
networks to perform the signal analysis in order to
acquire the information about a fault [16].

More frequently, methods for fault detection
in unmanned aerial systems employ the model–
based approach. They utilize residuals (difference
between the sensor readings and expected values
derived from a model of the monitored system)
for the detection of occurrence of a fault. An
example of an actuator fault diagnostic system de-
signed for the nonlinear model of mini-quadrotors
is available in [17]. Deployment of a methodology
for actuator and sensor fault detection in an
autonomous helicopter is presented in [18]. An
autonomous actuator fault recovery mechanism
based on an incorporation of a post-fault model of
the actuator is proposed in [19]. This approach is
extended for response to multiple actuator faults
in [20].
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Beyond the actuator faults in a single vehi-
cle, this paper deals with the fault detection and
recovery in the formation control. This problem
is addressed for formations of terrestrial robots
in [21]. In the paper, the formation is represented
as a cellular automaton, where each formation
member is represented as an individual cell, and
the formation recovery is realized through a dis-
tributed auction–based mechanism. A fault toler-
ant approach designed for formations of quad–
rotor UAVs is presented in [22]. The virtual
structure based method is used for the formation
trajectory planning, while the fault recovery is
realized by a replanning to be able to response to
a failure of a formation member. The most related
work to the proposed paper is published in [23]
and [24], where a vision–based relative position
estimation for a team of UAVs is used in case
of detection of fault in one of the onboard iner-
tial systems. Although, the team of UAVs is not
originally coordinated as a formation, a formation
driving mechanism is employed in order to view
the same scene from two UAVs (the faulty UAV
and a faultless UAV used for its assistance) at
the same time. Finally, let us mention two ex-
amples of the fault recovery in robotic swarms.
In [25], an immune system reaction is employed.
It solves the fault recovery problem through an
isolation of the faulty robot from the swarm by
neighbouring robots to protect the entire group.
A fault detection method inspired by a light-based
communication of fireflies, which spontaneously
synchronize their rhythmic flashes, is presented
in [26]. The method is based on analysing of anom-
alies from the synchronized light pulses of robots
equipped with LEDs and light detectors.

Here, our contribution is an approach being
able to detect faults in formation driving of het-
erogenous MAVs-UGVs groups stabilized under
the top view localization. Beyond, we aim at
re-coupling of inadvertently splitted formations
caused by a fault in the system, but also by sur-
rounding environment.

In our method, we rely on the Model Predictive
Control (MPC) to be able to involve constraints
imposed by the inter vehicle relations (shape of
the formation feasible for the top-view relative
localization), by vehicles (mobility constraints), by
obstacles (environment constraints) and by the

employed GeNav navigation of the entire group
(straight line segments of the desired path) into
the formation driving. The MPC approach is often
used for stabilizing nonlinear systems with control
constraints. In [12] and [13] it was shown, that the
computational power of microprocessors avail-
able onboard of unmanned helicopters enables to
employ MPC techniques also for the formation
control of such a high dynamic systems, similarly
as it is proposed here.

For descriptions and a general survey of MPC
methods see [27–30] and references reported
therein. In the formation driving, researchers take
advantage of MPC mainly to respond to changes
in dynamic environment [12, 13, 31–33]. In [31],
authors introduce a new cost penalty in MPC opti-
mization to guarantee a simple obstacle avoid-
ance. Decentralized receding horizon motion
planner introduced in [32] is developed for co-
ordination of UGVs based on a motion planning
independent to neighbors. The trajectory tracking
mechanism developed in [33] is based on integra-
tion of a differential evolution algorithm into the
MPC concept.

In our approach, we go beyond these papers in
the following aspects. We apply the MPC method
for the stabilization of the formation with included
requirements of the top-view relative localization,
which could be an enabling technique for deploy-
ment of heterogeneous MAVs-UGVs teams out-
side the laboratories. We present a novel obstacle
avoidance function with a simple and effective
representation of the 3D formation included. This
approach provides a robust solution of the forma-
tion driving in environments with dynamic obsta-
cles. Our formation driving method is designed
for the purpose of simple yet stable visual navi-
gation developed in [2], which is well suited for
the reconnaissance and surveillance missions in
environments without precise external localiza-
tion. Beside the dynamic obstacles avoidance, the
proposed method provides an inter-vehicle avoid-
ance, which is crucial for failure tolerance of the
system. All these behaviours and abilities are nu-
merically and experimentally verified at the end
of this paper.

This paper extends our previous work [34],
where the basic formation driving mechanism
based on the visual relative localization was
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introduced. The main extension consists in the
fault diagnosis and recovery mechanism that is
introduced in Fig. 3 and described in details in
Section 5. Beyond, results of new experiments and
simulations verifying the proposed concept are
published in Section 6.

3 Problem Statement and Preliminaries

Development of method presented in this paper is
motivated by reconnaissance applications, where
a team of robots has to autonomously follow a
desired path given by a supervising expert. During
the movement along the path, the robots have to
keep a formation suited for the mission require-
ments. The robots can form a searching phalanx
(a line formation) to be able to search for victims
or intruders in large areas or a compact fleet of
vehicles can be used for transportation purposes.
We assume that one robot of the group (UGV
or MAV), called GeNav leader in this paper, is
capable of autonomous navigation along such a
path. We will employ a navigation system based
on detection of SURF features in an image pro-
vided by an on-board camera. The system was de-
veloped for navigation of a single UGV robot [2]
and later extended for a quadrocopter [35]. This
system (called as GeNav) is suited for guidance
of robots along path that consists of a sequence
of straight segments. Its precision (∼20 cm) and
reliability enables a robust navigation of a single
robot, but it is not sufficient for the coordination
of the robots within a compact formation with
small relative distances between robots.

Beside the GeNav leader, we assume to use a
group of simple UGV followers without any on-
board sensors for their localization and a group
of MAV followers (quadrotors) equipped with a
bottom camera and a system for visual relative
localization [3]. This system provides information
on the relative position between the camera of
MAVs and center of an identification pattern. The
identification patterns are carried by all UGVs
and MAVs except the one flying in the highest
altitude. The precision of the employed visual rel-
ative localization system (∼1 cm) is sufficient for
the formation stabilization in the desired shape.
We assume that the shape is designed to satisfy the

condition that all robots, except the MAV flying
in the highest altitude, are in the field of view of at
least one bottom camera mounted on an MAV.

Now, let us describe preliminaries important
for description of the method, in which the het-
erogeneous 3D formation of MAVs and UGVs
has to follow the desired path, while requirements
of the formation driving and the top-view relative
localization are satisfied. It means that (1) the
movement of the formation has to be smooth also
in the unsmooth connections of straight path seg-
ments, where the GeNav leader is turning around
on the spot, and (2) the direct visibility between
the vehicles have to be kept during the formation
deployment.

Let ψ j(t) = {x j(t), y j(t), z j(t), ϕ j(t)}, where j ∈
{GL, VL, 1, . . . , nf }, denote configurations of the
GeNav leader GL, a virtual leader VL, and nf
followers at time t. The GeNav leader is equipped
with the on-board visual navigation to follow the
pre-learnt path segments. It is positioned in front
of the formation and it is used as a reference point
for the coordinate system used by the top-view
relative localization. Whereas, the virtual leader
is a reference point for the proposed formation
driving technique. Virtual leader is initially placed
in the same position and orientation as the GeNav
leader. Using the trajectory following approach
described in Section 4.3, it keeps the same position
as GeNav leader except the deviation caused by
obstacles that could break the top view localiza-
tion or to cause collisions. Significant deviation
of GL and VL positions can be also seen in
connections of line segments of the desired path.
In these points, the path is not feasible for the
formation of nonholonomic robots, which forces
the virtual leader to temporarly leave the path to
be able to follow a smooth trajectory feasible for
the formation.

The Cartesian coordinates x j(t), y j(t) and z j(t)
define positions p̄ j(t) of all robots (leaders and
followers) and ϕ j(t) denotes their heading. Both
MAVs and UGVs (except the robot assigned as
the GeNav leader) are denoted as followers in the
presented approach. For the MAVs, the heading
ϕ j(t) becomes directly the yaw (see Fig. 1 for the
coordinate system of MAVs). Roll together with
pitch do not need to be included in the kinematic
model employed in MPC, but they depend on the
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Fig. 1 MAV coordinate
system

type of utilized MAVs as shown for a quadrotor
in [36].

Let us assume that the environment contains a
finite number n0 of compact obstacles. The ob-
stacles can be static (as part of a known map)
or dynamic and unknown (detected during the
formation movement by on-board sensors). These
updates of the map are shared by all robots via a
Wi-Fi communication. A follower or even more
followers of the formation can become dynamic
obstacles if deviating from their desired positions
as demonstrated in the failure tolerance simula-
tion in Section 6.

The kinematics for any robot j in 3D is de-
scribed by the simple nonholonomic kinematic
model: ẋ j(t) = v j(t) cosϕ j(t), ẏ j(t) = v j(t) sin ϕ j(t),
ż j(t) = w j and ϕ̇ j(t) = K j(t)v j(t), where feed-
forward velocity v j(t), curvature K j(t) and ascent
velocity w j(t) represent control inputs denoted as
ū j(t) = {v j(t), K j(t), w j(t)}. We assume that UGVs
operate in a flat surface and that z j(·) = 0 and
w j(·) = 0 for each of the UGVs. In case of MAVs,
v j(·), K j(·) and w j(·) values are inputs for the low
level controller, as shown in [36].

Let us now describe a discretization of the kine-
matic model as it is used in the proposed forma-
tion driving with the model predictive trajectory
following included. Let us define a time interval
[t0, tend] consisting of a sequence of elements of
increasing times {t0, t1, . . . , tend−1, tend}, such that
t0 < t1 < . . . < tend−1 < tend. We will refer to tk
using its index k in this paper. For the model
predictive planning, the control inputs are held
constant over each time interval [tk, tk+1), where
k ∈ {0, . . . , end}. We will call the points at which
the control inputs change as transition points.
By integrating the kinematic model over these

intervals, the following discretized model may be
obtained:

if K j(k + 1) ̸= 0:

x j(k + 1) = x j(k) + 1
K j(k + 1)

×
[
− sin

(
ϕ j(k)

)
+ sin

(
ϕ j(k)

+ K j(k + 1)v j(k + 1)#t
)]

,

y j(k + 1) = y j(k) − 1
K j(k + 1)

×
[
− cos

(
ϕ j(k)

)
+ cos

(
ϕ j(k)

+ K j(k + 1)v j(k + 1)#t
)]

,

z j(k + 1) = z j(k) + w j(k + 1)#t

ϕ j(k + 1) = ϕ j(k) + K j(k + 1)v j(k + 1)#t

and if K j(k + 1) = 0:

x j(k + 1) = x j(k) + v j(k + 1) cos
(
ϕ j(k)

)
#t,

y j(k + 1) = y j(k) + v j(k + 1) sin
(
ϕ j(k)

)
#t,

z j(k + 1) = z j(k) + w j(k + 1)#t

ϕ j(k + 1) = ϕ j(k), (1)

where x j(k), y j(k) and z j(k) are the rectangu-
lar coordinates and ϕ j(k) the heading angle at
the transition point with index k. #t is a sam-
pling time, which is uniform in the whole interval
[t0, tend]. The control inputs v j(k + 1), K j(k + 1)

and w j(k + 1) are constant between transition
points with index k and k + 1.

As mentioned in the problem statement, we
assume a heterogeneous 3D formation of a given
shape, which satisfies the requirements given by
the formation driving and the top-view localiza-
tion: (1) robots are in a safe relative distance; (2)
each robot, except the MAV flying in the highest
altitude, is observed by at least one MAV. In
this paper, the shape of the entire formation is
maintained with a leader-follower technique de-
rived from the approach [37], which was designed
for formations of UGVs working in a planar
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environment. For the heterogeneous MAVs-
UGVs formations, we have extended the notation
from [37] to 3D as visualized in Fig. 2. Besides,
we have extended the technique in [37], which is
designed for following smooth splines (continu-
ity of second-order is required), for utilization of
paths consisting of straight line segments, which
are required by the GeNav navigation.

In our method, both types of followers, MAVs
and UGVs, follow the trajectory of the virtual
leader in distances defined in p, q, h curvilinear
coordinate system. The position of each follower
i is uniquely determined by states ψVL(tpi) in
travelled distance pi from the actual position of
the virtual leader along the virtual leader’s tra-
jectory, by of fset distance qi from the trajectory
in perpendicular direction and by elevation hi

above the trajectory. tpi is the time when the
virtual leader was at the travelled distance pi

Fig. 2 The desired shape of the formation described in
curvilinear coordinates

behind its actual position. To get states of fol-
lower i in rectangular coordinates, states of the
virtual leader at time tpi , which is ψVL(tpi) ={

xVL(tpi), yVL(tpi), zVL(tpi), ϕVL(tpi)
}
, have to be

shifted with vector V(tpi) as follows:

ψi(t) = ψVL(tpi) + V(tpi). (2)

The vector V(tpi) consists of four components:
V(tpi) = (−qi sin(ϕL(tpi)), qi cos(ϕL(tpi)), hi, 0).

4 Integrated Trajectory Planning and Formation
Stabilization

4.1 Method Overview

The system designed for the stabilization of het-
erogeneous MAVs-UGVs formations is divided
into four main blocks as you can see in the scheme
depicted in Fig. 3. The first block, GeNav Leader,
is responsible for navigation of the entire for-
mation in the environment. It provides control
inputs for the GeNav leader based on image fea-
tures gained by an onboard camera. The GeNav
method enables to navigate a robot or a group
of robots along a pre-learnt path consisting of
straight segments. The requirements on the piece-
wise straight desired path is important for stability
of the method as analysed in [2].

From the formation stabilization perspective,
an important output of the GeNav Leader module
is a prediction of GeNav leader’s states. For the
prediction, it is assumed that the GeNav leader
follows the desired path without any perturbation
in both, the desired speed and the position on the
path. The perturbations, which occur in real ro-
botic systems, will be diminished by the presented
receding horizon control technique. The predicted
trajectory, which consists of n states derived with
constant sampling time #t, acts as an input of the
Virtual Leader block.

This part is important for avoidance of ob-
stacles that could affect the relative localization
within the group or that could collide with ro-
bots of the formation. Besides, it enables to fol-
low the GeNav leader in connections of straight
line segments of the desired path. In the Virtual
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Fig. 3 Schema of the complete planning and control system

Leader part, the Trajectory Following block pro-
vides control inputs for the virtual leader, which
are feasible for the entire formation and respect
the requirements of the top-view relative localiza-
tion via the model of the formation. In the straight
segments of the desired path, the trajectory found
by the Trajectory Following block follows the de-
sired trajectory with minimal deviation and it is
only employed to diminish possible perturbations.
A significant difference between the desired and
found trajectory occurs mainly due to appearing
obstacles or near to line segment connections.
Details on the trajectory following mechanism
with emphasis on incorporation of the 3D hetero-
geneous formation stabilized under the top-view
localization are presented in Section 4.3.

The resulting trajectory obtained in the Trajec-
tory Following block is described by a sequence
of configurations of the virtual leader ψL(k),
where k ∈ {1, . . . , N}, and by constant control
inputs applied in between the transition points.
According the MPC concept, only a portion of

the computed control actions is applied on the
interval ⟨t0, t0 + n#t⟩, known as the receding step.
This process is then repeated on the interval
⟨t0 + n#t, t0 + N#t + n#t⟩ as the finite horizon
moves by time steps n#t, yielding a state feedback
control scheme strategy. The unused part of the
trajectory can be employed for re-initialization of
the planning process in each planning step, since
the plan of the formation between two consequent
steps is usually changed only slightly. To summa-
rize this, n is number of transition points in the
part of the planning horizon, which is realized
by robots in each planning step, and N is the
total number of transition points in the planning
horizon.

In the proposed formation driving system, the
trajectory obtained in the Trajectory Planning
block is used as an input for the Formation
Driving module, which transforms the plan to
desired configurations of followers (using Eq. 2).
The core of the third main block, which is mul-
tiplied for MAVs and UGVs followers, is also



J Intell Robot Syst (2014) 73:603–622 611

the Trajectory Following module. This part is
responsible for avoiding of impending collisions
with obstacles or other members of the team and
it corrects deviations from the desired trajectory
provided by the virtual leader. In real applications
with dynamic obstacles and disturbances caused
by the imprecise model of sensors and actuators,
the desired trajectories provided by the Formation
Driving cannot be directly applied for control of
particular followers. They have to be adapted to
ensure the stability of the group and non-collision
movement. Similarly as in the leader’s trajectory
following, the unused part of the found trajectory
can be employed for the initialization of the plan-
ning process.

The fourth main block, labelled as Fault Recov-
ery, is employed only if an unwished splitting of
the formation is detected. In such a case, a new
virtual leader is created to lead the unstuck part
of the former group. Its aim is to navigate the
sub-group back to its desired position within the
main formation. It uses the extended MPC tra-
jectory planning approach described in details in
Section 5.2.

A communication (via WiFi) is required only
between the GeNav leader and particular follow-
ers. It is assumed that the GL and VL modules
are realized on the same vehicle. Also the data
from the relative localisation processes are stored
there. Therefore, the communication between the
GeNav leader and followers is limited to sending
the desired trajectory and actual data from the
visual relative localization.

Finally, let us remark that the trajectories of
virtual leader and followers are given in the local
frame of the GeNav leader, since all members of
the formation know its relative position provided
by the top-view localization.

4.2 3D Formation Representation
for the Obstacle Avoidance

One of the main contribution of this work is the
ability of the system to ensure formation stabi-
lization under the top-view visual relative local-
ization in environments with dynamic obstacles.
This requires to design an obstacle avoidance

function included into the trajectory following
method, which is introduced in Fig. 3. The core of
the avoidance function is a proper representation
of the entire formation, which incorporates the
requirement on the direct visibility between the
robots into the formation stabilization process.

In our approach, the 3D formation is repre-
sented by a convex hull of positions of followers
projected into a plane PVL, which is orthogonal
to the trajectory of the virtual leader in its actual
position (see Fig. 4). The projection of the posi-
tion of i-th follower into the plane PVL can be
simply obtained as xVL

i := qi and yVL
i := hi, where

{xVL; yVL} is coordinate system in the plane PVL

as sketched in Fig. 4. The convex hull of the set
of points {xVL

i ; yVL
i }, where i ∈ {1, . . . , nf }, is an

appropriate representation of the 3D formation
under the top-view relative localization by two
reasons: (1) Each follower i intersects the plane
PVL at point {xVL

i ; yVL
i } in future. (2) The convex

hull of such a set of points denotes borders of
the area, which should stay obstacle free. This
ensures that the direct visibility between MAVs
and UGVs, which is crucial for the presented top-
view visual localization, is satisfied.

Moreover for the obstacle avoidance function
presented in Section 4.3, the convex hull (CH)
needs to be dilated by a detection boundary radius
rs to keep obstacles in a desired distance from fol-
lowers. Only obstacles that are closer to the con-
vex hull than rs are considered in the avoidance

Fig. 4 Dilated convex hull. The shaded contours with black
balls represent projections of followers into the plane of
virtual leader



612 J Intell Robot Syst (2014) 73:603–622

function. In the trajectory following process ap-
plied for control of followers, the DCH is reduced
to a circle with radius equal to rs to represent a
single robot.

4.3 Trajectory Planning and Control Mechanism

Let us now describe the trajectory following mech-
anism with obstacle avoidance function more in
details. As mentioned above, the aim of the
method is to find a control sequence that steers
the virtual leader along the desired path followed
by the GeNav leader and consequently to find
control sequences that stabilize the followers be-
hind the virtual leader in desired relative posi-
tions. The intention of the method is to find such
control sequences that keep the virtual leader as
close as possible to the GeNav leader and follow-
ers as close as possible to their desired position
behind the virtual leader, while satisfying the re-
quirements given by the non-collision formation
driving and the top-view relative localization. By
applying this concept, the group is able to respond
to changes in workspace, which can be dynamic or
newly detected static obstacles, and to failures of
a robot of the team.

To define the trajectory planning problem in
a compact form, we need to gather states ψ j(k),
where k ∈ {1, . . . , N} and j ∈ {VL, 1, . . . , nr}, into
vector $ j ∈ R4N and control inputs ū j(k) into
vector U j ∈ R3N . Then all variables describing
the trajectory of the virtual leader or a follower
can be collected in an optimization vector: % j =
[$ j, U j] ∈ R7N . Let us now transform the trajec-
tory planning to minimization of a cost func-
tion J j(% j), j ∈ {VL, 1, . . . , nr}, subject to sets of

equality constraints h j(k) = 0, ∀k ∈ {0, . . . , N −
1}, and inequality constraints g j(k) ≤ 0, ∀k ∈
{1, . . . , N}. The proposed cost function consists of
four components:

J j(% j) =
N∑

k=1

∥∥( p̄d, j (k) − p̄ j (k)
)∥∥2

+
no∑

l=1

(
min

{
0,

dDCH(% j, ol)

dDCH(% j, ol) − RDCH

})2

+ 1
N

N∑

k=1

(
v j(k) − v̄ j

)2 +
(
K j(k) − K̄ j

)2

+
∑

f∈n̄n

(

min

{

0,
d j, f (% j,%

◦
f ) − rs, j

d j, f (% j,%
◦
f ) − ra, j

})2

.

(3)

The first part penalizes solutions with states
deviated from the desired states p̄d, j(k), where
k ∈ {1, . . . , N}. In the virtual leader’s trajectory
tracking, the desired states are obtained by the
prediction of the movement of the GeNav leader.
In the followers’ trajectory planning, the desired
states are derived from the result of the virtual
leader’s trajectory tracking using the formation
driving concept for each of the followers.

The second term of J j(% j) contributes to the
final cost when an obstacle is inside the projection
of the dilated convex hull along the planned tra-
jectory. As mentioned, the convex hull represents
the formation in case of the virtual leader’s trajec-
tory planning or a single robot in case of the fol-
lowers’ trajectory planning. Examples of the pro-
jected convex hull are shown in Fig. 5. The value
of the second term of J j(% j) will be increasing

Fig. 5 The dilated convex
hull projected along the
planned trajectory of the
virtual leader

(a) Formation in a straight segment
     of the path.

(b) Formation in a connection of line
     segments.
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as the obstacle is approaching to the centre of
the convex hull. The constant RDCH is equal to
half of the maximal width of the dilated complex
hull measured in the xL coordinate (RDCH = rs in
the followers’ trajectory planning). The function
dDCH(% j, ol) provides distance from the dilated
convex hull to obstacle ol again in the direction
of xL coordinate. The function value is negative if
the obstacle is outside the dilated convex hull and
positive if the obstacle is in the hull. The direction
of the gradient of such defined avoidance function
is to the side of the hull in the xL coordinate. This
is important since the formation, which is “fixed”
by UGVs to the ground, cannot avoid obstacles by
change of its altitude.

The third term is important for the reducing
of undesirable oscillations in movement of robots
and it eliminates needless aggressive manoeuvres.
This term penalises high variance of control in-
puts. During the optimization process, solutions
with control inputs deviating from their mean

values, v̄ j = 1
N

N∑
k=1

v j(k) and K̄ j = 1
N

N∑
k=1

K j(k), are

penalized, which results into smooth trajectories.
Finally, the last part of the cost function J j(% j)

is crucial for the failure tolerance of the system.
This term is a sum of avoidance functions in which
the other members of the team are considered
also as dynamic obstacles. This part has to protect
the robots in case of an unexpected behaviour
of a defective neighbour. Function d j, f (% j,%

◦
f )

provides minimal distance between the planned
trajectory% j of j − th follower and the recent plan
%◦

f of f -the robot. The (·)◦ symbol denotes the last
results of the optimization process for the partic-
ular robot. The minimal distance is provided for
all f ∈ n̄n, where n̄n = {1, . . . , j − 1, j + 1, . . . , nr}.
The detection radius rs, j is usually smaller than the
basic detection radius rs used for the dilation of
the convex hull, because the follower should not
try to avoid a close neighbour if both are at the
desired position. Beside the detection radius, we
need to define a circular avoidance boundary with
radius ra, j, where rs, j > ra, j. While, single robots
should not respond to other followers detected
outside the region with radius rs, j, distance be-
tween the robots and their neighbours less than
ra, j is considered as inadmissible (it could cause a
collision).

The equality constraints h(k) represent the
kinematic model (1) for all k ∈ {0, . . . , N − 1}
with initial conditions given by the actual state of
the leader. This ensures that the obtained trajec-
tory stays feasible with respect to kinematics of
utilized robots. It means that these constraints are
satisfied if ψ j(k + 1) is obtained by substituting
the vectors ψ j(k) and ū j(k + 1) into the Eq. 1 for
all k ∈ {0, . . . , N − 1}.

The sets of inequality constraints g(k) char-
acterize bounds on control inputs ū j(k) for all
k ∈ {1, . . . , N}. For all followers, the control in-
puts are limited by vehicle mechanical capabilities
(i.e., chassis and engine) as vmin,i ≤ vi(k) ≤ vmax,i,
|Ki(k)| ≤ Kmax,i and for MAVs also wmin, j ≤
w j(k) ≤ wmax, j. These values may differ for each
of the followers. For the virtual leader, these lim-
its have to be extended, since the constraints of
the entire formation need to be included. The
trajectory of the virtual leader must be feasi-
ble for all followers in their desired positions.
For the virtual leader, the admissible control
set can be determined using the leader-follower
approach as maxi=1,...,nr

(
−Kmax,i

1−qi Kmax,i

)
≤ KVL(k) ≤

mini=1,...,nr

(
Kmax,i

1+qi Kmax,i

)
and maxi=1,...,nr

(
vmin,i

1+qi KL(t)

)
≤

vVL(k) ≤ mini=1,...,nr

(
vmax,i

1+qi KL(t)

)
. These restrictions

must be applied to respect different values of cur-
vature and speed of robots in different positions
within the guided formation. Intuitively, e.g. the
robot following the inner track during a turning
movement goes slower but with a bigger curvature
than the robot further from the center of the
turning.

5 Fault Diagnosis and Recovery in Formation
Control

Faults in multi-robot systems and especially in
formations or swarms of various aerial, ground,
water, or underwater robots can be investigated in
several levels of abstraction. In the most general
case, the compact group as a whole can fail in
carrying out its task or mission. The second case
of faults in multi-robot applications represents
examples, where the group is able to continue
with performing its task in a limited way, e.g. a
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robot or even several robots (a sub-group) from
the original group is lost. Finally, we should men-
tion the situation in which all robots can continue
towards fulfilment their task, but some of them
in a limited way. This case is referred as com-
ponent/components failure of a robot, where the
component may be either a sensor or an actuator.

Similarly, the following faults can occur in the
proposed approach of heterogeneous 3D forma-
tion driving due to numerous reasons.

(1) The entire formation can fail if the GeNav
leader loses its path to follow.

(2) The compact formation is not able to follow
the GeNav leader, e.g. due to the motion
constraints or constraints given by surround-
ing environment.

(3) An undesirable separation of a follower or
a sub-group of followers from the main for-
mation can be caused by several reasons:
lost of the relative localization, influences of
the environment or serious failure of robot’s
motion abilities to name few.

(4) Finally, a fault of a robot’s component, which
influences its ability to follow the formation,
may occur in both, MAV and UGV platforms.

The performance and stability of the GeNav
technique, which is employed by the GeNav
leader, is investigated and sufficiently described
in [2] and therefore the first item of the list will
be skipped in the following analyses. In case of a
component failure (the last item of the list), which
may be a malfunction of a sensor or actuator that
is not fatal for the ability to follow the group,
the MPC correction mechanism in the replan-
ning loop takes place. Even in a case of strong
disturbances, which significantly change the sys-
tem in comparison with the model applied in the
predictive control, the deviation from the desired
position is continuously corrected due to the pe-
riodical replanning. If the disturbances exceed a
tolerable limit and the MPC mechanism is not able
to stabilize the robot within the formation, the sit-
uation may be considered as the undesirable sep-
aration of a follower (the second item of the list).

Therefore, only two points have to be resolved
to fully analyse the behaviour of the presented

formation driving mechanism and to enable recov-
ery in case of failures.

• Fault–detection and recovery of the virtual
leader’s trajectory tracking mechanism (the
second item of the list).

• Fault–detection and recovery of the followers’
trajectory tracking mechanism (the third item
of the list).

Remaining types of faults, which do not lead to
the separation of a robot/robots from the forma-
tion, can be compensated by the MPC replanning
as it is usual.

5.1 Failure Detection

Failures of the virtual leader’s as well as followers’
trajectory tracking mechanisms can be detected
simply by observing the progress of values of
function (3) since the same optimization function
is used for solving both problems. The deviation
of the system (virtual leader or a follower) from
its desired position is penalized only by the first
term of function (3). The functional value of this
term corresponds not only to the actual deviation
of the system, but it characterizes also its progress
in future. Therefore, an increase of this value in a
longer time period indicates that the stabilization
mechanism is not able to compensate the devi-
ation. The particular system (a follower or the
virtual leader) can be considered as a lost entity
and a recovery mechanism has to be activated.
It is worth to mention that the value of the first
term of Eq. 3 can be temporary increased also due
to an obstacle avoidance manoeuvre. Therefore,
the threshold signalising the separation of the
controlled system has to be higher than the peaks
caused by obstacles or a reasoning mechanism
with included information given in the second
and fourth terms of Eq. 3, where the obstacle
proximity is penalized, has to be employed. In the
presented experiments, a threshold exceeding the
peaks of the value of the first term in Eq. 3, which
are caused by the obstacles, has been used with
sufficient reliability. Exceeding of this threshold
then indicates the formation decay and it is not
caused by the regular obstacle avoidance. Once
the splitting of the formation or the malfunction of
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the virtual leader is detected, the failure recovery
mechanisms introduced in Fig. 3 and described in
details in the following paragraph needs to be run.

5.2 Fault-Tolerant Formation Control

The purpose of this section is not to present the
well known MPC technique being able to compen-
sate partial faults and uncertainties of sensors and
actuators, but to describe the novel mechanism
developed to recovery the splitted formation. The
proposed approach is based on creating an ad-
hoc virtual leader for commanding the unstuck
group back to its desired position (referred to as
DP) within the former formation. To be accurate,
we should clarify that the desired position DP
corresponds to the desired position of the virtual
leader that leads the new formation.

The standard MPC scheme with the limited
control horizon with a constant sampling time
#t in-between of N transition points may not be
sufficient for the navigation of the unstuck part of
the formation back to its position if the distance
to the rest of the group significantly exceeds the
length of the horizon. A simple prolonging of the
horizon would quickly touch the limits of available
computational resources. Therefore, we propose
to extend the control scheme of the virtual leader
with an additional planning horizon with variable
sampling time in-between of transition points.
This horizon is used for the trajectory planning
of the separated formation/robot into its desired
position DP. The entire horizon is then divided
into two segments, the standard control horizon
and the planning horizon. In the planning horizon,
lengths of time intervals between transition points
are also variables taking part in the planning
problem. This planning algorithm again respects
constraints given by the top view localization and
by kinematics of followers to be sure that the plan
is feasible in case of a sub-formation breakaway.

To define the trajectory planning problem
with two time intervals in a compact form we
need to gather states ψ j(k), where k ∈ {N +
1, . . . , N + M}, and control inputs ū j(k), where
k ∈ {N + 1, . . . , N + M}, into vectors $ j,M ∈ R4M

and U j,M ∈ R3M, similarly as it was done with $ j ∈
R4N and U j ∈ R3N in Section 4.3. The variable

M denotes number of the transition points em-
ployed in the sparse planning horizon, while N
is number of transition points in the short con-
trol horizon, which was used also in the trajec-
tory following algorithm described in Section 4.3.
Also values #t(k), k ∈ {N + 1, . . . , N + M}, that
become variables in the planning horizon need
to be gathered into vector T #

j,M. All variables de-
scribing the complete trajectory (with both con-
trol and planning horizons) from the actual po-
sition of the separated sub-formation until the
desired position within the original formation can
be collected into the optimization vector % j,2 =
[$ j, U j,$ j,M, U j,M, T #

j,M] ∈ R7N+8M.
The fault-recovery mechanism can be real-

ized through the minimization of cost function
J j,2(% j,2) subject to equality constraints h j(k) = 0,

∀k ∈ {0, . . . , N + M − 1}, gS(ψ j(N + M)) = 0 and
inequality constraints g j(k) ≤ 0, ∀k ∈ {1, . . . , N}.
The stability constraint gS(ψ j(N + M)) guaran-
tees that the found trajectory for the formation
will reach its desired position DP. The stability
constraint is given by gS(ψ j(N + M)) := ∥ p̄ j(N +
M) − DP∥, where p̄ j(N + M) is position of the
last transition point in the trajectory. The con-
straints h j(·) and g j(·) are described in Section 4.3.

The cost function J j,2(% j,2), employed in the
trajectory planning and obstacle avoidance prob-
lem, is equivalent to the cost function J j(% j) from
Eq. 3 except the first term penalizing deviation
from the desired states. Here, this term is replaced
by summation

∑N+M
k=N+1 #t(k), which minimizes

the total time to reach the desired location DP.
The value of the sum correlates with the estimated
time of the formation movement in the planning
horizon if the target would be static. In case of
the formation re-coupling, even a moving main
formation (and so moving DP) can be reached
by the unstuck robots due to the periodical MPC
replanning.

6 Experimental Results

Results presented in this section have been ob-
tained by the proposed algorithm with the Sequen-
tial Quadratic Programming (SQP) method [38]
employed for solving the optimization problems
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used in the virtual leader trajectory tracking and
for the stabilization and obstacle avoidance of fol-
lowers. This solver provided the best performance
from the tested available algorithms. Neverthe-
less, one can use any optimization method, which
is able to solve the optimization problems defined
in this paper.

6.1 Simulation of the Formation Movement
with Obstacle Avoidance Tasks

The performance of the presented method in an
environment with static and dynamic obstacles is
shown in the simulation in Fig. 6. The method is
used with parameters: n=2, N =8 and #t=0.25 s.

Fig. 6 Snapshots of the formation movement simulation
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Table 1 Curvilinear coordinates of followers within the
formation used in the experiment presented in Figs. 6 and 7

i 1 2 3 4 5 6 7 8 9 10 11 12
pi 0 0 1 1 1 2 2.7 3.4 .5 .5 2.7 1.6
qi 1 −1 1 −1 0 .6 .8 1 .5 −.5 .8 .2
hi 0 0 0 0 0 0 0 0 .5 .5 .5 1

The experiment presents performance of this ap-
proach in scenarios inspired by a real world mis-
sion. The formation driving technique is employed
in a surveillance application, in which a heteroge-
neous team of MAVs and UGVs has to period-
ically move through three rooms connected by a
corridor. The objective of the mission is to follow
a given path and to keep a desired shape of the

(a) Failure of follower 2 deviating from its desired position. 289s

(b) Follower 5 avoiding the broken robot. 298s

(c) Follower 6 avoiding the broken robot. 303s

(d) All followers successfully avoided the broken robot. 308s

Fig. 7 Simulation of a response of the formation driving algorithm to a failure of one of the followers. The manoeuvre was
recorded by three virtual cameras
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Fig. 8 Progress of the
cost function employed
in the trajectory planning
method during the
movement presented
in Figs. 6 and 7

(a) Virtual leader.

(b) Follower 1.

Fig. 9 MAVs-UGVs formation recovery after its unde-
sired splitting into two independent units

formation. The formation can be autonomously
temporarily shrunk in narrow passages (e.g. in
doorways) or due to dynamic obstacles forcing
followers to perform avoidance manoeuvres. The
team (described in Fig. 2) consists of the GeNav
leader (the orange robot denoted by GL), the
virtual leader (the yellow robot denoted by VL),
8 UGV followers and 4 MAV followers. Three of
the MAVs are positioned in a lower altitude to
be able to relatively localize the ground robots.
The fourth MAV is flying above them to provide
relative positions of the lower MAVs. The MAV
flying in the highest altitude could detect also the
UGVs, but with much lower precision and reliabil-
ity due to the greater relative distance and possi-
bility of visibility interruption by one of the lower
MAVs. Besides, the desired relative positions of
the MAVs in the formation are determined in

Table 2 Performance of the fault-recovery mechanism
with different ratio between the speed of the main forma-
tion (vmain = 1 in the experiments) and the speed of the
unstuck formation vunstuck

vunstuck 1 1.1 1.2 1.3 1.4 1.5 1.6
Time inf 41 s 21 s 14 s 10 s 8 s 7 s

The value of Time indicates time required for re-coupling
of the sub-formation that was deviated from its desired
position in distance 2 map units in x coordinate and 5 map
units in y coordinate
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such a way that they are not mutually influenced
by air flow effects. The followers’ coordinates
relative to the virtual leader are presented in
Table 1.

The initial position of the group is depicted in
the first snapshot in Fig. 6 captured at time 1 s.
In snapshots 16–23 s, the outer followers of the
formation temporarily deviate from their desired
positions to pass through the narrow passage to-
wards the second room. The original shape of the
formation is restored and the group starts avoid-
ing the overhead obstacle in snapshots 42–55 s.
The obstacle is sufficiently high to be passed under
by all robots except the MAV flying in the highest
altitude. The GeNav leader can be navigated with-
out any influence of the obstacle, but the rest of
the formation has to move away from the desired
path to keep the constraints given by the relative
localization. In the snapshot captured at time 55 s,
one can see the deviation of the position of the
virtual leader from the position of the GeNav
leader. This enables to avoid the obstacle in a way
that the obstacle is always situated outside the
dilated convex hull of the formation. In the 74th
second, the formation returns back on the desired
path, but it is again forced to avoid the second
overhead obstacle (snapshot at time 91 s). At time
140 s, the GeNav leader is approaching into the
first connections of line segments of the path. The
virtual leader and the followers are waiting for
the GeNav leader, which has to turn on the spot.
They are already deviated from the path to be able
to smoothly continue without any complicated
manoeuvring. Once the turning of the GeNav
leader is finished (171 s), the complete formation
continues back on the desired path (182 s, 192 s).
At time 318 s, an unknown obstacle is detected
by the formation. The obstacle is avoided, using
the virtual leader’s obstacle avoidance function,
at the price of temporarily leaving of the desired
path (snapshots at 323 s and 339 s). The second
obstacle is detected by the followers, see snapshot
at time 362 s. This dynamic obstacle cannot be
avoided by the virtual leader’s re-planning, since
it was detected too late. Therefore, the avoid-
ance function included in the follower’s trajectory
following method is utilized here. The shape of
the formation is temporarily changed to keep the
obstacle outside the dilated convex hull (369 s).

Cost-function values of the virtual leader’s and
the 1st follower’s trajectory planning during the
movement presented in Fig. 6 are depicted in
Fig. 8. The peaks in the course of the leader’s cost
values correspond with the places of connections
of line segments forming the desired path that has
to be followed. In these connections, the virtual
leader is forced to deviate from the path to be
able to pass the sharp edges of the path smoothly.

(a) Formation going through a connection of straight
segments of the path.

(b) Formation is temporarily shrinking to get through the
narrow passage.

Fig. 10 Formation driving using the GeNav algorithm for
the navigation and the top-view relative localization for the
stabilization
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Also the first unknown obstacle is contributing
into the virtual leader’s cost values. The temporal
increase of cost values of the trajectory tracking
of follower 1, which was chosen as an interesting
example, is caused by the proximity of the obsta-
cles. The obstacles force the robot to leave the
desired position in the formation. The deviation
from the desired state is penalized by the first term
in the Eq. 3. The red lines in the courses of the
values denote parts, in which the GeNav leader is
turning to be able to follow the next path segment
and the rest of the formation is waiting in static
positions.

6.2 Simulations of the Fault Tolerance
and Recovery

Beside the obstacle avoidance abilities, we have
tested also the proposed fault-tolerant mechanism
included in the formation driving scheme. As
a part of the complex experiment presented in
Fig. 6, a failure of one of the followers (its steering
was blocked) has been simulated. The response
of the formation to the undesired motion of the
broken follower is in details shown in Fig. 7. In the
snapshots, a successful avoidance manoeuvre of
followers 5 and 6 as a response to prediction of the
collision is demonstrated (see the last part of Eq. 3
for details on the applied avoidance function).

The second simulation (Fig. 9), verifying the
proposed fault-recovery technique, presents the

re-coupling of an inadvertently disconnected for-
mation using the trajectory planning approach
introduced in Section 5.2. In the experiment, the
formation led by the robot equipped with the
GeNav system (denoted as GL in the picture)
follows a straight path segment. A sub-formation
of two UGVs and one MAV has been separated
from the group. In this unstuck group, a new
virtual leader with position denoted as VL in the
picture is created. Physically, the planning pro-
cedure of VL is run on a robot with sufficient
computational power. It can be any robot from the
original group, since it is assumed that the range
of the visual relative localization (which cannot be
interrupted) is significantly lower that the range of
WiFi used for transfer of the plans for particular
followers. The new formation starts its movement
to reach the rest of the group from a location,
which is deviated 2 map units sideways and 5 map
units behind its desired position. As expected, the
performance of the algorithm varies depending on
the difference between the speed of the former
formation and the maximal allowed speed of the
unstuck group. This relation is shown in Table 2,
where the performance of the formation recov-
ery is expressed as the time needed for the re-
coupling. It is obvious that in the case of same
maximal allowed speed of both formations (the
first column of the table), the unstuck formation
cannot reach its desired position DP (denoted by
the inf sign in the table).

a) b) c) d) e) f)

Fig. 11 Demonstration of the mechanism providing fault-tolerance in the MAVs-UGVs formation driving
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6.3 Hardware Experiments

The experiment in Fig. 10a demonstrates the abil-
ity of the obstacle avoidance by temporary shrink-
ing of the formation and it verifies the forma-
tion movement in a connection of path segments
(Fig. 10b). In the experiment, the Pioneer 3-AT
robotic platform is employed as the GeNav leader
and two MMP5 platforms and the Ar.Drone
MAV act as followers. Beside the pictures of the
formation movement, images used for the GeNav
visual navigation and for the top-view relative
localization are shown in Fig. 10 and in a video
record of the experiment [39].

In the final experiment, the failure recovery
mechanism is shown in practice (see Fig. 11). The
employed formation consists of a G2Bot-Testbed
of the Czech Technical University employed as
the leader and the MMP5 robot and the Ar.Drone
used as followers. In the experiment, the MMP5
follower is firstly slightly pushed from its position
within the formation, which is corrected based on
the information from the top view relative local-
ization only. The failure of the formation integrity
is demonstrated by the forced shift of the robot
behind the formation, which is again compensated
to achieve the desired shape of the formation.

7 Conclusion

In this paper, a novel fault-tolerant formation
driving approach developed for heterogeneous
MAVs-UGVs teams was proposed. The core of
the method consists in stabilization of the compact
3D formation by the top-view visual relative local-
ization in control feedback. Besides, the proposed
method is suited for utilization of a simple visual
navigation of the formation based on detection
of features in images obtained by an onboard
camera. It was shown that these simple on-board
vision based systems enable to deploy teams of
closely cooperating unmanned ground and aerial
vehicles in environments without any pre-installed
infrastructure for robots’ localization. Beyond the
description and experimental verification of the
proposed method, the fault diagnosis and recov-
ery mechanisms were provided in the paper.
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Abstract A complex system for control of swarms of
micro aerial vehicles (MAV), in literature also called as
unmanned aerial vehicles (UAV) or unmanned aerial systems
(UAS), stabilized via an onboard visual relative localization
is described in this paper. The main purpose of this work is
to verify the possibility of self-stabilization of multi-MAV
groups without an external global positioning system. This
approach enables the deployment of MAV swarms outside
laboratory conditions, and it may be considered an enabling
technique for utilizing fleets of MAVs in real-world scenar-
ios. The proposed visual-based stabilization approach has
been designed for numerous different multi-UAV robotic
applications (leader-follower UAV formation stabilization,
UAVswarmstabilization anddeployment in surveillance sce-
narios, cooperative UAV sensorymeasurement) in this paper.
Deployment of the system in real-world scenarios truthfully
verifies its operational constraints, given by limited onboard
sensing suites and processing capabilities. The performance
of the presented approach (MAV control, motion planning,
MAV stabilization, and trajectory planning) in multi-MAV
applications has been validated by experimental results in
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indoor as well as in challenging outdoor environments (e.g.,
in windy conditions and in a former pit mine).

Keywords Micro aerial vehicles (MAVs) · Unmanned
aerial vehicles (UAVs) · Formations · Swarms · Visual
relative localization · Stabilization · Control · Trajectory
planning

1 Introduction

The proposed approach relies strictly on onboard sensors and
aspires to be an enabling technique for using closely cooper-
ating MAV-groups in workspaces that are not equipped with
motion capture systems (e.g. VICON1), which usually pro-
vide very precise and fast global localization of MAVs. With
the proposed method, the utilization of closely cooperating
MAVs is possible without installing any global localization
infrastructure prior to theMAVsdeployment in aGPS-denied
environment. Besides, it enables applicability of multi-MAV
teams in tasks requiring flight operations in close proxim-
ity between neighbors, where precision and reliability of
GPS are not sufficient. The proposed approach is also espe-
cially appealing for missions in which the GPS signal may
be jammed.

The robot localization being restricted to the onboard
sensory system also significantly reduces the amount of com-
munication necessary for the robots’ coordination. In some
applications, the group stabilization and control towards
mission objectives can be achieved without explicit commu-
nication, as shown later in this paper where examples of the
applicability of the system are presented. Disabled commu-
nication is crucial for MAVs operating in workspaces where

1 http://www.vicon.com/.
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radio transmissions are not feasible due to the structure of
the environment or due to safety rules. Besides, current com-
munication technologies do not provide sufficient bandwidth
for large communities of robots operating in relatively small
areas. In the proposed method, robots can share the infor-
mation required for self-stabilization through observation of
states of neighbors, i.e. by the onboard (in our case, visual)
relative localization.

This paper presents a control system designed for multi-
MAV teams, its overall structure, and a description of its
components. An important part of the paper is an overview
of three commonly used planning approaches for multi-
MAV system (formation control, environment monitoring by
swarm control, andMAV-group deployment in a surveillance
scenario), which were designed for using with this system.
In the description of the methods, it is highlighted how to
deal with constraints given by the visual relative localization
and how to integrate them into motion planning in specific
multi-MAV applications. This should provide a guideline
for developing high level planning algorithms in specific
multi-MAV applications, since satisfying constraints of the
onboard relative localization is crucial for achieving reliable
behaviour by the MAV-group. Unlike the external global
positioning system, where the precision and reliability of
the robots’ localization is independent to mutual positions
of MAVs and the shape of the swarm, the operational space
of the onboard relative localization sensors (for the vision
sensor, mainly the range and the view angle of cameras) sig-
nificantly limits the deployment of robots.

We rely on a light-weight embedded vision system using
monocular cameras with a limited view angle. The system
takes advantage of the possibility to equip all team members
with black and white (B/W) patterns, which enables us to
achieve sufficient precision on the order of centimeters if the
actual distance between neighboring vehicles is on the order
ofmeters. The detection of simple patternswith known shape
and size also significantly speeds up the image processing.
The localization system may therefore provide relative posi-
tion measurements up to 60 times per second, and may be
directly employed in the feedback loop for control and sta-
bilization of the MAV-group.

The proposed control scheme integrates information from
an onboard camera module with data from an inertial mea-
surement unit and a commercially available PX4Flow2 smart
sensor employed tomeasure the altitude and velocities of par-
ticularMAVs in the swarm.TheMAV-group is then stabilized
in three levels. The lowest level is the fastest control loop real-
ized by theOEMMikroKopter’s attitude stabilization board.3

Above this loop, we have developed a position stabilization
mechanism that leverages data from the visual relative local-

2 https://pixhawk.org/modules/px4flow.
3 http://www.mikrokopter.de/.

ization unit in the control feedback. On the top of that, we
show three examples of swarmmotion planning. The motion
planning acts as the third control level designed for naviga-
tion of the wholeMAV-group and its stabilization in required
shapes, which may be dynamically changed. The methods
employ a concept of adaptively evolving group behaviors
that are established to decrease the uncertainty of the rela-
tive localization. These approaches are novel in the way how
the constraints of vision based localization are incorporated
into the control scheme. The operational constraints of the
relative localization describe where neighboring particles or
an object of interest equipped with the identification pat-
tern may be detected and localized with a required precision
and reliability. Plans that consider a model of the localization
precision and reliability may decrease the overall uncertainty
and increase the reliability of the complex autonomous sys-
tem, as it was shown in our previous work on this topic (Faigl
et al. 2012). Therefore, the proposed group motion planning
approaches use a model of the localization system arising
from theoretical analyses of the vision system and from an
experimental evaluation of the system performance in real
scenarios.

The paper is organized as follows. The related work and
the contribution of the proposed MAV-group stabilization
systems with respect to the state-of-the-art are presented
in Sect. 2. In Sect. 3, the hardware components of the
localization module and the pattern detector approach are
presented. The control scheme suited for onboard visual rel-
ative localization is proposed in Sect. 4. Section 5 presents
an experimental verification of the system. Section 6 sum-
marizes three examples of high level motion control with
integrated MAVmotion constraints, obstacle avoidance, and
constraints of the relative localization. These approaches and
the performance of the onboard relative localization sys-
tem are verified in real flight conditions. Finally, concluding
remarks are stated in Sect. 7.

2 State-of-the-art

2.1 Swarms of autonomous vehicles

Recent research on multi-MAV systems has focused on
aspects of communication and maintenance of connectivity
within the team members (Teacy et al. 2010; Schmickl and
Crailsheim 2008), modeling of the swarm behavior by pre-
dicting individual behaviors (Winfield et al. 2008; Hamann
and Worn 2008), task allocation and strategies for solving
multiple tasks (Berman et al. 2009; Liu et al. 2007; Fazli
et al. 2013), and control and collision avoidance within the
swarm (Sharma and Ghose 2009; Kumar et al. 2010; Yu and
Beard 2013; Turpin et al. 2012). Topics covered in this paper
are relatedmainly to control and stabilization ofMAV teams.
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In literature, one can find papers describing control method-
ologies for swarms of both autonomous ground vehicles
(Kloetzer and Belta 2007; Cai et al. 2011; Cheah et al. 2009;
Marjovi and Marques 2013) and unmanned aerial vehicles
(Bennet andMcInnes 2009; Barnes et al. 2008; Holland et al.
2005;Doitsidis et al. 2012). Thesemethods are often inspired
by nature (e.g., by flocks of birds Leonard & Fiorelli (2001)
or molecules forming crystals Balch and Hybinette (2000)),
and they try to fulfil various requirements of swarm robot-
ics. Since the proposed approach follows the requirements
of swarms as listed in Trianni (2008): scalability for large
groups, high redundancy and fault tolerance, usability in
tasks unsolvable by a single robot and locally limited sensing
and communication abilities, examples of studies investigat-
ing these domains should also be mentioned. In particular, a
hierarchical framework for planning and control of arbitrar-
ily large swarms is proposed in Kloetzer and Belta (2007).
Considerations influencing the fault tolerance of teams are
discussed in Christensen et al. (2009) and various co-
operation strategies for teams of MAVs solving multi-robot
tasks are published in Buerkle and Leuchter (2009). Finally,
controllers for swarms of robots with limited communication
requirements are described in Cai et al. (2011) and Cheah
et al. (2009), where the necessary conditions for swarm sta-
bility are described using a direct graph topology in Cai et al.
(2011), and aLyapunov-like function is employed for conver-
gence analysis of multi-robot systems in Cheah et al. (2009).

The work in Cheah et al. (2009), which investigates
swarming behaviors of ground robots in a planar environ-
ment, is the most closely related to the research proposed in
this paper. We also aim to develop a system for stabilization
of swarms in a desired shape while maintaining a close dis-
tance among swarm members. Beyond the method designed
inCheah et al. (2009) for ground robots, 3D swarmprinciples
and swarming rules adapted for the requirements of visual
relative localization are established in this paper.

In general, most of the state-of-the-art algorithms men-
tioned above have been verified only via numerical simu-
lations, using ground vehicles, or rarely with MAVs, but
in laboratory conditions (usually with VICON in control
feedback). These approaches therefore often omit realistic
constraints given by the real outdoor deployment of compact
MAV-groups, which is the aim of this paper. The proposed
system goes beyond these works mainly by incorporating
the requirements of relative visual positioning into theMAV-
group motion planning, stabilization, and coordination. This
improvement makes it possible to deploy large multi-MAV
systems flying in compact formations or swarms outside of
laboratories equipped with positioning systems. Besides, the
possibility of direct interactions by perceiving neighboring
robots in the MAV-group brings artificial swarms closer to
the initial ideas and theoretical studies of swarming princi-
ples observed in nature.

2.2 Systems of relative localization of autonomous
robots

Let us now briefly describe the state-of-the-art methods of
geometric pattern detection, since the employed visual rel-
ative localization system based on B/W pattern detection
is instrumental in the presented control approach. A basic
method for geometric pattern detection is the General-
ized Hough Transform (Ballard 1981) used for finding the
parameters of the expected geometrical shapes, which is
unfortunately computationally demanding. The computa-
tional complexity issue is investigated e.g. inCai et al. (2004),
where theRANSACalgorithm is applied, inRad et al. (2003),
which is aimed at tracking objects easily separable from the
background, and in Jia et al. (2011), where themethod is con-
strained to finding ellipses. These methods are sufficiently
fast when using a standard PC, whichmay be placed onboard
more powerful ground robots. However, these methods can-
not be considered real-time for light-weight MAVs equipped
with small embedded processors. One can find algorithms
suited for embedded systemswith real-time performance, but
their limitations restrict their utilization in real-world appli-
cations (e.g. the system in Carreras et al. (2003), which is
based on detecting color segments, and the approach inMas-
selli and Zell (2012), which uses a pattern of four tennis balls,
suffers in varying lighting conditions).

If we omit methods with image processing performed on
an external desktop PC (e.g. GarcaCarrillo et al. (2011); Boš-
nak et al. (2012)), the most relevant approach to our vision
system is proposed inLange et al. (2009). Themethod (Lange
et al. 2009) uses white rings for MAV positioning during
landing, but provides a relative position update at only 0.1Hz.
In addition, a more powerful onboard PC is required for the
real-time control in Lange et al. (2009). The same problem
arises in Yang et al. (2012), where the “H” shape landing
pattern is detected in real-time, but with a powerful onboard
PC. Our solution provides sufficient sensitivity of detection
and precision for the MAV-group stabilization and satisfies
computational requirements of onboard embedded systems
carried by lightweight MAVs.

3 System for relative localization

As mentioned in the introduction, the core technique for
the proposed stabilization, coordination, and navigation of
MAVs is the visual relative localization based on the pattern
detection by onboard cameras. The two main requirements,
fast localization and onboard usability, require low computa-
tional demands for the image processing part. Therefore, we
use an algorithm that allows for rapid detection and local-
ization of simple circular patterns composed of concentric
black and white circles of known diameter. Our algorithm
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Fig. 1 The localization pattern and the operational space of the relative
localization system

(details described in Krajník et al. (2014)) outperforms com-
mon black-and-white pattern detectors in terms of speed by
an order of magnitude while achieving similar precision and
robustness. An example of the localization pattern with a
sketch of the possible operational space of the relative local-
ization module is depicted in Fig. 1.

The detection algorithm searches the image for circular
patterns using a combination of flood-fill techniques, on-
demand thresholding, and on-the-fly statistics calculation.
The statistical information gathered on-the-fly is used to test
whether the continuous areas of pixels are likely to represent
the searched pattern, and quickly reject false candidates. The
main advantage of the method is that it can be initiated from
any position in the image without a performance penalty,
which allows for a simple implementation of pattern track-
ing. In a typical situation, the algorithm processes only the
area that is occupied by the pattern itself, which results in a
significant performance boost.

In the initial phase of the pattern detection, the image is
scanned for a continuous segment of black pixels. Segmen-
tation of the pixels into black and white classes employs
an adaptive thresholding that ensures good performance of
the algorithm under variable light conditions, which is espe-
cially important in real-world outdoor experiments. Once a
continuous segment of black pixels is found by the flood-
fill method, it is tested for minimum size and roundness.
A pattern with outer and inner diameters do, di , bounding
box dimensions bu , bv and area s is considered circular if its
roundnessρout is smaller than a predefined constantρmax , i.e.

ρmax > |ρout | =
∣
∣
∣
∣
∣

π

4s
bubv

d2o − d2i
d2o

− 1

∣
∣
∣
∣
∣
. (1)

If a black region passes the roundness test, the flood-fill
algorithm is initiated from the region’s centroid in order to
search for the inner white segment. Since the inner segments
are circles and not rings, the roundness test for the innerwhite
segments is simpler than (1):

ρmax > |ρin| =
∣
∣
∣
π

4s
bubv − 1

∣
∣
∣ . (2)

Then, the concentricity of segments and the ratio of their
areas are tested. After passing these tests, the positions of the
segments’ pixels ui , vi that were stored during the flood-fill
are used to calculate the ellipse center u, v and covariance
matrix C as follows:

C = 1

s

s−1
∑

i=0

(

uiui uivi
uivi vivi

)

−
(

uu uv

uv vv

)

. (3)

Note that ui , vi are integers, and the computationally most
expensive part of (3) is calculated using integer arithmetic.

Finally, the ellipse semiaxes e0, e1 are obtained from
eigenvalues λ0, λ1 and eigenvectors v0, v1 of the covariance
matrix C as follows:

e0 = 2λ
1
2
0 v0,

e1 = 2λ
1
2
1 v1.

(4)

Knowing the length of the ellipse semiaxes, the final seg-
ment test is performed:

ξ > |πe0e1s − 1| . (5)

The constant ξ represents a tolerance value much lower
than ρmax , because the ellipse dimensions e0, e1 are obtained
from the covariancematrixwith the sub-pixel precision. If the
detected segments satisfy (4), they represent the localization
pattern, and the obtained information is used to calculate the
spatial dimensions of the pattern.

To obtain the relative distance of the pattern, we calculate
the image coordinates of the ellipse (co-)vertices and trans-
form these into canonical camera coordinates. This transfor-
mation takes into account not only the camera length and
optical center, but also its radial distortion. The transformed
vertices are then used to calculate the centre and axes of the
ellipse in the canonical camera form. From the vertices, we
calculate a conic Q such that the ellipse points u′, v′ satisfy
⎛

⎝

u′
v′
1

⎞

⎠

T

Q

⎛

⎝

u′
v′
1

⎞

⎠ = 0. (6)

Then, we calculate the eigenvalues λ0, λ1, λ2 and eigen-
vectors q0, q1, q2 of the conic Q and use them to obtain the
position of the pattern in space by the equations presented
in Yang et al. (2012):

x = do√−λ0λ2

(

q0λ2

√

λ0 − λ1

λ0 − λ2
+ q2λ0

√

λ1 − λ2

λ0 − λ2

)

, (7)

where do is the circular pattern diameter.
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Table 1 Performance of the relative localization

Resolution 320 × 240 480 × 360 640 × 480 752 × 480

FPS 60 46 30 27

L
(m)

Le
(cm)

Lδ

(%)
Le
(cm)

Lδ

(%)
Le
(cm)

Lδ

(%)
Le
(cm)

Lδ

(%)

0.5 1.2 0.1 0.9 0.4 3.6 0.6 4.3 1.2

1.0 0.1 0.1 0.3 0.1 1.5 0.3 2.3 0.6

1.5 0.6 0.1 0.9 0.1 0.1 0.1 0.4 0.5

2.0 0.2 0.5 1.0 0.1 1.1 0.1 0.8 0.1

2.5 2.0 0.2 0.0 0.2 0.7 0.2 1.8 0.2

3.0 1.2 0.2 0.7 0.3 0.0 0.2 4.0 0.2

3.2 3.0 0.2 1.8 0.7 3.5 0.2 2.3 0.2

3.5 – – 1.8 0.9 0.8 0.2 2.2 0.2

4.0 – – – – 5.4 0.4 3.3 0.4

4.5 – – – – 2.7 0.3 2.5 0.2

5.0 – – – – 2.4 0.6 3.4 0.6

5.5 – – – – 6.6 0.5 6.5 0.7

3.1 Relative localization system performance

The aim of this section is to show the performance of the
relative localization system and to empirically specify its
operational space. For details and experiments identifying the
sensormodel, see Faigl et al. (2013) andKrajník et al. (2014).
Except the viewing angle, which can be clearly defined for
each optical system (based on the lens), the most important
factors that need to be considered in swarm stabilization and
motion planning are the measurement accuracy and relia-
bility. Both of these depend on the distance of the measured
object, which provides amaximummeasurable distance with
acceptable system properties. Themaximummeasurable dis-
tance is then considered to be the range of the relative visual
localization. This a priori obtained sensormodel is crucial for
the proposed multi-MAVmotion planning and coordination.
The detection reliability was measured with a pattern (with
outer diameter do = 0.18 m) placed on the camera optical
axis at a distance L from the camera and compared with the
ground truth (see Table 1).

Four different resolutions of the Caspa camera (used in
all presented experiments) have been tested. The higher res-
olutions provide significantly better results, but at the cost
of a decreasing measurement rate. The presented frame rates
measured as Frames per Second (FPS) are obtained when
the pattern is tracked (i.e. the blob is continuously detected
without failures).4 If the pattern is not detected on the basis
of its position in the previous image and the whole picture
needs to be processed, the frame rate sinks to 50–60% of

4 For the 320× 240 resolution, the frame rate is limited by the camera,
which can provide images at 60 Hz.

the previous value. However, this lower value is not signifi-
cant for the proposed control approach, since the measured
relative distance is considered in the control loop only if the
pattern is repeatedly detected. In the error and reliability data,
we assume a systematic error proportional to the measured
distance, which may be identified using the real distances
and the Least Square Method (LSM). We present an average
distance corrected by the systematic error (denoted as L̂),
since this value is more relevant for control and stability than
the actual measured values of the distance in swarm applica-
tions. The corrected error in the distance estimate is obtained
as Le = |L − L̂|, where L is the ground truth. The stan-
dard deviation, Lδ , presented as percentage of the measured
distance, describes the repeatability of the measurements.

In addition to the variable resolution of the processed
images, another aspect influencing the performance is the
size of the pattern. As expected, with smaller patterns, the
distance measurement error increases and the maximum
measurable distance significantly decreases. For example,
480 × 360 image resolution allows the maxium measurable
distances Lmax = {3.5, 2.0, 1.5, 1.0, 0.5} m with pattern
diameters d = {18, 9, 8, 7, 5} cm.

In addition to this analysis, we conducted an experiment to
evaluate the performance of the vision-based relative local-
ization and to characterize its operational limits in flight
conditions (see Fig. 2). During the experiment, two MAVs
hovering in approximately static positions aim to localize the
third MAV, which is following a predefined trajectory (see
Fig. 3 for the ground truth positions of all MAVs obtained
using VICON). All vehicles are equipped with cameras and
identification patterns. This measurement was crucial for
experimental evaluation of the limits of the space in which
neighboring MAVs can be relatively localized.

4 MAV model and control system

4.1 MAV model

In the proposed approach, a suitable model of the quadro-
copters is essential for use in simulations of MAVs move-
ment, in motion planning, and in inter-vehicle coordination.
This ensures that the motion constraints are satisfied during
the planning process and that the obtained solution is feasi-
ble for the MAV-group. In this work, we rely on a simplified,
decoupled dynamical model described as follows:

ẍW = U

m

(

sinψ I cosφW − sin θ I sin φW
)

,

ÿW = U

m

(

sin θ I cosφW + sinψ I sin φW
)

,

z̈W = U

m
cos θ I cosψ I − g, (8)
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Fig. 2 Snapshots from
measurements of the operational
space of the visual relative
localization system, which is
important for specifying
constraints for the planning of
swarm movement

Fig. 3 Positions of MAVs captured by VICON during the experiment
from Fig. 2

where φ is the yaw angle, θ is the pitch angle, ψ is the roll
angle, U is collective thrust, m is the mass of the MAV, and
g is the gravitational acceleration. We consider 3 frames of
reference (Fig. 4). The world frame (W ) that is fixed in the
workspace, the body frame (B) that coincides with particular
MAVand the IMUframe (I ) inwhich the roll andpitch angles
are measured.

4.2 Control and stabilization scheme

The complete system used for stabilizing the group members
at desired relative distances (keeping the required shape of
the group) and for motion simulation at the motion planning
level is depicted in Fig. 5. The system consists of a controller
(block C), the stabilization unit (S), and the model from (8).
For deployment of the system, parameters of the linearmodel
are identified usingLeast SquaresMethod from themeasured
flight data.

By

Bx

Bz
ψ

θ

Wx

Wy

Wz

Ix

Iy
Iz

r, φ

Fig. 4 The reference frames used in description of MAV control
scheme.W world frame, B body frame, I IMU frame

C S M

⎛
⎜⎜⎝

ψ
θ
U

φ̇

⎞
⎟⎟⎠

⎛
⎜⎜⎝

xD

yD
zD
φD

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ψD

θD
UD

˙φD

⎞
⎟⎟⎠

⎛
⎝

ẍ
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ẋ
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⎠
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φ̇ẋ, ẏ, ż

x, y, z, φ

Fig. 5 Scheme of the system together with a controller. Position, its
derivatives and φ are meant in the world frame, θ and ψ in the IMU
frame

The flow of data within the proposed swarm stabiliza-
tion system is shown in Fig. 6. The control scheme is suited
for the MikroKopter quadcopter platform used for experi-
mental evaluation of the visual relative localization based
stabilization of the multi-MAV system in Sect. 5. The com-
mercially available MikroKopter set includes a proprietary
attitude stabilization board (Flight-CRTL) using an onboard
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Quadcopter

Stabilization
Controller

IMU
Position
Controller

Filters

Gumstix

Caspa Camera PX4Flow
Sensor

Flight-CTRL Custom control board

Camera Module

ATmega

Fig. 6 Scheme of the data flow

Inertial Measurement Unit (IMU) for control feedback. The
vision-based stabilization is built upon this lowest level and
controls the relative positions between neighboring swarm
entities. The solution is based on a custom board with the
ATmega μ-controller, which also serves as a communica-
tion hub between all onboard modules. Data received from
the visual system, together with the output from IMU and
from the PX4Flow smart camera sensor, serve as the con-
trol feedback at this level. The PX4Flow sensor provides
information on the altitude and velocities relative to the sur-
rounding environment. This setup is crucial for suppressing
the motion oscillations within the group that are caused by
the cumulative position error. The IMU provides angles θ I ,
ψ I , PX4Flow provides ẋW , ẏW , and zW , and the camera
module provides relative coordinates to the particular neigh-
bor x In , y

I
n , z

I
n . The position controller computes the desired

control outputs φ I
D , ψ

I
D , and U

I
D .

Three controllers are integrated in block C; the for-
ward and lateral controllers are identical due to the system
decoupling. The following equation denotes the controllers
outputs:

θ I
D = KPex + KD

dex
dt

+ KI

∫ t

0
ex dτ,

ψ I
D = KPey + KD

dey
dt

+ KI

∫ t

0
ey dτ,

UD = LPez + LD
dez
dt

+ L I

∫ t

0
ez dτ, (9)

where KP , KD , KI , KA, LP , LD , and L I denote the con-
troller constants that need to be identified during the system
setup. The control errors, eIx , e

I
y , and e

I
z , define the difference

in the IMU coordinate system between the actual position of
the controlled MAV and the desired position. The desired
position is determined by the relative position to the circu-
lar pattern (resp. patterns) measured by the onboard visual
localization, and by the desired relative position to the pat-
tern (resp. patterns) given by a high-level planning method
(see Sect. 6 for examples of various planning approaches).
The desired position may be dynamic in the sense of mov-
ing localization pattern (resp. patterns), which is placed on

neighboring MAV (resp. MAVs), and/or in the sense of alter-
ing desired relative positions. In experiments with a static
hovering MAV, the desired position is determined relatively
to an initial position by the PX4Flow sensor.

5 Experimental verification of the system with
visual relative localization in control feedback

In the first experiment, which was performed to demonstrate
the performance of the control scheme, a singleMAV is stabi-
lized at a fixed relative distance to a static localization pattern.
In this case, the MAV is also equipped with the localization
pattern for its off-line global localization using an external
fixed camera (see Fig. 7). The data from the external camera
is used for experiment recording and off-line analysis, while
the MAV control relies on onboard sensors only. The results
from this external camera are plotted in Fig. 8. Themean con-
trol deviation from the desired equilibrium was 0.11, 0.12,
and 0.04m with standard deviations 0.14, 0.15, and 0.05m,
measured in the x , y, and z coordinates. The slight motion
oscillations are causedmainly by the noise in the sensor data.
See Fig. 9 for data from the camera module with Gumstix,
optical flow obtained from the PX4Flow sensor, and the out-
puts of the designed controllers. A detailed view of a sample
from Fig. 9 is presented in Fig. 10.

The stabilization of neighboring vehicles with a prede-
fined mutual distance is shown in the outdoor experiment in
a former pit mine (see Fig. 11 for pictures from the exper-
iment). The experiment verifies the ability of the system to
follow a moving “leader” MAV with an attached localiza-
tion pattern. The first MAV (the leader) is controlled along a
pre-planned trajectory based on the visual odometry from a
PX4Flow sensor (the pose estimate is obtained by integrating

Fig. 7 MAV stabilized at a fixed relative distance to the static pattern.
The onboard pattern is used for external localization, which gives the
ground-truth for experiment evaluation
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Fig. 8 Deviation from the desired equilibrium located at 2.5 m from the static circular pattern (experiment in Fig. 7). Data obtained from the record
of the external camera

Fig. 9 Sensor data and controller output during the experiment shown
in Fig. 7. The first picture presents the output (in x , y, and z coordi-
nates) from the onboard relative localization module. The output from

the PX4Flow sensor is shown in the second picture, while the outputs
of the controllers are presented in the third plot

the optical flow from the down-looking camera). The second
MAV follows the first one at a fixed desired spacing based on
feedback from the onboard visual relative localization sys-
tem. The elevation above the slope of the mine is fixed for
both MAVs based on the feedback from the sonar.

The same experimentwas repeated in the presence ofwind
on a flat road. We demonstrated that the system is also able
to stabilize the formation with minimal influence of the wind
on the performance of the system (see Fig. 12 for pictures
taken during the experiment). Videos of these experiments
can be downloaded from Multimedia (2015).

The aim of the experiment presented in Fig. 13 is to
demonstrate flying in strings of the relatively stabilized
MAVs using the proposed system. In the case of stabilization
of large groups ofMAVs, it is difficult to ensure that allMAVs
are stabilized directly to the same MAV (a common leader).
Naturally, more complex networks arise in swarms or for-
mations of MAVs, in which always some robots need to be
stabilized relatively to neighbors that are already stabilized
relatively to another robot, etc.

Data in Table 2 with results of experiments from Fig. 13
show only a slight increase of motion oscillation of an MAV
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Fig. 10 Zoomed view on data from Fig. 9

Fig. 11 Leader-follower
formation flying on a slope
surface

Fig. 12 Leader-follower
formation in windy conditions

following another MAV in a comparison with the situation
where the same MAV is stabilized relatively to a static pat-
tern. The moving pattern introduces additional noise into

the measurement of the relative localization and further-
more slightly decreases performance of the vision system
as described in Faigl et al. (2012). See the second and the
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Fig. 13 Verification of the proposed approach for stabilization of
MAV-groups based on the visual relative localization. Experiments
show (see data in Table 2) that due to the measured relative speed
between the MAVs and surface, which is employed in control feed-
back, position oscillations do not increase with the size of the group
being relatively stabilized a 1-MAV. MAV relatively stabilized to a sta-
tic pattern using the visual relative localization in control feedback b
MAV pair. The MAV on the right (follower 1) is relatively stabilized to
a static pattern. The second MAV (follower 2) is relatively stabilized to
the follower 1 c 3 MAVs in line. The MAV in the most right (leader)
hovers on spot using the PX4Flow sensor. ThemiddleMAV (follower 1)
is relatively stabilized to the leader. The MAV in the most left (follower
2) is relatively stabilized to the follower 1

fourth columns of the table that show flight performance of
theMAVwith id 3 in two different roles: (1) as a leader stabi-
lized relatively to the static pattern, (2) as a follower stabilized
relatively to another leader. Similar comparison can be seen
in the third and the sixth columns for the MAV with id 2.

In addition, the motion oscillations of the MAV with id 3
are comparable in theMAV pair experiment (fourth column

Table 2 Tests of the flight performance ofMAVs in a static platoon-like
formation hovering on a spot

Exp. type 1-MAV MAV pair 3 MAVs in line

MAV id 3 2 3 1 2 3

MAV role L L foll. 1 L foll. 1 foll. 2

Mean error (cm) 13.1 19.6 14.6 14.7 20.0 14.9

Stand. dev. (cm) 6.9 11.2 8.2 7.8 12.5 8.3

Snapshots from the experiments are shown in Fig. 13 and videos are
available at Multimedia (2015). The mean error and standard deviation
are measured from a fixed equilibrium by the external video system
(Krajník et al. 2014). The equilibrium is defined by a fixed relative
position to the onboard pattern in case of followers, by a fixed rela-
tive distance to the static pattern in case of the leader in the 1-MAV
and MAV pair experiments, or the equilibrium is set as a fixed initial
position in case of the leader in the 3 MAVs in line experiment. The
relative distance between neighbouring MAVs and between the MAV
and the static pattern was 2.5 m in all experiments. The statistics were
obtained from approximately 900 samples for each of the experiments.
Approximately 30s long records with the rate 30 frames per seconds
were analysed for each experimental flight

of the table),where theMAVwith id 3 acts as thefirst follower
that is directly stabilized to the leader, and in the 3 MAVs in
line experiment (seventh column), where the MAV with id
3 acts as the second follower that is indirectly stabilized to
the leader; over another follower. Taking into consideration
the data that describes the motion performance of the MAVs
with id 2 and 3, one can see that the difference between these
two robots is more significant than the difference between
motion of MAV 3 in roles of the follower 1 and 2. Even
though allMAVs are controlled by the same systems with the
same parameters and sensors, the small differences during
their manufacturing influence the flight performance. The
independence of the control performance from the number
of robots in the controlled string was observed also in case of
moving relatively stabilized formations (see Figs. 11 and 12),
which is crucial in most of the applications requiring the
group stability. In all experiments in Fig. 13, the relative
distance between neighbouringMAVs and between theMAV
and the static pattern was 2.5 m.

In addition to these outdoor experiments, the vision system
was tested in numerous experiments of various multi-robot
applications with the VICONmotion capture system as a ref-
erence. The precision and reliability of the external motion
capture system is sufficient to consider the obtained data as
the ground truth (Michael et al. 2010). Details on the tested
multirobot scenarios and the obtained results are given in
Sect. 6. In the formation driving experiments (Figs. 16, 17,
18, 19, 20, 21), where the relative distance between quadro-
copters is almost constant, the reliability of the measurement
is approximately 98 %. If we exclude the outliers caused
by identification of a “wrong” MAV, or by occlusions, the
mean error of the relative distance is 1.1 cm (with standard
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deviation 0.9 cm) at a distance of 1.5 m between neighbor-
ing MAVs. The maximum error is always < 4 cm in these
experiments. In the swarm experiments (Figs. 24, 25, 28, 29,
30), the relative distance between quadrocopters differs from
1–2.5 m and the measurement reliability is approximately
95 %. The mean error of the relative distance is 1.3 cm (with
a standard deviation of 1.7 cm). This slightly worse perfor-
mance is caused by a longer relative distance between the
robots and by their relative motion, which may spoil some
pictures captured by the onboard cameras (the camera and the
objects in the images move independently). The frame rate
exceeds 30 frames per second if the images are processed
online and pictures are not stored in the memory of the cam-
eramodule. If unprocessed images need tobe stored for a later
evaluation of the experiment, the rate has to be reduced to
10–15 fps.

6 Multi-robot scenarios demonstrating the
practical usability of the system

The aim of this section is to present examples of practical uti-
lizationof the proposed system.Wehave chosen three general
approaches to MAV deployment that are currently solved in
state-of-the-art literature (leader-follower formation flying,
swarm-inspired stabilization, and multi-MAV surveillance)
to showhow these scenarios can be solved using the proposed
system.Eachof themulti-robot scenarios proposes a different
approach to motion planning and coordination of the MAV-
group. The common challenge lies in the necessity to satisfy
the MAV motion constraints and the constraints imposed by
the relative localization. Therefore, the description of these
methods is focused on integration of the relative localization
constraints into the planning algorithms. In addition, in the
experimental parts of this section, the tests with the VICON
motion capture system in control feedback verify that the
trajectories of the MAVs obtained by the proposed high-
level planning systems are feasible for real MAV-groups.
This means that the obtained trajectories respect the MAV
dynamics, the localization constraints, and the environment
constraints (obstacles and no-fly zones). Besides, the aim
of these experiments is to evaluate the performance of the
camera module and the localization algorithm in multi-MAV
applications. The results of the experiments are compared
with the ground truth and are attached to the description of
each method in the following subsections.

6.1 Scenario 1: leader-follower formation flight

In this scenario, a formation of multiple MAVs reaches a
desired target region in a complex environment with obsta-
cles, while maintaining predefined relative positions. The
desired shape of the formation can be temporarily changed

only if it is enforced by environmental constraints (e.g. in
narrow passages). The proposed formation control mecha-
nism is suited for the real-world deployment of autonomous
robots relying on the onboard visual relative localization,
which brings additional movement constraints to the MAV
team. The method is based on a leader-follower technique,
where the team of robots is stabilized by sharing knowledge
of the leader’s position within the formation (see the original
leader-follower approach (Barfoot and Clark 2004) designed
for a group of ground robots (UGVs) and the extension of
the leader-follower approach for heterogenousMAVs-UGVs
teams in Saska et al. (2014c, d) for details). The method pre-
sented in this section is an extension of our work introduced
in conference paper (Saska et al. 2014b), where only sim-
ulation results were presented and where the requirements
on the onboard relative localization necessary for the HW
experiments, which is the main contribution of this paper,
were not included.

We do not rely on following a given trajectory, as in most
of the state-of-the-art methods (Chao et al. 2012; No et al.
2011; Liu et al. 2011). We propose to integrate the stabiliza-
tion of followers in the desired positions behind the leader
together with the trajectory planning into a desired goal area
with obstacle avoidance ability for the entire formation. The
global trajectory planning is directly integrated into the for-
mation control mechanism, which is important for finding a
feasible solution for the proposed approach using the relative
visual localization of the team members. For stabilization of
the MAV group via the onboard relative localization, it is
crucial that direct visibility between team members is not
interrupted by an obstacle. Thus, in the trajectory planning
process, direct visibility is ensured by penalizing collisions
between obstacles and a 2D convex hull of the positions of
followers, which represents the 3D formation. The 2D con-
vex hull is obtained as a projection of positions of followers
into a plane that is orthogonal to the trajectory of the virtual
leader in its current position (see Fig. 15a). For the obstacle
avoidance function described in Eq. (11), the convex hull is
dilated by a safety radius, which is considered around each
MAV, to keep obstacles at a desired distance from the fol-
lowers. The trajectory planning into the desired goal region
and the immediate control of the formation is then integrated
in a single optimization process with this obstacle avoidance
function. The method can continuously respond to changes
in the vicinity, while keeping the cohesion of the immediate
control inputs with the directions of movement of the MAV
formation in the future.

In the algorithm, followers follow the trajectory of the
leader at distances defined in the p, q, h curvilinear coordi-
nate system, as visualized in Fig. 14. The position of each
follower i is uniquely determined: (1) by states xL(tpi ) in
the traveled distance pi from the actual position of the leader
along its trajectory, (2) by the offset distance qi from the
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Fig. 14 The desired shape of the formation described in curvilinear
coordinates

Fig. 15 An example of the dilated convex hull projected along a tra-
jectory. This trajectory would be infeasible for the formation stabilized
by the presented approach, since an obstacle appears inside the convex
hull a contours of the convex hull projected along the leader’s trajectory.
An obstacle is denoted inside the hull to clarify the meaning of function
dist (XL (·), ol ) b 3D visualization of the convex hull projected along
the leader’s trajectory (the circular obstacle is hidden inside the hull)

leader’s trajectory in the perpendicular direction and, 3) by
the elevation hi above the leader’s trajectory, as follows:

xi (t) = xL(tpi ) + (−qi sin(θL(tpi )), qi cos(θL(tpi )), hi
)T

,

θi (t) = θL(tpi ), (10)

where xL(tpi ) is the position of the leader at the timewhen the
virtual leader was at traveled distance pi behind the current
position and θL is the yaw of the leader at time tpi .

The short-term trajectory planning responding to the local
workspaceof the robots and the long-term trajectory planning

providing a plan to the target location are solved together in
a single optimization step. The leader’s trajectory encoded
into a vector of constant control inputs at time t is used
as the optimization vector XL(t) = [νL ,1, vL ,1, kL ,1, . . .

, νL ,N , vL ,N , kL ,N , νL ,N+1, vL ,N+1, kL ,N+1, δL ,N+1, . . . ,

νL ,N+M , vL ,N+M , kL ,N+M , δL ,N+M ] to include both, the
local and the global trajectory planning. The vector XL(·)
consists of the normal velocity νL(m · s−1), the tangential
velocity vL(m·s−1), the curvature kL ,· [m−1], and the length
of the time interval δL(s). The curvature kL ,· of the trajec-
tory followed by the leader is constant within each control
segment and may vary along the whole trajectory. The time
interval δL , j is constant if j ∈ {1 . . . N } and becomes vari-
able if j ∈ {N + 1 . . . N + M}. The constant time interval is
denoted as�t and is set as δL , j := �t = 0.1s, j ∈ {1 . . . N },
in the experiments. N is the number of transition points in
the short control horizon with the constant �t between the
transition points. M is the number of transition points in the
long planning horizon with variable δL , j between the transi-
tion points. The trajectory is obtained from the optimization
vector by applying the constant control inputs into the model
in Sect. 4.

The leader’s control problem with the obstacle avoidance
ability can then be transformed to minimization of the multi-
objective cost function FL(XL(·)) as follows:

FL(XL(·)) =
no∑

l=1

(

min

{

0,
dist (XL(·), ol)

dist (XL(·), ol) − Rhull

})2

+α

N+M
∑

j=N+1

δL , j . (11)

The first part of the function prevents the formation from
colliding with obstacles. The number of considered obsta-
cles is denoted as no, and ol denotes the l-th obstacle. Its
value is zero if all obstacles are outside the projected convex
hull, which is formed by MAVs following the leader in their
desired positions within the formation. Rhull is the radius
of the convex hull depicted in Fig. 15a. The value goes to
infinity as an obstacle approaches into the center of the hull.
This ensures that direct visibility between the robots will not
be broken by an obstacle located among them. The value
of the second term is based on an estimation of the total
time to reach the desired target region, which must be mini-
mized. The influence of the obstacle avoidance function and
the endeavour of the trajectory planning to reach the target
region in minimum time are weighted by constant α.

To ensure feasibility of the obtained solution, the opti-
mization process is subject to a set of constraints. The first
constraint,which is necessary for a convergence of the forma-
tion driving process into the desired equilibrium (the desired
target region), requires that the final transition point of the
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planning horizon is inside the target region. In addition, con-
trol inputs have to be constrained since the planning approach
for the leader must respect the constraints given by mechani-
cal capabilities of all followers. The admissible control set for
the leader can be determined by applying the leader-follower
approach for i = 1, . . . , nr as kL ,max = min(ki,max/(1 +
qi ki,max )), kL ,min =max(−ki,max/(1−qi ki,max )), vL ,max =
min(vi,max/(1 + qi kL)), vL ,min = max(vi,min(1 + qi kL)),
νL ,max = min(νi,max ), νL ,min = max(νi,min), where ki,max ,
vi,max , vi,min , νi,max and νi,min are limits on the control inputs
of the i-th follower. These restrictions must be applied to
satisfy different values for the curvature and the speed of the
robots in different positions within the formation. For exam-
ple, the robot following the inner track during turning goes
more slowly butwith a bigger curvature than the robot further
from the center of the turning, due to the fact that the follow-
ers turn around the same Instantaneous Center of Curvature
(ICC) and at the same angular speed.

The states specified by the trajectory of the leader of the
formation obtained as a result of the optimization are trans-
formed for the followers using the transformation in Eq. (10).
These desired states are used for the trajectory tracking algo-
rithm with the obstacle avoidance function, which enables
responses to events that occur in the environment behind the
actual position of the leader. The trajectory is encoded into
a vector of constant control inputs and it is used as the opti-
mization vector Xi (·) = [νi,1, vi,1, ki,1, . . . , νi,N , τi,N , ki,N ]
for the i-th follower. For themotion planning of the followers,
only the short-term horizon with a constant sampling time is
employed. The discrete-time trajectory tracking for each fol-
lower is transformed to minimization of the multi-objective
cost function Fi (Xi (·), XL) subject to set of constraints as
follows:

Fi (Xi (·), XL)

=
no∑

l=1

(

min

{

0,
dist (Xi (·), ol) − rs
dist (Xi (·), ol) − ra

})2

+
∑

j∈n̄n

(

min

{

0,
di, j (Xi (·), X j ) − rs
di, j (Xi (·), X j ) − ra

})2

+β

⎛

⎝

N
∑

j=1

∣
∣
∣
d xi, j − x j

∣
∣
∣

2 +
N

∑

j=1

(
dθi, j − θ j

)2

⎞

⎠ . (12)

The first sum penalises solutions with a distance to an
obstacle less than the detection radius rs . The penalty func-
tion goes to infinity as an obstacle approaches a distance
equal to the avoidance radius ra . If the distance between
an obstacle and the trajectory is less than ra , the solution
is considered infeasible (the obstacle proximity constraint
of the optimization is violated). In the second sum of the
cost function, the other members of the team are consid-

ered as dynamic obstacles in case of an unexpected behavior
of defective neighbors deviating from their desired posi-
tions within the formation. Function di, j (Xi (·), X j ) returns
the minimal distance between the planned trajectory of fol-
lower i and the plan of other followers j ∈ n̄n , where
n̄n = {1, . . . , i − 1, i + 1, . . . , nr }.

The last term of the cost function penalizes a growing
Euclidean distance between the desired positions d xi, j , j ∈
{1 . . . N }, obtained from the actual leader’s trajectory XL ,
and the positions of the i-th follower. Also the differences
between the desired yaw angles dφi, j , j ∈ {1 . . . N }, and
the actual yaw of follower i are penalized. The influences of
the obstacle avoidance function and the trajectory following
term are weighted by constant β. Values α = 1 and β = 1
were used in all experiments in this article, but the approach
does not require fine tuning of these parameters and the same
values can be efficiently used in different scenarios.

In addition to the constraint, which is satisfied if the dis-
tance between the trajectory corresponding to the particular
solution of the optimization and all obstacles is greater than
ra , the control inputs are constrained to satisfy the motion
constraints of the employed MAVs (limits on forward and
ascending velocities etc.).

6.1.1 Experimental evaluation of the planning technique in
flight conditions

In this section, the feasibility of results of the formation
planning approach is verified by experiments with multiple
MAVs. Two virtual obstacles, the no-fly zones depicted in
Fig. 18, are considered in the workspace to demonstrate the
obstacle avoidance ability. Three MAVs equipped with the
visual relative localization modules (Faigl et al. 2013) are
stabilized in triangular and line formations. In the triangular
formation (see Figs. 16, 17, 18, 19), an MAV with a cam-
era pointed down is flying above two other MAVs with side
looking cameras. The experiment with the line formation of
three MAVs equipped with cameras oriented to the side (see
Figs. 20, 21) is realized repeatedly to show the robustness
of the method. The formation flies twice to the target region
and back to the initial position. The initial position from the
first flight is considered the centre of the target region for
the return flight, etc. The multi-criteria optimization prob-
lems defined in Eqs. (11) and (12) were solved by sequential
programming method (CFSQP toolbox Version 2.0) in the
experiments. All MAVs are equipped with identification cir-
cle patterns for fast relative localization. The independent
motion capture system (VICON) is used as a ground truth to
evaluate the performance of the visual relative localization
during the formation driving experiments. Complete records
of the experiments are available in Multimedia (2015).

Themain purpose of the experiment was to verify the abil-
ity of the system to relatively localize MAVs in a compact
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Fig. 16 Experiment with a
triangular formation of 3 MAVs

Fig. 17 Examples of pictures
obtained by the onboard
cameras for the relative
localization (exp. in Fig 16)

Fig. 18 Trajectories of MAVs
in the experiment from Fig. 16
recorded by the VICON system.
Positions of the virtual obstacles
are denoted by the circles
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Fig. 19 Relative distances between MAV1-MAV2 and MAV3-MAV1
in the experiment fromFig. 16. The dots correspond to rawdata obtained
from the visual relative localization, and the curves are reference values
provided by the VICON motion capture system

Fig. 20 Experiment with the line formation of 3 MAVs

formation using VICON as a ground truth, and therefore,
the experiment was realized in simple laboratory conditions.
Nevertheless, the trajectory planning and formation stabi-
lization mechanisms may be efficiently employed in more
complex situations as was shown in our previous research
with Unmanned Ground Vehicles (UGVs).

See our results (Saska et al. 2009), where performance of
trajectory planning for UGV formations is shown in a com-
plex office-like environment. In Saska et al. (2013a), complex
maneuvers of the formation controlled by the MPC were
presented. Usage of the MPC-based stabilization and trajec-
tory planning in task of airport snow shoveling by fleets of
autonomous ploughs is presented in Saska et al. (2010) with
stability analyses in Saska et al. (2013b). The work in Saska
et al. (2016) is focused on testing the ability of the approach
to avoid dynamic obstacles by integration of its motion pre-
diction into the MPC trajectory planning.

The approach presented in this paper is an extension of the
methods designed for UGVs taking into account constraints
of the visual relative localization system, which is used for

Fig. 21 Relative distances between MAVs obtained by the onboard
cameras for formation stabilization. VICON data record is plotted as a
reference

stabilization of MAV formations in 3D shapes. Due to the
employed convex hull that represents the entire formation in
the planning process, the trajectory planning ability of the
system is not limited and it achieves a similar performance
as was presented for UGVs. In case of limited computational
power onboard of MAVs, where the complexity of the opti-
mization is increased by the third dimension, the applicability
of the method in real-time could be limited. In this case, the
additional planning horizon needs to be decomposed as was
proposed by the hierarchical approach in Saska et al. (2007)
for UGVs in convex environments.

6.2 Scenario 2: cooperative searching for extremes in a
field of a measured physical value

The second scenario deals with searching for locations in
a 3D environment with an extreme in a field of a measured
physical value. In particular, the investigated scenario ismoti-
vated by searching for locationswith aminimumGSMsignal
in mountain areas, which are hard to reach, but which need to
be sufficiently covered for safety reasons. Another example
can be monitoring the intensity of WiFi signal in industrial
complexes, shopping malls or large office buildings. The sig-
nal coverage and interfaces from multiple transmitters can
hardly be modelled in such complex 3D environments, and
physical measurements are therefore unavoidable. With their
fast deployment and operability,MAVs are especially appeal-
ing to provide the desired data in these large and complex
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Fig. 22 Scheme of the system
for feasible navigation of MAV
swarms stabilized by visual
relative localization based on the
FSS algorithm

areas.Moreover, swarm intelligence can speed up the process
of searching for extremes in the measured intensity and can
enable more autonomy within the system.

In the proposed system, we rely on a Fish Search School
(FSS) technique (Filho and Lima 2009), which allows us to
define the swarm motion based on the actual state of par-
ticular particles. Each particle in the FSS defines its future
movement based only on its current state and the states of
neighbors obtained by onboard systems. This is preferable to
methods such as Particle Swarm Optimization (PSO), where
the new desired positions of MAVs are determined based on
the best achieved position of a particle of the swarm so far (the
global best) and the best achieved positions of each particle
(the personal best). This requires to remember or denote these
locations in the environment. The FSSmethod can be directly
used for control of a swarm of MAVs with the proposed rel-
ative localization considering each MAV as an FSS particle.
In such a tangible FSS, MAVs may use odometry from IMU
for the short term localization in the environment during the
displacement between two consequent positions generated
by the FSS rules. The required information on the position
of neighbors is achieved by visual relative localization. Infor-
mation about the global position ofMAVs in the environment
is not necessary, as the robots are, in a matter of fact, steered
by the distribution of the measured signal intensity.

The FSS control rule is created by three simple operators:

(1) individual movement,
(2) collective-instinctive movement,

(3) collective-volitive movement that depends on a factor
describing the recent success of the swarm.

The success of the swarm is determined by the progress of
the cost function values, which are provided by the sensory
measurement in this application example (see amathematical
expression of these rules in Filho and Lima (2009)). In the
proposed tangible FSS algorithm, the optimization vector
represents the position of one MAV simply as X = [x, y, z],
in contrast to the PSO environment coverage presented in
Sect. 6.3,where the positions of all nr MAVsare encoded into
a unique optimization vector (the PSO particle). The number
of FSS particles is equal to the number of physical robots nr
in the swarm (in the PSO environment coverage algorithm
the number of PSO particles is equal to the number of virtual
MAV swarms).

A scheme of the tangible FSS algorithm is shown in
Fig. 22. The core of the motion planning and group stabi-
lization algorithm is in the Optimization Rules block, where
the FSS control rules are implemented according to Filho
and Lima (2009). The input of this block is an estimate of
the current relative positions of particles within the swarm
and values of the cost function obtained for each MAV. In
each optimization step, desired new positions of all MAVs
are computed using the FSS rules based on this information.
Then, the swarm is controlled into the newpositions using the
position control described in Sect. 4, while the localization
and motion constraints are checked on the basis of the avail-
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Fig. 23 Safety zones around a
quadrocopter

able sensor data (the Motion to the Position with Feasibility
Check blocks).

The most important part of the Sensor Data block for
swarm stabilization and inter-vehicle collision avoidance is
an estimation of relative positions of neighbors provided by
the onboard localization system. Based on this information,
the actual shape of the swarm is considered feasible if none of
the MAVs are within the safety zones of another MAV. This
means that the shape is feasible regarding the inter-vehicle
collisions and the air-flow effect from propellers of neigh-
boring MAVs. Two safety zones are considered (see Fig. 23)
for collision avoidance. Robots can temporarily (condition-
ally) enter the red outer zone, but once they reach the blue
inner zone,which is considered forbidden, they have to return
back to release from both zones before the next FSS iteration.
The concept of two zones prevents the system from oscil-
lations and deadlocks in applications with dense swarms,
where close proximities of MAV pairs and even multiple
MAVs occur frequently.

A similar concept is employed for keeping the robots
within the range of the relative localization. Again, two limits
on the maximal distance between relatively stabilized MAVs
are considered. The weaker restriction can be temporarily
broken. Both limits have to be satisfied before the next FSS
step. This approach decreases the likelihood that the swarm
evolution gets stuck if several MAVs move close to the bor-
ders of their safety zones or close to the limits of their relative
localization. Once all MAVs approach the locations obtained
by theFSS rules or reach the last feasible constellation, sensor
measurements are taken in the new positions of swarm par-
ticles. The measured values act as the cost values of the FSS
optimization. The cost function evaluation is represented by
the cost function block in the figure. The obtained cost func-
tion values and the information on the relative positions of
neighbours are used as input of theOptimization Rules block
in the new FFS iteration.

As a stopping criteria a predefined maximum number of
iterations is used in experiments presented in this article.

According to Filho and Lima (2009), the progress of the
total mass of FSS swarm and rate of the cost function values
changesmay be applied to detect termination of the searching
process or deadlocks, but these studies go beyond the scope
of this paper.

6.2.1 Experimental evaluation of the planning technique in
flight conditions

The experiment in Figs. 24 and 25 demonstrates the use
of the proposed tangible FSS method with onboard relative
localization for searching in a 3D environment. In the exper-
iments, MAVs cooperatively search for locations with the
lowest intensity of a signal transmitted from four transmit-
ters distributed in the environment at different altitudes. The
intensity of the signal is simulated in the experiment based
on known locations and the transmission power of the vir-
tual transmitters. Instead of a real measurement of the signal
strengths, the cost value for the i-th particle is then obtained
as

F(X) =
4

∑

j=1

∣
∣xi − s j

∣
∣−2

, (13)

where s j is the location of the j-th transmitter.
The progress of minimal cost value (13) “measured” by

an MAV of the group in the particular iteration is shown
in Fig. 26. The temporary increase of the cost values at the
beginning of the experiment is caused by the initial stabiliza-
tion of the group into a shape that satisfies the constraints
given by size of the MAVs and their relative localization. For
evaluation of the FSS algorithm with tangible particles (the
real MAVs), results of a simulation with dimensionless par-
ticles are also presented in Fig. 26. The simulation was run
using the same map and initial setup as in the real experi-
ment. In the simulation, the initial stabilization of the group
is not necessary, since the basic FSS method without motion
constraints is used and the cost function values decrease from
the beginning of the searching process.

The results presented in Fig. 25 show that the requirements
on the maximal relative distance between particular pairs
of MAVs (2.5 m) are kept during the experiment, and that
the neighboring MAVs are always in the view angle of the
onboard cameras. The relative distance

∣
∣xi − s j

∣
∣ is obtained

on the basis of data from the VICONmotion capture system.
In real-world deployment, knowledge of the global positions
of MAVs, denoted as xi here, would not be necessary, since
the tangible FSS technique requires only knowledge on the
positions relative to neighbors (and obstacles) and the actual
measured intensity, which can all be obtained by onboard
sensors.
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Fig. 24 Experiment with a
swarm of 3 MAVs controlled by
the feasible FSS rules

6.3 Scenario 3: environment coverage for cooperative
surveillance

The third scenario demonstrates deployment of the proposed
system in the task of cooperative surveillance (presence of
MAVs at locations of interest). This section is a summary
of the approach originally published by our team in the con-
ference paper (Saska et al. 2014a). Here, the description of
the method is put into the context of the presented control
and localization system and it is used as an example of the
system deployment in scenarios, where the trajectories of the
robots have to be purposely computed prior the mission for
their verification by the operator. In the scenario, a set of goals
(areas) is assigned to a limited number of autonomous robots
(MAVs) with the aim to find a static swarm configuration that
can guard the areas. Let us call the set of static positions of
all MAVs in the surveillance areas a swarm distribution, and
let us call the complete task of the motion of MAVs from
the initial depot into the static swarm distribution a swarm
deployment.

Again, the MAV swarm has to respect the motion, local-
ization, and sensing constraints of MAVs. These constraints

have to be applied in the final static swarm distribution and
also during the swarm deployment. In the case that the swarm
is not capable of covering the given set of locations of interest
completely, for example because of an insufficient number of
entities available or constraints on sensing, the coverage by
the team members is maximised in the searching process.
In this manner, we tackle the problem of static coverage
of a set of areas by spreading a swarm of MAVs, while
the swarm constraints are guaranteed for all obtained tra-
jectories between the initial location of the MAVs into the
achieved swarm distribution. So, we are looking for both: (1)
the feasible static shape of the swarm (locations of particular
swarm entities - the swarm distribution) and (2) a feasible
plan of motion from the initial configuration to this target
shape (trajectories for all MAVs—the swarm deployment).
This leads us to a swarm-shape optimization with the need
to keep the history (a feasible MAV movement) of swarm
shape evolution from its initial state. This can be understood
as a novel approach to multi-objective optimization, where
a motion planning technique is integrated directly into the
core of the optimization engine. The 3D pose of all MAVs in
the swarm is then encoded into a unique optimization vector
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Fig. 25 Tangible Fish Search School (FSS) optimization. MAVs
steered by FSS rules towards a location corresponding to a minimum
of a signal transmitted from multiple transmitters. (slower movement
of MAVs) a Comparison of the relative distances between MAVs cap-
tured by the onboard vision system and by data obtained by VICON b
Comparison of the relative distances between MAVs captured by the
onboard vision system and by data obtained by VICON c Comparison
of the relative distances between MAVs captured by the onboard vision
system and by data obtained by VICON d Positions of MAVs captured
by VICON during the experiment e 3D view of the positions of MAVs
captured by VICON during the experiment

as X = [x1, y1, z1, x2, y2, z2, . . . , xnr , ynr , znr ], where nr is
the number of robots in the swarm. The Particle SwarmOpti-
mization (PSO) technique (Kennedy et al. 1995) is employed
as the optimization method in this application.

A simple scheme of the proposed approach is shown
in Fig. 27. In comparison with standard optimization tech-
niques, where in each optimization step the actual solution
(or several solutions) is directly evaluated by a cost function,

Fig. 26 Progress of values of the lowest intensitymeasured by a swarm
member at the particular iteration (the cost function values) in the exper-
iment with real FSS particles and in a simulationwith basic FSSmethod
using dimensionless particles

here, the optimization vector is suited to respect the swarm
constraints before the optimization continues. In each step
of the optimization, the new shape of the swarm encoded
into the optimization vector is used as an input to a motion
planning approach, which generates collision-free trajecto-
ries connecting the desired positions with the actual state for
each single MAV. The given plan is realized in a simulation
using the trajectory tracking mechanism (Lee et al. 2010)
with theMAVmodel introduced in Sect. 4. The simulation is
run until the desired positions are reached or a violation of the
swarm constraints is detected. If a mutual collision between
MAVs is detected, the plan can often be corrected by a proper
permutation of the goals assigned to particular vehicles. This
does not influence the optimization process, since the MAVs
are considered to be identical swarm particles. Any multi-
robot coordination approach may be utilized in this phase
of the planning mechanism if the permutation of goals is
not sufficient. If a violation of the relative localization con-
straints (range, viewing angle, mutual MAV heading, etc.) is
detected, the simulation is reversed into the last state consid-
ered as a feasible swarm distribution, and the optimization
vector is replaced by this result. The achieved optimization
vector is evaluated by the cost function, and the optimization
continues in the next step from this state. An uncertainty in
the optimization (e.g. the randomly weighted vectors addi-
tion in PSO) is crucial to increase the probability that the
optimization will not end up in the same constraints viola-
tion, but it escapes from this potential deadlock.

In the experiments that are presented in this paper, the
areas of interest are polygons and circles. The set of all these
areas is represented by a square grid AoI that covers the
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Fig. 27 Scheme of the
planning system for
environment coverage by MAV
swarms stabilized by visual
relative localization

entire workspace with size of each cell 10 cm (the experi-
mental workspace is shown in Fig. 30f). The cells of AoI
that represent the areas of interest are initialized with the
value 1, while the zero cells represent regions not assigned
as areas of interest. The no-fly zones and the borders of the
operational area are denoted by the mission operator as a set
of convex polygons. These polygons are dilated and repre-
sented by the Environment Map of the same size (n,m) as
the size of the AoI matrix.

The cost function that evaluates particular solutions of
the swarm spreading problem (position of all MAVs of the
swarm) can be then expressed as

f (X) =
m,n
∑

x=1,y=1

max

(

0, AoIx,y −
nr∑

i=1

Rx,y,i
h2opt
h2i

)

, (14)

where hi is the height of the i-th MAV above the ground (the
altitude) and hopt is the altitude determined as the “optimal”
for the particular surveillance application. An MAV at lower
altitude than hopt does not gain more information per square
unit. The value of the variable Rx,y,i is 1 if the cell of the
workspace represented by the element AoIx,y is completely
observed by the surveillance sensor of the i-th MAV in its
position in the swarm and 0 in the opposite case.

Finally, we should emphasize that the proposed method
does not guarantee to find the optimal distribution of the
swarm and the optimal trajectories from the initial positions
into the found locations. What is guaranteed is the feasibility
of the solution with respect to the motion and localization
constraints. Regarding the presented relative visual localiza-
tion, it is important that the plan of the swarm distribution
in the environment satisfies constraints given by the range of
the relative localization and viewing angle of the on-board
cameras, and that it respects themutual heading of theMAVs.

6.3.1 Experimental evaluation of the planning technique in
flight conditions

The aim of the experiment in Figs. 28, 29, 30 is to demon-
strate deployment of the proposed system in a surveillance
task, where locations of interest with different priorities are
covered by a self-stabilized swarm of MAVs. The feasibility
of the plan for swarm distribution in the environment with
known sets of areas of interest, no-fly zones and initial posi-
tions of the MAVs is verified in the experiment. The plan has
to satisfy the constraints given by the range of the relative
localization, the viewing angle of the on-board cameras, the
mutual heading of the MAVs, and the movement constraints
during deployment of the system. Fig. 30 shows that a guess
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Fig. 28 Experiment with
swarm of 3 MAVs following
trajectories obtained off-line by
the proposed planning
algorithm. MAVs are denoted by
circles of different colours
(Color figure online)

Fig. 29 Pictures taken by the
onboard localization systems of
all MAVs in the same moment
(experiment in Fig. 28)
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Fig. 30 Swarm deployment in the environment to cover selected areas
of interest. (experiment in Fig. 28) a Comparison of relative distances
betweenMAVs captured by the onboard vision system and by the exter-
nal motion capture system (VICON). b Comparison of the relative
distances between MAVs captured by the onboard vision system and
by VICON. c Comparison of the relative distances betweenMAVs cap-
tured by the onboard vision system and by VICON. d Progress of the
cost function values of the best PSO particle during off-line optimiza-
tion of the swarm deployment found for the experiment in Fig. 28. e
3D view of positions of MAVs captured by VICON during the experi-
ment. f Positions of MAVs captured by VICON during the experiment,
with denoted areas of interest (blue regions) and the no-fly zone (green
rectangle extended with a safety zone due to localization and control
uncertainty) (Color figure online)

of the relative position of neighboring vehicles is continu-
ously provided during the flight, and that the limit on the
relative distances within the swarm entities (2.5 m) is kept.

Finally, we should mention that a global localization
system (such as GPS) is necessary to reach the surveil-
lance locations of the group in applications of the approach
designed for swarm deployment. In most of the scenarios
with compact MAV swarms, such positioning system has
lower precision in comparison with the relative distances
between MAVs. Therefore, the more precise onboard rela-
tive localization needs to be employed to protect the swarm
members from mutual collisions. Moreover in our approach,
such a global localization technique may be used to localize
only few robots of the group. In the experiment presented in
this section, the global position is estimated from the visual
odometry of one of the MAVs using the PX4Flow sensor,
while the entire group is stabilized using the onboard rela-
tive localization system.

6.4 Comparison of performance of the system in
scenarios 1–3

The purpose of this section was to demonstrate possibility of
deployment of multi-MAV teams in different robotic scenar-
ios and to show advantages and disadvantages of the onboard
relative localization system in different techniques of control
of MAV-groups.

In the scenario 2, outputs of the visual relative localization
system may be used directly in the FSS rules, and there-
fore, the performance of the system directly influences the
planning process. The advantage of this approach is that it
is very robust to inaccuracy of measurement of the relative
distances, but the FSS method is sensitive to drop out of the
system. Longermalfunctions of the onboard localization sys-
tem cause interruption of the searching process andmay even
lead to inter-vehicle collisions.

On the contrary, the control system is robust to a drop
out of the localization method and sensitive to inaccuracy
in measurements of the relative positions in scenarios 1 and
3. In these scenarios, the onboard visual relative localization
approach is used to unify local reference frames of theMAVs.
In case of a temporary drop out of the relative localization, the
MAVscan safely continue in theirmission based on the visual
odometry. The allowed duration of the drop out depends on
the cumulative error of the odometry, the current distance
between MAVs, the safety distance between MAVs, and the
range of the onboard localization system. If the precision of
the relative localization is low, the performance of formation
flying and swarm deployment may be even worse than if the
system relies only on the odometry of particular MAVs.

Finally, let us describe computational complexity and
communication load required by these approaches.
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The most computationally demanding is the scenario 1,
where the initial plan for the leader and also the control inputs
for the followers need to be computed with sufficiently pow-
erful PC to be able to get result between two planning steps.
In the presented experiments, the initial plan was obtained in
approximately 900ms and eachMPC step required 20-40ms.
The plan was computed on an external PC (Intel Core i7,
8GB RAM) and then wirelessly sent into MAVs. This setup
was sufficient for testing of the relative localization system,
butMAVs already may be equipped by sufficiently small and
powerful HW solutions to enable onboard computing. The
data flow is low in this application, since only few control
commands need to be sent into the MAVs in each control
step. In case of onboard computing, which is expected in
real applications, only the plan of the leader needs to be dis-
tributed within the team.

In the second scenario, the swarming algorithm is not
computationally intensive and can be run onboard on the
μ-controller. Also the data flow is very low. Only the cost
function value needs to be distributed within the team after
each measurement, which is done with low update rate.

In the third scenario, the plan is purposely computed prior
the mission to enable its verification by a human opera-
tor of the surveillance mission. Therefore, this plan may be
obtained using standard PC and then sent intoMAVs. The tra-
jectory following process is run using the onboard ATmega
μ-controller as described in Sect. 4. During the flight, no
communication is required except the initial synchronization
command.

7 Conclusion

A complex system for stabilization and control of MAV-
groups based on onboard visual relative localization has
been presented in this paper. The aim of the system is
to provide a tool for autonomous deployment of teams of
unmanned quadrocopters in real world scenarios without the
need for external localization. An onboard camera module
with a fast image processing algorithm suited for the require-
ments of the group stabilization was described together with
a simple controller using this module in the control feed-
back. As the core of the presented system, three various
planning approaches have been proposed to solve specific
multi-MAV scenarios. The common factor of these methods
is the endeavour to solve the group stabilization,motion plan-
ning and coordination tasks with the specific requirements
given by the employed vision-based relative localization. The
performance and feasibility of the motion planning meth-
ods presented here have been verified and evaluated by
experiments with a fleet of MAVs. In the experiments, the
performance of the onboard relative localization system in
particular applications has been numerically evaluated with

respect to an externalmotion capture system used as a ground
truth.

In all motion planning approaches presented in this paper,
the constraints on relative positions of theMAVs in the group
are considered to satisfy the direct visibility among them and
therefore to continuously keep the relative localization link-
ages during their motion. Nevertheless, various experiments
of the system have shown that the relative localization of
neighboring vehicles can be temporarily interrupted with-
out any negative influence on the overall system stability. In
our future work, we will integrate the possibility of temporal
disconnection of the localization linkages, due to obstacles
appearing in between ofMAVsor due to a temporary enlarge-
ment of the group size, into themotion planningmethod. This
significantly increases applicability of the system in GPS-
denied environment, where the GPS signal is blocked by
obstacles that may be present in such a high density that it
is impossible to avoid them by the entire group, and where
the temporary occurrence of the obstacles in between of the
MAVs has to be allowed.
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Abstract—A novel approach for control and motion planning
of formations of multiple unmanned micro aerial vehicles (MAVs),
also referred to as unmanned aerial vehicles (UAVs) - multirotor
helicopters, in cluttered GPS-denied environments is presented in
this paper. The proposed method enables autonomously to design
complex maneuvers of a compact MAV team in a virtual-leader-
follower scheme. The feasibility of obtained results of the motion
planning approach and the required stability of the formation is
achieved by migrating the virtual leader along a hull surrounding
the formation. This enables us to suddenly change formation
motion in all directions, independently of actual orientation of
the formation.

I. INTRODUCTION

Control and stabilization of MAVs are currently intensively
studied research fields due to their high maneuverability and
possibility to reach locations hardly accessible by unmanned
ground vehicles (UGVs) and by fixed-wing unmanned aerial
vehicles (UAVs) that are usually larger and too fast for flying in
a straitened environment with obstacles. MAVs are especially
appealing for applications in such cluttered workspace since
they can fly close to obstacles relatively safely and they enable
complex maneuvers in a low speed. The same abilities are
required for control of compact closely cooperating multi-
MAV teams, where also inter-vehicle coordination of MAVs
flying in small relative distances needs to be tackled (see
Fig. 1 for examples of our target applications). In addition, the
requirements on operation in compact MAV formations in the
cluttered workspace close to the obstacles exclude utilization
of global navigation satellite systems, such as GPS, with
their insufficiently low precision in comparison with required
mutual distances between neighbouring MAVs and its low
reliability if the signal from satellites is partly or completely
disabled by the obstacles.

This paper proposes to solve this problem by a novel motion
planning and stabilization approach for control of teams of
MAVs flying in compact formations in a cluttered environment
without using GPS. The proposed method is focused on key
properties required for deployment of the groups of aerial
robots in narrow spaces, i.e. efficient motion planning that
enables to design autonomously complex maneuvers of the for-
mation and coordination of possibly large MAV groups flying
in small relative distances. The required high maneuverability
is achieved by inclusion of model predictive control (MPC) and
trajectory planning, which is feasible for the MAV formations,

Fig. 1. Examples of practical deployment of parts of the proposed formation
flying method. a) Cooperative localization of active RFID chips by a formation
of relatively stabilized MAVs of a given shape. b) Documentation of hardly
accessible places in historical sites by a formation of MAVs. One MAV carries
a camera and its neighbors light sources with possibility to set relative angle
between the camera axis and the lights, as it is required by the classical film
lighting techniques, such as the three-point lighting approach [3].

into a single optimization process and by employing a concept
of a virtual leader migrating along a convex hull surrounding
the formation. Such extension of the classical leader-follower
(L-F) approach enables to arbitrary change motion direction
of the formation enforced by the surrounding environment
and by the obstacles, while the requirement given by the L-
F technique, in which the leader is always in front of the
formation, is satisfied. This enables us to rely on the well-
conducted theory of the L-F control technique and to guarantee
the stability of the group.

To be able to localize the MAVs in the formation, we rely on
an extension of the onboard visual relative localization system
using a single camera that we have described in [1], [2]. The
extended system, which may be used for real deployment of
the theory presented in this paper, enables to estimate relative
positions of neighboring robots in the formation using a 360◦

panoramic view provided by a ring of four onboard monocular
cameras and localization patterns carried by each formation
member (see Fig. 2). The relative pose is estimated from the
detected size of the pattern and its position in the image.

In the presented approach, we will rely on a virtual-leader-
follower approach, where all MAVs are considered as followers
following a virtual robot in front of the formation. The virtual-
leader approach is often used for multi-robot control due to its
high robustness (see e.g. [4]), since it is not threatened by
a failure of the real leader. In our paper, the motivation for
using the virtual leader is different. We take advantage of the
possibility to change the virtual leader position relatively to the
formation, which enables suddenly change its motion direction
while keeping the requirements of the L-F scheme specified



Fig. 2. Examples of the outdoor experiments of stabilization of MAV
formations using the onboard vison-based relative localization system [1], [2]
and picture of the 360◦ relative localization module.

in [5].
In recent works, the sudden change of the position of the

formation leader is usually realized by switching the leadership
between different team members to increase the system robust-
ness [6], to enable splitting the team [7], and to reconfigure the
formation shape [8]. While all of these works are focused on
a study of shape stability of the formation simply following
a given path, we will focus on the integration of switching
the positions of the virtual leader into the trajectory planning
process and on aspects and limitations of deployment of MAVs
in close relative distances.

For other examples of recent methods designed for control
of MAV formations see [9], [10], [11]. In all of these works,
the desired trajectory that is followed by the formation is given
or obtained by an external path planning method modified
for the formation requirements. An integration of trajectory
planning into the formation stabilization process can be found
only in [12], where a combination of the L-F approach with
a potential field technique is presented. Nevertheless, this
algorithm is designed for ground holonomic robots, and it
suffers from the usual problems of potential field techniques,
such as oscillations near the local extremes, deadlocks in U-
shape obstacles and poor performance if avoiding clusters of
obstacles. In the presented method, we enable to include a
global information about the environment, which is not possi-
ble with the method in [12], and to plan complex trajectories
in a cluttered environment with obstacles.

As mentioned, we propose to include the ability of global
trajectory planning into the MPC scheme within a single
optimization process. This approach enables us to integrate the
relative-localization constraints, which are crucial for robots
deployment in a GPS-denied environment, directly into the
formation stabilization process. MPC solutions [13] and [14]
have demonstrated that the MPC method can be used for
stabilization of a single MAV using an onboard embedded
processor. Although these pioneering methods can realize only
simple control tasks (such as hovering in ideal windless condi-
tions) due to a short prediction horizon, our solution introduced
in [15] enables to control a single MAV using embedded

processor and onboard sensors with prediction control horizon
longer than 2s, as shown in numerous indoor and outdoor
experiments https://youtu.be/lPy7w-GUbw4. Such prediction
interval is sufficient for following arbitrary dynamically chang-
ing 3D trajectories with the precision and stability required in
multi-MAV scenarios (see Fig. 2 for examples of stabilization
of MAV formations using the visual relative localization [1],
[2]).

This work is built on our achievements in control and
stabilization of formations of ground vehicles [16], [17] and
heterogeneous teams of ground and aerial robots [18], [19],
where the formations were able to follow only simple trajec-
tories without the possibility of changing the motion direction.
Moreover, the planning was limited to a plain space due to
applied ground robots, which were used for stabilization of the
formation relatively to the ground. The possibility of motion
direction alternation was introduced in our work [20], [21],
which was also designed for the ground (car-like) robots and
UGV-UAV teams. Due to the limited motion capabilities of
the car-like robots, the formations in [20], [21] may change
the motion direction only from the forward motion to the
backward motion (i.e. only the 180-degree change of the
motion direction). The proposed approach enables to plan
maneuvers with the arbitrary change of the motion direction
(the change of the motion direction can be done immediately
into any angle) of the formation keeping its desired shape
in a cluttered workspace. In the proposed MPC approach,
the trajectory planning into the desired target, the immediate
formation control, and the planning of positions of the virtual
follower relatively to the formation are integrated into a single
optimization process. Due to this cohesion, the formation can
smoothly respond to changes in its vicinity and to consider also
the global information about the environment in the control
loop. The local control inputs are then optimized not only
regarding the short-term obstacle avoidance but also regarding
the future movement of the formation.

II. PROBLEM DEFINITION

In this paper, a problem of control of an MAV formation
of a given shape from its initial position into a spherical
target region is tackled. We assume a fixed number NMAV

of the MAVs in the formation. It is assumed that the required
formation shape, which is specified by curvilinear coordinates
pi, qi, hi for each MAV i relatively to the virtual leader,
satisfies constraints on the relative localization of all formation
members. It means that the maximal distance between any
two robots in the formation is shorter than the sensing range
of the relative localization system as specified in [2]. Due to
the 6-pages limit of this paper, we have to omit description
of this curvilinear coordinate system, and we refer to Fig. 4
and to [18] for details. We assume that a finite number of
compact obstacles, which are represented in 3D as complex
polyhedrons, is located in the workspace. Considering only the
polyhedrons, the minimal distance between an obstacle and a
convex shape representing the formation can be efficiently ob-
tained by the GilbertJohnsonKeerthi distance algorithm (GJK),



Fig. 3. Migration of the virtual leader to enable sudden change of the flight
direction, if the maneuvering in a clustered environment is necessary. Virtual
leader - red, followers - grey. a) Flight before the migration. b) Migration of
the virtual leader. c) Flight in the new direction.

which is important for fast obstacle avoidance due to its low
computational complexity [22]. The obstacles and the target
region are represented on a global map, which is shared by
all robots. During the mission, new obstacles can be added
to the map once they are detected by a follower. A Wi-Fi
communication is employed for sharing the map updates and
for distribution of desired trajectories to the followers. For
localization of MAVs, we assume to rely only on onboard
sensors (IMU, PX4flow, and the relative visual localization
system [1]) and no external positioning system is available.
The global position of the formation in the environment can
be obtained relatively imprecisely using any onboard global
localization, for example [23].

III. METHOD DESCRIPTION

A. Migrating virtual leader concept

In our method, the virtual “migrating” leader, which is
employed to extend the maneuverability of the formation
driving approach from [5], is initialized or reinitialized on a
3D convex hull of positions of followers in the direction of
further movement of the formation (see Fig. 3). It enables to
change the direction of the formation flight suddenly while
keeping the virtual leader in front of the formation, which is the
main assumption of the L-F approach from [5]. The position
of the virtual leader ahead the formation is necessary for the
coordination of followers, which required states be computed
from the motion history of the virtual leader. If the virtual
leader is not positioned in front of all followers, their none-
collision flight is not ensured (see Fig. 2 of [24] for example)
and the ability of the system to avoid dynamic obstacles is
reduced. For simplification of the description of our approach,
we use a circumscribed sphere of the 3D hull in Fig. 3 and
then the virtual leader is placed at the intersection of the sphere
and the ray from its center in the direction of the formation
movement.

As mentioned in the introduction, we propose to integrate
the short term control of the formation and its trajectory
planning with the turning maneuvers into a single MPC-based
optimization process. In MPC techniques, a finite horizon
optimization control problem is solved for the kinematic model
of the system from the current states over a time interval (called
control horizon) with N transition states distributed with
constant sampling time ∆t. The control inputs are constant
in the interval between two consequent transition points. We
extend this scheme by another time interval (planning horizon)

with additional M transition states. The planning horizon has
the variable time difference between the transition states and
it is used for trajectory planning into the desired target region.

The overall trajectory of the formation from its actual state
into the target region can be then encoded into a vector of
constant control inputs as X = [vv,1, vh,1, ω1, α1, . . . ,
vv,N , vh,N , ωN , αN , vv,N+1, vh,N+1, ωN+1, δN+1, αN+1,
. . . , vv,N+M , vh,N+M , ωN+M , δN+M , αN+M ], which is
used as the optimization vector under the MPC scheme in
each planning step. The optimization is frequently restarted
from the current state and therefore only the begging of the
vector X? obtained as result of the optimization is used for
MAV control. The vector X consists of the vertical velocity
vv,· [m·s−1], the horizontal velocity vh,· [m·s−1], the angular
velocity around the vertical axis with origin in the position of
the virtual leader ω· [rad·s−1], the time interval between con-
sequent transition points δ· [s], and the angle α·[rad] by which
the formation heading is rotated (see Fig. 3 for visualization
the rotation maneuver).

Then, we solve trajectory planning and control of the
formation as minimization of the cost function CF (X), subject
to sets of constraints Cinputs, Ctarget, and Cacc, such as

Cinputs :=





vv,min ≤ vv,k ≤ vv,max,
|ωk| ≤ vh,k/Rmin,
if αk = 0, 0 ≤ vh,k ≤ vh,max, else, vh,k = 0,

(1)

where k ∈ {1 · · ·N + M}. The limits vv,min and vv,max

are given by the motion capabilities of the MAVs in the
formation. The angular velocity is limited by the minimal
allowed turning radius Rmin of the formation that ensures
smooth movement of all followers in the desired shape. As
shown in [5], Rmin depends on the size of the formation and
it is the main bottleneck of using the L-F technique [5] in a
cluttered environment with obstacles, where the limited turning
radius decreases maneuverability of the formation. Solving this
limitation is the motivation of the proposed migrating virtual
leader approach. Also, the limit vh,max depends on the motion
capabilities of MAVs and the desired shape of the formation
since the robot following the outer track goes faster than the
robot closer to the center of the turning if ωk 6= 0, as described
in [5], [18]. The constraint Ctarget := disttarget− rtarget ≤ 0
ensures that the distance disttarget of the last point of the
trajectory and the center of the target region is smaller than its
radius rtarget. The set of constraints Cacc is defined as

Cacc :=





amax − |vh,k+1 − vh,k|/∆t ≤ 0, k ∈ 1 · · ·N − 1
amax − |vh,k+1 − vh,k|/δk ≤ 0,
k ∈ N · · ·N +M − 1,

(2)

where amax is a limit on the acceleration of the formation
in the horizontal plane. Constraints Cinputs and Cacc are
important for integration of the rotating maneuvers into the
overall trajectory. These sets ensure that the formation stops



before the virtual leader migration, as required for the L-F
technique.

The cost function is defined as

CF (X) = min

{
0,
distobst(X)− rs
distobst(X)− ra

}2

+
N+M∑

j=N+1

δj

+
N+M∑

j=2

(
(vv,j − vv,j−1)2 + (vh,j − vh,j−1)2 + (ωj − ωj−1)2

)

+

N+M∑

j=1

ln(|c1 · αj |+ 1),

(3)

where the first term is the obstacle avoidance function origi-
nally described in [25], which is zero if the minimal distance
distobst(X) between the trajectory (described by the vector
of control inputs X applied on the kinematic model for the
actual state) and an obstacle is greater than safety radius
rs and increases if an obstacle approaches into the sphere
defined by the safety radius. The spherical representation of
the formation is important due to the employed visual relative
localization, and it ensures the direct visibility between the
followers. The value of the first term of CF (X) goes to
infinity as an obstacle approaches the avoidance radius ra. The
time of flight penalization in the second term depends only on
the planning horizon since the transition states are distributed
with the constant frequency in the control horizon. The third
term penalizes movement oscillations, which may occur in
MPC control scheme, and it is aimed to prevent the system
from an undesired deviation in control inputs. The last term,
which penalizes the turning maneuvers, can be used (with its
influence set by constant c1) in applications, where trajectories
without the turning maneuver are preferred even at the cost of
a longer time to the target. In this paper, a nonzero weight c1
of this term is used only in the experiment in table I.

B. Stabilization of followers

The desired trajectories for each of the followers are simply
obtained from the result of the optimization X? using the
L-F method from [5] as sketched in section II. As depicted
in Fig. 4, the only issue that needs to be considered is the
modification of pi, qi coordinates after each turning maneuver
for all MAVs:

pi = cos(φ+ α)(Px − Pix) + sin(φ+ α)(Py − Piy),

qi = cos(φ+ α)(Py − Piy) + sin(φ+ α)(Px − Pix),

where i ∈ 1 · · ·NMAV , P := [Px, Py] is the new position
of the virtual leader, φ is its heading before its migration,
and Pi := [Pix, Piy] is position of the i-th follower, which is
obtained as Pi := P0 + cos(φ)[−pi, qi]− sin(φ)[qi, pi]. P0 is
position of the virtual leader before its migration. Coordinate
hi stays unchanged during the turning maneuver.

p1

q1
p2

q2

p1

q1

p2

q2

Fig. 4. A formation before (left) and after (right) the virtual leader migration.
The virtual leader is represented by the red circle and followers by gray circles.

Fig. 5. Formation flying in a narrow corridor, which requires sudden changes
of formation velocity to be able to fly around corners without collisions with
obstacles and mutual collisions. MAVs are denoted by orange and the virtual
leader by blue contours. a) The formation before the third migration of the
virtual leader. b) Migration finished. c) Mission accomplished.

The desired trajectories of each MAV can be then directly
followed by the onboard embedded MPC solver described
in [15]. Unfortunately, the solution in [15] does not include
an obstacle avoidance function. If a dynamic environment
is considered, inter-vehicle collision avoidance in case of a
follower failure is required or the ability to temporarily change
the formation shape is needed (as shown in Fig. 6), the
algorithm described in section VI.C of our previous work [16]
on UGV-formations control needs to be applied in a slower
planning loop before employing the fast onboard MPC. Due
to the space limit of this paper, we have to skip the description
of the extension of the algorithm in [16] for using with MAVs
and into 3D, but it is straightforward.

IV. NUMERICAL SIMULATIONS

In the presented experiments, a C Feasible Sequential
Quadratic Programming (CFSQP) library [26] is used for
solving the optimization problem defined in III-A. Ini-
tial formation parameters in the simulations with snap-
shots shown in Fig. 5 and 6 and results in table I are
pi = {0.5; 0.5; 0.9; 0.9}, qi = {0.4;−0.4; 0.4;−0.4}, and
ri = {0; 0; 0.2; 0.2}, while for the simulation in Fig. 8
pi = {0.55; 0.55; 0.3; 0.3; 0.3; 0.3; 0.8; 0.8; 0.8; 0.8}, qi =
{0; 0;−0.4;−0.4; 0.4; 0.4; 0.4; 0.4;−0.4;−0.4}, and ri =
{−0.2; 0.2; 0.2;−0.2; 0.2;−0.2; 0.2;−0.2; 0.2;−0.2}.

In the first scenario in Fig. 5, the width of the corridor in the
workspace does not allow to use the basic L-F approach from
[5] and the turning maneuvers with the sudden change of the
position of the virtual leader are required. During these turning
maneuvers, the formation is forced to stop its movement, the
position of the virtual leader is changed, and the formation
continues in the new direction.



Fig. 6. Ability of deformation of the formation shape enforced by the narrow
passage (a) and avoidance of a lately detected obstacle (b).

, ,

Fig. 7. Progress of velocity (left) and yaw (right) of the virtual leader in the
experiment presented in Fig. 6.

In the map in Fig. 6, which is inspired by an office-like
environment, the “door” in the first obstacle is smaller than
the formation in its desired shape, and the formation has to
be temporarily narrowed there to be able to pass through.
A response of the formation to lately detected obstacle is
demonstrated by the straight obstacle inside the room, which is
considered as unknown at the beginning of the simulation. The
turning maneuver at the end of the experiment (see the yaw and
velocity profiles in Fig. 7 shortly before the 30th second of the
simulation) is not necessary due to the environment constraints,
but this solution is evaluated by a cheaper cost value than a
longer solution without the maneuver. The temporary decrease
of speed of the formation motion between the 9. and 13. second
of the simulation is caused by the later detected obstacle.

In the simulation in Fig. 8, the system scalability is tested
using the 10-MAVs formation. The progress of cost function
values of solutions obtained in each planning step is shown in
Fig. 9. The cost is linearly decreasing due to the constant speed
of the formation movement (the trajectory is shortened by the
approximately same distance in each planning step), except the
intervals along the displacement of the virtual leader position,
where the decrease of cost values is faster. The progress of
heading direction of the virtual leader during the simulation is
shown in Fig. 9. The airflow influence of the top MAVs to the
bottom MAVs, which is observed in real-world experiments,
is neglected in this simulation. This enables us to verify the
ability of the system to stabilize large compact formations
of 3D shape. Real-world applicability of such a compact 3D
formation would be possible only with smaller MAVs (as
shown in [27]) than using the platforms considered in this
paper.

The influence of weight of penalization of the rotation
maneuvers c1 in the cost function (3) is shown in table I. The
aim of this statistic, which was obtained by 2100 simulations
in 300 randomly generated scenarios (see examples of the
scenarios in Fig. 10), is to verify the reliability of the method
and its ability to choose between smooth longer trajectories and
shorter trajectories with included turning maneuvers based on

Fig. 8. A formation of 10 MAVs flying in a narrow corridor. Airflow effect
from MAV propellers to neighboring vehicles was not considered in this
simulation. a) Initial position. b) The formation after the second migration. c)
Target reached.

Fig. 9. Progress of cost function values of solutions of the virtual leader
motion planning problem (left) and yaw (right) of the virtual leader in the
simulation with snapshots presented in Fig. 8.

the particular application. In the table, the trajectory curvature
value is obtained as mean curvature along the 300 trajectories
followed by the formation. The flight time is the mean total
time of flight to reach the desired target location and the
minimum obstacle distance is mean minimal distance between
an MAV and an obstacle in the 300 runs of the algorithm for
each setting of weight c1.

Results of this analysis are also displayed as a box plot in
Fig. 11, where the red line represents the median and edges
of the blue rectangle are the 25-th and 75-th percentiles. The
whiskers are extended to the most extreme data points that are
not considered as outliers, which are plotted individually as the
red crosses. Points are considered as outliers if they are larger
than q3 + w(q3 − q1) or smaller than q1 − w(q3 − q1), where
q1 and q3 are the 25-th and 75-th percentiles, respectively, and
w is the whisker length.

Results confirmed that the number of turning maneuvers
(counted in the first three rows of the table) significantly
decreases with increasing value of the weight of penalization
of these maneuvers in the cost function. With the increasing
number of the turning maneuvers, the curvature of the obtained
trajectories increases and also the minimal distance between
the formation and obstacles decreases if the trajectories without
turning maneuvers are preferred, which both increase flight
safeness. This shows the usefulness of the method in cluttered

Fig. 10. Examples of solutions of different scenarios found by the proposed
algorithm in the statistics presented in Fig. 11 and table I. The initial trajectory
is plotted in blue, obtained trajectories in green and obstacles in red color. a)
A solution with 2 maneuvers, b) with 1 maneuver, c) without a maneuver.



weight 0 25 50 75 150 300 1000
2 manoeuvres 299 257 194 140 109 92 38
1 manoeuvre 1 38 85 129 150 151 175
0 manoeuvres 0 5 21 31 41 57 87
min. obst. dist. 1.25 1.24 1.23 1.22 1.19 1.16 1.09
traj. curvature 2.56 3.08 3.47 3.89 4.17 4.43 5.04

TABLE I
INFLUENCE OF THE WEIGHT c1 OF THE TERM IN THE COST FUNCTION (3)

THAT PENALIZES THE ROTATION MANEUVERS IN THE SOLUTION. EACH
SETTING OF THE PARAMETER c1 WAS TESTED IN 300 SIMULATIONS OF

RANDOMLY GENERATED SCENARIOS.

Fig. 11. Minimal distance to obstacles (a) and curvature of the trajectory (b)
of solutions obtained by the algorithm with different setting of the parameter
c1. Each statistic was obtained from 300 simulations of randomly generated
scenarios.

environments, additionally to the ability to solve situations,
where a feasible trajectory does not exist if the turning maneu-
vers are not enabled, as was shown in the previous simulations.

V. CONCLUSION

In this paper, a novel concept of motion planning and
stabilization of formations of micro aerial vehicles based on
a dynamic virtual leader was designed and experimentally
evaluated. This concept is suited for utilization of onboard
visual relative localization of neighboring MAVs, which can
be considered as an enabling technique for deployment of
large teams of unmanned helicopters in cluttered and GPS-
denied environments. The results of theoretical analyzes of
system stability and convergence of the MPC-based planning
and results of the numerical simulations show that the proposed
method is capable of flexible formation flying in cluttered
GPS-denied environments and it is robust to external distur-
bances caused by the wind, air turbulence close to walls, and
imprecise sensors.
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Swarms of micro aerial vehicles stabilized under a visual relative
localization
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Abstract— A stabilization and control technique developed
for steering swarms of unmanned micro aerial vehicles is
proposed in this paper. The presented approach based on
a visual relative localization of swarm particles is designed
for utilization of multi-robot teams in real-world dynamic
environments. The core of the swarming behaviour is inspired
by Reynold’s BOID model proposed for 2D simulations of
schooling behaviour of fish. The idea of the simple BOID model,
with three simple rules: Separation, Alignment and Cohesion, is
extended for swarms of quadrotors in this paper. The proposed
solution integrates the swarming behaviour with the relative
localization and with a stabilization and control mechanism,
which respects fast dynamics of unmanned quadrotors.

The proposed method aspires to be an enabling technique
for deployment of swarms of micro areal vehicles outside
laboratories that are equipped with precise positioning sys-
tems. The swarming behaviour as well as the possibility of
swarm stabilization with the visual relative localization in the
control feedback are verified by simulations and partly by an
experiment with quadrotors in this paper.

I. INTRODUCTION

The possibility of deployment of large groups of un-
manned Micro Aerial Vehicles (MAVs) closely cooperating
together brings new potentialities for autonomous robotics.
MAV swarms are beneficial in numerous applications includ-
ing cooperative surveillance, reconnaissance and monitoring
tasks, search and rescue missions, searching for sources
of pollution, sensory data acquisition and various military
applications. To be more specific, swarms of MAVs can be
employed for monitoring of natural disasters (floods, forest
fires), patrolling of objects or protected areas (ammunition
depots, borders), surveillance of crowds (cultural and sport
events, demonstrations), monitoring of industrial accidents
(plume of toxic gas tracking, concentration of pollutants
measuring), sensing in large environments (measuring of
signal coverage, smog concentration) and many more.

Most of these tasks involve the utilization of swarms of
MAVs in environments without any pre-installed infrastruc-
ture for precise localization of robots. Although available
global localization systems (such as GPS) can be used
for a rough positioning of the whole swarm, the precision
of these systems is insufficient for relative localization of
closely operating MAVs. Knowledge of the relative position
of neighbouring MAVs in the swarm is crucial for collision
avoidance within the team and for any coordination of MAVs,

The authors are with Department of Cybernetics, Fac-
ulty of Electrical Engineering, Czech Technical Univer-
sity in Prague, Technicka 2, 166 27 Prague 6, Czech
Republic {saskam1,vakuljan}@fel.cvut.cz,
preucil@labe.felk.cvut.cz

if it is required by the application (cooperative actions). The
swarm control approach presented in this paper is suited for
utilization of an onboard visual system for relative local-
ization in large teams of unmanned micro quadrotors. The
employed localization method provides precise information
on relative positions of neighbouring robots with an update
rate, which is sufficient for the swarm stabilization.

Fig. 1. Swarm of quadrotors controlled by rules derived from behaviours
observed in schools of fish.

The presented algorithm designed for the swarm control
with obstacle avoidance ability is inspired by the Reynold’s
BOID model [1], which was developed to simulate schooling
behaviour of fish. In our method, the Reynold’s basic rules
(originally designed for control of 2D holonomic particles)
are interpreted for stabilisation of swarms of MAVs under
the relative localization as follows:

• Separation - avoid crowding neighbours (a short range
repulsion to avoid collisions and to reduce mutual
airflow effects caused by propellers).

• Cohesion - keep swarm compact to enable its stabil-
isation using the relative localization (a long range
attraction to keep swarm particles in the range of the
visual localization).

The alignment is realized via a target attraction, which
steers swarm particles towards a common target. Besides, we
consider another rule, which is important in applications in
environment with obstacles or with possible human-swarm
interaction, where the swarm has to keep a sufficient safe
distance from people:

• External avoidance - avoid obstacles (a short range
repulsion based on flight direction).

In nature, flocks (fish schools) can avoid obstacles or
escape from predators very fast in a cooperative way and
without mutual collisions. In analogy to the school of fish,
also MAVs equipped with the onboard sensors for relative



localization are able to detect neighbours within a short
detection range and to determine their position and change
of the position. This information employed in the control
feedback enables the swarm to keep compact and avoid
obstacles without any explicit communication. Moreover,
even if not all robots of the group are able to detect the
particular obstacle, its avoidance is ensured via a sequential
transfer of motion changes through the swarm by continual
observing of relative positions of neighbours (the visual
relative localization system that we have introduced in [2]
is employed). The presented swarm stabilization approach is
an extension of work in [3], which was designed for control
of swarms of ground robots.

From the robotic point of view, such an approach based on
flocking behaviour has two important advantages regarding
the large MAV swarms: 1) It is strictly decentralized based
only on the information gathered by onboard sensors and
therefore it is scalable. 2) The swarming rules are compu-
tationally efficient and so the control algorithm can be run
in a fast loop even using the computational power available
onboard of simple MAVs.

1) State of the art: Recently, the research of swarms of
autonomous vehicles covers broad areas of robotics including
aspects of task allocation and strategies for solving multiple
tasks [4], communication and maintenance of connectivity
within the team [5], a modeling of the swarm behavior
by predicting of individual behaviours [6], or a collision
avoidance within the swarm [7]. The topic involved in
this paper is related mainly to control and stabilization of
swarms of MAVs [8], [9]. The most related to the research
proposed in this project is presented in [10], where swarming
behaviours of ground robots in a planar environment are
investigated. The aim of our approach is also to stabilize
swarms of autonomous robots (in our case MAVs) in a
desired shape while maintaining a small distance among
themselves. Beyond the research presented in [10], we design
principles of swarming rules to satisfy requirements on the
visual system of relative localization in 3D, which enables to
take swarms of flying robots outdoor. This is one of the most
important contributions of our method in comparison with
the aforementioned algorithms that have been verified usually
via numerical simulations or rarely using ground vehicles
in laboratories. In literature, one can find also number of
works based on the Reynold’s model, e.g. [11], [12]. These
algorithms are also mostly designed to steer ground robots
or 3D particles, which are often considered as dimensionless
points. There is lack of approaches considering limitations
of MAV multi-robot systems or even investigating possibility
of deployment of swarms of aerial robots in real-world
missions.

II. PROBLEM STATEMENT AND PRELIMINARIES

Let us assume a group of N quadrotor MAVs equipped
with omnidirectional vision system capable of relative lo-
calization of neighbouring robots and obstacles in a limited
range. The robots are identical to each other (the localization
does not provide the identification of neighbours) and there is

no communication within the swarm available. The obstacles
are considered as a set of simple objects (spheres in the
experiments) with known relative positions from the MAVs.
A complex map, could be represented by such objects with
arbitrary precision, but this paper is not focussed on the
environment representation/mapping.

The problem solved in this paper is to stabilize the robots
in a compact swarm in an environment with obstacles and,
if it is required by the application, to reach a target region.
In the case of the target following, we also assume that the
robots are able to detect the target position or a direction
into the target. The control algorithm must respect both the
relative positions of neighbouring MAVs and the constraints
of the relative localization (local range). Clearance between
neighbouring MAVs and between MAVs and obstacles must
ensure a collision free movement.

A. Quadrocopter model and control

In this paper, we use a quadrotor vehicle model [13] with
four identical propellers located at vertices of a square (see
Fig. 2 b)). Each of the propellers j generate a thrust f j

i

along its axis. For each MAV i, we consider an inertial
reference frame and a body-fixed frame with origin located
at the center of mass of the MAV. The relative position of
these frames is defined by the location of the center of mass
xi 2 R3 in the inertial frame and by the rotation matrix
Ri 2 R3⇥3 from the body-fixed frame to the inertial frame.
The inertial reference frame is different for each MAV since
they cannot communicate with each other, which would be
necessary for unification of the reference frames.

The motion model of MAVs according to [13] is

ẋi =vi,

miv̇i =mige� fiRie,

Ṙi =Ri⌦̂i,

Ji⌦̇i + ⌦i ⇥ Ji⌦i =Mi,

(1)

where vi 2 R3 is velocity of the center of mass in the inertial
frame, mi 2 R is weight of the MAV, ⌦i 2 R3 is angular
velocity in the body-fixed frame, Ji 2 R3 is inertia matrix
with respect to the body frame. The hat symbol ·̂ is defined
by the condition x̂y = x⇥y for all x, y 2 R3, g is the gravity
acceleration and e = [0, 0, 1]. The total moment Mi 2 R3

along all axes of the body-fixed frame and the thrust fi 2 R

are control inputs of the plant. The total thrust, fi =
4P

j=1

f j
i ,

acts in the direction of the axis of the body-fixed frame which
is orthogonal to the plane defined by the centres of the four
propellers. The control inputs are obtained by the tracking
controller presented in [13], which is employed to reach the
new locations of MAVs given by the swarming approach
described in section III.

B. Visual relative localization of swarm particles

The swarming principles investigated in this paper are
designed for using the light-weight vision based embedded
system of the relative localization of particles within the



robotic group. The system developed within our team (see
[2] for technical details and performance analyses) is based
on a detection of black and white patterns with precision
in units of centimeters for distances in units of meters.
This operational range and precision are sufficient for the
stabilization of groups of MAVs cooperatively acting in close
swarms.

Although, this system is sufficiently robust and precise,
it has a drawback concerning stabilization of large groups
of MAVs, since its operational range is limited (depends
on resolution of the employed cameras and size of the
pattern). Therefore, it is crucial to incorporate the operational
constraints into the swarming rules and to keep MAVs in
appropriate relative positions regarding the relative localiza-
tion. The operational constraints are described by a model
of the localization arising from theoretical analyses of the
vision system and experimental evaluation of the system
performance in real scenarios presented in [2].

In addition, the localization system (in its simple version)
may not identify which MAV is recognized in robot’s neigh-
bourhood. The possibility of particular MAVs identification
would require more complicated patterns or patterns of
different colours, which would be at the cost of decreased
reliability, precision and operational range. The proposed na-
ture inspired swarm control technique is especially appealing
to deal with this limitation, since the swarm theory assumes
utilization of homogeneous particles. Therefore, also the rel-
ative interaction of swarm particles (described in Section III-
A) considers the neighbouring MAVs as anonymous entities.

III. FLOCKING BEHAVIOUR WITH OBSTACLE AVOIDANCE
ABILITY

A novel MAV flocking approach based on the Reynold’s
model of the coordinated animal motion is proposed in this
section. Taking the steering behaviours of Reynold’s boids
as an inspiration, we have incorporated the local interactive
forces from neighbouring robots into the dynamics of MAVs.
We have also included effects given by proximate obstacles
and a force pushing the overall swarm into the desired
target region. This active force would not be necessary in
case of employment of the algorithm as a component of
higher level motion planning algorithms. Then the flocking
MAV control can be used for swarm stabilization and for
emergency intervention due to its avoidance and escaping
behaviour, while the high level planner would solve the
swarm navigation.

The proposed swarming approach, which provides control
inputs based on surrounding quadrotors and near obstacles in
a decentralized manner, enables employment of large swarms
of relatively localized MAVs. This control scheme provides a
sufficiently robust and fast solution, which requires minimal
computational power and simple sensors available onboard
of MAVs. The swarming behaviour is designed as a com-
bination of the relative interactions of swarm particles, the
attraction of the target and the interaction with surrounding
environment as follows.

A. Relative interaction of swarm particles

The core of the proposed swarming behaviour is based
on the relative interaction between particles of the group.
The relative positions of neighbouring robots are composed
into the separate rules for each of the individuals indepen-
dently, which results in the required behaviour of the entire
group. This decentralized concept is suitable for the proposed
scheme, which is based on the relative visual localization of
MAVs. In such a swarm, each robot is capable of localizing
only neighbours in its limited surroundings. The effects of
neighbouring robots are integrated into the MAV control by
the individual force

Findi =

NX

j,j 6=i

eijFindij , (2)

where eij is a distance weight function and Findij is an
interactive force.

The distance function emulates the sensor range of the
employed visual relative localization. It ensures that the
interactive force is considered in the MAV control rule only
if the neighbouring vehicles are in relative positions that
enable their confident localization. The distance function
is important mainly for realistic simulations of the MAV
swarm behaviour. In the experiments with real quadrotors,
this function is replaced by a tag indicating validity of
the sensory data. Such a tag is provided by the utilized
visual relative localization system [2]. The magnitude of the
distance weight function depends on the relative distance Lij

between two neighbouring quadrotors, i and j, as:

eij =
1

eaLij�b + c
+

1

e0.5aLij�b + c
. (3)

The weight function is used with constant values a = 5,
b = 4, c = 0.6 in this paper. The interactive force

Findij
= Kd(kLijk � Lr)Lij + Dd

dLij

dt
(4)

is designed as a spring-damper model. It enables stabilization
of the robots in a relative distance equal to a desired intra-
robot distance Lr. The constant Lr has to be chosen smaller
than the range of the relative localization to ensure the
stabilization of the group. On the contrary, too small value
of Lr can increase possibility of collisions and mutual
disturbances by air streams from propellers. Lij is a vector
between robots i and j, which is given by the visual relative
localization. The constants, which are used as Kd = 1.5 and
Dd = 2 in experiments in this paper, affect the rate of the
convergence into the equilibrium. The required derivative of
the relative position of neighbours is obtained by Kalman
filtering of the data from the relative localization system [2].

B. Swarm attractivity

The rule of the swarming behaviour presented in this
subsection deals with the attraction of the swarm to the target
position. This ability of the swarm movement into the desired
goal position is achieved by integration of an attractive force



Fig. 2. a) Forces of interaction with surrounding environment. b) Integration
of the total swarming force into the MAV control.

to the MAV control scheme. The attractive force is pointing
at the goal and again it works as a spring-damper model:

Fgoali = Kg
Lig

kLigk
+ Dg

dLig

dt
. (5)

Here, the required equilibrium that has to be achieved
is a zero relative distance between i-th robot and the goal
position. Lig is the relative position vector from the i-th
MAV to the goal. The constants, which are Kg = 1.1 and
Dg = 2 in experiments in this paper, control the rate of
convergence of the group. In comparison with the eq. (4),
where the force magnitude is changing based on the relative
distance to the neighbours, the attractive force is normalized
to ensure the same swarming behaviour along the whole
trajectory to the goal.

As it is well known in robotics, such a simple attractive
force suffers from local extremes in complex environments
with obstacles, which may result in undesirable oscillations
or a dead-lock. Nevertheless, this navigational approach is
sufficient for the verification of swarming principles based
on the relative visual localization, which is the main purpose
of this paper.

C. Interaction with environment

The obstacle avoidance behaviour is essential for the real-
world deployment of autonomous robots. Incorporation of an
obstacle avoidance function directly into the swarming rules
enables a very fast response to changing environment. In the
proposed approach, the avoidance manoeuvre is realized by
a translational reshaping of the swarm, which is caused by
the interactions between particles of the group. Thus some
individuals in the group may perform obstacle avoidance
even without sensing the obstacle directly. This results in
the required evasive action of the entire swarm without any
centralized command.

The arising reshaping of swarms of quadrotors caused by
detected obstacles is initialized by incorporating the equation

Fobsi
=
X

o2O
�eoi

Hoi

kHoik
(6)

into the steering rules of each MAV. Each obstacle o in the
set of detected obstacles O is considered in eq. (6). The
magnitude of Fobsi

depends on the direction dependence
function � and the exponential distance function eoi.

The function eoi, which is designed as

eoi = boe
aokLoik, (7)

is exponentially growing with decreasing distance kLoik
between the i�th MAV and the obstacle. The parameters of
the exponential function are used as ao = �3 and bo = 100
in experiments presented in this paper.

The direction dependency function �,

� = (1 + cos ( io)), (8)

is important due to the fast dynamics of the MAV swarms.
This function enables to generate a repulsion according to the
relative angle  io between the vector Loi and the direction
vector of the i-th MAV. Loi is the relative position vector
between the MAV and the obstacle. MAVs flying towards a
collision with the obstacle or in a direction which is close to
the collision are influenced by the avoidance function more
intensively.

Hoi is vector perpendicular to the direction vector of the i-
th MAV, which is pointing away from the obstacle as shown
in Fig. 2 a). The vector Hoi is defined as

Hoi = (Hi ⇥ Fio)⇥Hi, (9)

where Hi is the direction vector of the MAV. The force Fio

is employed to keep the MAV in a sufficient distance from
the obstacle. Also, it enables us to incorporate a prediction
of the obstacle movement into the avoidance function. The
force, which is defined as

Fio = KoLoi + Do
dLoi

dt
, (10)

deviates slightly from the vector Loi oriented from the center
of the obstacle to center of the mass of the quadrotor, as
denoted in Fig. 2a. The deviation correlates with the move-
ment of the obstacle (included in the first-order derivative of
Loi). Again, the constants, which are used as Ko = 1.5 and
Do = 2 in experiments in this paper, influence speed of the
respond to detected dynamic or static obstacles.

The total force that acts on the i-th MAV is determined
as a sum of particular contributions as:

Fswarmi
= Findi

+ Fgoali + Fobsi
. (11)

For the stabilization of the quadrotor in the required
orientation, a ray from the center of mass of the MAV in the
direction of Fi is employed as the reference for the single
MAV low-level control. The control approach addressed in
[13] is used to achieve the new orientation of the MAV in
the direction of Fi. The low-level control is used to follow
the direction of Fi until the update of the swarming rules
is initiated, based on the frequency of the high level control
loop of the swarm stabilization.



IV. EXPERIMENTAL RESULTS

The experiments presented in this section have been de-
signed to show performance of the proposed method and
to analyse its key properties. The simulations shown in
Fig. 5 and 8 demonstrate the ability of the algorithm to
maintain a compact swarm of numerous MAVs and to avoid
obstacles simultaneously. Movies of these simulations and
two additional experiments are available in [14]. In the
scenarios, 27 MAVs (experiments 1 and 2) or 10 MAVs
(experiments 3 and 4) are initialized in a compact formation.

At the beginning of the simulation, the quadrotors au-
tonomously increase their relative distances based on the
swarming rules described above. The desired equilibrium
is achieved very fast (in less then one second) as can be
seen in the graph of distances from quadrotors to their
closest neighbour shown in Fig. 4. Together with the swarm
stabilization, the group is moving towards the desired goal
position. After few steps of the first simulation (Fig. 5), the
outer MAVs of the swarm detect an obstacle. The obstacle is
positioned in the middle of the line connecting the start and
goal positions. The quadrotors smoothly avoid the obstacle to
keep the sufficient distance from the detected object during
the whole manoeuvre. The distance between the obstacle and
all MAVs is shown in Fig. 3. Once the obstacle is avoided,
the group converges back into the flock shape, which is
depicted in the last snapshot of Fig. 5, and continues towards
the goal position. Reintegration of the sub-swarms is possible
only if there exists at least one relative interaction between
both groups. It means that the value of term keijFindij

k is
greater than zero for at least one pair of robots i and j, which
belong to different sub-swarms.

Fig. 3. Graph of distances from MAVs to the obstacle in the simulation
1.

The second simulation is initialized identically as the first
one, but two additional obstacles are placed in the environ-
ment to show robustness of the approach. In snapshots of the
experiment in Fig. 8 and in the video in [14], one can see
that the swarm is again deformed due to the obstacles as the
“avoidance signal” is propagated through the group. During
the whole avoidance manoeuvre, sufficiently safe relative
distances within robots of the team as well as between robots
and all obstacles are kept. The values of distances between
the obstacles and MAVs are plotted in Fig. 6 and the values
of distances between MAVs and their closest neighbours in
Fig. 7.

Fig. 4. Graph of distances between MAVs and their closest neighbour
during the simulation 1.

Fig. 5. Snapshots of simulation 1.

The experiments with multiple MAVs show that the swarm
of quad-rotors can be stabilized using the visual relative
localization in the control feedback. In the experiment shown
in Fig. 9, two MikroKopters L4-ME and one AR-drone are
stabilized using only the feedback from onboard cameras.

Fig. 6. Graph of distances between MAVs and the closest obstacle during
the simulation 2.

V. CONCLUSION

A nature inspired approach for control and stabilization
of swarms of unmanned micro aerial vehicles was presented
in this paper. The proposed method is designed with the
onboard visual relative localization of swarm members in-
tegrated into the MAVs control. The algorithm is based on
simple swarming rules using an information on position of
neighbours in the team and obstacles in limited sensory range
without the necessity of communication. It was verified via
simulations that the proposed swarming principle, computed
onboard of MAVs in a strictly decentralized manner, enables



Fig. 7. Graph of distances between MAVs and their closest neighbour
during the simulation 2.

Fig. 8. Snapshots of simulation 2.

Fig. 9. Verification of the proposed swarm stabilization approach using
only the relative interaction between swarm members.

stabilization of the swarm of micro quadrotors. With these
desirable characteristics, the proposed approach could be an
enabling technique for employing large swarms of MAVs
outside laboratories equipped with a precise global position
system. Such a swarming behaviour is appealing in scenar-
ios in which a large team of robots has to move closely
together: e.g. to form a distributed sensor for environment
measurement, monitoring or surveillance.
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Coherent swarming of unmanned micro aerial vehicles with minimum
computational and communication requirements

Daniel Brandtner and Martin Saska

Abstract— An algorithm designed for stabilization and con-
trol of large groups of micro aerial vehicles (MAVs) - multirotor
helicopters - without any explicit communication is proposed in
this paper. The presented algorithm enables a swarm of MAVs
to maintain its coherence and perform a compact motion in
complex environments while avoiding obstacles with only very
limited computational and sensory requirements. The method is
very robust to incomplete sensory information, it enables a fully
distributed applicability, and it is highly scalable. Increasing
amount of MAVs even improves the required coherence be-
haviour. Numerous simulations in different environments were
conducted to verify the algorithm, show its potential, and
explore its various configurations.

I. INTRODUCTION

Decreasing size and increasing robustness of micro aerial
vehicles (MAVs) allow us to consider deployment of large
multi-MAV groups instead of heavy and well-equipped un-
named aerial vehicles. Distribution of sensory power to small
flexible units increases reliability of the system and enables
applications where distributed sensing or acting is necessary
and which would not be possible with a single vehicle.
Substitution of a large vehicle by a team of light MAVs
is especially important due to safety reasons in scenarios
where the autonomous system may interact with humans
and where the large platforms may cause injury and damage
objects in their proximity. The applications with presence of
people are often located in urban and indoor environment,
where global navigation satellite systems (such as GPS)
are not available or their precision is not sufficient for
group stabilization, and onboard sensors are required for
mutual localization of individuals in the group. The proposed
swarm stabilizing algorithm is designed for using vision
based relative localization [1] by onboard cameras, carried
by MAVs, which was already successfully employed by
our team for cooperative surveillance by a team of self-
localized and stabilized MAVs and for compact formations
flying [2], [3], [4]. Although we call the group in [2] as a
swarm, the method requires centralized planning and MAV
coordination. In this paper, we propose a novel method that
allows to control the visually stabilized MAV groups in a
fully decentralized way and without explicit communication,
which is the main requirement of swarm robotics research
(see Fig. 1 for motivation).

The authors are with the Department of Cybernetics, Faculty
of Electrical Engineering, Czech Technical University in Prague.
martin.saska@fel.cvut.cz

Fig. 1. Motivation: A group of MAVs above the sand dunes following the
sun-set direction.

A. Related Work

Swarm robotics, which is aimed to implement a collective
behaviour without an explicit central control law, usually
arises from principles of swarm intelligence dealing with
decentralized, self-organized multi-agent systems [5]. Many
of these swarming algorithms are inspired by behaviours
observed on animal interactions. For example, the BOID
model is inspired by bird flocking [6], algorithm in [7] by
nesting and foraging habits of various species of insects, and
approaches in [8], [9] by fish schooling.

The methods [7], [8], [9] as well as for example PSO
(Particle Swarm Optimization)-based algorithms [10], [11]
and methods [12], [13], [14] require global knowledge and
communication unlike the approach discussed in this paper,
which is strictly distributed. Also the potential field-based
swarming method in [15] relies on explicit wireless commu-
nication between neighbour MAVs, while the cognitive-based
algorithm in [16] uses global positioning systems and broad-
casting of MAV positions. Frequently used BOID models
[17], [18], similarly as the proposed approach, rely on mutual
localization and stabilization of neighbouring particles, but
require a full information on the relative position and even
velocity of neighbours, whereas our method uses only a
binary information on the presence of the neighbours in
proximity of the particular MAV. This is a very important
capability for control of swarms of light-weight and simple
MAVs as it significantly reduces requirements on the onboard
mutual localization system.

The proposed method, which is inspired by a study of
coordination of ground robots in [19], enables the swarm of
MAVs to perform a coherent motion towards a given target
using only an onboard binary light sensor that can recognize
whether the target is in sight or not. Although in [19], the
group members share this information with neighbours to get
a vague common idea of the target location, our method uses



individual on-board estimation of the target position without
the need of the explicit communication.

To sum up the contribution of this paper, the presented
algorithm enables to stabilize an MAV swarm in environ-
ments with obstacles without the need of global positioning
systems and an explicit wireless communication, and with
significantly limited computational and sensor requirements.
Moreover, the important contribution of this paper is a
comprehensive analysis of the achieved swarming behaviour
aimed at confirmation/disapproval of a set of hypothesis
assumed in swarm robotics literature or being compiled
based on our experience with the BOID models used for
MAV swarm control.

B. Problem Definition and MAV set-up

The task solved in this paper is stabilization of a swarm
of M MAVs and its navigation into a desired location in
environments with static and dynamic obstacles. For the
swarm coherence, it is required that all swarm members
are relatively stabilized with at least α neighbours in the
group, which means that at least α helicopters are mutually
localized by each MAV using onboard sensors. Therefore, we
assume that all M MAVs in the swarm are equipped with
the sensors enabling to discern the adjacent robots (called
”neighbours”), localize the obstacles, and detect direction of
the required target. We suppose that the neighbours detection
(not necessarily full localization - only a binary information
on a presence of a neighbour) is ensured within a range of
detection with radius R. Let us denote the actual number of
detected neighbours within radius R by variable N .

Also the position of the target does not need to be observed
precisely. In the presented experiments, a set of 4 simple
vision sensors is deployed around the robot providing in-
formation in which quadrant corresponding to the particular
sensor the target is located (no precise information on the
bearing and distance of the target is required). The obstacles
are localized in a detection range Ra, where Ra < R, and
again the knowledge of distance to obstacles is not required
and also the bearing estimation error can be very high (30◦

error was considered in the experiments).

II. SWARMING MODEL

The propoded method is inspired by principles of the
swarming model introduced in [19] to control a group of
ground robots. We adopted the basic swarming rules, mod-
ified them, and integrated them into a multi-MAV visually-
stabilized system. For MAV control strictly without com-
munication (in [19] a communication channel was used to
share the information among the robots), constraints of the
onboard visual relative localization mechanism have to be
considered. Additionally, motion constraints of the low level
onboard model predictive control technique [20], which is
used to deal with the high dynamics of MAVs, are integrated
into the swarming approach.

The proposed swarming model used for MAV-swarm
stabilization is composed of three behavioural states: forward
(default setting for all MAVs), coherence and avoidance.

MAVs in the forward state fly straight with a constant
velocity as long as they are forced to enter into another
state. If the required connection with at least α neighbours
is lost (i.e. N < α) for an MAV, it enters into the coherence
state, in which turns and flies back until the connection is
restored. Once the MAV enters back into the localization
range (N >= α), it performs a random turn and returns
back into the forward state. The coherence manoeuvre can be
triggered only once per cf cycles to allow the MAV to regain
its visual connection. The random turn is applied if only
the swarm coherence is required and the swarm movement
direction is not controlled. If a desired target is required
to reach by the swarm members, the turning is influenced
by the estimated position of the target as mathematically
described in Algorithm 1. A proper setting of α is important
mainly for large swarms, we are focused on, where keeping
the localization constraints between all pairs of MAVs is
not possible. Properly defined α enables a wider and better
structured swarm, where (ideally) each robot has precisely α
neighbours and the swarm forms a stable regular net, which
is not precomputed and arises autonomously.

while true do
foreach MAV m do
if m is in sensory range and visible then

neighbors + +
end
;
if state = Forward AND
neighbors < prevNeighbors AND
neighbors < alpha then

turnAngle = −π
lostNeighbors = prevNeighbors
counter = 0
state = Coherence

else if counter = cf AND state = Coherence
then

if visible(target) then
offset = activeSensor.direction

else
offset = 0

end
turnAngle = offset + rand(−π/2, π/2)
state = Forward

else
continue in same direction

end
prevNeighbors = neighbors
counter + +

end
Algorithm 1: Swarm coherence algorithm implemented
onboard of each MAV in a decentralized way.

The avoidance state is used if an MAV gets closer to an-
other MAV/MAVs or an obstacle than a given threshold and
an evasive manoeuvre has to be performed. This manoeuvre
(the same manoeuvre is applied for obstacle avoidance as
well as for mutual collisions of swarm members avoidance)



controls the MAV in the opposite direction to avoid the
collision (see sketch of this behaviour on Figure 2).

Fig. 2. Basic principle of the coherence (a-c) and avoidance abilities (d-f)
of the algorithm. The larger circle indicates the neighbour detection range
R and the smaller circle the obstacle detection range Ra. The MAVs fly
initially straight in random directions in the forward state - (a). When the
MAVs lose mutual localization, they enter the coherence state - (b), turn
around and fly in the opposite direction - (c). When contact is renewed, the
MAVs perform a random turn and fly straight in this direction in the forward
state - (d). If the MAVs move too close to each other, an evasive manoeuver
is triggered - (e). They enter the avoidance state and are mutually repulsed
- (f).

III. MAV SWARMING BEHAVIOUR ANALYSIS

One of the main contributions of this paper is to analyse
behaviour of such a minimalistic swarming algorithm, which
should verify its usability for large swarms of micro aerial
vehicles with very limited sensory equipment. The proposed
method is designed in a way that numerous different be-
havioural patterns can be achieved using various sets of
algorithm parameters. Numerous hypothesis from [5] and
hypothesis motivated by studies of swarming behavior of
ground robots in [19] and by behaviour of MAV swarms
stabilized by frequently used BOID model in [17] have been
formulated based on expected influence of the parameter
setting on the algorithm performance. These hypothesis have
been experimentally validated (approved or disproved) and
optimal parameters setting was found for different required
behavioural patterns. The simulations were run with the
identified MAV model in a realistic robotic simulator V-
REP. For each configuration of tested parameters values, 10
simulations of 10 minutes flight have been performed. The
following three factors of the swarm behaviour have been
studied in the analysis.

The swarm coherence is described by the ratio of the sum
of time intervals where the swarm forms a connected graph
to the total time of the experiment. This means the swarm is
considered as “incoherent” from the first moment an MAV, or
a sub-swarm of MAVs, becomes disconnected from the rest
of the group. The coherence is the most important aspect of
a coherent swarming mechanism and should be maximized.

The swarm spreading is defined as the standard deviation
of the MAVs positions from the swarm center. The swarm
spreading may be maximized to cover large areas with

a minimum number of robots, but in some applications
compact swarms are required (e.g. for motion in clustered
environments).

The state distribution indicates time intervals that MAVs
spend in the different states of the swarming model (the
forward, avoidance, and coherence states). In case of the
navigation towards a given goal, the time spent in the forward
state is maximised. In this state, the MAV is most efficient
at performing the given task, since it does not perform
manoeuvres perturbing its flight.

A. Analyses of influence of the parameter α and the number
of the robots

In this section, hypothesis that with the higher α (the
required number of relatively localized neighbours of each
MAV) the swarm coherence is increased, the swarm spread-
ing is decreased, and the time spent in avoidance and coher-
ence states is decreased and that using large swarms increases
the swarm coherence, increases the swarm spreading, and
increases the time spent in avoidance and coherence states
are evaluated in simulations with 5, 10, and 20 robots. The
data obtained in the simulations are displayed on graphs in
Figures 3 and 4, showing the behaviour of different-sized
swarms with different values of α.
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Fig. 3. Swarm coherence and swarm spreading for different number of
robots and parameter α.
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Fig. 4. State distribution during the experiments from Figure 3. The labels
on the x-axis indicate the used configuration of the swarm (eg. m05 a04
represents a swarm of 5 MAVs using α = 4).

Based on these data we can confirm that with higher value
of α the swarm coherence is increased. Mainly for the bigger
swarms, the probability that the group connectivity is broken
decreases almost linearly with values of the parameter α,
reaching probability 0% for α = 7. With growing α, the
swarm spreading decreases as expected, again this effect is
observed mainly for smaller values of α. In contrast with the
hypothesis, growing value of parameter α increases the time



spent in the avoidance state due to the increased compactness
of the swarm and also in the coherence state, which is caused
by an increased sensibility to neighbour loss.

More MAVs in the swarm does not increase the swarm
coherence contrary to our hypothesis. The results indicate
that there proper values of α (the proper values are 7 and
8 for our MAV model) to guarantee the coherence of the
swarm. These values are not dependent on the number of
robots, which is an important observation and it supports
the scalability of the method. With larger swarm, swarm
spreading is increased, but this increase is not proportional.
Surprisingly, in larger swarms, the MAVs do not spend more
time in the avoidance and coherence states. With constant
α, the state distribution is similar for different swarm sizes.
The behaviour of an individual MAV is influenced only by its
local surrounding, not by the total number of robots, which is
also an important observation for swarm scalability in com-
parison with the BOID model that suffers from increasing
density of swarm members in the center of large groups
even-though approaches using the BOID model require more
precise sensors and bigger computational power than the
proposed method. In the following simulations, 10 robots and
α = 5 will be used to test the impact of other parameters on
the swarm coherence.

B. Influence of sensors capability on the swarming be-
haviour

Since the proposed approach is designed to allow coher-
ence swarming using limited sensory information, the influ-
ence of the sensors capability on the swarming behaviour is
important to study. Let us again postulate a set of hypotheses
that are considered in swarm literature and based on our
experience with BOID models.

Longer range of sensors used for relative localization
of neighbours increases the time MAVs spent in the for-
ward state, increases swarm coherence, and increases swarm
spreading. Based on the results summarised in Figures 5
and 6, we can confirm the expected positive influence of
the sensor range. With better sensors, MAVs stay longer
in the forward state and so travel a longer distance until
they have to turn back. Due to the reduced time spent in
the coherence state, which increases probability to break an
MAV apart from the rest of the group, the swarm coherence
is increased. With the longer range, MAVs can keep bigger
spacing between them, which increases the swarm spreading.

Smaller angle of view of the sensors for relative localiza-
tion decreases swarm coherence, decreases swarm spreading,
and increases the time spent in the coherence state. The
influence of the view angle of the relative localization sensors
is an important phenomena that needs to be studied, since
simple and light weight sensors carried onboard of micro
aerial vehicles (such as simple monocular cameras) often
do not offer 360 degrees view. Even more importantly,
the possibility to deploy swarming algorithms with such
a limited sensors enables to study swarming behaviour in
nature, where animals have almost always limited sensing
capabilities in this way. Two parameters settings were used

to evaluate the hypothesis. The first settings (α = 7 and
R = 8m) provided the best performance with a full-view
sensor in the previous experiments. As shown in Figure 7 (the
initial position of robots is shown in Figure 8 - Left), such
initialised swarm maintains a sufficient performance also
with significantly reduced angle of view. The second setting
(α = 5 and sensor range R = 4m) performs much worse
with a narrower field of view, although presented a sufficient
coherence with the 360 degrees sensor. To conclude, we
can confirm that smaller angle of view decreases coherence
in general, but this effect may be neglected for well set
up algorithm parameters. With this ability, the proposed
algorithm also surpasses the BOID approaches, which are
highly dependent on the limited field view as shown in
our prior work with the same MAV platform controlled
by BOID [17], [18]. Besides, the experiments in Figure 7
confirmed that swarm spreading is decreased with limited
field of view and the time spent in the coherence state
was increased, while the occurrence of the avoidance state
remains roughly the same.
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Fig. 5. Swarm coherence spreading with different sensor range. R = 4m
is the initial sensor range used in all other experiments in this paper.
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Fig. 6. Swarm distribution during experiments from Figure 5.
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Fig. 7. Swarm coherence and spreading for different configurations of α
and sensor range (a5 R4 stands for α = 5 and sensor range R = 4m).

C. Obstacle avoidance ability

Finally, let us analyse the avoidance behaviour using an
environment with a ring of obstacles (Figure 8 - Right).
The spacing between the obstacles is smaller than the range



of the obstacle detection sensor Ra, and bigger than the
MAV diameter. Using this setting, the MAV can exit the
obstacle ring only if the evasive manoeuvre fails, which can
be automatically detected. The robustness of the algorithm
has been tested by measuring the minimal distance between
the MAVs and between the MAV and the nearest obstacle.
An example of these experiments is shown in http://
youtu.be/W9QcrnLVI8Y with data in Figure 9.

Fig. 8. Left: Initial position of a swarm with sensors with a limited
angle of view. Video record of one of the experiment from Figure 7 is
available at http://youtu.be/uHPyTaaaqqE. Right: An environment
with obstacles to test the avoidance ability, for video of the simulation see
http://youtu.be/W9QcrnLVI8Y.
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Fig. 9. Distance between the MAVs and the closest distance between an
MAV and an obstacle during the simulation in Figure 8 - Right.

IV. EXPERIMENTAL RESULTS

The proposed algorithm has been tested in a complex
environment depicted in Figure 10 to show its effectiveness
and usability. First the swarm is navigated through a window
4 meters wide (the diameter of the stabilized swarm is
approximately 10 meters). Then the target automatically
moves to redirect the swarm to fly along a long wall. After
this movement, the target is again moved to navigate the
swarm across an open space with columns and a moving
obstacle. The moving obstacle is slower than the MAV
during its evasion manoeuvre to be able to avoid it. The

distance from the center of the swarm to the actual position
of the target is shown in Figure 12 - Left. As may be
also seen in Figure 11, where some snapshots and a path
passed by the swarm center during one of the simulation
runs are displayed (for full record of the swarm movement
see https://youtu.be/gqFxtVEcEdc), the proposed
algorithm was able to repeatedly navigate the swarm through
the environment without any collision with obstacle or within
the swarm members.

Fig. 10. Trajectory of the center of the swarm passed through the environ-
ment with obstacles. The blue arrows represent the intended trajectory, the
red curve represents the real trajectory of the swarm during one simulation.
The numbers indicate the successive positions of the target. For snapshots
see Figure 11.

In the previous experiments, from safety reasons required
for the initial HW tests (safety pilots can better secure the
experiment if the MAVs stay in the same horizontal plane),
all MAVs were flying at the same altitude. Nevertheless, the
method works properly also in a 3D space as shown in the
example of the simulation runs in Figure 13. The 3D position
of the center of the swarm is shown in Figure 12 - Right.
The avoidance manoeuvre performed by the MAVs to avoid
collisions is more aggressive in the vertical direction because
the MAVs must keep a larger security margin along the Z
axis due to the air flow interference between MAVs. This
causes that the altitude of the swarm oscillates more than
the positions along the two horizontal axis.

V. CONCLUSION

A minimalist fully decentralised coherent swarming algo-
rithm for control of MAV swarms with minimum sensory
requirements and without any communication was proposed
in this paper. A robust target following mechanism was
designed, implemented and verified, enabling the swarm
to move in an environment with obstacles into a given
location and requiring only minimal computational resources.
The overall system was verified in numerous simulations in
realistic robotic simulator V-REP.
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Fig. 11. Simulation of the target following algorithm in a environment with obstacles. The trajectory of the center of the swarm is depicted in red.
Complete video available at https://youtu.be/gqFxtVEcEdc.
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Fig. 12. Left: Distance of the center of the swarm to the particular target
positions (labelled according to their index from Figure 10) during one
simulation. Right: Position of the swarm in space in the experiment in
Figure 13.

Fig. 13. 3D swarming. For video see http://youtu.be/
o0v5oe6ekVY.
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Petr Vaněk · Martin Saska · Libor Přeučil ·
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Abstract We present a fast and precise vision-based
software intended for multiple robot localization. The
core component of the software is a novel and effi-
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The method is robust to variable lighting conditions,
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achieves sub-pixel precision and its computational
complexity is independent of the processed image
size. With off-the-shelf computational equipment and
low-cost cameras, the core algorithm is able to process
hundreds of images per second while tracking hun-
dreds of objects with millimeter precision. In addition,
we present the method’s mathematical model, which
allows to estimate the expected localization preci-
sion, area of coverage, and processing speed from the
camera’s intrinsic parameters and hardware’s process-
ing capacity. The correctness of the presented model
and performance of the algorithm in real-world con-
ditions is verified in several experiments. Apart from
the method description, we also make its source code
public at http://purl.org/robotics/whycon; so, it can be
used as an enabling technology for various mobile
robotic problems.

Keywords Localization · Mobile robotics ·
Computer vision · Swarm robotics

1 Introduction

Precise and reliable position estimation remains one
of the central problems of mobile robotics. While the
problem can be tackled by Simultaneous Localiza-
tion and Mapping approaches, external localization
systems are still widely used in the field of mobile
robotics both for closed-loop mobile robot control
and for ground truth position measurements. These
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external localization systems can be based on an
augmented GPS, radio, ultrasound or infrared bea-
cons, or (multi-) camera systems. Typically, these sys-
tems require special equipment, which might be pro-
hibitively expensive, difficult to set up or too heavy to
be used by small robots. Moreover, most of these sys-
tems are not scalable in terms of the number of robots,
i.e., they do not allow to localize hundreds of robots in
real time. This paper presents a fast vision-based local-
ization system based on off-the-shelf components.
The system is precise, computationally efficient, easy
to use, and robust to variable illumination.

The core of the system is a detector of black-and-
white circular planar ring patterns (roundels), similar
to those used for camera calibration. A complete local-
ization system based on this detector is presented. The
system provides estimation of the roundel position
with precision in the order of millimeters for distances
in the order of meters.

The detection with tracking of a single roundel pat-
tern is very quick and the system is able to process
several thousands of images per second on a com-
mon desktop PC. This high efficiency enables not only
tracking of several hundreds of targets at a camera
frame-rate, but also implementation of the method on
computationally restricted platforms. The fast update
rate of the localization system allows to directly
employ it in the feedback loop of mobile robots,
which require precise and high-frequency localization
information.

The system is composed of low-cost off-the-shelf
components only – a low-end computer, standard web-
cam, and printable patterns are the only required ele-
ments. The expected coverage, precision, and image
processing speed of the system can be estimated from
the camera resolution, computational power, and pat-
tern diameter. This allows the user to choose between
high-end and low-end cameras, estimate if a partic-
ular hardware platform would be able to achieve the
desired localization frequency, and calculate a suitable
pattern size for the user’s specific application.

Ease of the system setup and use are also driv-
ing factors of the proposed implementation, which
does not require user-set parameters or an intri-
cate set-up process. The implementation also con-
tains an easy tool for camera calibration, which,
unlike other calibration tools, does not require user
interaction. At the same time, the implementation is
proposed as a library, which can be integrated into

commonly used computer vision frameworks, such as
OpenCV.

The main intention of this paper is to present
the system principle, its theoretical properties and
real performance characteristics with respect to the
intended application. Therefore, we present a model
of the localization arising from theoretical analyses of
the vision system and experimental evaluation of the
system performance in real scenarios with regard to its
practical deployment.

2 Related Work

External localization systems are widely used in the
field of mobile robotics, either for obtaining ground
truth pose data or for inclusion in the control loop
of robots. In both scenarios, it is highly desirable
to have good precision and high-frequency measure-
ments. Here, both of these aspects are analysed in
related works and are specifically addressed in the
proposed system.

Localization systems for mobile robots comprise
an area of active research; however, the focus is gen-
erally on internal localization methods. With these
methods, the robot produces one or more estimates
of its position by means of fusing internal sensors
(either exteroceptive or proprioceptive). This estima-
tion can also be generally applied when either a map
of the environment exists a priori or when the map is
being built simultaneously, which is the case of SLAM
approaches [1]. When these internal localization sys-
tems are studied, an external positioning reference
(i.e., the ground truth) without any cumulative error
is fundamental for a proper result analysis. Thus,
this research area makes use of external localization
systems.

While the most well-known external localization
reference is GPS, it is also known that it cannot be
used indoors due to signal unavailability. This funda-
mental limitation has motivated the design of several
localization principles, which can be broadly divided
into two major groups by means of the type of sensors
used: active or passive.

In the former group, several different technologies
are used for the purpose of localization. One exam-
ple [2] of active sensing is the case of a 6DoF local-
ization system comprised of target modules, which
include four LED emitters and a monocular camera.
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Markers are detected in the image and tracked in
3D, making the system robust to partial occlusions
and increasing performance by reducing the search
area to the vicinity of the expected projection points.
Experiments with this system were performed using
both ground and aerial robots. The mean error of the
position estimation is in the order of 1 cm, while
the maximum error is around 10 cm. The authors
note that for uncontrolled lighting scenarios passive
localization systems appear to be more suitable.

Another active sensor approach is the NorthStar [3]
localization system, which uses ceiling projections
as a non-permanent ambient marker. By projecting a
known pattern, the camera position can be obtained by
reprojection. The authors briefly report the precision
of the system to be around 10 cm.

In recent works, the most widely used approach
is the commercial motion capture system from
ViCon [4]. This system is comprised of a series of
high-resolution and high-speed cameras, which also
have strong infra-red (IR) emitters. By placing IR
reflective markers on mobile robots, sub-millimeter
precision can be achieved with updates up to 250Hz.
Due to these qualities, ViCon has become a solid
ground-truth information source in many recent works
and, furthermore, has allowed development of closed-
loop aggressive maneuvers for UAVs inside lab envi-
ronments [5]. However, this system is still a very
costly solution, and therefore, it is not applicable to
every research environment. This issue has motivated

several works proposing alternative low-cost localiza-
tion systems.

Several passive vision-based localization methods
were also proposed in recent literature, using simple
planar printable patterns, which reduce significantly
the cost and difficulty of use and setup. Several of
these works employ augmented-reality oriented mark-
ers, which not only permit obtaining the pose of
the target but can also encode additional informa-
tion like target ID. In this area, the software libraries
most widely used for this purpose are ARTag [6]
and ARToolKit+ [7], both based on its predecessor
ARToolKit [8], see examples of patterns in Fig. 1.
These target detectors were used in several works in
order to obtain localization information about mobile
robots, either explicitly as a part of a pose estimation
system [9, 10] or as ground-truth data [11].

In [9], ARToolKit markers are used for obtaining
the pose of several ground robots. The homography
from 3D-to-2D space (ground floor) is computed by
defining the work area by placing four ad-hoc mark-
ers, which are manually detected in the image. In
more recent work, the authors proposed the ARTag [6]
system that was later extensively analysed in [12].
However, the analysis is focused on detection and con-
fusion rates, and it does not report the real accuracy
in position estimation. Similar systems are explored
in [13], but details of their precision are not reported.

One particular system, which is based on AR mark-
ers similar to ARTag and ARToolKit, is ArUco [14].

Fig. 1 Patterns used in
passive vision-based global
localization systems

(a) ARToolKit patterns (b) ARTag patterns

(c) SyRoTek
pattern

(d) The TRIP tag (e) The proposed
pattern
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The main aspects of this method are: easy integra-
tion into C++ projects, based exclusively on OpenCV
and a robust binary ID system with error correction
which can handle up to 1024 individual codes. The
detection process of AR markers in ArUco consists of:
an adaptive thresholding step, contour extraction and
filtering, projection removal and code identification.
When the intrinsic camera parameters are known, the
extrinsic parameters of the target can be obtained. Due
to the free availability of the implementation and lack
of performance and precision reports, this system is
analyzed in the presented work, see Section 6.5.

Since the previous pattern detectors were conceived
for augmented-reality applications, other works pro-
pose alternative target shapes, which are specifically
designed for vision-based localization systems with
high precision and reliability. Due to several positive
aspects, circular shaped patterns appear to be the best
suited as fiducial markers in external localization sys-
tems. This type of pattern can be found (with slight
variations) in several works [15–18].

The SyRoTek e-learning platform [19] uses a ring
shaped pattern with a binary tag (see Figure) to local-
ize up to fourteen robots in a planar arena. The pattern
symmetry is exploited to perform the position and ori-
entation estimation separately, which allows to base
the pattern localization on a two-dimensional convo-
lution. Although this convolution-based approach has
proven to be reliable enough to achieve 24/7 operation,
its computational complexity still remains high, which
lead to its implementation on alternative platforms
such as FPGA [20].

In [16], a planar pattern consisting of a ring sur-
rounding the letter “H” is used to obtain the relative
6DoF robot pose with an on-board camera and IMU
(Inertial Measurement Unit) to resolve angular ambi-
guity. The pattern is initially detected by binarization
using adaptive thresholding and later processing for
connected component labeling. For classifying each
component as belonging to the target or not, a neural
network (multilayer perceptron) is used. The input to
the neural network is a resized 14 × 14 pixel image.
After testing for certain geometric properties, false
matches are discarded. Positive matches correspond-
ing to the outer ring are processed by applying the
Canny edge detector and ellipse fitting, which allows
computation of the 5DoF pose. Recognition of the “H”
letter allows to obtain the missing yaw angle. The pre-
cision in 3D position is in the order of 1 cm to 7 cm

depending on the target viewing angle and distance,
which was at the maximum around 1.5 m.

Probably the most similar approach to the pro-
posed system in this work is the TRIP localization
system [17]. In TRIP, the pattern comprises of a
set of several concentric rings, broken into several
angular regions, each of which can be either black
or white. The encoding scheme, which includes par-
ity checking, allows the TRIP method to distinguish
between 39 patterns. For detecting the tags, adaptive
thresholding is performed and edges are extracted.
TRIP only involves processing edges corresponding
to projections of circular borders of the ring pattern,
which are detected using a simple heuristic. These
edges are used as input to an ellipse fitting method
and then the concentricity of the ellipses is checked.
TRIP achieves a precision similar to [16] in position
estimation (the relative error is between 1 % and 3 %),
but only a moderate performance (around 16 FPS

at the resolution 640 × 480) is achieved using an
1.6 GHz machine. The authors report that the adaptive
thresholding step is the most demanding portion of the
computation. To the best of our knowledge, there is no
publicly available implementation.

Finally, a widely used, simple and freely available
circular target detector can be found in the OpenCV
library. This “SimpleBlobDetector” class is based on
traditional blob detection methods and includes sev-
eral optional post-detection filtering steps, based on
characteristics such as area, circularity, inertia ratios,
convexity and center color. While this implemen-
tation is originally aimed for circular target detec-
tion, by tuning the parameters it is possible to find
elliptical shapes similar to the ones proposed in the
present work and thus it is compared to the proposed
implementation.

In this work, a vision-based external localization
system based on a circular ring (roundel) pattern is
proposed. An example of the pattern is depicted in
Fig. 1. The algorithm allows to initiate the pattern
search anywhere in the image without any perfor-
mance penalty. Therefore, the search is started from
the point of the last known pattern position. Since
the algorithm does not contain any phase that pro-
cesses the entire image, successful tracking causes
the method to process only the area occupied by
the pattern. Therefore, the algorithm’s computational
complexity is independent of the image size. This pro-
vides a significant performance boost, which allows
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to track thousands of patterns in real-time using a
standard PC. By performing an initial unattended cal-
ibrating step, where the reference frame is defined,
pose computation of ground robots moving on a plane
is performed with millimeter precision using an off-
the-shelf camera.

The real world performance of the proposed
method makes it highly competitive with the afore-
mentioned state-of-the-art methods. Moreover, its
computational complexity is significantly lower,
which makes the method superior for scenarios with
embedded computational resources and real-time con-
straints. These findings are supported by the exper-
imental results and a comparison with the selected
localization methods presented in Section 6.

3 Pattern Detection

The core of the proposed computationally efficient
localization system is based on pattern detection. Fast
and precise detection is achieved by exploiting prop-
erties of the considered pattern that is a black and
white roundel consisting of two concentric annuli with
a white central disc, see Fig. 1.

The low computational requirements are met by
the pattern detection procedure based on on-demand
thresholding and flood fill techniques, and gather-
ing statistical information of the pattern on the fly.
The statistical data are used in consecutive tests with
increasing complexity, which determine if a candidate
area represents the desired circular pattern.

The pattern detection starts by searching for a black
segment. Once such a segment is detected and passes
the initial tests, the segment detection for a white inner
disc is initiated at the expected pattern center.

Notice, that at the beginning, there is no prior
information about the pattern position in the image;
hence, the search for the black segment is started at
a random position. Later, in the subsequent detec-
tions, when a prior pattern position is available, the
algorithm starts detection over this area. For a suc-
cessfully re-detected (tracked) pattern, the detection
processes only pixels belonging to the pattern itself,
which significantly reduces the computation burden.
Since the method is robust (see following sections
for detection limits), tracking is generally successful
and thus the method provides very high computational
performance.

After the roundel is detected, its image dimen-
sions and coordinates are identified. Then, its three-
dimensional position with respect to the camera is
computed from its known dimensions and camera
re-projection techniques, and its coordinates are trans-
formed to a coordinate frame defined by the user, see
Section 4.

In this section, a detailed description of the pattern
detection based on an efficient thresholding is pre-
sented together with an estimation of the pattern center
and dimensions and a compensation of the incorrect
diameter estimation, which has a positive influence
to the localization precision. Moreover, a multiple
pattern detection capability is described in Section 3.6.

3.1 Segmentation

The pattern detection is based on an image seg-
mentation complemented with on-demand threshold-
ing that searches for a contiguous set of black or
white pixels using a flood-fill algorithm depicted in
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Algorithm 1. First, a black circular ring is searched for
in the input image starting at an initial pixel position
p0. The adaptive thresholding classifies the processed
pixel using an adaptively set value τ as either black
or white. If a black pixel is detected, the queue-based
flood-fill algorithm procedure is initiated to determine
the black segment. The queue represents the pixels of
the segment and is simply implemented as a buffer
with two pointers qstart and qend .

Once the flood fill is complete, the segment is
tested for a possible match of the outer (or inner)
circle of the pattern. At this point, these tests con-
sist of a minimum size (in terms of the number of
pixels belonging to the segment) and a roundness mea-
sure within acceptable bounds. Notice, that during
the flood-fill search, extremal pixel positions can be
stored. This allows to establish the bounding box of
the segment (bu and bv) at any time. Besides, after
finding a segment, the queue contains positions of all
the segment’s pixels. Hence, initial simple constraints
can be validated quickly for a fast rejection of false
positives.

In the case where either test fails, the detection for
further segments continues by starting from the next
pixel position (i.e., a pixel at the position p0+1). How-
ever, no redundant computation is performed since the
previous segment is labeled with a unique identifier.

The first roundness test is based on the pattern’s
bounding box dimensions and number of pixels. The-
oretically, the number of pixels s of an elliptic ring
with outer and inner diameters do, di and dimensions
bu, bv should be

s = π/4bubv
d2
o − d2

i

d2
o

. (1)

Therefore, the tested segment dimensions and area
should satisfy the inequality

ρtol >
∣∣∣bubvπ/4

ρexp

s
− 1

∣∣∣ , (2)

where ρexp equals 1 for white and 1 − d2
i /d

2
o for

black segments. The value of ρtol represents a tol-
erance range, which depends on the camera radial
distortion and possible pattern deformation and spatial
orientation.

If a black segment passes the roundness test, the
second flood-fill search for the inner white segment
is initiated from the position corresponding to the
segment centroid. If the inner segment passes the min-
imum size and roundness tests, further validation tests

are performed. These involve the concentricity of both
segments, their area ratio, and a more sensitive circu-
larity measure (discussed in the following sections). If
the segments pass all these complex tests, the pattern is
considered to be found and its centroid position will be
used as a starting point p0 for the next detection run.
The overall pattern detection algorithm is depicted in
Algorithm 2.

3.2 Efficient Thresholding

Since the segmentation looks only for black or
white segments, the success rate of the roundel
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detection depends on the threshold parameter τ ,
especially under various lighting conditions. There-
fore, we proposed to adaptively update τ when-
ever the detection fails according to a binary search
scheme over the range of possible values. This tech-
nique sets the threshold τ consecutively to values
{1/2, 1/4, 3/4, 1/8, 3/8, 5/8 . . .} up to a pre-defined
granularity level, when τ is reset to the initial value.

When the pattern is successfully detected, the
threshold is updated using the information obtained
during detection in order to iteratively improve the
precision of segmentation:

τ = µouter + µinner

2
, (3)

where µouter , µinner correspond to the mean bright-
ness value of the outer and inner segments,
respectively.

The computationally intensive full image thresh-
olding is addressed by on-demand processing over
each pixel analyzed during the detection. At the very
first access, the RGB values of the image are read
and a pixel is classified as either black or white and
the classification result is stored for further re-use in
the subsequent steps. Moreover, whenever the tracking
is successful, only the relevant pixels are thresholded
and processed by the two-step flood fill segmentation.
Clearing the per-pixel classification memory area is
also efficiently performed by only resetting the val-
ues inside the pattern’s bounding box. As a result, the
detection step is not directly dependent on the input
image resolution, which provides a significant perfor-
mance gain. If the tracking is not successful, extra
memory accesses resulting from this on-demand strat-
egy are negligible compared to a full-image threshold-
ing approach.

3.3 Pattern Center and Dimensions

After the black and white segments pass all the ini-
tial tests, a more sophisticated roundel validation is
performed. The validation is based on a more precise
roundness test using estimation of the ellipse (pattern)
semiaxes. All the information to calculate the ellipse
center u, v and the semiaxes e0, e1 is at the hand,
because all the pattern pixels are stored in the flood-
fill queue. Hence, the center is calculated as the mean
of the pixel positions. After that, the covariance matrix
C, eigenvalues λ0, λ1, and eigenvectors v0, v1 are

established. Since the matrix C is two-dimensional, its
eigen decomposition is a matter of solving a quadratic
equation. The ellipse semiaxes e0, e1 are calculated
simply by

ei = 2λ1/2
ivi. (4)

The final test verifying the pattern roundness is per-
formed by checking if the inequality

ρprec >

∣∣∣∣π
|e0||e1|

s
− 1

∣∣∣∣ (5)

holds, where s is the pattern size in the number of
pixels. Unlike in the previous roundness test (2), the
tolerance value of ρprec can be much lower because
(4) establishes the ellipse dimensions with subpixel
precision.

Here, it is worth mentioning that if the system runs
on embedded hardware, it might be desirable to cal-
culate C using integer arithmetic only. However, the
integer arithmetic might result in a loss of precision,
therefore C should be calculated as

C = 1
s

s−1∑

i=0

(
uiui uivi
uivi vivi

)
−

(
uu uv

uv vv

)
, (6)

where ui and vi are the pattern’s pixel coordinates
stored in the queue and u, v denote the determined
pattern center.

3.4 Pattern Identification

The ratio of the patterns’ inner and outer diameters
does not have to be a fixed value, but can vary between
the individual patterns. Therefore, the variable diame-
ter ratio can be used to distinguish between individual
circular patterns. If this functionality is required, the
system user can print patterns with various diameter
ratios and use these ratios as ID’s.

However, this functionality requires to relax the tol-
erance ranges for the tests of inner/outer segment area
ratio, which might (in an extreme case) cause false
positive detections. Variable inner circle dimensions
also might mean a smaller inner circle or a thinner
outer ring, which might decrease the maximal distance
at which the pattern is detected reliably. Moreover,
missing a priori knowledge of the pattern’s diameter
ratio means that compensation for incorrect diame-
ter estimation is not possible, which might slightly
decrease the method’s precision.
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3.5 Compensation of Incorrect Diameter Estimation

The threshold separating black and white pixels has
a significant impact on the estimation of the pattern
dimensions. Moreover, the pixels on the black/white
border are affected by chromatic aberration, nonlin-
ear camera sensitivity, quantization noise, and image
compression, see Fig. 2. As a result, the border-
line between the black ring and its white back-
ground contains a significant number of misclassified
pixels.

The effect of pixel misclassification is observed
as an increase of the ratio of white to black pixels
with increasing pattern distance. The effect causes the
black ring to appear thinner (and smaller), which has
a negative impact on the distance estimation. How-
ever, the inner and outer diameters of the pattern are
known, and therefore, the knowledge of the true do
and di can be used to compensate for the aforemen-
tioned effect. First, we can establish the dimensions
of the inner white ellipse e0i and e1i in the same way
as in Section 3.3. We assume the pixel misclassifi-
cation enlarges the inner ellipse semiaxes e0i, e1i and
shrinks the outer semiaxes e0o, e1o by a value of t.
Since the real inner di and outer do pattern diameters
are known, the true ratio of the areas can be expressed
as

d2
i

d2
o

= r = (e0i − t)(e1i − t)

(e0o + t)(e1o + t)
, (7)

where t can be calculated as a solution of the quadratic
equation

(1− r)t2 − t (e0ie1i + re0oe1o)+e0ie1i − re0oe1o = 0.

(8)

The ambiguity of the solution can be resolved sim-
ply by taking into account that the corrected semiaxes
lengths e0i − t , e1i − t must be positive. The com-
pensation of the pattern diameter reduces the average
localization error by approximately 15 %.

3.6 Multiple Target Detection

The described roundel detection method can also be
used to detect and track several targets in the scene.
However, a single threshold τ is not well suited to
detecting more patterns because of illumination vari-
ances. Besides, other differences presented across the
working area may affect the reflectance of the pattern
and thus result in different gray levels for different
patterns, which in turn requires a different τ value for
each pattern. Individual thresholding values not only
provide detection robustness but also increase preci-
sion by optimizing pixel classification for each target
individually.

Multiple targets can be simply detected in a
sequence one by one, and the only requirement
is to avoid detection of the already detected pat-
tern. This can be easily avoided by modifying the
input image after a successful detection by paint-
ing over the corresponding pixels, i.e., effectively
masking out the pattern for subsequent detection
runs.

Detection of multiple targets can also be considered
in parallel, e.g., for obtaining additional performance
gain, using a multi core processor. In this case, it
is necessary to avoid a possible race condition and
mutual exclusion has to be used for accessing the
classification result storage.

An initial implementation of the parallel approach
using OpenMP and multi-processor system did not
yield a significant speedup. Furthermore, due to the

Fig. 2 Undesired effects affecting the pattern edge
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high performance of detection of a single pattern,
the serial implementation provides better performance
than the parallel approach. Therefore, all the presented
computational results in this paper are for the serial
implementation.

4 Pattern Localization

The relative pattern position to the camera module is
calculated from the parameters established in the pre-
vious step. We assume that the radial distortion of
the camera is not extreme and the camera intrinsic
parameters can be established by the method [21] or
similar. With this assumption, the pattern’s position is
computed as follows:

1. The ellipse center and semiaxes are calculated
from the covariance matrix eigenvectors and
transformed to a canonical camera coordinate
system.

2. The transformed parameters are then used to
establish coefficients of the ellipse characteristic
equation, which is a bilinear form matrix (also
called a cubic).

3. The pattern’s spatial orientation and position
within the camera coordinate frame is then
obtained by means of eigen analysis of the cubic.

4. The relative coordinates are transformed to a two-
or three-dimensional coordinate frame defined by
the user.

A detailed description of the pattern position esti-
mation is presented in the following sections.

4.1 Ellipse Vertices in the Canonical Camera System

The ellipse center u′
c, v

′
c and semiaxes e′

0, e′
1 are estab-

lished in a canonical camera form. The used canon-
ical form is a pinhole camera model with unit focal
lengths and no radial distortion. The transformation
to a canonical camera system is basically a transform
inverse to the model of the actual camera.

First, we calculate the image coordinates of
the ellipse vertices a0,1 and co-vertices b0,1, and
transform them to the canonical camera coordi-
nates a′

0,1, b′
0,1. The canonical coordinates of the

(co)vertices are then used to establish the canonical
center and canonical semiaxes. This rather compli-
cated step is performed to compensate for the radial

distortion of the image at the position of the detected
ellipse.

Since the ellipse center u and semiaxes e0, e1
are known, calculation of the canonical vertices
a′

0,1 and co-vertices b′
0,1 is done simply by adding

the semiaxes to the ellipse center and transforming
them:

a′
0,1 = g′ ((u± e0x − cx)/fx, (v ± e0y − cy)/fy

)

b′
0,1 = g′ ((u± e1x − cx)/fx, (v ± e1y − cy)/fy

) ,

where g′ is the radial undistortion function and fx,y ,
cx,y are the camera focal lengths and optical cen-
ter, respectively. Using the canonical position of the
ellipse vertices, the ellipse center u′, v′ and axes e′

0, e′
1

are then calculated as

e′
0 = (a′

0 − a′
1)/2

e′
1 = (b′

0 − b′
1)/2

u′
c = (a′

0 + a′
1 + b′

0 + b′
1)/4

.

After this step, we have all essential variables to
calculate the ellipse characteristic equation.

4.2 Ellipse characteristic equation

Notice that each point u, v lying on an ellipse satisfies
the characteristic equation of an ellipse:

⎛

⎝
u′

v′

1

⎞

⎠
T ⎛

⎝
qa qb qd
qb qc qe
qd qe qf

⎞

⎠

⎛

⎝
u′

v′

1

⎞

⎠ = XTQX = 0, (9)

where Q is called a conic. Thus, the parameters of the
matrix Q are calculated from the ellipse center and
axes as follows:

qa = +e′
0ue

′
0u/|e′

0|2 + e′
0ve

′
0v/|e′

1|2
qb = +e′

0ue
′
0v/|e′

0|2 − e′
0ue

′
0v/|e′

1|2
qc = +e′

0ue
′
0u/|e′

1|2 + e′
0ve

′
0v/|e′

0|2
qd = −u′

cqa − v′
cqb

qe = −u′
cqb − v′

cqc
qf = +qau

′2
c + qcv

′2
c + 2qbu′

cv
′
c − 1

. (10)

4.3 Pattern Position

Once the conic parameters Q are known, the posi-
tion and orientation of the pattern can be obtained
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by means of eigenvalue analysis [22]. Let the Q
matrix eigenvalues and eigenvectors be λ0, λ1, λ2 and
q0, q1, q2, respectively. Since Q represents an ellipse,
its signature is (2, 1) and we assume that λ0 ≥ λ1 >

0 > λ2. According to [16], the position of the circle
can be calculated as:

xc=± do√−λ0λ2

(

q0λ2

√
λ0 − λ1

λ0 − λ2
+q2λ0

√
λ1 − λ2

λ0 − λ2

)

,

where do is the circular pattern diameter. The ambigu-
ity of the sign can be resolved by taking into account
that the pattern is located within the camera field of
view. Thus, if the first component of the xc vector is
negative, the vector x is simply inverted.

4.4 Transformation to the Global Coordinates

The position xc of the circular pattern established
in the previous step is in a camera centered coordi-
nate frame. Depending on the particular application
scenario, our system allows to transform the pattern
coordinates to a 3D or 2D coordinate frame defined
by the user. The user just places four circular patterns
in the space covered by the camera and provides the
system with their real positions.

4.4.1 Global Coordinate Frame – 3D Case

In the case of the 3D localization, the three patterns at
positions x0, x1, x2 define the coordinate origin and x
and y axes, respectively. The transformation between
the global x = (x, y, z)T and camera centered xc =
(xc, yc, zc)

T coordinate systems can be represented as

x = T (xc − t0) ,

where t0 equals x0 and T is a similarity transformation
matrix.

The user can define the coordinate system simply
by putting three “calibration” patterns in the cam-
era field of view and designating the pattern that
defines the coordinate system origin t0 and the x and
y axes. Using the pattern positions (let us define them
as x0, x1, x2, respectively), the system calculates the
transformation between the camera and global coordi-
nate systems, i.e., the vector t0 and matrix T. Estab-
lishing the translation vector t is straightforward – it
corresponds to the camera coordinates of the pattern
at the global coordinate origin, i.e., t = x0.

The x and y axes of the coordinate frame are defined
by vectors t1 = x1 −x0 and t2 = x2 −x0, respectively.
Since we assume an orthonormal coordinate system,
the z axis vector can be simply calculated as a cross
product t3 = t1 × t2. From an algebraic point of view,
the matrix T represents a transformation of the vector
x′ = x − t to a coordinate system defined by the basis
t1, t2, t3. Therefore, the matrix T can be calculated
simply as

T =

⎛

⎝
t1x t2x t3x
t1y t2y t3y
t1z t2z t3z

⎞

⎠
−1

. (11)

Having established the vector t and matrix T, any
point in the camera coordinate frame can be trans-
formed to the coordinate frame defined by the user.

When the user places four patterns in the camera
field of view, four independent coordinate transfor-
mations are calculated using each pattern triplet. The
pattern position x ′ is then calculated as their mean,
which results in increased system accuracy.

4.4.2 Global Coordinate Frame – 2D Case

Two-dimensional localization can be generally more
precise than full three-dimensional localization. This
is because the estimation of the pattern position
depends mainly on the pattern distance, especially in
cases when the pattern image is small. Estimation of
the pattern distance can be simply avoided if all the
patterns are located only in a plane, e.g., ground robots
operating on a floor.

In this case, the transformation from the image
coordinates to an arbitrary world plane is a homogra-
phy, and (homogeneous) spatial coordinates x of the
patterns can be calculated directly from their canon-
ical coordinates u′ simply by x = Hu′, where H is
a 3×3 homography matrix. Similarly to the case of
three-dimensional localization, the user can define H
just by placing four patterns in the camera field of
view and providing the system with their positions in
the desired coordinate frame.

5 Sensor Model

In this section, we present three mathematical models
that can be used to estimate the expected performance
of the system. The main purpose of these models is
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Fig. 3 Geometry of the
operational space

to support the selection of the most suitable camera,
processing hardware, and pattern size according to the
particular application scenario. The first model calcu-
lates the localization system coverage from the pattern
dimensions, camera resolution, and field of view. The
second set of equations provides estimation of the
localization precision based on the camera parameters,
pattern dimensions, and required coverage. Finally,
the third model estimates the necessary computational
power to track the given number of patterns at the
desired frame rate.

5.1 Localization System Coverage

Regarding the practical deployment of the localiza-
tion system, its most critical property is its coverage or
“operational space”, i.e., the space where the pattern
is reliably detected and localized. The dimensions of
the operational space are affected by the camera focal
length and radial distortion, image resolution, pattern
diameter, and pattern spatial orientation.

For the sake of simplicity, the effect of radial distor-
tion on the shape of the operational space is neglected
and an ideal pinhole camera is assumed. Considering
this ideal model, the operational space has a pyrami-
dal shape with its apex close to the camera, see Fig. 3.
The parameters of the operational space are the mini-
mal and maximal detectable distances vmin, vmax and
base dimensions vy, vz.

A pattern can be detected if it “fits” in the image
and its central part and black ring are recognizable.
Therefore, the pattern image dimensions must be

lower than the camera resolution, but higher than a
certain value. To estimate the dimensions, we assume
the camera focal lengths fx, fy and radial distor-
tion parameters have been established by a calibration
tool1, e.g., MATLAB calibration toolbox or similar
software based on [21]. Then, the width and height
wp, hp of the pattern in pixels can be calculated by

wp = fx
do

x
cos(ϕ), hp = fy

do

x
cos(ψ), (12)

where x is the pattern distance from the image plane,
do is the pattern diameter, and ϕ and ψ represent the
pattern tilt.

5.1.1 Minimal Localization Distance

The minimal distance vmin, at which the pattern can
be detected regardless of its orientation, is given as

vmin = do max
(
fx
w ,

fy
h

)
, (13)

where w and h is the image horizontal and vertical
resolution in pixels, respectively. One has to realize
that the fractions fx/w and fy/h correspond to the
camera field of view. Hence, the camera field of view
remains the same regardless of the current resolution
settings and the distance vmin can be considered as
independent of the camera resolution.

1Such a tool is also a part of the proposed system available
online at [23].
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5.1.2 Maximal Localization Distance

The pattern has to be formed from a sufficient number
of pixels to be detected reliably. Therefore, the pattern
pixel dimensions have to exceed a certain value that
we define as D. The value of D has been experimen-
tally established as 12. We also found that D might
be lower than this threshold for exceptionally good
lighting conditions; however, D = 12 represents a
conservative value. Having D, the maximal detectable
distance v′

max of the pattern can be calculated as

v′
max = do

D
min(fx cos(ϕ), fy cos(ψ)). (14)

Notice a higher camera resolution increases the focal
lengths fx and fy ; so, setting the camera resolution
as high as possible maximizes the area covered by the
localization system.

On the other hand, (14) does not take into account
the camera radial distortion and it is applicable only
when the pattern is located near the optical axis. The
radial distortion causes the objects to appear smaller
as they get far away from the optical axis. Thus, the
distance v′

max at which the pattern is detected along
the optical axis is higher than the maximal detectable
distance vmax of the pattern located at the image cor-
ners. Therefore, the dimension vmax of the operational
space is smaller than v′

max by a certain factor and vmax

can be calculated as

vmax = do

D
min(kxfx cos(ϕ), kyfy cos(ψ)), (15)

where kx and ky represent the effect of the radial dis-
tortion. The values of kx and ky can be estimated from
the differential of the radial distortion function close
to an image corner:

kx = 1 + dg(rx, ry)

dx

= 1 + 2k1rx + 4k2(r
3
x + rxr

2
y )+ . . .

ky = 1 + dg(rx, ry)

dy

= 1 + 2k1ry + 4k2(r
3
y + ryr

2
x )+ . . .

,

where rx and ry can be obtained from the camera opti-
cal axis and focal lengths as cx/fx and cy/fy . For a
consumer grade camera, one can assume that the radial

distortion would not shrink the pattern more than by
10 %; so, a typical value of kx,y would be between 0.9
and 1.0.

5.1.3 Base Dimensions

Knowing the maximal detectable distance vmax , the
dimensions of the localization area “base” vy and vz
can be calculated as

vy = w
vmax

fx
− 2do, vz = h

vmax

fy
− 2do, (16)

where w and h are the horizontal and vertical resolu-
tions of the camera used, respectively. Considering a
typical pattern, the value of do is much smaller than
the localization area and can be omitted.

With Equations (13), (15), and (16) the user can cal-
culate the diameter of the pattern and camera parame-
ters from the desired coverage of the system. It should
be noted that the presented model considers a static
configuration of the module and the detected pattern.
Rapid changes of the pattern’s relative position may
cause image blur, which might affect vmax and restrict
the operational space.

5.2 Localization System Precision

Another important property of the localization sys-
tem is the precision with which the system provides
estimation of the pattern position. The precision of
the localization is directly influenced by the amount
of noise in the image and uncertainty in the cam-
era parameters. The position estimation error also
depends on the system operational mode, i.e., it is dif-
ferent for the three-dimensional and two-dimensional
position estimations. The expected localization preci-
sion is discussed in the following sections for both the
2D and 3D cases.

5.2.1 Two-dimensional Localization by Homography

For the 2D localization, the pattern position is esti-
mated simply from its center image coordinates. In
the case of a ideal pinhole camera, the calibration
procedure described in Section 4.4 should establish
the relation between the image and world planes.
Therefore, the precision of the position estimation is
affected mainly by the image radial distortion. Since
the uncertainties of the radial distortion parameters are
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known from the camera calibration step, the error of
radial distortion for x and y can be estimated from the
differential of the radial distortion function

ηx = x(ϵ1r+ϵ2r
2+ϵ5r

3+2ϵ3y)+ϵ4(r+2x2)

ηy = y(ϵ1r+ϵ2r
2+ϵ5r

3+2ϵ4x)+ϵ3(r+2y2)
, (17)

where ηx and ηy are the position relative errors, ki are
camera distortion parameters, ϵi are their uncertain-
ties, and r = x2 + y2. The overall relative error of the
two-dimensional localization can be expressed as

ηhom = ηrad =
√

η2
x + η2

y . (18)

Note that (17) does not take into account the cam-
era resolution. Therefore, the model suggests that
higher resolution cameras will not necessarily achieve
better localization precision. This is further investi-
gated in Section 6.2.2, where experimental results are
presented. Also, note that in the standard camera cal-
ibration implementations, values of ϵi are meant as
99.7 % confidence intervals. To calculate the average
error, i.e., the standard deviation, one has to divide
ηhom by three.

5.2.2 Full Three-dimensional Localization

In the full 3D localization, the main source of the
localization imprecision is incorrect estimation of the
pattern distance. Since the pattern distance is inversely
proportional to its diameter in pixels, smaller patterns
will be localized with a higher error. The error in
the diameter measurement is caused by quantization
noise and by the uncertainty in the identification of the
camera’s intrinsic parameters, especially in the param-
eters of the image radial distortion. One can roughly
estimate the expected error in the pattern distance
estimation as

η3D = )f

fx
+ )e0

xfx

d0
+ ηrad, (19)

where )f is the error of the focal length estimation,
)e represents the error of the ellipse axis estimation
due to image noise, and ηrad is the relative error of the
radial distortion model. While )f and ηrad can be cal-
culated from the camera calibration parameters, )e0
is influenced by a number of factors that include cam-
era thermal noise, lighting, motion blur etc. However,
its current value can be estimated on the fly from the
variance of the calibration (see Section 4.4.1) patterns’
diameters.

In our experiments, the typical value of )e0 was
around 0.15 pixels. This means that for a well-
calibrated camera, the major source of distance esti-
mation error is the ratio of image noise to the pattern
projection size. Since the pattern image size (in the
number of pixels) grows with the camera resolution,
the precision of localization can be increased simply
by using a high resolution camera or a larger pattern.

5.3 Computational Requirements

From a practical point of view, it is also desirable
to estimate the necessary computational hardware
needed to achieve a desired frame rate, especially for
an embedded solution. The time needed to process
one image can be roughly estimated from the num-
ber of patterns, their expected size, image dimensions,
tracking failure rate, and the computer speed. For the
sake of simplicity, we can assume that the time to pro-
cess one frame is a linear function of the amount of
processed pixels:

t =
(
k0 + k1(sp(1 − α)+ siα)

)
no, (20)

where k0 represents the number of operations needed
per pattern regardless of its size (e.g., a coordinate
transformation), k1 is a constant corresponding to the
number of operations per pixel per pattern, sp is the
average size of the pattern in pixels, α is the expected
failure rate of the tracking, si is the image size in
pixels, n is the number of tracked patterns, and o is
the number of operations per second per processor
core given as a ratio o = c/m of the entire proces-
sor MIPS (Million Instructions Per Second) m and the
number of processor cores c. The constant k0 has been
experimentally estimated as 5.105 and k1 as 900. The
average size sp of a pattern can be calculated from the
camera parameters, pattern diameter, and average dis-
tance from the camera by (12). Thus, if the user wants
to track 50 patterns with 30 pixel diameter using a
machine with two cores and 53 GIPS (Giga Instruc-
tions Per Second), the expected processing time per
image would be 1.2 ms, which would allow to process
about 800 images per second.

The speed of the localization algorithm depends on
the failure rate of the tracking α. Typically, if the pat-
tern displacement between two frames is smaller than
the pattern radius, the tracking mechanism causes the
method to process only the pixels belonging to the pat-
tern. This situation corresponds to α being equal to
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zero. Thus, assuming that the pattern is not moving
erratically, the method’s computational complexity is
independent of the processed image size. Moreover,
the smaller the pattern image dimensions, the faster
the processing rate is. Of course, equation (20) gives
only a coarse estimate, but it might give the user
a basic idea of the system processing speed. Equa-
tion (20) has been experimentally verified and the
results are presented in Section 6.3.

6 Experiments

This section is dedicated to presentation of the exper-
imental results verifying the mathematical models
established in Section 5. First, the model of the oper-
ational space defined by (15) and (16) is tested to see
if it corresponds to a real situation. After that, the real
achievable precision of the localization is evaluated
according to the model (17) and (19). Then, the real
computational requirements of the algorithm are mea-
sured using different computational platforms and the
model in (20) is validated. Finally, the performance
of the proposed localization system is also evaluated
according to the precise motion capture system and
compared with the AR tag based approach ArUco [14]
and the simple OpenCV circle detector.

6.1 Operational Space for a Reliable Pattern Detection

The purpose of this verification is to validate the
model describing the area covered by the localization
system. In Section 5.1, the covered space is described
as a pyramid with base dimensions vy, vz and a height
denoting the maximal detectable distance vmax .

6.1.1 Maximal Detection Distance

A key parameter of the operational space is the maxi-
mal distance for reliable pattern detection vmax that is
described by (14). The following experimental setup
has been used to verify the correctness of this model.
Two different cameras have been placed on a mobile
platform SCITOS-5 with precisely calibrated odom-
etry. The proposed localization system was set up to
track three circles, each with a different diameter. The
platform has been set to move away from the circles
at a constant speed and its distance from the patterns
was recorded whenever a particular pattern was not

detected. The recorded distances are considered as the
limit v′

max of the system operational space. The same
procedure was repeated with the patterns being slanted
by forty degrees (Table 1).

During this experiment, the patterns were located
approximately at the image center. As previously
noted in Section 5.1.2, additional correction constants
kx, ky have been introduced in Section 5.1.2 to take
into account radial distortion effects, which cause the
detected pattern to appear smaller when located at
the image edges. The augmented model considering
the radial distortion was verified in an additional
experiment using a pattern with diameter 2.5 cm posi-
tioned at the image corner. In this case, the maximal
detected distance was reduced by 7 % for a Logitech
QuickCam Pro camera and by 7 % for an Olympus
VR-340. These results are in a good accordance with
the model introduced in Section 5.1.2, where the val-
ues of kx and ky were estimated to be between 0.9 and
1.0.

6.1.2 Base Dimensions

The dimensions of the coverage base are modeled by
(16), which provides the dimensions of the expected
coverage vy and vz. This model was verified using
a similar setup to the previous experiment. The cam-
era was placed to face a wall at a distance established
in the previous experiment and four patterns were
placed at the very corners of the image. This procedure
was repeated for three different sizes of the pattern.
The operation space dimensions, both measured and
calculated by (16), are summarized in Table 2.

Table 1 Maximal distance for a reliable pattern detection

Distance [m]

Camera Pattern Measured Predicted

type do[cm]
0◦ 40◦ 0◦ 40◦

Logitech 2.5 1.4 1.3 1.6 1.3

QC Pro 5.0 3.3 2.8 3.2 2.5

7.5 4.4 3.9 4.9 3.7

Olympus 2.5 6.8 6.2 6.7 5.1

VR-340 5.0 13.2 11.4 13.4 10.3

7.5 19.8 16.8 20.1 15.4
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Table 2 Dimensions of the operational space

do Dimensions [m]

[cm]
Measured Predicted

vmax vy vz vmax vy vz

2.5 1.6 2.1 1.6 1.5 1.9 1.4

5.0 3.0 3.9 3.0 3.0 4.0 3.0

7.5 4.5 5.9 4.5 4.4 5.8 4.4

6.2 Localization Precision

The real localization precision, which is probably the
most critical parameter of the localization system, was
established experimentally using a dataset collected
in the main entrance hall of the Faculty of Mechani-
cal Engineering at the Charles square campus of the
Czech Technical University. The entrance hall offers
enough space and its floor tiles form a regular rect-
angular grid with dimensions 0.625 × 1.250 m. The
regularity of the grid was verified by manual mea-
surements and the established precision of the tile
placement is around 0.6 mm.

We placed several patterns on the tile inter-
sections and took five pictures with three differ-
ent cameras from two different viewpoints (Figs. 4
and 5). The cameras used were a Creative Live!
webcam, Olympus VR-340, and Canon 550D set to
1280×720, 4608×3456, and 5184×3456 pixel reso-
lutions, respectively. The viewpoints were chosen at
two different heights; so, the images of the scene were
taken from a “side” and a “top” view.

Fig. 4 Side view of the experiment

Fig. 5 Top view of the experiment

First, three or four of the patterns in each image
were used to define the coordinate system. Then, the
resulting transformation was utilized to establish the
circle global positions. Since the circles were placed
on the tile corners, their real positions were known
precisely. The Euclidean distances of these known
positions to the ones estimated by the system were
considered as the measure of the localization error.

6.2.1 Three-dimensional Localization Precision

In this test, the system was set to perform full three-
dimensional localization. In this model, the most
significant cause of the localization error is the
wrong distance estimation of the pattern (as noted in
Section 5.2.2). The distance measurement is caused
by an imperfect estimation of the pattern semiaxes
lengths, see (19). The equation indicates that a cam-
era with a higher resolution would provide a better
precision.

The measured and predicted average and maxi-
mal localization errors for the individual pictures are
shown in Table 3. The table also contains the predicted
average localization error ηpred calculated by (3) for
a comparison of the model and the real achieved
precision.

6.2.2 Two-dimensional Localization Precision

In the case of indoor ground robot localization, we
can assume that the robots move in a plane. The
plane where the robots move and the image plane
form a homography, which was previously defined by
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Table 3 Precision of 3D position estimation

Image Abs. [cm] Rel. [%]

camera view ϵavg ϵmax ηpred ηavg ηmax

Webcam side 5.7 19.5 1.04 0.90 2.96

Webcam top 3.7 12.1 0.68 0.61 1.83

VR-340 side 1.9 6.5 0.47 0.35 1.02

VR-340 top 3.2 11.0 0.54 0.50 1.39

C-550D top 2.5 7.4 0.30 0.43 1.46

four reference patterns during the system setup. The
real achievable precision of two-dimensional local-
ization was measured within the same experimental
scenario as the previous full 3D case. The average
and maximal measured localization errors are depicted
in Table 4. Similar to the previous case, the table
contains the predicted mean error ηpred calculated
by (17).

The results indicate that the assumption of ground
plane movement increases the precision by an order
of magnitude. Moreover, the results also confirm that
increasing the image resolution does not necessarily
increase the localization precision. Rather, the pre-
cision of localization is influenced mostly by the
camera calibration imperfections. This fact confirms
the assumptions presented in Section 5.2.1.

6.3 Computational Requirements

The purpose of this experiment was to evaluate the
estimation of the computational requirements pro-
vided by the model proposed in Section 5.3. Thus, the
hypothesis is to test if the algorithm processing speed
estimation (20) conforms to the proposed assump-
tions. Moreover, in this experiment, we also verify if

Table 4 Precision of 2D position estimation

Image Abs. [cm] Rel. [%]

camera view ϵavg ϵmax ηpred ηavg ηmax

Webcam side 0.23 0.62 0.03 0.04 0.08

Webcam top 0.18 0.68 0.04 0.03 0.09

VR-340 side 0.64 1.40 0.11 0.12 0.22

VR-340 top 0.68 2.08 0.19 0.11 0.32

C-550D top 0.15 0.33 0.03 0.03 0.07

the algorithm complexity depends only on the pattern
size rather than on the image resolution.

6.3.1 Processing Time vs. Image and Pattern
Dimensions

The model of computational requirements assumes
that once the circles are reliably tracked, the sys-
tem processing time is independent of the image
size. In such a case, the image processing time is a
linear function of the overall number of pixels belong-
ing to all the patterns. Three synthetic datasets were
created to verify this assumption. The first dataset
consists of images with variable resolution and one
circular pattern with a fixed size. The image reso-
lutions of the second dataset are fixed, but the pat-
tern diameter varies. Both pattern and image dimen-
sions of the third dataset images are fixed; however,
the number of patterns in each image ranges from
one to four hundred. Each image of each dataset
was processed one thousand times and the average
time to track all the roundels in the image was cal-
culated. The average processing time is shown in
Fig. 6.

The presented results clearly show that the image
processing time is proportional to the number of pix-
els occupied by the tracked circular patterns and does
not depend on the processed image dimensions. More-
over, the results demonstrate the scalability of the
algorithm, which can track four hundred robots more
than one hundred times per second. The aforemen-
tioned tests were performed on a single core of the
Intel iCore5 CPU running at 2.5 GHz and accompa-
nied with 8 GB of RAM.

6.3.2 Processing Time Using Different Platforms

From a practical point of view, processing images
at a speed exceeding the camera frame rate is not
necessary. Rather, the algorithm might be deployed
on systems with slower processing units. Thus, one
should be able to establish what kind of computational
hardware is needed for a particular setup. This can
be roughly estimated using the time to process one
image by means of (20). Three real world datasets
and five different platforms, including two credit-card
sized computers, were used to verify the model in a
realistic setup.



J Intell Robot Syst

Fig. 6 Influence of the number of tracked patterns, pattern and image sizes on the method’s speed

– The “small” dataset consists of one thousand
images of a static pattern, which occupies approx-
imately seven hundred pixels, i.e., 0.1 % of the
image’s total area.

– The “large” dataset is similar, but with a larger,
sixty-pixel diameter pattern, occupying approxi-
mately 0.3 % of image pixels.

– The algorithm performance with these two
datasets (“small” and “large”) is relevant in
scenarios where the tracked objects are moving
slowly and the camera is in a static position.

– The “fast” dataset contains 130 images of a fast
moving pattern with a variable size. The dataset
was tailored to cause failure of the tracking mech-
anism in one case. Thus, the performance of the
algorithm with this dataset is similar to cases
when the camera is not stationary or the tracked
objects are moving quickly.

The average processing time per image for each
dataset was measured and calculated by (20). The
results summarized in Table 5 indicate the correctness
of the model described in Section 5.3.

6.4 Comparison with a Precise Localization System

The real achievable precision of the localization sys-
tem has been reported in Section 6.2; however, only
for experiments with static targets, where the pat-
terns were placed at the predefined positions. Such a
setup provides verification of the precision for sce-
narios where the system tracks slowly moving robots.
On the other hand, rapid movement of the tracked tar-
gets introduces additional effects, which might have a
considerable impact on the system precision. First, the

Table 5 Required image processing time

Processing time [ms]

CPU Measured Predicted

Dataset: small large fast small large fast

i-5 2450M 0.04 0.10 0.37 0.04 0.12 0.35

Atom N270 0.30 0.72 3.25 0.33 0.89 2.68

Pentium M 0.20 0.45 1.44 0.17 0.48 1.45

Odroid U2 0.27 0.89 2.76 0.29 0.79 2.86

Raspb. Pi 1.10 4.00 15.8 1.34 3.66 11.0
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Table 6 Localization accuracy of a moving target

Mode Abs. [cm] Rel. [%]

ϵavg ϵmax ηavg ηmax

2D 1.2 4.2 0.4 1.5

3D 3.1 11.2 1.2 4.4

captured images can be affected by motion blur and
deformation caused by the camera’s rolling shutter.
Besides, there might be a delay in position estima-
tion because standard USB cameras deliver the images
with a delay caused by the interface’s limited band-
width. Therefore, we consider an additional experi-
ment to evaluate the impact of these factors on the real
performance of the presented global localization sys-
tem. We consider a precise reference system and set
up our localization system in an area where a high-
precision motion capture system is installed and which
is able to track multiple targets2. The motion capture
system provides positions of the tracked targets 250
times per second with a precision up to 0.1 mm; so,
it can be considered as a ground truth for our position
measurements.

Four reference targets were placed in the area and
a common coordinate system was calculated for both
systems. After that, four sequences of targets moving
at speeds up to 1.2 m/s were recorded by a Logitech
QuickCamPro and the commercial motion capture
system. Euclidean distances of target positions pro-
vided by both systems were taken as a measure of
our system accuracy. The mean precisions of two-
and three-dimensional localization were established as
1.2 cm and 3.1 cm, respectively (Table 6). Although
the system’s relative accuracy is lower that in the static
tests presented in Section 6.2, centimeter precision
is still satisfactory for many scenarios. The error is
caused mostly by the image blur because of a long
exposure rate set by the camera internal control. Care-
ful setting of the camera exposure and gain parameters
might suppress this effect. In fact, such a tuning has
been made for localization of flying quadrotors, see
Section 7.1.

It is also worth to mention that even though the
commercial system is able to localize rapidly moving
targets with a higher precision, its setup took more

2Human Performance Centre at the University of Lincoln

than thirty minutes while the presented system is pre-
pared in a couple of minutes (just placing four patterns
to establish the coordinate system).

6.5 Comparison with Other Visual Localization
Systems

The advantages and drawbacks of the presented local-
ization system are demonstrated by a comparison of
its performance with the well-established localiza-
tion approaches based on AR markers and OpenCV.
The performance of AR-based markers has been mea-
sured using the ArUco [14] library for detection and
localization of multiple AR markers (similar to the
ones used in ARTag and ARToolKit systems). A
comparison with the OpenCV circular pattern detec-
tion is based on the OpenCV’s “SimpleBlobDetec-
tor” class. The precision, speed, and coverage of all
three systems were established in a similar way as
described in the previous sections. For the sake of
simplicity, we will refer to the presented system as
WhyCon.

6.5.1 Precision Comparison

The localization precision of the ArUco-, OpenCV-,
and WhyCon-based localization methods was
obtained experimentally by the method described
in Section 6.2. The comparison was performed on
4608×3456 pixel pictures taken by an Olympus
VR-340 Camera from two different (side and top)
viewpoints.

The achieved results are presented in Table 7.
The WhyCon position estimation error is significantly
lower than the error of ArUco and OpenCV in both
the two- and three-dimensional localization scenarios.

Table 7 Localization precision comparison

Relative error [%]

mode WhyCon ArUco OpenCV

view avg max avg max avg max

2D side 0.12 0.19 0.20 0.41 0.52 1.03

top 0.12 0.32 0.22 0.37 0.77 1.62

3D side 0.31 1.10 0.63 2.52 − −
top 0.33 1.04 1.08 2.90 − −
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Moreover, we found that the OpenCV’s blob radius
calculation was too imprecise to reliably estimate the
pattern distance and could not be used for the full 3D
localization.

6.5.2 Performance Comparison on Different
Platforms

The computational performance of the three evaluated
systems was compared for three different platforms.
The methods’ performance was compared using two
datasets similarly to the evaluation scenario described
in Section 6.3.2. The slow dataset contains an easy-to-
track pattern while for the fast datasets about 1 % of
the images are tailored to cause a tracking failure.

The results presented in Table 8 indicate that the
proposed algorithm is capable of finding the pat-
terns approximately one thousand times faster than
the traditional methods. Even in the unfavorable
case where the patterns cannot be reliably tracked,
the method outperforms ArUco and OpenCV hun-
dred times. The performance ratio is even better for
small embedded platforms with limited computational
power. This property is favorable for deployment in
the intended applications, especially under real-time
requirements.

6.5.3 Range and Coverage Comparison

The AR fiducial markers are primarily intended for
augmented reality applications and in a typical sce-
nario, the localized marker is situated close to the cam-
era. Therefore, the AR marker-based systems are not
tuned for a reliable detection of distant patterns with

Table 8 Image processing time comparison

Processing time [ms]

CPU ArUco OpenCV WhyCon

Dataset: fast slow fast slow fast slow

i5 2450M 19 19 63 62 0.35 0.04

Pentium M 121 119 329 329 1.00 0.18

Odroid U2 148 149 371 366 0.93 0.28

Raspb. Pi 875 875 1795 1759 6.59 1.21

small image dimensions. Thus, the range and cover-
age of the AR marker-based systems would be lower
compared to WhyCon. On the other hand, OpenCV’s
circular blob detector can detect small circular
patterns.

To estimate the ArUco and OpenCV detectors
maximal range, we have established the minimal
size (in pixels) that the tags need to have in order
to be detected reliably. The sizes that correspond
to the minimal pattern diameter D in the Equa-
tion (15) were established in a similar way as
described in Section 6.1.1. While the OpenCV detec-
tor can find blobs larger than 12 pixels, the ArUco
detector requires the AR marker side to be longer
than 25 pixels. Therefore, ArUco’s maximal detection
range is less than a half of WhyCon’s or OpenCV’s
range.

7 Practical Deployment

In this section, we present an overview of several
research projects where the proposed circle detection
algorithm has been successfully employed. This prac-
tical deployment demonstrates the versatility of the
presented localization system. A short description of
each project and comment about the localization per-
formance is presented in the following sub-sections.

7.1 UAV Formation Stabilization

In this setup, the circle detection algorithm was con-
sidered for a relative localization and stabilization of
UAV formations operating in both indoor and outdoor
environments. A group of quadrotors are supposed to
maintain a predefined formation by means of their
relative localization. Each quadrotor UAV carries a
circular pattern and an embedded module [24] running
the localization method, see Fig. 7.

Thus, each UAV is able to detect other quadrotors in
its vicinity and maintain a predefined relative position.
Although the UAV’s movements are relatively fast,
we did not observe significant problems caused by
image blur and the system detected the patterns reli-
ably. This scenario demonstrates the ability to reliably
detect circular patterns despite their rapid movements
and variable lighting conditions. Moreover, it proved
its ability to satisfy real-time constraints when running
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Fig. 7 Decentralized
localization of quadrotor
formation performed by the
presented method. Courtesy
of the GRASP laboratory,
PENN

on computationally constrained hardware. The preci-
sion of the relative localization was in the order of
centimeters [24].

7.2 Birds-eye UAV-based Localization System

The algorithm has also been used for relative local-
ization of ground robots, which were supposed to
maintain a predefined formation shape even if they
lack direct visibility among each other. In this setup,
one robot of the formation carried a heliport with
the Parrot AR.Drone [25] quadrotor, which can take
off and observe the formation from above using a
downward-pointing camera. Each ground robot had a
roundel pattern, which is elliptical rather than circu-
lar to provide also an estimate of the robot orientation.
Using the roundel detection algorithm, the position
and heading of the ground robots are provided by the
flying quadrotor while it maintains its position above
the formation.

Moreover, the heliport was designated by a circular
pattern, which makes it possible to autonomously land
the quadrotor after the mission end, see Fig. 8. Despite
the relatively low resolution (168×144) of the UAV’s
downward-looking camera and its rapid movements,

Fig. 8 Mixed UAV-UGV robot formation
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the overall localization precision was approximately
5 cm.

7.3 Autonomous Docking of Modular Robots

The Symbrion and Replicator projects [26] investi-
gate and develop novel principles of adaptation and
evolution of symbiotic multi-robot organisms based
on bio-inspired approaches and modern computing
paradigms. The robot organisms consist of large-scale
swarms of robots, which can dock with each other
and symbiotically share energy and computational
resources within a single artificial life form. When
it is advantageous to do so, these swarm robots can
dynamically aggregate into one or many symbiotic
organisms and collectively interact with the phys-
ical world via a variety of sensors and actuators.
The bio-inspired evolutionary paradigms combined
with robot embodiment and swarm-emergent phe-
nomena enable the organisms to autonomously
manage their own hardware and software
organization.

In these projects, the proposed localization
algorithm has been used as one of the methods for
detecting power sources and other robots, see Fig. 9.
The method demonstrated its ability to position
the robot with a sub-millimeter precision, which is
essential for a successful docking. The method’s
deployment in this scenario demonstrated not only its

precision, but also its ability to run on computationally
constrained hardware.

7.4 Educational Robotics

SyRoTek [19] is a remotely accessible robotic labora-
tory, where users can perform experiments with robots
using their Internet connectivity. The robots operate
within a flat arena with reconfigurable obstacles and
the system provides an overview of the arena from an
overhead camera. The project has been used for edu-
cation and research by several institutions in Europe
and Americas. An important component of SyRoTek
is the localization system providing estimation of the
real robots’ positions.

Originally the localization was based on a con-
volution algorithm. Even though it is computation-
ally demanding and rather imprecise, it demonstrated
suitability for 24/7 operation. After replacement of
this original localization system by the presented
roundel-based system, the precision of the local-
ization was improved. Moreover, the computational
requirements were decreased as well [27]. In this
deployment, the roundel pattern is formed from
ellipses where the inner ellipse has slightly different
dimensions, see Fig. 10, which allows to distinguish
between individual robots. This use case demon-
strates the ability of the system to operate in 24/7
mode. In addition, using different dimensions of

Fig. 9 Symbrion/Replicator
robots during docking
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Fig. 10 A top-down view
to the SyRoTek arena

the inner ellipse allows to distinguish between 14
SyRoTek robots.

7.5 Ground Truth Assessment in Mobile Robot
Navigation

BearNav (originally SURFNav) is a visual based
navigation system for both ground [28] and aerial
mobile [29] robots. The method is based on con-
vergence theorem [30], which states that map-based
monocular navigation does not need full localiza-
tion, because if the robot heading is continuously
adjusted to turn the robot towards the desired path,
its position error does not grow above certain lim-
its even if the position estimation is based only on
proprioceptive sensing affected by drift. The afore-
mentioned principle allows to design reliable and

computationally inexpensive camera-based navigation
methods.

The presented roundel based localization system
was used to provide a continuous and indepen-
dent measurement of the robot position error, which
allowed to verify the convergence theorem and bench-
mark the individual navigation algorithms in terms of
their precision, see Fig. 11. The system proved to be
useful especially for aerial robots [29], which, unlike
the ground robots, cannot be simply stopped for a
manual position measurement.

7.6 Autonomous Charging in Long-term Scenarios

The STRANDS project [31] aims to achieve intelli-
gent robot behaviour in human environments through
adaptation to, and the exploitation of, long-term

Fig. 11 Reconstructed
trajectory of a mobile robot
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Fig. 12 SCITOS-5 platform near its charging station. Notice
the three o’s of the label

experience. The project approach is based on a
deeper understanding of ongoing processes affecting
the appearance and structure of the robot’s environ-
ment. This will be achieved by extracting qualitative
spatio-temporal knowledge from sensor data gath-
ered during months of autonomous operation. Control
mechanisms that will exploit these structures to yield
adaptive behaviour in highly demanding scenarios will
be developed.

The circle detection method is used in the project
as an initial solution of localization-related problems
before more sophisticated implementations take its
place. One of such deployments is the localization of
the robot during its approach to a charging station,
which has been solved by placing three patterns in the
charging area, see Fig. 12.

8 Conclusion

We present a fast and precise vision-based system
intended for multiple robot localization. The system’s
core component is based on a novel principle of circu-
lar roundel detection with computational complexity
independent of the processed image size. The result-
ing system allows to localize swarms composed of

several hundreds of robots with millimeter (2D) or
centimeter (3D) precision, while keeping up with stan-
dard camera frame rates. In addition, we provide a
model to calculate the sufficient camera and com-
puter parameters to achieve the desired localization
precision, coverage and update rate, which support
potential users to decide which kind of equipment is
needed for their particular setup.

The most notable features of the system are its
low computational requirements, ease of use, and the
fact that it works with cheap, off-the-shelf equipment.
The system has been deployed already in a number
of international mobile robotic projects concerning
distributed quad rotor localization [24], visual based
autonomous navigation [30], decentralized formation
control [25], long-term scenarios [31], evolutionary
swarm [26], and educational [19] robotics. Since the
system has already proved to be useful in a variety of
applications, we publish its source code [23]; so, other
roboteers can use it for their projects. The experiments
indicate that the presented system is three orders of
magnitude faster than traditional methods based on
OpenCV or AR markers while being more precise and
capable of detecting the markers at a greater distance.

In the future, we plan to increase the precision and
coverage of the system by using multiple cameras. We
will plan to improve the tracking success rate by pre-
dicting the position of the target by considering the
dynamics of the tracked object.
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tion (GAČR) under research project No. 13-18316P. Christian
Dondrup and David Mullineaux are acknowledged for help with
experiments.

References

1. Thrun, S., Burgard, W., Fox, D., et al.: Probabilistic
robotics, vol. 1. MIT press Cambridge (2005)

2. Breitenmoser, A., Kneip, L., Siegwart, R.: A monocular
vision-based system for 6D relative robot localization. In:
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 79–85 (2011)



J Intell Robot Syst

3. Yamamoto, Y., et al.: Optical sensing for robot percep-
tion and localization. In: IEEE Workshop on Advanced
Robotics and its Social Impacts, pp. 14–17. IEEE (2005)

4. Vicon: Vicon MX Systems. http://www.vicon.com. [cited 8
Jan 2014]

5. Mellinger, D., Michael, N., Kumar, V.: Trajectory gen-
eration and control for precise aggressive maneuvers
with quadrotors. Int. J. Robot. Res. 31(5), 664–674
(2012)

6. Fiala, M.: ’ARTag’, an improved marker system based on
artoolkit (2004)

7. Wagner, D., Schmalstieg, D.: ARToolKitPlus for pose
tracking on mobile devices. In: Proceedings of 12th Com-
puter Vision Winter Workshop, pp. 139–146 (2007)

8. Kato, D.H.: ARToolKit. http://www.hitl.washington.edu/
artoolkit/, [cited 8 Jan 2014]

9. Fiala, M.: Vision guided control of multiple robots. In:
First Canadian Conference on Computer and Robot Vision,
pp. 241–246 (2004)

10. Rekleitis, I., Meger, D., Dudek, G.: Simultaneous plan-
ning, localization, and mapping in a camera sensor network.
Robot. Auton. Syst. 54(11) (2006)

11. Stump, E., Kumar, V., Grocholsky, B., Shiroma, P.M.: Con-
trol for localization of targets using rangeonly sensors. Int.
J. Robot. Res. (2009)

12. Fiala, M.: Comparing ARTag and ARtoolkit plus
fiducial marker systems. In: Haptic Audio Visual
Environments and their Applications, pp. 6–pp. IEEE
(2005)
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UVDAR System for Visual Relative Localization with application to
Leader-Follower Formations of Multirotor UAVs
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Abstract— A novel onboard relative localization method,
based on ultraviolet light, used for real-time control of a leader-
follower formation of multirotor UAVs is presented in this pa-
per. A new smart sensor, UVDAR, is employed in an innovative
way, which does not require communication and is extremely
reliable in real-world conditions. This innovative sensing system
exploits UV spectrum and provides relative position and yaw
measurements independently of environment conditions such
as changing illumination and presence of undesirable light
sources and their reflections. The proposed approach exploits
this retrieved information to steer the follower to a given
3D position and orientation relative to the leader, which may
be considered as the main building block of any multi-UAV
system operating with small mutual distances among team-
members. The proposed solution was verified in demanding
outdoor conditions, validating usage of UVDAR in real flight
scenario and paving the way for further usage of UVDAR for
practical multi-UAV formation deployments.

I. INTRODUCTION

The growing interest in compact cooperative flights of
Unmanned Aerial Vehicles (UAVs) [1] motivates an ongoing
pursuit for efficient and embeddable onboard source of
mutual relative localization.

In our previous work [2], we proposed a novel approach
to tackle this issue, relying on vision in the unconventional
ultraviolet spectrum. We named this new onboard sensor
UVDAR for UltraViolet Direction And Ranging, and together
with blinking ultraviolet markers used on its associated tar-
gets these comprise the UVDAR system. Its main advantages
w.r.t. other solutions are twofold. First, the use of UV
significantly increases robustness to challenges of outdoor
environments regardless of the time of day, and second, its
use of active markers allows for retrieval of orientation or
identity of a target. The availability of such robust sensor
is a prerequisite for decentralized outdoor formation flights
and swarming and is especially crucial when a sufficiently
precise absolute localization source is unavailable, or when
it is unfeasible to prepare the necessary infrastructure [3],
such as a motion-capture system (MoCap) or a base-station
for Real-time kinematic - Global Navigation Satellite System
(RTK-GNSS).
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Fig. 1: Top view of a directed leader-follower experiment. The
leader rotates by 180◦. This is detected by UVDAR sensor carried
by the follower, triggering it to create a trajectory as per the
proposed algorithm in order to preserve its pose in the leader frame.

A typical example of multi-UAV flights is the leader-
follower formation, consisting of two members, one fol-
lowing the other. Typically, the goal in such flight is for
the follower to keep a constant distance from the leader,
or to follow its trajectory [4]. Such following is applicable
for various tasks such as cooperative mapping of historical
buildings, cooperative carrying of objects or cooperative
localization of a moving transmitter [3], [5]. In this paper,
we show how the leader-follower approach has to be de-
signed to be able to perform the required behavior using
the UVDAR sensor. The presented directed leader-follower
method, which leverages relative orientation information, can
be considered as a guideline for designing complex multi-
UAV systems working in real conditions with this sensor.

The literature on classical leader-follower formations is
rich, see, e.g., [4], [6], [7] for theoretical works backed by
simulation. Works addressing the challenges of real exper-
iments are limited, especially relying on onboard relative
localization. The experimentally validated approaches often
rely on either absolute localization source, e.g., MoCap
in [8], or RTK-GNSS in [9], [10]. As is known, MoCap
is not practical for real-world deployment (neither outdoor
or indoor) as it requires the installation of an expensive
infrastructure. The absolute localization sources can provide
full pose of the leader to the follower, which oversimplifies
the problem. Even if only partial information is passed
to the follower motion controller, like distance or bearing,
this type of system provides continuous stream of such
information without errors, which is unrepresentative of real-
world deployment.

Some more practical approaches consider infrastructure-
less sensing, like ranging based on radio signal [11], which
only allows for distance-based following without any orien-
tation information. Another approach [12], for the 2D case,
wirelessly communicates the leader intents, which proves



Fig. 2: Comparison between visible and UV camera footage from
UVDAR, collected during the experiment. The UV image is sig-
nificantly easier to process to retrieve UAV information.

feasible since there are less degrees of freedom and less drift
than in the presented 3D case. These two approaches rely on
radio transmissions, which is subject to the effects of network
congestion and interference. This is why we consider vision-
based approaches more suitable for the multi-robot groups,
especially in uncontrolled outdoor environments.

This direction has been previously explored by the Multi-
robot Systems (MRS) group at CTU-Prague, relying on true
outdoor relative localization, see [13], [14]. The source of
relative localization was an onboard vision-based system
using passive circular markers as described in [15]. That
came with drawbacks: high sensitivity to lighting conditions
and partial occlusion, and substantial size for an acceptable
detection range. A similar approach has been proposed [16],
that extended the usability of passive markers for low light in
short distances by leveraging the infra-red reflection. How-
ever, in all other respects it suffers from the same drawbacks
as the visible passive marker approach. Furthermore, it was
tested only for stable ground vehicles. This motivated the
development of the UVDAR system, which is more robust
to real-word conditions, due to optically filtering out visual
information that is not of interest, reducing the computational
load, see Fig. 2 for comparison with visible spectrum.
UVDAR also provides relative orientation measurements
and target identities, and the whole system is small and
lightweight.

Our contribution is threefold. We first show how UVDAR
can be used to obtain both the relative position and orienta-
tion. We then propose a directed leader-follower algorithm
that works interactively with the UVDAR sensor and mea-
surement method. Finally, we validate the performance of
the presented method in outdoor experiments.

II. POSE RETRIEVAL PRINCIPLE FOR UVDAR

The UVDAR sensor, presented in our previous
work [2] [17], retrieves image positions and frequency-
based IDs for individual blinking ultraviolet markers from
a modified camera. This data is used to obtain the relative
pose of the leader.

The blinking markers carried by the leader UAV have
a known layout. We found that six markers arranged in a
pattern of a regular hexagon pose as a good compromise,
that ensures that at least two markers are visible from
each direction and the markers not being too close to each

other. This means that they provide a source of a distance
estimation without their images tending to merge in the
operational distances. We instantiate this arrangement on a
regular hexarotor platform with the markers attached to the
ends of its arms, but the arrangement is easily reproduced
for any similar rotorcraft, by e.g., mounting the six markers
onto a horizontal ring attached to the vehicle. If a different
number of markers was to be used, the calculations used in
this section need to be adjusted accordingly. In particular, if
the arrangement will result in different number of markers
being visible from different directions, each case needs
separate equations according to the given geometry. The
relative yaw is obtained by giving these markers two distinct
IDs, retrievable by the UVDAR, one for the three port side
markers and another for the three starboard ones. For other
shapes of UAVs, different configurations may be preferable,
see [17].

In this section we introduce the calculations necessary to
retrieve the relative bearing, the mutual distance and the
relative yaw when UVDAR system is used in conjunction
with regular distribution hexarotors. The relative bearing
is the direction towards the leader in the follower body-
frame and the mutual distance is the distance between the
geometrical centers of the two UAVs. The relative yaw is the
angle between the horizontal components of their connecting
line and the tailing direction, which is in our case the
backwards direction in the leader body-frame.

Note, that for the mutual distance and relative yaw es-
timation we are assuming a horizontal alignment between
the sensor and the target, since the height difference has
negligible effect on the presented distance estimates and no
effect on the relative yaw estimates

Two basic cases of the UVDAR output occur in practice,
see Fig. 3, it either sees simultaneously two markers (case
A, Fig. 3a) or three markers(case B, Fig. 3b). This depends
on the relative yaw of the leader, because of the Lambertian
radiation pattern of the markers, leading to two different cal-
culations to retrieve the values of interest. In both cases the
distance is first retrieved based on geometrical considerations
and then the relative yaw based on marker IDs.

A. Distance Retrieval – case A

The pixel coordinates mi of the origin points (the current
expected image position of a blinking marker obtained by
UVDAR, see [2]) is first translated into a 3D unit vector vi

pointing towards the marker,

vi = c2w(mi), (1)

where c2w(·) is a standard function available in a number
of vision libraries, such as the OCamCalib toolbox [18],
provided that the camera has been properly geometrically
calibrated.

As we consider only two markers, the angle their corre-
sponding vectors form is denoted α and obtained via cross-
product, α = arccos (v1 · v2).

This angle is used to calculate the distance lc between
the target UAV geometrical center and the sensor, while
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Fig. 3: The notation used in relative UAV pose estimation.

presuming that the line segment between the two markers
is perpendicular to the line connecting the camera with its
center point. This yields

lc =

(
d

2

)
cot
(α

2

)
+
√

0.75 d , (2)

where d is the length of the hexarotor arm, see Fig. 3a.
The relative bearing vector vc, is obtained through the

conversion in (1) applied on the point in between the two
origin points visible. The distance lc and vector vc describe
the relative position of the leader w.r.t. the UVDAR sensor.

Note that with only two markers visible, there is an
ambiguity on α arising from the simultaneous influence of
distance and relative yaw (orthogonality assumption), which
is explored in depth in [17]. This ambiguity disappears if
three markers are visible.

B. Distance Retrieval – case B

When three markers are visible, see Fig. 3b, the angles
αa and αb are computed via (1) from two adjacent origin
points. The distance lc and angles ϕ and ε are expressed as

lc =

√
b2 + d2 − 2bd cos
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(3)
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ϕ = arcsin
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lc
sin
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π

3

))
. (5)

Here, b and δ are common terms which correspond respec-
tively to the distance from the sensor to the middle marker
and the angle formed by the left marker, middle marker and
the sensor. They can be expressed as follows

b =
d sin(π − (δ + αa))

sin(αa)
and δ = 2 arctan

(
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Fig. 4: Left – The layout of the two marker IDs on the considered
hexarotor, denoted as blue (6 Hz) and red (15 Hz). Around it
the frames illustrate the UVDAR view from their corresponding
direction. On the right, the actual view from four different directions
from experiments.

The last equation is a compact form of the analytical solution
of a set of non-linear equations, where

A = cot(αa) B = cot(αb)

P = B
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The relative position is then estimated from lc and the relative
bearing v2 of the middle marker rotated by ε in yaw.

C. Relative Yaw Retrieval – case A

The relative yaw in camera frame ∆ψc is retrieved from
the IDs of the UVDAR markers. Only a finite number of
patterns can be observed, as seen in Fig. 4, which we
numbered from I to XII.

When only two origin points are seen, it corresponds to
six possible relative orientations. If the two IDs differ, the
leader is seen either from the front ( XII and ∆ψc = π) or
from the back (VI and ∆ψc = 0), i.e., the tailing direction.
If the IDs are identical, the orientation is ambiguous (II–IV
and VII–X). We resolve this with an heuristic, by averaging
the two possible interpretations of such observation. Namely,
∆ψc = ±π/3 and ±2π/3, so the average is ∆ψc = π/2 on
starboard side or −π/2 on port side. Note, that resolving the
ambiguity based on previous observations is precluded by
the ability of the target to independently change its rotation
rate at any moment.

D. Relative Yaw Retrieval – case B

When three origin points are seen, we consider the other
six possible relative orientations, see Fig. 4. They correspond
with relative orientation s.t. the follower is roughly facing
one specific arm (∆ψe = ±(π/6 + k(π/3)) : k ∈ {0, 1, 2}).
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it (∆φ→ 0) from its back (∆ψ → 0).

Imperfect sensor alignment with the corresponding arm
is accounted for by using the angle ϕ obtained from (5) as
∆ψc = ∆ψe − ϕ. Note that typically, for the considered
operational distances greater than 5 m the origin points are
very close in the UVDAR image, which means that αa and
αb are almost identical, and ε and ϕ had negligible effects.

In both cases, before the information retrieved from the
UVDAR, i.e., estimates of the relative position and yaw are
used in our directed leader-follower they are transformed into
the IMU frame of the follower UAV, which compensates not
only for the offset of the sensor but also for the tilt (i.e., roll
and pitch) of the unit. Thus corrected relative yaw is denoted
as ∆ψ, and is used in the following section as tailing error.

III. DIRECTED LEADER-FOLLOWER

The goal of directed leader-follower formation is to si-
multaneously regulate the mutual distance towards a pre-set
tailing distance and to let the follower always face a given
leader side (tailing direction), e.g., its back. Our proposed
algorithm solves such task and takes also into account con-
straints of vision-based sensing: 1) forward facing directional
sensor and 2) sensitivity to rapid image motion. To address
both, the follower behavior is such that it always attempts to
face the leader. This guarantees that the leader is in the field
of view (FoV) of the sensor and additionally that the leader
image position will not change greatly over short periods
of time. The requirements of the system are therefore to
minimize the control errors illustrated in Fig. 5 as ∆l - the
distance error, ∆z - the height error, ∆φ - the heading error
and ∆ψ - the tailing error. These are equal to zero if the
follower is in what we call the target pose w.r.t. the leader.
The heading error is the horizontal angle between the bearing
of the leader and the frontal direction of the follower.

A. Trajectory Generation Strategies

The goal is to steer the follower to the target pose, located
on the back of the leader, at a distance r, tailing distance, by
which we also define a safety perimeter around the leader.

If the follower is steered only with the currently observed
leader pose, changes in the observation lead to rapid changes

Follower Leader

(a) Following

Follower Leader

(b) Orbiting

Follower Leader

T

(c) Flanking

Follower Leader

(d) Retreating

Fig. 6: The four strategies used in our directed leader-follower
experiment. The red propellers denote the back of the UAV.

in the follower target pose. This is detrimental as we con-
sider under-actuated platforms which have high coupling
between their translational and rotational dynamics. Hence
higher translational acceleration means higher tilting, likely
to perturb the visual localization. To avoid this, we design
the algorithm such that it repeatedly constructs a short-term
trajectory, at fixed rate, whose time horizon is at most 4 s.
The trajectory consists of isochronous points defined by their
position and yaw. Trajectories are naturally constructed in
the follower body-frame, if the follower is localized in the
world-frame it is possible to convert them to world-frame to
accommodate for low-level trajectory trackers.

The trajectory is constructed according to one of four
distinct strategies; 1) following, 2) orbiting, 3) flanking, and
4) retreating, as depicted in Fig. 6.

For each strategy we consider the height error and the
lateral position errors separately, as the height error does not
play into the trajectory selection, and we attempt to bring
it to zero as fast as possible in all four cases. We do this,
by setting the z component of the whole generated trajectory
directly to the z component of the estimated relative position
of the leader, which forces our trajectory tracker to reach this
height as fast as it can, bringing ∆z close to zero.

The appropriate lateral strategy is selected based on the
current situation which is described by the tailing error ∆ψ,
the tangential angle β = arccos (r/lc) and the distance error
∆l, see Fig 7. The decision map is as follows:

∆l < −h → Retreating (6)
∆l ∈ [0,−h] → Orbiting (7)

(∆l > 0) ∧ (|∆ψ| < |β|) → Following (8)
(∆l > 0) ∧ (|∆ψ| ≥ |β|) → Flanking (9)

where h is a tolerance factor, introduced to prevent rapid
switching in boundary cases by creating some hysteresis.

In the following strategy, Fig. 6a, the follower flies directly
to the target pose on the perimeter at its maximum admissible
horizontal speed.
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In the orbiting strategy, Fig. 6b, as the follower is already
at the tailing distance, it slides along the perimeter to reach
the desired tailing direction.

In the flanking strategy, Fig. 6c, the follower flies straight
to the tangent point T of the perimeter closer to the target
pose, which brings the follower in the orbiting configuration.

In the retreating strategy, Fig. 6d, the follower is inside the
safety perimeter of the leader, hence it is navigated outside
of it radially, at its maximum admissible horizontal speed.

These strategies are devised to generate a fast path toward
the target pose that is continuous up to the first derivative.
Generation of each trajectory is based on the measured
relative poses of the leader and the follower, from which
estimates of the safety perimeter and the target pose lying
on it are calculated. Depending on the current strategy, linear,
circular or a combined trajectory is generated. The employed
sampling of the trajectory ensures that the euclidean distance
between two consecutive positions corresponds to the dis-
tance traversed at the maximum admissible speed during a
single time-step, enforcing constant tangential speed. In order
to accommodate for a leader motion, strategy selection and
trajectory generation are triggered at a fixed rate.

Additionally, for each strategy we enforce that the follower
yaw is such that its camera always faces the estimated
leader position, considering the error ∆φ, by setting the
reference yaw in each step of the trajectory to face the
currently estimated leader position. This ensures continuous
observation without rapid movements in the image as well
as preventing loss of the leader from view in case of limited
FoV, in our case 180◦in the horizontal axis.

The generated trajectories are not accounting for real-
world dynamics of the UAV and should be filtered before be-
ing sent to the low-level trajectory tracker. In our experimen-
tal setup, we leveraged the model predictive control present
in our system [19], making the final trajectory smooth. This
alters the original trajectory, but the optimization procedure
used in [19] minimizes these differences, so that the resulting
trajectory differs from the original only in four specific cases.
Firstly, at the start of the trajectory after the leader was
first discovered, the follower first accelerates to reach the
desired tangential speed. This does not happen if the leader
was already being tracked, since in such case the initial
state already includes the tangential speed. Secondly, if the
target pose is reached within a single trajectory generation
period, the follower will decelerate, since abrupt stopping

is unfeasible. The third situation occurs during the transition
between the linear and circular phase of the flanking strategy,
when the trajectory is adjusted to achieve continuous accel-
eration. In this case the resulting trajectory resembles turns
in automobile roads, eliminating step change in acceleration.
This result is possible, because the flanking strategy contains
both phases. An additional benefit is that if the next strategy
is orbiting, after reaching the perimeter, the initial state
will already include appropriate tangential speed so that the
original trajectory will be followed with minimal change.
Lastly, when retreating the trajectory is set such that the
follower retreats according to its maximum speed, without re-
gards to other conditions, which the model predictive control
interprets by applying the maximum admissible acceleration.
As the trajectory is re-generated asynchronously, following
one of the four policies, the current state of the model is
fused with the new trajectory to ensure a smooth transition.
One useful addition for initialization of the leader-follower
task or if the leader is lost, is setting the follower to slowly
spin in place if it has not detected the leader yet, or has not
seen it for pre-defined time.

B. Constraints on the leader motion

In order for the follower not to lose the leader and to
prevent collisions, the motion of the leader must conform to
a set of restrictions.

The blinking signal retrieval in UVDAR limits the maxi-
mum component of the marker velocity perpendicular to the
associated camera optical ray, in order to ensure consistent
tracking. With our typical frame-rate of approx. 72 Hz,
23 frame signal sample and maximum allowed marker shift
between frames of approx. 1 pixel, this limit is 0.3∗ l m s−1,
scaling with the real distance l between the UAVs. The limit
also defines the maximum yaw rotation rate of the leader,
corresponding to approx. 0.3 ∗ l/d rad s−1. Additionally,
linearity assumption in the UVDAR [2] limits the maximum
acceleration of the leader in this direction to 0.3 ∗ l m s−2.

While tracking is unaffected by the component of the
velocity along the camera optical rays, the distance measure-
ment is less precise than the relative bearing. In particular,
earlier experiments [17], showed that in rare conditions the
distance measurement error could get close to 20 %.

The distance estimate is important for the follower to
successfully retreat from the leader in case of breached
perimeter. This breach must be detected in time despite
the distance estimate possible error. In the adverse case
where both UAVs are flying directly towards each other,
the follower at its following speed of vFmax and the leader
at vL, the follower registers a perimeter breach with delay.
Additionally, this delay is extended by filtering the distance
estimate with a moving average filter of time window ta,
when the detection is delayed by td = ta/2. Note that
the detriments of the moving average filter in this case are
balanced by enhanced performance of the bearing estimate.
The perimeter breach is detected at the distance

lbrake = (r − h) ∗ 0.8− rcoll − (vL + vFmax)td,



Fig. 8: The UAV platform used in our experiments, here equipped
both with a ultraviolet camera (red) and active markers (green)
comprising the hardware components of UVDAR system.

where rcoll is the collision distance. If aFmax is the max-
imum feasible acceleration of the follower in the case of
retreating, then collision in the worst case can be avoided if

vL <
√

2lbrakeaFmax − vFmax,

when l < r. In our experimental setting, this translates
to limiting the approaching speed to vL < 0.61 m s−1 for
distances smaller than r = 5 m. A violation of this restriction
is shown in the red zone of Fig. 10, resulting in the follower
not retreating fast enough.

Evidently for greater safety, the leader should avoid ap-
proaching the follower. The rough direction in which the
follower lies is implicitly known to the leader, since the
follower is set to face a specific side of the leader. If the
leader needs to fly in this direction, a simple way to prevent
approaching the follower is to first rotate, ideally by 90◦,
and thus to steer the follower out of the way into a relative
pose from which it can easily follow in a sideways manner.

Lastly, since the maximum distance for reliable detection
by the UVDAR is 15 m, the leader, when it is further than
12.5 m from the follower, must not retreat from it faster than
vFmax m s−1. This will ensure that the error of distance
measurement will not lead to the follower losing the leader
from sight. In most cases, the following algorithm already
accounts for this, if the following distance is set to less than
12.5 m and enough time is provided for the follower to reach
the target pose at the start of the mission.

IV. OUTDOOR EXPERIMENTAL VALIDATION

A. Experimental Platform

In order to validate the performances of the proposed
formation algorithm, we conducted a campaign of real-world
outdoor flights with two DJI f550-based hexarotors, see
Fig 8. They are each fitted with a Intel NUC7 computer,
a PixHawk flight controller and a Tersus GPS receiver, used
with a RTK-GNSS system to obtain ground truth.

The two units were each equipped with a part of the
UVDAR system. The leader was equipped with ultraviolet
markers attached on the ends of its arms. The markers can be
set with a blinking ID or not. In our setup two IDs are used
as depicted in Fig. 4. Apart from providing IDs, blinking
markers ensure robustness against reflections of the sun.
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Fig. 9: Top view of the leader and follower trajectories in the
preliminary experiment without marker identity. For a sense of time,
selected simultaneous positions are marked with the same color.

The follower was equipped with a front facing UVDAR
sensor, with a fisheye lens, allowing for 180◦ of horizontal
FoV. Resolution and typical frame-rate are 752 × 480pix
and 72 Hz, respectively. With the current UVDAR settings
the detection range is around 15 m, see [17]. The relative
positions and yaws of the leader are cyclically estimated at
the rate of 10 Hz.

In order to increase the precision and to suppress the effect
of any spurious errors of detection on the flight, we use a
moving average filter of window 10, on the relative distance
and relative yaw estimate. The relative bearing does not need
filtering, as it is derived from the image position of the target,
which we consider to be sufficiently reliable and precise.

During the experiments we noted that the UVDAR is
highly sensitive to the lens focus. Indeed repeated manipu-
lation altering the focus made the detection range drastically
decrease to around 6 m, insufficient for practical purposes.
Fortunately, focus can be monitored and adjusted easily.

For visualization, comparison and future analysis, the
follower also carried a front-facing color camera. The views
from the two onboard cameras are recorded a low frame-rate,
so as not to impede the UVDAR.

B. Preliminary Flight – Without Marker Identity
In a first set of experiments, we validated the UVDAR

performances as a distance and relative bearing sensor, before
going further. To do so, a simple leader-follower formation
was tested. The markers of the leader were not blinking
and the follower set to only approach the leader up to a
desired tailing distance. This was implemented as a simple
proportional position controller. Such behavior has been
demonstrated with various other sensors. The distance and
relative bearing are obtained as described in Sec II.

The leader tracked a waving trajectory retreating from the
follower, see Fig. 9. The follower successfully managed to
tail the leader during the whole trajectory, of length 214 m,
demonstrating that UVDAR provides sufficient distance and
relative bearing measuring capabilities for real-world flight.

C. Real-World Flight of the Directed Leader-follower
Since the UVDAR is also able to provide a useful relative

orientation estimate, we have conducted a second real-world
flight where this information is used.
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Fig. 10: (a) The leader trajectory defined by position and yaw ψ.
The height was constant, set to 8 m. (b) From top to bottom - tailing
error, heading error and distance error. Colored zones correspond
to specific leader motions - rapid rotation (green), retreat-approach
(red), left-right (blue), and circle following (purple).

The markers on the leader were set to blink, at 6 and 15 Hz
following the pattern depicted in Fig. 4. The distance, relative
bearing and orientation are obtained as described in Sec II,
and used in the directed leader-follower from Sec. III. The
tailing distance was set to r = 5 m, with maximum hysteresis
h = 2 m. The temporary trajectories are generated at 2 Hz
and their tangential speed is a kept at 2 m s−1.

Before the leader started its trajectory, it waited for the
follower to reach its target pose. The leader trajectory was
devised to highlight the system behavior in four represen-
tative cases. First, the leader makes three rapid rotations in
yaw by 180◦ with 30 s of static hovering in between. Second,
the leader moves linearly at 0.8 m s−1 with static yaw, going
forward 8 m, backward 16 m and then forward 8 m again.

Third, the same retreat-approach motion was performed
from left to right. The fourth case was a car-like following
of a circular trajectory with a radius of 10 m. The height of
the leader was fixed to 8 m for the whole experiment. The
leader motion and follower control errors are plotted for the
full trajectory, with the four cases, in Fig. 10a.

Video of the experiment can be seen online1 and an
external view of the experiment is shown in Fig. 11.

1) Rapid rotation: This highlights the importance and
usage of relative orientation. Every time the follower detected
a change in the leader orientation, it flew around the leader,
see Fig. 1, to successfully reach the target pose again,
demonstrating that relative yaw retrieval with UVDAR is
reliable enough for real-world applications.

2) Retreat-approach: This can be seen as a classical
leader-follower formation. The follower uses the relative
position estimate to maintain a set distance from the leader.

1http://mrs.felk.cvut.cz/directed-following-with-uvdd

Fig. 11: View of directed leader-follower experiment, the leader
(red) is retreating from the follower (green).

The observed performance is good overall. However, note
that due to the granularity of the distance estimate from
vision, combined with observation averaging, the reaction
of the follower can be delayed, see Fig. 10b, around the
140 s mark. This engaged the follower collision avoidance
mechanism, see [19], forcing it to fly over the follower and
then to resume directed following by turning around and
orbiting, which is the origin of the observed peak in ∆ψ.
This demonstrates that the good following performance can
be jeopardized if the leader flies towards the follower faster
than the admissible limit of 0.61 m s−1 estimated in III-B,
since in this case we set the speed of approach to 0.8 m s−1.
A larger perimeter can be set to mitigate this, trading off
visual distance estimation precision, so a compromise needs
to be found for each application.

3) Left-right: When the leader moves side to side, both
the relative distance and orientation estimates performances
are evaluated. As depicted in Fig. 10b the performances
are good as the max. relative yaw was around 60◦ and the
distance error around 2 m, demonstrating that the follower
was able to deal with a continuous disturbance in both
quantities simultaneously.

4) Circular following: The last part of the trajectory
demonstrated the ability of our system to follow a leader
along an extended trajectory, by tailing a leader flying along
a circular trajectory in a car-like manner. As the plot implies,
while the follower lagged behind the tailing distance by 4 m
on average, it did not lose track of the leader for the whole
trajectory, both in terms of relative yaw and heading.

V. POTENTIAL FUTURE EXTENSIONS

The system performances in the experiments validated our
approach and more importantly pave the way to a wider use
of UVDAR for multi-UAV relative localization.

Other formations can be explored and tested, such as train-
like formation where multiple units are following another
one in front of them. Thanks to the marker IDs provided
by the UVDAR, that can map to leader identities, keeping
the leader-follower order should prove easy. Such formation
needs to guarantee that leader motion can not force followers
further down the line to reach speed or acceleration limits.

Additional studies on leveraging the marker layout are
necessary. The current layout, with adjacent triplets of same-
ID markers has the drawback that for a pair of same-ID
(Fig. 4–II,IV,VIII,X), the relative yaw is ambiguous, e.g., II



and IV appear identical. In Sec. II-D we used a heuristic,
averaging the two possible interpretations. Another available
option is presuming one of the two interpretations based on
which leads to the more favorable dynamics. With the current
layout, leader starboard and port directions (III and IX) can
not be chosen as alternative tailing directions since they are
surrounded by ambiguous observations.

However, with the current layout it is possible to steer
a follower to any of the other alternative tailing directions
that can be uniquely located (Fig. 4-V,VI,VII,XII,XI,I). This
allows for multiple directed followers for a single leader,
separated by different tailing directions. A simpler way to
allow for more followers is to assign them to different
relative heights, although the aerodynamic coupling between
the followers must be taken into account in that case.

For steering towards one of the unique positions the
current layout was sufficient, but for truly arbitrary static
formations a third identity must be introduced, using up more
of the limited number of available IDs.

Filtering distance estimation with simple averaging proved
to be a weak point, imposing strong motion restriction on
the leader, and more advanced filtering techniques, such as
a Kalman filter, should be considered in the future.

VI. CONCLUSION

In this paper, we demonstrated the applicability of our
novel vision-based relative localization system UVDAR for
cooperative UAV flights on a specific implementation of
the leader-follower formation. This directed leader-follower
formation control exploited the relative leader pose obtained
by the UVDAR sensor, comprising position and yaw, to steer
the follower to a target pose pose w.r.t. the body of a moving
leader, while also preserving the conditions for continued ob-
servation by this vision system. The cooperative combination
of UVDAR with a specialized control algorithm was shown
to maintain the desired following behavior, without direct
communication between the two UAVs.

The encouraging performance of the system for various
motions is shown through outdoor experiments. In particular,
the use of UVDAR for a real application is demonstrated
for the first time, in demanding outdoor situations. More
complex formations have to be addressed in future work.
Overall, the UVDAR performance in outdoor conditions
should lead to its wider adoption.
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Abstract—A system designed for a unique multi-robot appli-
cation of closely flying formations of Unmanned Aerial Vehicles
(UAVs) in indoor areas is described in this paper. The proposed
solution is aimed as a tool for historians and restorers working in
large historical buildings such as churches to provide an access
to areas that are difficult to reach by humans. In these objects,
it is impossible to keep a large scaffolding for a long time due
to regular services, which is necessary for studying a long-term
influence of restorations works, and some parts of the churches
were even not reached by people for decades and need to be
inspected. To provide the same documentation and inspection
techniques that are used by the experts in lower easily accessible
parts of the buildings, we employ a formation of autonomous
UAVs, where one of the robots is equipped by a visual sensor
and the others by source of light, which provides the required
flexibility for control of lightening.

The described system in its full complexity has been im-
plemented with achieved robustness and reliability required by
deployment in real missions. The technology demonstration has
been provided with real UAVs in historical objects to help
restorers and conservationists with achieved valuable results used
in plans of restoration works. In these missions, UAVs were
autonomously hovering at designated locations to be able to
demonstrate usefulness of such robotic lightening approach.

I. INTRODUCTION

A system for autonomous documentation of dark areas
in large historical buildings by a formation of Unmanned
Aerial Vehicles (UAVs) is presented in this paper. In the
proposed approach, a self-stabilized formation of multi-rotor
helicopters is employed for filming and visual inspection in
dark conditions, where one of the UAVs carries a camera and
neighboring UAVs a source of light. This setup aims to fully
autonomously realize two techniques often used by historians
and restorers for manual inspection of interiors of historical
monuments nowadays. The first one, so-called Three point
lighting approach [1], [2], is a filming technique in which 1-3
sources of light are used in different locations relatively to the
camera optical axis. The method enables to create an illusion
of a three-dimensional subject in a two-dimensional image
and to illuminate the subject being shot (such as sculptures in
historical buildings) while controlling the shading and shadows
produced by lighting. This is essential for the presentation of
historical monuments in interiors to the broad public, as it

removes the boring flatness from images and videos, and it
adds a value to the analysis of gathered results by historians.

The second technique frequently used by restorers employs
a strong side-light for illumination of flat objects, such as walls
with parget and mosaics. In this method, the strong light needs
to be placed as close as possible to the scanned plain, which
makes visible shadows in the image in a case of a roughness
of the surface. Restorers and conservationists can detect from
such illuminated pictures if a tile in the mosaic is not fixed
properly or if a painting is affected by a humidity indicated
by buckling of the wall surface.

We implemented these two methods using autonomous
unmanned helicopters, which enables their usage in places
in the interior of large historical objects (e.g. churches) that
are not accessible without installation of a costly staging. In
cooperation with restorers and filmmakers, we defined the
filming Three point lighting technique and the Strong side-
lightening method as a multi-objective optimization problem
in the Model Predictive Control (MPC) framework. The MPC
approach is used for control of the formation members taking
into account task objectives as well as constraints of the for-
mation flying (obstacle avoidance, mutual collision avoidance),
low level UAV stabilization [3] (motion constraints), filming
(limited camera field of view, keeping all UAVs out of the
taken images), and illumination (providing intensity of the
lightening in a required range, keeping the recommended angle
between the light and camera axes).

Fig. 1. Demonstration of the presented formation flying approach to realize
a flying “film crew” in a church in Sternberk, Moravia.978-1-5090-6505-9/17/$31.00 c�2017 IEEE



It is not our intention to design a system that would decide
where and what to film or scan. This is a job of the filmmakers
and experts from the field of restoring and historical sciences.
To be able to reach the direct usability of the system by the ex-
perts, we employ the artificial intelligent and the autonomy of
UAVs only for solving technical tasks, such as the lightening,
and the artistic intent is left at hands of the professionals. Also
the decision, which part of the church needs to be inspected
and which technique has to be used is still taken by historians
and the proposed system is designed only as a smart tool to
facilitate their job. Therefore, we assume an input from these
experts for the system in a form of a given path that has to
be followed by the UAV with a camera and a given set of
objects that have to be filmed. From the safety reason, we
expect a given map and known positions of the objects of
interest in the building. Although, online mapping techniques
are provided by robotic community nowadays, they lack 100%
reliability, and also filmmakers as well as historians require
visualisation of the planned path prior the mission to make
sure that their intention will be fulfilled for which the map
given prior the mission is essential. In addition, the revision of
the overall plan increases probability of mission failure, which
is crucial for deployment of autonomous systems flying close
to objects with high historic and financial costs. Fortunately,
in the presented application scenario, the knowledge of a
precise map prior the mission is a realistic assumption since
the precise map is always used by the historians and it is a
main part of the restoration and historical survey for which
these techniques are targeted.

In practice, the experts denote which part of the path has to
be dedicated to which object of interest (OoI) and the camera
orientation is simply computed for each point of the path
using the known position of the OoI. The obtained profile of
the camera heading does not need to be smooth and feasible
since it is considered only as one of the desired objectives of
the MPC optimization. Usually, the task requirements do not
respect the UAV movement constraints, mainly if the input for
the system is provided by the historians. The film lighting tech-
nicians have usually better understanding of motion constraints
of a camera doing a dynamic shot, but still their demands are
often in contrast with limitations of UAVs and self-localized
formations. Therefore, the proposed system is designed to
find a solution close to the usually infeasible (and even non-
continuous) desired trajectory for the leader and the camera
orientation, and to find a compromise between the require-
ments given by the experts and the artificial system of closely
cooperating UAVs. Besides, we expect that the positions of the
objects of interest, obstacles and neighbouring robots may not
by known absolutely precisely, and the planning and control
of the multi-robot team is then driven by actual results of UAV
perception (obstacle detection and object recognition). In the
current implementation, the solution is prepared for using the
system of neighboring objects/UAVs localization that we have
described in [4], [5], but any state-of-the-art implementation
of proper obstacle detection and object recognition techniques
can be used.

A. Literature review

Autonomous systems used for documentation of heritage
sites are mostly employed for 3D modelling of exteriors
and interiors of objects by laser scanners or by the pho-
togrammetry, which is being popular recently as it allows to
use cheap and lightweight monocular cameras for 3D object
reconstruction. Numerous techniques exist to facilitate and
speed up the scanning process by increasing its automatization.
Static terrestrial laser scanners were used in [6], [7] for
3D modelling of historical sites. Using these techniques, the
scanners have to be placed into predefined geo-referenced
locations and the obtained 3D point cloud is fused using the
known positions of different measurements. In [8], a long-
range 3D laser scanner was used to scan large historical
sides and to provide an inter-relationship between outdoor and
indoor profiles using a technique for storing and processing
big amount of data. A faster scanning process is allowed
by a hand-held mobile mapping system called Zebedee [9]
that was designed for semi-autonomous gathering of 3D point
cloud models in cultural heritage applications. Another level
of autonomy has been added using a ground mobile robot
carrying the laser scanner that enables 3D modelling of large-
scale environments with minimal human intervention [10].

Applying UAVs provides a possibility to acquire data from
measurement locations inaccessible by ground robots or hand-
hold systems in addition to the autonomy provided by UGVs.
Nowadays, UAVs are deployed mainly for 3D modelling of
outdoor archaeological locations by the photogrammetry of
geo-referenced images and historical buildings by lightweight
lasers [11], [12], [13], [14]. All these techniques, which are
offered by numerous private companies, use GPS data to
reference the images and to initialize the 3D cloud construc-
tion process by this information. Only a limited number of
approaches allows 3D modelling by UAVs in GPS-denied
environment inside historical buildings, although indoor lo-
calization and 3D mapping techniques are well investigated
by robotic community [15], [16]. We have found only the
work in [17] that uses UAVs in the context of documentation
of interiors of historical buildings. The method is based on
a state-of-the-art online visual simultaneous localization and
mapping and an offline visual structure-from-motion method
in order to obtain the 3D model of the building.

Our method goes much further than [17] and it aims to
fully exploit the abilities of UAVs, which is mainly flying in
places hardly accessible by people and other types of robots.
It was identified during the first deployment of the system in
large churches that in these hardly accessible locations light
conditions are often not sufficient and external light sources
are required. The proposed system enables to set direction of
the light sources dependently on the position of the camera,
which is a very useful tool being used by restorations and
filmmakers. This is realised by a leader-follower formation
flying technique providing the Three point lighting and Strong
side-lightening approaches in an autonomous way.

The proposed formation stabilization and navigation algo-



rithm, which arises from our theoretical work on formation
stabilization of ground robots [18], [19], [20] and UAVs
[21], [22], [23], [24], consists of two main components. In
the first one, an optimization-based model predictive control
mechanism is employed for the formation leader, which is
the UAV carrying the camera. A sequence of control inputs
in the receding horizon fashion is provided for the leader in
two optimization steps. Firstly, a multi-objective optimization
is used to control the 3D position of the robot along the
predefined path. Deviation from the desired path that is given
by the restorers, too aggressive control inputs (changing ve-
locity and angular acceleration), and too small distance from
the obstacles and the objects of interest are penalised in this
optimization. The second optimization step of the planning
method proposed for the leader is aimed to provide a smooth
and feasible profile of the camera orientation. Motion planning
and stabilization of followers are also realized under the model
predictive control scheme in two optimization processes to
control their position within the formation and to control
orientation of their light sources. In each control step, a new
control sequence is obtained as a result of the multi-objective
optimization procedures, which is applied in the receding
horizon fashion. It means that in each step, only a small portion
of the plan is sent to the actuators and for the consequent re-
planning a new piece of the same size is added at the end of
the plan.

II. PRELIMINARIES

A. Task definition and assumptions

The multi-robot task solved in this paper is to realize the
Three point lighting and Strong side-lightening approaches
in indoor GPS-denied environment by a team of cooperating
UAVs (multi-rotor helicopters). In this scenario, one of the
UAV (the leader) is equipped with a calibrated camera and
nF UAVs (the followers) with light sources. Parameters of
the camera and light sources (orientation, field of view, light
intensity, dispersion, etc.) are known prior the mission.

In the description of the proposed method, we suppose a
known map of the environment (a contour of walls) with a
set of convex obstacles O. Although no dynamic obstacles
usually occur in the real deployment of our approach for
documentation of historical buildings, the method in general is
able to deal with a dynamic environment and with an unknown
or partial known map as we have shown in a theoretical
work in [25]. We also suppose that each UAV is equipped
with a system providing its localization in the given map
and relatively to its neighbours. For the real deployment in
GPS-deneid environment, we propose to rely on a fusion (the
mechanism of the fusion is described in [26]) of an odometry
obtained from an optical flow in images captured by a down-
looking camera and outputs of visual relative localization
of neighbours (for description of the employed localization
method see [4], [5]). In the case of the Strong side-lightening
technique, we assume to have a precise information on the
distance to the scanned wall. A communication link between
the robots is assumed during the mission for distribution of the

actual leader’s plan to followers, which is used for planning
their optimal positions and orientations of the light sources in
the future.

As mentioned, our intention is not to contribute to the art
and to jobs of the restorers and we suppose that a desired
path for the leader is given by these experts. In addition, we
suppose that the path is labelled by an information which
OoI has to be observed in which part of the path. Using the
information on known positions of OoI, the desired orientation
of the camera may be simply derived. The desired path and
camera orientation given by the experts, later denoted by the
(·)ex symbol, does not need to be feasible with respect of
kinematics of UAVs.

Let us note that the proposed method is capable of working
with unknown a priori knowledge of positions of obstacles
and objects of interest (they can be detected by state-of-the-
art methods such as the one we proposed in [5]) and work in
a full perception driven mode. Also the given desired path is
not necessary for the proposed formation flying method and a
trajectory planning method can be integrated as in our previous
work in [21]. Nevertheless, such a higher level of autonomy
is not required in this application and it adds an additional
source of uncertainties, which would decrease robustness and
so the applicability of the method.

B. Model predictive control on a receding horizon

MPC-based approach is used in the proposed system to
independently control the position of the leader as well as the
followers in the formation, but also to control the orientation
of the carried camera and the light sources to enable stability
analyses of the complete system. In the MPC scheme, the
control task is transformed into an optimization with con-
straints imposed by a model of the controlled system. We will
use the kinematic UAV model from [21] for both, the leader
and the followers. The optimization solves a finite horizon
optimization control problem starting from current state over
a control horizon. The result of the MPC method is then an
optimal trajectory defined by N transition points and constant
control inputs between them. The optimization is initialized
in each control step based on the solution obtained in the
previous MPC step. In each MPC step, once a solution of the
optimization problem is obtained, only the first n vectors of
the computed control inputs are applied to control the system.
The optimization process is then repeated on a new interval
as the finite horizon moves by the time horizon with length
n�t, where �t is the time difference between two subsequent
transition points.

III. MOTION PLANNING AND FORMATION STABILIZATION
SYSTEM

In this section, a formation flying method based on the
MPC framework employed for control and navigation of an
autonomous team of a cameraman and illuminators will be
described. In the method description, the more general setup of
a camera and lights mounted on a gimbal is used. This enables
to control the Yaw angle independently to the task, which



enables a very important safety mechanism. If all UAVs are
oriented in the direction of their movement along the desired
trajectories (independently to positions of the OoI and so the
camera/gimbal orientation), it is much simpler to manually
overtake their control in a case of a system malfunction. This is
important mainly during the initial debugging of the methods
and for testing flights preceding each practical deployment of
the system.

For the method description, let us denote the UAV position
in the cartesian coordinates as pj(k) := {xj(k), yj(k), zj(k)},
its heading ✓j(k), and the camera heading 'j(k), where
k 2 {1, ..., N} denotes indexes of transition points in the
MPC control horizon. For MPC techniques, let us use control
inputs Uj(k) := {vj(k), wj(k), Kj(k)}, k 2 {1, ..., N}, where
vj(k) is forward velocity, wj(k) ascent velocity, and Kj(k)
curvature of the trajectory, for control of the j-th UAV and
angular velocity !j(k) for control of its gimbal with the
camera. These control inputs are constant in-between of the
transition points and lead the UAV from one transition point
into a following one applying the model from [21]. This
notation is used for the leader as well as the followers in the
formation, such that j 2 {L, 1, ..., nF }.

A. Trajectory tracking of the leader with camera

As mentioned, two control problems are solved indepen-
dently (control of UAV states  L(k) := {pL(k), ✓L(k)}, k 2
{1, ..., N}, and camera headings 'L(k), k 2 {1, ..., N}) to
reduce the overall computational complexity in the proposed
method.

Using the MPC methodology, we can formulate the first
problem as an optimization of a vector ⌦L,1 = [UL(k)] 2
R3N , k 2 {1, ..., N}. The objective function JL,1, which is
minimised and subject to a set of inequality constraints, is
designed as

JL,1(⌦L,1) =
↵
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The first component of the cost function penalises deviations
of the leader’s position pL(k) along the planning interval N
from the desired position on the path given by the experts
pex

L (k) as one of the inputs of the method. The second

component is employed to suppress big deviations in control
inputs (and so too aggressive behaviour of the system), where
the notation (·)diff (k) := (·)(k � 1) � (·)(k) represents the
difference of the particular control parameter from its previous
value. The control inputs at k = 0 represent values that are
implemented by controllers at the time of initialization of
the optimization process. The third term ensures avoidance of
other robots in the formation that are considered as dynamic
obstacles for the leader. Function dist(pL(k)⌦?

j,1) returns the
shortest distance between the position of the leader being
optimized and the plan of the j-th follower obtained in the
last call of the optimization process described in section III-B
(let us denote results of the optimization processes by the
notation (·)?). Constant rs is radius of a safety area around the
robot in which the obstacles are considered in the avoidance
function and ra is radius of an avoidance area. The value of
the third term approaches infinity if distance to an obstacle
equal to ra is reached. The fourth component, which protects
the leader from collisions with static obstacles, uses the same
avoidance function. Also the influence of this term is increased
for an obstacles detected at the end of the control horizon
(based on index k of the position pL(k) that contributes
to the cost function), which ensures the obstacle avoidance
functionality and protects the system from oscillations in a
close proximity to obstacles. Function dist(pL(k), O) returns
the shortest distance between the position of the leader and
the obstacles. The fifth term is important due to the filming
task as it penalises trajectories that are in a bigger distance to
the position of the object of interest pex

OoI(p
ex
L (k)) in case of

a deviation of the leader from the desired path by an obstacle.
Avoiding an obstacle in a free space closer to the OoI, which
is selected by the experts as the one that has to be observed
by the follower at position pex

L (k), decreases probability that
the obstacle appears in the camera field of view.

The values of coefficients ↵, �1, �2, �3, �, �, and " in
equation (1) influence behaviour of the system between often
antagonistic requirements. For example with increasing values
of �(·), a smoother and less aggressive flight performance
will be provided, while with increasing values of � and �
the obstacle avoidance ability of the system is preferred.

The inequality constraints ra � dist(pL(k), O)  0, k 2
{1, ..., N}, and ra � min

j
{dist(⌦L,1,⌦

?
j,1)}  0, j 2

{1, ..., nF }, which have to be ensured in the optimization,
support the avoidance function to ensure that a plan of the
leader does not touch an obstacle by its avoidance region. In
addition, control inputs in the optimization vector are limited
by the following inequality constraints vL(k) � vL,max  0,
vL,min�vL(k)  0, wL(k)�wL,max  0, wL,min�wL(k) 
0, KL(k) � KL,max  0, KL,min � KL(k)  0, where
k 2 {1, ..., N}, including upper and lower bounds of the UAV
controllers.

The second optimization problem is employed to obtain a
smooth and feasible control of the camera heading (instruc-
tions for the gimbal or UAV controller in the case of the
fixed mounting). Let us define the optimization vector in this



problem as ⌦L,2 = [!L(k)] 2 RN , k 2 {1, ..., N}, and the
cost function, which is again minimised in the optimization,
as

JL,2(⌦L,2) = ⇣
NX

k=1

diffang('
ex
L (k),'L(k))2

+ ⌘
NX

k=1

!diff
L (k)2,

(2)

where 'ex
L (k) is the desired camera heading at k-th transition

point. The heading is obtained from the position of the object
of interest pex

OoI(p
ex
L (k)) that has to be filmed/scanned at this

moment, and the position of the leader at k-th transition point
of the plan ⌦?

L,1 obtained as a solution of the first optimization
problem. Although, the heading 'ex

L (k) is not explicitly given
by the experts, we used the (·)ex notation here, since they
provide the desired position of the leader that should be as
close as possible to the planned one and also the position
of the OoI. The desired heading 'ex

L (k) should follow their
intention as the orientation of the camera is naturally one of
the most important factors influencing the required result in
both filming techniques being solved in this paper.

The function diffang( 1, 2) is defined for  1, 2 2
h0, 2⇡) as

diffang( 1, 2) =

⇢
 1 �  2 if  1 �  2  ⇡,
2⇡ � ( 1 �  2) if  1 �  2 > ⇡.

(3)
The constants ⇣ and ⌘ set influence of the objective trying
to follow the desired camera orientation (the first term of
the multi-objective function in eq. (2)) and the objective
achieving not aggressive change of the orientation (the second
term), respectively. The only constrain functions that have to
be satisfied for optimization of the orientation are used to
limit the UAV angular velocity as !L(k) � !L,max  0 and
!L,min � !L(k)  0, 8k 2 {1, ..., N}. Although the camera
heading control could be done by any simpler controller
combined together with an interpolation of desired heading
values, we rely on MPC to be able to synchronise it with the
position control under the recoding horizon.

B. Trajectory tracking for followers with the light source

The desired positions of the nF followers pj,d(k), j 2
{1, ..., nF }, k 2 {1, ..., N}, in the formation are obtained from
the positions of the leader (derived from its actual plan - the
last result ⌦?

L,1 of the MPC position control) and the position
of the currently filmed object of interest. The direction of the
source of light (from the position of the follower to the OoI)
and the optical axis of the camera have to form predefined
angles ±45� in case of the Three point lighting approach and
±90� for the Strong side-lightening technique. The desired
distance of the light is given by the requirements on the inten-
sity of illumination. Naturally, such defined desired trajectory
for the followers is not feasible for the UAVs (mainly when
the leader suddenly switches its attention between two objects
of interest). Therefore, the trajectory cannot be directly used

as a desired control equilibrium, but its following needs to be
integrated into the MPC framework taking into account motion
and formation driving constraints applied in the optimization.

For followers control, we again assume that the orien-
tation of the light source can be controlled independently
to the UAV position control and so both these problems
will be tackled in two separate optimization processes. In
the trajectory tracking of the j-th follower, the optimization
vector ⌦j,1 = [vj(k), wj(k), Kj(k)] 2 R3N , k 2 {1, ..., N},
collecting control inputs over the control horizon with N
transition points is obtained by minimizing the multi-objective
function
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The first term in the objective function penalises deviation
from the desired positions pj,d(k) of the j-th follower. The
desired position depends on the position of the leader in
the k-th transition point using its actual plan ⌦?

L,1, position
of the object of interest that is filmed by the leader in
the k-th transition point, and the requirements of the Three
point lighting or Strong side-lightening approaches. The sec-
ond term penalises too aggressive control behaviour as in
the case of the leader’s control. The third part of the cost
function represents the mutual avoidance function, where set
neighj := {L, 1 · · · nF }\j collects indexes of all remaining
robots in the formation, which are the neighbours of the j-th
follower. The fourth part ensures collision avoidance as for
the leader. The last term, which is aimed to avoid having
the UAV “illuminator” in the view of the camera, penalises
the solutions in which the follower gets closer to the border
of a pyramid representing space currently observed by the
camera. The apex of the pyramid is roughly defined by the
expected position of the leader p?L(k) following its actual
plan ⌦?

L,1. Orientation of the pyramid corresponds with the
planned orientation of the camera '?

L(k) according to ⌦?
L,2.

In the cost function, distances between the position of the
follower pj(k) and position pb(pj(k), p?L(k),'?

L(k)), which is
the closest point on the pyramid (defined by p?L(k) and '?

L(k))
from the position pj(k), smaller than a safety distance ds are



penalised. While ds denotes the minimum desired distance
from the border of the pyramid that is considered as safe,
distance da is infeasible. The values of coefficients �, ◆1, ◆2,
◆3, , �, and µ set system behaviour similarly as in the case
of the leader.

In the optimization process, the same inequality constraints
protecting collisions with obstacles and other team members
as in the position control of the leader are applied. The limits
of control inputs for the followers may differ from the bounds
used for the leader control, but the same structure of inequality
constraints is used. Similarly, also the last term of the cost
function (4) is supported by the inequality constraints da �
||pb(pj(k), p?L(k),'?

L(k))� pj(k)||  0, 8k 2 {1, ..., N}.
As mentioned, movement of the light source on a gimbal

or change of UAV heading in case of a firm attachment of
the light source is limited by motion constraints. Moreover,
mainly for the Three point lighting approach, smooth changes
of direction of the light source carried by the followers are
required. We have to solve this problem in each control step
under the MPC framework for each follower j and therefore
we formalize it as an optimization problem with vector ⌦j,2 =
[!j(k)] 2 RN , where k 2 {1, ..., N}. The cost function that
is minimised in the optimization is defined as

Jj,2(⌦j,2) = ⌫
NX

k=1

diffang('j,d(k),'j(k))2

+ ⇠
NX

k=1

!diff
j (k)2,

(5)

where 'j,d(k) is desired heading of the light source at the
k-th transition point obtained from the given position of the
object of interest and the position of the j-th follower at the
k-th transition point of the plan ⌦?

j,1, which is obtained as a
solution of the first optimization problem. In comparison with
the cost function used for the MPC control of the camera
heading in eq. (2), here the desired orientation of the light
is not given by the experts directly, but it is computed based
on results of subsequently realized MPC steps for the leader
and the followers composed into a compact formation via the
rules of the Three point lighting and Strong side-lightening
techniques. Nevertheless, the motivation of both parts of the
cost function, meaning of the constants ⌫ and ⇠, and also the
employed inequality constraints are the same as for control of
the camera direction.

IV. EXPERIMENTAL VERIFICATION AND SYSTEM
DEPLOYMENT

The designed formation flying and stabilization system has
been developed and verified in two robotic simulators, and
the principles of lightening by a pair of UAVs were em-
ployed in two historical buildings including two large churches
with a cooperation of historians, restorers, and filmmakers.
The output of the system deployment was a set of images
used by restorers for a plan of restoration works and two
professionally edited documents broad-coasted by the main
Czech TV and several other news providers (see the list

at http://mrs.felk.cvut.cz/projects/cesnet). The parameters have
been used as n = 1, N = 8, t = 0.5, ↵ = 1.5, �1 = 0.2,
�2 = 0.2, �3 = 0.2, � = 0.2, � = 0.01, " = 0.1, ⇣ = 0.1,
⌘ = 1, � = 1.5, ◆1 = 0.5, ◆2 = 0.5, ◆3 = 0.1,  = 0.1,
� = 0.1, µ = 0.1, ⌫ = 0.1, and ⇠ = 1 in all experiments.

The first simulator, V-Rep, was used for simulation of both
lightening techniques implemented by the UAV formation
since it provides a useful tool for visualization of shadows on
3D objects caused by onboard lights (see Fig. 5 for an example
of the formation flying around a 3D statue). The second
simulator, Gazebo, enables a very realistic verification of the
formation stabilization and control approach. In this simulator,
we have implemented a plugin that emulates a firmware of
the Pixhawk low-level stabilization, which is used in our
platform being primarily designed for the MBZIRC compe-
tition in Abu Dhabi (http://mrs.felk.cvut.cz/projects/mbzirc)
together with Vijay Kumar Lab, University of Pennsylvania,
http://kumarrobotics.org/ (for the HW system see [26]).

The simulator Gazebo enables to test the method even in
more challenging conditions than are in historical buildings.
For example in Fig. 2, a scenario inspired by an indoor space
of Saint Nicholas Church in Prague was built to evaluate the
system prior its using there. The testing scene includes six
objects of interests and fourteen obstacles (including walls),
which is much more complicated work-space in comparison
with the tasks solved in the Saint Nicholas Church. The
scenario in Fig. 2 with snapshots from one of the simu-
lations in Fig. 4 verifies smooth transition between several
consequent objects of interest (e.g. Fig. 4 (a-c)), the obstacle
avoidance function (Fig. 4 (d-f)) and avoidance of collisions
with other robots in the formation (Fig. 4 (g-h)). For the
obstacle avoidance verification, the initial path was designed
purposely infeasible for the formation by adding additional
obstacles too close to the path and a failure of one of the
follower was simulated (the follower with fill light, the robot
on the right side of the formation, was suddenly stopped and
the other UAVs were forced to avoid it).

The real deployment of the system in the Saint Nicholas
Church located on the Old Town Square in Prague http:
//www.svmikulas.cz/en/ is shown in Fig. 6 and in document at
https://youtu.be/g1NuPnLCFTg. The picture show formation
stabilization aimed to film the statue of Jesus Christ and
the pulpit providing illumination by the Three point lighting
technique. The second deployment of the proposed UAV
formation lightening approach in the Virgin Mary Church in
Sternberk, Moravia, is presented in Fig. 1 and in video at
https://youtu.be/-sTUwzFf Mk.

V. CONCLUSION

In this paper, a system designed for visual documentation
and inspection of interiors of historical buildings by a for-
mation of cooperating UAVs was described. The proposed
solution of this application arises from our long-term basic
research work in the field of UAV formation flying and it
is mature enough to provide a solution that is already in
use by historians and restorers to complement their work
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(a) Leader with the camera.

0

50

100

150

200

250

300

t [
s]

0 100 200 300 400
t [s]

2
3
4
5

h [
m]

0

50

100

150

200

250

300

t 
[s

]

0 100 200 300 400

t [s]

2

3

4

5

h
 [
m

]

(b) Follower with the key light.
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(c) Follower with the fill light.

Fig. 2. Trajectories of all formation members in the experiment in the complex environment. The arrows denote the heading of the camera in different time,
and the green dotted line shows the desired trajectory. In the graph, h is the height which corresponds with the z coordinate of the leader.
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(b) Follower with the key light.

(c) Follower with the fill light.

Fig. 3. The progress of values of the cost function used for trajectory tracking.

in inaccessible places of large churches. From this point of
view, the basic functionalities of the system achieved TRL 8
(the system has been tested and launched in real operations),
while the full-scale system operability is currently in TRL 7-8
levels. The complete technology including obstacle avoidance
and failure recovery has been developed and demonstrated in
realistic robotic simulations.
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Abstract

This paper addresses the perception, control and trajectory planning for an aerial platform
to identify and land on a moving car at 15 km/h. The hexacopter Unmanned Aerial Vehicle
(UAV), equipped with onboard sensors and a computer, detects the car using a monocular
camera and predicts the car future movement using a nonlinear motion model. While
following the car, the UAV lands on its roof, and it attaches itself using magnetic legs. The
proposed system is fully autonomous from takeoff to landing. Numerous field tests were
conducted throughout the year-long development and preparations for the MBZIRC 2017
competition, for which the system was designed. We propose a novel control system in which
a Model Predictive Controller is used in real time to generate a reference trajectory for the
UAV, which are then tracked by the nonlinear feedback controller. This combination allows
to track predictions of the car motion with minimal position error. The evaluation presents
three successful autonomous landings during the MBZIRC 2017, where our system achieved
the fastest landing among all competing teams.
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1 Introduction

Autonomous take-off and landing are the key components and also the most challenging components of
all fully autonomous UAV systems. Precise landing ability is important for autonomous docking of UAV
platforms (mainly Micro Aerial Vehicles - UAVs) into a recharging station in missions requiring repeated
flight operations, and also in information gathering and delivery applications, where it is required to reach a
precise, desired position and then return to a base. Even more challenging abilities are required for landing
on a moving platform, especially if the platform may not be equipped with a precise localization system.
Although the use of a moving helipad introduces uncertainty and a source of possible failures into the UAV
system, it extends the application domain of UAVs and especial of multi-rotor helicopters. These platforms
benefit from high robustness and maneuverability. However, they suffer from a short operational time, and
a cooperation with another vehicle is often required. A UAV system capable of vertical take-off and landing
on a moving vehicle may be deployed from boats, trains or cars in areas close to the target locations of the
UAV mission. Short-term flights of this kind efficiently exploit the abilities of UAVs, and combining them
with a moving platform extends their operational range.

Hundreds of works dealing with autonomous landing on static and dynamic helipads have been published in
this decade in the robotics literature describing advanced control and landing pattern detection algorithms
and showing promising simulations and laboratory experiments. However, only a few of these works have
demonstrated deployment in real-world conditions, and none of them have presented a reliable performance
that enables repeated landing on a fast-moving helipad in a demanding outdoor environment. This huge
reality gap was identified by the scientific board of the Mohamed Bin Zayed International Robotics Challenge
(MBZIRC) 2017 competition, organized by the Khalifa University of Science in Abu Dhabi. The aim of this
board of top scientists in robotics was to select tasks on the edge of the current state-of-the-art to provide
a significant impact on the robotic community. Automatic landing on a fast-moving vehicle was the first
challenge on their list.

The existence of the reality gap was confirmed in the MBZIRC competition, where only five teams (out
of 142 registered teams from almost all the best robotic groups worldwide) successfully landed during the
competition on a car moving at a speed of 15 km/h and only two teams (CTU-UPenn-UoL and the team of
the University of Bonn) landed precisely in both trials of Challenge 1 of the competition. The CTU-UPenn-
UoL system is presented here. Most importantly, the MBZIRC competition can be considered as a relevant
and objective benchmark of this task, which is currently being investigated by the robotic community, since
several competitive solutions were compared in the same experimental setup. The same car, the same landing
pattern and the same trajectory and velocity profile of the car were used for all competitors in the same
environment. The criterion for success was the shortest time of landing. Moreover, the successful teams had
to achieve the goal after only a few minutes of preparation, without the option of postponing the beginning
of their time slot. By standard practice in most laboratory experiments, no repeated tests were allowed, and
moreover, the system robustness was exhibited in the current environmental conditions (light and windy),
since the teams could not influence the start of their trial.

The solution described in this paper presented the best reliability among all teams and it achieved the fastest
performance in the entire competition. Only our system was able to land three times in the competition,
without a failure in autonomous mode - see Table 1. The fastest time of landing was achieved by the
proposed system during the grand challenge, where all MBZIRC challenges were solved simultaneously. This
even increased the demands on system robustness and immediate deployment without any preparation.
The key components of the system (HW and SW) that provided this high reliability and performance in
comparison with state-of-the-art works are described in the following paper. A novel UAV state estimation
approach is presented together with a predictive trajectory tracking technique that enables us to track and
predict an estimated position of the landing pattern, with the necessary precision and maneuverability to be
able to follow the car even in turns of its path. For precise ground vehicle state estimation, which is crucial
information for the landing UAV, fast and robust visual localization of the landing pattern is proposed. The
detected positions of the car are filtered using an Unscented Kalman Filter (UKF) based technique with an



assumed car-like model of the vehicle, while the prediction of the car position in future takes into account
a known profile of the track that is followed by the moving helipad. The model predictive control based
approach applied for car tracking using an estimate of its movement in future is the most important element
of the proposed system that enables the UAV to land precisely on a platform following a speed profile that
is close to the speed limit of the UAVs and on a non-straight path.

1.1 State-of-the-art

The academic community has identified great interest in the task of autonomous landing of Unmanned Aerial
Vehicles on ground or marine vehicles. The survey in (Jin et al., 2016) provides an overview of techniques
used for vision-based autonomous landing. A list of various visual markers with the corresponding detection
techniques is referenced, as well as hardware design, control and estimation methods for both indoor and
outdoor tasks. Similarly, methods for more general autonomous landing of an unmanned aerial system are
described in (Kong et al., 2014).

Vision-based estimation of a ground vehicle states using an only UAV onboard sensors is proposed in (Benini
et al., 2016). Robust marker detection using onboard GPU (Graphics Processing Unit) provides precise pose
information even in occluded and cluttered environments. The authors of (Lin et al., 2017) also propose a
method for automatic detection and estimation of a landing marker onboard a ship deck. They also aim to
provide a robust pose estimate when the marker is partially occluded, or when the scene contains marker
reflections. However, both solutions lack an experimental evaluation that would test the system during fully
autonomous landing.

The authors of (Jung et al., 2015), (Jung et al., 2016), (Fu et al., 2016) and (Ghommam and Saad, 2017)
deal with simulations of landing marker detection. They also propose guidance laws for autonomous landing,
but also in simulation. Simulated autonomous landing on a ship is presented in (Tan et al., 2016).

Many of indoor experiments on autonomous landing on a slow-moving target are presented in works by
(Ghamry et al., 2016), (Araar et al., 2017), (Lee et al., 2012) and (Bi and Duan, 2013). An indoor solution
with a motion capture system is presented in (Ghamry et al., 2016). A ground robot and a UAV are both
controlled by a centralized system to fulfill missions which include autonomous takeoff and landing of the
UAV, atop the ground vehicle. The system presented in (Lee et al., 2012) uses sensors onboard the UAV and
relies on the Vicon motion capture system and external computational unit. Thanks to the motion capture
system, the UAV is able to conduct a patrol search for the ground vehicle. When the ground vehicle is
located, it switches to relative localization based on visual marker detection. Similarly, a system for indoor
autonomous tracking and landing is presented in (Hui et al., 2013). Camera images are also processed off
board on an external computer.

Multiple works describe systems capable of autonomous outdoor flight while tracking a static or moving
marker. In (Yang et al., 2013), (Masselli et al., 2014) and (Yang et al., 2015), UAV systems capable of
hovering and landing on a static target are proposed. Autonomous landing on a target moving at slow speed
up to 1 m/s is presented in (Kim et al., 2014) and in (Lee et al., 2016). The authors of (Xu and Luo, 2016)
present a solution capable of landing on a moving car at speeds of 7 m/s. The presented system was tested
in scenarios with the ground vehicle moving along a straight line.

The most similar approach to our work is presented by (Borowczyk et al., 2017) and (Hoang et al., 2017).
The authors of (Borowczyk et al., 2017) propose a system that utilizes a vision-based approach combined
with inertial and GPS measurements from a cell phone placed on the ground vehicle. Experiments show
landings at speeds up to 50 km/h. However, it is unclear whether the system is capable of landing during
non-linear motion of the car. Moreover, precise knowledge of the global position of the car is an assumption
that is problematic in most applications. Successful landing on a moving vehicle in an outdoor environment
is also described in (Hoang et al., 2017). Only onboard sensory data and computation power are used. The
proposed solution is able to track and land on a car moving at a speed of up to speed 2 m/s.



The competitive solutions in the MBZIRC competition were presented by the team of the Beijing Institute of
Technology and by the team of the University of Bonn (Beul et al., 2017). They also landed multiple times,
but their systems have not yet been published. It is therefore not possible to compare the two systems and
to highlight differences. Nevertheless, all three solutions can be considered as a valuable contribution to the
field of robotics since according to our knowledge no other system exists that can offer a complete solution
to this very demanding and complex challenge in these outdoor conditions (which was also the reason why
this task was selected by respected leaders in the field of robotics for the competition).

1.2 Contributions

This manuscript presents a complete system for automatic detection, estimation, tracking and landing on a
moving car with an unmanned aerial vehicle. The proposed method enables the UAV to detect a landing
pattern in images from a single onboard camera and to calculate the position of the car relative to the UAV.
The computer vision algorithm provides fast and robust detection of the landing marker using a SuperFisheye
camera lens. Position and velocity of the car are estimated and predicted in a global frame of reference using
a non-linear motion model by an Unscented Kalman Filter. The proposed control architecture is tailored
specifically to the challenge of following fast dynamic objects with a UAV by leveraging the non-linear
state controller in conjunction with a novel model predictive control tracker. Future predictions of the car
movement are reshaped by the MPC tracker into a feasible state reference, which is reflected on the states
of the real UAV by the non-linear state controller. The novelty of this approach is in the combination of the
state-of-the-art methods to accomplish a robust execution of the demanding task in real-world experimental
conditions. Moreover, the novel MPC tracker is a contribution which allows to track arbitrarily long reference
trajectories without solving an MPC task for the whole reference. The experimental results show that the
UAV can follow a car moving at 15 km/h autonomously and land on its roof, while attaching itself using
magnetic legs. The system is robust to very challenging outdoor conditions with a wind speed of up to
10 m/s, varying light conditions and blowing sand in the air. The approach presented in the manuscript
provides precision and repeatability in the landing task, which is a crucial element for fully autonomous
missions (such as periodical surveillance, reconnaissance, object carrying, and monitoring), for which UAVs
are an especially appealing option.

1.3 Problem definition

The task, as it is described by the rules of the competition, consists of an autonomous search and landing
on a moving ground vehicle by an unmanned aerial vehicle, a multirotor helicopter. The competition takes
place in an arena with dimensions of 90× 60 meters, as shown in Figure 1a. A track in the shape of figure
8 is marked on the ground where the car is supposed to drive starting at a random place and heading in a
random direction. The landing area is a square with dimensions of 1.5 × 1.5 m with a marker X, as shown
in Figure 1b, placed 1.5 m above the ground on the roof of the vehicle. A magnetic or suction gripper can
be used to attach the UAV to the surface, which is made of a ferrous material. The moving vehicle starts
at a constant speed of 15 km/h. It reduces the speed to 10 km/h after 6 minutes and to 5 km/h after 12
minutes from the start. However, our system was designed to land independently of the speed level. No
human intervention is allowed in the fully autonomous mode.

2 Experimental hardware platform

The experimental platform was designed from off-the-shelf parts, with the aim to simplify reproducibility
and potential maintenance. The same platform was also successfully used for the treasure hunt challenge –
MBZIRC challenge No. 3 (our team won this challenge, as described in (Spurny et al., 2018)), where three
UAVs cooperatively collected small objects. More importantly, we intended to reuse the platform for future
research activities, which introduced a need for simple potential modifications to the system.



starting zone

the track

(a)

1
.5

m

1.5 m

0.1 m

(b)

Figure 1: (a) a schematic image of the arena, showing the track for the ground vehicle, (b) the visual marker
attached to the helipad of the ground vehicle, as described in the rules of the competition.

The proposed platform is a multirotor vehicle based on a DJI F550 hexacopter frame equipped with the
DJI E310 propulsion system. Most components were chosen as individual and commercially available parts,
to maximize the simplicity of the system, minimize the cost and to allow custom modifications if needed
for any particular task. Key components are shown in Figure 2. See (Spurny et al., 2018) for a different
configuration of the system, proposed for the MBZIRC treasure hunt challenge. A flight controller board is
required to allow basic flight capability. The PixHawk flight controller (Meier et al., 2012) was chosen for
its open source firmware and for its well-documented interface, which allows us to connect it to a high-level
onboard computer. PixHawk contains sensors such as gyroscopes, accelerometers, an atmospheric pressure
sensor, a magnetometer, and GPS, and it produces a single position, velocity and orientation estimate of the
UAV in global world frame by their measurements.

Onboard computations are performed on an Intel NUC-i7 computer with an Intel i7 processor and 8 GB of
RAM. The computer is installed with GNU Linux Ubuntu 16.04 and the Robot Operating System (ROS) in
the Kinetic version. The Robot Operating System is a middleware library for C++ and Python programming
languages. It provides a convenient way of building a complex system of applications with the asynchronous
exchange of messages. An ecosystem of existing programs exists covering functionalities such as visualization,
logging and data sharing, geometric transformations, etc. Sensor drivers are often found with the ROS
interface already integrated, which makes them simpler to integrate.

Range nder

TK GPS

Onboard PC 

UAV Frame

GPS with Compass
UAV Autopilot

Camera

Magnetic legs

Figure 2: Schematic of individual hardware modules on the UAV



To improve the localization accuracy of the UAV in space, we integrated the PRECIS-BX305 GNSS RTK
BOARD differential GPS receiver (Tersus-GNSS, 2017). Differential RTK (Real Time Kinematics) GPS
uses a ground base station to transmit corrections to the UAV, which practically eliminates GPS drift.
The TeraRanger time-of-flight laser rangefinder (Ruffo et al., 2014) serves two purposes. During a flight, it
measures the distance to the ground, which is used to improve the estimation of the UAV height. In the
landing task, during touchdown on the ground vehicle, it serves as a trigger for switching off the propellers.
To detect the car, a single Matrix-vision mvBlueFOX-MLC200w camera is mounted on a fixed, down-facing
mount beneath the UAV. A SuperFisheye lens was chosen to maximize the chance of detection in the final
stages of landing when the landing pattern is close to the camera. Its global shutter provides images free of
the rolling shutter effect.

3 System structure

The guidance law presented in this paper is a modular pipeline consisting of components which are depicted
in Figure 3. The following paragraphs give a list of the components, which are subsequently described in
sections 4 to 9 of this paper.

Landing

state machine

Landing pattern

detector

Pipeline diagram

Car state

estimator

Car trajectory

predictor

MPC trajectory

tracker

SO(3)

state feedback

PixHawk

attitude controller

UAV state

estimator

car position

car position estimate

predicted trajectory

control reference

desired attitude

Images from camera

UAV pose and orientation

PixHawk estimate

RTK GPS, rangefinder

UAV pose and orientation

Accelerometer, gyroscope

barometer

Figure 3: Scheme of the software pipeline for landing on a moving vehicle. See Section 4 for Landing pattern
detector, Section 6 for Car state estimator and Car state predictor, Section 7 for UAV state estimator,
Section 8 for MPC trajectory tracker and Section 9 for SO(3) state feedback. The dashed line surrounds the
parts which are controlled by a landing state machine, later discussed in Section 5.

The first component is the landing pattern detector (presented in Section 4), which provides measure-



ments of car position in the world frame coordinate system. Position measurements are processed by the
car state estimator (Section 6), using an Unscented Kalman Filter. Unmeasured states such as acceler-
ation and heading are required to fully predict the future trajectory of the car. The car state predictor
calculates the future trajectory of the car, starting from the latest state estimate and using the same model
and the same non-holonomic model as is used for the estimation. The predicted future trajectory serves as
a reference for the MPC tracker (Section 8), which minimizes a quadratic error of UAV future states over
a prediction horizon to fly precisely above the car given the dynamical constraints of the aircraft. The MPC
tracker then outputs desired states (position, velocity, and acceleration) to the state feedback controller
(Section 9). The state feedback controller, being the last part of the pipeline implemented in the high-level
computer, produces attitude and thrust commands for the PixHawk flight controller.

The car state estimator serves two purposes within our pipeline. First, it filters the incoming signal from
the landing pattern detector, the measurement variance of which is adjusted with respect to the UAV
height. Secondly, it estimates unmeasured states (velocity, acceleration, heading, turn curvature), which
are required to predict the car future movement. The resulting estimate is outputted at 100 Hz. Using
the information from the car state estimator, we predicted the future movement of the car, using the same
dynamic model as during the estimation. The curvature of the predicted trajectory is biased using a known
map of the arena and the track on which the car was driven. The predicted trajectory is updated at 30 Hz.

In our pipeline, a trajectory tracker is responsible for generating a set of desired states of the UAV (position,
velocity, and acceleration) to follow the trajectory generated by the car state estimator. It uses decoupled,
third order translational dynamics to simulate a virtual UAV at 100 Hz. The virtual UAV is then controlled
by Model Predictive Control with a 8 s prediction horizon, also at 100 Hz. States of the virtual UAV are
sampled and are handed out to the state feedback controlled as a reference. Thanks to the MPC, the tracker
provides the necessary feed-forward action to follow the known future path. The particular MPC control
approach is based on previous work presented in (Baca et al., 2016), further extended to support the state
constraints in velocity and acceleration.

4 Visual localization of the landing platform

Robust, precise and fast detection of the landing pattern is a crucial ability to achieve reliable landing on
moving vehicles. In the system designed for the MBZIRC 2017 competition, we relied on a color mvBlueFOX-
MLC200w camera with a global shutter, which is important for recognizing moving objects from a camera
on the fast-moving UAV. Another advantage of this light camera is the fast frame rate, 93 images per
second, with resolution 752 × 480. Although a color camera was used, the image analysis was conducted
after converting the obtained images to greyscale, thanks to the landing pattern being black and white.
Using a Sunex DSL215 miniature SuperFisheye lens, the camera provides a horizontal field of view of 185◦.
It observes the car under the UAV even in the event of UAV tilting, so it is not necessary to use a gimbal
camera stabilizer. This reduces the complexity and weight of the system. This scheme provides a very
simple, cheap, and robust solution that can be applied in various landing scenarios beyond the MBZIRC
competition.

Let us now briefly describe the image processing algorithm that was used for landing on the moving helipad in
the MBZIRC competition. In this paper, we focus on general approaches that could be re-used for detecting
landing patterns similar to the pattern used in MBZIRC 2017 to provide a complete system for autonomous
vision-based landing. For special details on the technique adapted for localizing the MBZIRC pattern, see
(Stepan et al., 2018), where all vision approaches employed by our team in the MBZIRC competition are
summarized.

As was mentioned above, to ensure outdoor deployment in real scenarios, the detection procedure has to
be robust to various weather conditions, changes in light intensity, and direct sunshine with shadows cast
by the aircraft and other objects in the environment, such as the support structure of the MBZIRC arena.



Other requirements are low computational complexity to be able to use small and simple platforms, fast
response, and the use of standard computer vision libraries, e.g., OpenCV, to provide simple implementation
and reproducibility. Mainly the very fast response (50 FPS and more) and the availability of low computa-
tional power are contradictory requirements that are hardly achievable by state-of-the-art computer vision
approaches and require the design of new methods suited for this special application.

(a) (b) (c)

Figure 4: (a) Image taken by the camera, (b) result of the adaptive threshold with box size 11 pixels, (c)
adaptive threshold with box size 5 pixels. The box size is variable and depends on the thickness of the
expected segments in the landing pattern and decreases with the height of the UAV.

In the proposed pattern detection approach, the first step is adaptive thresholding with a variable box, the
size of which depends on the UAV height and the known parameters of the landing pattern (for examples
with box size 5 pixels and 11 pixels, see Figure 4b and 4c, respectively). During the experiments, the size
of the box spanned on the interval [5, 21], where it was was defined as 2(w/12) + 1, where w stands for the
width of the detected white square of the landing pattern in pixels. The advantage of the adaptive threshold
is its robustness to light intensity. The contours of the painted pattern (the circle and the lines in our case)
are then simply detected in these segmented images.

An important part of the algorithm is the undistort procedure. That needs to be applied to compensate the
distortion caused by the SuperFisheye lens. The lens parameters can be identified using OpenCV and its
fish-eye model. However, the undistort function provided in the library is too slow, and a new method needs
to be designed. The employed approach, which is described in details in (Stepan et al., 2018), relies on the
fact that the distortion coefficients are known in advance, and the scales required for computing undistorted
coordinates can be precomputed.

(a) Original images of the landing pattern. (b) The landing pattern after morphological closing.

Figure 5: Operation of morphological closing was applied as a part of the recognition pipeline. The original
camera images were cropped, which results in the images with resolution of 24× 24 px.

Robust detection of the MBZIRC 2017 landing pattern is based on detecting the outer circle and then the
inner cross, to exclude false positive detections. Based on our experience, this design enables the pattern to
be detected robustly in all phases of the landing approach. We can recommend it for other projects, where
the autonomous UAV landing is required. A combination of the circle and the inner cross should also be
used, if possible, in designs of landing patterns. In the initial phase of the approach, where the length of one
of the axes of the ellipse (the detected circle) is shorter than 30 pixels, due to the long distance between the
helipad and the UAV, the lines of the cross cannot be detected reliably. Then the cross is detected using the
morphology operation closing and searching for areas similar in size. Circle detection is positively confirmed
if four closed areas similar in size are found within the circle, see Figure 5 for example.

Later, if the UAV approaches closer to the helipad and the circle size is 30-150 pixels, the cross can be
detected by Guo Hall thinning (Guo and Hall, 1989), which enables the lines inside the circle to be detected
robustly. Positive detection of the landing pattern is confirmed if the crossing point of the two biggest lines
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Figure 6: (a) Image taken by the camera, (b) application of the adaptive threshold with box size 11 pixels,
(c) results of Guo Hall thinning.

(a) (b)

Figure 7: Line detection (a) if the cross is inside the circle and (b) if only a part of the landing pattern is
detected.

of the cross inside the circle is detected near the center of the ellipse. Results of the landing pattern detection
process using the Guo Hall thinning algorithm are shown in Figure 6.

Finally, if the circle is larger than 150 pixels, the cross is detected by recognizing its border, i.e., by detecting
two pairs of parallel lines (the red and green lines in Figure 7a). This approach provides robust detection of
the landing pattern if the entire circle is not visible in the image. Figure 7b depicts the pattern reconstructed
only from two visible lines of the cross.

An estimate of the height of the UAV is required to select the proper approach for pattern detection. In the
proposed system, this information is obtained using the laser rangefinder and its fusion with the onboard
IMU (Inertial Measurement Unit) to compensate the deviation of the measurement caused by a vehicle with
a variable height profile, when it appears under the approaching UAV. If the pattern is detected, its known
parameters (the known dimension of the circle and the cross) can be used to make a precise measurement of
the relative distance between the helipad and the UAV. This information is used for estimating the position
of the landing pattern in the global world coordinate system, which is used as the desired state of the position
controller.

5 Landing state machine

The autonomous task of the UAV is driven by a single state machine from autonomous takeoff to landing.
The state machine (Figure 8) takes control of the UAV after a signal has been given by an operator or after
the start time is reached. After taking off, it moves the UAV above the center of the map by switching to the
Fly to waiting point state. The UAV waits for the car to appear in the field of view, while it hovers at the
height of 8 m above the crossing of the two roads. Several factors have influenced the choice this strategy,
e.g., the real speed and acceleration constraints of the UAV and the known trajectory and velocity profile of



the car. This approach minimizes the complexity of the system and also provides the shortest mean time for
locating the target, given the mentioned constraints. By using this strategy, we also maximize the possible
quality of the images being captured onboard the UAV since any movement of the UAV introduces a motion
blur, which negatively influences the initial spotting of the target.

Takeoff

Landing state machine

Fly to waiting point

Wait

Align horizontally

Descend

Align for landing

Land

Ascend and repeat

Landed

Car detected

Aligned

Descended

Aligned

Success

Failure

Car detected

Car lost

Car lost

Car lost
Car not found

height ≥4 m

height <4 m

height <8 m

height =8 m

Figure 8: The autonomous flight, from takeoff to landing, is controlled by the landing state machine. The
linear passage from the Takeoff state to the Landed state can be divided to three groups of states, based on
the current height above ground – 8 m or higher, between 4 and 8 m and below 4 m. The state Ascend and
repeat handles situations when the car was lost from the field of view of the camera.

When the target is first spotted, and the covariance of its state estimate exceeds a defined threshold, the
UAV starts to align its horizontal position with the car while maintaining 8 m height (Align horizontally
state). The aligning uses an approach strategy, which exploits the fact that the car velocity vector points
towards the center of the map and thus towards the UAV. The approaching trajectory is created around a
mutual meeting point M[t], which is the closest point of the current position of the UAV U[t] to the predicted
trajectory of the car. The trajectory meets the following properties, where C[t] is the current position of the
car and E[t] is the last point of the car prediction:

• the portion of the UAV trajectory in between M[t] and E[t] is found by sampling the predicted
trajectory of the car starting at M[t],

• the other portion of the UAV trajectory in between U[t] and M[t] requires creating a trajectory of
the same time duration as the portion of the predicted trajectory of the car from C[t] to M[t],

• the resulting trajectory does not require motion (and thus a control action) in the direction parallel
the current car motion, which means that the trajectory will not lose it from the field of view because
the onboard camera is tilted away from the car.



In the special case, where M[t] does not reside on the predicted trajectory of the car, the whole prediction
is used as a reference for the MPC tracker. This situation may occur if the car is first spotted while driving
away from the UAV.

car prediction
resulting trajectory
processed with MPC

approach trajectory

C

M
E

U

Figure 9: Illustration of the approach strategy. Point M represents the common meeting point of the UAV
and the car, U is the current position of the UAV, C is the current position of the car and E marks the final
point in the car prediction. The car predicted trajectory is shown in red, the approach trajectory is marked
as dotted and the resulting feasible trajectory, optimized by MPC, is shown in blue.

After the UAV is aligned with the car horizontally within 1.5 m, the state machine switches to the Descend
state. While in the Descend state, the height decreases to 4 m, the lowest height at which it is still possible
to follow the car continuously given the particular UAV and camera configuration. Once a height of 4 m
is reached, the states machine transitions to the Align for landing state, where it waits for two conditions
to be met to initiate the final landing on the moving car. First, the UAV has to be aligned horizontally
within 0.3 m of the center of the landing pattern. Second, transition to the Land state is allowed only above
the straight parts of the track. Finally, the landing maneuver is executed, in which a fast descent is made
to the roof of the car. During the landing, the motors are cut off by a signal from the down-facing laser
range finder, or the whole landing is aborted due to a low height threshold being met (1.5 m above the
ground). If the car is lost from sight during any of the previously mentioned phases of the landing, the state
machine transitions to the Ascend and repeat state. In the Ascend and repeat state, the UAV ascends while
it follows the car prediction based solely on the estimate. If the car is not detected again, the state machines
transitions back to the Fly to waiting point state. If the car is detected while in the state Ascend and repeat,
the horizontal alignment process is repeated via the state Align horizontally.

6 Ground vehicle state estimation and prediction

Several sub-problems have to be solved to follow a moving object with an autonomous helicopter. The first
part of the pipeline, which provides visual detection of the landing surface, was presented in section 4. Motion
estimation is necessary to compensate for inherent flaws in the data that are extracted from camera images.
Information provided by the landing pattern detector is naturally skewed by phenomena such as signal noise,
false positive detections, irregular detection rate and time delay. These issues are common for most real-world
sensors and are usually addressed by filtration and fusion with other available data. Moreover, since the
dynamical system of the vehicles is known and can be described by a mathematical model, we can use the
knowledge to maximize the information we gain from camera observations of the car. In particular, we can
estimate unknown states that are difficult or even impossible to measure directly, namely velocity, heading
and curvature of the turn. Estimation of hidden states further allows us to predict the future movement of
the vehicle.

6.1 LKF with a liner model

The simplest model that can be used to estimate and predict the motion of the car is a linear model of 2nd
order translational dynamics. This model does not impose any constraints on the holonomy of the system,



and therefore lacks an estimate of the turning radius (1/K, where K is the turning curvature). States can
easily be estimated using the Linear Kalman Filter as

x[n+1] = Ax[n] + Bu[n],

y[n+1] = Cx[n+1] + Du[n],
(1)

where x[n] ∈ Rn is the state vector and u[n] ∈ Rk is the input vector in sample n. We assume that C = I,
D = 0. The lateral motion of the car is captured by the matrices

A =




1 ∆t 1
2∆t2 0 0 0

0 1 ∆t 0 0 0
0 0 1 1 ∆t 1

2∆t2

0 0 0 0 1 ∆t
0 0 0 0 0 1



,B =




0
0
0
0
0



, (2)

where the state vector is defined as x[n] = (x, ẋ, ẍ, y, ẏ, ÿ)
T

. Testing with the linear model demonstrated
satisfactory performance during linear motion of the car, but showed a significant tracking error when the car
was turning. The scenario is showcased in the video http://mrs.felk.cvut.cz/jfr2018landing-video1.

6.2 UKF with a car-like model

To improve the car state estimation for non-linear motion, a different model is required, e.g., the nonholo-
nomic car-like model

xo
[n+1] = xo

[n] + ẋo
[n]∆t,

ẋo
[n+1] =

(
cosφ[n+1]

sinφ[n+1]

)
v[n+1],

φ[n+1] = φ[n] + φ̇[n]∆t,

φ̇[n+1] = K[n]v,

v[n+1] = v[n] + a[n]∆t,

K[n+1] = K[n] + ˙K[n]∆t,

(3)

where xo
[n] = (x, y)

T
[n] is the position of the car in the global coordinate system, φ[n] is its heading, K[n] is the

curvature of its turn, v[n] is its scalar velocity, a[n] is its scalar acceleration, and ∆t is the time difference.
Car-like model better reflects the physics of the car motion thanks to adding non-holonomic constraints and
effectively by coupling the heading with the curvature of its turn. Estimates of the heading of the vehicle
allow its motion to be tracked while the onboard camera is oriented properly to maximize successful detection
even, while the car is in turn. The Unscented Kalman Filter (UKF) (Wann and van der Merwe, 2000) was
used as a filtration method and as a predictor. In contrast with LKF, UKF utilizes a general function as a
form of model iteration. Covariance of the estimated hypothesis is transformed as a set of sampled points of
the ellipsoid, which is later reconstructed using the known prior distribution of the points. Therefore, it is
not required to differentiate the model function, as it would be using nowadays obsolete Extended Kalman
Filter (EKF), which uses a linear approximation of the model. Due to the high speed of the car, UKF is
needed for its robustness and better performance, comparing to EKF and LKF.

6.3 Ground vehicle state prediction

As we will discuss below in section 8, knowing the future trajectory of the ground vehicle is a key element
in tracking its motion with the unmanned aircraft. To predict the future trajectory, the same model as for
its state estimation is applied, creating a discrete, time-parameterized trajectory in 2D space. The output
of the UKF estimator is directly used as an initial condition for the prediction. Additionally, thanks to the



knowledge of all states of the dynamical model in Equation (3), the predicted trajectory can be offset to
compensate for the delay in the vision system. The prediction for n future steps takes form of

q[n+1] = f(q[n]),∀n = 0, . . . , n− 1, (4)

where f() is the model function according to Equation (3), q[n] is a complete state vector defined as

q[n] =
[
xo

[n+0]
T , φ[n+1],K[n+1], v[n+1], a[n+1]

]T
(5)

and q[0] is the initial condition provided in real-time by the UKF estimator.

In general, the car can ride with changes in the curvature and acceleration depending on the driver. However,
the competition rules specify the shape of the track in the arena (see Figure 1), and also the speed profile,
which allows us to bias the estimate or the prediction to achieve more accurate trajectory tracking.
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Figure 10: (a) The competition arena is divided into five areas. The center area (C) contains track with
zero curvature. The four corner areas (L1, L2, R1, R2) contain track with curvature |K| = 1/r. (b) State
machine producing the bias for the curvature of the car. Inputs to the state machine are transitions of the
car between the different parts of the arena.

The first level of biasing the curvature relies solely on the known curvature in different parts of the track.
Knowledge of coordinates of only a few pre-defined points is required to identify the curvature for any given
coordinates on the map. To bias the curvature, the arena is divided into five separate parts. Figure 10a
shows the partitioning into the corner parts L1, L2, R1, R2, where the curvature of the turn is |K| = 1/r,
and the center area C, where K = 0. However, the sign of the curvature depends on the direction in which
the car is driving in the particular part. To solve the estimation of the direction, we designed a simple state
machine (Figure 10b), which describes all possible transitions between the different parts of the map that
correspond to a change in the curvature. Later, when creating the prediction of the car using the model
(Equation 3), the initial curvature K[0] is set based on the current state of the curvature state machine.
Further states of the prediction undergo the same process with an identical temporary state machine, to
ensure that the curvature is correctly biased throughout the whole future.

6.4 Biasing the predicted trajectory to the measured track

To further improve the performance of the tracking in the particular scenario of the competition, the predicted
trajectory of the car was biased towards the known global GPS coordinates of the track. The predicted
trajectory of the car is snapped towards the analytically described track. The snapping is proportional to
the covariance of the predicted points. This leaves space for the car to drive off center of the track since
the initial part of the prediction is close to the estimate. Figure 11 also illustrates a typical example of a
predicted and snapped trajectory.
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Figure 11: Scheme of the real track, on which the car was supposed to drive, with the path denoted in the
middle of the track, to which the car prediction was biased. An example of a predicted (red) and a biased
trajectory (blue) is shown.

7 UAV state estimation

Autonomous UAV control relies on an estimate of the states of the UAV dynamical system. Namely, knowl-
edge of position and velocity (both vertical and horizontal) is required to control the movement for precise
landing on the moving vehicle. Our platform is equipped with several independent sources of information,
which are fused to obtain a single, reliable and smooth estimate of the UAV pose. It is essential to ensure
smoothness of the resulting signal since SO(3) (Section 9) state feedback is sensitive to noise.

The main source of data for both the vertical axis and the horizontal axis in the proposed system is the Pix-
Hawk flight controller. Its Extended Kalman Filter fuses traditional inertial sensors – a three-axis accelerom-
eter and a gyroscope with an height pressure sensor and a GPS receiver. Although the aircraft is already
capable of autonomous flight with this off-the-shelf setup, we make use of other sensors, a time-of-flight laser
rangefinder (Ruffo et al., 2014) and a differential GPS receiver, to provide more precise localization,

7.1 Horizontal position estimation

Position estimation in the lateral axes is based on the estimate provided by PixHawk, namely position xp,
and velocity ẋp. Although its precision may be satisfactory locally for short periods of time, it is prone to
heavy drift in time spans of minutes. To correct this drift and thus to ensure repeatability of the experiments
and, e.g., locating the dropping zone, the horizontal position from PixHawk is corrected by differential RTK
GPS. Position measurements from the RTK GPS receiver are fused using the Linear Kalman Filter with the
model

A =

(
1 0
0 1

)
,B =

(
∆t
∆t

)
, (6)

where xe
[n+1] = Axe

[n] + Bu[n] is the linear system equation, xe
[n] = (x, y)T[n] is the state vector finally used

for control, and u[n] is the system input. According to our experience,

xp
[0] +

k∑

n=0

ẋp
[n]∆t[n] = xp

[k],∀k ∈ N (7)

does not hold for the position and velocity estimate provided by PixHawk. This is a very useful observation
for somebody building a fully autonomous UAV system using an off-the-shelf controller. The input vector
u consists of velocities obtained by integrating differentiated positions xp, which ensures that our filter does
not introduce any more drift into the resulting estimate when no RTK GPS corrections are involved. In



situations when the position is not being corrected, the resulting estimate follows the same relative state
trajectory as xp, just shifted according to the latest correction.

In other words, the position estimate fused by the PixHawk is used as a main source of information, regardless
of whether the RTK GPS is currently available. The difference is, the PixHawk position estimated is updated
by input

u[k] =
(
xp

[k] − xp
[k−1]

)
/∆t[k] (8)

which results in position update

xe
[k+1] = xe

[k] +
(
xp

[k+1] − xp
[k]

)
, (9)

that follows the PixHawk estimate when left uncorrected. However, when the RTK GPS is available, the
estimate xe

[k+1] can be freely corrected by the LKF, effectively adding an offset using the more precise source
of information. By using such approach, the correction will be still applied even during long outages of the
RTK GPS system.

7.2 Vertical position estimation

UAV state estimation relies less on the PixHawk in the vertical axis than in the horizontal axis. Height
corrections come not only from differential RTK GPS but also from the down-facing TeraRanger rangefinder
and from the landing pattern detector, which can provide height data when flying above the car. The
estimator provides an option to switch between these sources of data, depending on the current state of the
landing state machine. The PixHawk height is fused by the same technique as in the horizontal system, as
denoted by Equation 8.

It is feasible to correct the height using the TeraRanger rangefinder when flying above uneven ground, but
it cannot be used reliably when the down-facing sensor is obstructed by the car. However, RTK GPS can
provide precise relative height measurements, but only when RTK FIX has been established. RTK FIX is one
of several precision states of RTK GPS, which provides the best accuracy and guarantees a correct position
signal. The standard states include RTK FLOAT and DGPS, but only RTK FIX guarantees the precision
need for actually correcting the built-in PixHawk GPS. Finally, correcting the height using data from the
landing pattern detector might bring unexpected steps in the signal due to false positive detections or signal
dropouts. Since none of the additional sources is completely reliable, we employed a safety mechanism for
detecting anomalies, which can toggle off any of the above-mentioned sensors.

8 Predictive trajectory tracking

While the state feedback described in section 9 provides precise position and velocity control, it requires a
smooth and feasible reference. The reference consists of all states of the translational dynamics – position,
velocity, and acceleration it is provided at 100 Hz, the same rate as the resulting control signal. There are
various ways of creating the reference. Typically, thanks to the differential flatness of the UAV dynamical
system, QP optimization can be performed to find a polynomial, given the initial and final state conditions
(Mellinger and Kumar, 2011), which can then be derived and sampled to create the reference. In our case,
we chose to generate the reference using a Model Predictive Control approach. The following text describes
a simpler variant of the original approach designed for multiple vehicles, which was proposed in (Baca et al.,
2018).

The Model Predictive Control Tracker (MPC Tracker) uses a QP formulation of the minimal sum-of-
squares problem, where the optimal control action u is found for a future prediction horizon of states



x[n] = (x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈)
T
[n] by minimizing the function

V
(
x[0,...,m−1],u[0,...,m−1]

)
=

1

2

m−1∑

i=1

(
eT

[i]Qe[i] + uT
[i]Pu[i]

)
,

s.t. x[0,...,m−1] ≥ xL,

x[0,...,m−1] ≤ xU ,

(10)

where e[n] = x[n]− x̃[n] is the control error, x̃[n] is the setpoint for the MPC, m is the length of the prediction
horizon, and xL and xU represent box constraints on states. The control error e[n] requires the formation of a
general prediction of x[n], which has been described in (Baca et al., 2016). In our case, the optimized control
action is not directly used to control the real UAV. Instead, it controls a model of the UAV translational
dynamics in real-time simulation. States of the simulated model are then sampled at 100 Hz to create the
reference for the state feedback.

An important notion is a difference between the trajectory setpoint x̃ and the reference, which is generated
by the MPC tracker. The trajectory setpoint x̃ is provided by high-level planning or, in this case, by the car
predictor. No requirements are imposed on x̃ in general. By contrast, the reference produced by the MPC
tracker is feasible, satisfies UAV dynamics and state constraints, and serves as a control reference for the
SO(3) state feedback (see section 9). The inherent predictive nature of MPC provides trajectory tracking
optimizing actions over the future, and this makes it ideal for tracking moving targets.

The simulated model is an LTI system covering the 3rd order translational dynamics of the UAV with the
system matrices

A =




1 ∆t 0 0 0 0 0 0 0
0 1 ∆t 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 ∆t 0 0 0 0
0 0 0 0 1 ∆t 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 ∆t 0
0 0 0 0 0 0 0 1 ∆t
0 0 0 0 0 0 0 0 1




,B =




0 0 0
0 0 0

∆t 0 0
0 0 0
0 0 0
0 ∆t 0
0 0 0
0 0 0
0 0 ∆t




, (11)

where ∆t = 0.01 s. The same matrices are used to formulate the MPC prediction. In our MPC formulation,
∆t is different for the first iteration (∆t = 0.01 s) and for all the other iterations (∆t = 0.2 s). This allows
the simulation to be controlled smoothly if the MPC is executed at 100 Hz, while there is a relatively sparse
distribution of further states. Sparse distribution provides a much longer prediction horizon than these
would normally be with ∆t being constant. As in traditional MPC, only the control action in the first step
is used to control the model in the simulation. Before action from the second step would be required, a new
instance of the optimization task is formulated and solved, starting from new initial conditions. This results
in a fresh control action for the next simulation step. This method is valid only if the MPC can be solved
repeatedly within the 0.01 s simulation step.

Penalization parameters Q and P in (10) have been found empirically as

Q =




5000 0 0 0 0 0 0 0 0
0 0 800 0 0 0 0 0 0
0 800 0 0 0 0 0 0 0
0 0 0 5000 0 0 0 0 0
0 0 0 0 0 800 0 0 0
0 0 0 0 800 0 0 0 0
0 0 0 0 0 0 5000 0 0
0 0 0 0 0 0 0 0 800
0 0 0 0 0 0 0 800 0




,P =




500 0 0
0 500 0
0 0 500


 . (12)



As in our previous work (Baca et al., 2016), we used the move blocking technique to effectively prolong the
prediction horizon while maintaining the computational complexity. The particular control action distribu-
tion for the MBZIRC competition was

U =
(
1 1 1 1 1 5 5 5 5 5 10

)
, (13)

which results in in 8 s prediction horizon with only 33 variables in the optimization task. Without move
blocking 120 variables would be required to solve the control problem.

As defined in Equation (10), MPC handles state constraints as linear inequalities. We impose maximum
acceleration and velocity box constraints on the UAV to ensure safe and feasible resulting trajectories. The
optimization being solved lies in the family of Linearly Constrained Quadratic Programming, which acquires
a global optimum in a convex polytope. A custom solver based on sequential closed-form solution (Algo-
rithm 1) is implemented to ensure guaranteed real-time performance, while sacrificing optimality. According
to (Rossiter, 2003), in control design we should, if possible, rely on input pre-shaping rather than more
complicated control-oriented solutions. Thus in every iteration, a reference trajectory is first pre-shaped to
satisfy the velocity constraints by a low-pass filter as well as to initiate it in the current state of the UAV.
Then the unconstrained problem is solved analytically as in (Baca et al., 2016). Although the resulting
trajectory approximately satisfies the velocity constraints, the acceleration constraints are in general vio-
lated. In the second step, the acceleration part of the optimized trajectory is again pre-shaped to satisfy
the acceleration constraints. Then we solved the unconstrained MPC again, however now with acceleration
double-integrated to serve as the new position reference. The result of the second MPC step is a solution
which, according to our empirical results, satisfies both acceleration and position constraints within 10%
margin of error, which is a tolerable trade-off for complete control over the deterministic execution of the
algorithm.

Algorithm 1 Sequential closed-form MPC

1: procedure iterateMPC
2: input :
3: reference← desired reference
4: current state← current state of the UAV
5: max v← maximum velocity constraint
6: max a← maximum acceleration acceleration
7: execution:
8: # the first iteration of the MPC generates trajectory not violating velocity constraints
9: reference← preshapeVelocity(current state, reference,max v)

10: trajectory, control input← analyticMPC(current state, reference)
11:

12: # the second iteration of the MPC generates trajectory not violating acceleration constraints
13: reference← preshapeAcceleration(current state, trajectory,max a)
14: trajectory, control input← analyticMPC(current state, reference)
15:

16: return trajectory

MPC-based trajectory tracking operates in two modes. The first simple positioning mode, used mainly for
short-distance position changes, accepts either relative or absolute position commands and tries to reach a
given position in the fastest way with respect to the MPC scheme. The second trajectory-following mode
utilized by high-level trajectory planning uses a precomputed path plan. It tries to track the trajectory
precisely while respecting the plan waypoints schedule, which is crucial for precise landing on the moving
vehicle.



9 Feedback control

The position controller uses the estimated state as feedback to follow the trajectories given as an output of
the high-level trajectory planner. In many previous works, a backstepping approach is used for UAV control,
because the attitude dynamics can be assumed to be faster than the dynamics governing the position, so
linearized controllers are used for both loops (Mellinger et al., 2013; Weiss et al., 2011; Heriss et al., 2012).
However, we need the system to be capable of large deviations from the hover configuration during operations
like fast mapping of objects, or for heavy wind compensation. We therefore use a nonlinear controller. Let
us consider an inertial reference frame denoted by

[
e1 , e2 , e3

]
and a body reference frame centered in the

center of mass of the vehicle with an orientation denoted by R =
[
b1 , b2 , b3

]
, where R ∈ SO(3). The

dynamic model of the vehicle can be expressed as

ẋ = v,

mv̇ = fRe3 +mge3,

Ṙ = RΩ̂,

JΩ̇ + Ω× JΩ = M,

(14)

where x ∈ R3 is the Cartesian position of the vehicle expressed in the inertial frame, v ∈ R3 is the velocity of
the vehicle in the inertial frame, m ∈ R is the mass, f ∈ R is the net thrust, Ω ∈ R3 is the angular velocity in
the body-fixed frame, and J ∈ R3×3 is the inertia matrix with respect to the body frame. The hat symbol ·̂
denotes the skew-symmetry operator according to x̂y = x×y for all x,y ∈ R3, g is the standard gravitational

acceleration, and e3 =
[
0 0 1

]>
. The total moment M ∈ R3, with M =

[
M1 M2 M3

]>
, along all axes

of the body-fixed frame and the thrust τ ∈ R are control inputs of the plant. The dynamics of the rotors
and propellers are neglected, and it is assumed that the force of each propeller is directly controlled. The
total thrust, f =

∑6
j=1 fj , acts in the direction of the z axis of the body-fixed frame, which is orthogonal to

the plane defined by the centers of the four propellers. The relationship between a single motor thrust fj ,
the net thrust f , and the moments M can be written as




f
M1

M2

M3


 =




1 1 1 1 1 1
sd 1 sd −sd −1 −sd
−cd 0 cd cd 0 −cd
−1 1 −1 1 −1 1







f1

f2

f3

f4

f5

f6




(15)

where c = cos (30◦), s = sin (30◦) and d is the distance from the center of mass to the center of each rotor
in the b1, b2 plane. For non-zero values of d, eq. (15) can be inverted using the right pseudo-inverse.

For control, we build on the work in (Lee et al., 2013) and in (Mellinger and Kumar, 2011) with control
inputs f ∈ R and M ∈ R3 chosen as

M = −kReR − kΩeΩ + Ω× JΩ− J
(
Ω̂RTRcΩc −RTRcΩ̇c

)
, (16)

f = −


−kxex − kibR

t∫

0

R(τ)Texdτ − kiw
t∫

0

exdτ − kvev −mge3 +mẍd


 ·Re3, (17)

with ẍd the desired acceleration, and kx, kv, kR, kΩ positive definite terms. We extend the referenced
controllers by including two integral terms which accumulate error in the body frame and in the world frame,
respectively. We include both terms to provide the opportunity to capture external disturbances (e.g., wind)
separately from internal disturbances (e.g., an inefficient prop or a payload imbalance), particularly when
the vehicle is permitted to yaw or rotate about the vertical axis. The thrust and the moments are then



converted to motor rates according to the characteristic of the proposed vehicle. Subscript C denotes a
commanded value, and RC =

[
b1, b2, b3

]
is calculated as

b2,des =
[
− sinψdes, cosψdes, 0

]>
, b3,C =

f

||f || , b1,C =
b2,des × b3

||b2,des × b3||
, b2,C = b3 × b1,

ḃ2,des =
[
− cosψdesψ̇des, − sinψdesψ̇des, 0

]>
, ḃ3,C = b3,C ×

ḟ

||f || × b3,C ,

ḃ1,C = b1,C ×
ḃ2,des × b3,C + b2,des × ḃ3,C

||b2,des × b3,C ||
× b1, ḃ2,des = ḃ3,C × b1,C + b3,C × ḃ1,C ,

Ω̂C = R>CṘC . (18)

Note that here we have to define b2,des based on the yaw, instead of defining b1,des as it was defined in
(Mellinger and Kumar, 2011), due to a different Euler angle convention (we use the ZYX convention instead
of ZXY). The definition of the tracking errors can be found in (Spurny et al., 2018).

10 Experimental evaluation

The platform was thoroughly tested during all stages of development. All features were developed and verified
in simulation before experiments on the real hardware. The Gazebo simulator and the Robot Operating
System allowed the same instances of software to be implemented and tested in simulation and also in
the field. To ensure safety, all experiments were performed in unoccupied rural areas, and the UAV was
supervised by a human operator at all times.

Supplementary multimedia material

A video attachment to this work is available at website http://mrs.felk.cvut.cz/jfr2018landing.

10.1 Experiments prior to the competition

The initial experiments involved testing the landing pattern detection and landing on a full-sized static
target, as depicted in Figure 12a. State estimation based on the linear model of the moving target showed
that following a non-linear motion requires a more descriptive car-like model. Figures 12a and 12b show the
UAV following a car with the visual marker attached to its roof. Figure 13 depicts a test using a Linear
Kalman Filter and a linear motion prediction of the future trajectory of the car. During numerous test runs,
the UAV was able to follow the ground vehicles. However a significant position error was observed in turns
of the path. The car-like model, which was tested later, exhibited significantly better performance than the
linear model for following general trajectories, which include turning (see Figure 14).

The vision and guidance system were verified without taking of weather conditions into account. Although it
was known that the competition would be held on concrete surface in summer weather, we tuned the landing
pattern detection algorithm to various surfaces, including grass, snow, concrete and asphalt throughout
the seasons to achieve maximal possible reliability and to account for unforeseen conditions during the
competition. Figure 15 shows snapshots from experiments in winter conditions.

Experiments on autonomous landing, including the Landing State Machine (Section 5), are portrayed in
Figure 14. Initially, the rate of a successful landing was 54% out in 22 trials. These experiments showed the
need for a camera equipped with a SuperFisheye lens to improve pattern detection during the final stage of
landing.



(a) (b) (c)

Figure 12: Photos from the first experiments in the field, a) shows a UAV hovering above a static target, b)
shows a UAV tracking a vehicle moving along a linear trajectory, and c) depicts first attempts with tracking
a ground vehicle moving in circles. The Linear Kalman Filter was used to estimate the states of the ground
vehicle during this stage of development. Additional video material documenting these experiments can be
found at http://mrs.felk.cvut.cz/jfr2018landing-video1.

Figure 13: Figures showing a UAV following the ground vehicle at a speed of 10 km/h. The motion of the
car was estimated by the Linear Kalman Filter. The system was thoroughly tested on general trajectories
of the ground vehicle. Video material for this experiment can be found at http://mrs.felk.cvut.cz/

jfr2018landing-video2.

(a) (b) (c) (d)

Figure 14: Experiments aimed at the autonomous following and landing on the ground vehicle using car-like
motion model. Various stages of the Landing State Machine (see Section 5) are shown, a) the UAV tracking
the car as it aligns horizontally, b) the descending phase, c) the UAV aligns for the second time before
turning off the propellers and d) the UAV after the successful landing. Video summary of the experiments
can be found at http://mrs.felk.cvut.cz/jfr2018landing-video3.

(a) (b) (c) (d)

Figure 15: The performance of the system was tested in all weather conditions. Experiments in snowy
and desert environments helped to fine-tune the computer vision for various lighting conditions and
ground textures. A video showing a landing in a desert car be seen at http://mrs.felk.cvut.cz/

jfr2018landing-video4.

10.2 The competition trials

Each team that participated in the competition in Abu Dhabi had an option to take part in two rehearsal
trials (2 × 30 minutes), two competition trials (2 × 15 minutes) and two rounds of the Ground challenge



Figure 16: A sequence of images from the second trial during the competition. The whole videos, as well as ad-
ditional material including onboard footage, can be found at http://mrs.felk.cvut.cz/jfr2018landing.

(2× 25 minutes). Our team competed in autonomous mode in both trials of the first challenge and the first
round of the Grand Challenge. The second round of the Grand challenge was performed in manual mode, to
allow manual operation on the ground robot at the same time. A combined manual and autonomous mode
for different robots in the same trial was not allowed. In both trials of the landing challenge, we experienced
a successful landing. Touchdown during trial 1 took place 143.2 s after the start. In trial 2 it took the UAV
84.6 s to land, which brought us the second place among all teams in the autonomous landing challenge, just
behind the UAV of Beijing Institute of Technology, with a time of 63.4 s. Figure 16 depicts the autonomous
landing using the proposed system during the first trial of the competition. Table 1 compares our results
with these of other teams.

Independently of the three separate robotic challenges, in the Grand Challenge, the teams competed in all
three challenges simultaneously. During the Grand Challenge, our system scored the fastest landing ever
performed among all teams in the entire MBZIRC competition, with 25.1 s time from the start. Figure 19
shows the relative position and control error plots from the fastest trial. Figure 17 shows top-down plots of
two trials from the landing challenge, and also the first trial from the Grand Challenge. The same trials are
presented in Figures 18a, 18b and 18c, with the states of the landing state machine (Section 5) color-coded
in the trajectory of the UAV.
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Figure 17: Top-down view of all three successful trials: (a) 1:44 min flight, (b) 1:28 min flight, (c) 0:25 min
flight.

Team TRIAL 1 TRIAL 2 GRAND 1 GRAND 2

Beijing Institute of Technology 63,4 63,4 NQ NQ
CTU in Prague, UPENN and UoL 143,2 84,6 25,1 M

University of Bonn 110,5 not landed 58,6 42,3
University of Catania 134,5 falling off NQ NQ

Table 1: Time in seconds of all successful autonomous landing attempts in the MBZIRC 2017 competition,
when the car was moving at its maximum speed of 15 km/h. NQ - not qualified for the final challenge, M -
manual mode applied due to other robots in the arena, not landed - UAV not landed due to a crash or time
limit of 15 minutes exceeding, falling off - UAV touched the mobile landing platform but was not able to
fix there, TRIAL 1 & 2 - trials of the MBZIRC Challenge 1, GRAND 1 & 2 - trials of the MBZIRC Grand
Challenge.
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Figure 18: Three-dimensional plot of positions of the ground vehicle, as detected by the UAV, and the UAV
during the (a) first competition trial, (b) second competition trial and (c) first Grand challenge trial. The
trajectory of the UAV is color-coded according to the states of the Landing State Machine.
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−0.4

−0.2

0.0

0.2

0.4

x
[m

]

X

UAV Setpoint Position Error

−0.4

−0.2

0.0

0.2

0.4

y
[m

]

Y

UAV Setpoint Position Error

8 10 12 14 16 18 20 22

time [s]

−0.4

−0.2

0.0

0.2

0.4

z
[m

]

Z

UAV Setpoint Position Error

(b) Position control error.

Figure 19: Plots of (a) the relative position of the detected and estimated ground vehicle, and the position
of the UAV during the third (the fastest) landing and (b) the position control error during the flight.

11 Lessons learned

Although the competition results can be considered a major success, it was not without hurdles, mainly
during implementation and testing of the proposed system. The proposed control pipeline consisting of
estimator, predictor, tracker, and controller showed to be depended mainly on the performance of the car
estimator. Tuning of the estimator parameters on real data was an essential factor which influences the
overall performance of the remaining components in the pipeline. Hence we stress the significance of the
real-world outdoor experiments above simulation, to obtain real sensor data. Finally, we cannot stress enough
how important is the team and the dedication of the individual members of the team. We value the skill of



getting things done and a capability of delivering performance on time when it is needed together with the
mindset of a scientist. The ability to transfer scientific concepts in robotics to a working prototype is vital
for experimental evaluation such as the one in this competition.

11.1 Toward a more general solution

Despite our best effort to develop a general solution capable of autonomous landing on a moving car, couple
sub-systems have been tailored specifically to the competition scenario. The computer vision system was
designed to locate and track the landing pattern specified by the rules of the competition. We can speculate
that similar pattern could be used in practice to mark a landing spot on a vehicle, which is designed to receive
the UAV. In such case, the proposed vision system would be a viable option. However, in the case of an
unmarked and possibly arbitrary vehicle, a different approach to localization and tracking would be required,
e.g., based on nowadays popular artificial neural networks. Estimation and prediction of the car movement
using a non-linear car-like model provide a framework suitable for tracking and landing on most common
vehicles. A more precise model could be used to better estimate state of a specific vehicle. Our approach
to bias the prediction of the future car movement based on the known parameters of the arena is optional
and can be omitted in the case of a general area and car trajectory. Moreover, all field experiments, before
the competition trials, were performed without particular bias towards the known trajectory of the car. See
Figure 13 for an example of such experiment. The presented state machine is also designed around the
competition scenario, however, the need to customize it is apparent. Besides those two cases, the presented
approach can be applied to a general scenario of locating, tracking and landing on a vehicle in an outdoor
environment.

12 Conclusion

We proposed, developed and experimentally evaluated an unmanned aerial system for autonomous landing
on a fast-moving vehicle. The solution described in this paper is a multirotor helicopter platform equipped
with sensors and a computer, capable of onboard image processing and state estimation of the ground vehicle
and also predictive planning and automatic control. Images from an onboard camera are processed online
to extract the position of the landing marker on top of the vehicle. States of the car-like dynamical model
are estimated using the Unscented Kalman Filter, based on image processing and the known parameters of
the car trajectory. The same model is then used to predict the future trajectory of the vehicle. The Model
Predictive Control tracker creates an optimal feed-forward reference in third order dynamics based on the
predicted trajectory. Non-linear SO(3) state feedback controls the UAV along the reference. A state machine
controls the UAV from takeoff, through finding the target and tracking it, to finally turning off its propellers
during the touchdown. The proposed system utilizes state-of-the-art techniques from control engineering in
a unique combination to solve the difficult challenge, which only a handful of teams from all over the world
were able to tackle. The proposed control pipeline relies on the novel MPC Tracker, which was proposed
specifically for this challenge (Baca et al., 2018), to achieve the high accuracy of the autonomous landing.

The system was extensively tested in the course of more than one year of development. The experiments
showed that the UAV is capable of autonomous tracking and landing on a car moving at a speed of 15 km/h.
In the MBZIRC 2017 challenge, the system proved to be robust by successfully landing in both trials of the
challenge 1 of the competition. During the Grand Challenge of the competition, it landed in 25 s, which is
the shortest time among all teams during the entire competition, which may be considered as a relevant and
objective benchmark of this task.
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Autonomous landing of a quadcopter on a high-speed ground vehicle. Journal of Guidance, Control,
and Dynamics, 40:2378–2385.

Fu, M., Zhang, K., Yi, Y., and Shi, C. (2016). Autonomous landing of a quadrotor on an ugv. In International
Conference on Mechatronics and Automation (ICMA), pages 988–993. IEEE.



Ghamry, K. A., Dong, Y., Kamel, M. A., and Zhang, Y. (2016). Real-time autonomous take-off, tracking and
landing of uav on a moving ugv platform. In 24th Mediterranean Conference on Control and Automation
(MED), pages 1236–1241. IEEE.

Ghommam, J. and Saad, M. (2017). Autonomous landing of a quadrotor on a moving platform. Transactions
on Aerospace and Electronic Systems, 53:1504–1519.

Guo, Z. and Hall, R. W. (1989). Parallel thinning with two-subiteration algorithms. Communications of the
ACM, 32(3):359–373.

Heriss, B., Hamel, T., Mahony, R., and Russotto, F. X. (2012). Landing a vtol unmanned aerial vehicle on
a moving platform using optical flow. Transactions on Robotics, 28(1):77–89.

Hoang, T., Bayasgalan, E., Wang, Z., Tsechpenakis, G., and Panagou, D. (2017). Vision-based target
tracking and autonomous landing of a quadrotor on a ground vehicle. In American Control Conference
(ACC), pages 5580–5585. IEEE.

Hui, C., Yousheng, C., Xiaokun, L., and Shing, W. W. (2013). Autonomous takeoff, tracking and landing of
a uav on a moving ugv using onboard monocular vision. In Chinese Control Conference (CCC), pages
5895–5901. IEEE.

Jin, S., Zhang, J., Shen, L., and Li, T. (2016). On-board vision autonomous landing techniques for quadrotor:
A survey. In 35th Chinese Control Conference (CCC), pages 10284–10289. IEEE.

Jung, W., Kim, Y., and Bang, H. (2016). Target state estimation for vision-based landing on a moving
ground target. In International Conference on Unmanned Aircraft Systems (ICUAS), pages 657–663.
IEEE.

Jung, Y., Lee, D., and Bang, H. (2015). Close-range vision navigation and guidance for rotary uav au-
tonomous landing. In International Conference on Automation Science and Engineering (CASE), pages
342–347. IEEE.

Kim, J., Jung, Y., Lee, D., and Shim, D. H. (2014). Outdoor autonomous landing on a moving platform
for quadrotors using an omnidirectional camera. In International Conference on Unmanned Aircraft
Systems (ICUAS), pages 1243–1252. IEEE.

Kong, W., Zhou, D., Zhang, D., and Zhang, J. (2014). Vision-based autonomous landing system for un-
manned aerial vehicle: A survey. In International Conference on Multisensor Fusion and Information
Integration for Intelligent Systems (MFI), pages 1–8. IEEE.

Lee, D., Ryan, T., and Kim, H. J. (2012). Autonomous landing of a vtol uav on a moving platform using
image-based visual servoing. In International Conference on Robotics and Automation (ICRA), pages
971–976. IEEE.

Lee, H., Jung, S., and Shim, D. H. (2016). Vision-based uav landing on the moving vehicle. In International
Conference on Unmanned Aircraft Systems (ICUAS), pages 1–7. IEEE.

Lee, T., Leok, M., and McClamroch, N. H. (2013). Nonlinear robust tracking control of a quadrotor uav on
se(3). Asian Journal of Control, (2):391–408.

Lin, S., Garratt, M. A., and Lambert, A. J. (2017). Monocular vision-based real-time target recognition and
tracking for autonomously landing an uav in a cluttered shipboard environment. Autonomous Robots,
41(4):881–901.

Masselli, A., Yang, S., Wenzel, K. E., and Zell, A. (2014). A cross-platform comparison of visual marker
based approaches for autonomous flight of quadrocopters. Journal of Intelligent & Robotic Systems,
73(1-4):349–359.



Meier, L., Tanskanen, P., Heng, L., Lee, G. H., Fraundorfer, F., and Pollefeys, M. (2012). Pixhawk: A
micro aerial vehicle design for autonomous flight using onboard computer vision. Autonomous Robots,
33(1):21–39.

Mellinger, D. and Kumar, V. (2011). Minimum snap trajectory generation and control for quadrotors. In
International Conference on Robotics and Automation (ICRA), pages 2520–2525. IEEE.

Mellinger, D., Shomin, M., Michael, N., and Kumar, V. (2013). Cooperative grasping and transport using
multiple quadrotors. In The 10th International Symposium Distributed Autonomous Robotic Systems,
pages 545–558. Springer Berlin Heidelberg.

Rossiter, J. A. (2003). Model-based predictive control: a practical approach. CRC press.

Ruffo, M., Di Castro, M., Molinari, L., Losito, R., Masi, A., Kovermann, J., and Rodrigues, L. (2014). New
infrared time-of-flight measurement sensor for robotic platforms. In 18th International Workshop on
ADC Modelling and Testing. IMEKO.

Spurny, V., Baca, T., Saska, M., Penicka, R., Krajnik, T., Thomas, J., Dinesh, T., Loianno, G., and Kumar,
V. (2018). Cooperative autonomous search, grasping, and delivering in a treasure hunt scenario by a
team of unmanned aerial vehicles. Journal of Field Robotics.

Stepan, P., Krajnik, T., Petrlik, M., and Saska, M. (2018). Vision techniques for on-board detection,
following, and mapping of moving targets. Journal of Field Robotics, pages 1–18.

Tan, C. K., Wang, J., Paw, Y. C., and Liao, F. (2016). Autonomous ship deck landing of a quadrotor using
invariant ellipsoid method. Transactions on Aerospace and Electronic Systems, 52(2):891–903.

Tersus-GNSS (2017). PRECIS-BX305 GNSS RTK Board. Available: https://www.tersus-gnss.com (citied
on 2017-07-17).

Wann, E. A. and van der Merwe, R. (2000). The unscented kalman filter for nonlinear estimation. In Adaptive
Systems for Signal Processing, Communications, and Control Symposium, pages 153–158. IEEE.

Weiss, S., Scaramuzza, D., and Siegwart, R. (2011). Monocular-slam-based navigation for autonomous micro
helicopters in gps-denied environments. Journal of Field Robotics, 28(6):854–874.

Xu, L. and Luo, H. (2016). Towards autonomous tracking and landing on moving target. In International
Conference on Real-time Computing and Robotics (RCAR), pages 620–628. IEEE.

Yang, S., Scherer, S. A., and Zell, A. (2013). An onboard monocular vision system for autonomous takeoff,
hovering and landing of a micro aerial vehicle. Journal of Intelligent & Robotic Systems, pages 1–17.

Yang, S., Ying, J., Lu, Y., and Li, Z. (2015). Precise quadrotor autonomous landing with srukf vision
perception. In International Conference on Robotics and Automation (ICRA), pages 2196–2201. IEEE.



K
K E Y A RT I C L E [ 1 1 ] - J O U R N A L O F F I E L D R O B O T I C S 2 0 1 8

c©[2018] Wiley Online Library. This article was published in Journal of Field Robotics: V.
Spurny, T. Baca, M. Saska, R. Penicka, T. Krajnik, J. Thomas, D. Thakur, G. Loianno, and
V. Kumar: Cooperative Autonomous Search, Grasping and Delivering in a Treasure Hunt
Scenario by a Team of UAVs, 2018.





Received: 15 October 2017 | Revised: 10 April 2018 | Accepted: 12 July 2018

DOI: 10.1002/rob.21816

S Y S T EM S AR T I C L E

Cooperative autonomous search, grasping, and delivering in a
treasure hunt scenario by a teamof unmanned aerial vehicles

Vojtěch Spurný1 | Tomáš Báča1 | Martin Saska1 | Robert Pěnička1 |
Tomáš Krajník2 | Justin Thomas3 | Dinesh Thakur3 | Giuseppe Loianno4 |
Vijay Kumar3

1Department of Cybernetics, Faculty of

Electrical Engineering, Czech Technical

University, Prague, Czech Republic

2Department of Computer Science, Faculty of

Electrical Engineering, Czech Technical

University, Prague, Czech Republic

3GRASP Laboratory, University of

Pennsylvania, Philadelphia, Pennsylvania

4Department of ECE and MAE, Tandon School

of Engineering, New York University, New

York City, New York

Correspondence

Vojtěch Spurný, Department of Cybernetics,

Faculty of Electrical Engineering, Czech

Technical University, Prague, Czech Republic.

Email: vojtech.spurny@fel.cvut.cz

Funding information

České Vysoké Učení Technické v Praze, Grant/

Award Number: SGS17/187/OHK3/3T/13;

Office of Naval Research Global, Grant/Award

Numbers: N00014‐07‐1‐0829, N00014‐14‐1‐
0510; Army Research Laboratory, Grant/Award

Number: W911NF‐17‐2‐0181; Grantová
Agentura České Republiky, Grant/Award

Number: 17‐16900Y; Research Center for

Informatics project, Grant/Award Number:

CZ.02.1.01/0.0/0.0/16_019/0000765; Khalifa

University of Science, Technology and Research,

Grant/Award Number: MBZIRC 2017

Abstract

This paper addresses the problem of autonomous cooperative localization, grasping

and delivering of colored ferrous objects by a team of unmanned aerial vehicles

(UAVs). In the proposed scenario, a team of UAVs is required to maximize the reward

by collecting colored objects and delivering them to a predefined location. This task

consists of several subtasks such as cooperative coverage path planning, object

detection and state estimation, UAV self‐localization, precise motion control,

trajectory tracking, aerial grasping and dropping, and decentralized team coordina-

tion. The failure recovery and synchronization job manager is used to integrate all the

presented subtasks together and also to decrease the vulnerability to individual

subtask failures in real‐world conditions. The whole system was developed for the

Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017, where it

achieved the highest score and won Challenge No. 3—Treasure Hunt. This paper does

not only contain results from the MBZIRC 2017 competition but it also evaluates the

system performance in simulations and field tests that were conducted throughout

the year‐long development and preparations for the competition.

K E YWORD S

aerial robotics, cooperative robots, mobile manipulation, planning

1 | INTRODUCTION

Small autonomous unmanned aerial vehicles (UAVs) are widely used

in numerous applications of data collection due to their potential for

rapid deployment and their ability to reach locations inaccessible by

ground robots. While fixed wing UAVs have the advantage of stable

flight at high speeds, long range, and long flight time, rotary wing

UAVs (such as the popular multirotor helicopters) benefit from their

capacity for high manoeuvrability, vertical take off and landing, flight

in cluttered environments in close proximity to obstacles, and

hovering in a desired position in a 3D environment. The ability to

precisely reach a desired 3D position and hover in place is crucial for

long‐term information gathering, and especially for physical interac-

tion with objects in the workspace. Delivery applications composed

of acquisition, transport, and drop‐off provide an example requiring

interaction with the environment during autonomous flight. This is

the topic discussed in our paper.

A multiple cooperative delivery mission (called Treasure Hunt)

was the most complex task in the 2017 Mohamed Bin Zayed

International Robotics Challenge (MBZIRC1). In the competition, the

J Field Robotics. 2018;1–24. wileyonlinelibrary.com/journal/rob © 2018 Wiley Periodicals, Inc. | 1

1http://www.mbzirc.com/ ‐ Accessed: July 17, 2018.



delivery task was solved in its full complexity, including searching for

objects with unknown positions, grasping moving objects, and

cooperation among multiple UAVs working in concert. The deploy-

ment of a team of UAVs was motivated by the limited total mission

time, and by including large objects with weights exceeding the

maximum payload of the individual robots. In the mission, 23 objects

(10 static, 10 dynamic, and 3 large) had to be localized in an outdoor

arena and collected by three UAVs of limited size. While the small

objects (static and dynamic) could be lifted by a single UAV, the large

objects required two UAVs to transport them.

The system that exhibited the best performance among all

participants in the MBZIRC competition in the Treasure Hunt

challenge is presented in this paper2. The system design is driven

by the specific task proposed and precisely specified by the

organizers. The approach is tailored to provide high robustness

and performance to solve the challenging task by modification of

available robotic methods and designing new algorithms where

necessary. Nevertheless, the proposed system is easily reusable in

a large set of multi‐UAV scenarios as shown in Section 1.2. The

core of the system is the failure recovery and synchronization jobs

manager (FSM), which is crucial for managing all subsystems and

for coordinating all UAVs sharing the same workspace. The FSM is

also needed to achieve the reliability required for the deployment

of UAVs in real‐world conditions, which requires the ability to

recover from UAV failures and also from a malfunction of the

localization and communication infrastructure. For example, the

robots can easily collide with the objects being grasped due to a

wind gust which, in combination with the ground effect, can create

a hardly predictable external force on the UAV in the final phase

of the approach to an object. Such a collision could result in a UAV

crash, deadlock, or an overturned object. Moreover, malfunctions

of UAV subsystems such as camera dropouts, incorrect range-

finder measurements, gripper failure or gripper feedback failure,

and imprecise object gripping, can be expected in demanding

outdoor conditions. All these eventualities need to be considered

by the system to enable undisturbed operation of the remaining

robots in the event of a UAV failure, limited operation of a UAV

with a faulty subsystem, or an unsuccessful or interrupted

grasping task. From this point of view, the proposed FSM concept

can be considered as a hierarchical state machine with included

synchronization and failure recovery abilities, which may be

effectively reused in any complex multi‐UAV task involving

environment interaction.

Although the rules of the MBZIRC competition allowed the use

of global navigation satellite system (GNSS) and the even more

precise differential global positioning system (DGPS) for UAV

localization, the availability of these systems was not guaranteed.

For example, GNSS information was available only intermittently,

due to interference with other transmitters located at the

competition site and occlusion of satellites by the surrounding

buildings and infrastructure. The provided Wi‐Fi infrastructure

was even less reliable and therefore the proposed FSM approach

leverages the combination of different modes of the system based

on the availability of Wi‐Fi, GNSS, and DGPS. In addition to the

FSM, a sensor fusion mechanism is presented for combining

information from various onboard sensors (onboard IMU, GPS,

DGPS, rangefinder, and camera) which must be considered as

potentially unreliable at any time. It is vital that the UAV may

continue with the task despite lacking some sensor data (e.g.,

precise measured altitude above ground), because the competition

rules did not allow any human intervention or debugging during

the trials, and which is also the case in most of the real‐world UAV

applications.

Another important subsystem, which is crucial in tasks

requiring interaction with the environment, is relative detection

and estimation of the state of the objects requiring interaction. In

the presented system, the relative localization technique relies on

onboard vision, since the objects in the competition were designed

to support such an approach. The shape and color of the objects

were specified before the mission and a color‐based key was used

to identify the score for collecting the particular object and to

distinguish the object type. Static, dynamic, and long objects were

labeled by different colors, all easily distinguishable from the

background. Therefore, the vision approach is the simplest way to

acquire all data required for the high‐level planning (the score,

type, and position estimate), and also for the visual servoing in the

grasping task (precise relative positions of objects). However, any

alternative relative localization system can be easily integrated

based on the application. State estimation of the object is

necessary mainly for dynamic objects, where a velocity estimate

of the object needs to be taken into account by the UAV control

modules.

Two flight behaviours are required in the Treasure Hunt task:

Trajectory following and precise visual servoing. The trajectory

tracking mode is used to search for the object in the environment, to

approach the vicinity of the object, and to transport the object to the

required location. The most important property of this controller is

rapid and smooth movement along the trajectory provided by the

high‐level planning. The visual servoing applied in the final phase of

grasping can be realized more slowly, but the requirements on

precision are much higher. In the paper, we will present a novel

model predictive control (MPC)‐based approach that allows integra-

tion of the UAV state estimation (including external forces produced

by the wind and ground effect) and target state estimation (a position

and velocity estimate of the currently observed object), enabling our

robots to reach the target with a maximum position error of 8 cm,

which is determined by the diameter of the object and the size of the

gripper.

1.1 | State‐of‐the‐art

Rotorcraft or rotor‐wing UAVs are suitable for tasks with object

manipulation, due to their ability to hover on the spot. Their usage in2http://mrs.felk.cvut.cz/projects/mbzirc ‐ Accessed: July 17, 2018.
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this field has already been investigated in several publications, mainly

for a single UAV, in particular subparts such as gripper or

manipulator design, control techniques, and object detection.

The design of a manipulator for use in industrial applications, for

aerial inspection by contact, and also for aerial manipulation is

described in Fumagalli, Stramigioli, and Carloni (2016). The design of a

multidegree arm manipulator placed on UAVs is presented in Morton

and Toro (2016) and in Korpela, Danko, and Oh (2012). The idea of

using a suction‐based gripper for versatile aerial grasping is presented

and experimentally verified in Kessens, Thomas, Desai, and Kumar

(2016). Other gripper designs are presented in Mellinger, Lindsey,

Shomin, and Kumar (2011) and Pounds, Bersak, and Dollar (2011b).

A study about determining stability bounds, in which the

changing mass‐inertia parameters of the system due to the grasped

object will not destabilize a proportional‐integral‐derivative flight

controller for helicopters, is presented in Pounds, Bersak, and Dollar

(2011a). The authors of Thomas, Loianno, Polin, Sreenath, and Kumar

(2014) introduce a controller and a planner for high‐speed aerial

grasping, using a quadrotor UAV with a claw‐like gripper. Their

approach is used for grasping a cylindrical object relying on feedback

from a monocular camera and an inertial measurement unit onboard

the aerial robot. Images from the camera are used for computing the

desired pitch angle, and the remaining axes (roll and yaw) are

controlled using feedback from the vision motion capture system. In

Ghadiok, Goldin, and Ren (2012), a system for autonomous grasping

of objects using a monocular IR camera is introduced. Detection of

the objects is based on finding an IR beacon, which has to be placed

on the objects. The authors also rely only on onboard sensors, but the

position and yaw estimation is computed offboard on the ground

station. A methodology for controlling a multiarm manipulating aerial

vehicle is presented in Orsag, Korpela, Pekala, and Oh (2013). The

control of a system where the control input is generated for the UAV

and the manipulator joints simultaneously is described in Heredia

et al. (2014), Kamel, Comari, & Siegwart (2016), and Kannan,

Quintanar‐Guzman, Dentler, Olivares‐Mendez, & Voos (2016). The

papers (Kim, Seo, Choi, & Kim, 2016; Lippiello et al., 2016;

Santamaria‐Navarro, Grosch, Lippiello, Sola, & Andrade‐Cetto,
2017) present a vision guidance approach using an image‐based
visual servo for an aerial manipulator. A method for planning a time‐
optimal trajectory for a quadrotor with the goal of grasping a moving

target is introduced in Spica, Franchi, Oriolo, Bülthoff, and Giordano

(2012). However, the solution is presented only by simulations.

Detecting and estimating the object is a challenging task that

needs to be investigated for autonomous grasping. Online detection

of the known object and estimation of its position using features

from images are described in RamonSoria, Arrue, and Ollero (2017).

Another method for onboard object extraction based on stereo vision

for autonomous grasping of objects is presented in RamonSoria,

Bevec, Arrue, Ude, & Ollero (2016). However, the aforementioned

methods rely on stereo or depth sensors, which are not used on our

UAVs. To detect the colored objects, we modified a computationally

efficient method (Krajník et al., 2014), which already proved its

reliability and accuracy in real‐world conditions.

Ways of transporting large objects by multiple UAVs have already

been investigated in Gioioso, Franchi, Salvietti, Scheggi, and Prattichizzo

(2014), Mellinger, Shomin, Michael, and Kumar (2013) and Parra‐Vega,
Sanchez, Izaguirre, Garcia, and Ruiz‐Sanchez (2013). A control scheme

for cooperative simultaneous manipulation of an object by a team of

UAVs is described in Parra‐Vega et al. (2013). The idea of grasping and

manipulating objects by a swarm of UAVs has been also studied in

Gioioso et al. (2014), where the swarm is teleoperated using the free

motion of a human hand. Both these works lack experimental

verification, because the systems were tested only in simulations.

Transport of large objects by multiple UAVs had been achieved in

Mellinger et al. (2013). However, the experiments were done in an

indoor environment under the Vicon3 motion capture system.

Solutions for the Treasure Hunt scenario have already been

presented by two teams participating in the MBZIRC competition

which had worked on this scenario autonomously. The approach

used by the team from ETH Zurich is described in Bähnemann,

Schindler, Kamel, Siegwart, and Nieto (2017), and the approach

used by the team from the University of Bonn is presented in

Nieuwenhuisen et al. (2017). Both teams relied on an electro-

permanent magnetic gripper for grasping ferrous objects, which

are recognized using a color blob detection algorithm. They also

used a similar approach for locating the objects. First, the arena is

cooperatively searched by UAVs to create a map of the objects,

and then an attempt is made to grasp and deliver each object in the

map. However, the solution in Bähnemann et al. (2017) relies on a

Wi‐Fi communication infrastructure, and the authors do not

propose any alternative in the event of communication blackout.

They also do not explain how they solve the problem of multiple

UAVs coordination over the drop‐off zone. In Nieuwenhuisen et al.

(2017), the authors mention a conservative solution for a

disturbed communication network. However, this solution is not

explained in detail, and therefore, their approach cannot be

directly replicated and evaluated. Furthermore, their controller

does not compensate for external factors such as wind, which is a

common disturbance in an outdoor environment.

1.2 | Contribution

The contribution of this paper correlates directly with the expected

contribution of the MBZIRC challenge. A board of respected

scientists4 from leading robotic groups worldwide selected the

Treasure Hunt scenario as the most challenging task in the MBZIRC

event for numerous reasons. This scenario extends state‐of‐the‐art
systems in various ways: Deployment of multiple UAVs in the same

outdoor workspace, multirobot scanning of the environment with no

prior information on the position of objects, online distribution of

tasks to UAVs based on the obtained information, and physical

interaction with the environment. Indeed, physical interaction of

UAVs with objects in an unknown outdoor environment, especially

3http://www.vicon.com/ ‐ Accessed: July 17, 2018

4http://www.mbzirc.com/committee ‐ Accessed: July 17, 2018
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cooperatively (some objects require the cooperation of multiple

UAVs), is a challenging and innovative task, mainly if it must be

solved in demanding windy environments, such as the MBZIRC 2017

venue in Abu Dhabi. The strong wind gusts present in the location

between the coast and the desert significantly influence the precision

and the stability of the UAV controllers, particularly in the final phase

of object grasping, where they are combined with the ground effect.

Further, the light conditions (e.g., the strong and variable sunshine)

make the vision task more complicated than in a laboratory

environment. The multirobot aspect requires rapid communication

and coordination of UAVs, which seemed to be a bottleneck for the

approaches presented by most of the other teams. Our solution to

the challenges caused by unreliable communication is also a

contribution to robotic research.

The overall contribution of our paper goes beyond the MBZIRC

challenge, as it contains a comprehensive description of all

components of the system that can be used in various collaborative

multi‐UAV missions, including physical interaction of robots and the

environment. Although the system is primarily designed for outdoor

deployment with a GNSS signal available, it can be used in

GNSS‐denied conditions with only a slight modification, since object

grasping is realised by visual servoing, which relies on relative

localisation only. Besides object grasping and delivery tasks, the

system has been successfully deployed in numerous multi‐UAV
applications, including detection of sources of radiation and electro-

magnetic fields (Saska, 2017), inspection and documentation of

historical sites (Saska, Kratky, Spurny, & Baca, 2017), reconnaissance

and surveillance missions (Pěnička, Faigl, Váňa, & Saska, 2017;

Pěnička, Saska, Reymann, & Lacroix, 2017), etc.

Another contribution of this paper for the robotic community

is based on the fact that the next MBZIRC event intends to build

on the achievements of MBZIRC 2017, and to propose even more

challenging tasks that are beyond the current state‐of‐the‐art in

robotics. Although 143 teams applied to participate in the 2017

contest, including the best robotic labs worldwide, only four

groups were able to grasp at least one object autonomously during

the competition. To maximize the impact of future MBZIRC events

and to encourage more competition, which will again push the

limits of robotic systems, it is necessary for more teams to succeed

in solving the challenging scenarios. A logical starting point is to

use, or at least be inspired by, the approach that demonstrated the

best performance in the 2017 MBZIRC, which is presented in this

paper. Moreover, we would like to share and highlight the parts of

the system and the phases in its development that brought added

value in comparison with the systems of our competitors. Our

experience and our solutions to the proposed challenges should be

beneficial in further MBZIRC contests, in other robotic competi-

tions, and also for the design of autonomous UAV systems for

deployment in emergency applications. The rules of the competi-

tion forced teams to design a system for immediate deployment

(the preparation time was only 20 min for the multi‐UAV
challenge) and for operation within a given time, without the

option of postponing the start of the mission. This contrasts with

most robotic experiments presented in the literature, where only

successful trials and demos are presented. Short preparation time

and a successful start on demand, without the possibility of

repeated trials, are required by industry and in emergency

applications, and the MBZIRC competition was designed to force

teams to achieve these requirements.

1.3 | Problem statement

In the MBZIRC 2017 Treasure Hunt challenge, three UAVs (with a

maximum size of 120 cm× 120 cm× 50 cm) must locate, grasp, deliver,

and drop a set of objects into a given box within 20min. The set should

contain 10 moving and 10 stationary small objects, as well as three

stationary large objects, all of which are randomly placed inside the

arena. The small objects were approximately 0.370 kg ferrous disks on a

stationary stand or moving TurtleBot2 robot, as shown in Figure 1b–d.

Different colors of the objects—green, blue, and red for the static

objects, and yellow for the dynamic objects—were associated with

different scores, one, two, three, and five points, respectively. The

nonstationary objects were moving at random velocities not exceeding

5 km/hr. Three large orange objects not exceeding 200 cm in length, and

not exceeding 2 kg in weight, were valued at ten points each on

successful transport and delivery by at least two cooperating UAVs into

the dropping zone depicted in Figure 1a. If a large object was moved

into the dropping zone by a single robot, the team obtained five points.

The small objects could be grasped by a single UAV and dropped into a

box placed inside the dropping zone. The objects could be picked up by

a magnetic gripper, a suction gripper, or another device carried onboard

the UAVs. Before the start of each trial, the three UAVs had to be in the

start location.

2 | HARDWARE

The specifications of the MBZIRC challenge described above influence

the decision on which UAV platform to use. Our intention was to reuse

the platforms and the entire system in our follow‐up research, and to

achieve simple replicability of the system in the future. Therefore, we

tried to maximize the use of commercially available off‐the‐shelf UAV
components, and only a few 3D printed specialized tools (sensor holders

and the gripper). This approach reduced development time, increased

reliability, and now enables our system to be used by other universities

with a minimum overhead for technology transfer. It also increases the

impact of this paper, which can be considered as a comprehensive

manual for building a robust multi‐UAV system, even for research

groups without any experience with UAVs.

The proposed UAV platform is a complex system composed of

integrated active members, computational resources, and sensor

modules, shown in a schematic view of the system in Figure 2. The

main structure of each UAV consists of a DJI hexacopter F550 frame and

E310 DJI motors. This choice satisfies the size limitations of

the MBZIRC event, the flight time, and the payload capability that is

necessary for additional sensors, and also for carrying the objects. The
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system is controlled at the lowest level by a PixHawk flight controller

(Meier et al., 2012) that contains a set of sensors, such as accelerometers,

gyroscopes, and magnetometers, which are necessary for stable UAV

flight. The open‐hardware and open‐software architecture is advanta-

geous for the MBZIRC competition, and also for research on multirobot

systems. An Intel NUC‐i7 PC provides sufficient computation power to

solve all the required onboard image processing tasks, and also UAV

coordination, state estimation, and motion planning in the complex

Treasure Hunt challenge. Transport of messages between the onboard

PC and PixHawk autopilot is performed over a serial line using MAVlink

protocol. Communication between the UAVs, which is important for their

coordination, is provided by the Wi‐Fi module embedded in the PC. A

high‐resolution Mobius ActionCam (2018) camera is used for object

detection, and for relative visual localization.

The rules of the competition allowed the use of GNSS and even

more precise navigation systems for localization. To maximize the

accuracy and to increase reliability, our system uses a combination

of the real‐time kinematic (RTK) satellite, which enhances the

precision of position data derived from satellite‐based positioning

systems (e.g. GPS, GLONASS, Galileo, and BeiDou), and a classical

GNSS module attached to the PixHawk controller. Information on

the position is provided in the RTK system by a PRECIS‐BX305

F IGURE 2 Description of components in our UAV platform. ESC: electronic speed controller; GPS: global positioning system; RTK: real‐time
kinematic; UAV: unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]

dropping box

starting zone dropping zone

90 m

60 m

Description of the MBZIRC arena. Description of the object used during
the competition.

Photo of a UAV grasping a static object from the stand. Photo of a UAV grasping a dynamic object from a
TurtleBot2 mobile robot.

(a) (b)

(c) (d)

F IGURE 1 Description of the MBZIRC 2017 competition. For more information, visit http://www.mbzirc.com. UAV: unmanned aerial vehicle
[Color figure can be viewed at wileyonlinelibrary.com]
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GNSS RTK BOARD (GPS L1L2/GLONASS G1/BEIDOU B1B3)

(Tersus‐GNSS, 2017), with accuracy of 10 mm ± 1 parts per million

(ppm) horizontally and 15mm ± 1 ppm vertically when the RTK

device is in the most accurate state, RTK FIX. This RTK system

requires a stationary GNSS receiver, called RTK basestation, which

is placed on a known location. The RTK basestation then broadcasts

its position and measurements from all visible satellites (RTK

corrections) to the UAVs using XBee Pro radio modules (Digi

International, 2017). A custom board was designed to provide

communication of the XBee module with the RTK device.

In principle, the vertical position (altitude) provided by the RTK

GPS is measured above the mean sea level. However, the UAV

does not have any information about the ground‐level profile or

the distance to the objects that are to be grasped, based on the

GPS. This information is obtained using the onboard TeraRanger

One laser rangefinder, which is mounted face‐down and is

connected directly to the onboard PC, where its data are filtered

and used for precise height control. Finally, the objects are

grasped using an OpenGrab EPM v3 electropermanent magnet,

which combines the advantages of electro and permanent magnets

and creates a very strong magnetic contact with ferrous objects

(NicaDrone, 2017). Our custom board (previously mentioned for

managing communication from the XBee module into the RTK

device) also provides a low‐level interface between the main

computer and the gripper.

3 | SOFTWARE SYSTEM STRUCTURE

The proposed solution relies on the robot operating system (ROS),

which is an open‐source set of software libraries and tools commonly

used in the robotic community. Using ROS, the complex MBZIRC

tasks can easily be divided into smaller subtasks (nodes). This also

improves and clarifies the structure of the proposed solution.

Furthermore, the Gazebo robotic simulator can be used for

simulation in the loop, together with firmware from PixHawk, which

provides a very realistic testbed and significantly simplifies testing of

the whole system. Using this realistic simulator, hardware experi-

ments could be carried out in a shorter time and in a safer way than if

direct HW is used. Because changes were double‐checked in the

simulator, we did not experience any serious crash during more than

1 year of intensive preparation for the MBZIRC event.

In this section, the subcomponents of the proposed system are

described. The first two parts explain object detection, object

estimation, and motion prediction for dynamic objects. In the next

subsection, the estimation of the UAV state from all available sensors

is introduced, followed by details on communication in the multirobot

network. Further, the nonlinear controller used for UAV control is

explained, together with the novel MPC‐based approach used for

online design of a feasible and smooth reference for the nonlinear

controller. This is followed by details of high‐level planning built upon

MPC‐based trajectory tracking, which is used for UAV coordination

and collision avoidance when the same workspace is shared. Lastly,

the FSM, which is crucial for managing all subsystems and for

coordinating all UAVs sharing the same workspace, is described. All

these subcomponents are executed on the onboard PC Intel NUC‐i7.

3.1 | Object detection

Since the camera that is used to detect the colored objects has a

rolling shutter, vibrations induced by the drone motors cause the

acquired images to be subject to a specific ‘jelly’ or ‘wobble’ effect,

which makes the use of geometry‐based methods for object

detection (e.g., the Hough transform) problematic (Afolabi, Man,

Liang, Guan, & Krilavičius, 2015; see Figure 3). We therefore

designed a computationally efficient ellipse detection algorithm,

which relies on the use of statistics that are robust to this type of

noise (Krajník et al., 2014). However, the original method described

in Krajník et al. (2014), which used adaptive thresholding to detect

black‐and‐white patterns, had to be extended to process the color

information.

Since the perceived colors are influenced by the light conditions,

and the exact colors of the objects were not known until the actual

contest, we created a semiautomatic autocalibration method that can

learn a Gaussian‐mixture‐based model (GMM) of each color during a

short hover over the objects. Once the GMMs are learned, they are

used to create an RGB color map, which allows the image pixels to be

classified rapidly into object candidates and the background.

The color map is then used in the method (Krajník et al., 2014),

which searches for continuous segments of object‐colored pixels,

F IGURE 3 Object detection in onboard camera images affected by the ‘jelly’ or ‘wobble’ effect, which deforms lines (left image), as well as circular

and square objects (right image). The detection results indicate the 3D relative position (top line) and attributes like roundness, eccentricity and type
(1,2,3 for red, green, and blue static objects and 5 for the yellow moving object) [Color figure can be viewed at wileyonlinelibrary.com]
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establishes their bounding box, the number of pixels, the centroid,

convexity, and compactness and uses these statistics to reject segments

that cannot correspond to circular objects. Then, using the known

object size and camera parameters, the method calculates the relative

3D position of the object. This position is then transformed to a global

3D coordinate frame, and objects that do not appear to be close to the

ground plane are rejected as false positives. Finally, global 3D positions

of the detected objects are forwarded to a mapping module, which

integrates multiple detections of the objects into a single 3D

representation, which is then used by the planning system.

The performance of the method during tests and in the contest

itself indicated computational efficiency and robustness to changing

illumination, which was one the key factors in the robustness of the

entire system used in the MBZIRC competition.

3.2 | Object estimation and motion prediction

Localization of targets with onboard cameras tends to provide data

that are inherently embedded with flaws. The data may be skewed by

phenomena such as signal noise, false positive detections, irregular

detection rate, data blackouts, etc. These issues can hardly be mitigated

during the detection, and some of them (e.g., data blackouts) also

depend on the external environment. Moreover, several moving

targets appear in the MBZIRC challenge and so estimates of

unobserved states such as velocities and heading may help to follow

their position precisely. This leads to a need to filter the detected

position of the targets. We also required the filtration system to be

capable of sorting out measurements belonging to targets that have

been marked as unreliable, for example, due to data blackout being too

frequent. Another requirement comes from the multirobot nature of

the task. A UAV should share information about parts of the map that

are currently occupied. Targets in those areas should then be filtered

out in other UAVs to prevent unrequired grasping of the same target

by multiple UAVs.

In the event that there is a single target in the field of view (FOV)

of the UAV, an Unscented Kalman Filter (UKF) is used as a filter and

as a predictor in conjunction with the car‐like motion model
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where = x yx ( , )no nT[ ] [ ] is the position of the object in the global

coordinate system, ϕ n[ ] is its heading, K n[ ] is the curvature of its

turn, v n[ ] is its scalar velocity, a n[ ] is its scalar acceleration, and Δt is
the time difference. An estimate of the target heading allows its

motion to be tracked, while the onboard camera is oriented with

its wider FOV in favor of detecting sudden changes of the object’s

heading.

However, real‐world scenarios might contain several objects in the

FOV, while some of them are moving. In that case, the UAV needs to

track a particular object independently of the movement of all the objects

in the scene. This requires a local map of the objects to be actively

maintained. Our map model was based on Equation (1) for an arbitrary

number of independent objects. Another state has been included to cover

the type of the object (its color and whether it is moving) as well as the

time of its last update and whether it is currently active. Manipulation of

the objects in the map obeys the following principles:

• An object that has not been seen for more than 5 s is deactivated.

Deactivated objects stay in the map, but their movement is no

longer predicted by the UKF.

• Objects that are deactivated for more than 3 s are deleted from

the map.

• Measurements from the object detector (Section 3.1) are paired

with objects in the map using min‐distance bipartite graph

matching, constrained by the color of the objects.

• Objects located outside of the competition arena or in any of the

locally banned areas (near the dropping zone or around other

UAVs) are deleted from the map, and new measurements in these

areas are discarded.

Additionally, it can be anticipated that grasping attempts may not

be successful at all times. The filter allows a temporarily ban on an

area around a particular object, to avoid deadlock in the grasping

state machine. Such a ban is valid for 30 s in a radius of 4 m around

the object.

3.3 | UAV position estimation

Automatic control of UAVs relies on estimates of the states of the

UAV dynamical system. Namely, knowledge of position and velocity

(both vertical and horizontal) is required to coordinate the movement

for precise picking up and delivery of the object. Our platform is

equipped with several independent sources of information, which are

fused to obtain a single, reliable and smooth estimate of the UAV

pose. An important requirement is to ensure smoothness of the

resulting signal, since the SO (3) state feedback is sensitive to noise.

The main source of data for both the vertical and the horizontal

axes is the PixHawk flight controller. Its extended Kalman filter fuses

present‐day inertial sensors—a three‐axis accelerometer and a gyro-

scope with an altitude pressure sensor and a GPS receiver. Although the

aircraft is already capable of autonomous flight with this off‐the‐shelf
setup, we make use of other sensors to provide more precise

localization and thus better precision of object manipulation.

3.3.1 | Horizontal position estimation

The position estimates in the lateral axes are based on the estimate

provided by PixHawk, namely positions xp, and velocities ẋp. Although
the precision of the estimates may be satisfactory locally for short time

intervals, they are prone to significant drift in time spans of minutes.
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To correct this drift, and thus to ensure repeatability of the experiments

and, for example, locating the dropping zone, the horizontal position

from PixHawk is corrected by differential RTK GPS. Position measure-

ments from the RTK GPS receiver are fused using the linear Kalman

filter with the model

= = Δ
Δ( )ttA 1 00 1 , B ,⎜ ⎟⎛

⎝
⎞
⎠ (2)

where = ++x Ax Bune ne n[ 1] [ ] [ ] is the linear system equation,

= x yx ( , )ne nT[ ] [ ] is the state vector finally used for control, and u n[ ] is
the system input. According to our experience,

 ∀+ ̇ Δ =
=
∑ t kx x x ,p

n
k

np n kp[0] 0 [ ] [ ] [ ] (3)

does not hold for the position and velocity estimate provided by

PixHawk. This is a very useful observation for somebody building a

fully autonomous UAV system using an off‐the‐shelf controller. The
input vector u consists of velocities obtained as differentiated

positions xp (later integrated by the filter), which ensures that the

proposed filter does not introduce any drift into the resulting

estimate when no RTK GPS corrections are received. In situations

when the position is not being corrected, the resulting estimate

follows the same relative state trajectory as xp, just shifted according

to the latest correction. The final tuning of the filter resulted in

process covariance =Q diag(1, 1) and measurement covariance

= e eR diag(10 3, 10 3). Moreover, the RTK GPS corrections were

saturated to ever impose maximally 0.25m difference from the

internal state of the filter. Such technique limits sudden changes of

the estimated position, which was necessary for safety of the flight.

The multirobotic scenario requires a coordinate space to be shared

among all three UAVs. The base of our Cartesian system is set to

predefined GPS coordinates and its orientation is according to the East‐
North‐Up convention. Therefore, the first, second, and third axis point to

the east, north and upwards, respectively. A point of origin is measured

using the RTK GPS, to which all independent coordinate systems of all

UAVs are then shifted after each of them is powered up. The common

base station of the differential RTK GPS then ensures that all UAV

estimates are corrected to lie within the same global coordinates.

3.3.2 | Vertical position estimation

In contrast with the horizontal position, estimates of the height rely

much less on PixHawk. The linear Kalman filter for the vertical axis

also uses the differentiated PixHawk height in the same manner as

the horizontal axis. However, height corrections come not only from

the differential RTK GPS, but also from the down‐facing TeraRanger

rangefinder and the object detector, which is able to provide an

estimate of the relative distance, when flying above an object. The

estimator provides an option to switch between these sources of

data, depending on the current task and the circumstances.

It is feasible to correct the height using the TeraRanger

rangefinder, when flying above uneven ground, but it cannot be

used reliably when the down‐facing sensor is obstructed, for

example, when carrying an object, or when there might be a foreign

object on the ground, namely the dropping box. RTK GPS can provide

precise relative height measurements, but only when RTK FIX has

been established. This depends on the strength of the GNSS signal

and on the quality of the communication link between the base

station and the UAV. Finally, correcting the altitude using data from

the object detector may bring in unexpected steps in the signal due to

false‐positive detections. Since none of the additional sources is

completely reliable, we implemented a safety mechanism for

detecting anomalies, which can toggle off any of the above‐
mentioned sensors from being fused.

3.4 | Communication between UAVs

In multirobot systems, reliable communication is required mainly if

there is a need for direct cooperation between multiple autono-

mous vehicles, as in the case when large objects are to be carried

cooperatively. However, a reliable communication channel is a

crucial tool even for coordinating the UAV team sharing the same

workspace for grasping small objects individually, as was demon-

strated in the MBZIRC competition. The rules of the MBZIRC

event specified that all teams are obliged to share the same 5 GHz

Wi‐Fi network, the reliability of which was influenced by

interference occurring during transmission. This may easily lead

to packet loss, which can interrupt the connection. Decreased

reliability of the communication link during the entire mission is

not limited to the MBZIRC case. It is a typical feature of most UAV

applications in demanding outdoor conditions. The MBZIRC

contest therefore provided an interesting and realistic evaluation

scenario for multi‐UAV systems, in which it cannot be assumed

that a complete communication network is available at all times. In

our opinion, our system achieved significantly better performance

in the multi‐UAV scenario than the other teams, due to the

following strategy. We attempted to maximize utilization of the

communication channel, if it was available, to achieve optimal

behavior of the system. However, it was important to be able to

degrade into a system not relying on the communication

infrastructure at all. This was done at the cost of decreased

performance, but our system still provided safe flight operation of

multiple UAVs solving the given task. A smooth and possibly

repeated transition between the optimal behavior relying on

communication and the nonoptimal but safe and still working

system without communication, and back, is provided by the FSM

approach described in Section 3.8.

The software part responsible for managing communication

between UAVs is based on the ROS master within the ROS network.

To increase the robustness of the communication net in the event of

a failure of the robot that is the leader in the ROS master scheme, the

proposed method relies on multiple independent ROS masters

assigned to each of the UAVs. The ROS package multimaster_fkie

(Tiderko, 2017) is used to maintain communication between these

ROS masters. This package offers a set of nodes to establish and
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manage a multimaster network, which is necessary for such tasks

with the team of UAVs in the event of an unreliable communication

infrastructure.

To reduce the load of the communication channels managed by

the ROS master network, only selected information (topics) are

exchanged between the team members:

• the actual position of the UAV in the global coordination system,

• the actual state of the high‐level state machine being part of

the FSM,

• the estimated position of the object during grasping,

• the planned trajectory.

These topics are used in nodes for proactive collision‐free
planning, fail‐safe reactive collision avoidance, and object estima-

tion. The bandwidth of the Wi‐Fi network necessary for transmis-

sion of all mentioned information for a single UAV is

approximately 10 kB/s.

3.5 | Low‐level UAV control

The position controller uses the estimated state as feedback to

follow the trajectories given as an output of the high‐level trajectory
planner. In many previous works, a backstepping approach is used for

UAV control, because the attitude dynamics can be assumed to be

faster than the dynamics governing the position, so linearized

controllers are used for both loops (Herissé, Hamel, Mahony, &

Russotto, 2012; Mellinger et al., 2013; Weiss, Scaramuzza, &

Siegwart, 2011). However, we need the system to be capable of

large deviations from the hover configuration during operations like

fast mapping of objects, or for strong wind compensation. We

therefore use a nonlinear controller. Let us consider an inertial

reference frame denoted by e e e[ , , ]1 2 3 and a body reference

frame centered in the center of mass of the vehicle with an

orientation denoted by =R b b b[ , , ]1 2 3 , where  SOR (3). The
dynamic model of the vehicle can be expressed as

Ω
Ω Ω Ω

=
= +
=
+ × =

m f mg
x vv Re e
R R

J J M

˙ ,
˙ ,
˙ ˆ ,
˙ ,

3 3
(4)

where  x 3 is the Cartesian position of the vehicle expressed in the

inertial frame,  v 3 is the velocity of the vehicle in the inertial frame,

 m is the mass,  f is the net thrust,  Ω 3 is the angular

velocity in the body‐fixed frame, and  ×J R3 3 is the inertia matrix

with respect to the body frame. The hat symbol ⋅̂ denotes the skew‐
symmetry operator according to = ×xy x yˆ for all  x y, 3, g is the

standard gravitational acceleration, and ⊤=e [0 0 1]3 . The total

moment  M 3, with ⊤= M M MM [ ]1 2 3 , along all axes of the body‐
fixed frame and the thrust  τ are control inputs of the plant. The

dynamics of the rotors and propellers are neglected, and it is assumed

that the force of each propeller is directly controlled. The total thrust,

= =f f∑ j j16 , acts in the direction of the z‐axis of the body‐fixed frame,

which is orthogonal to the plane defined by the centers of the six

propellers. The relationship between a single motor thrust fj, the net

thrust f , and the moments M can be written as

=
− − −

− −
− − −

f
M
M
M
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(5)

where = °c cos(30 ), = °s sin(30 ), and d is the distance from the

center of mass to the center of each rotor in the b1, b2 plane. For

nonzero values of d , Equation (5) can be inverted using the right

pseudoinverse.

For control, we build on the work in Lee, Leok and McClamroch

(2013) and in Mellinger and Kumar (2011) with control inputs  f
and  M 3 chosen as

Ω Ω Ω Ω Ω= − − + × − −Ω Ωk k J JM e e R R R R( ˆ ˙ ),R R T c c T c c (6)

⋅ ⋅

τ τ τ= − − − − − −

+ =

( ) ∫ ∫f k k d k d k mg
m

e R R e e e e
x Re f Re

( )
¨ ,

x x ib
t T x iw

t
x v v

d
0 0 3

3 3 (7)

with ẍd the desired acceleration, and kiw , kib, kx , kv , kR, Ωk positive

definite terms. We extend the referenced controllers by including

two integral terms which accumulate the error in the body frame and

in the world frame, respectively. We include both terms to provide

the opportunity to capture external disturbances (e.g., wind)

separately from internal disturbances (e.g., an inefficient prop or a

payload imbalance), particularly when the vehicle is permitted to yaw

or rotate about the vertical axis. The thrust and the moments are

then converted to motor rates according to the characteristic of the

proposed vehicle. Subscript C denotes a commanded value, and

=R b b b[ , , ]C C C C1, 2, 3, is calculated as

∣∣ ∣∣

∣∣ ∣∣

⊤ψ ψ= − =

=
×
×

= ×

b b f
f

b b b
b b b b b

[ sin , cos , 0] , ,
, .

des des des C

C des
des C

2, 3,

1, 2, 3
2, 3 2, 3 1 (8)

Note that here we have to define b des2, based on the yaw, instead of

defining b des1, as it was defined in Mellinger and Kumar, 2011, due to

a different Euler angle convention (we use the ZYX convention

instead of ZXY). The quantities

⊤ ⊤ ∨ ⊤Ω Ω= − = −

= − = −
Ωe R R R R e R R

e x x e x x
( ) , ,

, ˙ ˙ ,
R C C C C

x d v d

1
2 (9)

represent the orientation, the angular rate errors, and the translation

errors, respectively. The symbol ∨. represents the vee map

→so(3) 3. If the initial attitude error is less than °90 , the zero

equilibrium of the tracking error is exponentially stable, that

is, ≡⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
Ωe e e e 0 0 0 0[ ] [ ]x v R .
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3.6 | Trajectory tracking

The state feedback, described in Section 3.5, which provides precise

position and velocity control, requires a smooth and feasible

reference. The reference consists of all states of the translational

dynamics—position, velocity, and acceleration—and is provided at

100Hz, the same rate as the resulting control signal. There are

various ways to create the reference. Typically, thanks to the

differential flatness of the UAV dynamical system, a QP optimization

can be solved to find a polynomial given the initial and final state

conditions (Mellinger & Kumar, 2011), which can then be sampled to

create the reference. In our case, we chose to generate the reference

using a MPC approach. MPC ensures that the resulting trajectory

satisfies a given model as well as the dynamical constraints, which are

imposed on the model. As it optimizes control actions over a

prediction horizon, it can react adequately to unfeasible changes in

the reference trajectory, and can also create proper feed‐forward

proactions to minimize the control error in the future.

The MPC tracker uses a QP formulation of a minimal sum‐of‐
squares problem, where the optimal control action u is found for a

future prediction horizon of states = x x x y y y z z zx ( , ˙ , ¨ , , ˙ , ¨ , , ˙, ¨)n nT[ ] [ ] by

minimizing the function

= +… − … −
=

−

… −

… −

( )∑x u e Qe u Pu
x xx x

V( , ) 1
2 ,

s.t. ≥ ,
≤ ,

m m i
m

iT i iT i
m L
m U

[0, , 1] [0, , 1] 1
1

[ ] [ ] [ ] [ ]
[0, , 1]
[0, , 1]

(10)

where = − ̃e x xn n n[ ] [ ] [ ] is the control error, x̃ n[ ] is the setpoint for the

MPC, m is the length of the prediction horizon, and xL and xK
represent box constraints on states. The control error e n[ ] requires
the formation of a general prediction of x n[ ], which was described

previously in Baca, Loianno, and Saska (2016). In our case, the

optimized control action is not directly used to control the real UAV.

Instead, it controls a model of the UAV translational dynamics in real‐
time simulation. States of the simulated model are then sampled at

100Hz to create the reference for the state feedback. This is a novel

approach in UAV control, where benefits of both nonlinear control

and linear MPC are used together.

An important notion is the difference between the trajectory

setpoint x̃ and the reference, which is generated by the MPC tracker.

The trajectory setpoint x̃ is provided by an operator or a program. No

requirements are imposed on x̃ . In contrast, the reference produced

by the MPC Tracker is feasible, satisfies the UAV dynamics and state

constraints, and serves as a control reference for the SO (3) state

feedback.

The simulated model is a linear time‐invariant system covering

the third‐order translational dynamics of the UAV with sampling of

Δ =t 0.01 s. In our MPC formulation, Δt is different for the first

iteration (Δ =t 0.01 s) and for all the other iterations (Δ =t 0.2 s). This

allows smooth control of the simulation, if the MPC is executed at

100Hz, while there is a relatively sparse distribution of further

states, which allows us to have a much longer prediction horizon than

there would normally be with Δt being constant. As in traditional

MPC, only the control action in the step is used to control the model

in the simulation. In the meantime, a new instance of the optimization

task is formulated, starting from new initial conditions, which results

in a fresh control action for the next step. This method is valid only if

the MPC can be solved repeatedly within 0.01 s.

The penalization parameters Q and P in Equation (10) were found

empirically. As in our previous work (Baca et al., 2016), we used the

move blocking technique to effectively prolong the prediction horizon

while maintaining the computational complexity. The particular

control action distribution for the MBZIRC competition was as

=U (1 1 1 1 1 5 5 5 5 5 10), (11)

which results in an 8‐s prediction horizon with only 33 variables in

the optimization task.

Creating the control reference for the state feedback with MPC

has several advantages over conventional solutions. It produces a

reference that is feasible according to the specified model, which

makes it safe to execute. If the setpoint for MPC is not feasible, the

resulting reference is feasible with respect to Equation (10). The

inherent predictive nature of MPC provides trajectory tracking

optimizing actions over the future, which makes it ideal for tracking

moving targets, such as the moving objects in the competition.

As defined in Equation (10), MPC handles state constraints as

linear constraints. We impose maximum acceleration and velocity

box constraints on the UAV to ensure safe and feasible resulting

trajectories. The optimization being solved lies in the family of

linearly constrained quadratic programming, which acquires a global

optimum in a convex polytope. A custom solver, based on a

sequential closed‐form solution, has been implemented to ensure

guaranteed real‐time performance.

MPC‐based trajectory tracking operates in two modes, as follows.

The first simple positioning mode, used mainly for short distance

position changes, applies either relative or absolute position

commands, and tries to reach a given position in the fastest way

with respect to the MPC scheme. The second trajectory‐following

mode used by high‐level trajectory planning (Section 3.7) uses a

precomputed path plan, and tries to precisely track the trajectory

while respecting the plan waypoints schedule, which is crucial for

multirobot collision‐free operation.

Having the predictions of the future movement for all UAVs allows

us to extend the capability of the MPC tracker to avoid future collisions.

When communication between the aircraft is established, they

exchange their future trajectory predictions and act according to a

decentralized mechanics, which will alter their courses to avoid the

collision, based on sorting the UAVs by priorities. If there is a potential

collision between two UAVs, the UAV with lower priority will avoid the

other UAV by changing to a higher flight level. The system also allows

priorities to be reassigned dynamically in the following cases:

• UAV should be avoided at all times (its priority is higher by

definition). This may occur when it is currently grasping an object,

or when its avoidance mechanism is accidentally turned off.
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• UAV should avoid the other aircraft even if it has higher priority.

Such a situation occurs when the other machine does not comply

with the mechanics for any reason.

3.7 | High‐level trajectory planning

High‐level trajectory planning is built on top of MPC‐based Trajectory

tracking, which is used for precise tracking of the planned trajectories.

The onboard online trajectory planning mechanism is used in two

main parts of the Treasure Hunt scenario. The first task is Sweeping

of the arena, where the team of UAVs is required to localize the

objects within the arena, and either save their locations to the global

map (at the beginning of the mission) or immediately try to grasp the

first detected object (later in the mission, once all objects detected in

the initial map have been processed, the grasping was successful, or

failed repeatedly). The second online trajectory planning is utilized in

Proactive collision‐free planning, which is involved in cases where

one UAV has to fly into another position. For example, when it holds

the grasped object and wants to drop it into the dropping box.

3.7.1 | Sweeping

Sweeping the arena designed for the MBZIRC Treasure Hunt

challenge involves localizing both dynamic and static objects. The

trajectory planning for so‐called sweeping can be described as

coverage path planning (CPP; Galceran & Carreras, 2013), where for

a given area the CPP should find a path from which the entire

workplace can be scanned with an onboard sensor, in our case an

onboard camera.

The proposed multirobot CPP algorithm is based on simple

area decomposition into three equally large zones that split the

area along the larger side (Figure 4). Each arena zone has one UAV

assigned to localize and pick up the objects from. All UAVs then

plan the coverage path using Boustrophedon coverage (Choset &

Pignon, 1998) in each part of the area separately. Using

Boustrophedon coverage, we create zigzag paths, as shown in

Figure 5, such that the reduced FOV entirely covers the particular

arena zone. The reduced FOV is set based on the required overlap

in the coverage (set to 20% during the competition) and on the real

FOV camera projection to the ground plane with respect to the

sweeping altitude that is used.

To produce smooth trajectories for constant speed object

detection, the Dubins vehicle model (Dubins, 1957) is used to create

the final path between the waypoints. The minimal turning radius

∕ρ = v ac2 max of the Dubins vehicle was selected based on the desired

constant velocity vc (~ 3 ms–1) and the maximal acceleration of the

UAV amax (~ 2ms–2), using an equation of circular motion with

constant speed. The sweeping high‐level trajectory planning is

summarized in Figure 6, where the shown trajectories for all three

UAVs were further used in the two following approaches in different

stages of the Treasure Hunt scenario.

In the first approach, called static sweeping, the UAVs follow the

created trajectories at a height (~ 7m) and simultaneously detect the

colored objects while the global map of the static objects is being

created. After this initial coverage, the approximate positions of the

detected static objects are estimated based on multiple detections of

the same object. The second approach, called dynamic sweeping, is

applied later in the schedule of the task, and the UAVs use similar paths

as in the static sweeping. However, the sampled trajectories are used

repeatedly (not just once, as in the static sweeping) and the UAVs do

not create a global map. Instead, each UAV tries to find and estimate

the position of any object while following the sweeping trajectory.

When any object is located, the trajectory following is stopped and the

UAV tries to grasp the object immediately. Either after successful

grasping and dropping of the object, or after a number of unsuccessful

dropping box

starting zone dropping zone

part1 part2 part3

F IGURE 4 Decomposition of the Mohamed Bin Zayed
International Robotics Challenge arena into three equally large

zones [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Boustrophedon coverage of the decomposed
competition arena. FOV: field of view [Color figure can be viewed at

wileyonlinelibrary.com]

F IGURE 6 Sweeping trajectories based on Boustrophedon
coverage using the Dubins vehicle and decomposition of the arena

into three distinct parts, one for each UAV. UAV: unmanned aerial
vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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grasps, the UAV continues with dynamic sweeping from the last

trajectory sample.

3.7.2 | Proactive collision‐free planning

Our strategy for covering the Treasure Hunt competition arena is based

on decomposition into three equally large zones for each of the UAVs

(Figure 4). Unfortunately, the dropping zone is located in one‐third of

the competition arena. After successful grasping, the UAV in part 1

therefore has to fly through the remaining zones to drop the object.

Because there is a possibility of colliding with another UAV during this

flight through the remaining zones, proactive collision‐free planning has

to be used. The actual positions of the UAVs are known due to

information sharing, as was explained in Section 3.4. However, theWi‐Fi
communication infrastructure is not reliable and, as mentioned, a

multirobot system deployed in real world conditions should be robust to

losing Wi‐Fi communication. Therefore, we decided to use different

flying heights for each of the UAVs, which minimizes the possibility of a

collision, without any additional planning. Unfortunately, while complet-

ing this task the UAVs cannot maintain only these heights during the

mission, as they have to descend for events such as grasping the objects

and then dropping them. These events take most of the overall flight

time, because they require a complicated grasping manoeuvre and

hovering in front of the dropping zone, if it is sharing with other UAVs.

Moreover, the grasping manoeuvre can be repeated several times

before the object is gripped.

The proposed solution for finding a collision‐free trajectory uses

four assumptions derived from the MBZIRC rules, which are,

however, valid for most cooperative transport applications:

• A Collision can occur only if a UAV leaves its dedicated height.

• The position of the UAV in the x‐axis and in the y‐axis does not

alter rapidly in the event that it flies out of its safe altitude (the

grasping and dropping manoeuvres are carried out following

strictly vertical trajectories that accept grasping of dynamic

objects, but where the lateral movement is also minor).

• The shape of the competition workspace is convex.

• At most three UAVs are used in the environment (this assumption is

valid only for the MBZIRC Treasure Hunt task, but an extension of

the approach is straightforward for different numbers of robots).

Thanks to these assumptions, the method for very rapidly computing a

collision‐free trajectory can be simplified to finding a collision‐free

path in 2D (at the dedicated height) between two points, where only

two obstacles can occur. These obstacles are circles centered on the x
and y coordinates of neighboring UAVs with safety radius ra. It is

prohibited to encroach on these circles. The safety radius of the circles

depends on the speed of the UAVs which, for security reasons in the

MBZIRC competition, was restricted to a maximum of 30 km/hr. We

used a detection radius (the relative distance between UAVs in which

the avoidance maneuver is initiated) of 5m radius during the

competition, while the critical radius in which the UAVs are considered

to be in a collision is 0.8m.

Based on the previously realized experimental comparison of

available path planning approaches (Saska, Kulich, & Preucil, 2006), a

visibility graph method (Lozano‐Pérez & Wesley, 1979) was applied

to solve the collision‐free planning problem. The method provides the

shortest path and it is sufficiently fast in simple situations including

limited number of obstacles. Only four possible paths in the graph

consisting of tangent lines to circles, which represent the obstacle,

and the circle segments can be considered as a candidate solution in

our case of two obstacles. The solution can, therefore, be found

analytically in a very short time (possibly in each control step) with

negligible burden on the processor. See examples of trajectories

generated by proactive collision‐free planning in Figure 7a–d.

A collision‐free trajectory exists only for described planning when

the start points or the end points are not inside the safety radius ra of

another UAV. In situations when a UAV is already inside the safety

radius ra of another UAV, the UAV finds a plan into the nearest position

that is not in conflict with a UAV, and the collision‐free planning

procedure is initiated. If the high‐level planning system requires to fly

into a position, which is occupied by another UAV, then a temporary

goal position is set instead. This position is the closest feasible position

to the original goal such that it lies on the original trajectory. The UAV

then waits for up to 1.5min until the goal position is available again. If

the goal position is not freed within this time, it is assumed that the

information about the occupation of the goal position is incorrect.

During the MBZIRC competition, the planning was repeated five times

per second, and in the event of a communication interruption, the last

received states of other UAVs were considered as correct for 5 s.

3.8 | Failure recovery and synchronization jobs
manager

The main core of the system is the FSM concept, which is used for

managing all subsystems. It increases the robustness of the entire

A path without obstacles. A path with one obstacle. A path with two obstacles. A path with two obstacles.

(a) (b) (c) (d)

F IGURE 7 Examples of trajectories generated by fast proactive collision‐free planning. The black circles denote obstacles. The red path shows
the shortest collision‐free trajectory, and the gray paths denote other collision‐free paths [Color figure can be viewed at wileyonlinelibrary.com]
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code structure resolving the remaining few subsystem failure cases

due to wrong sequential and concurrent operations. In the proposed

system, the FSM is designed using SMACH (Bohren, 2017), a ROS‐
independent Python library, and it is fully integrated into the

designed ROS framework.

As was mentioned in the introduction, the entire FSM structure

may be considered as a hierarchical state machine with synchroniza-

tion and failure recovery abilities. For simplicity, we will refer to the

components of the FSM as state machines in this section. In Figures 8,

9, 10, and 12, the internal states of the FSM levels (the so‐called state

machines) are visualized by rectangles, and the nested lower‐level

state machines are visualized by double‐line rectangles, such as the

Treasure Hunt mission state machine introduced in Figure 8a by the

Treasure Hunt mission rectangle, and described in detail in

Figure 8b. Transitions between two states and from one state to a

lower‐level state machine are marked by the arrow with a label of an

outcome describing the transition. Dotted terminal states represent

the transition that is called after returning to a higher level state

machine. The land event is called whenever any state produces an

outcome that means that the UAV cannot continue in its mission.

The diagram of the main state machine is visualized in Figure 8a. In

the first step, the trajectories for static sweeping and also for dynamic

sweeping in the predefined part of the competition arena (see Section

3.7.1) are loaded, and an automatic take off is called. Once the UAV is

(a)

(b)

F IGURE 8 The structure of the FSM tool. FSM: failure recovery and synchronization jobs manager; UAV: unmanned aerial vehicle
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F IGURE 9 Diagram of the static sweeping state machine

Dynamic sweeping state machine

Flying dynamic sweeping trajectory
&

Detection and estimation
of object

Grasp the object

Fly above the waiting point

Descend to the
waiting point

Wait for available
dropping zone

Drop the object

succeeded

succeeded

succeeded

succeeded

succeeded
grasping

was unsuccessful

succeeded

F IGURE 10 Diagram of the dynamic sweeping state machine
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in the air, the mission state machine is activated (Figure 8b). The

mission is a concurrent state machine that sequentially runs the static

sweeping procedure and the dynamic sweeping procedure, while

simultaneously controlling the voltage of the battery. If the battery is

discharged, the state machine terminates all currently executed tasks

of the UAV, and a land event is called. The level of voltage for battery

discharge was set experimentally for each battery type.

The static sweeping state machine (Figure 9) starts by following

the sweeping trajectory and creating a map with approximate

positions of the static objects. After this initial coverage of the

competition arena, an attempt is made to grasp the nearest estimated

static object in the map. The grasping procedure is shown in Figure 12.

Initially, the state machine starts with the object detection mechanism.

Whenever an object is located, the UAV tries to align itself

horizontally above the estimated position of the object and then to

descend to the grasping height of 1.5m above the ground. Once the

UAV has reached the desired height and it is aligned above the object,

it tries to grasp the object. Whenever the object is lost in the steps

after descending to the grasping height, the UAV ascends and repeats

these steps again. The steps are also repeated if the grasping fails.

Only two attempts are made to grasp the estimated object. If the UAV

was not successful in these attempts, the state machine returns the

UAV to the safe flying height and it is terminated with the outcome

that the grasping was unsuccessful. After a successful grasp, the UAV

also ascends to the safe flying height, but the grasping state machine

outputs that the grasp was successful. The decision as to whether the

UAV is carrying an object is made via a feedback from the Hall effect

sensors that are placed on the gripper. To avoid deadlock, the state

machine is terminated in the first node if the object is not found within

a certain time.

dropping zone

starting zone

uav1

uav3

uav2

Position of the waiting point in the MBZIRC arena.

time [s]

0 10 20 30 40 50

uav1

uav2

uav3

Gantt diagram of the time window for particular
UAVs.

(a) (b)

F IGURE 11 Waiting position around the dropping zone, and a Gantt diagram of the proposed time window strategy. The index of the UAV
indicates to which part of the arena the UAV belongs. (a) Position of the waiting point in the MBZIRC arena. (b) Gantt diagram of the time

window for particular UAVs. MBZIRC: Mohamed Bin Zayed International Robotics Challenge; UAV: unmanned aerial vehicle [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 12 Diagram of the grasping state machine
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The static sweeping state machine reacts to unsuccessful

outcomes from the grasping procedure by selecting a new object

for grasping from the map. When the grasping attempt was

successful and the UAV is carrying the object, the UAV flies at its

safe height to a position above the waiting point. The waiting point

is selected based on the part of the competition arena assigned to

the UAV. During the MBZIRC competition, the safe flying heights

for part 1, part 2, and part 3 were 3, 4, and 5 m, respectively. The

waiting points were located 7 m (measured in x , y plain) from

the center of the dropping box (Figure 11a). Once the UAV reaches

the position above the waiting point at its safe height, it descends

to the dropping height of 1.5 m above the ground. At this waiting

point, the UAV hovers until the moment when the dropping zone is

not occupied by any other UAV, if the communication infrastruc-

ture is available, or until the UAV has access to the dropping zone

based on the time windows, if the communication channel cannot

be used for negotiation and for sharing the status of the

dropping zone.

The negotiation about access to the dropping zone is based on

queries of the current UAV on its waiting position addressed to

neighboring UAVs. The neighboring UAV responds with confirmation

that allows the current UAV to access the zone, but only when the

neighboring UAV is not inside this zone, or if the neighboring UAV

has not been waiting for access for longer than the current UAV. The

current UAV starts with the dropping maneuver only when it

receives confirmations from all neighboring UAVs. The negotiation

about access to the dropping zone is carried out repeatedly until the

UAV receives confirmations.

If communication has been lost for more than a predefined time

during the mission, all UAVs will switch to a strategy with time

windows for accessing the zone to avoid collisions in the dropping

zone. Time windows 10 s in length are used for each UAV. This range

of time windows provides two time intervals for dropping for each

UAV per minute. The UAV in part 1 can be in the restricted area

around the dropping zone in the 0–9 s time interval, the UAV in part 2

can be there in the 10–19 s time interval, and the UAV in the part 3

can be there in the 20–29 s time interval. This strategy is the same for

accessing the dropping area in the second half of the minute, so the

intervals are offset by 30 s (Figure 11b). The UAV can call the dropping

procedure only when it is in the waiting position at the dropping

height, and its time window starts. This strategy is not as effective as

negotiation and sharing of the status of the dropping zone, but it is

safer in the case of a problematic communication network. This

strategy requires the clocks on the UAVs to be initially synchronized

within a few milliseconds using chrony—an implementation of the

network time protocol.

The dropping maneuver is done in sequence: Flying above the

dropping box at the dropping height, dropping the object, and

returning to the UAV safe height above the waiting position. After

dropping the object, the state machine initializes the grasping

procedure with the next estimated object in the map. This is done

until all detected objects have been grasped, or an attempt has been

made to grasp them, in the case of a grasping failure.

In the dynamic sweeping state machine (Figure 10), the UAV flies

the dynamic sweeping trajectory, and when any object is detected

and its position is estimated, the UAV immediately tries to grasp it.

After successful grasping and dropping, the UAV flies back into the

dynamic sweeping trajectory and continues with dynamic sweeping

while simultaneously looking for the remaining objects. This

approach is not as effective as the initial static sweeping procedure,

where the UAVs could fly for another object in the map directly, and

minimize the overall flight time, but it is more robust. In the ideal

case of perfect mapping and grasping procedures, all static objects

are grasped during the static sweeping part, and only the dynamic

objects are hunted during the dynamic sweeping. In the demanding

real‐world conditions of the MBZIRC arena, with changing light

conditions and wind gusts, many objects were not grasped in the first

phase of the mission. This was due to a safety procedure that allowed

a limited number of grasping attempts per object to avoid a deadlock.

These missed objects could be grasped later, in the dynamic

sweeping part, as the local environment conditions changed.

Another interesting property of this approach is the possibility to

exchange the sweeping trajectories, and therefore the operational

zones and waiting positions between the UAVs after a given period

of the mission. This increases the robustness and the performance of

the overall system in the event of a failure or a malfunction of a UAV

subsystem. Even if all components of all UAVs are fully functional as

designed, each UAV in the team behaves differently in different

tasks, and it often happened that a UAV could accomplish a task in

which another team member failed, and vice versa. This is another

useful lesson learned during the MBZIRC event that should be

adapted for designing multirobot systems, if possible. Finally, splitting

the static object grasping in the initial sweeping part and the

subsequent grasping of dynamic objects and the remaining static

objects increases the overall system robustness. There is a much

lower probability of a UAV crash during static object grasping. This

has been shown in numerous realistic complex simulations, and also

during system testing and its deployment in the competition.

4 | EXPERIMENTAL RESULTS

In this section, we present both the experimental results achieved

while preparing for the Treasure Hunt scenario, and also the

performance of the system during the MBZIRC competition. The

remainder of this section is divided into main parts, where we

present the experimental results achieved in the simulator, during

the preparations for the competition in South Bohemia, in the final

tests in a challenging desert environment and in the course of the

MBZIRC competition. A video attachment to this paper is available at

website http://mrs.felk.cvut.cz/jfr2018treasurehunt.

4.1 | Robotic simulator

The system was initially developed using the Gazebo robotic

simulator, which was used as the simulation in the loop, together
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with the PixHawk firmware. Using the robotic simulator, the process

of developing the subsystems and integrating the entire system was

carried out significantly faster and more safely than when using the

real system directly. In addition, by modeling the whole scenario in

the simulator and by testing the behavior of the complex FSM

approach in it, the complete system achieved the necessary level of

reliability for deployment in tasks such as the Treasure Hunt.

The underlying layers of the control pipeline, namely, the UAV

state estimation, control, tracking, and predictive collision avoidance,

were extensively tested using the Gazebo simulator. To show the

system robustness, we conducted 24‐hr simulated flights of five

UAVs in an area of 100× 100m. Each UAV followed an independent

random walk reference in the same height. Without the collision

avoidance technique, the median time of the first collision between

any of the UAVs was 104 s, from total of 495 simulated scenarios

(simulation was always restarted after the first collision). With the

collision avoidance mechanism, there was not a single collision within

the 24 hr of the experiment, while the minimal registered distance

between the UAVs was 1.21m, which is still 50% more than

the collision distance 0.8 m of the used platforms. See Table 1 for the

comparison of percentiles of duration of the experiment before the

first collision occurred.

The results from 20 simulations of the complete MBZIRC 2017

Treasure Hunt scenario are shown in Table 2. Each of these

simulations contained 10 static and 10 dynamic objects, which were

randomly placed in a simulated MBZIRC arena. Snapshots from

simulation are shown in Figure 13. We expected that the dynamic

objects will move according to some motion model that is predictable

and smooth. Therefore, we modeled the movement of the dynamic

objects in simulation using the car‐like motion model, where the

velocity of the object did not exceed 0.3 m/s. Due to the movement

type of dynamic objects being uncertain, the mission was divided into

two parts. The first part is the safe part of the mission, where only

the static objects are attempted to be grasped and delivered. After

this part is finished, the rest of objects will be targeted regardless

of whether they are static or dynamic. Results from the simulations in

Table 2 show that the system is capable of collecting all targets to the

dropping box in the competition time interval of 20min. The best

time of finishing the mission was 12.1 min and the worst was

17.4 min. The average time needed was 13.6 min. Results in Table 2

also show that all static objects were grasped faster than the fastest

dynamic object. Furthermore, thanks to using collision avoidance

methods, there was no collision between members of the team

during the mission. The closest any UAVs got to each other was

1.9m, which only happened in one of the simulations, and in general

the mutual distances were higher than that.

4.2 | Experimental camps in the Czech Republic

Key parts of the proposed system were tested in the course of

experimental camps held in the countryside of South Bohemia in

the Czech Republic throughout the year before the competition

(Figure 14). Repeated experimental verification of key parts of the

proposed system was necessary to test phenomena that are difficult

to simulate, and also to discover issues that were not present in our

previous hardware experiments without physical interaction of the

robot with the real‐world environment. One issue that was

discovered was the influence of the force produced by the propellers

on the carried objects. This exposed the need for a stronger magnetic

gripper, which we then designed. Another discovered issue was the

ground effect caused by the objects. This manifested itself as

turbulence in the last phase of the grasping maneuver.

The most crucial parts of the system were the low‐level UAV

control and the MPC‐based trajectory tracking, used for precise

positioning of the UAV. These were thoroughly tested to obtain the

centimeter precision required for the grasping task. The MPC‐based
trajectory tracking used during the colored object mapping is shown in

Figure 14a. In addition, initial testing of the object detection was

carried out. However, in accordance with the initial specification of the

TABLE 1 Percentiles of duration of the experiment before the
first collision occurred

Percentile 0.5 0.75 0.95 0.99

Without the avoidance 104 s 152 s 264 s 431 s

With the avoidance – – – –

Note. The results were obtained in two 24‐hr simulated flights (one with

and one without the collision avoidance mechanism used) with five UAVs,

conducting a 2D random walk on 100 × 100m area. The total of 495

collisions were recorded if the collision avoidance mechanism was

not used.

TABLE 2 Results from 20 simulations of Challenge 3, in which the

objects (10 static and 10 moving) were randomly placed

Mission
time (min)

Time needed
for grasping

of the static
object (s)

Time needed for
grasping of the

dynamic
object (s)

Smallest
distance

between
UAVs (m)

Min 12.1 23.7 35.0 1.9

Max 17.4 36.4 51.2 3.3

Mean 13.6 30.6 43.6 2.5

Note. UAVs in a distance closer than 0.8 m are colliding in the simulation

as well as in the real system, which never happened in simulations and

real flights if the collision avoidance approach was used.

UAV: unmanned aerial vehicle.

F IGURE 13 Snapshots from the simulation developed for the
Mohamed Bin Zayed International Robotics Challenge competition
[Color figure can be viewed at wileyonlinelibrary.com]
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shape of the object expected in the competition, we designed square

shaped objects with numbers describing the rewards (Figure 14b).

Videos showing initial attempts for grasping and dropping of the

object, and trajectory following are available at http://mrs.felk.cvut.cz/

jfr2018treasurehunt‐video1.
One of the experimentally verified subsystems was the

MPC‐based collision avoidance implemented for reactive avoidance

of collisions between multiple UAVs in the MBZIRC competition.

Using the MPC predictions of the future parts of the trajectory of

other UAVs (discussed in Section 3.6), each UAV can avoid collisions

with other UAVs by a simple change of flight height in potential

collision parts of the future trajectory. It is necessary to employ this

method in scenarios with a problematic communication network. This

is because after reestablishing communication the proactive colli-

sion‐free planning may not be able to deal with a suddenly

discovered imminent collision, or may not even be active in the

current phase. This safety mechanism is implemented on the lowest

level of control in all phases of the mission. Figure 15 shows the

verification of MPC‐based collision avoidance, with two UAVs

exchanging their position and one hovering UAV between the two

positions. A video showing this verification is available at http://mrs.

felk.cvut.cz/jfr2018treasurehunt‐video2. Such collision avoidance

requires only a small number of messages to be shared between

UAVs. These messages contain the MPC future trajectory predictions

of each UAV, and are distributed with a very low frequency of 2 Hz.

Although the proposed collision avoidance technique requires only a

low communication bandwidth (~ 6 kB/s for three UAVs), the

collision avoidance was not always used during the competition,

due to dropouts of communication between UAVs, which was

observed by all teams in the competition.

Another evaluated subsystem was the object detection and

mapping. In particular, the datasets gathered were used to compare

computational efficiency of our object detection method to the

Maximally Stable Extremal Regions (MSER) (Matas, Chum, Urban, &

Pajdla, 2004) and “SimpleBlobDetector” methods included in the

OpenCV library (Bradski, 2000). The results indicated that the

system presented achieved significantly higher frame rates compared

to the aforementioned two methods. This confirmed the experiments

in Krajník et al. (2014), which introduced an algorithm our detection

was based on.

4.3 | Desert testing in the United Arab Emirates

Finally, the complete system was thoroughly tested for a period of

three weeks just before the competition, in the desert near Abu Dhabi

in the United Arab Emirates. The desert environment was challenging,

due to the uneven terrain and the rapidly changing wind conditions. By

tuning the system for such weather and terrain conditions, our system

was better prepared for the environment at the Yas Marina Circuit in

Abu Dhabi, where the competition was held. The rapidly changing

terrain profile in the dunes of the desert also had an influence on the

quality of the communication network. The frequent interruptions of

the connection inspired our solution, which does not rely on the

communication network.

As we have mentioned, several important features of our system

were, in our opinion, the dominant factors that led to our winning

performance in all trials of the Treasure Hunt challenge in the MBZIRC

competition. Most of the other teams did not take into consideration

external disturbances such as wind in their controller. Surprisingly, the

MBZIRC competition arena was not perfectly flat, and some teams had

relied on its flatness. Finally, relying on a robust communication

network was the main bottleneck of the competitive solutions.

Photos from the tests of the system in the desert are shown in

Figure 16. The grasping procedure is captured in the image on the

right, and the dropping maneuver is shown in the image on the left. A

video showing the behavior of the complete system with three UAVs

in this environment is available at http://mrs.felk.cvut.cz/jfr2018trea-

surehunt‐video3. During this testing, the yellow objects were

stationary as opposed to the competition, where they were dynamic.

This means, that in this phase, the system was tested for the static

MPC-based trajectory tracking with low-level UAV control dur-
ing the mapping of the colored objects spread throughout the exper-
imental field.

Object detection and number (reward) recog-
nition of square-shaped colored objects.

(a) (b)

F IGURE 14 Experimental verification of the MPC‐based trajectory tracking method and the object detection algorithm during the
experimental camps in the countryside of South Bohemia in the Czech Republic. http://mrs.felk. cvut.cz/jfr2018treasurehunt‐video1.
MPC: model predictive control; UAV: unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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objects only. In addition, the paths traveled by the UAVs during the

experiment presented in the video are shown in Figure 17. In this

figure, the z‐axis denotes the height above the level of the starting

position as measured by the differential RTK GPS. The UAVs were

kept at constant height above the ground and therefore the graph

shows how uneven the terrain was. Furthermore, Figure 17 depicts

the positions and colors of the objects that were collected.

4.4 | Results from the MBZIRC competition

Our system was applied four times in the Treasure Hunt scenario during

the final MBZIRC competition. During the competition, the number of

dynamic (yellow) objects was decreased from announced 10 to 3 for this

scenario for organizational reasons. The results, that is, the number of

colored objects that were collected, are shown in Table 3. The first two
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F IGURE 15 MPC‐based collision avoidance between three drones. Two drones (UAV 1 and UAV 2) exchange their positions, while the third

UAV 3 hovers in a position colliding with their trajectories. Using MPC future trajectory prediction, the UAVs avoid a collision by changing their
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F IGURE 16 Photos from the tests of the proposed system in the desert near Abu Dhabi, United Arab Emirates. The grasping procedure is captured
in the image on the right, and the dropping maneuver is shown in the image on the left. http://mrs.felk.cvut.cz/jfr2018treasurehunt‐video3 [Color figure

can be viewed at wileyonlinelibrary.com]
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attempts, denoted as TRIAL 1 and TRIAL 2, are the results from

Challenge 3, which contained only the Treasure Hunt scenario. The

remaining two trials (GRAND 1 and GRAND 2) were a part of the Grand

Challenge, where the Treasure Hunt scenario was undertaken simulta-

neously with the scenario of landing on a moving ground vehicle

(Challenge 1), and the scenario where a ground robot had to locate and

reach a panel, and further physically operate a valve located on the panel

(Challenge 2). During these four trials within the competition, 25 objects

overall were successfully placed into the dropping zone. The best

performance according to the number of grasped and placed objects was

achieved during the second trial of the Grand Challenge, when eight

objects, including a nonstationary object were brought into the dropping

zone. The system described in this paper won first place in Challenge 3,

and contributed to our third place in the Grand Challenge. A video

showing results from the MBZIRC competition is available at http://mrs.

felk.cvut.cz/jfr2018treasurehunt‐video4.
One part of the system for the Treasure Hunt scenario involved

localizing objects using sweeping trajectories (described in Section 3.7.1).

The static sweeping paths traveled by UAVs in the trials of Challenge 3

are shown in Figures 18 and 19. The flight time of the described UAV

platform with fully charged four cell batteries with 6,750mAh capacity is

up to 15min, which is less than allowed time per trial. The organizers

allowed to change the batteries during the trial without any penalization.

The trajectories before changing the batteries are labeled in the graphs

as part 1, and after the batteries are changed, they are labeled as part 2.

Furthermore, on these graphs, the colored points denote the detections

of the objects that were observed, and the larger circles denote the

estimated positions of these objects. After processing the data from the

first trial, we decided to decrease the sweeping trajectory height from

7 to 6.5m. This modification made objects more visible in camera

images, which improved object detection. A disadvantage of this change

F IGURE 17 The paths traveled by individual UAVs during the desert experiment. The colored points denotes the positions of the objects
that were collected. UAV: unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Numbers of the objects collected in the Treasure Hunt
scenario during the MBZIRC 2017 competition

Placed into

the box

Placed outside the box but

inside the dropping area

TRIAL 1 2R, 2G 1G

TRIAL 2 2R, 3G

GRAND 1 1R, 1G, 2B, 1Y 1G, 1B

GRAND 2 2R, 3G, 1B, 1Y 1G

Note. B: blue static object; G: green static object; GRAND 1 and 2: trials of

the MBZIRC Grand Challenge; R: red static object; TRIAL 1 and 2: trials of

MBZIRC Challenge 3; Y: yellow nonstationary object.

F IGURE 18 Mapping sweep during the first trial of Challenge 3. The colored points denote the detections of the objects that were observed, and
the larger circles denote the estimated positions of these objects. UAV: unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]

SPURNÝ ET AL. | 19



was that it prolonged the trajectories, because the condition of at least

20% of overlap in the coverage could not be satisfied by following the

same trajectory (in the xy plane). For this reason, the sweeping

trajectories differ between these two trials.

Another important part of described system is the grasping capability,

where the UAV has to grasp a ferrous object. The overall grasping

approach has been presented in Section 3.8, where the grasping state

machine is depicted in Figure 12. Switching of the phases of the grasping

state machine is shown in Figure 20, where an attempt at grasping was

repeated after being aborted once. For a visualization of the transition

between these phases, the resolution of the graph in Fig. 20a is 0.05m in

the x‐axis and in the y‐axis. In addition, detections of the object in three

parts, which are indicated by dotted arrows, are shown in Figure 20b–d.

The dropping approach for delivering the grasped objects into the

dropping box has been described in Section 3.8. Switching the phases of

the dropping state machine is shown in Figure 21a, where the dropping

procedure was carried out by two UAVs. Objects were dropped by each

UAV at a different time, and thus there was no collision between them.

Figure 21b,c show snapshots from the onboard cameras on the UAVs

during the dropping maneuver.

F IGURE 19 Mapping sweep during the
second trial of Challenge 3. The colored
points denote the detections of the objects

that were observed, and the larger circles
denote the estimated positions of these
objects. UAV: unmanned aerial vehicle

[Color figure can be viewed at
wileyonlinelibrary.com]
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Photos from the competition are shown in Figure 24. The upper

image shows the UAV following the static sweeping trajectory. The

images in the middle row and the image on the left in the lower part of

the figure capture moments when the UAVs were grasping objects. The

remaining image shows an object being dropped into the dropping box. In

addition, the paths traveled by the UAVs during the first trial of

Challenge 3 are shown in Figure 22, and the paths traveled in the second

trial of the same challenge are shown in Figure 23. Furthermore, in these

graphs, the colored points denote the positions of the objects that were

collected.

5 | LESSONS LEARNED

Although the competition results can be considered a major

success, it was not without hurdles, mainly during implementation,

testing and tuning of the proposed system. From the implementa-

tion part, it was convenient to develop the system compatible with

the ROS, which allows to divide the system into independent

components that were implemented separately by different

research groups. Furthermore, their testing were significantly

simplified by employing the Gazebo robotic simulator together
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with the firmware from PixHawk, which speeds up the overall

progress of the development.

The required usage of more vehicles simultaneously even increased

the complexity of the task. Every UAV is equipped with several sensors

that could be a source of unreliability. By testing the behavior of the

proposed system in desert near Abu Dhabi in the United Arab Emirates,

our system was well prepared for the environment at the Yas Marina

Circuit in Abu Dhabi, where the competition was held. The system was

tuned to properly react to strong wind, decreased visibility due to sand,

and to problems occurring by intensive light from sun. Hence we stress

the significance of the real‐world outdoor experiments above simula-

tion, to obtain real sensor data.

5.1 | Toward a more general solution

Despite our best effort to develop a general solution capable of

autonomous searching, picking, and placing objects, several sub-

systems have been tailored specifically to the competition scenario.

The vision system was designed to locate the objects with colors and

shapes specified by the rules of the competition. In the case of an

object of more difficult shape and color patterns, a different

approach for its localization would be required, for example, based

F IGURE 24 Photos from the MBZIRC competition. The upper
image shows the UAV while following the static sweeping trajectory.
The images in the middle row and the left on the lower part of the

figure capture the moments when the UAVs were grasping objects.
The remaining image shows an object being dropped into the
dropping box. During four trials within the competition (two for

Challenge 3 and two for the Grand Challenge), 25 objects overall
were placed into the dropping zone (Table 3). http://mrs.felk.cvut.cz/
jfr2018treasurehunt‐video4. MBZIRC: Mohamed Bin Zayed
International Robotics Challenge; UAV: unmanned aerial vehicle

[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 25 Team members that were involved in the MBZIRC
competition in Abu Dhabi, United Arab Emirates. MBZIRC:

Mohamed Bin Zayed International Robotics Challenge [Color figure
can be viewed at wileyonlinelibrary.com]
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on artificial neural networks. Further, estimation and prediction of

the object movement using a car‐like model provide a framework

suitable for tracking the most common ground vehicles. A more

precise model could be used to better estimate state of a specific

vehicle (e.g. with differential drive model, or if capable of 3D motion).

The presented proactive collision‐free planning, using different flying

heights and the visibility graph method, has been selected due to

simple scenario with three UAVs. A requirement of a higher number

of independent flying heights would occur with higher number of

deployed UAVs. Then, a different splitting of the arena would be

required since it is not efficient to often ascend and descend for the

UAV. In this case, each individual UAV will be resolving a possible

collision only with other UAVs, that are assigned to arena parts

through which the UAV will need to fly. Taking these observations,

the presented approach can be applied to various outdoor multirobot

scenarios, as shown in our consequent research after the competition

listed in Section 1.2.

6 | CONCLUSIONS

A system designed for Challenge 3 of the MBZIRC competition has

been described in this paper. The paper has focused on the

properties of the design that in our opinion were the most important

factors leading to the best performance of the system in all trials in

the 7 Treasure Hunt challenge. The system is able to solve object

manipulation tasks in demanding outdoor environments, and to do so

cooperatively in a team of three UAVs.

While many of the methods described here do not represent the

bleeding edge of robotics research, they were designed to be

versatile and substitutable. This allowed their easy integration into a

complex modular system, which enabled efficient testing of the

individual modules, making us aware of these modules deficiencies

and possible faults during their deployment in real conditions. Our

knowledge of the faults encountered during the field tests was

reflected in the design of the core module of our system, the FSM.

This module ensured that occasional faulty behaviour of the

individual modules did not result in a critical failure or system

deadlock. Still, the development of this complex system led to

numerous significant contributions beyond the state‐of‐the‐art in

robotics, which could facilitate the deployment of multi‐UAV
platforms in challenging scenarios motivated by current needs of

the industry. This was the main motivation for our paper and also for

the MBZIRC competition itself.

The results shown in numerous realistic simulations in Gazebo and in

experiments in a demanding desert environment have been presented in

this paper following by analysis of necessary improvements of the system

towards more general applications, which go beyond the MBZIRC 2017

competition. However, the most meaningful and credible verification of

the performance and the reliability of the system was achieved in the

MBZIRC competition, where our approach won the first place Challenge

3, on the basis of achieving the best score among 17 finalists selected

from 142 registered teams.
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