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Abstract and contributions

The dissertation thesis deals with the issue of special routing algorithms designed for com-
munication in opportunistic networks. The opportunistic networks (OPN) are networks
disseminating messages with the store-carry-forward routing principle. The opportunistic
communication networks are the ad-hoc networks where no assumption is made on the
existence of a complete physical path between two nodes wishing to communicate. In op-
portunistic networks, the messages are transmitted when the node opportunistically meets
another node; the characteristics of node movement can improve message transmission.
The key function of OPN routing protocols is to make decisions on message forwarding.
We proposed four routing schemes in this chapter: i) Hierarchical Routing with Clustering
1 (HRC1), ii) Hierarchical Routing with Clustering 2 (HRC2), iii) SVM-based routing, iv)
Routing scheme combining GMRF (Gaussian Random Fields) and ANMA (Active Node
Movement Algorithm). The performance of the proposed method was tested on five sim-
ulation scenarios and compared to four well-known routing protocols as Epidemic routing
with the limited message buffer, PRoPHET, First Contact and BUBBLE-Rap.

In particular, the main contributions of the dissertation thesis are as follows:

1. We proposed the routing protocol Hierarchical Routing with Clustering HRC1, which
combines three strategies in order to improve routing in OPNs: i) the node affiliation
with detected OPN geographic sector + use of the sets of the detected geographic sec-
tors, ii) the node affiliation with the communication community constructed in spatio-
temporal domain with time constraints, iii) epidemic routing.

2. We proposed the routing protocol Hierarchical Routing with Clustering HRC2 , which
combines three strategies in order to improve routing in OPNs: i) the node affiliation
with detected OPN geographic sector + use of the the graph of the geographic sectors, ii)
the node affiliation with the communication community constructed in spatio-temporal
domain with time constraints, iii) epidemic routing.
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3. We proposed how use the Support Vector Machines to make decisions about routing in
OPNs with regular node mobility patterns. We proposed SVM-based routing protocol,
which uses an array of SVM classifiers to make decisions on routing.

4. We proposed Routing based on GMRF (Gaussian Random Fields) and ANMA (Active
Node Movement Algorithm).

Keywords:
Routing Protocol, Context-aware routing, Human mobility models, Clustering, Sup-

port Vector Machine, Opportunistic Network, Delay-Tolerant Network, Gaussian Markov
Random Field.
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Abstrakt

Disertačńı práce je věnována problematice směrováńı v oportunistických komunikačńıch
śıt́ıch. Oportunistické komunikačńı śıtě (OPN) jsou ad-hoc śıtě, ve kterých se k š́ı̌reńı zpráv
už́ıvá schéma store-carry-forward. V těchto śıt́ıch se nepředpokládá, že by mezi dvěma
uzly, kteř́ı chtěj́ı komunikovat, existovala v daném časovém okamžiku fyzická komunikačńı
cesta. V oportunistických śıt́ıch jsou zprávy předávány tehdy, když se uzel dostane do ko-
munikačńı vzdálenosti jiného uzlu. Kĺıčovou funkćı směrovaćıch protokol̊u OPN je tvorba
rozhodnut́ı o předáváńı zpráv. V práci prezentuji čtyři směrovaćı algoritmy, které jsme
navrhla:
i) Hierarchické směrováńı využ́ıvaj́ıćı shlukovou analýzu 1 (HRC1),
ii) Hierarchické směrováńı využ́ıvaj́ıćı shlukovou analýzu 2 (HRC2),
iii) Směrováńı s využit́ı Support Vector Machine
iv) Směrováńı kombinuj́ıćı GMRF (Gaussian Random Fields) a ANMA (Active Node Mo-
vement Algorithm). Navržené metody byly testovány na pěti simulačńıch scénář́ıch a po-
rovnávány se čtyřmi dobře známými směrovaćımi protokoly jako Epidemické směrováńı s
omezeným bufferem zpráv, PRoPHET, First Contact a BUBBLE-Rap a dosáhli v pr̊uměru
výrazně lepš́ıch výsledk̊u než stávaj́ıćı metody.

Hlavńımi př́ınosy disertačńı práce jsou zejména:

1. Navržený směrovaćı protokol Hierarchical Routing with Clustering HRC1, který kom-
binuje tři strategie pro zlepšeńı směrováńı v OPN.

2. Navržený směrovaćı protokol Hierarchical Routing with Clustering HRC2, který kom-
binuje tři strategie za účelem zlepšeńı směrováńı v OPN.

3. Navržený směrovaćı protokol SVM-based Routing který použ́ıvá Support Vector Ma-
chines k rozhodováńı o směrováńı.

4. Navržený směrovaćı protokol GMR-ANMA Routing (Gaussian Random Fields) and
ANMA (Active Node Movement Algorithm).
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Chapter 1

Introduction

1.1 Motivation

The opportunistic communication networks are the ad-hoc networks where no assumption
is made on the existence of a complete physical path between two nodes wishing to commu-
nicate [152]; the source and destination nodes needn’t be connected to the same network
at the same time. This assumption makes the routing in these networks difficult.

In contrast to the common ad-hoc networks with connected topology, in opportunistic
networks, the source and destination nodes needn’t be connected to the same network at
the same time, but they are allowed to exchange messages between them due to techniques
of the opportunistic networking. These techniques allow nodes to connect and disconnect
anytime. In opportunistic networking, no limitations are also set on the nodes to keep
their positions; the nodes can move. This opportunity networking paradigm opens a space
for a number of novel application scenarios.

The general concept of opportunistic ad-hoc network does not require at one time there
was a complete communication path between a source and a destination node. It is not
required a graph describing mathematically general topology of the opportunistic ad-hoc
network to be a connected graph.

In opportunistic networks, the messages are transmitted when the node opportunistic-
ally meets the another node; the characteristics of node movement can improve message
transmission. In practice, the network nodes can be mobile robots, wireless equipment
carried by people, vehicles, wild animals, unmanned aerial vehicles.

Opportunistic networks (OPN) are networks disseminating messages with the “store-
carry-forward” routing principle. The key function of OPN routing protocols is to make
decisions on message forwarding. The routing metrics are designed in order to select
the most optimal nodes which have the highest probability to be a part of the paths of
successfully delivered messages with respect to maximization of message delivery ratio and
the minimization of overhead cost and message delivery delay.

1



1. Introduction

1.2 Problem Statement

The motivation for this research is the fact that despite gains in the area of opportunistic
networking and appearance of many sophisticated solutions for routing in OPNs, the gen-
eral perception of the problem is that the application of deep learning methods is still very
abstract and there is still space for research. As the machine-learning based data driven
individualised models of human mobility appear in traffic analysis and planning, the rout-
ing in OPNs is possible to further improve. With this goal, this work seeks solutions for
applications of machine learning in opportunistic networking.

There are three explicit objectives of our research:

1. Problem: to propose an enhancement of routing algorithms using unsupervised
learning and examine the impact of this enhancement on communication in opportunistic
networks. We want to verify or rebut the hypothesis that it is possible to extract the
knowledge from these data using unsupervised learning and use this knowledge to improve
a routing algorithm in such a way the delivery time of messages are shortened and an overall
communication in the opportunistic network is improved in comparison to standard routing
methods. Experimental validation of the method will be performed on the simulated data
in the opportunistic network simulator.

2. Problem: to propose an enhancement of routing algorithms using supervised learning
and examine the impact of this enhancement on communication in opportunistic networks.

If there are observable motion patterns in motion of nodes which repeat during the
time, it is likely that nodes will meet some nodes more often than the others. It can
be assumed that some places on the routes are more useful for passing the message than
others from the viewpoint on message delivery time. So we can collect data about the time
and place of the passing messages, the nodes that receive message and the time when the
messages were delivered to the destination node.

We want to verify or rebut the hypothesis that it is possible to extract the knowledge
from these data using supervised machine learning method and use this knowledge to
improve a routing algorithm in such a way the delivery time of messages are shortened
and an overall communication in the opportunistic network is improved in comparison to
standard routing methods.

3. Problem: to propose an enhancement of routing algorithms using unsupervised
learning (statistical node mobility models) and the active node behavior and examine
the impact of this approach on communication in opportunistic networks. The active node
behavior means that the node itself actively changes its route in order to get to the location
more suitable for forwarding messages.

We want to verify or rebut the hypothesis that active node behavior and active decision
about a place of message passing can influence the delivery time of this To study the
implementation of statistical node mobility models and the active node behavior in routing

2



1.3. Related Work/Previous Results

algorithms for opportunistic networks and to confirm the hypothesis that the active node
behavior in opportunistic network supported by the appropriate statistical node mobility
model can improve routing and communication in the opportunistic network.

1.3 Related Work/Previous Results

The success of the routing in opportunistic networks depends on the knowledge of the
network topology deployment in a near future. The routing effectiveness increases, if
the routing process is capable to predict the changes in the network topology [82]. In
recent years, the research in OPN routing has attracted much attention because of the
wide range of mobile applications of OPN routing. Besides the reactive routing methods,
in which the nodes compute forwarding strategies through the contact history, without
a global or predetermined knowledge, also proactive routing becomes popular. The ex-
amples of proactive routing protocols are knowledge-based routing schemes [82], RAPID
[6], Routing in cyclic mobile space [115], Capacity-aware routing using throw-boxes [63],
and Mobyspace [103] or ML-SOL [186]. The examples of reactive routing protocols are
First Contact, Epidemic[206], PROPHET[114], Spray and wait [191], Seek and focus[193],
Spray and focus [192], Bubble Rap [76], Social network-based multi-casting [58], or Is-
land Hopping[173]. Also social-aware routing received particular attention and a lot of
community based OPN routing protocols which uses knowledge obtained from community
detection and formation in order to improve routing performance have been proposed.
Examples of community-based routing protocols include BUBBLE RAP [76], LocalCom,
Gently and Diverse Routing, ML-SOR. The main idea of community-based routing is that
relationship of the users is reasonable information for predicting future contact opportunit-
ies. The community has a strong impact on human mobility pattern. The community-based
routing schemes consists of two phases. In the recent years, the particular attention to the
analysis of communities within networks was given in various disciplines, particularly but
not only in mathematics, physics and biology. Scientist have become interested in the
study of networks describing topologies of wide variety real systems [47]. Biochemical net-
works, social networks, communication networks, transportation networks, text databases
networks, world wide we and much more. Multi-layer approaches to routing in OPN model
the OPN as a structure of mutually connected layers. In addition to contact graphs describ-
ing physical encounters of nodes, they use social layers reflecting the real world contacts.
The presented multi-layer social graph is based on the social graphs extracted from different
sources such as Facebook, Twitter or e-mail communication. The examples are ML-SOL,
Social Role Routing or MobiClique. However, to the author best knowledge, there are only
few publications available in the literature that discuss application of machine learning
based models of human mobility in the area of opportunistic networking, although in the
field of human mobility modeling using data mining a lot of scientific papers have been
published. Bazzani et al. [10] presented statistical analysis of a mobility dataset obtained
in the Florence urban area. They tested by the probability distribution and the moving
object activity of robust statistical laws. Due to the rapid development of wireless techno-
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logies and high-tech applications, many publications have appeared in recent years, which
are related to analysis of large datasets. Liu et al. [116] analyzed data consisting of 85
million GPS points of taxicabs collected in Wuhan, China. They proposed mobility model
based on spatio-temporal paths of moving nodes and spatio-temporal clustering algorithm,
which uses spatial clustering of node positions at different times and a method of complex
hull to merge these clusters into spatio-temporal ones. Hoque et al.[71] analyzed GPS data
of taxicabs obtained in the San Francisco area by application of clustering and statistical
methods. Cheng et Anbaroglu et al. [40] proposed a spatio-temporal clustering algorithm
for complex temporal networks analysis in spatial, temporal and thematic domains and
tested it on data obtained from a part of London’s traffic network. Schneider et al.[175]
proposed the application of network motifs in human mobility analysis. They construc-
ted daily human mobility networks from CDR data for Paris over a period of 6 months
and from travel survey data for Paris for one day. They reported, that they identified 17
unique motifs. Jiang et al. [84] have applied a similar approach to extract human daily
motifs. They have constructed daily human mobility networks from triangulated mobile
phone CDR data for one million users in Boston. They have reported similar findings.
Furthermore, they have proposed a probabilistic inference method to use motifs, time of
day, activity sequence, and land use related information to further infer activity types and
traffic patterns Widhalm et al. [214] proposed methods for inferring human activity types
from data extracted mobile phone data and land use data for the cities of Boston and
Vienna.

1.4 Goals of the Dissertation Thesis

1. Propose the routing metric combining utilization of geographical data and unsuper-
vised machine learning (cluster analysis).

2. Propose the routing metric which uses supervised machine learning technique as a
part of decision making mechanism.

3. Propose the routing method, which continuously evaluates the network state and can
enhance the routing process by active changes in node behaviour.

4. Select the appropriate performance metrics and prepare simulation scenarios for eval-
uation of the proposed methods.

5. Experimental evaluation of all proposed routing methods in simulation environment.

1.5 Structure of the Dissertation Thesis

The dissertation thesis is organized into five chapters as follows:

1. Chapter 1 “Introduction” consists of four parts: motivation, problem definition, a
short overview of the previous work and setting the main objectives. We described
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the motivation behind our efforts, determined three mutually independent problems
to be solved and set the main objectives of the of the dissertation thesis.

2. Chapter 2 “State-of-the-Art” introduces the state of the art of the opportunistic
networking and surveys.

3. Chapter 3 “Overview of Our Approach” deals with the proposed methods to solve
the problems.

4. Chapter 4 “Main Results” describes the results of experimental verification of the
proposed methods in the simulation environment.

5. Chapter 5 “Conclusions” summarizes the results of our research, provides the direc-
tions for further research.
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Chapter 2

Background and State-of-the-Art

2.1 Theoretical Background: Introduction to Ad-hoc Net-
works

We start with the concept of the ad-hoc network. The phrase ad-hoc comes from Latin.
The Webster’s dictionary [124] or, as defined in [216], the meaning of this word phrase ad
hoc follows: “. . . only in this case, the purpose of this rarity.” The equivalent to the phrase
ad-hoc network could thus be a phrase a network built according to the actual needs.

The ad-hoc network is defined as a decentralised network, which satisfies the following
conditions: i) the network does not rely on a pre-existing infrastructure, rather it is formed
on demand ii) peer-to-peer communication among the nodes.

Each node participates in routing by forwarding packets addressed to other nodes. The
communication path is created dynamically on the basis of network connectivity and with
the respect to implemented routing algorithm. the definition of ad-hoc network does not
include any constraints set to communication medium. In recent years, the wireless ad-
hoc networks (WAHN or recently proposed abbreviation WANET) have attracted a lot of
attention.

Another important feature of the common ad-hoc network is the lack of requirement of
an existence of a direct communication path between any pair of the nodes, see Fig. 2.1.
If the node A communicates with the node B, it can make via a communication path
including nodes C and D. In computer literature, it is sometimes incorrectly reported that
in ad-hoc networks consisting of computers must be nodes (individual computers) in range
of each other so that everyone can communicate with everyone. If this constraint appear
it is related to the technology in use. It is not a general property of ad-hoc networks. This
technology limitation is often incorrectly generalized on all ad-hoc networks.

The general concept of ad-hoc network does not require the establishment of complete
communication path between a source and a destination node using a communication
media. Instead of that, the messages can be disseminated with the “store-carry-forward”
routing principle. A static graph describing mathematically an immediate topology of
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Figure 2.1: Example of communication in the ad-hoc network: the node A communicates
with node B, it can do so in the example via a communication route comprising nodes C
and D.

the ad-hoc network is not required to be a connected graph. An example of this kind of
network is shown on Fig. 2.2. In this network, the source node A sends a message to the
destination node F. The message is captured by the node C, which forwards it to the node
D. The node D moves and once it gets into the communication range of the node E, it
forwards the message to the node E. The node E forwards the message to the destination
node F.

Figure 2.2: Example of opportunistic communication in an opportunistic ad-hoc network.

A network that supports this method of message delivery is called an opportunistic
ad-hoc network (opportunistic network). Due to the wide application possibilities of
opportunistic networks, communication protocols and behavior of these networks are the
subject of intense research since the the concept of opportunistic ad-hoc networking was
introduced in 2006 [152].

Despite the interesting properties of the general ad-hoc networks, the research has
been limited for many years on the special cases of ad-hoc networks. The ad-hoc networks,
which had the connected topology (connected graph) have been studied. Depending on
whether the system allowing unidirectional or bidirectional communication, the network
topology was described by strongly or weakly connected graph. In ad-hoc networks of
this type, where the ad-hoc network is formed by connecting the communicating nodes
in the network at first, and then started the communication between nodes, which have
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been already connected, the research was focused on the communication protocols, routing
algorithms, algorithms that prevent network congestion and analysis of the properties
these networks. Although ad-hoc networks of this type represent only a subset of ad-hoc
networks, most publications often use the term ad-hoc networks to describe these types
of networks due to lack of more precise terminology. To distinguish this type of networks
from the general ad-hoc networks, we introduce a more precise term. We call them the
ad-hoc networks with connected topology.

2.2 Wireless ad-hoc networks with connected topology

In wireless ad-hoc networks with connected topology, it is supposed i) to create a commu-
nication path between the source and the destination node, ii) ensure the existence of this
route for some time. Communication in these networks consists of two steps:

(a) a search for an existing route between the source node and the destination one; and

(b) sending messages through this route.

The existence of the route is monitored in some communication protocols. If the route is
destroyed or the transmission characteristics of the route changes significantly, new commu-
nication path connecting the source and the destination node must be established. Routing
algorithms for these types of networks are usually designed to minimize or maximize some
predetermined criterion, such as minimizing the number of sent messages, minimizing the
total energy consumption or maximizing the lifetime of the network.

2.2.1 Routing in ad-hoc networks with continuous topology

2.2.1.1 Reactive Routing Protocols

Nodes in ad-hoc networks with reactive communication protocols utilize so-called source
routing. The routing initialization process is then usually carried by flood plain algorithm.
During initialization, the transmission path connection source and destination nodes is
found. The messages are sent through the found transmission path. Routing algorithms
that belong to this group differ from each other mainly by optimizing the initialization
phase.

The routing protocol Ad-Hoc On Demand Distance Vector Routing (AODV) [153] is
a reactive modification of a routing protocol DSDV. Routing information are not created
by default on all nodes of ad-hoc network, but only at the request of one of them. If
the source node wants to establish a communication connection to the node, which it has
no information on except its address, or, if the transmission path to the destination node
has already expired, the source node sends a route request message. This report has a
unique identifier. This message is sent as a broadcast. Any node, which receives a route
request message and which is not the destination node of this message at the same time,
analyses its routing table stored locally in the node. If the node does not know the path
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to destination node, it adjusted the message and sends it as a broadcast. At the same
time, the node creates a reverse entry in the routing table. If the node knows the path
to the destination node, it compares the sequence number of the target contained in the
report with a stored number. If the message number is higher or equal than the stored
one, and simultaneously has a better metric, the node as it did not know the way, if not
directly respond route reply message to the sender (after updating metric in the routing
table based on a comparison with incoming metric). If it receives a route request message,
logs the direction from which the request came with the smallest metric, and sends a route
reply. It has already spread engulfing.

To detect a transmission path interruption, a method based on sending so called “hello”
messages is used. All nodes transmit at a certain time interval a “hello” message to
the neighboring nodes. Each node maintains a list of neighboring nodes. If any of the
neighboring node does not send a response, the node, which sent the message “hello”,
marks this non-responding node as an unplugged one. If this non-responding node is
a part of a transmission path, the node, which identified the transmission path breakup,
sends a special route reply message to the other nodes on the path. The report is gradually
transferred to the destination node; references in the tables are stored in the nodes forming
the path are adequately updated and finally, the transmission path is complete again. In
comparison to the routing protocol DSDV, the AODV routing protocol seems to be very
effective. Each node maintains only the information, which it needs to operate as a source
node, a destination one or a node on-the-path. The path between the source and the
destination node is found very quickly, mainly due to the dissemination route request and
route reply messages. In comparison to the routing protocol DSDV, any implementation
of the routing protocol AODV is difficult and challenging task.

The routing protocol Simplified Ad-Hoc On Demand Distance Vector Routing (AOD-
Vjr) [28] is a simplified version of the AODV routing protocol. A route request message has
a simpler structure and the source node disseminates this message using a flood algorithm.
The node on-the-path responds only to the first route request message with the specified
identification number, other reports are thrown away. It is assumed, the node from which
the route request message arrives first is also the most convenient node for sending the re-
sponse, respectively. create a transmission path. The destination node corresponds to the
route reply message. In order to detect a path interruption, the maintenance of an active
bidirectional communication connection between the source and the destination nodes is
necessary. If the connection is unilateral, the destination node performs the path validation
using “connect” messages. AODVjr is a quite elegant method. It preserves all the advant-
ages of AODV, but it is less difficult to implement. The disadvantage of both algorithms
is the inability to respond to the improvement of the conditions for the transfer. If there
is functional transmission path between source and destination nodes, both the algorithms
do not respond to the emergence of new routes between source and destination nodes, even
if they have better performance. Data are forwarded along the found transmission path as
long as this path exists.

The routing protocol Dynamic Source Routing in Ad Hoc Wireless Networks (DSR)
[85] uses so-called source routing. Source routing is initiated by a node that wishes to
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establish a connection. This node sends the route request packets that are identified by
a unique identifier and are disseminated using flood plain method. Each network node
through which the route request packet is transmitted, placed its record the route request
packet. The destination node responds to the route request packet with route reply. This
message is usually connected to the next route request requirement to create return path.
If the destination node becomes unavailable, the node using the routing protocol cancels
the corresponding entry in the routing table. The entry connected to the path in which
the node is unavailable is canceled. Then the node sends the route error message that
informs the other nodes in the transmission path. The source node must then ask for a
transmission path initialization again.

The routing protocol Temporary-Ordered Routing Algorithm (TORA) proposed in [148]
is based on the ideal of maintaining an acyclic graph of all possible transmission paths
in each network node. Developing and maintaining these graphs are not cost-effective.
This routing protocol puts emphasis on minimizing the number of transmitted messages
through the network. The edge of the graph is therefore initialized only then, if it is
not exist in a model. The node itself responds to the edge interruption only and only if
the interrupted edge is irreplaceable. It is not necessary for each problem to perform the
complete initialization of the graph representing the network topology. The response to
topology change is very rapid. In networks using this routing protocol, the communication
flow between source and destination nodes can be split to the messages transmitted via
different routes.

2.2.1.2 Proactive routing protocols

Proactive routing protocols aggressively spread in the network specific predefined inform-
ation. The network nodes create routing rules on the basis of this information. This
group of routing protocols does not include only the routing protocols for ad-hoc networks,
but also the protocols such as RIP or OSPF used on the Internet; these protocols are
not suitable for the communication in ad-hoc networks, because they require the default
address aggregation. If we use the routing protocol RIP or the routing protocol OSPF
in ad-hoc network, nodes would need to exchange information about all other nodes. It
would probably lead to a significant increase in overhead. Proactive protocols designed for
ad-hoc networks are therefore often designed to realize an exchange of information needed
to implement routing only among selected nodes.

An example of a proactive routing protocol might be a routing protocol Highly Dynamic
Destination-sequenced Distance Vector Routing (DSDV) [154], which uses a distributed
Bellman-Ford algorithm. It is based on transmission of a distance vector among the nodes
in a regular time intervals. This distance vector contains a price to be payed to jump to
the next node. The DSDV routing protocol is designed to prevent forming loops and to
recognize changes in the network topology. Its advantages are simplicity, low overhead, low
computational and memory requirements. The DSDV routing protocol can use different
metrics for transmission path evaluation. Each node has stored a distance vector in its local
memory (so called distance vector storage, DVS). At regular intervals, the node transmits

11



2. Background and State-of-the-Art

to the network a part of the distance vector, known as DVB. At the same time, the node
receives DVB from other nodes and processes. Lack of the DSDV routing protocol lies
in the fact that this protocol does not solve the problem of aggregation; the nodes must
remember the DVS data on all other nodes. Another weakness is the inability of the DSDV
routing protocol to respond flexible enough to the dynamic changes in the network. Any
change of a metrics needs a long time to be distributed across the network.

Another proactive routing protocol developed for ad-hoc networking is the routing
protocol Maximum Residual Packet Capacity (MPRC). MPRC routing protocol [7] is based
on a strategy to maximize the time remaining until the collapse of the network. The cause
of collapse of the network is disconnecting the nodes from this network due to exhaustion
of energy resources. It is therefore a protocol for ad-hoc networks in which it is difficult
to supplement energy supplies (for example a network for wild birds monitoring, a special
network of sensors, networks, solar power, etc.). The information on node energy reserve
is used in routing. Each node calculates a metric indicating the maximum number of bits
that it is still possible to pass through this node before the energy reserve is exhausted.
Then, the transmission path evaluation is calculated for each transmission path. The
MPRC routing protocol selects the path that contains the strongest of the weakest nodes
of all possible transmission paths. The MPRC routing protocol is able to select paths that
do not include nodes with the smallest energy resources. The weaknesses of this protocol
include long initialization time and a slow response to changes in the network.

2.2.1.3 Routing protocols based on a backbone topology

This group of routing protocols have been proposed for WAHN networks. Based on the
observation, that some of the technological implementations of nodes in the WAHN net-
works have higher energy consumption when they are switched to the reception mode than
when they are found in an idle mode. From the viewpoint of energy resources preserving,
it is preferred to maintain the nodes of the network in idle mode as long as possible. This
is achieved by introducing a set of selected nodes, called coordination nodes, which remain
in a reception mode, while the other ones are switched to the idle mode. The node in
the idle node is not able to receive messages. The set of the coordination nodes must be
chosen so as to cover all nodes of the network. The function of a “coordination node”
rotates through all the nodes of the network. An example might be the routing protocol
Span [36], which provides

(a) a network coverage by coordination nodes,

(b) the rotation function of the coordinating nodes and

(c) minimizing the number of nodes selected to be coordinating nodes without impacting
on network capacity or transmission delay.

The computation of coordination nodes is implemented locally (without central control).
The computation of coordination nodes is repeated at regular time intervals. Node, which
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wishes to become a coordination node, reports that during the election period to other
nodes with a certain delay from the beginning of the electoral period. The delay is calcu-
lated on the basis of selected parameters, e.g., depends mainly on the number of neighbor-
ing stations and energy reserves of the node. It also has a random component. The delay
affects the probability the node becomes a coordination node.

2.3 State-of-the-Art: MANET, VANET, Delay-tolerant
Networks and Opportunistic Networks

Although the property of the node mobility is implicitly included in the properties of ad-
hoc networks, the name of Mobile Ad-hoc Network (MANET) was introduced to emphasize
the property of a node mobility and the node freedom in connecting to the network and
disconnecting from the network during the communication.

The Vehicular Ad-hoc Networks (VANET) are special case of self-organizing MANET
networks, which nodes are formed by moving vehicles. Their basic characteristics include:
i) a movement of network nodes, ii) limited degree of freedom in the movement patterns
of network nodes [67]. VANET networks represent a large and growing class of MANET
networks.

The most important research DTN networks is centered around projects funded by
DARPA: Disruption Tolerant Networking [137]. The Control-Based Mobile Ad-Hoc Net-
working (CBMANET) [121], Military Networking Project [227] Connection-less Networks
[90] and around open project Delay Tolerant Networking Research Group [33], which has
been designed as part of the Internet Research Task Force. The terms “Delay Tolerant
Network” or “Delay and Disruption Tolerant Network” and “Opportunistic Network”are
used interchangeably [29]; therefore these terms often used as equivalent terms. On the
other hand, there is a group of authors [152], which highlights the difference between DTN
networks and opportunistic networks, primarily the fact, that the concept of DTN net-
works, as introduced in [33], and communication protocols for these networks include also
networks based on the same concept as Internet, while opportunistic networks are networks
of mobile nodes disseminating messages with the “store-carry-forward” routing principle.

2.4 Routing in Opportunistic Networks

This section deals with routing in OPN/DTN networks disseminating messages with the
“store-carry-forward” routing principle. Opportunistic routing on networks, where nodes
do not fulfill this routing principle. In the following, we will use the terms routing and
forwarding interchangeably.
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2.4.1 OPN Routing Protocols Taxonomy

In recent years, many different algorithms for routing in OPN/DTN have been proposed.
Unfortunately, there is no unique taxonomy of OPN routing protocols, instead of that,
several taxonomies have been proposed. The taxonomies differ in accordance to which
aspect of OPN routing their authors have preferred.

Jain et al. [82] have proposed the first taxonomy for routing in OPNs (called DTNs in
Jain’s paper). In order to set up the taxonomy, they have proposed so called oracles, which
maintain the knowledge about the network. This model contains four different oracles: i)
Contact Summary Oracle, ii) Contacts Oracle iii) Queuing Oracle and iv) Traffic Demand
Oracle. In the point of view of Jain et al. [81], the key objective of research on routing-in-
OPNs algorithms is understanding the relationship between algorithm performance and the
use of these oracles. They have defined these oracles as follows: ”Contacts Summary Oracle
This oracle can answer questions about aggregate statistics of the contacts. In particular,
the contacts summary oracle provides the average waiting time until the next contact
for an edge. Thus, the contacts summary oracle can only respond with time-invariant
or summary characteristics about contacts. Contacts Oracle This oracle can answer any
question regarding contacts between two nodes at any point in time. This is the equivalent
to knowing the time-varying DTN multi-graph. The contacts summary oracle can be
constructed using the contacts oracle, but not vice versa. Queuing Oracle This oracle gives
information about instantaneous buffer occupancies (queuing) at any node at any time,
and can be used to route around congested nodes. Unlike the equivalent to knowing the
time-varying DTN multi-graph. The contacts summary oracle can be constructed using
the contacts oracle, but not vice versa. Queuing Oracle This oracle gives information about
instantaneous buffer occupancies (queuing) at any node at any time, and can be used to
route around congested nodes. Unlike the other oracles, the queuing oracle is affected by
both new messages arriving in the system and the choices made by the routing algorithm
itself. We expect it to be the most difficult oracle to realize in a distributed system. Traffic
Demand Oracle. This oracle can answer any question regarding the present or future traffic
demand. It is able to provide the set of messages injected into the system at any time.
Unlike other oracles, the queuing oracle is affected by both new messages arriving in the
system and the choices made by the routing algorithm itself. We expect it to be the most
difficult oracle to realize in a distributed system. Traffic Demand Oracle This oracle can
answer any question regarding the present or future traffic demand. It is able to provide
the set of messages injected into the system at any time.” (Jain, Fall & Patra, 2004) These
oracle definitions are important, because they define outlines of the problem which each
designer of the OPNs routing protocols meets. The proposed taxonomy classify routing
protocols in the context of these oracles.

Pelusi et al. [152] have adopted a hierarchical taxonomy of OPN routing protocols pro-
posed by Zhang [228]. At the highest level of this taxonomy, the OPN routing algorithms
are classified into two classes: i) routing without infrastructure and ii) routing with infra-
structure. The class first class contains methods designed for completely flat ad hoc net-
works, while the second class contains algorithms in which the some form of infrastructure
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is used in order to opportunistically forward messages. Research presented in this thesis is
considered to be applicable only on OPNs which support the routing without infrastruc-
ture. The class of routing without infrastructure methods is divided to i) dissemination-
based routing, which are some versions of controlled flooding, and ii) context-based routing.
Context-based routing protocols usually do not adopt flooding schemes, but use knowledge
of the context in order to identify the best node for message forwarding. In comparison to
dissemination-based routing protocols, context-based routing protocols significantly reduce
the number of duplicate messages in OPN. The disadvantage of context-based routing are
higher values of message delivery delay.

Flood routing algorithms in OPNs work as follows: the source node sends a message,
which is addressed to the destination node. The message is disseminated across the network
using“flood” strategy. These algorithms are based on the idea that even if there is no
knowledge about the location of the destination node or which of the available nodes should
be the next step for sending the message, the message can be disseminated in the network
and deliver to all nodes in the network. These algorithms are successful in opportunistic
networks with high mobility of the nodes. Disadvantages are the high demands on resources
and the high risk of a network congestion [151]. The routing with infrastructure algorithms
are classified into two subgroups: i) ii) Mobile Infrastructure Routing or

Carrier Based Routing. In both cases the infrastructure is composed by special nodes
that are more powerful with respect to the other nodes commonly present in the ad hoc net-
work. Routing Protocols based on Fixed Infrastructure An example of a routing protocol
with a fixed infrastructure is Infostation model [60]. This type of protocol is introduced
for the networks, which contain special fixed nodes, which can be seen as a special form
of base stations (called infostations), through which it is possible to send messages. This
type of a network no longer represents pure ad-hoc network in accordance to the definition
adopted in this work. If a node operating in a network communication protocol Infosta-
tion wishes to communicate with another node, it sends the message directly to the base
station, if the base station is in its communication radius. Otherwise, it tries to send a
message opportunistically through another node. In this concept, the base stations do
not use the possibility of opportunistic routing, so the network uses a fixed routing in-
frastructure essentially. It is better to speak about the “hybrid network communication
protocols” than the opportunistic networking. This is different for routing protocols in
mobile infrastructure.

Mobile Infrastructure Routing or Carrier Based Routing use special nodes called mobile
data collectors. These special nodes move in the network, and their directions may be ran-
dom or predetermined. The mobile data collectors may be the only entities responsible for
transmission of messages, if enabled message transfer only between mobile data collectors
and ordinary node network, or they can strengthen connectivity in sparse networks and to
guarantee that even isolated nodes will affect the communication process. An example of
a communication system using this architecture and routing protocol is a MULE system
described in [81], [229].

Hong et al. [219] have proposed a hierarchical taxonomy of OPN routing protocols
based on routing protocol reactivity or pro-activity. At the highest level, the OPN routing
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protocols are classified into two categories: proactive routing and reactive routing protocols.
The proactive routing class contains methods which use the centralized or offline knowledge
about the mobile network to make the routing decision. The reactive routing class contains
methods, in which the nodes compute forwarding strategies through the contact history,
without a global or predetermined knowledge. The examples of proactive routing protocols
are knowledge-based routing schemes [82], RAPID [6], Routing in cyclic mobile space [115],
Capacity-aware routing using throw-boxes [63], and Mobyspace [103] or ML-SOL [186].The
examples of reactive routing protocols are First Contact, Epidemic[206], PROPHET[114],
Spray and wait [191], Seek and focus[193], Spray and focus [192], Bubble Rap [76], Social
network-based multi-casting [58], or Island Hopping[173]. Context-based algorithms do
not use flood techniques but they try to select the nodes to which the message should be
forwarded.

Another approach to OPN routing protocols classification has been adopted by Moreira
et al. [129], [130], [131], who have proposed a hierarchical taxonomy which is taking into
account both way of message transmission and OPN social and topological features, such
as contact frequency and age, resource utilization, community formation, common interests
or node popularity. At the highest level, the OPN routing protocols are classified into three
categories: i) forwarding-based routing protocols, ii) flooding-based routing protocols, and
iii) replication-based routing protocols.

Xia et al. [221] proposed a hierarchical taxonomy of OPN routing protocols primary
in the context of social aware routing. At the highest level, the OPN routing protocols
are classified into two categories: i) unicast routing and ii) multicast routing. The unicast
routing protocols are further divided into two groups: i) community-based routing and ii)
community-independent routing. Community-based routing class of OPN routing protocols
contains OPN routing protocols, which uses knowledge obtained from community detection
and formation in order to improve routing performance. As examples of community-based
routing protocols, Xia et al. [221] have discussed BUBBLE RAP [76], LocalCom, Gently
and Diverse Routing. The community-independent routing protocols do not detect com-
munities. They use the context information and social network metrics such as centrality
or similarity.

Ahmad et al. [2] have proposed a taxonomy, which divides OPN routing protocols into
six main classes: Geographic, Link State-aware, Context-aware, Probabilistic, Optimiza-
tion Based and Cross Layer routing protocols. Geographic routing protocols are routing
schemes, which use location data as context to make routing decisions. Although these
methods have a context-aware character (location data = context), the scientific papers
address the geographic routing protocols usually as a homogeneous independent group of
routing protocols. As the context-aware routing, the routing schemes taking into account
node mobility patterns, social community affiliation or node importance in network are
understood. Cadger et al. [27] classified geographical routing schemes into four groups: i)
greedy forwarding ii) face routing, iii) hybrid greedy face routing, iv) routing in 3D space.
Greedy forwarding schema use a very simple routing metrics: the messages are forwarded
to the neighbour node, which is located closest to the destination. The drawback of greedy
forwarding consists in the risk of the genesis of loops where the messages are forwarded
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backwards. In order to avoid the genesis of loop, the technique of message drooping by
nodes is used.

Routing protocols based on coding [215], [210], [38], [112], [167], [50] use merging mul-
tiple reports into one report using coding. One message is sent instead of a group of mes-
sages. The transmission channel then forms MIMO (multi-input multi-output) system.
The reconstruction of coded messages by the node is performed using iterative algorithms
that maximize the mutual independence between the outputs of the transmission channel.
Most of these methods is based on the Principal Value Decomposition (PCA or Karhuen-
Loeve Transform), and in particular on Independent Component Analysis (ICA). These
methods are similar to those ones used in MIMO system in automatic control to find mu-
tually independent variables in measured output variables. An excellent summary of the
theoretical problems of methods derived from PCA and ICA and its application in MIMO
systems is presented in [42]. Opportunistic coding methods were originally developed for
the transmission of multimedia content. The details can be found in [181], [180].

2.4.2 Selected Routing Algorithms

This section describes several routing schemes in detail.

2.4.2.1 First Contact

First Contact routing protocol is a forward-based routing strategy; only one copy of a mes-
sage exists at a certain point in time in a system. The node that carries a message, forwards
this message to the first node, which it encounters, unless the message is transmitted to
the destination node.

2.4.2.2 Epidemic Routing

Vahdat et al. [206] proposed Epidemic routing protocol for message transfer in OPNs.
Epidemic routing is based on concept of complete flooding. Each node maintains two buf-
fers in which first buffer is used for storing the messages generated by the nodes encounter,
they compare the contents of their messages buffers. Each of them accepts the copies of
messages, which are not contained is its buffer. After the node forwards a message, the
copy of this message still remains in its buffer. If sufficient resources are available (mes-
sage buffers and bandwidth capacity), Epidemic Routing has high message delivery ratio
and low message delivery delay. This protocol has high demands on node message buffer
capacity and bandwidth capacity.

2.4.2.3 Spray and Wait

The Spray and Wait protocol [191] provides an improvement over the Epidemic routing
protocol by controlling the level of flooding. In this protocol there are two phases: the
Spray phase and the Wait phase. As in Spray phase, every message originated at the source
node is passed to L distinct relays in the network i.e. L copies of the message are spread over
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the network by the source code. If the destination was not found in the spray phase, then
in Wait phase each relay node having a copy of message performs the direct transmission
of the message to the destination itself. The performance of this protocol depends on the
value of L, smaller the value of L makes it similar to Direct delivery protocol and larger
the value of L makes it similar to the Epidemic protocol. This protocol has less number of
transmissions and delay as compared to Epidemic Routing.

2.4.2.4 MV: Meeting and Visits Routing Protocol

The routing protocol Routing Meeting and Visits (MV Routing) published in [26] is a
probabilistic routing protocol. The algorithm MV routing use the probabilistic evaluation
of nodes. These probabilities are obtained experimentally and they reflect the history of
node encounters and node location history.

2.4.2.5 PROPHET

The another variant of the epidemic routing protocol is the routing protocol called Prophet
(Probabilistic Routing Protocol using History of Encounters and Transitivity). Prophet is
based on the same principle as the MV Routing or the expansion of the epidemic routing
protocol presented in [202]. Prophet uses an adaptive algorithm that computes a set of
probabilities for successful delivery to known destinations in the opportunistic network.
These probabilities are called delivery predictabilities. Each node maintains a table for
delivery predictabilities to other nodes. If two node meets, the tables of delivery predict-
abilities are updated. The messages during opportunistic meeting of two nodes are passed
only if the node has no better possibility to pass to message in accordance to the table
of delivery predictabilities. The current version of the PROPHET protocol is documented
in RFC 6693 [78]. Stochastic analysis of this type of routing can then be found in [113],
[114]. More variations of epidemic routing can be found in [165], [209].

2.4.2.6 LABEL

Hui et al. have proposed a routing scheme called LABEL; the proposed method is based on
labeling nodes in accordance to their affiliation into groups and simple label-based message
transmission rule. If two nodes encounter, the message is forwarded only if the destination
node is from the same group as the encountered node. Hui et. al have tested this method
on small real-world human mobility datasets. The method improves routing performance
on small OPNs with well-connected nodes, but fails in more structured environments,
where the destination nodes are socially far from the source node. However, this method
is usually perceived as the first attempt to differentiate among nodes from the viewpoint
of their social activity, and use this information in order to improve routing performance.
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2.4.2.7 CAR: Context Aware Routing

Context-aware Routing (CAR) was introduced in [135], [133]. It is based on probabil-
istic evaluations of other nodes. Each node maintains a local probabilistic evaluation of
other network nodes known to him. The probabilistic assessment gives an estimate of the
probability of delivering a message on condition it is forwarded to a particular node.

Probabilities of delivery are regularly updated. Attributes used to evaluate the best
carrier (e.g. the node priced as the node with the highest probability of delivering the
message) are implemented as frequency of connections with other nodes, the probability
of occurrence in the range of the target area, the degree of mobility. In [133] the authors
then show that the routing protocol CAR is more scalable than Epidemic Routing routing
protocol. The protocol overhead CAR remains approximately the same, depending on the
size of the local memory .

2.4.2.8 Hi-Bop

Another routing protocol, which is based on the principle of a context evaluation, is the
routing protocol Hi-Bop [17], [20], [18], [19] designed for a special class of models, so-
called systems of small worlds [98], [212]. Context information is divided into information
about the current context node (the current context) and information on the evolution of
the context node at a time (context evolution). Protocol Hi-Bop was designed for social
networks. Each node is identified by a set of personal data (name, address, city, occupation,
hobbies) that can be expanded with additional data. Each node keeps the information in
the local data structure called the Identity Table (IT). When changing IT neighboring
nodes, then the node obtains information about their neighbors and includes it in the
internal representation of the current context. Current context provides information about
the current network status and social interactions of the local user. These characteristics
may vary over time, and therefore is kept as history. The description of the routing context
can be found in [19].

2.4.2.9 BUBBLE-RAP

Hui et al. [76] proposed a routing scheme called BUBBLE-Rap, which combines two
forwarding metrics: the node centrality and labels based on affiliation to community. Au-
thors used two methods to detect communities: k-clique community detection algorithm
proposed by Palla [146] for the detection of overlapping communities, and a modularity
based approach proposed by Newman et.al [142]. BUBBLE-Rap routing protocol uses
LABEL algorithm at the highest level to identify the node community and RANK routing
algorithm to transmits messages. When two nodes encounter, the message is forwarded to
nodes with higher centrality values than the current node. Authors reported that they ana-
lysed four real-world datasets (Cambridge, MIT Reality, Infocom, Honk-Kong) observed
heterogeneity for node centralities in both global and local states. All four datasets are
small, containing tens of unique nodes and were obtained for special kinds of communities:
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conference participants or university students and staff. The authors proposed both cent-
ralised and distributed versions of routing scheme. The authors compared the correlation
of centrality and the number of contacts and the centrality and the number of encounters
and found that number of encounters correlated well with node centrality. For the com-
putational reasons, the centrality has been supplemented by the number of encounters,
which reflects the intuitive assumption, that does not depend how much people a member
of OPN knows, but rather how frequently he interacts with these people.

2.4.2.10 MobySpace

Another routing protocol, which is based on the principle of context, is the routing protocol
MobySpace Routing [102]. In this protocol, the information about possible contacts of pairs
of nodes is kept as a representation of multidimensional Euclidean space called MobySpace.
Two nodes, which have similar contacts are located in space of MobySpace together. The
best node to receive the message is then the node which is closest to the destination node
in MobySpace.

2.4.2.11 MobiClique

Pietiläinen et al.[157] proposed a multi-layer social routing scheme called MobiClique,
which uses also the users’ Facebook profiles consisting of a unique user identifier, the
friend list and a list of groups of users sharing some common interests.

2.4.3 ML-SOR

ML-SOR is a routing algorithm proposed for routing in multi-layer social networks by So-
cievole et al. [186]. In real world in addition to face-to-face communication, users usually
interact through other different channels: e-mail, phone calls, social network like Facebook,
Twitter, LinkedIn etc. In order to describe these different autonomous communication sys-
tems and differentiate it from the standard face-to-face interaction, authors introduce terms
detected social network and online social network. Detected social network denotes the
node proximity graph containing communities and/or centralities computed on the social
graph detected from the collected data on communicating mobile devices. Online social
network denotes the graph constructed using social information extracted from virtual or
self-declared contacts, such as a list of friends on facebook or followers on twitter. Detec-
ted social network and online social network represent different social contexts. Authors
proposed a multi-layer network model to describe this connection of a single user to an-
other users through different autonomous systems. The presented multi-layer social graph
is based on the social graphs extracted from Bluetooth co- presence data, Facebook friend
lists and shared interests. They presented two multi-layer models based on data from Lap-
land and Sigcomm datasets. Both multi-layer models consist of 4 layers: i) DSN Mode
1, ii) DSN Mode 2, iii) Facebook network, and iv) Interest network. Facebook network
has been extracted using the participants’ Facebook social network information. Each
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vertex represents a single user and an edge between two nodes represents the facebook
friendship. Participants’ interests to generate an Interest network social graph. In order
to simplify the comparison between layers and to avoid modeling detected social network
as a temporal graph, the authors have chosen to model a multi-layer social network using
only static graphs. They have extracted Mode 1 and Mode 2 using Joint Diagonalization
method proposed in [51]. They proposed a metric for each layer and join these metrics
together into one ML-SOR social metric. The final ML-SOR routing metric is computed
using a combination of three measures: centrality on DSN layer, tie strength on OSN layer
and link predictor on Interest network layer.

2.4.3.1 Social Role Routing

Bigwood et al. [14] analyzed the structural similarity of networks and proposed opportun-
istic routing schema Social Role Routing [13].

They constructed two level-level model consisting of self-reported social network (SRSN)
and detected social network (DSN). SRSN is constructed from self-declared facebook con-
tacts, the DSN denotes the detected social network. Their approach is based on application
of information from preexisting social networks to make routing decisions. They determine
the social roles in the social network to find classes of nodes that may be useful for for-
warding. They proposed and implemented a role connectivity graphs; a copy of this graph
is stored in each node. Their approach is based on hypothesis that self-reported social
networks are sufficient to bootstrap the opportunistic network.

2.4.3.2 SRAMSW

Guan et al. [64] proposed a spray-based routing algorithm by combining feedback inform-
ation and retransmission timeout with buffer management mechanism and social-based
metrics. The proposed routing method SRAMSW uses ack messages in order to detect
timeout to solve the blind spot problem and proposes buffer management to reduce the
overload by adaptively adjusting the message copies’ lifetimes. Furthermore, it uses the
information on social relationship in order to optimize the forwarding performance. Au-
thors have compared the proposed routing method to some benchmark routing algorithms
such as Epidemic Routing, PRoPHET, and traditional Spray and Wait and reported bet-
ter performance than the traditional spray routing algorithm and the Epidemic routing
algorithm on message delivery rate.

2.4.3.3 Explore and Wait

Borrego et al. [22] proposed Explore and wait routing scheme, which combines profile-cast
model addressing with probabilistic routing metrics similar to those one use for rout-
ing in PROPHET and optimal stopping theory-based delivery strategy. As opposed to
PROPHET, the proposed probabilistic scheme uses message forwarding instead of mes-
sage copying. Only one copy of the Real-cast message is kept. Profile-cast model allows
message destination be users or the groups of users defined by their profiles. The authors
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tested Explore and Wait routing scheme on two types of simulation scenarios: Urban OPN
and Rural OPN and compared it to three simple forwarding strategies, including first
contact or CSI routing scheme.

2.5 Human Mobility Models

This section describes different categories of mobility models.

2.5.1 Synthetic Models

Synthetic mobility models are mathematical models of mobility, which are created without
the use of real-world data. Fiore et al. [53] propose the taxonomy of synthetic mobility
models. They classify synthetic mobility models into five groups: i) stochastic models,
ii) traffic stream models, iii) front models, iv) queue models and v) behavioral models of
mobility. Stochastic models are the mathematical models that are built on the concept
of a random movement of nodes. The examples of stochastic models is Random Walk
(RWM) or Random Waypoint (RWP) mobility models. Traffic stream models describe the
mobility of vehicles using mathematical and physical apparatus proposed by the analysis
of streaming in hydrodynamics. Following car models include models where together with
modeling the movement of the vehicle the behavior of the driver is modeled. Queue models
of mobility model roads as FIFO queues and vehicles as clients. In Behavioral social models
the movement of each node is fully or partially determined by the synthesized behavioral
rules or social influences.

2.5.1.1 RWM: Random Walk an its Extensions

The random walk model [57] is the simplest model of mobility. This model generates
a completely random node movement patterns. The node mobility simulation based on
RWM starts with random initial distribution of nodes in the simulation space. In each step
of simulation, each node moves in random direction with the randomly selected speed. The
major drawback of this approach is that the RWM model generates node mobility patterns
that do not correspond to the real human movement trajectories. Also sharp and sudden
changes of direction are far away from the real-world human mobility patterns. [149]. Nain,
P. et al. [136] proposed two RWM extensions: Random Walk with Wrapping and Random
walk with Reflection. The advantage of the described model is its easy implementation.
Similarly to RWM, the major drawback of this approach is that it generates node mobility
patterns that do not correspond to the real human movement trajectories. Sharma et al.
[182] proposed Hybrid Random Walk. This mobility model is based on one-dimensional
parameterisation.
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2.5.1.2 RWP: Random Waypoint and its Extensions

Sharma et al. [183] proposed a RWP mobility model with the time delays between node
movements. Popularity of this model of a large number of its modifications. Here we
mention some of them. One such modification is the tuning of key parameters of the RWP
model on the basis of a real data [170] . In [73], the authors presented an extension of the
RWP mobility model. Another modification of the RWP model is the model called Swiss
Flag, which was introduced by Le Boudec in [99]. The proposed modification reflects the
demand to suppress the effect of a “speed decay”, which is an inherent part of the classic
RWP mobility model simulations. In the model proposed by Le Boudec, the simulation
area was introduced as a region in the shape resembling a cross on the Swiss flag, from
which is derived the name of the model. Another modification of the RWP mobility model,
so called Restricted Random Waypoint (RRW) mobility model was proposed by Blazevic
et al. [16]. This model is based on the assumption, that the nodes in the large areas do
not move to the arbitrary destination points but tend to move towards destination points
located in their neighborhood.

2.5.2 Survey-based Models

Survey-based Models are based on statistical observations. They describe observed mo-
bility patterns by the set of statistical or probabilistic functions. These models are to
generate pseudo-random or deterministic behavior of nodes.Complex macroscopic mobil-
ity model was introduced in order to model vehicular traffic in a real network of roads
and highways in Switzerland. This model was developed at ETH Zurich. The model is
continuously calibrated using real statistical data obtained by monitoring real traffic. A
similar approach uses a model developed by Los Alamos Research Labs. The second one
uses a more accurate statistical data obtained from data taken by the sensors at the traffic
lights at intersections and data from automated systems for the evaluation of traffic dens-
ity. Statistical analysis of trajectories Bazzani et al. [10] presented statistical analysis of
a mobility dataset obtained in the Florence urban area. They tested by the probability
distribution and the moving object activity of robust statistical laws. Due to the rapid
development of wireless technologies and high-tech applications, many publications have
appeared in recent years, which are related to analysis of large datasets. Liu et al. [116]
analyzed data consisting of 85 million GPS points of taxicabs collected in Wuhan, China.
They proposed mobility model based on spatio-temporal paths of moving nodes and spatio-
temporal clustering algorithm, which uses spatial clustering of node positions at different
times and a method of complex hull to merge these clusters into spatio-temporal ones.
Hoque et al.[71] analyzed GPS data of taxicabs obtained in the San Francisco area by
application of clustering and statistical methods. Cheng et Anbaroglu et al. [40] proposed
a spatio-temporal clustering algorithm for complex temporal networks analysis in spatial,
temporal and thematic domains and tested it on data obtained from a part of London’s
traffic network.
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2.5.3 Activity Based Models

In recent years, particular attention to human mobility analysis in urban areas has been
paid in urban transportation modeling in order to improve transportation planning. Sev-
eral publications have appeared in recent years documenting that human movements are
organized based on activities and locations that are important in their daily life. Trans-
portation activity-based models consider travel demands as the needs derived from human
activities. The increasing popularity mobility models for transportation planning are based
on :motifs”. The concept of network motif was firstly proposed in complex system research
by Milo et al. [125]. Network motifs are defined as recurrent and statistically significant
sub-graphs or patterns. The concept of network motifs has been adopted and widely used
in the analysis of complex biological networks [178], [43], [87], [213], [155], [176]. Schneider
et al.[175] proposed the application of network motifs in human mobility analysis. They
constructed daily human mobility networks from CDR data for Paris over a period of 6
months and from travel survey data for Paris for one day. They reported, that they iden-
tified 17 unique motifs. Jiang et al. [84] have applied a similar approach to extract human
daily motifs. They have constructed daily human mobility networks from triangulated mo-
bile phone CDR data for one million users in Boston. They have reported similar findings.
Furthermore, they have proposed a probabilistic inference method to use motifs, time of
day, activity sequence, and land use related information to further infer activity types and
traffic patterns Widhalm et al. [214] proposed methods for inferring human activity types
from data extracted mobile phone data and land use data for the cities of Boston and
Vienna.

2.5.4 Trajectory based models

Trajectory models, also called Trace Based Models use the extraction of mobility patterns
from the set of paths. The major drawback models lies in the fact, that the extrac-
ted mobility models are valid only for a narrow group of nodes, which has the properties
corresponding to the properties of nodes whose routes were used as input data for extrapol-
ation. Research work on this subject can be divided into two large groups. The first group
includes the work include large-scale projects focused on of monitoring traces of vehicles
[204], [225] and the similar large-scale projects focused on humans as MITE Reality Mining
[128], USC MobiLib [69] or Cabspotting [70]. The second group include projects, which are
primary targeted to human mobility models extraction [96], [100], [34], [195]. The research
is focused on the analysis of experimental datasets containing data, which were collected
on small groups of people. Participants of these experiments received instructions to carry
the wireless nodes such as mobile phones or sensor devices in order to detect the nodes
in proximity range and log the data on these detected nodes during the experiment dura-
tion. Usually these datasets were collected in university communities and the participants
of experiment were both students and teachers. These datasets have been used in OPN
research, we shortly describe some of these datasets in order to help a reader have a better
orientation in the profile of typical datasets. University of Milano Campus (also referred

24



2.5. Human Mobility Models

as UNIMI) dataset was collected for 19 days in November 2008. The dataset contains data
from 44 people. The connectivity range of communication devices was about 10 meters.
The carriers of the devices were faculty members, doctoral students, and technical staff.
University of Cambridge Campus dataset (also referred as Cambridge) contains data from
12 people. Dataset was collected for 6 days. The communication devices have Bluetooth
connectivity with 10 meter contact range. University of St Andrews Campus dataset (also
referred as SASSY) contains data from 27 people (22 undergraduate students, 3 graduate
students and 2 staff) at University of St Andrews. It also contains the data on facebook
friendship of the participants. Marseilles High School dynamics contact network dataset
(also referred as Marseilles) contains the data collected from students in a high school in
Marseilles, France. It consists of two separated datasets. The first dataset was collected
among the students of three classes during 4 days in 2011. The second dataset was collec-
ted for 7 days in 2012 and contains data from students of 5 classes. UNICAL [150] dataset
contains data from 15 postgraduate students at University of Calabria campus, Italy. It
was collected for several days in 2014. The dataset also contains the data on facebook
friendship of the participants. SIGCOMM dataset [156] contains data from 76 conference
attendees collected by an opportunistic mobile phone social application. In the last decade,
the approaches to trace extraction based on semantic description [188] clustering [168], [11]
or spatio temporal clustering [97] has attracted much attention. Yan et al. [222] proposed
hybrid model of trajectory and were interested in spatio-temporal patterns. There are two
important results of the analysis of the real-world mobility data. The first result include
knowledge that both the movement speed of the nodes and the lengths of breaks of the
nodes have the log-normal distribution. In the synthetic models proposed before the real
human traces were analyzed, the uniform distribution was assumed. Another important
finding is that the time for which the network nodes remain in contact, can be modeled by
means of the probability distribution of the type of power law, and not by the exponential
distribution. These findings have had a retroactive effect on the synthetic models and their
configuration parameters.

2.5.5 Traffic Simulators

Traffic Simulators model individual entities participating in the simulation. For the mod-
eling of transport in urban areas were developed many models such as Paramics, Corsim,
VISSIM or TRANSIMS [53]. In recent years, commercial traffic simulators have been de-
veloped as software applications designed primarily for traffic analysis and planning. They
are used primarily as a tool for decision support and approval of plans for the construction
of transport infrastructure. Some examples of noncommercial traffic simulators include
MobSim introduced in [132] or the ONE simulator [94].

2.5.6 Mobility Models Constructed by Machine Learning Techniques

Toch et al.[200] proposed a taxonomy of human mobility models constructed by the ap-
plication of machine learning technology. At the highest level,the models are divided into
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three categories: i) user modeling, ii) place modeling and iii) trajectory modeling. Each
category is divided into three categories: i) non machine-learning models, ii) supervised
learning, iii) unsupervised learning and latent variable models. Each subcategory is divided
into subcategories in accordance to machine learning technique in use. Authors cite a huge
number of scientific papers covering almost all machine learning approaches to user, place
or trajectory modeling.

2.5.7 Mobility Models from the viewpoint Of OPN

Hong et al. [219] has introduced five characteristics describing movement of a set of moving
nodes forming OPN from the viewpoint of routing in OPNs. These characteristics include:
i) Flight length, ii) Spatial locality distribution, iii) Temporal characteristics, iv)Spatio-
temporal characteristics (these ones are called Joint spatial and temporal characteristics in
Hong’s terminology; we use notation spatio-temporal, which is more common for the data
analysis both in spatial and time domain simultaneously), v) Graph characteristics.

The Flight length is defined as the longest straight line trip from one location to another.
The Spatial locality distributions describes the node scattering in scenario, which can be

either uniform or heterogeneous. If every node has the equal chance to visit each location
in the network, the spatial locality distribution is uniform, otherwise it is heterogeneous.
Most real-world scenarios can be described using heterogeneous spatial locality distribution.
Heterogeneous spatial locality distribution allow an application of clustering methods.

The Temporal characteristics describe temporal features of the scenario. The most
important temporal characteristics include encounter frequency, filling time and scattering
time

The Spatio-temporal characteristics are characteristics obtained by the mobility data
analysis both in time and spatial domain simultaneously. Hong et al. have referred to spatio
temporal analysis of an OPN employing the static wireless devices at certain location, so
called throw-boxes, which can help message dissemination among mobile nodes in delay
tolerant networks.

The Graph-related characteristics Graph related characteristics are used to analyze the
potential presence of social networks in OPNs. In the context of OPNs, the social network
denotes a set of nodes which are close to each other in some way. Typically, the nodes
form a social network, when they visit common places, or they move close to each other or
have meet each other frequently. The existence of a social network facilitates application of
metrics based on graph structural properties, which cannot be ignored since they can make
a strong impact on message delivery. Hong et al. [219] has enumerated three main groups
of graph-related characteristics: centrality features, community detection, particularly k-
clique communities and features based on the connectivity of a network graph formed by
mobile nodes in a continuum framework [39]. Centrality is used to measure the importance
of node in terms of the network structure. Hong et al. [219] has enumerated three common
metrics: degree centrality, closeness centrality, and betweenness centrality.
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Chapter 3

Overview of Our Approach

3.1 Introduction

The opportunistic networks (OPN) are networks disseminating messages with the “store-
carry-forward” routing principle. The key function of OPN routing protocols is to make
decisions on message forwarding. The routing metrics are designed in order to select
the most optimal nodes which have the highest probability to be a part of the paths of
successfully delivered messages with respect to maximization of message delivery ratio and
the minimization of overhead cost and message delivery delay.

We proposed four routing schemes in this chapter:

i) Hierarchical Routing with Clustering 1 (HRC1),

ii) Hierarchical Routing with Clustering 2 (HRC2),

iii) SVM-based routing,

iv) Routing scheme combining GMRF (Gaussian Random Fields) and ANMA (Active
Node Movement Algorithm).

This chapter is organized as follows: at first, the short overview of intuitive constraints
set to modeled OPN is given. Then the definition of OPN contact graph and the geographic
are of OPN are given. Then, we discuss existing routing methods, which are related to
our research because of they use in some way the context or regular patterns in node
mobility. Next section describes two proposed methods Hierarchical Routing with Clus-
tering 1 (HRC1) and Hierarchical Routing with Clustering 2 (HRC2). Then the inference
of SVM-based routing method is presented. Finally, we describe how to apply GMRF to
cell message delivery probability matrices and model these matrices as textures. Then the
ANMA method is proposed.
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3.2 Assumptions

As it is apparent from the text above, the definition of opportunistic network covers a wide
range of networks from sensor networks for monitoring wildlife to the networks formed
from autonomous robots. These networks differ in their properties.

In order to propose methods and procedures that are more specific, we proposed certain
assumptions to define the research area. In our work, we adopt the following assumptions
and constrains:

Assumption 1: Node character limitations
We limit our research to the opportunistic networks where nodes are:

◦ people with communication equipment allowing to operate as the node of the oppor-
tunistic network,

◦ autonomous ground mobile robots with the communication equipment allowing to
operate as the node of the opportunistic network,

◦ vehicles driven by a driver with the communication equipment allowing to operate
as the node of the opportunistic network.

Assumption 2: The autonomy of nodes
From the viewpoint of interaction with the environment and with the other nodes, the

nodes must behave as autonomous devices or autonomous individuals. Each node must
be able to make decisions on routes and traces of its movement in the environment. Each
node in the network must be able to decide whether or not to communicate with other
nodes within its communication range. Each node must be capable to make the decisions
about communication: whether to initiate communication or whether to respond to the
request for communication, or whether accept or not to accept a particular message. This
assumption does not exclude the use of a fixed central data warehouse and operations over
large data performed externally.

Assumption 3: Network where the certain patterns of movement are ob-
servable

We assume that the motion of the nodes is not random, but that the nodes move in
order to undertake some reasonable activity. The movement of each node is determined
by the sequence of node specific local destinations. It is assumed that each node is moved
in order to meet certain specific task. Network nodes do not therefore move randomly, but
they move along the meaningful trajectories; the source and destination points of these
trajectories are determined by the task of the node. This assumption is based on behavioral
models. The research focused on the movement of people and vehicles in the real world,
indicates that persons and vehicles repeatedly occur in the same places, and we can observe
certain patterns of movement.
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Our research will be strictly limited to the opportunistic networks, where we can assume
the existence of patterns of movement.

Assumption 4: Testing and development on the simulated data
Although the proposed algorithms are intended to be applied in the real opportunistic

networks, they were developed and tested on the simulated data. Due to financial reasons,
we are not able to test the algorithms in a real life.

Assumption 5: The physical dimensions of a network are not perceived as
a limiting factor

We assume that the same routing principles can be applied both in micro-networks
(networks of robots within a building) in medium networks, and macro-networks (networks
in geographic areas). This assumption does not exclude that the requirements for hardware
can be significantly different for different types of networks.

Assumption 6: The properties of the communication device
Each communication device representing the node in the opportunistic network has a

unique hardware identifier. Individual devices can be uniquely identified. The communic-
ation device is capable:

◦ to exchange messages with other devices of the same type, if the device is in com-
munication range,

◦ to keep the messages and data in a local memory,

◦ to determine the node position and store the information on the previous node pos-
ition,

◦ to have a computational capacity adequate for the proposed routing methods.

Furthermore, the communication device could have the other properties, which follow. The
device can:

◦ to communicate with some external communication devices out of the opportunistic
network,

◦ to collect and utilize other parameters (such as user activity, calls, memory availab-
ility, state of the energy resources).

3.3 OPN: The Opportunistic Network

The opportunistic network OPN is the communication network where the messages are dis-
seminated with the “store-carry-forward” routing principle. The OPN can be described by
the temporal contact graph of nodes and by the multidimensional matrix of node coordin-
ates in time, which represent node positions in the real-world physical area. If additional
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properties of nodes are taking into account, the model of OPN can be extended to the
multi-layer model, where each layer represents another kind of relations among the nodes.
The example is social aware routing in OPNs, which takes into account also other addi-
tional relations and connections among the nodes, such as friendship, interests or e-mail
communication.

The routing methods proposed in this work are related to the OPNs, where only data
on node mobility are available as input data. The practical application scenarios of these
kind of OPN include traffic condition monitoring, advertisement, environment condition
monitoring, newscast, place-driven assistant systems. No assumption is made about addi-
tional connections of people who serve as the nodes and register in OPN in order to use the
services of OPN. The main routing criterion is co-locality of nodes. The node communities
formed by co-location are taking into account.

OPN contact graph

The OPN contact graph G(N,E, F (t)) is the temporal graph, where N = n1, n2, ..., nj
is the set of j opportunistic network graph vertices, while E = e1, e2, .., ek is the set of k
graph edges and F (t) is a set of edge functions (f1(t), f2(t) . . . ) which defines the existence
of the edge at time t. The vertices correspond to the nodes of the opportunistic network.

Geographical area

The geographical area of the opportunistic network Λ is the area in which the oppor-
tunistic communication takes place. It is represented as a finite set of ordered pairs m,n.
Nodes can move in this area, leave it, enter it or stop inside the area and temporarily be
inactive.

Traces

Nodes move along the traces. Trace r is a set of points from the area of the opportunistic
network through which the node moved from m1, n1 to point m2, n2. m1, n1 is a start point
of the trace. m2, n2 is an end point of the trace r. Group of traces forms a trip.

In the recent years, the particular attention to the analysis of communities within
networks was given in various disciplines, particularly but not only in mathematics, physics
and biology. Scientist have become interested in the study of networks describing topologies
of wide variety real systems [52]: biochemical networks, social networks, communication
networks, transportation networks, text databases networks, world wide we and much
more.

3.4 Existing Methods

Similarly to existing more sophisticated OPN routing schemes, the basic idea of the pro-
posed methods consists in routing efficiency improvement through forwarding messages
only to those nodes of the OPN, which fulfill some criterion (or criteria) constructed from
the data. The literature on OPN routing shows a variety of approaches; we are interested
in those ones, which use in some way context or prediction or node mobility models. From
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the viewpoint of the main principle of routing metrics in use, the context-aware OPN
routing techniques include into seven groups:

i) Probability-based routing protocols

ii) Network community oriented methods

iii) Node influence oriented methods

iv) Multi-layer social aware oriented approaches

v) Geographic routing methods

3.4.0.1 Probability-based Routing Protocols

The probability based routing protocols use metrics based on history, but they avoid
construction of mobility patterns at all or use simple prediction models derived from
the Markov process model. The examples of probability-based routing protocols are
PROPHET, MobySpace, LIBRE, MaxProp or PER. PROPHET and MaxProp improve
routing using routing metric based on probabilities of node contacts computed from the
node contacts in history. MobySpace routing algorithm improves routing using routing
metric based on probability of visiting localities computed from the locality visits in node
history. LIBRE explores contact probabilities computed from node encounters in history
and use Markov model for node mobility prediction.

3.4.0.2 Node Influence Oriented Methods

The centrality is a network property which characterizes the node importance in the net-
work. The most recognized centralities are closeness centrality, degree centrality and
betweenness centrality.

The closeness centrality of a vertex v, for a given graph G := (V,E) with N vertices
and |E| edges, is defined as

C(x) =
1∑

y d(y, x)
(3.1)

where d(y, x) is the distance between vertices x and y.
It is impossible to compute closeness centrality for disconnected graphs, because the

distance between two nodes, which belong to two distinct components of graph, has not a
finite value.

H(x) =
∑
y 6=x

1

d(y, x)
(3.2)

where 1/d(y, x) = 0 if there is no path from y to x.
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Betweenness is a centrality measure of a vertex within a graph, which quantifies the
number of how many times the node acts as a bridge along the shortest path between two
other nodes.

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
(3.3)

where σst is total number of shortest paths from node s to node t and σst(v) is the
number of those paths that pass through v.

Both betweenness and closeness centralities of all vertices in a graph involve calculating
the shortest paths between all pairs of vertices on a graph. The nodes which have high
values of betweenness centrality become to the most important nodes for routing in OPNs.
The equations above are valid for static graphs; for temporal graphs it is necessary to
compute centralities through the time development of the graph. It is computational
expensive. Using centralities as routing metrics give very good results and it is involved in
several routing schemes.

Tang [197] extended the definition of closeness to temporal graphs using the temporal
shortest path length between nodes, which is a measure of how fast a source node can
deliver a message to all the other nodes of the network. The disadvantage of application
particularly temporal betweenness centrality is increasing computational time for large
temporal networks.

3.4.1 Community-based Approaches

The main idea of community-based routing is that relationship of the users is reasonable in-
formation for predicting future contact opportunities. The community has a strong impact
on human mobility pattern. The community-based routing schemes consists of two phases.
At first, the mobile nodes are grouped into communities by certain community detection
algorithm. Secondly, the routing scheme is proposed and the messages are forwarded in
accordance to this routing schema. In the recent years, the particular attention to the
analysis of communities within networks was given in various disciplines, particularly but
not only in mathematics, physics and biology. Scientist have become interested in the
study of networks describing topologies of wide variety real systems [47]. Biochemical net-
works, social networks, communication networks, transportation networks, text databases
networks, world wide we and much more.

More real networks typically contain parts in which the nodes are more highly connected
to each other than to the rest of the network. These parts of networks are represented
by subsets of nodes, which are called are called clusters, communities, cohesive groups
or modules [142]. In accordance to Palla et al. [146], no unique definition is accepted,
different terminology is used in different scientific areas. In this work, we will use the
term community, because this term is mostly used in scientific community interested in
opportunistic networking.
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Both Danon [47] and Newman [142] presented a survey of several existing methods.
Generally, the problem of finding non-overlapping communities in a network is a graph
partitioning problem. It consists in the task of partitioning the given graph into n sub-
graphs. Graph partitioning problem has been studied in graph theory, computer science.
Similar problem was has been studied in sociology, where it is called hierarchical clustering
or hierarchical communities detection. Working with data collected on real systems, usu-
ally the following problems bust be taken into account:i) we usually don’t know, how many
communities should be discovered, ii) the communities can be organized hierarchically iii)
computational complexity of community detection method. Palla et al. [146] proposed
k-CLIQUE algorithm for static graphs, where another approach finding overlapping com-
munities where a community is defined as the union of all k-cliques (complete sub-graphs
with k nodes) that can reach each other through a series of adjacent k-cliques, where two
k-cliques are said to be adjacent if they share k-1 nodes.

Newman et al. [143] proposed a method based on modularity, which is able to find
communities without the necessity to specify the number of communities. The method
is based on edge removal from the graph. The edges to be removed are selected on the
basis of evaluation using betweenness coefficients. The computational complexity of the
proposed method is O(m2n).

3.4.2 Multi-layer Social Aware Oriented Approaches

Multi-layer approaches to routing in OPN model the OPN as a structure of mutually
connected layers. In addition to contact graphs describing physical encounters of nodes,
they use social layers reflecting the real world contacts. The presented multi-layer social
graph is based on the social graphs extracted from different sources such as Facebook,
Twitter or e-mail communication. The examples are ML-SOL, Social Role Routing or
MobiClique.

3.4.3 Geographical Routing

In opposite to topology-based routing schemes, the geographic routing protocols use the
knowledge of physical location in the routing process. Geographic routing protocols are
context-aware routing schemes, which use location data as the context. One group of
routing schemes use location services. The examples of routing protocols based on location
service include Location services some specialized nodes, which serve as location Li et al.
[109] a scalable location service for geographic ad hoc routing, which allows determine the
location of the network destination. Basagni et al.[8] proposed DREAM a routing scheme
based on flooding, which uses partitional flooding. the flooding is restricted to some some
region. Leong et al.[107] proposed method for nodes, which has no information on their
locations which is called virtual coordinates.
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3.5 Hierarchical Routing with Clustering

3.5.1 Overview of the Method

Problem:

i) to propose application of unsupervised machine learning in routing metrics inference,

ii) to analyze the performance of the proposed routing method.

We proposed two hierarchical routing methods Hierarchical Routing with Clustering 1
(HRC1) and Hierarchical Routing with Clustering 2 (HRC2). The block diagram of the
proposed method HRC1 is presented on Fig. 3.1. Fig. 3.2 shows the second method HRC2,
which is an adaptation of HRC1.

3.5.1.1 Simulation Setup and Dataset

Dataset obtained from node movement simulation. After the simulation scenario is pre-
pared, we run the simulation in the simulation environment ONE [94]. The output of
simulation is a file containing records of node positions at each time step. The records
have the following form:

ti, x1, y1, x2, y2, x3, y3 . . . . . . . . .xN , yN
where ti is a time step, xj, yj are the Cartesian coordinates of the node Xij and N is

the number of nodes. This records represent a dataset containing temporal data on node
positions.

3.5.1.2 Contact Graph

We compute the contact graph of nodes at each time step. The vertices represents the
nodes, the edges represent contacts. If two nodes A and B are in communication distance
at time t, the contact graph for time t contains an edge between A and B.

3.5.1.3 Cluster Analysis

Cluster analysis is the task of grouping a set of objects in such a way that objects which
are more similar to each other are assigned in the same group. These groups are called
clusters.

Given a set of observations (y1, y2, . . . , yn), where each observation is a d-dimensional
real vector, k-means clustering aims to partition the n observations into k sets (k ≤ n)
S = {S1, S2, . . . , Sk} so as to minimize the within-cluster sum of squares

argS min
k∑
i=1

∑
yi∈Si

‖ yj − µi ‖2 (3.4)

where µi is the mean of points in Si.
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Figure 3.1: The block diagram of the process of routing metrics HRC1 inference
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Figure 3.2: The block diagram of the process of routing metrics HRC2 inference
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Figure 3.3: Detection of OPN Geographical Sectors: Data Pre-Processing

There are many algorithms for cluster analysis: in accordance to [218] possibly over
100 clustering algorithms has been published. k-means algorithm [67] uses an iterative
refinement technique. Given an initial set of k means m1(1), . . . ,mk(1), the algorithm
proceeds by alternating between two steps: the assignment step and the update one.

In the assignment step, each observation (piece of the data) is assigned to the cluster
with the closest mean.

S
(t)
i =

{
yj :‖ yj −m(t)

i ‖≤‖ yj −m
(t)
i∗ ‖

}
for all i∗ = 1, . . . , k (3.5)

In the update step, the new means are calculated to be the centroid of the observations
in the cluster.

m
(t+1)
i =

1

|S(t)
i |

∑
yj∈S

(t)
i

yj (3.6)

3.5.2 Detection of OPN Geographical Sectors

This section describes partitioning of the OPN geographical area in accordance to its
geographical structure. Our approach is based on application of unsupervised machine
learning to node positions data. We used well-known k-means algorithm with Euclidean
distance. First, we perform the data preprocessing: we construct the node position graph
from the geographical data. We proposed iterative triangulation to obtain a graphical
representation of node positions. In node position graph, the vertexes represent node
positions in time (x,y,t) obtained in different time steps. The edges represent connections
between vertices obtained by iterative triangulation with the limited value of the length
of the triangle side. Fig. 3.3 shows an example of a triangular graph of node positions
collected in time.

The points inside the triangles are added to the data. It makes the following clustering
more robust. In the next step, the geographical sectors of the OPN are computed over
the spatio-temporal data using clustering, we use a variant of k-means method. Because
of the spatio-temporal nature of the data, each node can appear in more than in one
cluster (but with a different time coordinate). Thirdly, we compute a node affiliation
into detected geographic sectors. In order to eliminate random or rare node presence in
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sectors, we propose a metric of node affiliation into cluster: the number of node positions
inside geographical sector is divided by all the node positions in time. If this value is
higher than δ, the node is affiliate with the sector i. It is necessary set the value of
δ manually, we use the 0.05, e.g. at least five percent of all node positions must be
inside the geographical sector. This value is dependent both on OPN node mobility and
geographical high level structure and must be set with respect to these characteristics. For
each node X we compute GSEC(X), a set of labels of geographical sectors which the node is
affiliate to. Finally, we constructed a graph of the connection of clusters. The graph nodes
represent clusters. The graph edges represent connection of clusters by X set of vehicles
moving in an opportunistic network. In comparison to social-aware routing protocols such
as BUBBLE RAP or ML-SOL, which analyze communities observed in a contact graph
constructed from the node contact data, we analyze the communities in the graph based
on geographical closeness of node positions without any regard to social contacts except
those ones described by repeating co-locations of the nodes. It is sufficient, because we are
interested in geographical partitioning of the OPN in this step.

3.5.3 Construction of Communication Community in spatio-temporal
domain with time constraints

This section describes how the local communication communities are constructed from
the spatio-temporal data. In opposition to method based on k-clique communities, where
the communities are constructed from the k-cliques (fully connected sub-graphs) or to
method based on modularity, we explore another approach based on communication contact
graph construction in pre-defined time slots. In order to find communication communities,
we investigated clustering method which uses the neighborhood node distance metrics,
iterative node labeling and time constraints. The proposed method is based on building
of community using community labels. We divide training data into time slots. The
duration of each time slot is 15 minutes and it is divided into time windows of duration
2 seconds. At the beginning, each single node represents a community. For each node,
the noes in communication distance in time window are found and added to the same
community (relabeling). The computation is repeated for the next time window. As the
process proceeds, the number of communities in node population decreases.

The iterative aspect of our approach is similar to the iterative graph partitioning method
called Label Propagation Algorithm (LPA) proposed by Raghavan et al. [163]. In opposite
to Raghavan’s approach, our method does not assign the vertex the label that is most pre-
valent in the vertex’ neighborhood, but rather is looking for connected node communities
and operates in spatio-temporal domain. We call the constructed sub-graph local com-
munication community. Notice, that found communities are not generally equal to those
found by k-clique or modularity based community detection methods. The pseudocode
of Find Local Communication Community follows. The proposed method does not reflect
the direction of time.

COMPUTATION OF LOCAL COMMUNICATION COMMUNITIES O(X)
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- PSEUDOCODE

1. for ∀u ∈ U do
o[u] = 0
end
ok = true;
do

for ∀u ∈ U do
if o[u] == 0 then

area = 0;
for ∀v ∈ U do

if u 6= v then
if distance(u, v) < limit then

if o[v] 6= 0 then
if o[v] 6=area then

if area6= 0 then
for ∀x ∈ o[area] do

o[x] = o[v];
end

end if
area = o[v];

end if
else

if area == 0 then
area = generateNewNumber();

end if
o[u] = area;
o[v] = area;

end if
end if

end if
end
if o[u] == 0 then o[u] = generateNewNumber();
end if
ok = false;

end if
end

while not ok;

For each time slot, we receive a Community Affilation matrix, where the columns rep-
resent the nodes, the rows time-slots and the values the affiliation of nodes to its commu-
nication community at each time slot. The labeling of communities differ for each time slot.
Two same communities found in different time slots would have different labels. Fig. 3.4
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shows several first rows and columns of Community Affilation matrix.

Figure 3.4: Community Affilation Matrix

3.5.4 Clustering Node Positions into Locations

The measurement of node position co-ordinates with sampling frequency f generates a huge
amount of data. Moreover, in real-world applications, if the node visits the same physical
location again, the measured node position co-ordinates can gently vary from the node
co-ordinates obtained from the previous measurements in the same location. In order to
process data from more measurements to learn a mobility pattern, its better to recognize
the presence of the node in location rather than work directly with exact node co-ordinates.
For each node, we apply a variant of k-means clustering algorithm to find clusters of node
positions and we call these clusters locations. We use the variant of k-means clustering
method proposed by Ashbrook et al. [5] who have been interested in the task of finding
locations from GPS data, which is some kind of locally applied k-means clustering. The
k-means clustering is not applied to all node position data simultaneously: only the node
positions in defined local neighborhood are clustered at each step. In image processing
this variant of k-means clustering is sometimes called mean shift clustering. The original
method contains an application of a circle neighborhood defined by the neighborhood center
and radius, but we adopt a square neighborhood in our work, which is well-known from
image processing, because it is more suitable for discrete data and can simplify 2D data
processing in comparison to circle neighborhood. As result, we obtain a matrix TxN, where
T is a number of where each row represents node locations in time. These row vectors are
used to construct communication communities instead of original node positions vectors.

3.5.5 Routing Method

On the basis of data analysis described above, we proposed two hierarchical routing al-
gorithms HRC1 and HRC2.
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The routing method HRC1 combines three strategies in order to improve routing in
OPNs: i) the node affiliation with detected OPN geographic sector + use of the sets of the
detected geographic sectors, ii) the node affiliation with the communication community
constructed in spatio-temporal domain with time constraints iii) epidemic routing.

The routing method HRC2 combines three strategies in order to improve routing in
OPNs: i) the node affiliation with detected OPN geographic sector + use of the graph of the
geographic sectors, ii) the node affiliation with the communication community constructed
in spatio-temporal domain with time constraints iii) epidemic routing.

The proposed routing scheme has two phases: training and testing. During the testing
phase, the knowledge is extracted from the data as it is described above. The labels
and routing tables are computed centrally during the training phase. During the testing
phase, the simulation is conducted. When two nodes encounter, they exchange messages
in accordance to the rules defined by the proposed routing algorithm.

3.5.5.1 Message Exchange Policy

We proposed a message exchange policy, which is applied every time two nodes encounter.
This policy enables to exchange a set of messages even if the message buffers of both
encountering nodes are full using planning. If two node encounter, the lists of messages
planned to be evaluated by the routing metrics are computed at first. The message ex-
change procedure is call makeDecision procedure, which includes a routing metrics. Both
variants of HRC use the message exchange policy.

3.5.5.2 HRC1 Routing Method

FORWARD denotes message transmission, KEEP denotes that the node carrying a message
does not forward the message. GSEC(X) denotes a set of labels describing an affiliation
of node X to the particular geographical sector. O(A)αA denotes the local communication
community of node X for the time slot α. We use time slots of length of 15 minutes.

Let‘s assume the nodes A and B encounter. They start communication and in accord-
ance to the message exchange policy, each of them selects a set of messages to be exchanged.
These messages are maintained in PLAN A list of node A and in PLAN B of node B list.
Than for each message the routing rules are applied. At first, the nodes compare their la-
bels of communication communities C(A), C(B), C(DEST). If all three nodes A,B, DEST
are from the same communication community, the Local Encounter Metrics is applied. The
DEST denotes the destination node of the message. The message is forwarded if the node
popularity of the source node is smaller than the popularity of the node receiving message.
The similar node popularity approach is used by LABEL or BUBBLE RAP routing proto-
cols. If the nodes A,B and DEST are not from the same local communication community,
the routing rule 2 is applied. Node A compares the affiliation GSEC(DEST) of DEST
node to geosectors to the current meeting position. If the GSEC(DEST)= GSEC(current
position), the routing scheme for searching local communication community is applied.
Otherwise, the rule # is applied and the compare their affiliations to geographical sec-
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tors. If the B and DEST are affiliate to more common geographical sectors, the message
is forwarded, otherwise the node A keeps the message.

MAKE DECISION PROCEDURE PSEUDOCODE

makeDecision (A, B, DEST)

1. if C(A) == C(B) and C(A) == C(DEST ) then
return COPY & TIMEOUT;
end if

2. GSEC(DEST) contains the label of the geographical sector of the meeting point
Search the nearest time interval αA where O(A)αA == O(DEST )αA .
Search the nearest time interval αB where O(B)αB == O(DEST )αB .
if αA ==∞ and αB ==∞

then
if O(A)α ∩O(DEST )α+1 or

O(A)α ∩O(O(DEST )α+2)α+1 or
O(A)α ∩O(O(O(DEST )α+3)α+2)α+1

then return FORWARD;
else return KEEP;

end if
else

if αB == α or αB < αA
then return FORWARD;
else return KEEP;

end if
end if

3. if GSEC(A) ∩GSEC(DEST ) 6= ∅ then
if |GSEC(A) ∩GSEC(DEST )| < |GSEC(B) ∩GSEC(DEST )|

then return FORWARD;
else return KEEP;

end if
end if

3.5.5.3 HRC2 Routing Method

This section deals with the proposed hierarchical routing method HRC2. The block dia-
gram of the proposed method is presented on Fig. 3.2

MAKE DECISION PROCEDURE PSEUDOCODE

makeDecision (A, B, DEST)

1. if C(A) == C(B) and C(A) == C(DEST ) then
then return COPY & TIMEOUT;

end if
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2. GSEC(DEST) contains the label of the geographical sector of the meeting point Search
the nearest time interval αA where O(A)αA == O(DEST )αA .

Search the nearest time interval αB where O(B)αB == O(DEST )αB .
if αA ==∞ and αB ==∞

then
if O(A)α ∩O(DEST )α+1 or

O(A)α ∩O(O(DEST )α+2)α+1 or
O(A)α ∩O(O(O(DEST )α+3)α+2)α+1

then return FORWARD;
else return KEEP;

end if
else

if αB == α or αB < αA
then return FORWARD;
else return KEEP;

end if
end if

3. if GSEC(A) ∩GSEC(DEST ) 6= ∅ then
if |GSEC(A) ∩GSEC(DEST )| < |GSEC(B) ∩GSEC(DEST )|

then return FORWARD;
else return KEEP;

end if
end if

ROUTING ALGORITHM PSEUDOCODE

◦ start communication

◦ select messages to exchange - list PLAN A, PLAN B

◦ makeDecision(node U, node V, node DEST)

◦ makeDecision(node V, node U, node DEST)

◦ messageExchange

◦ end communication

The algorithm parameters follow:

◦ U, V - nodes that meets.

◦ M - message identified by 32-bit ID.

◦ M.dest - destination node for the message M.
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◦ U.clusters - list of clusters visited by the node U during whole simulation.

◦ PLAN - list of messages from the buffer, which will be transmitted.

◦ list.count() - number of messages in the list.

◦ list.size() - maximum number of messages that can be stored in the list.

◦ list.contains(M) - test whether the message M is in the list.

◦ list.insert(M) - store message M into the list.

Routing Algorithm Pseudocode

1. Node U detected other node V (distance |UV | < 0.128).
PLAN = ∅;

2. foreach message M from U.buffer do
if not V.buffer.contains(M) then

if makeDecision( U, V, M.dest) == FORWARD then
PLAN.insert(M);

end if
end if

end foreach
3. Limit the count of transmitted messages:

limitU = min(
PLAN.count(), U.buffer.size() - U.buffer.count() );

send( limitU);
receive( limitV );
limit = min( limitU , limitV );
if limit < PLAN.count() then

delete last PLAN.count() - limit messages
from the list PLAN;

end if
4. Send the first message M from the list PLAN;

Remove M from PLAN and from U.buffer;
5. if there is no transmission then go to 6;

else
receive message M;
if M.dest == U.id then

message was successfully delivered;
else

decrement M.ttl;
if M.ttl == 0 then

ignore this message;
else
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if not U.buffer.full() then
U.buffer.insert(M);

else
ignore this message;

end if
end if

end if
end if

6. if PLAN.empty() then
if there is no transmission then go to 7;
else go to 5;
end if

else go to 4;
end if

7. End.

3.6 SVM-based Routing

3.6.1 Overview of the Method

Problem:

i) to propose application of supervised machine learning in routing metrics inference,

ii) to analyze the performance of the proposed routing method.

Let O be the OPN formed by the set of nodes X = X1, X2, . . . in geographical area
Λ. The nodes are humans or vehicles. Previously it has been shown in scientific literature
that humans do not move randomly, instead of that the human node mobility patterns
show some regularities. Each node visits a limited set of places and moves in accordance
to its own time schedule.

Fig. 3.5 shows node positions of a node X collected each day between 7 and 10 o’clock
of 10 days of weekday simulation scenario. There are variances in node mobility data
collected in different days, but some repeating patterns are observable.

Suppose we want to establish a communication channel between two geographical places
A and B, A ∈ K,B ∈ K through the opportunistic communication in the OPN O. Each
time when any node Xi and place A are in one-hop communication distance, the node Xi

and place A can exchange messages. The message from A addressed to B can be forwarded
from A to Xi and than by routing in OPN to B.

Each time when any node Xj and place B are in one-hop communication distance, the
node Xj and place B can exchange messages. If the node Xj carries the message addressed
to B, it can forward this message to B. From the viewpoint of forwarding the message
MSG k through OPN, the communication between A and B is similar to opportunistic
communication between Xi and Xj.
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Figure 3.5: The visual representation of positions of one randomly selected node. The
node positions were collected for 10 days between 7 and 10 o’clock of workday scenario
(simulation)

Figure 3.6: Stationary node A sends a message to stationary node B through OPN. From
the viewpoint of forwarding the message MSG k through OPN, the communication between
A and B is similar to opportunistic communication between Xi and Xj.
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We assume the existence of the node mobility patterns. This assumption implies that
there should be a time pattern describing the appearance of the nodes in communication
neighborhood of any geographical place during the day. If the messages are sent repeatedly
from A to B during the simulation, it is possible to collect triples (Xi, Msg id, time sent)
at place A and and triples (Xj, Msg id, time delivered) and try to estimate channel char-
acteristics or predict future behavior of the channel. This channel is formed through OPN.
By application an appropriate predictor or classifier, we can predict behaviour of OPN for
the communication between A and B. Note, that the obtained data are dependent on the
routing algorithm used for the dissemination of messages.

Figure 3.7: Block diagram of contact times of nodes Xi with place A

In order to improve OTN routing schema, we need implement a binary decision mech-
anism on message forwarding from A to Xi at time t. Suppose A intends to send a message
MSG to B. If Xi meets the communication neighborhood of A at time t, the decision mak-
ing mechanism must be able to make a decision about forwarding a message MSG from A
to Xi. The task can be reformulated as a classification task: classify a triple (Xi, t, B),
where Xi is the node, which receives a message from A, t is the time where the forward-
ing request occurs, and B is the destination place (extension to more destination places
than just B) into two binary classes: 1 = MESSAGE DELIVERED, 0 = MESSAGE NOT
DELIVERED. The classification scheme is shown on Fig. 3.8.

If there are no time constraints and the temporal graph of OPN is a connected graph,
the classification is 1 for each input triple. We propose a time constraint maximum message
delivery delay m. The training data is labeled with respect to maximum message delivery
delay. The classification task is reformulated: classify a triple (Xi, t, B), where Xi is the
node, which receives a message from A, t is the time where the forwarding request occurs,
and B is the destination place (extension to more destination places than just B) into two
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Figure 3.8: A binary classifier for the prediction of message delivery
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binary classes: 1 = MESSAGE DELIVERED (forward a message), 2 = MESSAGE NOT
DELIVERED (keep a message) and the message delivery delay ¡ µ, µ is the predefined
value of m. If the classification for different values of m is required, we can construct a
set of classifiers, each of them trained for the different value of maximum message delivery
delay. Another approach is to construct a classifier trained on labeled quadruples (Xi, t,
B, m).

In a next step, we infer the proposed routing schema from the stationary places A,B to
mobile nodes. Let Xk be the OPN node, which is in communication distance of of Xi at
time t and simultaneously, place A is in communication distance of of Xi at time t. Assume
Xk generates a message MSG addressed to B instead of the place A. From the viewpoint
of routing between Xi and B at t, there is no difference between A-Xi. . . B trace and Xk—
Xi—B. This can be extend to all OPN nodes which are in communication distance of Xi

at time t. Similarly, we can extend the destination from B to the set DestPlaceNodes(B)
of all nodes, which are located in a communication distance of Xj at time t msg delivered,
where Yj is the ”last hop” node in a communication trace between places A and B.

Figure 3.9: Extension of the message delivery prediction method

Training data are extended by the sets DestPlaceNodes(B) at time t msg delivered.
These sets can be constructed from the node positions data. Let us call the small geographic
location around places A, B ”cell A”, respectively cell B. We discuss below how to compute
the size of these cells. The classification task can be reformulated as follows: classify a
triple (Xi, t, XDEST ), where Xi is the node, which receives a message at the cell A from
the source OPN node Zi, t is the time where the forwarding request occurs, and XDEST is
the destination node, to which the message is addressed, into two classes: 1 = MESSAGE
DELIVERED (forward a message), 0 = MESSAGE NOT DELIVERED (keep a message)
and the message delivery delay ¡ µ, µ is the predefined value of m. It is obvious that
the classification is valid only for the source nodes, which move through cell A, and the
destination nodes, which move through cell B, not for the whole geographic area of OPN.
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It is inconvenient to train classifier at all samples of training data, rather it is better to
use short time slots τ . The OPN network is unstationary system. In each time slot, the
unstationary system of OPN is approximated by the model of stationary system. The
length δτ of time slot τ is the parameter of classification and must be selected with the
respect to node movement speed, data transmission speed and maximum communication
distance. Fig. 3.10 shows the classification scheme after the time slots have been applied
to data.

Figure 3.10: The classification scheme after the time slots have been applied to data

Now, we generalize the proposed routing method in order to be this one applicable to all
nodes of the OPN. We start by dividing of the OPN geographical area Λ into a grid of cells.
The length of a cell diagonal must be equal or shorter than the maximal communication
distance of a pair of nodes. This cell size limitation implies that each two nodes inside the
cell are in communication distance and can exchange messages.

Consider nodes Xk and Xi which encounter in cell Axy. Xk carries or generates message
MSG addressed to node XDEST , XDEST ∈ Λ (e.g. XDEST can be located anywhere in the
geographical area Λ). The classification task is extended as follows: classify a triple (Xi, t,
XDEST ), where Xi is the node, which receives a message at the cell A from the source OPN
node Zi, t is the time where the forwarding request occurs, and XDEST is the destination
node, to which the message is addressed, into two classes: 1 = MESSAGE DELIVERED
(forward a message), 2 = MESSAGE NOT DELIVERED (keep a message) and the message
delivery delay ¡ µ, µ is the predefined value of m. The classification scheme is shown on
Fig. 3.12. The task can be solved by the array of N-1 classifiers affiliate to cell Axy, where
N is the number of cells in the geographical area Λ. The total number of classifiers is
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Figure 3.11: Dividing the geographic area of OPN into cells

N(N-1). For each cell, the set of classifiers can be replaced by one classifier, but it can be
more convenient to train a set of simple classifiers than the complex one.

3.6.2 Supervised Machine Learning Method Selection

In the literature, many classifiers using different supervised machine learning methods have
been described. We recapitulate the requested properties of the classifier n order to work
properly in our classification task: i) binary classification, ii) scalability and iii) ability to
classify large input data sets. Support Vector Machines (SVM) fulfill all these require-
ments. Support Vector Machines are supervised learning algorithms introduced by Vapnik
[207], [208]. Given a set of labeled training examples, they can be trained to perform
non-probabilistic binary linear classification. A Support Vector Machine constructs a hy-
perplane or set of hyperplanes in a high dimensional or infinite dimensional space in order
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Figure 3.12: A set of classifiers for the geographic area of OPN divided into cells

to separate the labeled data. The detailed mathematical description of the Support Vector
Machines is out of scope of this thesis and can be found in [207], [208], [198], [45], [72].

3.6.3 SVM-based Routing Metrics Inference

This section describes step-by-step the process of SVM-based Routing Metrics inference.
The process is schematically shown on Fig. 3.13 .

3.6.3.1 Simulation Setup and Dataset

Dataset obtained from node movement simulation. After the simulation scenario is pre-
pared, we run the simulation in the simulation environment ONE [91]. The output of
simulation is a file containing records of node positions at each time step. The records
have the following form:

ti, x1, y1, x2, y2, x3, y3 . . . . . . . . . xN , yN
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Figure 3.13: SVM-based Routing Metrics Inference: The Block Diagram
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Figure 3.14: Computation of the side of the square cell A

where ti is a time step, xj, yj are the Cartesian coordinates of the node Xij and N is
the number of nodes. This records represent a dataset containing temporal data on node
positions.

3.6.3.2 Contact Graph

We compute the contact graph of nodes at each time step. The vertices represents the
nodes, the edges represent contacts. If two nodes A and B are in communication distance
at time t, the contact graph for time t contains an edge between A and B.

3.6.3.3 Grid of cells

Let M be a matrix mxn, which represents the geographic coordinates in the OPN geo-
graphical area. We divide this area into N cells. Each cell is a square. The length of cell
side is:

lcell =
√
max com distance2/2 (3.7)

Each place xi, yi belongs just to one cell. Each place xi, yi has assigned a label of the
cell. The matrix mxn can be divided into k x l square sub-matrices.
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3.6.3.4 Dataset obtained from communication simulation

In this step, we simulate message forwarding in OPN. We write a simple simulator. The in-
puts are: temporal contact graph of the simulated OPN, message routing scheme, message
injection scheme, grid describing the partitioning of a geographical area of OPN into cells.
The messages are transmitted when the nodes encounter. We simulate message forwarding
between each pair of cells. Consider the simulation of communication between the nodes in
geographic cells Amn and Akl. At time t, the messages are injected into system by nodes,
which enter the cell Amn at time t. The messages are injected periodically, the message
injection period is a parameter of simulation.

The output of simulation is a file containing records of messages transmitted via simu-
lated OPN. Each record has the following form:

(t msg sent, Amn, Akl, Xi, DEST = {Xj}, t msg delivered)
where:

t msg sent . . . time, when the message was sent
Amn . . . source cell
Akl . . . destination cell
Xi . . . source node in Aij
DEST = {Xj} a set of destination nodes in Akl
TMD = {t msg delivered(Xj)} the set containing time when the message was delivered for
the destination node Xj in Akl

3.6.3.5 Training Data Preprocessing and Training Classifier

Labeled data are divided into training data and testing data. Labeled training data are
pre-processed, they are filtered by time window. Maximum acceptable message delay is
set to µ. The value of µ is selected a classifier training parameter. Classifier accepts (Amn,
Xi, τk, Xj, CLASS LABEL). Amn denotes cell, where nodes encounter. CLASS LABEL
is a binary: 1 = message delivered in time, 0 = message not delivered in time. After
the classifier is trained on training data, labeled testing data is used to evaluate classifier
performance.

The last step of classifier training phase is the performance evaluation of classifica-
tion. The evaluation is performed on testing data. The testing data are obtained for the
same simulation scenario, but may differ from training data. The classifier performance
evaluation for particular scenarios is described in Chapter 4.

3.6.3.6 Routing Metrics Inference

In this step, the routing metrics is constructed. The SVM-based classification routing
metrics

◦ If SVM Classification (Amn, Xi, τk, Xj) = 1, then FORWARD msg (or COPY msg)*)

◦ If SVM Classification (Amn, Xi, τk, Xj) = 0, then KEEP msg.
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*) The routing algorithm combines basic routing scheme and SVM based classifier. Ap-
plication of FORWARD or COPY depends on the selected basic routing scheme combined
with classifier. If the selected basic routing scheme is ”forwarding routing scheme”, the
message is forwarded. If the selected basic routing scheme is ”flooding routing scheme”,
message is copied.

3.6.4 Routing Method

When the classifier is trained centrally, the nodes can upload classifier parameters into
routing schemes implemented in the nodes and start forwarding messages using SVM-
based routing scheme. This section describes the routing scheme in detail.

MAKE DECISION PROCEDURE PSEUDOCODE

makeDecision (simtime, A, B, DEST)

1. if SVM Classification( Aij, B, timeSlot( simtime), DEST) == 1 then
return COPY & TIMEOUT;

else
return KEEP;

end if

This procedure is called by the routing algorithm described in subsection ”HRC2 Rout-
ing Method”. The message exchange policy is same, only the routing metrics differ.

3.7 Routing based on GMRF and Active Node Behavior

3.7.1 Overview of the Method

Problem: to propose an enhancement of routing algorithm using statistical node mobility
models and the active node behavior and examine the impact of this approach on commu-
nication in opportunistic networks. The active node behavior means that the node itself
actively changes its route in order to get to the location more suitable for forwarding the
message.

3.7.1.1 Adjacency Matrices and GMRF Models of Node Encounters

Let O be the OPN formed by the set of nodes X = X1, X2 . . . in geographical area Λ.
The nodes are humans or vehicles. Let cXi,Xj

(t) denotes binary encounter function, which
returns 1 if nodes Xi and Xj are in communication distance at t, else returns 0. The matrix
A(t) of cXi,Xj

, NxN, where N is a number of nodes, represents one state of a temporary
graph G(t) and it is called adjacency matrix. The values of elements of this matrix are zero
or one. Let τk denotes a time window of length δ and let CXi,Xj

(τ(i)) denotes a counter
of encounters of nodes Xi and Xj during the time window τi. Similarly, we can define
adjacency matrix A2(τk) for time window tau. The set of adjacency matrices {A2(τk)} can
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be represented by the grey-scale images of NxN points. Similarly, the set of adjacency
matrices A(t) can be represented by the set of black&white images. We can use GMRF
in order to construct a simple node mobility model from these adjacency matrices. If the
behaviour of OPN changes significantly, the GMRF models change too.

3.7.1.2 Statistical Message Delivery Model

Let the the division of the OPN geographical area into p x q square cells as it has been
proposed in section 4.6 SVM-based routing. Consider the network scanning as it described
in 4.6 SVM-based routing.

The output of message transmission simulation is a file containing records of messages
transmitted via simulated OPN. Each row represents one message. We can construct the
cell delivery probability matrix matrix Π(τ), N x N for a time window τ where N is number
of cells, and the matrix elements are numbers of successfully delivered messages from cell
Aij to cellAkl during τ . Fig. 3.15 shows OPN in two states, which differ in temporal node
mobility pattern in use. Although the node density and locations are similar, the cell
delivery probability matrices differ.

We can use techniques used in computer vision to model cell delivery probability
matrices, particularly GMRF model for texture classification. If the behaviour of OPN
changes significantly, the GMRF model changes too.

3.7.2 Node Mobility Model based on GMRF

We suppose that the node “snaps” constructed in a way described above can be described
by the finite set of 2D GMRF. This simplification needs an assumption about Gaussian
texture character of the data patterns. In fact, if there some macroscopic structures were
present in input data patterns, it would not be sufficiently modeled by the GMRFs. GMRF
is well know technique for the 2D data modeling. Its application for image processing was
described by K. Deguchi [48] in or Chellapa [35]. The basic algorithms for estimating
GMRF parameters are: Least Squares (LS) Estimate of GMRF Parameters, Maximum
Likelihood Estimate (MLE) of GMRF Parameters. We follow the approach published by
Chellapa [35];

Let y(m;n) be the intensity of an image at pixel (m; n). We suppose that the snap
representation of dimension M x M is

y(s), s ∈ Ψ,Ψ = {s(i, j) : 0 ≤ i, j ≤M − 1} (3.8)

We assume that the zero mean observations from the given snap y(s) are Gaussian.
The GMRF is stationary non-causal two dimensional autoregressive process described by
the following equation:

y(s) =
∑

Ar(y(s+ r) + y(s− r)) + e(s)

E
[
e(s)e(r)

]
= −A(s− r)βIN∗(s− r) (3.9)
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Figure 3.15: An opportunistic network in two states corresponding to different temporal
mobility patterns: node positions in a geographical area and computed delivery probability
matrices in a graphic form

The zero mean sequence e(s) is correlated innovation sequence. N∗ is equal to 1 when
r ∈ N∗, N∗ ∈ N ∪ (0, 0). N is a set of the neighborhood pixels. The unknown parameters
A = (Ar, r ∈ N) and β can be estimated using LS algorithm or MLE algorithm [172].

Least Squares (LS) Estimate of GMRF Parameters

The snap is described by the equation 3.4 and the GMRF is described by 3.5. The
unknown parameters A = (Ar, r ∈ N) and β can be estimated using LS algorithm as
follows [35]:
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A∗ =
[∑

Ψi

ysy
T
s

]−1[∑
Ψi

ysy(s)
]

(3.10)

β∗ =
1

M2

∑
Ψi

[
y(s)− A∗T ys

]2
ys = y(s+ r) + y(s− r), r ∈ N

Ψi is defined as Ψi = Ψ−ΨB, where ΨB is a boundary set:

ΨB = {s = (i, j), s ∈ Ψ, (s+ r)6∈Ψ} (3.11)

for at least one r. The LS estimates of the parameters A∗ and β∗ make a feature vector,
which characterizes the analyzed snap.

Maximum Likelihood Estimate (MLE) of GMRF Parameters

Correlations over the window defining a model are sufficient statistics. We compute
statistically sufficient representation of the observed texture. Similarly to LS Estimation,
MLE estimation is standardized way of GMRF parameters estimation.

E
[
e(s)e(r)

]
= −A(s− r)βIN∗(s− r) (3.12)

Then we can compute the conditional probability function p(y|A, β).

p(y|A, β) =
|H(A)|1/2

(2πβ)M2/2
exp

(
−yTH(A)y

2β

)
(3.13)

where H(A) represents the transformation matrix H(A)y = e. The sample correlation
function is defined as follows:

Cd(r) =
1

M2

∑
s∈Ψi

y(s)y(s+ r) (3.14)

The quadratic form

yTH(A)y (3.15)

can be simplified as:

yTH(A)y = M2
[
Cd(0)− ATCd

]
(3.16)

where Cd = col.
[
Cd(r), r ∈ N

]
. Then we can rewrite the equation for conditional

probability density function:

p(y|A, β) =
|H(A)|1/2

(2πβ)M2/2
exp

(
−M

2

2β

{
Cd(0)− ATCd

})
(3.17)
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Then we can use the Nyman-Fisher factorization theorem and we receive:

α = {Cd(0), Cd(r)|r ∈ N} (3.18)

Then a is a sufficient statistic for (A, β). N is defined neighborhood.

3.7.3 Routing Metric

3.7.4 Active Node Movement Algorithm

This section deals with the design of the Active Node Movement Algorithm using the
statistical node mobility model and its implementation into node routing algorithm. The
active node movement means that the node itself actively decides to change its route to
increase the probability of message delivery.

The implementation of motion of nodes is the part of the simulation environment. The
node route may be fixed (for example, bus lines). The route of the node doesn’t need to
be precisely defined, only the target coordinates can be defined. The nodes then move on
the shortest routes. The simulator calculates the routes using the Dijkstra algorithm.

The node has a limited message buffer and can not transmit any number of messages.
There are also limitation set to the node deviation from its planned route. In the real
world, for example, a driver or a pedestrian would change the route only once or twice
during a certain period of time. In the real world, the pedestrian or vehicle driver would
only deviate from the planned route within a certain distance.

We designed the Active Node Movement Algorithm (ANMA) for implementation in
two parallel threads. In the first thread, decisions are made about message forwarding and
active deviation from the route. In the second thread, the algorithm for not exceeding the
maximum number of deviations of the node from the planned route within a given time
interval is implemented.

ANMA PSEUDOCODE

gmrfNetState()

1. if GMRF NET STATE == DIV IDED then
if MOVEMENT == yes then

oldTarget = getTarget();
MoveTo( GenerateNewTarget());
MoveTo( oldTarget);

else
// continue to old target

end if
else

// continue to old target
end if
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Figure 3.16: GMRF and ANMA routing metrics inference A(τk)

61





Chapter 4

Main Results

4.1 ONE: Opportunistic Network Simulation Environment

The simulations and performance evaluation were analyzed through node mobility simula-
tion using the Opportunistic Network Environment (ONE) simulator [93], which has been
reported previously as a simulation environment in scientific literature on OPN routing
protocols. Using the ONE simulator, Li et al. [111] have studied how the selfish beha-
viors of nodes affect the performance of DTN multicast. They used standard mobility
model available in the ONE simulator. Socievole et al. compared six different routing pro-
tocols using simulation scenario with random way-point mobility model in the simulator
ONE[185]. Spaho et al. [189] conducted simulations with the ONE simulator in order to
evaluate and compare the performance of four different routing protocols in a many-to-
one communication opportunistic network. In [64] the simulator ONE has been used to
evaluate the performance of SRAMSW routing algorithm.

ONE is an agent-based discrete event simulation engine. The main functions of ONE
consists of i) modeling of node movement, ii) modeling of inter-node contacts, (3) modeling
of message handling and (4) modeling of routing. In addition to these main functions, ONE
offers data post processing tools, visualizations tool and report generating tool. A detailed
description of the simulator is available in [91] and the ONE simulator project page [92]
where the source code is also available.

Fig. 4.1 shows the structure of the ONE simulation environment.

ONE is designed as the open source software for evaluation of the routing algorithms.
It has implemented function of adding of a new routing algorithm (a creation of a new
routing module). This feature enables to implement and test user’s own routing algorithms
in ONE. ONE has been implemented in Java and it is available under the GPL. ONE is
designed to be able to interact with other programs and data sources. The simulator
has implemented interfaces for some main functions as node movement, connectivity or
message routing traces. ONE supports interaction with external data processing software
via report module. A report module can communicate in real-time with external software
[93]. This feature enables use user’s own code or some external software tools.

63



4. Main Results

Figure 4.1: The structure of the ONE simulation environment [93].

4.2 Performance Metrics

We adopted the following metrics to evaluate the performance of the proposed algorithms
and to compare them to other selected routing methods.

Message Delivery Ratio. It is computed as the ratio of the delivered messages to the
number of all of transmitted messages multiplied by 100. The larger values of message
delivery ratio imply the better routing protocol performance.

Overhead Cost Ratio. It is computed as the number of transmitted messages in the
network divided by the number of all created unique messages. This performance metrics
reflects the efficiency of the evaluated routing protocol.

OCR =
numberoftransmissions

numberofcreateduniquemessages
(4.1)

Average Message Delivery Delay. The lower values of average message delivery delay
imply better routing protocol performance.

Average Number of Hops of Delivered Messages. Average Number of Hops is the total
number of hops of successfully delivered messages divided by the number of delivered
messages. It characterizes the process of message forwarding through OPN.
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4.3 Routing Methods for Comparison

We selected four protocols were tested in the simulation: i) First Contact (FC), ii) Epidemic
(EP), iii) PRoPHET, iv) BUBBLE-Rap.

First Contact routing protocol is a forward-based routing strategy; only one copy of a
message exists at a certain point in time in a system. The node that carries a message, for-
wards this message to the first node, which it encounters, unless the message is transmitted
to the destination node.

Epidemic Routing is flooding-based routing scheme. It is well-known and usually it is
considered a reference for other routing methods.

PROPHET is probabilistic routing scheme, which improves routing using routing metric
based on probabilities of node contacts computed from the node contacts in history.

BUBBLE-Rap is a community-aware routing scheme, which combines the node cent-
rality routing and node labels based on node affiliation to community. Authors used two
methods to detect communities: k-clique community detection algorithm proposed by Palla
[146] for the detection of overlapping communities, and a modularity based approach pro-
posed by Newman et.al [142]. We implemented k-clique based version of BUBBLE RAP.
We implemented a version with centrally computed communities in order a method could
be compared to proposed routing schemes which infere routing metrics centrally.

4.4 Experiments

In order to work with simulation scenarios, which are more close to to real-world human
mobility, we proposed the following method for simulation setup generation:

1. The geographical area selection: user defines boundaries of geographical area, in which
are located targets (low density residential, high density residential, industrial targets,
commercial targets, school & universities, . . . ). The selected geographical area of OPN
may not be necessary continuous, if two constraints are fulfilled: i) all separated areas
must be included in the geographical area Λ of the analyzed OPN, ii) there is traffic
infrastructure available for node movement among areas. The selected area (areas) are
approximated by set of zones (Si, ri), where Si is the center of i-th zone, and ri is the
radius of the i-th zone.

2. User defines the number of categories of targets.

3. User defines probability distribution of placement of target localities in each zone (Gaus-
sian, uniform).

4. Targets are generated in accordance to parameter setup from steps 2 and 3. Targets
can be also added manually.
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5. User defines a number of nodes for each zone, which have their ”home places” in the
zone. Then, the home places are assigned to nodes. It can be done automatically or
manually if it is needed for simulation purposes.

6. User defines categories of nodes with the similar movement pattern. Movement patterns
consists of the set of mobility sub-patterns and time schedule (time intervals, when each
mobility sub-pattern is applied). The sub-pattern is defined by the following parameters:
i) number of targets, mobility ”motif”, distance and distribution of targets, time-to-stay
in target)*. User defines the affiliation of the nodes of different categories.

7. The probability distributions of time schedule divergences are defined.

8. The targets are imported to the simulator ONE. The initial node positions (= home
places affiliated to the nodes are imported in the simulator ONE. The file describing
node mobility model using simple commands is imported by the simulator ONE. The
proposed time schedule is recomputed to be implicitly present in the commands *).
The explicitly defined times*) in commands are recalculated with the respect to the
probability distributions defined in step 7: the randomly generated divergences are
added to or subtracted from the defined time values*).

*) It corresponds to real-world human mobility. For example, one can leave his home
each morning approximately at half past seven, but in fact he leaves his home between
7:25 and 7:35. This function was implemented to make the simulation scenarios more real.

4.4.1 Experiment 1

Simulation Scenario 1: Geographically structured OPN
Our tested method: Hierarchical routing with clustering 1 (hrc 1)
Compared to: Epidemic Routing, PROPHET, First Contact, Bubble Rap

Proposed experiments:
Influence of a period of message generation to Performance Metrics
Influence of TTL to Performance Metrics
Influence of Buffer size to Performance Metrics
Influence of Geographical Structure of Network to Performance Metrics
Influence of Time dependent connectivity between two OPN networks to Performance
Metrics
Influence of Changing Node Mobility Models during Simulation

OPN Setup:
Urban area, road density:high
The number of separated Target Geographical Regions: 5
Analyzed Simulation Interval 8 hours from each day of 10 day simulation
Changing Mobility Patterns: 1) day-night model, 2) day changing mobility patterns inside
each region
Probabilistic distribution of targets in regions: uniform
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Probabilistic distribution of node initial positions in regions: uniform
Probabilistic distribution of node stays in targets during the day phase: log-normal

Parameter Range

Map Venice
Simulation size 4500 x 3400 m
Moving speed random 0.5 - 1.5 m/s

Transmission range 20 m
Simulation Time 432000 time units ∼ 10 days

Sampling Period Ts 0.5 time units ∼ 1 second
Message size 36 bytes

Node Buffer Size 1 - 500 messages
Message Generation Period 10 - 500 time units ∼ 20 - 1000 seconds

Time to live 1 - 300 transmissions

Table 4.1: Simulation Scenario 1: Experiment setup for ONE Simulator

This experiment has been conducted on simulation scenario 1. The OPN consists of
5 separated target regions located in the urban area of Venice (high density o roads),
with uniform probabilistic distribution of targets in each region. We selected the uniform
probabilistic distribution of node initial positions in each OPN geographical region and
log-normal probabilistic distribution of node stays in targets during the day phase. The
simulation was conducted for 10 days with day-night pattern and periodically changing
day traffic pattern in each region. For the purposes of OPN routing, we selected the data
collected in time interval of 8 hours (7 AM to 15 PM) from each day of 10-day simulation.
The data from 4 days were used t train the model. The data from six days were used to
test the performance of the proposed methods. The simulation was conducted for 1000
nodes. The simulation results are presented in graphs.

4.4.1.1 Influence of Number of Nodes to Performance Metrics

We conducted ten simulations, each of them with the different number of nodes: 100, 200,
300, 400, 500, 600, 700, 800, 900, 1000. The message node buffer was set to 200 (messages),
TTL to 500 time units (1000 seconds) and message generation period to 500 time units
(1000s). One simulation time unit is 2s. Other parameters of the simulation were not
changed.

RESULTS: Fig. 4.3 shows the message delivery ratio (referred as delivered messages
[%] in graphs), average message delivery delay, average number of hopes and overhead cost
ratio as functions of the number of nodes in simulation. From this figure it can be seen that
there is an almost linear dependency between the number of nodes and message delivery
ratio observed for all methods except epidemic routing. Poor performance of epidemic
routing is caused by the earlier network congestion. This linear dependency is caused by the
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Figure 4.2: Simulation Scenario 1: The initial positions of nodes in OPN geographical area

dependency of successful message delivery on a small set of nodes, which travel to more than
one region. As the number of all nodes increases, the number of nodes travelling between
regions increases and a higher number of messages is delivered. Furthermore, it can be
observed that the proposed routing schema Hierarchical Routing with Clustering (HRC1)
outperforms all other methods in the number of delivered messages. It achieves about
50 percent of delivered messages on simulation setup with 1000 nodes, while the success
rate of all other methods is in the interval of 15 to 20 percent. The graph of the average
message delivery delay as a function of the number of the nodes in simulation indicates that
the proposed routing method has the large delay for small number of nodes in simulation
except the interval of 100 to 200 nodes. The average message delivery delay decreases as
the number of nodes increases. From the viewpoint of average message delivery delay, the
BUBBLE-Rap conducts well. The Epidemic routing achieves the shortest average message
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Figure 4.3: Message delivery ratio, average message delays, average number of hops and
overhead cost ratio as a function of the number of the nodes in simulation

delivery delay, which is partially influenced by the character of this routing scheme.The
average number of hopes rapidly increases when the First Contact routing scheme. It is
caused by the random character of its routing scheme. The graph of average number of
hopes as the function of the number of nodes is almost flat for the other methods. HRC1
is comparable to BUBBLE-Rap. The last graph indicates that there is an unexpected
extremely high peak of overhead cost ratio for HRC1 routing when the simulation was
conducted for the number of nodes equal of 300. The configuration with 300 nodes leads
to large communities. In HRC1 routing, the routing inside communities is conducted
by epidemic routing. The occurrences of peaks of overhead ratio can be eliminated by
implementation of more tight constraints of application of epidemic routing into method
or by limiting the size of node communities.

4.4.1.2 Influence of Message Generation Period to Performance Metrics

Simulation Setup We conducted several sets of simulations for different values of message
generation period and observed the influence of different message generation period to
the performance metrics. The range of message generation periods was of 1 to 500. Lower
values of message generation period imply higher rates of message generation by nodes, and
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consequently higher number of messages, which are simultaneously present in simulation.
The other simulation parameters TTL and node message buffer were set as follows:

1. set of simulations: TTL = 500, buffer = 500

2. set of simulations: TTL = 500, buffer = 50

3. set of simulations: TTL = 500, buffer = 50

4. set of simulations: TTL = 50, buffer = 500

5. set of simulations: TTL = 50, buffer = 100

6. set of simulations: TTL = 50, buffer = 50

7. set of simulations: TTL = 5, buffer = 500

8. set of simulations: TTL = 5, buffer = 50

Both the TTL and message generation periods are referred in time units of simulation.
1 time unit = 2 s. The influences of message generation period to all four performance
metrics were analyzed.

RESULTS:
Fig. 4.4 shows the message delivery ratio (referred as delivered messages [%] in graphs)

as a function of the period of message generation. Lower values of message generation
period imply higher rates of message generation by the nodes, and consequently the higher
number of messages, which are simultaneously present in simulation. As it is shown in
graphs, the extremely low values of message generation period cause network congestion.
Furthermore, it can be observed that the achieved results strongly depend on the size
of message buffer. For the extremely short buffers (buffer = 5), the performance of the
proposed method in decreases and it is smaller than 10 percent. The best results were
achieved for the large buffer (buffer = 500). The proposed routing schema Hierarchical
Routing with Clustering (HRC1) outperforms all other methods in the number of delivered
messages for all tested combinations of parameters TTL and buffer. The best results have
been achieved for the combination of TTL = 500 time units (1000 s) and the buffer size
= 500, and for the combination of TTL = 50 time units (100 s) and the buffer size = 500,
where the message delivery rate ratio achieves almost 90 percent of delivered messages.
It seems that the highest influence on message delivery ratio has the combination of all
three parameters buffer size, TTL and message generation period. We observe two types
of dependencies between the message generation period and message delivery ratio. For
large values of the buffer (buffer = 500), the number of delivered messages depends on
the message generation ratio until the period reaches the 200 boundary; than the network
is saturated and the ratio doesn’t grow for higher values of message generation period
anymore. The second type of dependency can be observed for the smaller values of buffer
(buffer=5, buffer=50). The graph indicates a correlation between the message generation
period and the observed message delivery ratio.
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Figure 4.4: Message delivery ratio as a function of the period of message generation
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Fig. 4.5 shows the average message delivery delay (referred as average delay in graphs)
as a function of the message generation period. Epidemic routing and First Contact routing
outperform all other methods. This result is in accordance with our assumptions, because
both these methods use simple routing rules and routing is very fast. The average mes-
sage delivery delay of the proposed routing schema HRC1 is comparable to BUBBLE-Rap
for the longer message generation periods. For message generation period = 50 (100 s)
BUBBLE-Rap works slightly better. The average message delivery delay of the PROPHET
protocol depends rather on TTL than on the size of node message buffer. For extremely low
values of TTL, the PROPHET routing scheme achieves the worst results. The proposed
routing scheme HRC1 achieves boldly high values of average message delivery delay for
the small values of message buffer. The average message delivery delay decreases with the
increasing buffer size. The improvement in average message delivery delay, which appears
with growing size of buffer, is high for small sizes of the buffer, but as the size of the buffer
grows, the dependency on the buffer size becomes weak.

Fig. 4.6 shows the average number of hops as the function of the message generation
period. In accordance to our assumptions, the high number of hopes can be observed when
the First Contact routing scheme was in use in simulation. The average number of hopes
of the proposed routing schema HRC1 is low and it is comparable to BUBBLE-Rap and
Epidemic Routing. The graphs are almost flat. It can be interpreted as considering that
the number of hopes depends particularly on the applied routing method.

Fig. 4.7 shows the overhead cost ratio (referred as overhead cost in graphs) the function
of the message generation period. The overhead cost ratio of the proposed method HRC1
is influenced by the combination of parameters buffer size and TTL. For the buffer=5000,
the overhead cost ratio is about 40000 percent. First, second, third and fourth graph refers
to high an unexpected extremely high peak of overhead cost ratio for HRC1 routing when.
the simulation was conducted for the number of nodes equal of 300. The configuration with
300 nodes leads to large communities. In HRC1 routing, the routing inside communities
is conducted by epidemic routing. The occurrences of peaks of overhead ratio can be
eliminated by implementation of more tight constraints of application of epidemic routing
into method or by limiting the size of node communities.

4.4.1.3 Influence of Buffer Size to Performance Metrics

We conducted simulations for different sizes of message buffer (from 1 to 500 messages)
and observed the influence of message buffer size to the performance metrics. The other
simulation parameters TTL and message generation period (referred as send period in
graphs) were set as follows:

1. set of simulations: TTL = 500, message generation period = 500

2. set of simulations: TTL = 500, message generation period = 100

3. set of simulations: TTL = 500, message generation period = 50
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Figure 4.5: Message delivery delay as a function of the period of message generation
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Figure 4.6: Average number of hops as a function of the period of message generation
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Figure 4.7: Overhead cost ratio as a function of the period of message generation
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4. set of simulations: TTL = 50, message generation period = 500

5. set of simulations: TTL = 50, message generation period = 100

6. set of simulations: TTL = 50, message generation period = 50

7. set of simulations: TTL = 5, message generation period = 500

8. set of simulations: TTL = 5, message generation period = 50

Both the TTL and message generation periods are referred in time units of simulation.
1 time unit = 2 s.

RESULTS:
Fig. 4.8 shows the message delivery ratio (referred as delivered messages [%] in graphs)

as a function of the message buffer size. The proposed routing schema Hierarchical Routing
with Clustering (HRC1) outperforms all other methods in the number of delivered mes-
sages. It reflects the fact that the routing method was designed primary with the respect
to this characteristic. The best results have been achieved for combination of TTL = 500
time units (1000 s) and message generation period = 500 (1000 s), and for TTL = 50 time
units (100 s) and message generation period = 500 (1000 s), where the message delivery
rate ratio achieves almost 90 percent of delivered messages. It seems the main influence on
message delivery ratio of the proposed method has the period of injection of new messages
into system. For message generation period = 500 (1000 s) the message delivery ratio of
HRC1 grows as a function of the side message buffer size until the buffer size equal to
200 messages and than stays flat. For shorter message generation periods is the message
delivery ratio dependent on buffer size: the higher values of buffer size imply the higher
values of message delivery ratio. The message delivery ratios of other methods have values
between 10 and 20 percent of delivered messages and their graphs are almost flat.

Fig. 4.9 shows the average message delivery delay (referred as average delay in graphs)
as a function of the message buffer size. Epidemic routing and First Contact routing
outperform all other methods. This result is in accordance with our assumptions, both
these methods use the simplest routing rules and routing is very fast. The average message
delivery delay of the proposed routing schema HRC1 is comparable to BUBBLE-Rap for
longer message generation periods. For message generation period = 50 (100 s) BUBBLE-
Rap works slightly better. The average message delivery delay of the PROPHET protocol
depends rather on TTL than on the size of node message buffer. For extremely low value
of TTL, the PROPHET routing scheme achieves the worst results. The proposed routing
scheme HRC1 achieves boldly high values of average message delivery delay for small sizes
of message buffer. The average message delivery delay decreases with the increasing buffer
size. The improvement in average message delivery delay, which appears with growing
size of buffer, is high for small sizes of the buffer, but as the size of the buffer grows, the
dependency on the buffer size becomes weak.

Fig. 4.10 shows the average number of hops as a function of the message buffer size.
In accordance to our assumptions, highest values of this parameter are achieved by First
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Figure 4.8: Message delivery ratio as a function of the size of node message buffer
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Figure 4.9: Message delivery delay as a function of the size of node message buffer
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Contact routing scheme. The average number of hopes of the proposed routing schema
HRC1 is comparable to BUBBLE-Rap and Epidemic Routing. The graphs are almost flat.
It can be interpreted such as the number of hopes depends rather on routing method and
message numeration period than on the size of node message buffer.

Fig. 4.11 shows the overhead cost ratio (referred as overhead cost in graphs) as function
of the message buffer size. The graphs indicates that the proposed method has the worst
results in overhead ratio, but it works without network congestion. The lover values of
overhead of Epidemic routing are caused by the metrics which we use for overhead com-
putation. Generated, but never set messages are not taken into account in this metrics.
We can observe unexpected extremely high peaks of overhead cost ratio for HRC1 rout-
ing scheme for several combinations of the values of TTL and message generation period
and buffer size 100 or 400. The configuration with these parameters leads to computation
of large communities. HRC1 routing scheme uses the approach, that the routing inside
the communities is epidemic routing with predefined timeout. The occurrences of peaks of
overhead ratio can be eliminated by implementation of more tight constraints of application
of epidemic routing into method or by limiting the number of nodes forming communities.

4.4.1.4 Influence of Time-to-live (TTL) to Performance Metrics

We conducted simulations for different values of TTL (from 1 to 300 time units). 1 sim-
ulation time unit is equal to 2 s. We observed the influence of TTL to the performance
metrics. The other simulation parameters the size of node message buffer and message
generation period (referred as send period in graphs) were set as follows:

1. set of simulations: buffer = 500 messages, message generation period = 500

2. set of simulations: buffer = 500 messages, message generation period = 100

3. set of simulations: buffer = 500 messages, message generation period = 50

4. set of simulations: buffer = 50 messages, message generation period = 500

5. set of simulations: buffer = 50 messages, message generation period = 100

6. set of simulations: buffer = 50 messages, message generation period = 50

7. set of simulations: buffer = 5 messages, message generation period = 500

8. set of simulations: buffer = 5 messages, message generation period = 50

Both the TTL and message generation periods are referred in time units of simulation.
1 time unit = 2 s.

Influence of TTL to message delivery ratio Fig. 4.12 shows the message delivery ratio
(referred as delivered messages [%] in graphs) as function of TTL. The proposed routing
schema Hierarchical Routing with Clustering (HRC1) outperforms all other methods in
the number of delivered messages. The best results have been achieved for combination
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Figure 4.10: Average number of hops as a function of the size of node message buffer
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Figure 4.11: Overhead cost ratio as a function of the size of node message buffer
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of buffer size = 500 messages and message generation period = 500 (1000 s). For this
combination of parameters, about nightly percent of generated messages were delivered.
A very good message delivery ratio can be achieved also for combination and for TTL =
50 time units (100 s) and message generation period = 500 (1000 s), where the message
delivery rate ratio achieves almost 90 percent of delivered messages. It seems the main
influence on message delivery ratio of the proposed method has the period of injection of
new messages into system. For message generation period = 500 (1000 s) the message
delivery ratio of HRC1 grows as a function of the side message buffer size until the buffer
size equal to 200 messages and than stays flat. For shorter message generation periods is
the message delivery ratio dependent on buffer size: the higher values of buffer size imply
the higher values of message delivery ratio. The message delivery ratios of other methods
have values between 10 and 20 percent of delivered messages and their graphs are almost
flat. It can be interpreted as follows: in OPNs, where node moves in accordance with some
complex temporal pattern, the message delivery ratio is influenced rather by the accuracy
of the node position prediction strategy than by the size of node message buffer.

Fig. 4.13 shows the average message delivery delay (referred as average delay in graphs)
as the function of TTL. The linear dependency of the average message delivery delay is
observable for the First Contact routing scheme. Other wise, the graphs indicates low
values of average message delivery delay for extremely small values of TTL, but most
proposed methods have poor performance in message delivery pro small values of TTL.
It implies that these low message delivery delays for extremely small values of TTL are
probably caused by the overall low number of delivered messages in the system.

Fig. 4.14 shows the average number of hops as function of average number of hops. The
graphs indicate strong linear dependence between the number of the hopes and TTL for
the First Contact routing scheme and small dependence between the number of the hopes
and TTL for the PROPHET routing scheme, otherwise the graphs are almost flat. The
average number of hopes of the proposed routing schema HRC2 is low and it is comparable
to Epidemic routing and BUBBLE-Rap. It can be interpreted as considering that the
number of hopes doesn’t not depend on TTL for the implemented routing method of
HRC1, BUBBLE-Rap or epidemic routing and that there is a strong linear dependency on
TTL for the First Contact routing scheme.

Fig. 4.15 shows the overhead cost ratio (referred as overhead cost in graphs) as function
of message buffer size. shows overhead cost ratio as a function of TTL. The graphs indicates
no import correlation between TTL and proposed method HRC2, except the correlations
observable for extremely small values of TTL. For he extremely small values of TTL, HRC2
does not perform well on this simulation scenario.

4.4.2 Experiment 2

Simulation Scenario 2: Geographically structured OPN (Venice)
Our tested method: Svm-based routing (svm)
Compared to: Epidemic Routing, PROPHET, First Contact, Bubble Rap
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Figure 4.12: Message delivery ratio as a function of the time to live
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Figure 4.13: Message delivery delay as a function of the time to live
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Figure 4.14: Average number of hops as a function of the time to live
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Figure 4.15: Overhead cost ratio as a function of the the time to live
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Main characteristics: Two geographical regions
Changing number of nodes visiting both regions
All nodes generate messages in predefined time period

Parameter Range

Map Venice
Simulation size 4500 x 3400 m
Moving speed random 0.5 - 1.5 m/s

Transmission range 50 m
Simulation Time 432000 time units ∼ 10 days

Sampling Period Ts 0.5 time units ∼ 1 second
Message size 36 bytes

Node Buffer Size 1 - 500 messages
Message Generation Period 100 time units ∼ 200 seconds

Time to live 50 transmissions

Table 4.2: Simulation Scenario 1: Simulation setup for ONE Simulator

Figure 4.16: Simulation Scenario 2: The initial positions of nodes in OPN geographical
area

Fig. 4.16 shows the initial positions of nodes in OPN geographical area.
This experiment was conducted on simulation scenario 2. The OPN consists of two

separated target regions located in the urban area of Venice. The selected geographical
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area is characterized by the high density of roads and by the water channel which can
be crossed by nodes only at some places (bridges). We selected the uniform probabilistic
distribution of targets in each region. We selected the uniform probabilistic distribution
of node initial positions in each OPN geographical region and log-normal probabilistic
distribution of node stays in targets during the day phase. The simulation was conducted
for 10-day cycle with periodically changing day traffic pattern. For the purposes of OPN
routing, we selected the data collected in time interval of 3 hours (7 AM to 10 AM) from
each day of the 10-day simulation. The analyzed time interval was limited to 3 hours
per day primary for the computational reasons. The selected 3-hour interval consists of
mobility patterns changing each twenty minutes. The data from four days were used to
train the model. The data from six days were used to test the performance of the proposed
method. The number of nodes in simulation was 100 nodes. Fig. 4.17 shows the simulation
results.

Figure 4.17: SVM-based routing results on Simulation Scenario 2: Message delivery ratio,
average message delays, average number of hops and overhead cost ratio as a function of
the period of the size of node message buffer

RESULTS: Fig. 4.17 hows the message delivery ratio (referred as delivered messages
[ratio as functions of the buffer size in simulation. The graphs indicate, that all compared
methods achieve approximately the same message delivery delay for the simulations with
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buffer=¿100 messages. For the low values of buffer size, the average message delivery delay
increases. This is in accordance to the routing rules: when the node message buffer is
full, the node is not able to store more messages, and the delivery delay increases. The
average number of hopes of the proposed method for this simulation is low, about 2-3
hopes. The highest value of average hopes is achieved by First Contact routing protocol.
The graph indicates, that the proposed method SVM-based routing has a good overhead.
For the combination of parameters TTL=50 time units (100s) and message generation
period=100 time units (200s), it can be observed that the overhead cost ratio of SVM-
based routing protocol does not depend on the size of buffer since the buffer size cross
the threshold 300 messages. For lower values, an almost linear dependency is observable.
The proposed method outperforms other tested methods in message delivery ratio, except
Epidemic routing for scenarios with higher values of buffer size.

4.4.3 Experiment 3

Scenario: Simulation Scenario 3 : Regions in Line
Our tested method: Hierarchical routing with clustering 2 (HRC2)
Compared to: Epidemic Routing, PROPHET
All nodes generate messages in predefined time period

Main characteristics:
Four regions
Two kinds of nodes: nodes visiting targets in one region, nodes visiting targets in two
regions; there is no node visiting more than two regions
Undirect connection among regions (Fig. 4.19)

Parameter Range

Map Venice
Simulation size 4500 x 3400 m
Moving speed random 0.5 - 1.5 m/s

Transmission range 20 m
Simulation Time 432000 time units ∼ 10 days

Sampling Period Ts 0.5 time units ∼ 1 second
Message size 36 bytes

Node Buffer Size 1 - 500 messages
Message Generation Period 10 - 500 time units ∼ 20 - 1000 seconds

Time to live 1 - 300 transmissions

Table 4.3: Simulation Scenario 3: Simulation setup for ONE Simulator

Fig. 4.18 shows the initial positions of nodes in OPN geographical area.
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Figure 4.18: Simulation Scenario 3: The initial positions of nodes in OPN geographical
area

Figure 4.19: The schematic structure of the connection of OPN geographic regions in
Simulation Scenario 3

4.4.3.1 Influence of Message Generation Period to Performance Metrics

Simulation Setup We conducted simulations for different of message generation period (re-
ferred as send period in graphs) and observed the influence of different message generation
period to the performance metrics. The range of message generation periods was from 1 to
500. Lower values of message generation period imply higher rates of message generation
by nodes, and consequently higher number of messages, which are simultaneously present
in simulation. The other simulation parameters TTL and node message buffer were set as
follows:

1. set of simulations: TTL = 500, buffer = 500

2. set of simulations: TTL = 500, buffer = 50
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3. set of simulations: TTL = 500, buffer = 50

4. set of simulations: TTL = 50, buffer = 500

5. set of simulations: TTL = 50, buffer = 100

6. set of simulations: TTL = 50, buffer = 50

7. set of simulations: TTL = 5, buffer = 500

8. set of simulations: TTL = 5, buffer = 50

Fig. 4.20 shows the message delivery ratio (referred as delivered messages [%] in graphs)
as a function of the period of message generation. The range of observed message generation
period was an interval of 1 to 500. Lower values of message generation period imply higher
rates of message generation by nodes, and consequently higher number of messages, which
are simultaneously present in simulation. As it is shown in graphs, the extremely low
values of message generation period cause network congestion and the message delivery
ratio rapidly decreases. Furthermore, it can be observed that the achieved results strongly
depend on the size of message buffer. For the extremely short buffers (buffer = 5), the
performance of the proposed method decreases and the message delivery ratio of HRC1 is
about one percent. The best results were achieved for the large buffer (buffer = 500). The
proposed routing schema HRC1 outperforms all other methods in the number of delivered
messages for all tested combinations of parameters TTL and buffer. The best results have
been achieved for the combination of TTL = 500 time units (1000 s) and the buffer size
= 500, and for the combination of TTL = 50 time units (100 s) and the buffer size = 500,
where the message delivery rate ratio achieves almost 60 percent of delivered messages
(respectively 25 percent) on this simulation scenario. It seems that the highest influence
on message delivery ratio has the combination of all three parameters: buffer size, TTL and
message generation period. The appropriate size of message buffer is crucial. The method
does not perform well for extremely low values of message buffer. We observe two types
of dependencies between the message generation period and message delivery ratio. For
the large values of the buffer parameter, the graph indicates rather logarithmic increase in
message delivery ratio. For the small values of the buffer parameter, the graph indicates
rather linear increase in message delivery ratio.

Fig. 4.21 shows the average message delivery delay (referred as average delay in graphs)
as a function of the message generation period. The graph indicates high values of average
message delivery delay for extremely small values of the message generation period. As the
period increases, the graph becomes flat. For the simulation scenarios with buffer=500,
the average message delivery delay of the proposed method HRC2 is comparable to this
one of PROPHET. The average message delivery delay of the epidemic routing is the best.

Fig. 4.22 shows the average number of hops as a function of the message generation
period. In accordance to our assumptions, the high number of hopes can be observed when
the PROPHET routing scheme was in use in simulation. The average number of hopes of
the proposed routing schema HRC2 is low and it is comparable to Epidemic routing. The
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Figure 4.20: Simulation Scenario 4: Message delivery ratio as a function of the period of
message generation
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Figure 4.21: Simulation Scenario 3: Message delivery delay as a function of the period of
message generation
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graphs for HRC2 Epidemic routing are almost flat. It can be interpreted as considering
that the number of hopes depends particularly on the applied routing method.

Influence of message generation period size to overhead cost ratio
Fig. 4.23 shows the overhead cost ratio (referred as overhead cost in graphs) as the

function of message generation period. shows the overhead cost ratio (referred as overhead
cost in graphs) as the function of the message generation period. The graphs indicates that
the proposed method has high overhead. The lover values of overhead of Epidemic routing
are caused by the metrics which we use for overhead computation. Generated, but never
set messages are not taken into account. We can observe unexpected extremely high peaks
of overhead cost ratio for HRC2 routing scheme for several combinations of the values of
TTL and message generation period and buffer size of 300 or 400. The configuration with
these parameters leads to computation of large communities. HRC2 routing scheme uses
the approach, that the routing inside the communities is epidemic routing with timeout.
The occurrences of peaks of overhead ratio can be eliminated by implementation of more
tight constraints of application of epidemic routing into method or by limiting the number
of nodes forming communities.

4.4.3.2 Influence of Buffer Size to Performance Metrics

We conducted simulations for simulation for different sizes of message buffer (from 1 to 500
messages) and observed the influence of message buffer size to the performance metrics.
The other simulation parameters TTL and message generation period (referred as send
period in graphs) were set as follows:

1. set of simulations: TTL = 500, message generation period = 500

2. set of simulations: TTL = 500, message generation period = 100

3. set of simulations: TTL = 500, message generation period = 50

4. set of simulations: TTL = 50, message generation period = 500

5. set of simulations: TTL = 50, message generation period = 100

6. set of simulations: TTL = 50, message generation period = 50

7. set of simulations: TTL = 5, message generation period = 500

8. set of simulations: TTL = 5, message generation period = 50

Both the TTL and message generation periods are referred in time units of simulation.
1 time unit = 2 s.

Influence of node message buffer size to message delivery ratio Fig. 4.24 shows the
message delivery ratio (referred as delivered messages [%] in graphs) as a function of the
message buffer size. The proposed routing schema HRC2 outperforms all other methods
in the number of delivered messages. The graph suggests the linear dependence between
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Figure 4.22: Simulation Scenario 3: Average number of hops as a function of the period of
message generation
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Figure 4.23: Simulation Scenario 3: Overhead cost ratio as a function of the period of
message generation
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buffer size and message delivery ratio for lower values of buffer. As the value of buffer
increases the graphs become more flat. We observe the influence of the all three simulation
parameters TTL, message generation period and TTL to method performance. The best
results have been achieved for combination of TTL = 500 or 50 time units (1000s or 100s)
and message generation period = 500 (1000 s), about sixty percent.

Influence of node message buffer size to message delivery delay Fig. 4.24 shows the
average message delivery delay (referred as average delay [%] in graphs) as the function
of the message buffer size. The graph suggests the the high influence of the buffer size
for low values of buffer between buffer size and message delivery ratio for lower values of
buffer. As the value of buffer increases the graphs become more flat. Since the buffer size is
100, no significant dependencies on message delivery delay to buffer size can be observed.
The proposed methods HRC2 performance is comparable to PROPHET. Epidemic routing
outperforms both the HRC2 and PROPHET.

Influence of node message buffer size to number of hopes Fig. 4.24 shows the average
number of hops (referred as average delay [%] in graphs) as the function of the message
buffer size. The graph suggests the the proposed methods HRC2 performance is comparable
to those one of Epidemic routing in comparison to PROPHET where the average number
of hopes reaches 20 for the scenarios, where TTL=500 (1000s), respectively 12 for the
scenarios where TTL was set to lower numbers.

Fig. 4.27 shows the overhead cost ratio (referred as overhead cost in graphs) as the
function of the message buffer size. The graphs indicates that the proposed method is the
worst of the compared methods form the view of point of overhead, but it works without
network congestion. The lover values of overhead of Epidemic routing are caused by the
metrics which we use for overhead computation. Generated, but never set messages are
not taken into account. We can observe unexpected extremely high peaks of overhead cost
ratio for HRC2 routing scheme for several combinations of the values of TTL and message
generation period and buffer size 200 or 400. The configuration with these parameters
leads to computation of large communities. HRC2 routing scheme uses the approach, that
the routing inside the communities is epidemic routing with timeout. The occurrences of
peaks of overhead ratio can be eliminated by implementation of more tight constraints of
application of epidemic routing into method or by limiting the number of nodes forming
communities. Both the TTL and message generation periods are referred in time units of
simulation. 1 time unit = 2 s.

4.4.3.3 Influence of Time-to-live (TTL) to Performance Metrics

We conducted simulations for different values of TTL (from 1 to 300 time units). 1 sim-
ulation time unit is equal to 2 s. We observed the influence of TTL to the performance
metrics. The other simulation parameters the size of node message buffer and message
generation period (referred as send period in graphs) were set as follows:

1. set of simulations: buffer = 500 messages, message generation period = 500

2. set of simulations: buffer = 500 messages, message generation period = 100
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Figure 4.24: Simulation Scenario 3: Message delivery ratio as a function of the size of node
message buffer
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Figure 4.25: Simulation Scenario 3: Message delivery delay as a function of the size of
node message buffer
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Figure 4.26: Simulation Scenario 3: Average number of hops as a function of the size of
node message buffer
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Figure 4.27: Simulation Scenario 3: Overhead cost ratio as a function of the size of node
message buffer
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3. set of simulations: buffer = 500 messages, message generation period = 50

4. set of simulations: buffer = 50 messages, message generation period = 500

5. set of simulations: buffer = 50 messages, message generation period = 100

6. set of simulations: buffer = 50 messages, message generation period = 50

7. set of simulations: buffer = 5 messages, message generation period = 500

8. set of simulations: buffer = 5 messages, message generation period = 50

Both the TTL and message generation periods are referred in time units of simulation.
1 time unit = 2 s.

Influence of TTL to message delivery ratio Fig. 4.28 shows the message delivery ratio
(referred as delivered messages [%] in graphs) as function of TTL. Except the graph parts
related to small values of TTL, no significant dependencies between TTL and average
message delivery delay can be observed. For small values of TTL, the performance of all
compared methods decreases and the message delivery delay increases.

Fig. 4.29 shows the average message delivery delay (referred as average delay in graphs)
as the function of TTL. The graphs are flat. The graphs indicate low values of average
message delivery delay for the small values of TTL, but the most analyzed methods have
poor performance in message delivery for small values of TTL. It implies that these low
message delivery delays for the small values of TTL are probably caused by the overall low
number of delivered messages in the system.

Fig. 4.30 shows the average number of hops as function of TTL. The graphs indicate
logarithmic dependence between the number of the hopes and TTL for the PROPHET
routing scheme, otherwise the graphs are almost flat. The average number of hopes of the
proposed routing schema HRC2 is low and it is comparable to Epidemic routing. It can
be interpreted as considering that the number of hopes does not depend on TTL for the
implemented routing method of HRC2 and Epidemic routing for this kind of scenario, but
there is a logarithmic dependency on TTL for the PROPHET in this particular simulation
scenario.

Fig. 4.31 shows overhead cost ratio as a function of TTL. The graphs indicates no import
correlation between TTL and proposed method HRC2, except the correlations observable
for extremely small values of TTL.

4.4.4 Experiment 4

Simulation Scenario 4: Random (Helsinki)
Our tested method: Hierarchical routing with clustering 2 (hrc 2)
Compared to: Epidemic Routing, PROPHET, First Contact, Bubble Rap
All nodes generate messages in predefined time period
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Figure 4.28: Simulation Scenario 3: Message delivery ratio as a function of the time to live
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Figure 4.29: Simulation Scenario 3: Message delivery delay as a function of the time to
live
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Figure 4.30: Simulation Scenario 3: Average number of hops as a function of the time to
live
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Figure 4.31: Simulation Scenario 3: Overhead cost ratio as a function of the the time to
live
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Main characteristics
1 region, urban area (Helsinki)
road density:high
Targets, nodes and node affiliations to targets are generated randomly at each step
No node mobility patterns

Figure 4.32: Simulation Scenario 1: The initial positions of nodes in OPN geographical
area

Fig. 4.32 shows the initial positions of nodes in OPN geographical area.

4.4.4.1 Influence of Message Generation Period to Performance Metrics

Simulation Setup We conducted simulations for different of message generation period (re-
ferred as send period in graphs) and observed the influence of different message generation
period to the performance metrics. The range of message generation periods was from 1 to
500. Lower values of message generation period imply higher rates of message generation
by nodes, and consequently higher number of messages, which are simultaneously present
in simulation. The other simulation parameters TTL and node message buffer were set as
follows:

1. set of simulations: TTL = 500, buffer = 500
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Parameter Range

Map Helsinki
Simulation size 2300 x 2300 m
Moving speed random 0.5 - 1.5 m/s

Transmission range 20 m
Simulation Time 432000 time units ∼ 10 days

Sampling Period Ts 0.5 time units ∼ 1 second
Message size 36 bytes

Node Buffer Size 1 - 500 messages
Message Generation Period 10 - 500 time units ∼ 20 - 1000 seconds

Time to live 1 - 300 transmissions

Table 4.4: Simulation Scenario 4 - Random: Simulation setup for ONE Simulator

2. set of simulations: TTL = 500, buffer = 50

3. set of simulations: TTL = 500, buffer = 50

4. set of simulations: TTL = 50, buffer = 500

5. set of simulations: TTL = 50, buffer = 100

6. set of simulations: TTL = 50, buffer = 50

7. set of simulations: TTL = 5, buffer = 500

8. set of simulations: TTL = 5, buffer = 50

Fig. 4.33 shows the message delivery ratio (referred as delivered messages [%] in graphs)
as a function of the period of message generation. The range of observed message generation
period was an interval from 1 to 500. Lower values of message generation period imply
higher rates of message generation by nodes, and consequently higher number of messages,
which are simultaneously present in simulation. As it is shown in graphs, the extremely
low values of message generation period cause network congestion and the message delivery
ratio rapidly decreases. Furthermore, it can be observed that the achieved results strongly
depend on the size of message buffer. For the extremely short buffers (buffer = 5), the
performance of the proposed method decreases and the message delivery ratio of HRC1
is about one percent. For the extremely short buffers (buffer = 5), The First Contact
performance is the best. It corresponds to the random character of the scenario. The best
results (about 80 percent) were achieved for the large buffer (buffer = 500). The results
are similar for HRC1 and PROPHET for simulation scenarios, where buffer = 500. Both
for the HRC1 routing scheme and PROPHET, the appropriate size of message buffer is
crucial. These method do not perform well for extremely low values of message buffer.
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For the First Contact routing, the value of TTL is crucial. We observe two types of
dependencies between the message generation period and message delivery ratio. For the
large values of the buffer parameter, the graph indicates rather logarithmic increase in
message delivery ratio. For the small values of the buffer parameter, the graph indicates
rather linear increase in message delivery ratio.

Fig. 4.34 shows the average message delivery delay in seconds (referred as the average
delay in graphs) as the function of the message generation period. We observe two types
of dependencies between the message generation period and the average message delivery
delay. For the large values of the buffer, the graph indicates no influence of the message
generation period to the average message delivery ratio. For the small values of the buffer
parameter, the graph indicates high values of average message delivery delay for extremely
small values of message generation period. As he period increases, the graph becomes
flat. For the simulation scenarios with buffer=500, the average message delivery delay of
the proposed method HRC2 is comparable to those ones of PROPHET and First Contact
routing. The average message delivery delay of the epidemic routing is the best.

Fig. 4.35 shows the average number of hops as a function of the message generation
period. In accordance to our assumptions, the high number of hopes can be observed when
the First Contact routing scheme was in use in simulation. The average number of hopes
of the proposed routing schema HRC2 is low and it is comparable to Epidemic routing.
The graphs are almost flat. It can be interpreted as considering that the number of hopes
depends particularly on the implemented routing method.

Fig. 4.36 shows the overhead cost ratio (referred as overhead cost in graphs) as the
function of the message generation period. The graphs indicates that the proposed method
has high overhead. The lover values of overhead of Epidemic routing are caused by the
metrics which we use for overhead computation. Generated, but never set messages are
not taken into account.

4.4.4.2 Influence of Buffer Size to Performance Metrics

We conducted simulations for simulation for different sizes of message buffer (from 1 to 500
messages) and observed the influence of message buffer size to the performance metrics.
The other simulation parameters TTL and message generation period (referred as send
period in graphs) were set as follows:

1. set of simulations: TTL = 500, message generation period = 500

2. set of simulations: TTL = 500, message generation period = 100

3. set of simulations: TTL = 500, message generation period = 50

4. set of simulations: TTL = 50, message generation period = 500

5. set of simulations: TTL = 50, message generation period = 100

6. set of simulations: TTL = 50, message generation period = 50
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Figure 4.33: Simulation Scenario 4: Message delivery ratio as a function of the period of
message generation
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Figure 4.34: Simulation Scenario 4: Message delivery delay as a function of the period of
message generation
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Figure 4.35: Simulation Scenario 4: Average number of hops as a function of the period of
message generation
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Figure 4.36: Simulation Scenario 4: Overhead cost ratio as a function of the period of
message generation
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7. set of simulations: TTL = 5, message generation period = 500

8. set of simulations: TTL = 5, message generation period = 50

Both the TTL and message generation periods are referred in time units of simulation.
1 time unit = 2 s.

Fig. 4.37 shows the message delivery ratio (referred as delivered messages [%] in graphs)
as a function of the message buffer size. All the methods are comparable fr this random
simulation scenario and the message delivery ratio reaches about 80 percent. For message
generation period = 500 (1000s), the message delivery ratio of HRC2 and PROPHET grows
as a function of the size of the message buffer until the buffer size is equal to 50 messages
and than stays flat. For shorter message generation periods is the message delivery ratio
dependent on the buffer size: the higher values of buffer size imply the higher values of
message delivery ratio.

Fig. 4.38 shows the average message delivery delay (referred as average delay [%] in
graphs) as a function of the message buffer size. The smaller values of buffer size have a
strong influence on message delivery delay. Since the buffer size reaches a threshold value,
no influence to message delivery delay is observable. The buffer threshold value depend on
the values of parameters TTL and message generation period.

Fig. 4.39 shows the average number of hopes as a function of the message buffer size.
The highest value of average number of hopes is achieved by the First Contact routing
methods. No significant dependency on buffer size is observed.

Fig. 4.40 shows the overhead cost ratio (referred as overhead cost in graphs) as the func-
tion of the message buffer size. The graphs indicates that the proposed method preforms
better than First Contact but worse than PROPHET. form the view of point of overhead,
but it works without network congestion. The lover values of overhead of Epidemic routing
are caused by the metrics which we use for overhead computation. Generated, but never
set messages are not taken into account. We can observe unexpected extremely high peaks
of overhead cost ratio for HRC2 routing scheme for several combinations of the values of
TTL and message generation period and buffer size 200 or 400. The configuration with
these parameters leads to computation of large communities. HRC2 routing scheme uses
the approach, that the routing inside the communities is epidemic routing with timeout.
The occurrences of peaks of overhead ratio can be eliminated by implementation of more
tight constraints of application of epidemic routing into method or by limiting the number
of nodes forming communities.

4.4.4.3 Influence of Time-to-live (TTL) to Performance Metrics

We conducted simulations for different values of TTL (from 1 to 300 time units). 1 sim-
ulation time unit is equal to 2 s. We observed the influence of TTL to the performance
metrics. The other simulation parameters the size of node message buffer and message
generation period (referred as send period in graphs) were set as follows:

1. set of simulations: buffer = 500 messages, message generation period = 500
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Figure 4.37: Simulation Scenario 4: Message delivery ratio as a function of the size of node
message buffer
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Figure 4.38: Simulation Scenario 4: Message delivery delay as a function of the size of
node message buffer
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Figure 4.39: Simulation Scenario 4: Average number of hops as a function of the size of
node message buffer
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Figure 4.40: Simulation Scenario 4: Overhead cost ratio as a function of the size of node
message buffer
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2. set of simulations: buffer = 500 messages, message generation period = 100

3. set of simulations: buffer = 500 messages, message generation period = 50

4. set of simulations: buffer = 50 messages, message generation period = 500

5. set of simulations: buffer = 50 messages, message generation period = 100

6. set of simulations: buffer = 50 messages, message generation period = 50

7. set of simulations: buffer = 5 messages, message generation period = 500

8. set of simulations: buffer = 5 messages, message generation period = 50

Both the TTL and message generation periods are referred in time units of simulation.
1 time unit = 2 s.

Influence of TTL to message delivery ratio Fig. 4.41 shows the message delivery ratio
(referred as delivered messages [%] in graphs) as function of TTL. The graphs indicates that
HRC2 routing scheme proposed well and its performance in message delivery is comparable
to PROPHET for higher values of message buffer. HRC2 doesn’t not perform well for buffer
size of 5. The proposed method performs well when the buffer is equal or higher than some
threshold values.

Fig. 4.42 shows the average message delivery delay (referred as average delay in graphs)
as the function of TTL. The graphs are flat. The graphs indicate low values of average
message delivery delay for the small values of TTL, but the most analyzed methods have
poor performance in message delivery for small values of TTL. It implies that these low
message delivery delays for the small values of TTL are probably caused by the overall low
number of delivered messages in the system.

Fig. 4.43 shows the average number of hops as function of TTL. In accordance to
our assumptions, the graphs indicate linear dependence between the number of the hopes
and TTL for the First Contact routing scheme, otherwise the graphs are almost flat.
The average number of hopes of the proposed routing schema HRC2 is low and it is
comparable to Epidemic routing and PROPHET. It can be interpreted as considering that
the number of hopes doesn’t not depend on TTL for the implemented routing method of
HRC2, PROPHET or epidemic routing and that there is a linear dependency on TTL for
the First Contact routing scheme.

Fig. 4.44 shows overhead cost ratio as a function of TTL. The graphs indicates no
correlation between TTL and proposed method HRC2. For the First Contact the almost
linear dependency of the overhead cost ratio to TTL is observed.

4.4.5 Experiment 5

Scenario: Simulation Scenario 5
Our tested method: ANMA
Compared to: Epidemic Routing, PROPHET, First Contact
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Figure 4.41: Simulation Scenario 4: Message delivery ratio as a function of the time to live
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Figure 4.42: Simulation Scenario 4: Message delivery delay as a function of the time to
live
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Figure 4.43: Simulation Scenario 4: Average number of hops as a function of the time to
live
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Figure 4.44: Simulation Scenario 4: Overhead cost ratio as a function of the the time to
live
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Four neighborhood geographical regions
Changing number of nodes visiting both regions
All nodes generate messages in predefined time period

Parameter Range

Map Venice
Simulation size 4500 x 3400 m
Moving speed random 0.5 - 1.5 m/s

Transmission range 50 m
Simulation Time 432000 time units ∼ 10 days

Sampling Period Ts 0.5 time units ∼ 1 second
Message size 36 bytes

Node Buffer Size 50 messages
Message Generation Period 100 time units ∼ 200 seconds

Time to live 5 transmissions

Table 4.5: Simulation Scenario 5: Simulation setup for ONE Simulator

This experiment was conducted on simulation scenario 5. The OPN consists of four
square target neighborhood regions located in the urban area of Venice. The selected
geographical area is characterized by the high density of roads and by the water channel
which can be crossed by nodes only at some places (bridges). The node mobility pattern
was designed in such a way, that there were two separated node groups at each time step.
When the network changed behaviour, another two separated groups appear. We selected
the uniform probabilistic distribution of node initial positions in each OPN geographical
region and log-normal probabilistic distribution of node stays in targets during the day
phase. The simulation was conducted for 6-day cycle with periodically changing day traffic
pattern. For the purposes of OPN routing, we selected the data collected in time interval
of 3 hours (7 AM to 10 AM) from each day of the 6-day simulation. The analyzed time
interval was limited to 3 hours per day primary for the computational reasons. The selected
3-hour interval consists of mobility patterns changing each twenty minutes. The data from
three days were used to train the model. The data from three days were used to test the
performance of the proposed method. The number of nodes in simulation was 100 nodes.
The simulation parameters were set as follows: message generation period=500 time units,
buffer=200 messages, TTL=100 time units.

RESULTS: The following performance metrics were used: the message delivery ratio,
average message delivery delay, average number of hopes and overhead cost. All compared
methods achieve approximately the same message delivery delay. The average number of
hopes of the proposed method for this simulation is low, about 3 hopes. The highest value
of average hopes is achieved by First Contact routing protocol, where the average number
of hopes was 19. The proposed method has a good overhead. The proposed method
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outperforms other tested methods in message delivery ratio, about 50 percent of delivered
messages in comparison to 19 percent by Prophet and 10 percent of Epidemic Routing and
First Contact. This reflects that the proposed ANMA routing scheme deliver messages
even when the original OPN network schema contains two separated contact graphs at
some time periods.
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Chapter 5

Conclusions

5.1 Summary

The dissertation thesis deals with the issue of special routing algorithms designed for
communication in opportunistic networks. The opportunistic networks (OPN) are networks
disseminating messages with the store- carry-forward routing principle. The key function
of OPN routing protocols is to make decisions on message forwarding.

We proposed the routing metric combining utilization of geographical data and unsuper-
vised machine learning (cluster analysis) called Hierarchical Routing with Clustering. Two
versions of this routing algorithm were introduced: i) Hierarchical Routing with Clustering
1 (HRC1), ii) Hierarchical Routing with Clustering 2 (HRC2). These versions differ from
each other in way how the knowledge about the detected geographic regions is represented.
HRC1 uses the set representation of the geographic structure (the elements are detected
geographic regions), while HRC2 uses the graph representation (the detected geographic
regions are nodes, the edges represent the connections realized by the moving nodes of
OPN). The novelty of this approach consists in combining the use of the knowledge about
geographic structure of the network results of cluster analysis in routing algorithm with the
knowledge obtained from the OPN contact graph. The routing metrics have been designed
in order to select the most optimal nodes which have the highest probability to be a part
of the paths of successfully delivered messages with respect to maximization of message
delivery ratio and the minimization of message delivery delay. The performance of the
proposed method was tested on several simulation scenarios and compared to four well-
known routing protocols as Epidemic routing with the limited message buffer, PRoPHET,
First Contact and BUBBLE-Rap. The simulations were conducted for different values of
parameters TTL, Buffer Size, Message Generation Period and Number of Nodes. For the
sufficient parameters of generated message period and buffer size and TTL, the proposed
method achieves performance almost 90 percent of delivered messages and outperforms
other implemented methods.

We proposed the routing metric which uses supervised machine learning technique
(Support Vector Machine) as a part of decision making mechanism in OPNs with regular
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node mobility patterns. We proposed a SVM-based routing protocol. The main idea
consists in dividing the area of the OPN into cells and train SVM classifier for each pair
of the cells. During the training phase, the messages are spread over the network using
epidemic routing. Each node has implemented a set of SVM classifiers. The simulation
is the testing phase. We conducted experiments on simulation scenario, where the OPN
consists of two separated target regions located in the urban area of Venice. The selected
geographical area is characterized by the high density of roads and by the water channel
which can be crossed by nodes only at some places (bridges). The method performance
was about 40 percent in message delivery and outperforms other methods.

We proposed the routing method, which continuously evaluates the network state and
can enhance the routing process by active changes in node behaviour. This routing scheme
combines GMRF (Gaussian Random Fields) and ANMA (Active Node Movement Al-
gorithm). The proposed method was tested on simulation scenario 5. The OPN consists of
four square target neighborhood regions located in the urban area of Venice. The selected
geographical area is characterized by the high density of roads and by the water channel
which can be crossed by nodes only at some places (bridges). The node mobility pat-
tern was designed in such a way, that there were two separated node groups at each time
step. When the network changed behaviour, another two separated groups appear. We
selected the uniform probabilistic distribution of node initial positions in each OPN geo-
graphical region and log-normal probabilistic distribution of node stays in targets during
the day phase. The simulation was conducted for 6-day cycle with periodically changing
day traffic pattern. In our implementation, we used centrally computed network evalu-
ation. The proposed method outperforms other methods and in message delivery ratio,
about 50 percent of delivered messages in comparison to 19 percent by Prophet and 10
percent of Epidemic Routing and First Contact.

The goals of dissertation thesis have been achieved.

5.2 Contributions of the Dissertation Thesis

The main contributions consist in:

1. We proposed the routing protocol Hierarchical Routing with Clustering, which combines
three strategies in order to improve routing in OPNs. At the highest level, the proposed
routing schema uses the knowledge about the geographical structure of the OPN. This
geographical structure of the OPN is primary defined by the node targets (places visited
by nodes) and by the node trajectories. This knowledge is extracted from the data by
application of cluster analysis to triangulated an pre-processed data. At the middle
level, the routing schema uses the knowledge of communication community constructed
from the contact graph of the OPN. At the lowest level, e.g. inside the community the
flooding routing schema is used for message dissemination. We proposed two versions
of HRC. These versions differ from each other in way how the knowledge about the
detected geographic regions is represented. HRC1 uses the set representation of the
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geographic structure (the elements are detected geographic regions), while HRC2 uses
the graph representation (the detected geographic regions are nodes, the edges represent
the connections realized by the moving nodes of OPN). The novelty of this approach
consists in combining the use of the knowledge about geographic structure of the network
results of cluster analysis in routing algorithm with the knowledge obtained from the
OPN contact graph.

2. We proposed how use the Support Vector Machines to make decisions about routing in
OPNs with regular node mobility patterns. We proposed a SVM-based routing protocol.
The main idea consists in dividing the area of the OPN into cells and train SVM classifier
for each pair of the cells. During the training phase, the messages are spread over the
network using epidemic routing. When the node encounters another node and intents to
copy a message, it collects information on cell, where the nodes encountered, encountered
node, destination node ID and time slot, when nodes encountered and the message ID.
The destination node collects data containing message ID, sector, where the destination
node is located, and the ID of the last hop node. The training data are collected for
each sector. Each node has implemented a set of SVM classifiers.

3. We proposed and tested an active node behavior algorithm and verify that the decision
making about a place of message passing can influence the delivery of messages to the
destination node. We designed the Active node movement algorithm (ANMA). The
experimental results were compared to the results obtained by the existing standard
routing methods: Epidemic routing with the limited message buffer and Prophet rout-
ing. The novelty of this approach consists in combination of sector-based models of
network behavior using GMRF and the feature of active decisions made by nodes about
the node deviation from its planned route.

5.3 Future Work

One of the directions of the future research is closer connection of enhanced routing al-
gorithms with GIS information systems and real world traffic data databases. The simula-
tion environment, which we used, allows importing data about topography and infrastruc-
ture from public GIS databases. In the future, the incorporation of precious geographic
data from public GIS systems as Open Topography GIS or OpenStreetMap could bring be-
nefits. Open Topography GIS is a database, which contains precious topographical data.
OpenStreetMap is a database which contains data for the whole world. These data in-
cludes points of interest, buildings, roads and road names, ferry routes. Unfortunately, in
general, current public GIS databases do not yet offer traffic information. Although some
cities publish GIS traffic data, this is still the activity of local authorities, not a general
concept. In general, publishing GIS data on transport and traffic is not very widespread.
Many data traffic databases are often private. Using enhanced routing algorithms on big
data could bring a number of new problems. One of the problems to solve when working
on big data would be, for example, a problem on selecting information stored in nodes.
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A node storage capacity is limited. When working on big data, the nodes would not be
even able remember identifiers of all other nodes in a opportunistic network. Also, many
problems concerning a central repository and a central system for the collection and integ-
ration of big-data on traffic stay opened. In our work, we assumed the implicit cooperative
behavior of nodes. Another interesting approach would be application on multi-agent sys-
tems, where agents set up contracts for message delivery. Multi-agent system is a software
system, which consists of multiple interacting intelligent agents within an environment.
Future research could focus on concluding contracts between opportunist nodes and an
application of game theory.
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[A.4] Smı́tková Jank̊u, L. IMPROVEMENT OF THE SELECTED ROUTING PROTO-
COLS IN OPPORTUNISTIC NETWORKS BY THE APPLICATION OF PAT-
TERN RECOGNITION AND MACHINE LEARNING TECHNIQUES. Ph.D.
Minimum Thesis, Faculty of Information Technology, Prague, Czech Republic,
2014.
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[A.16] Hyniová, K. et al. On Experiments Taken on The Active Shock Absorber Test
Stand. In: APPLIED MATHEMATICS in ELECTRICAL and COMPUTER EN-
GINEERING. CIRCUITS, SYSTEMS, SIGNAL and TELECOMMUNICATIONS.

155



Remaining Publications of the Author

Cambridge, Harvard, 25.01.2012 - 27.01.2012. New York: WSEAS Press. 2012, s.
104-109. ISBN 978-1-61804-064-0.
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