
Manipulating the Capacity of Recommendation Models
in Recall-Coverage Optimization

by

Tomáš Řehǒrek

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Informatics

Department of Applied Mathematics

Prague, August 2018

Supervisor:
doc. Pavel Kord́ık, Ph.D.
Department of Applied Mathematics
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Copyright c© 2018 Tomáš Řehořek

ii

Abstract and contributions

Traditional approaches in Recommender Systems ignore the problem of long-tail recom-
mendations. There is no systematic approach to control the magnitude of long-tail recom-
mendations generated by the models, and there is not even proper methodology to evaluate
the quality of long-tail recommendations. This thesis addresses the long-tail recommend-
ation problem from both the algorithmic and evaluation perspective. We proposed con-
trolling the magnitude of long-tail recommendations generated by models through the
manipulation with capacity hyperparameters of learning algorithms, and we define such
hyperparameters for multiple state-of-the-art algorithms. We also summarize multiple such
algorithms under the common framework of the score function, which allows us to apply
popularity-based regularization to all of them. We propose searching for Pareto-optimal
states in the Recall-Coverage plane as the right way to search for long-tail, high-accuracy
models. On the set of exhaustive experiments, we empirically demonstrate the corectness
of our theory on a mixture of public and industrial datasets for 5 different algorithms and
their different versions.

In particular, the main contributions of the dissertation thesis are as follows:

◦ Unified framework for generating rating matrices from mixed data sources, including
both the explicit and implicit ratings.

◦ Summarizing multiple state-of-the-art recommendation algorithms under the com-
mon framework based on the score: I × U → R function.

◦ Generalizing Collaborative Filtering ItemKnn algorithm as proposed in [93] to
sim: I2 → R functions other than rating cosine similarity. The newly proposed
similarity functions include the tokenized attributes similarity, embedding similarity,
and predicted similarity. This allows using the algorithm for Content-Based recom-
mendation as well.

◦ Association Rules for recommendation. While this is type of model didn’t receive
enough attention in the research community, we proposed unified framework for rule-

iii

based recommendation, including the best-rule method, novel method of weighted
voting, and different rule-quality measures. We also showed how the β-boosting
(popularity regularization) applied to ARs translates to continous transition from
confidence to lift. In the experiments, we showed that rule-based recommenders can
compete to other state-of-the-art models.

◦ Survey of Matrix Factorization methods and Deep Learning approaches in Recom-
mender Systems.

◦ Formal framework for hyperparameterizable learning algorithms producing recom-
mendation models. Generalized definion of validation reward function, capturing not
only accuracy measures, but other measures (inluding catalog and user coverage) as
well. Unifying UserKnn, ItemKnn, ARs, MF, and AutoRec under this framework.

◦ Survey to Top-N evaluation in Recommender Systems.

◦ Generalization of popularity-based regularization, proposed in [101] for one specific
MF algorithm, to all the algorithms presented in the State-of-the-Art chapter.

◦ Proposing model capacity manipulation as a method of controlling magnitude of
long-tail recommendations.

◦ Defining model capacity manipulation parameters for UserKnn, ItemKnn, ARs, MF,
and AutoRec.

◦ Proposing multi-objective top-N evaluation as searching for Pareto-optimal front in
the hyperparameter space of learning algorithms.

◦ Proposing recall-coverage plane as highly relevant for optimizing long-tail recom-
mendations.

◦ Exhaustive set of experiments on a mixture of 7 public and industrial datasets. Thor-
ough investigation of manipulation with algorithm-dependent capacity parameters
and the response in the recall-coverage plane.

◦ For UserKnn, showing that recall-coverage behavior is preserved even for Locality-
Sensitive Hashing (LSH).

Keywords:
Recommender Systems, Long Tail, Hyperparameterization, Model Capacity, Regulariz-

ation, Popularity, Collaborative Filtering, Recall, Catalog Coverage, Multi-Objective Op-
timization

iv

Acknowledgements

There are many people to whom I would like express my gratitude for supporting me during
my whole studies and also during writing this thesis.

I would like to thank my loving mother, Pavla Rehorkova, Ph.D, for her moral and
material support during my whole studies. I would like to thank my loving grandparents,
Frantisek Petrzela (†2015) and Emilie Petrzelova (†2017), for the very same, and for keeping
asking me about the progress of my doctoral study until their very last days. It was
Frantisek Petrzela’s example what taught me to distinguish between seemingly impossible
task under hostile conditions, and pure laziness. The conditions for finishing my thesis
were actually wonderful and excellent, thanks to my loving wife and amazing woman, Anna
Rehorkova, who let me leave her for several weeks just to write this thesis, and managed
purchasing our new apartment, including mortgage negotiation, while I was gone. I wrote
this thesis in beautiful summer residence, that my mother Pavla and her companion Michal
Novak have been restoring for years and let me occupy it like a nobleman. I would also
like to thank my father, Milan Rehorek, for supporting me throughout my whole studies
as well.

This thesis is mostly theoretical, but when I sometimes put in a practical comment, it
comes from Recombee, a company where we run Recommendation as a Service for dozens
of international clients. I would like to thank my supervisor, Pavel Kordik, Ph.D., who
gave the impetus to start the company, so we could get access to hundreds of real-world,
industrial datasets, which is something that most researches don’t have, making their
research tied to few public datasets only. It may be connected with personality, but I
believe that the neutral land on the interface between theory and practice is the most
fertile. The things we are doing in Recombee were from the beginning highly influenced
by my research, and my research have been continuously influenced by feedback from
Recombee. Running production system differs from scientific experiments in that all 100
physical servers (as of 2018) must be up and running in 365/24/7 manner. I would therefore
like to thank my colleagues who allowed me to leave the company for several weeks as well,
without worries that anything will get wrong, because they are simply elite. They include
Ondrej Fiedler (the best software engineer I’ve ever met), Ivan Povalyaev (ultimate hacker),

v

Gabriela Takacova (empathic business expert taking care of all the clients), Radek Bartyzal
(researcher keeping pace with the latest trends), and Tomas Barton (infrastructure expert).

Furthermore, I would like to express my gratitude to many highly talented students who
I had the opportunity to supervise on their Bachelor or Master theses, or those who I could
cooperate with on their semestral projects. Without them, this thesis couldn’t originate,
because it was the long term cooperation with them which kept pushing my knowledge
and the experimental results in Recommender Systems forward. From the students whose
theses I supervised, I’d especially like to thank to Michal Bajer, Martin Barus, Tomas
Fedor, Tomas Fryda, Martin Hak, Petr Kasalicky, Filip Krestan, Ladislav Martinek, Martin
Pavlicek, Michal Reznicky, and Tomas Richtr. Many of them were deservedly awarded the
Dean’s Award, simply because they are excellent. From students I could cooperate on their
semestral projects, I’d especially like to thank Ondrej Biza, Jakub Drdak, Josef Dvorak,
Ondrej Novak, and Ondrej Podsztavek, some of whom shifted by knowledge really far.
Sadly, the probability I forgot about someone is equal to 1, but again, thank you all for
being so great, it was you who made my academic work so enjoyable.

Special thanks belongs also to industrial partners. I first got in touch with Recom-
mender Systems in practice 7 years ago in nangu.TV (Alnair, a.s.), and continued in real-
world delivery to VoD systems for Icflix and ShowMax companies since then, all thanks
to Antonin Kral, Ph.D. The experimental part of this thesis is highly based on industrial
datasets provided by Recombee clients, who kindly gave me their permission to perform ex-
periments on their data. I would like to thank Nicholas Blicker Larsen from Design Group
ApS. (Denmark) for providing data from Moodings and Just Spotted online stores, Gio-
vanni Bartoli (Italy) for providing data from Casa Cenina store, and Lucas Colette from
BUBB.Store (Brazil) for providing dataset covering multiple stores under their brilliant
platform. Considering already mentioned Recombee, I would like to thank for providing
expensive yet powerful hardware for my computationally-intensive experiments.

My research has also been supported by the Grant Agency of the Czech Technical Uni-
versity in Prague, grant No. SGS (SGS10/307/OHK3/3T/18, “Novel Model Ensembling
Algorithms”), and

vi

Dedication

To my wife Anna

vii

Contents

Abbreviations xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Related Work/Previous Results . 3
1.4 Goals of the Dissertation Thesis . 4
1.5 Structure of the Dissertation Thesis . 4

2 Background and State-of-the-Art 5
2.1 Data Sources in Recommender Systems . 5

2.1.1 Attribute Data . 6
2.1.2 Tokenized Attribute Data . 7
2.1.3 Interaction Data . 7
2.1.4 Rating Matrices . 9

2.2 Recommendation Tasks . 13
2.2.1 Learning Algorithms and Hyperparameterizations 13
2.2.2 Rating Prediction . 14
2.2.3 Binary Classification . 15
2.2.4 Top-N Recommendation . 15
2.2.5 Learning to Rank . 16
2.2.6 Other Recommendation Tasks . 16

2.3 Recommendation Approaches . 18
2.3.1 Model-Based vs. Memory-Based Recommendation 18
2.3.2 Collaborative Filtering . 19
2.3.3 Content-Based Recommendation 20
2.3.4 Demographic Recommendation . 20
2.3.5 Hybrid Systems . 21

2.4 Recommendation Models . 21

viii

Contents

2.4.1 Popularity Models . 22
2.4.2 User-Based k-Nearest Neighbors . 22
2.4.3 Item-Based k-Nearest Neighbors . 25
2.4.4 Association Rules . 29
2.4.5 Matrix Factorization . 33
2.4.6 Deep Learning Approaches . 39

2.5 Evaluation in Recommender Systems . 43
2.5.1 Split and Cross Validation . 44
2.5.2 Rating Prediction Measures . 46
2.5.3 Binary Classification Measures . 48
2.5.4 Top-N Recommendation Measures 50
2.5.5 Model Capacity, Underfitting and Overfitting 56

3 Overview of Our Approach 59
3.1 Popularity-Based Regularization . 59
3.2 Manipulating Model Capacity . 61

3.2.1 β as Universal Model Capacity Hyperparameter 61
3.2.2 User-Based k-Nearest Neighbors . 63
3.2.3 Item-Based k-Nearest Neighbors . 63
3.2.4 Association Rules . 64
3.2.5 Matrix Factorization . 66
3.2.6 AutoRec . 66

3.3 Multi-Objective Top-N Evaluation . 67
3.3.1 Searching For Pareto-Optimal Models 67
3.3.2 Recall-Coverage Optimization . 68

4 Main Results 71
4.1 Experimental Setup . 71

4.1.1 Experimental Datasets . 71
4.1.2 Algorithms . 75

4.2 Capacity Manipulation Experiments . 77
4.2.1 User-Based k-Nearest Neighbors . 77
4.2.2 Item-Based k-Nearest Neighbors . 84
4.2.3 Association Rules . 88
4.2.4 Matrix Factorization . 91
4.2.5 AutoRec . 93

5 Conclusions 95
5.1 Summary . 95
5.2 Contributions of the Dissertation Thesis 95
5.3 Future Work . 97

Bibliography 99

ix

Contents

Reviewed Publications of the Author Relevant to the Thesis 109

Remaining Publications of the Author Relevant to the Thesis 111

Remaining Publications of the Author 113

A Comparing Offline and Online Evaluation Results of Recommender
Systems 115

x

List of Figures

2.1 Two sets of nearest neighbors (to the top-left item) using color histogram as
the sim function in ItemKnn [79]. 28

2.2 Two sets of nearest neighbors (to the top-left item) using ORB [86] as the sim
function in ItemKnn [79]. 28

2.3 Two sets of nearest neighbors (to the top-left item) using pre-trained convolu-
tional network [98] as the sim function in ItemKnn [79]. 29

2.4 The spectrum of Wide & Deep models [20]. 40
2.5 AutoRec model architecture [95]. 41

3.1 Visual intuition of Pareto-optimal front. 68

4.1 UserKnn Experiments on Industrial Datasets. 78
4.2 UserKnn Experiments on Public Datasets. 79
4.3 Selected Prototypic Curves For The UserKnn Algorithm. 80
4.4 UserKnn Results Using Locality-Sensitive Hashing [69]. 83
4.5 Selected Prototypic Curves For The ItemKnn Algorithm. 84
4.6 ItemKnn Experiments Using Rating Cosine Similarity 86
4.7 ItemKnn Experiments Using Token Jaccard Similarity 87
4.8 Selected Prototypic Curves For The Association Rules. 88
4.9 Association Rules Experiments Using Best-Confidence Method 89
4.10 Association Rules Experiments Using Weighted-Confidence Voting Method . . 90
4.11 Selected Prototypic Curves For The Matrix Factorization. 91
4.12 Matrix Factorization Experiments . 92
4.13 AutoRec Experiments on MovieLens 1M Dataset for f and λ 93
4.14 AutoRec Experiments on MovieLens 1M Dataset for β 94

xi

List of Tables

4.1 Interaction Types and Item Attributes of Experimental Datasets 72
4.2 User Interaction Characteristics of Experimental Datasets 72
4.3 Item Interaction Characteristics of Experimental Datasets 73

xii

List of Algorithms

1 APRIORI . 30
2 Solving Matrix Factorization Optimization Problem Using SGD [56, 30] . . 34

xiii

Abbreviations

Number Sets

N Natural numbers set
Z Integer numbers set

R Real numbers set

R+
0

Set of real numbers greater or equal to zero
(that is {x ∈ R | x ≥ 0})

R+ Set of real numbers greater than zero (that
is {x ∈ R | x > 0})

(R ∪ {?}) Set of real numbers including unobserved (unknown) value

Common Mathematical Functions and Operators

x Column vector x
xi i-th index of vector X

||x|| Frobenius norm of vector b

A Matrix A
I Identity matrix

AT Transposed matrix to matrix A

A−1 Inverse matrix to matrix A
aj,∗ j-th row vector of matrix A

aTj,∗ j-th row vector of matrix A transposed to column vector

a∗,j j-th column vector of matrix A

aT∗,j j-th column vector of matrix A transposed to volumn vector

Y X for sets X and Y , a set of all projections X → Y

2X power set of X, that is {X ′ | X ′ ⊆ X}

xv

Abbreviations

Dedicated Symbols

? Unobserved value in the rating matrix.

I
Totally ordered set of items, or something referring to the set of
items when used as subscript or superscript

U
Totally ordered set of users, or something referring to the set of
users when used as subscript or superscript

i, j, `
Either item i, j, ` ∈ I, or natural number i, j, ` ∈ N used as an
index in iteration or expressing arbitrary index

RU×I(
RU×I ∪ {?}

)U×I
{0, 1}U×I

{0, 1, ? }U×I

Rating matrix of dimensions |U |×|I|. We are omitting the cardin-
alities (|U |×|I|) to simplify the notation, exploiting the fact that
the sets are totally ordered.

xi

i-th element in vector x ∈ R|I| for item i ∈ I, exploiting the fact
the set of items I is totally ordered
OR
i-th element for column vector x ∈ Rn if i ∈ N

xu
The u-th element for user u ∈ U in vector x ∈ R|U |, exploiting the
fact the set of user U is totally ordered

R(U×I)

Projection U × I → R. The outer brackets in (U × I) explicitly
denote that this is a projection, not a rating matrix (although
both can be equally thought as value assignments to all (u, i) ∈
U × I pairs)

Miscellaneous Abbreviations

ALS Alternating Least Squares
ARs Association Rules
CB Content-Based
CF Collaborative Filtering
ItemKnn Item-Based k-Nearest Neighbors
LSH Locality-Sensitive Hashing
MF Matrix Factorization
SGD Stochastic Gradient Descent
UserKnn User-Based k-Nearest Neighbors

xvi

Chapter 1

Introduction

In this chapter, we will give brief introduction to this thesis, including motivation, problem
statement, goals, and structure of the thesis.

1.1 Motivation

Recommender Systems (RSs) are important research subject in the areas of Data Mining
and Machine Learning. Thanks to the huge growth in E-Commerce, Social Networks and
interactive media services, it becomes very important to navigate users to content which
is valuable for them. Due to huge increase in the amount of the content which is available
through the use of electronic services, RSs are important tool to simplify the navigation.

The aim of RSs is to provide users with recommended items that are likely to be
relevant, enjoyable, or interesting to them. Typically, such systems collect the interactions
made by users in the past, to build recommendations at present. The interactions may
include detail views, bookmarks, cart additions, purchases, plays, reads, explicit ratings,
etc. Basically, the recommendation problem may be viewed as predictive modeling task.

In the recent years, large number of recommendation algorithms have been proposed
and researched. These include primarily algorithms of Collaborative Filtering (CF) based
on analyzing behavioral patterns across the whole userbase and making the recommenda-
tions based on clustering or searching for similarities and hidden relations between items,
users, or both. The research in CF algorithms became particularly popular in 2007 thanks
to a $1,000,000 Netflix Prize challenge, leading to enormous effort and attention being
put by scientists into the area. But even after the competition, thanks to big commer-
cial success of RSs, the research has been ongoing until now, resulting in more and more
algorithms being proposed in the past decade.

Hand in hand with the success of RSs in everyday online business, there formed a huge
and constantly growing gap between the desired practical goals of such systems, and the
way how the systems are designed and evaluated in the research community.

1

1. Introduction

The research community traditionally modeled the systems and their success criteria
based on rating prediction, namely predicting the “number of stars” that users would assign
to individual items. These approaches, however, require explicit rating datasets containing
such assignments as the input from users. It appeared that it is not easy (and sometimes
impossible) to collect data for such tasks in practice, because on modern Internet websites,
it is only the implicit ratings what is available. The only information provided is that
“user u viewed item i at time t”, completely missing the numeric value expressing u’s true
opinion on i.

This contributes to the research-industry gap: publicly available research datasets
largely differ from privately held data in the industry. Even as of today, it is not uncommon
that newly published algorithms are designed for and evaluated on rating prediction tasks,
including numeric accuracy measures, such as RMSE, as the evaluation criterion, which
puts obstacles for practical deployment in many cases.

To reduce the gap between research and industry, part of the research community shifted
the focus on implicit feedback datasets. In vast majority of cases, this meant adaptation
of existing algorithms to such datasets. Also, novel and more practical measures, such as
the recall@N and precision@N , were introduced.

The positive trend is that these novel approaches succeeded and have been adopted
by biggest players in the industry. Despite that, however, is appears that the research-
industry gap is still present. Specifically, it appears that measures such as the recall@N and
precision@N are not enough. These measures do not reflect other desired characteristics
of the recommendations.

Frequently overlooked, yet very important quality measure, is how long-tail or niche
the recommended items are. It appeared that recommending highly popular items often
maximizes measures like recall@N , but such recommendations are not desired nor valu-
able. The aim of modern RSs is to recommend long-tail content that the users would not
discover otherwise. This is an important topic that needs to be addressed to further re-
duce the research-industry gap, with this thesis aiming to significantly contribute to it. We
will revisit the existing algorithms and explore ways how to control the “long-tailness” in
unified manner, together with introducing improved measures to make individual models
comparable with respect to this goal.

1.2 Problem Statement

In industrial practice, it is desirable to offer users long-tail recommendations, allowing
them to discover niche content precisely corresponding to their tastes. While most of the
current recommendation algorithms take this into account as a general assumption, there
has been very few research work seriously addressing the topic.

There is not only a proper methodology needed to evaluate how long-tail the recom-
mended items are, but also a systematic way of controlling the long-tailness of individual
models is highly desirable. This is the main problem we are going to address in this thesis.

2

1.3. Related Work/Previous Results

Traditional approaches, understanding the recommendation problem as rating predic-
tion on explicit rating datasets, with quality measured using numeric accuracy such as
Mean Absolute Error (MAE) or RMSE (Root Mean Square Error), completely ignore the
long-tail recommendation goal. In fact, several studies have shown that there isn’t even
desired correlation with measures like precision and recall.

Modern approaches, understanding recommendation as scoring the items to get Top-N
candidates, with quality measurable using precision or recall, ignore the long-tail problem
as well. They are unable to distinguish between models that achieve their accuracy by
recommending highly popular items, and models which achieve the (possibly same level of)
accuracy by recommending long-tail, niche content. To address this issue, novel evaluation
methodology is needed.

Similarly, traditional models are missing systematic way of controlling how long-tail
the recommended items are. Most of the models come with some “default” behavior,
which is not properly investigated, simply because irrelevant measures (RMSE or pure
precision or recall) are optimized. There hasn’t been enough focus on how individual model
hyperparameters affect the long-tailness. A systematic review of individual algorithm with
the long-tail criterion in mind, is needed as well.

We will address the issues in this thesis.

1.3 Related Work/Previous Results

A very good work seriously addressing the long-tail topic is “Item Popularity and Recom-
mendation Accuracy” [101] by Harald Steck. This thesis partially follows on this work.
The author discusses the importance of long-tail recommendations, and presents novel
method for training one specific type of model (Matrix Factorization) with high value of
long-tail items in mind. Together with that, he proposes a modified version of recall@N ,
called the popularity-stratified recall. Most importantly, this approach proposes a novel
parameter, named β ∈ [0, 1], expressing desired bias of the model towards the long tail.
This parameter is accepted by both the learning algorithm for training the model, and the
popularity-stratified recall as the evaluation criterion.

Several other studies have been published as well. In [78], the long-tail recommendation
problem has been identified, proposing partitioning the itemset into head and tail parts
when training the model, empirically finding middle of the range as a good splitting point,
but still using MAE and RMSE as evaluation criteria. In [108], the long-tail problem
is identified as well, proposing the catalog coverage (called “diversity” in the paper) as
additional criterion. A suite of novel graph-based algorithms for the long-tail recommend-
ation is proposed. In [105], a distance-based and popularity-based novelty measures are
proposed, but missing proper suggestions how to optimize the models for the criteria.

In this thesis, we build on these previously published results with the aim measuring
and systematically controlling the magnitude of long tail recommendation.

3

1. Introduction

1.4 Goals of the Dissertation Thesis

The main goals of this thesis are as follows:

1. Review the existing recommendation learning algorithms and models proposed by
various researchers over time.

2. Unify the algorithms under common framework.

3. Introduce systematic way how to control the magnitude of long-tail recommendations
for all the presented algorithms.

4. Introduce a novel evaluation methodology that would measure both the recommend-
ation accuracy and the magnitude of long-tail recommendations.

5. Prove that the introduced theoretical concepts really work and expected, including
not only publicly available datasets, but also datasets taken from industry.

1.5 Structure of the Dissertation Thesis

The thesis is organized into 5 chapters as follows:

1. Introduction: Describes the motivation behind our efforts together with our goals.

2. Background and State-of-the-Art : Introduces the reader to the necessary theoretical
background and surveys the current state-of-the-art. This includes overview of data
sources in RSs, recommendation tasks, existing algorithms and models, as well as
methods of evaluation.

3. Overview of Our Approach: Presents our approach to controlling and measuring the
magnitude of long-tail recommendations. We propose generalized popularity regu-
larization, manipulating model capacity for most of the algorithms researched in the
past two decades, and introduce a framework for multi-objective model optimization,
searching for Pareto-optimal front in the recall-coverage plane.

4. Main Results : Demonstrates that theoretically predicted behavior of the proposed
capacity-controlling hyperparameters for individual algorithms really corresponds to
empiric behavior on several datasets.

5. Conclusions : Summarizes the results of our research, suggests possible topics for
future research, and concludes the thesis. There is also a list of contributions of this
dissertation thesis.

4

Chapter 2

Background and State-of-the-Art

In this chapter, we will give systematic introduction to the area of Recommender Systems
(RSs). We will describe the most important type of data sources used by these systems,
and explain how the data from such sources can preprocessed into standard forms (most
importantly, the rating matrices). Further on, we will define the most common tasks
solved by such systems, followed by overview of the most prominent approaches to solve
them. We will explain how hyperparameterized learning algorithms are used to produce
recommendation models, and how the quality of these models can be evaluated. The
algorithms are introduced under unified framework, which allows the resulting models
being used for different recommendation tasks, as well as being systematically evaluated
and controlled by the hyperparameterization in the following chapters.

2.1 Data Sources in Recommender Systems

Recommender Systems can be classified as wide subfield of Machine Learning (ML), making
them heavily reliant on the provided data. They typically work with the following types
of data sources:

◦ interaction data,

◦ item attributes data,

◦ user attributes data.

The cornerstone of any recommendation dataset is an ordered set of items, I =
{i1, . . . , in}. Items refer to recommendable entities, such as products in E-Commerce,
multimedial content, advertisements, news articles, etc. The items may have item at-
tributes of different types. These attributes are often referred to as the Content. It may
include names, categorizations, textual description, or even images, audio data, video data,
etc.

5

2. Background and State-of-the-Art

The purpose of Recommender Systems is to serve to the users. In this thesis, the
(ordered) set of users will be denoted as U = {u1, . . . , um}. Same as items, also users may
have various user attributes. In practice, these attributes may include demographical
data, such as gender, age, or geographic location.

An important component of most recommendation datasets are also the user-item in-
teractions. They typically describe events performed by the users on the items, such a
viewing an item’s detail page, purchasing an item, or putting it to favorites.

2.1.1 Attribute Data

Let us denote the set of item attributes AI = {AI1, . . . , AIr}. For some datasets, AI may
be empty if the attributes are missing. We will denote aIj : I → dom(AIj) the function that

assigns the value of attribute AIj to items from I, and aI : i 7→
(
aI1(i), . . . , aIr(i)

)
the function

that assigns the values of all the attributes.
The domains dom(AIj) of individual attributes may be of various types and flavours:

2.1.1.1 Unstructured text

Given as arbitrary-length sequence from Σ∗, where Σ is an alphabet of some natural lan-
guage, such as English. Besides letters, Σ may include also digits, punctation marks, and
other characters, which typically induces a need of preprocessing. Sparse vectors of words
from a common dictionary may be produced by techniques like tokenization and stemming
(bag-of-words approach), but also dense vectors are possible, for example by application
of a dimensionality-reducing algorithm either on top of bag-of-words (e.g. SVD), or by an
embedding technique such as word2vec.

2.1.1.2 Tags, Categorization

Subsets of some finite set of tags/categories that each number is assigned/member of.
Assuming the tags/categories are expressed in some alphabet Σ, the dom(AIj) can be

thought as 2Σ+
.

2.1.1.3 Numbers

Typically natural numbers from N or real numbers from R describing items in various
numerical measures (number of CPUs for a server, duration in minutes for a movie/song).

2.1.1.4 Image Data

In the simplest case, images are given as 2D rasters. Frequently used encoding works

with elements from {0, . . . , 255}h×w for grayscale and
(
{0, . . . , 255}h×w

)3
for RGB pictures.

Such a raw image typically requires preprocessing, such as color histogram extraction or
embedding techniques using convolutional neural networks.

6

2.1. Data Sources in Recommender Systems

Besides attributes of items, there may also be set AU = {AU1 , . . . , AUs } of user attributes
provided. Symmetrically to items, there is a function aUj :U → dom(AUj) which assigns

value of one attribute, and aU :u 7→
(
aU1 (u), . . . , aUs (u)

)
which assigns all the attributes.

2.1.2 Tokenized Attribute Data

Considering attribute data and their various types introduced in 2.1.1 with many unstruc-
tured options such as raw texts, it is sometimes useful to preprocess them into a uni-
fied form. One of the possibilities is creating a set of tokens by means of process called
the tokenization. A token can be though as a unique string in Σ+ for some alphabet Σ,
and tokenization can be thought as a function tokenization: dom

(
AI1
)
× . . .× dom

(
AIr
)
→

2Σ+
(

or tokenization: dom
(
AU1
)
× . . .× dom

(
AUs
)
→ 2Σ+

in case of users
)

that is able, for

each item i ∈ I (or each user u ∈ U), based on its attribute values aI(i) (or aU(u)), to
produce a set of tokens extracted from these values. There are many possible implement-
ations of tokenization, but here is the one to be used in this thesis. It can be described as
follows:

◦ Start with empty set: tokens← ∅.

◦ For each string attribute value, apply tokenization (to split sentences into words
using delimiters such as space, dot, comma, etc.) and stemming for given language,
and extend tokens with tokens in form <attribute-name>=<value> where <value>

is a stemmed version of each word, excluding stopwords.

◦ For each attribute value of type set, extend tokens with tokens in form <attribute-

name>=<element> for each <element> in the set.

◦ For each integer attribute value, extend tokens with token in form <attribute-name>

=<value> where <value> is a string representation of the integer value.

◦ For each boolean attribute value, extend tokens with token <attribute-name>=

<value>, where <value> is either true or false.

For example, as the result of tokenization on a sample “Back to the Future Part III”
item from the MovieLens dataset [43], we may obtain tokenset of

{title=back, title=futur, title=part, year=1990,
genres=Sci-Fi, grenres=Comedy, grenres=Western}

2.1.3 Interaction Data

Besides attribute data about items and/or users, in many practical situations, the most
important source of data are user-item interactions. They encode some actions performed
by users on items.

The most commonly available type of interaction data are records that can be easily
extracted from existing server logs or purchase database:

7

2. Background and State-of-the-Art

Detail-Views Occurring when user views a product detail page in E-Commerce sys-
tem, position description in job advertisements HR portal, or movie description in a Video-
on-Demand system.

Cart-Additions Occurring in E-Commerce systems made by users that were attrac-
ted by the items enough to put them to a shopping basket.

Bookmarks In a video-streaming service, discussion forums, or classifieds portals,
they mean that a given user is interested in a given item and wants to come to it later or
when they have more time or the item becomes available.

Plays Natural events in an audio or video streaming services.

Likes, Shares Concepts known from contemporary social networks. If there is only
positive rating possible (with no dislike option), we also consider these events as implicit
interactions.

Purchases Common events in E-Commerce system or classifieds portal.
It should be obvious there is a lot of other possible types of such actions, and that they

are easy to collect, simply because there is no extra effort needed from the side of users,
and often even not from the side of the service provider. Such interaction data are a side
product of normally using the service, and they might not have been originally intended
as a data source for a Recommender System. For this reason, we will refer to this types of
interactions the implicit interactions.

Implicit interactions may be thought as a set Y = {y1, . . . , yk}, where yj = (uj, ij, tj, dj)
meaning:

◦ uj ∈ U is the user who did the interaction,

◦ ij ∈ I is the interacted item,

◦ tj ∈ R encodes the timestamp when the interaction happened,

◦ dj may be arbitrarily complex additional information on the interaction, such as:

– type of the interaction,

– duration of the detail-view in seconds,

– portion of the audio/video played expressed as relative ratio or in seconds,

– amount of the item purchased or put to a shopping cart,

– price and currency in which the given amount of the item has been purchased
or put to a shopping cart.

8

2.1. Data Sources in Recommender Systems

Besides implicit interactions possibly collected just by running the service, there are
also explicit interactions possible, allowing users to explicitly express their preference
on the given item. These may include:

2.1.3.1 Ratings in Numbers of Stars

This is a basic concept from traditional literature on Recommender Systems. An item may
be assigned e.g. 1-5 stars, where 1 star means strictly negative opinion and 5 stars mean
best possible opinion.

2.1.3.2 Likes and Dislikes.

In situations where both of these actions are possible, we are also talking about explicit
interaction. Similarly to rating in number of stars, both positive and negative opinion can
be expressed.

Assuming implicit interactions give us information about likely positive bias of a user
towards the interacted item, but there is a lot of uncertainty. Specifically, there may be
a lot of false positives emerging from users who started playing a video/song, but found
they don’t like it, or made a purchase in an E-Commerce platform, but weren’t satisfied
when the goods arrived by post. Explicit interactions, on the other hand, come with much
higher certainty: we may assume that they represent user’s true opinion at the time of
rating being performed.

Explicit ratings may be again thought as a sequence of events occurring over time. Let
us denote them X = {x1, . . . , x`}, where xj = (uj, ij, tj, gj) meaning:

◦ uj ∈ U is the rating user,

◦ ij ∈ I is the rated item,

◦ tj ∈ R is the time when the interaction happened,

◦ gj ∈ [−1, 1] is the rating (grade) that the user assigned to the item.

Using gj ∈ [−1, 1] is just for convenience since any rating scale can be easily converted
to this interval. In case of likes and dislikes, likes can be encoded as +1 and dislikes as −1.
In case of N -star rating scale from 1 to N ≥ 2 stars and given rating g′j on that scale, gj

can be obtained as
N−g′j+1

1−N . Despite raw explicit ratings g′j are processed directly in some
literature, most of the contemporary research assumes different normalization methods,
and mapping to [−1, 1] does not prejudice the generality.

2.1.4 Rating Matrices

Native streams of implicit and explicit interactions provide a lot of information. Most
notably, thanks to their temporal component, they can capture how preferences of users

9

2. Background and State-of-the-Art

evolve over time, both for individuals and for the userbase as a whole. One particular user
may search for one type of product, and while she is searching, similar products to those
viewed should be recommended to her. But once purchased, the product may serve her for
years, and she may became interested in completely different types of products. Similarly,
the user may enjoy certain music genres, but may switch to slightly different genres over
time. Furthermore, such phenomena may not only affect individual users. In domains like
fashion, it is natural that different types of clothes are trending during summer and winter.
In popular music, new music hits are continuously published, and yet unknown artists are
becoming famous.

Last, but not least, different interaction types bring information of completely different
nature. Models of Collaborative Filtering, described later in this thesis in Sec 2.3.2, often
work with concepts such as “frequently interacted together”. But consider user searching
for a refrigerator. Such a user may view details of multiple refrigerators, studying their
different characteristics while hesitating. But once the final decision is made, the users puts
into the shopping cart and orders at most one refrigerator. So while multiple refrigerators
are frequently viewed together, they are never purchased together.

Despite raw sequences of interactions provide very rich source of information, many
popular methods in Recommender Systems assume transformation to more practical form.
The clearly most popular is the so-called rating matrix. It is simply a matrix R ∈ R|U |×|I|
with each element ru,i representing a condensed information about the preference of user
u ∈ U on item i ∈ I. Temporal information, same as information about interaction types,
is ignored. From the aforementioned reasons, this brings several drawbacks, but having
data as a real-valued |U |×|I| matrix also brings many advantages. Most notably, we
get notions, concepts, and algorithms from linear algebra, which have been developed for
decades. For this reason, we will adopt the rating matrix as the main data source in this
thesis. Although other methods, such as next-in-sequence-prediction using e.g. Recurrent
Neural Networks [45, 99] or Sequential Patterns Mining [4, 75] (which is even studied and
measured in a Bachelor thesis supervised by the author of this thesis [7]), we will consider
out of the scope of this thesis.

For now, let us briefly discuss the possibilities of building the rating matrix from the
raw interaction data.

The general algorithm is to instantiate an empty matrix R ∈ (R ∪ {?})|U |×|I|, containing
only ?s at the beginning, where ? is a special value denoting the value in unknown or is
unobserved. Based on the set of interactions (implicit, explicit, or both), ? s are replaced at
positions where some interaction took place, using different aggregation methods to obtain
specific values from R.

Because of the sizes |U | and |I|may easily go to millions, and because each user typically
interacts with only very limited subset of items, the rating matrix is typically extremely
sparse, meaning |{ru,i = ?|u ∈ U, i ∈ I}| � |{ru,i 6= ?|u ∈ U, i ∈ I}|.

10

2.1. Data Sources in Recommender Systems

2.1.4.1 Explicit Ratings

The simplest approach to fill the data matrix is to simply take solely the explicit rat-
ings. This approach became popular thanks to the popular Netflix Prize organized by
Netflix, Inc., in 2006-2009, and also thanks to MovieLens dataset, maintained since 1997
by GroupLens Research, a research laboratory in the Department of Computer Science and
Engineering at the University of Minnesota. Both these datasets are frequently studied by
the Recommender Systems research community, and offer explicit interactions compliant
with the definition of X = {(u1, i1, t1, r1), . . . , (u`, i`, t`, r`)} in 2.1.3.

To fill the rating matrix, for each user-item pair, we may simply take the last explicit
rating provided, if any exists, or with ? otherwise:

rEu,i =


gj: (uj, ij, tj, gj) ∈ X∧
∀(uk, ik, tk, gk) ∈ X: tk ≤ tj if ∃(uk, ik, tk, gk) ∈ X:uk = u ∧ ik = i

? otherwise
(2.1)

Average instead of the last value for each user-item pair can be taken as well, but there
is not much difference, because for vast majority of user-item pairs there is at most one
explicit rating in common datasets.

It is noteworthy that matrices generated from explicit ratings typically consist of whole
range of different values, including numbers that are negative, encoding negative prefer-
ences. This allows us to build algorithms and evaluation metrics that take negative ratings
into account. The disadvantage is, however, general absence of explicit ratings in real-world
datasets, which creates a barrier between some results that come from academia, and the
algorithms actually applicable in industry.

2.1.4.2 Implicit Ratings of Certain Types

While explicit ratings are often difficult to collect to the extent that would cover reasonable
portion of items or users, implicit ratings are often much more accessible and cheaper data
source. As mentioned in 2.1.3, different interactions types may sometimes have different
characteristics and might not correlate. Items “frequently viewed together” may differ
from items “frequently bought together”. While viewing multiple bikes may be common,
purchasing multiple bikes would be rather exceptional. User will buy a helmet or a pump
together with a bike much more likely that another bike.

This leads to construction of implicit interaction matrices for different purposes.

Considering the set of implicit interactions Y = {(u1, i1, t1, d1), . . . , (uk, ik, tk, dk)} as
introduced above, we can easily define filtering function ϕ:Y → {0, 1} and weighting
function w:Y → R to construct the rating matrix from implicit interactions

rIu,i = Γ ({(uj, ij, tj, dj) ∈ Y |ϕ ((uj, ij, tj, dj)) ∧ uj = u ∧ ij = i}) (2.2)

11

2. Background and State-of-the-Art

where Γ: 2Y → R∪{? } combines multiple interactions for the same user-item pair into
one number. For example, if ∀y ∈ Y : 0 ≤ w(y) ≤ 1, one reasonable implementation of Γ
can be:

Γ(Y ′) =

{
min

(∑
y′∈Y ′ w(y′), 2

)
if Y 6= ∅

? otherwise
(2.3)

As a real-world example, consider we want to construct rating matrix based only on
additions to a shopping cart and purchases. Then we use filtering function ϕ which returns
1 only for interactions of type “cart addition” and “purchase”, whilst for interactions of type
“detail views” or “bookmarks” it returns 0. We can also use function w which returns 0.75
for interaction of type “purchase” and 0.25 for interaction of type “cart addition”, possibly
also incorporating additional information attached to the interaction, such as the amount
added to cart/purchased. Using the above Γ function, it is assured that multiple purchases
of the same item by the same user add up to higher number, but to prevent extreme values
possibly introduced by outlier users (such as legal entities performing repetitive purchases
on regular basis), the upper bound for the sum is 2. This produces quite useful matrix
directly applicable for construction of cross-sell models. Using similar approach and using
different ϕ and w functions, we may focus on different types of interactions (possibly only
detail-views) and weight interactions using different logic (such as taking the age of the
interaction into account).

2.1.4.3 Mixed Implicit Ratings

In some domains, all the products are complementary and purchase of one of them does
not contradict purchase of another. Good example of such a domain is multimedia with
products such as movies, books, songs, etc. In such a domains, one can omit the filtering
function ϕ and mix all the implicit interactions together, assigning them only different
weights through w, such as w(y) = 0.75 if y is purchase, and w(y) = 0.1 if y is detail-view.
Then simply:

rIu,i = Γ ({(uj, ij, tj, dj) ∈ Y |uj = u ∧ ij = i}) (2.4)

It is no accident that such a type of complementary content (such as movies) has re-
ceived a lot of attention in research since no constraints are imposed on the recommendation
model.

2.1.4.4 Mixed Implicit and Explicit Ratings

In many real-world situations, there is both explicit and implicit feedback available. Users
may browse and purchase the content, producing implicit interactions, but some users
assign explicit ratings to some items from time to time. It is desirable to mix all the
available data to a single rating matrix.

12

2.2. Recommendation Tasks

One possible approach, that we will follow in this thesis, is to project both implicit and
explicit interactions to the same scale. By mixing the formulas 2.1 and 2.4, we can either
take the explicit rating if it is known, or try to estimate it from implicit interactions if it
is unknown:

rMi,j =

{
rEi,j if ∃(uj, ij, tj, rj) ∈ X:uj = u ∧ ij = i
rIi,j otherwise

(2.5)

Such a matrix still contains “?” for user-item pairs with no interactions, but otherwise
contains whole scale of other values. The most frequent will typically be values coming
from implicit interactions, but explicitly positive or negative ratings are also present.

2.2 Recommendation Tasks

The aim of Recommender Systems is to process the existing input data (rating matrix, user
attributes, item attributes) in a way that predictions can be made for unknown cases. This
fits the general definition of supervised learning. In context of recommendation, the goal
of such learning is simple: knowing true preferences of some users to some items, what is
the predicted preference for an unknown user-item pair? Knowing that, recommendations
of possibly interesting, previously unseen items, can be generated to users.

Despite the nature of recommendation tasks varies, we may consider there is always
a two-phase process:

1. Existing data, sometimes called as the training data, are passed as input to the
learning algorithm, which produces a model as the output.

2. The model is used to make guesses (predictions) for situations previously unseen in
the data with the aim of generating useful recommendations.

2.2.1 Learning Algorithms and Hyperparameterizations

The learning algorithm A, sometimes also referred to as the training algorithm (we
will consider the terms training and learning as synonyms throughput this thesis), can
be thought as higher order function: It takes data and produces a model, which is itself
a function. In this thesis, all the discussed algorithms are strictly assumed as solving
supervised learning tasks. That is, in general, given set of k training examples T =
{(x1,y1) , . . . , (xk,yk)}, where ∀` ∈ {1, . . . , k}: x` ∈ X ∧ y` ∈ Y for some abstract sets X
and Y , the algorithm A produces a model m:X → Y . We denote this as

A: 2X×Y → YX (2.6)

where 2X×Y is the set of all possible training datasets (T ⊆ X × Y as introduced above),
and YX denotes set of all projections from X to Y . Besides the training data, the learning
algorithm often takes some parameterization P ∈ PA that influences the learning process

13

2. Background and State-of-the-Art

and hence the resulting model. In the literature, PA is often referred to as space of hyper-
parameters [22], and specific P ∈ P as the hyperparameterization [31, 103]. This leads to
improved general definition of learning algorithm as

A:PA × 2X×Y → YX (2.7)

Hyperparameterization may describe various characteristics that will be discussed for
individual models later on in this thesis, but they typically include learning rates, regu-
larizations, dimensions of latent feature spaces, neighborhood sized, number of layers in
neural networks, etc.

In the rest of Sec. 2.2, we will introduce specific recommendation tasks and introduce
specific examples of X and Y for these tasks. Later on in Sec. 2.4, we will introduce specific
learning algorithms, that we will refer to are recommendation algorithms throughout
this thesis.

2.2.2 Rating Prediction

For rating matrices built from explicit ratings (and henceforth encoding both positive and
negative ratings), one of frequently studied tasks in the rating prediction [63, 102, 85].
Assuming that the opinion of each user is expressible and a real number from some scale
(and also that this opinion is basically fixed and does not evolve), there is a natural
supervised learning task: given rating R ∈ (R ∪ {? })U×I and an unobserved user-item
pair (u, i) (such that ru,i =?), predict r̂u,i ∈ R as an estimate of the explicit rating that
u would assign to i is asked to. Learning Rating Prediction model can be thought as
searching for mRP:U × I → R which predicts r̂u,i = m(u, i) given set of training examples
T ⊆ U × I × R.

Rating Prediction has been for years one of the most researched topic in the area of
Recommender Systems for multiple reasons. One reason to mentioned is the aforemen-
tioned Netflix Prize run in years 2006-2009, which caught attention of lot of researchers
thanks to the grand prize of $1M [10, 12]. But also other datasets similar to Netflix Prize
have been released earlier in scientific circles, most notably the MovieLens datasets [43].
Furthermore, since explicit rating are from continuous scale, the task is mathematically
elegant and various numeric error-minimizing optimization approaches may be used.

The task of Rating Prediction can be states as follows: Given rating matrix R ∈
(R ∪ {?})U×I (equivalent to T = {(u, i, ru,i) | u ∈ U, i ∈ I, ru,i 6= ?}), construct a model
mRP:U × I → R which predicts the rating value for every (u, i) pair. We are hence
searching for learning algorithm ARP and its hyperparameterization P ∈ PARP that will
construct such a model:

ARP:PARP × (R ∪ {?})U×I → R(U×I) (2.8)

The behind idea is that Rating Prediction can be actually used as an underlying tool
for tasks such as Top-N recommendation (described in Sec. 2.2.4 below). Having model
mRP and given user u, one may simply predict r̂u,i for all the items i ∈ I and use the N
highest scored by mRP.

14

2.2. Recommendation Tasks

2.2.3 Binary Classification

Another popular task in Recommender Systems, slightly closer to practice than rating
prediction, is the binary classification [8, 44, 100]. It builds on top of assumption that
for a given user u, each item can be either classified as relevant (liked, candidate for
purchase) or irrelevant (disliked, uninteresting).

For Binary Classification tasks, the rating matrix RB is from {0, 1, ? }U×I . Given rating
matrix created using one of the approached described above (that is taking explicit RE,
implicit RI, or mixed RM, all referenced as ri,j in the below formula), one can easily
construct RB using a well-chosen threshold θ ∈ R:

rB
i,j =


1 if ri,j 6= ? ∧ ri,j ≥ θ
0 if ri,j 6= ? ∧ ri,j < θ
? if ri,j 6= ?

(2.9)

Binary Classification task in Recommender Systems can then be stated as follows:
Given matrix R ∈ {0, 1, ? } (equivalent to T ⊆ {(u, i, ru,i) | u ∈ U, i ∈ I, ru,i 6= ?}), con-
struct a model mBC:U × I → {0, 1} which predicts whether given item i ∈ I is relevant for
user u ∈ U for each (u, i) pair. To accomplish that, we are searching for binary classifica-
tion learning algorithm ABC that, provided hyperparameterization P ∈ PABC , constructs
such a model:

ABC:PABC × {0, 1, ? }U×I → {0, 1}(U×I) (2.10)

For given user, we want to find exactly those items that are of her interest. In practice,
this task makes sense only for relatively small sets of relevant items, because it impossible
for a human user to browse all the relevant items it their number goes to millions. For
such scenarios, Top-N recommendation is much more suitable.

2.2.4 Top-N Recommendation

Top-N Recommendation task [51, 26, 23] if by far most important and widespread
recommendation task in industrial practice [66, 25, 27], and is henceforth the main subject
of focus in this this work. Given N ∈ N, N � |I| attempts (or simply slots for items to
be displayed), and user u ∈ U , our goal is to find N items which are the most relevant for
current user. Real-world use-cases of Top-N Recommendation include different scenarios
such as displaying recommended items at different places in the user interface, putting
recommendation to personalized emails, etc.

The rating matrix may remain unchanged for the task. The only assumption is that
for the numbers it contains (no matter how they were constructed from the interactions),
it hold that higher is better, that is more relevant.

Top-N Recommendation task may be stated as follows: Given rating matrix R ∈
(R ∪ {?})U×I (inducing T ⊆ {(u, i, ru,i) | u ∈ U, i ∈ I, ru,i 6= ?}), construct a modelmTop-N :

15

2. Background and State-of-the-Art

U → {I ′ ⊂ I | |I ′|= N}. We are searching for a hyperparameterized algorithm ATop-N

able to construct such a model:

ATop-N :PATop-N × (R ∪ {?})U×I → {I ′ ⊂ I | |I ′|= N}U (2.11)

There may be logical requirement added not to recommend the items for which the
rating is already known, so that it holds

∀(u, i) ∈ U × I: ru,i 6= ? =⇒ i /∈ mTop-N(u) (2.12)

We will strictly follow this assumptions also in thesis. It comes from practical requirement
to only recommend items that are likely to be new for the users, helping them discover
content they wouldn’t discover by themselves otherwise.

2.2.5 Learning to Rank

The idea of Learning to Rank [83, 97, 50] comes from Information Retrieval [67]: searching
for a permutation of all the items from I sorting the items according to their relevance
in the given context. While in Information Retrieval, the context is typically given by
a search query [24], in Recommender Systems, the context is given by user u ∈ U .

Same as in case of Top-N recommendation, rating matrix of any kind can be used for
this task as long as higher ru,i means higher relevance of item i for user u.

Learning to Rank in Recommender System can be stated as follows: Given rating
matrix R ∈ (R ∪ {?})U×I construct a model mRank:U → S(I), where S(I) denotes the set
of all permutations of items from I. To be able to build such a model, we are searching
for a learning algorithm ARank hyperparameterized by PARank :

ARank:PARank × (R ∪ {?})U×I → S(I)U (2.13)

One practical disadvantage of ranking is that sorting all the items if usually not neces-
sary and may hence require much higher computational resources. Considering millions of
items, the changing the order of the trailing 999,000 items often does not have significant
impact, since it’s out of the user’s capacities to go through the whole sorted list.

2.2.6 Other Recommendation Tasks

There are multiple other recommendation tasks that go beyond the extent of this thesis.
Let us just briefly introduce them to make a more complete picture of how broad the area
of Recommender Systems is.

2.2.6.1 Related Items Recommendations

One of the simplest yet very frequent use-cases of Recommender Systems is to recommend
items somehow related to one particular item. When user is viewing an item on a website, it

16

2.2. Recommendation Tasks

is often desirable to offer her alternative items that she might also like, possibly increasing
average session duration, increasing customer lifetime value, loyalty, etc.

While all the above tasks of Top-N Recommendation and Learning to Rank were defined
as user-oriented, that is building the recommendations in context of given particular user
u ∈ U , they can be symmetrically defined in context of a particular item i ∈ I instead.
This leads to searching for models mTop-N

II : I → {I ′ ⊂ I | |I ′|= N} for item-based Top-N
Recommendation, and mRank

II : I → S(I) for item-based Ranking.
From the two tasks mentioned, the Top-N Recommendation is the one giving most

practical sense, and there is typically limited space for related items to be presented next
to the one currently viewed.

2.2.6.2 Recommending Related Users

It is not only items that can be recommended for one particular user u ∈ U . Related users
can be recommended as well. Same as items may be related to items in different ways
(purchases together compatible, viewed together similar), the same hold for users.

For example, consider an HR system where the users are candidate employees viewing
different job advertisements. An HR specialist may browse users, and for one particular
users = job candidate, her goal is to find similar users = candidates. Users interested
in (interacting with) similar content are likely to be similarly skilled and hence being
also good candidates for the position that the HR specialist is looking to occupy by and
employee. Another example can be online gaming portal, where players are searching for
game opponents or teammates interested in similar games. Both these examples lead to
searching users that are is some way very similar to one particular user u ∈ U .

As the opposite example, consider a social network with online dating functionality. In
majority of cases, males and females are interested in different content, but when it comes
to searching for a dating partner, males are often interested in females and vice versa.
For a given user, users who are compatible (males to females) are much more desirable
candidates for recommendation rather than users who are similar (males to males). This
is somehow similar to recommending compatible (helmet to bike) rather than similar (bike
to bike) products in a shopping cart.

Different recommendation approaches are required for both cases, and the area hasn’t
been researched well yet. But in general, we need models like:

◦ Users-to-User Top-N recommendation:
(
mTop-N

UU :U → {U ′ ⊂ U | |U ′|= N}
)

or

◦ Users-to-User Ranking
(
mRank

UU :U → S(U)
)
.

2.2.6.3 Recommending Users for Items

Users can play a role of recommendable entities not only for other users, but for items
as well. Consider an online retailer who has many pieces of one particular product i ∈ I
on the stock, and wants to sell that product out due to the shortly ending season. One

17

2. Background and State-of-the-Art

option how to sell that product out is to find a relatively small subset of users who might
be interested in that product, and approach them via an emailing campaign, informing
about discount on that product. The motivation is not to disturb and annoy otherwise
loyal users by a campaign which does not concern them.

Another example is sending personalized push notifications, such on mobile devices,
about new content (news, job offers) only to carefully selected users who might be inter-
ested.

In some cases, Binary Classification as described above can be directly used for this
task. In other cases, models like:

◦ Users-to-Item Top-N recommendation:
(
mTop-N

IU : I → {U ′ ⊂ U | |U ′|= N}
)

or

◦ Users-to-Item Ranking
(
mRank

IU : I → S(U)
)

are more appropriate.

2.3 Recommendation Approaches

Across the literature, there are multiple criteria for classification of recommendation ap-
proaches and algorithms. The most common division is based on

◦ type way in which data is processed:

– Memory-Based Recommendation,

– Model-Based Recommendation,

◦ the type of data used for modeling:

– Collaborative Filtering,

– Content-Based Recommendation,

– Hybrid Models.

These two criteria are practically independent as different types of data may be pro-
cessed in different ways.

2.3.1 Model-Based vs. Memory-Based Recommendation

Although terminologically not exactly precise, as Model-Based approaches are recognized
algorithms which take the data (such as tha rating matrix of item/user attributes) and
process them in some complex way (referred to as the training) such that a completely
new structure emerges. This new structure (referred to as the model) typically contains
compressed information extracted or abstracted from the data. Some information is lost
during the process as one of the goals is to compress the large amounts of data into more

18

2.3. Recommendation Approaches

compact form to allow fast recommendation after relatively long time spent on the training.
Examples of such algorithms can be matrix factorization, training neural networks, or
precomputing similar items in the Item-Based k-NN (all described below).

In contrast, Memory-Based approaches is a common name for the family of al-
gorithms that work directly on the original data when generating recommendations, with
only minimal preprocessing phase. In the area of machine learning, Memory-Based ap-
proaches are more commonly known as “Lazy learning”.

Taken abstractly, both Memory-Based and Model-Based approaches comply to 2.2,
where we mentioned two-phase process of building a model in the first phase and using
the model for generating recommendations in the second phase. In case of Memory-Based
methods, as the term “Lazy learning” suggests, the learning phase can be still considered
as present, but with very trivial implementation of storing all the data for future purposes.
In the second phase of generating recommendations, the model just may (or may not!)
take longer to respond that in the non-Memory-Based approach.

Because different parameterizable algorithms producing both Memory-Based and non-
Memory-Based models are studied closely later in this thesis, we will not follow this
traditional Model-Based and Memory-Based division and will always consider there is
model which has been produced in abstract way by an abstract learning algorithm.

2.3.2 Collaborative Filtering

Collaborative Filtering (CF) is a name for the whole family of methods which work with
the rating matrix to produce the model [37, 84]. The models may be based on multiple
different operations performed on top of the matrix:

◦ working with relationships between rows

– measuring vector similarity between rows (User-Based k-NN)

◦ working with relationships between columns

– measuring vector similarity between columns (Item-Based k-NN),

– mining co-occurrences of groups of items within rows (Association Rules)

◦ compressing the matrix

– searching for SVD-inspired decompositions (Matrix Factorization),

– using neural auto-encoders to compress the rows or the columns (AutoRec).

All the algorithms mentioned will be introduced later in this chapter.

19

2. Background and State-of-the-Art

2.3.3 Content-Based Recommendation

In contrast to CF methods, Content-Based (CB) Recommendation rely on data types other
than the rating matrix, most commonly on the item attribute data, but may work with user
attribute data as well. The main ideas behind building a Content-Based recommendation
algorithms lies in processing of item and user attributes in various ways to.

◦ Compute similarity between two items using item values as given by aI . This typ-
ically includes attribute vectorization into Rn or {0, 1}n so that similarity functions
sim: I2 → R emerge using concepts like cosine or TF-IDF can be used. This allows
us to find similar items given on particular item i ∈ I based just on their attributes.

◦ Estimate usefulness of item i to user u based on item attribute values aI(i) and the
attribute values

{
aI(j)

∣∣ru,j 6= ?
}

of items that the user interacted with. This leads to
searching for similarity measure Sim: I × 2I → R between one particular item i ∈ I
and a set of interacted items 2I , possibly taking different rating values from matrix
R into account. Using Sim, we can find items similar to set of items interacted by u
taken as a whole, and recommend them to user u.

◦ Estimate usefulness of item i to user u based on user attribute values aU(u) and
item attribute values aI(i), not taking interactions into account at all. The similarity
function is sim:U × I → R. One practical example is recommending job advertise-
ments to users based on job descriptions given as item attributes and resumes given
as user attributes. Pairs (u, i) ∈ U × I where aU(u) and aI(i) contain a lot of shared
keywords/skills, will have high value of sim(u, i), and no interaction data is needed
for this task.

2.3.4 Demographic Recommendation

Demography-Based models build recommendations using user attribute values. Such a
models are useful especially in cold-start user situations, where there is not enough inter-
actions for the given u in the corresponding ru,∗ row of the rating matrix. Usefulness of
item i to user u is estimated based on user attribute values aU(u).

There are multiple possibilities of doing so. A traditional approach is to construct
similarity function on top of user attributes, sim:U2 → R, or, more precisely

sim:
(
dom

(
AU1
)
× . . .× dom

(
AUr
))2 → R (2.14)

in compliance with 2.1.1.

More sophisticated approaches of building the models using deep learning methods
were proposed in [20, 28]. These methods combine rating matrix data together with item
and user attribute values when training a neural network, capturing possible non-linear
dependencies between them.

20

2.4. Recommendation Models

2.3.5 Hybrid Systems

Besides pure Collaborative Filtering or Content-Based systems, many modern RSs can be
characterized as hybrid. Hybrid recommender systems combine both approaches, typically
using model ensembles (voting or chaining on top of multiple CF and CB models), or by
using model consuming mixed types of data. We will give example of such model in Sec.
2.4.6.1, but others include e.g. [71], [29], [106], or even [52] (bachelor thesis supervised by
the author of this thesis).

2.4 Recommendation Models

Vast majority of algorithms in Recommender Systems build on the idea of scoring indi-
vidual items i ∈ I in the current context, given typically by source user u ∈ U . This leads
to introduction of the score function

score:U × I → R (2.15)

shared in some form by most of the models. The score function may be thought as ex-
pressing the relevance or the usefulness of item i to user u.

In different recommendation tasks, the score may be used for different purposes:

◦ estimate the rating in Rating Prediction, possibly by directly returning model(u, i) =
score(u, i) if properly normalized,

◦ finding relevant items in Binary Classification tasks, possibly by applying threshold
θ ∈ R to individual scored items to classify items as either irrelevant (0) or relevant
(1) using formula

model(u, i) =

{
0 if score(u, i) < θ
1 if score(u, i) ≥ θ

(2.16)

◦ determining the set of N best items in Top-N recommendation:

model(u) = {i1, . . . iN}
w.r.t. ∀ik ∈ model(u): ik ∈ I∧

|{j ∈ I \ {ik} | score(u, j) > score(u, ik)}| < N
(2.17)

◦ determining the ordering of items in ranking tasks:

model(u) =
(
i1, . . . , i|I|

)
w.r.t. ∀k ∈ {1, . . . , |I|−1} : score(u, ik) ≥ score(u, ik+1) (2.18)

21

2. Background and State-of-the-Art

Below in this section, some of the most important recommendation models are in-
troduced. Keeping in mind the above mentioned, the models will be described within
a uniform framework based on scoring, introducing different score functions for individual
models.

2.4.1 Popularity Models

Popularity-based approaches are of the simplest possible mechanisms to generate likely
useful recommendations to users. The models do not take possible preferences of the
source user u into account at all, so we can say the recommendations are not personalized
as it typically holds score(u, i) = score(v, i) ∀u ∈ U, v ∈ U, i ∈ I.

Given rating matrix R, the score can be easily computed as

score(u, i) =
∑

v∈U\{u}
rv,i 6=?

rv,i (2.19)

Using different filtering functions ϕ (as introduced in 2.1.4) to produce the rating matrix
R may give different behavior for the resulting model. For example, taking only interactions
from the last month or less can be used to get items that were popular in the recent period.
Similarly, we can only take certain type of interactions, such as purchases to get the most
commonly purchased items. Moreover, by using different Γ function (again as in 2.1.4),
such as putting prices of the purchased items into the purchase-based rating matrix, we
will get recommendations of items that overall generated the highest revenue.

Being very simple to implement yet still actually considering the rating data, popularity-
based models can be used as a good baseline when evaluating more sophisticated ap-
proaches.

2.4.2 User-Based k-Nearest Neighbors

User-Based k-Nearest Neighbors model (or simply UserKNN for the rest of this thesis)
is one the best-known approaches to generating personalized recommendations. In the
simplest form, the model supposes existence of user similarity function sim:U2 → R,
together with parameter k ∈ N. The function of the model is easiest to describe in two
steps:

1. Using the sim function, find the set NNk(u) of k users who are the most similar to
source user u ∈ U :

NNk(u) = {v1, . . . , vk}
w.r.t. ∀v ∈ NNk(u): v ∈ U \ {u}∧

|w ∈ U \ {u} | sim(u,w) > sim(u, v)| < k
(2.20)

22

2.4. Recommendation Models

2. Use rating matrix values of the users from NNk(u) to score the items. This is done
either in weighted on unweighted way. For the Rating Prediction task, it is common
to use average of the item’s ratings made by users in the neighborhood:

score(u, i) =



∑
v∈NNk(u)
rv,i 6=?

rv,i

|{v ∈ NNk(u) | rv,i 6= ?}| if ∃v ∈ NNk(u): rv,i 6= ?

0 otherwise

(2.21)

Alternatively to the above unweighted version, it is more common to use weighted
averages when computing the score:

score(u, i) =



∑
v∈NNk(u)
rv,i 6=?

sim(u, v) · rv,i

∑
v∈NNk(u)
rv,i 6=?

sim(u, v)
if ∃v ∈ NNk(u): rv,i 6= ?

0 otherwise

(2.22)

While for Rating Prediction it makes sense to normalize the score using division by
sum of user similarities in the neighborhood, for other tasks, such as the Top-N
recommendation, such normalization doesn’t make much sense. Specifically, normal-
ization brings loss of certainty. When an item has high score computed on a set
of neighboring users, it makes difference if we know that the set of neighbors was
big: the item is then a very good candidate for recommendation. Otherwise, the
high score may come simply from noise, such as if there was only one user in the
neighborhood who produced the high rating for that item.

Furthermore, normalization only makes sense of explicit rating matrices. In implicit
rating matrices, most of the observed values are the same, all of them meaning
somehow positive preference. In the simplest case, all the observed values may be
equal to 1, and hence the above formulas would result in constant score(u, i) = 1.
Actually, it is the number of neighboring users which interests us in such case.

To address these issues, non-normalized neighborhood has been introduced in
[23]. The formula is simply:

score(u, i) =


∑

v∈NNk(u)
rv,i 6=?

sim(u, v) · rv,i if ∃v ∈ NNk(u): rv,i 6= ?

0 otherwise

(2.23)

From now on, whenever referring to the UserKNN algorithm, we always mean the
version with non-normalized neighborhood.

23

2. Background and State-of-the-Art

Besides the ways of computing the score, it is also the sim function which is absolutely
crucial for the behavior of the algorithm.

In most literature, similarity computed from the rating matrix is considered. The two
most popular measures are:

◦ Cosine similarity:

sim(u, v) =
ru,∗ · rTv,∗
‖ru,∗‖ · ‖rv,∗‖

=

∑
i∈I

ru,i 6=?
rv,i 6=?

ru,i · rv,i

√√√√∑
i∈I

ru,i 6=?

r2
u,i ·

√√√√∑
i∈I
rv,i 6=?

r2
v,i

(2.24)

In special case of binary implicit rating matrices, where all observed values equal
to 1, that is ∀i ∈ I, u ∈ U : ru,i ∈ {?, 1}, rows of the rating matrix can be thought
as sets (r̂u = {i ∈ I | ru,i = 1}), simplifying the above formula to Ochiai similarity
coefficient:

sim(u, v) =
|r̂u ∩ r̂v|
|r̂u| · |r̂v|

(2.25)

◦ Pearson correlation coefficient:

sim(u, v) =

∑
i∈I

ru,i 6=?
rv,i 6=?

(ru,i − ru,∗) · (rv,i − rv,∗)

√√√√√
∑
i∈I

ru,i 6=?
rv,i 6=?

(ru,i − ru,∗)
2 ·
√√√√√
∑
i∈I

ru,i 6=?
rv,i 6=?

(rv,i − rv,∗)
2

(2.26)

Using Pearson similarity coefficient makes sense again mostly on explicit rating
matrices with enough and meaningful variance across the ratings.

By properly changing the sim function, UserKNN can be very straightforwardly used
for Demographic Recommendation as well [16]. Providing similarity function on top of
user attribute values, as defined in Eq. 2.14, is sufficient for that. The resulting model can
be used for recommendations to cold-start users, for who there aren’t enough interactions
yet (or no interactions at all, ∀i ∈ I: ru,i = ?), but there are user attribute values available.
They may be encode some apriori knowledge, such as data from a questionnaire filled by the
user when registering to the system, or information about the source website that the user

24

2.4. Recommendation Models

came from. Similar users are determined using the attributes, and recommendations are
generated from the rating matrix rows of those who already performed some interactions.
This can be roughly understood are recommending the most popular items across the
cluster of users having similar attributes.

2.4.3 Item-Based k-Nearest Neighbors

Item-Based k-Nearest Neighbors model (or simply ItemKNN through the rest of this thesis)
has been introduced in [93] as a method of processing the rating matrix in a way some-
how complementary to UserKNN. Instead of measuring similarity between users, the sim
function focuses on item similarity:

sim: I2 → R (2.27)

While in UserKnn the sim is used to build a single set of k neighbors NNk(u) that
are most similar to u, ItemKNN builds n different neighborhoods, one for each observed
item in the source user’s rating vector (n = |{i ∈ I | ru,i 6= ?}|). Items and their similarities
from individual neighborhoods are then combined together using weights given by ratings
of the corresponding source items in ru,∗.

The two steps to describe how the model works are:

1. Using the sim function, for each item i ∈ I such that ru,i 6= ?, find a set NNk(i) of k
items that are the most similar to i:

∀i ∈ {i′ ∈ I | ru,i′ 6= ?} : NNk(i) = {j1, . . . , jk}
w.r.t. ∀j ∈ NNk(i): j ∈ I \ {i}∧

|` ∈ I \ {i} | sim(i, `) > sim(i, j)| < k
(2.28)

2. Compute the score for item i from neighborhoods in which it is present. In the
simplest case, no similarity weighting is performed and only the corresponding ratings
are averaged:

score(u, i) =



∑
j∈I

ru,j 6=?
i∈NNk(j)

ru,j

|{j ∈ I | ru,j 6= ? ∧ i ∈ NNk(j)}|
if ∃j ∈ I: ru,j 6= ? ∧ i ∈ NNk(j)

0 otherwise
(2.29)

The above formula works mainly for explicit rating matrices: simply average the
observed ratings made by the source user u on the items to which i is similar (that

25

2. Background and State-of-the-Art

is, it lies in their neighborhoods). The assumption is that the user would rate similar
items similarly.

Similarly to UserKNN (Eq. 2.22), the score function can be further adjusted to also
take the similarities into account, resulting in similarity-weighted average:

score(u, i) =



∑
j∈I

ru,j 6=?
i∈NNk(j)

sim(i, j) · ru,j

∑
j∈I

ru,j 6=?
i∈NNk(j)

sim(i, j)
if ∃j ∈ I: ru,j 6= ? ∧ i ∈ NNk(j)

0 otherwise

(2.30)

For implicit rating matrices, non-normalized neighborhood introduced in [23]
can be applied in a way similar to UserKNN in Eq. 2.23:

score(u, i) =


∑
j∈I

ru,j 6=?
i∈NNk(j)

sim(i, j) · ru,j if ∃j ∈ I: ru,j 6= ? ∧ i ∈ NNk(j)

0 otherwise

(2.31)

While the UserKNN Eq. 2.23 preserves the information on number of users v ∈ U
who contributed on scoring i by being similar to source user u and having rv,i 6= ? in
their rating matrix row, in ItemKNN, Eq. 2.31 preserves the information on number
of items j ∈ I which contributed on scoring i by being similar to i and having ru,j 6= ?
in their rating matrix column.

2.4.3.1 Interaction Similarity

The similarity functions sim: I2 → R proposed in the original paper [93] are based on the
rows of the rating matrix: row-oriented cosine similarity and Pearson correlation similarity.
Since the formulas are symmetrical to Eqs. 2.24, 2.25, and 2.26, we will not repeat their
transposed versions here. All the formulas apply also for ItemKNN just by replacing rows
with columns and measuring similarity between r∗,i and r∗,j instead of ru,∗ and rv,∗.

2.4.3.2 Attribute Similarity

The set of possible similarity functions goes beyond the rating matrix. Item attributes
may be considered instead of ratings, resulting in Content-Based recommendation model
which is suitable for cold-start items which haven’t collected enough interactions yet.

26

2.4. Recommendation Models

Given set of item attributes
{
AI1, . . . , A

I
r

}
with function aI : I → dom

(
AI1
)
× . . . ×

dom
(
AIr
)

where dom
(
AIj
)

may be R, Z, or N for numeric attributes, Σ∗ for textual attrib-
utes, 2Σ∗ for set attributes (such as names of categories which the item belongs to), {0, 1}
for booleans, or even more complex structures such as images, the natural idea is to put

sim(i, j) = attrsim(aI(i), aI(j)) (2.32)

where attrsim:
(
dom

(
AI1
)
× . . .× dom

(
AIr
))2

is a function measuring similarity between
two items based on the values of their attributes. In this thesis, besides rating similarity,
we will also consider similarity of tokens.

Token similarity

Similarity function based on introduction of a set of binary features through tokenization
as described in 2.1.2. Considering tokenization: dom

(
AI1
)
× . . . × dom

(
AIr
)
→ 2Σ+

, the
similarity between two items can be computed using cosine similarity implemented as
Jaccard similarity coefficient

attrsim(ai, aj) =
|tokenization(ai) ∩ tokenization(aj)|
|tokenization(ai) ∪ tokenization(aj)|

(2.33)

Image and Embedding similarity

In a bachelor thesis supervised by the author of this thesis [79] (in Czech), several ap-
proaches have been proposed to provide the ItemKnn with sim function able to measure
item similarity based on images. Different methods have been studied, including the color
histogram, ORB [86], and pre-trained convolutional neural network [98], leading to very
interesting results. See Figs. 2.1, 2.2, and 2.3.

By taking activation values from a selected fully connected layer in the convolutional
network, image attribute data (as defined in Sec. 2.1.1.4) can be transformed into vectors
in Rn, called the embeddings in general. Denoting embedding (ai) ∈ Rn as the embedding
of attribute values ai = aI(i) of item i ∈ I, one can use e.g. the cosine similarity between
embeddings as the Eq. 2.33 attribute similarity function:

attrsim(ai, aj) =
embedding(ai)

T · embedding(aj)

‖embedding(ai)‖ · ‖embedding(aj)‖
(2.34)

This applies as well to embeddings of types other than image, such as the word2vec [72]
for text attributes, Soundnet [5] for audio attributes, etc.

In another bachelor thesis also supervised by the author of this thesis [52], a feedforward
neural network estimating the rating (interaction) similarity (as in Sec. 2.4.3.1) based on
the provided attributes, is proposed. The idea is that rating similarity typically leads to the
best results on mainstream items, but cannot be used on cold-start items having not enough
interactions collected yet. Henceforth, a training dataset is introduced, containing pairs of

27

2. Background and State-of-the-Art

Figure 2.1: Two sets of nearest neighbors (to the top-left item) using color histogram as
the sim function in ItemKnn [79].

Figure 2.2: Two sets of nearest neighbors (to the top-left item) using ORB [86] as the sim
function in ItemKnn [79].

item attribute values
(
aI(i), aI(j)

)
(see Sec. 2.1.1) and the associated rating (interaction)

similarity simR(i, j) between the two items. That is:

T =
{(((

aI (i1) , aI (j1)
)
, simR (i1, j1)

)
, . . . ,

(
aI (i`) , a

I (j`)
)
, simR (i`, j`)

)}
(2.35)

using notion of training set systematically introduced later in this thesis in Sec. 2.5.1.
Based on attribute values and known interaction similarities of pairs of items where
simR(i`, j`) is known with high confidence, because these items have enough interactions,
the neural network is trained. Later, for previously unseen pairs (ik, jk) ∈ I2, the network

predicts ŝimR (ik, jk) just based on the attribute values
(
aI (ik) , a

I (jk)
)
, solving the cold

start problem on some datasets.

28

2.4. Recommendation Models

Figure 2.3: Two sets of nearest neighbors (to the top-left item) using pre-trained convolu-
tional network [98] as the sim function in ItemKnn [79].

2.4.4 Association Rules

The problem of association rules mining was stated in [2] and further extended in [3], both
of which are of the most cited articles in Computer Science. Association Rules (or ARs for
short) are simple probabilistic statements about co-occurrences of events in data. They
have useful applications in many different areas.

Because ARs are not as popular as other approaches (neighborhood-based models,
matrix factorization, deep learning), the following survey and unified framework for ARs-
based recommendation is one of the contributions of this thesis.

In their basic form, ARs require discrete data on the input. Rather than rating vec-
tors from (R ∪ {?})|I|, users are viewed as sets of items from 2I . We will denote user u
represented in this way as T (u) and will refer to it as to transaction of user u. Having
users represented as transactions, each item i ∈ I is considered either strictly relevant
(i ∈ T (u)) or strictly irrelevant (i /∈ T (u)) for a given user u ∈ U .

For each user u ∈ U , the transaction T (u) can be easily computed from the rating
matrix using threshold θ ∈ R:

T (u) = {i ∈ I | ru,i 6= ? ∧ ru,i ≥ θ} (2.36)

2.4.4.1 Mining Frequent Itemsets

The rules themselves are statements in form X ⇒ Y , where X ⊆ I, Y ⊆ I, X 6= ∅, Y 6= ∅,
and X ∩ Y = ∅. Whenever we use the X ⇒ Y notation in this thesis, we assume these
conditions are met for X and Y . In its traditional form, the learning algorithm which
produces the model has the minimal support parameter smin ∈ [0, 1].

29

2. Background and State-of-the-Art

Let us denote the support function supp: 2I → [0, 1] that, for given setA ⊆ I, computes
the portion of users having A as subset of their transaction:

supp(A) =
|{u ∈ U | A ⊆ T (u)}|

|U |
(2.37)

Given the set of user transactions and the smin parameter, we can generate the set R
of basic association rules holding the minimal support condition as:

R = {X ⇒ Y | supp (X ∪ Y) ≥ smin} (2.38)

Different algorithms can be used to solve the task of mining the R set. One of the
most popular is the APRIORI algorithm also proposed in [3]. The algorithm starts with
searching for support of elementary itemsets, consisting of single item only. After testing
these elementary itemsets, we obtain S1, which is set of frequent itemsets S of cardinality
|S| = 1.

Given set Sk = (Sk1 , S
k
2 , . . . , S

k
r) of frequent itemsets of cardinality k ∈ N, we can

efficiently construct set of candidate itemsets Ck+1 = (Ck+1
1 , Ck+1

2 , . . . , Ck+1
s) of cardinality

k + 1. This means that itemsets can be generated in levels. See the pseudocode for
APRIORI in Alg. 1.

Algorithm 1: APRIORI

input : Set of items I, set of user transactions {T (u) | u ∈ U}, minimal support
smin ∈ [0, 1]

output: Set of frequent itemsets

C1 ← {{i} | i ∈ I}
k ← 1
repeat
Sk ← {C ∈ Ck | supp(C) ≥ smin}
Ck+1 ←

{
SkA ∪ SkB

∣∣∣ SkA, SkB ∈ Sk, |SkA ∪ SkB| = k + 1
}

k ← k + 1

until Ck = ∅
return

⋃k−1
j=1 Sj

Näıve implementation of Alg. 1 has time complexity O
(∣∣Sk∣∣2) of building the (k+ 1)-

th level of itemsets. Several techniques may be utilized to avoid duplicities. Exploiting
the fact that the set of items I is totally ordered (e.g. using total order on unique iden-
tifiers), frequent itemsets at level k can be seen as sequences. Considering two sequences
(iA1 , i

A
2 , . . . , i

A
k−1, i

A
k) and (iB1 , i

B
2 , . . . , i

B
k−1, i

B
k), we can introduce a rule that these two se-

quences can only be merged if they overlap at k − 1 elements:

(iA2 = iB1) ∧ (iA3 = iB2) ∧ . . . ∧ (iAk−1 = iBk−2) ∧ (iAk = iBk−1). (2.39)

30

2.4. Recommendation Models

This will avoid identical itemsets being generated more than once, preserving complete-
ness of the algorithm.

Besides APRIORI, other algorithms have been introduced, addressing different types
performance limitations in some cases. The ECLAT [110] and FP-Growth [41] are the
most prominent.

Provided the resulting set of frequent itemsets F =
⋃k−1
j=1 Sj, individual association

rules can be generated by splitting them to left-hand and right-hand sides in brute-force
manner, simply assuming that they are small enough to be able to do so:

R ← {X ⇒ Y | X ∪ Y ∈ F} (2.40)

2.4.4.2 Rule Quality Measures

Discovered set R of basic association rules is based on frequent itemsets only, ensuring
for each rule X ⇒ Y that X and Y occur together in at least dsmin · |U |e user trans-
actions. It does not, however, take into account the direction of the rules as it holds
(X ⇒ Y) ∈ R ⇐⇒ (Y ⇒ X) ∈ R. Therefore, different rule quality measures have
been invented to further rate the rules. Rule quality measure is simply function q:R → R.
A comprehensive list of different versions of q is studied and evaluated in [6]. Let us briefly
introduce the most relevant ones for this thesis.

Confidence

The very first measure, proposed by the authors of the APRIORI algorithm in [3]. It
measures how often the rules are (not) violated on the set of all user transactions in terms
of satisfied left-hand side and unsatisfied right-hand side:

conf (X ⇒ Y) =
supp (X ∪ Y)

supp(X)
(2.41)

Lift

This measure addresses the fact that some rules may have high confidence only by chance,
even through X and Y are statistically independent. Hence it measures how far from
statistical independence X and Y are, using the formula [6]:

lift (X ⇒ Y) =
conf (X ⇒ Y)

supp(Y)
(2.42)

Conviction

Reflects the weakness of lift, for which it holds lift (X ⇒ Y) = lift (Y ⇒ X), although
association rules are of unidirectional nature. It is measured as:

conv (X ⇒ Y) =
1− supp(Y)

1− conf (X ⇒ Y)
(2.43)

31

2. Background and State-of-the-Art

2.4.4.3 Rule-Based Recommendation

Given set R of discovered association rules, and rule quality function q, it is possible to
construct the score:U × I → R function same as for other recommendation models. The
basic idea lies in picking transaction T (u) of the source user u, using the rules (X ⇒ Y)
where X ⊆ T (u) and scored item i ∈ Y , and taking into account their quality q (X ⇒ Y).

In [91], Top-N Recommendation task is considered, and the following simple algorithm
has been proposed: When generating recommendations for user u, we collect all the rules
X ⇒ Y such that X ⊆ T (u). We then sort the rules in descending order by q and
recommend the Top-N items from the right-hand sides of the rules at the top of the list.
If an item is predicted by multiple rules, we only use the rule with the highest value of
the measure function. The rule-quality measure proposed in [91] is confidence. A similar,
yet more detailed algorithm, which additionally uses support of the rule and the left-hand
side cardinality to break ties, is proposed in [61]. In this paper, we call this approach the
best-rule method. It can be generalized and expressed as the score function as follows:

score(u, i) =


max

(X⇒Y)∈R
T (u)⊆X
i∈Y

(q (X ⇒ Y)) if ∃ (X ⇒ Y) ∈ R:X ⊆ T (u) ∧ i ∈ Y

0 otherwise

(2.44)

The appropriateness of the confidence measure is addressed in [6], where many other
measures, such as the lift and the conviction, are compared by performance in classification
tasks. It [6], it is also mentioned that there are other possibilities than the best-rule
method. Weighted voting method as proposed in [54] is discussed as one of the options.
Generalizing as the score function, the idea lies simply in replacing the maximum with the
sum, allowing multiple rules to vote and contribute to the score of the item:

score(u, i) =


∑

(X⇒Y)∈R
T (u)⊆X
i∈Y

q (X ⇒ Y) if ∃ (X ⇒ Y) ∈ R:X ⊆ T (u) ∧ i ∈ Y

0 otherwise

(2.45)

It is important to keep in mind that the behavior of Eqs. 2.44 and 2.45 strongly depends
on the smin parameter which controls the granularity of rules in R in Eq. 2.38, threshold
parameter θ for generating the transactions in Eq. 2.36, and the choice of rule quality
measure q, for which Eqs. 2.41, 2.42, and 2.43 are some of the candidates.

Besides the mentioned, several other approaches have been proposed to use the As-
sociation Rules for recommendation. An approach to CF using ARs, together with an
algorithm to mine ARs adaptively for each user, is presented in [65]. A framework for
personalized recommendation using ARs and Sequential Patterns has been proposed in
[62]. In [90], the robustness of ARs is discussed regarding resistance of the RS to attacks.
In [73], ARs are presented as an efficient tool to handle extreme sparsity of data matrices

32

2.4. Recommendation Models

in context of web-content recommendation. Moreover, [59] shows that ARs are able to
handle cold-start problems, i.e. situations where new items or users appear in the data-
base. Another examples of rule-based recommender systems include [114, 112]. In the
thesis, however, we will focus on the best-rule and weighted voting methods as defined
above.

2.4.5 Matrix Factorization

Matrix Factorization (or just MF for short) techniques belong to group of latent factor
models in Collaborative Filtering. Other examples of such models include Latent Dirichlet
Allocation (LDA) [46], which is also useful for example for processing text attributes in
Content-Based Recommendation [14], or Restricted Boltzmann Machines (RBM) in Col-
laborative Filtering [89]. The aim of latent factor models is to uncover latent features that
would explain what is present in the provided data.

MF gained its popularity during the Netflix Prize Challenge in 2006 where they were
used by the winning team BellKor (Robert Bell and Yehuda Koren) as the predominant
model in the final model ensemble.[10]. However, the method was introduced several years
earlier in [92] and later extended in [91] (Badrul Sarwar at GroupLens Research Group),
based on technique known from linear algebra as Singular Value Decomposition (SVD).
In the Netflix Challenge datasets, same as in the MovieLens datasets used by GroupLens,
explicit rating matrices were used with model evaluations as the performance on Rating
Prediction tasks. This impacted the applicability of the researched methods: Most of them
were originally designed to fit this scenario.

A good and systematic introduction to MF models is [56]. Given the rating matrix
R ∈ (R ∪ {?})U×I , we want to infer user and item representations of latent features in Rf

with f ∈ N: f � |U |∧f � |I|. Put together, these features form the user features matrix
P ∈ Rf×|U | and the item features matrix Q ∈ Rf×|I|. Using these two matrices, we are
trying to decompose the rating matrix R into a lower-rank representation and make score
prediction as a dot product of the corresponding user and item feature vectors [56]:

score(u, i) = qT∗,i · p∗,u (2.46)

While the score computation is this trivial for given matrices P and Q, the difficult
part is computing these from R. Because [56] comes from the Netflix Prize, where explicit
ratings dataset was provided, it assumes that R in an explicit rating matrix. It states
search for P and Q as optimization problem:

min
P∈Rf×|U|

Q∈Rf×|I|

∑
u∈U
i∈I

ru,i 6=?

(
ru,i − qT∗,i · p∗,u

)2
+ λ

(
‖q∗,i‖2 + ‖p∗,u‖2

)
(2.47)

The model trains through optimizing squared error on the observed ratings. Regular-
ization in form of ridge regression is used to avoid overfitting with λ as a hyperparameter.

33

2. Background and State-of-the-Art

Please note once again that this only make sense for explicit rating matrices. For
implicit rating matrices, for similar reasons that led to introduction on non-normalized
neighborhood in Eq. 2.23 in neighborhood-based models: In the simplest case of implicit
rating matrices R ∈ (? , 1)|U |×|I|, there exists trivial solutions such as ∀j ∈ {1, . . . , f},
∀u ∈ U , ∀i ∈ I: pu,j = qi,j =

√
1
f

or even ∀u ∈ U , ∀i ∈ I: pu,1 = qi,1 = 1 ∧ ∀j ∈
{2, . . . , f}: pu,j = qi,j = 0, neither of which depends on data in R nor brings any value.

Multiple approaches exist to solve the Eq. 2.47 optimization problem. Some of the
most popular are:

◦ Stochastic Gradient Descent (SGD),

◦ Alternating Least Squares (ALS),

◦ Conjugate Gradients (CG).

SGD is one of the simplest yet powerful enough methods. For each observed rating
ru,i 6= ?, we can compute the corresponding prediction qTi · pu, compare it to true value of
ru,i, and modify pu and qi in a direction opposite to the Eq. 2.47 error gradient as shown
in Alg. 2.

Algorithm 2: Solving Matrix Factorization Optimization Problem Using SGD
[56, 30]

input : Rating matrix R ∈ (R ∪ {?})|U |×|I|, number of factors f ∈ N,
regularization λ ∈ R+

0 , learning rate γ ∈ R+
0 , number of steps n ∈ N

output: Matrices P ∈ Rf×|U | and Q ∈ Rf×|I| minimizing Eq. 2.47

P← init matrix(|U |, f)
Q← init matrix(|I|, f)
for `← 1 to n do

for (u, i) ∈ U × I do
if ru,i 6= ? then

eu,i ← ru,i − qT∗,i · p∗,u
q∗,i ← qi + γ (eu,i · p∗,u − λ · q∗,i)
p∗,u ← pu + γ (eu,i · q∗,i − λ · p∗,u)

return (P,Q)

This version of SGD is sequential. Efficient implementation builds a set of observed rat-
ings X = {(u, i, x) | u ∈ U ∧ i ∈ I ∧ x = ru,i ∧ ru,i 6= ?} and then iterates n times through
this set in sequential manner. This cannot be naively parallelized, because while updating
qi and pu for some (u, i, ru,i) ∈ X, the whole subset {(u′, i′, ru′,i′) | u′ = u ∨ i′ = i} ⊆ X
must be locked to prevent race conditions [64]. Several different approaches have been
proposed to make parallelization possible. Some of the most popular include Delayed SGD

34

2.4. Recommendation Models

[57], Distributed SGD [34], Jellyfish [82], SimuParallelSGD [116], HOGWILD! [76], and
FPSGD [115].

ALS is a different approach to minimize Eq. 2.47 by exploiting the structure of the
problem. Because P and Q are two unknowns for which to optimize, the problem is not
convex. However, if we fix one of them, the problem becomes quadratic and thus easy to
solve optimally (find global optimum) using a standard least squares solver. Exploiting the
fact that Eq. 2.47 corresponds to the standard form of ridge regression problems, for fixed
Q ∈ Rf×|I|, the solution for p∗,u ∈ Rf can se found independently (and hence in parallel)
for each user u ∈ U as:

p∗,u ←
(
Q ·QT + λ · I

)−1 ·Q · r̂uT (2.48)

where I is an f × f identity matrix and ˆr∗,u =

{
ru,i if ru,i 6= ?
0 otherwise

∀i ∈ I.

Symmetrically, for fixed P ∈ Rf×|U |, solution for qi ∈ Rf can be found independently
for each item i ∈ I as:

q∗,i ←
(
P ·PT + λ · I

)−1 ·P · r̂iT (2.49)

where r̂i =

{
ru,i if ru,i 6= ?
0 otherwise

∀u ∈ U is rating matrix column with ?→ 0 replacements.

Learning is done in iterations where we alternate between fixing user factors while
computing item factors, and fixing item factors while computing user factors.

Thanks to the fact that updates to, say, user factors, while keeping item factors fixed,
are independent of each other, ALS can be efficiently parallelized in much easier and
straightforward way than SGD.

MF models allow incorporating additional sources of information so one can create
more sophisticated models.

In [56], it is proposed to add user and item bias predictors bU ∈ R|U | and bI ∈ R|I|,
together with the global bias µ ∈ R to compute the score as

score(u, i) = µ+ bUu + bIi + qT∗,i · p∗,u, (2.50)

extending the Eq. 2.47 loss function of the optimization problem to

min
P∈Rf×|U|

Q∈Rf×|I|

bU∈R|U|
bI∈R|I|
µ∈R

∑
u∈U
i∈I

ru,i 6=?

(
ru,i − µ− bIi − bUu − qT∗,i · p∗,u

)2
+ λ

(
‖q∗,i‖2 + ‖p∗,u‖2 + bIi

2
+ bUu

2
)

(2.51)

Again, such optimization only makes sense for Rating Prediction tasks with explicit rating
matrices.

In [55], an interesting method has been proposed to also take implicit rating data into
account. This was an important shift in thinking towards implicit rating matrices, that
are the most common in real-world datasets as discussed in 2.1.3. The authors basically

35

2. Background and State-of-the-Art

work with 2 different rating matrices, RR containing purely explicit and RN purely implicit
rating data. The central idea of the paper lies in changing the score function to

score(u, i) = bu,i +
∑
j∈I

rRu,j 6=?

(
rRu,j − bu,j

)
· wi,j +

∑
j∈I

rNu,j 6=?

ci,j (2.52)

and let B ∈ R|U |×|I|, W ∈ R|I|×|I|, and C ∈ R|I|×|I| optimize through different loss function:

(2.53)

min
B∈R|U|×|I|
W∈R|I|×|I|
C∈R|I|×|i|
bU∈R|U|
bI∈R|I|
µ∈R

∑
u∈U
i∈I

rRu,i 6=?


rRu,i − µ− bUu − bIi − ∑

j∈I
rRu,j 6=?

(
rRu,j − bu,j

)
· wi,j −

∑
j∈I

rNu,j 6=?

ci,j


2

+ λ

bUu 2
+ bIi

2
+
∑
j∈I

rRu,j 6=?

w2
i,j +

∑
j∈I

rNu,j 6=?

c2
i,j




while proposing set of update rules for SGD to do the optimization. The aim of the paper
was still Rating Prediction on explicit rating matrices, and the role of implicit ratings was
to help lower the prediction error.

In [47], a novel approach designed specifically to handle implicit matrices has been
proposed, extending the scope of MF methods to areas other than Rating Prediction. In
context of this thesis, [47] can be considered as a breakthrough in the MF field. The
authors identify important characteristics of implicit rating matrices, such as the absence
of negative ratings and inability to use trained models for Rating Prediction tasks.

The paper presented a novel way of dealing with implicit rating matrix: decom-
position of the rating into a preference and a confidence value. The preference matrix
Y ∈ {0, 1}|U |×|I| is a binary matrix which is not sparse anymore, unobserved interactions
are treated as zeros:

yu,i =

{
1 if ru,i 6= ?
0 if ru,i = ?

(2.54)

The confidence matrix C ∈ R+|U |×|I| assigned each element in Y a weight

cu,i = 1 + α ·
{
ru,i if ru,i 6= ?
0 if ru,i = ?

(2.55)

with empirically suggested quite high value of α = 40.
As a result, the method takes ?→ 0 replacements into account an handles them in the

same way as they were observed, minimizing
∣∣qT∗,i · p∗,u∣∣ for them, but with much lower

weight that the observed ones. This reflects two facts:

36

2.4. Recommendation Models

1. There is uncertainty about unobserved ratings: missing rating does not necessarily
mean zero preference, the user might be just unaware of the existence of given item.

2. The rating matrix is highly sparse, resulting in vast majority of 0s when ?→ 0
replacement is applied.

The proposed loss function of the optimization problem is:

min
P∈Rf×U

Q∈Rf×I

∑
u∈U
i∈I

(
cu,i ·

(
yu,i − qT∗,i · p∗,u

)2
)

+ λ

(∑
u∈U

‖p∗,u‖2 +
∑
i∈I

‖q∗,i‖2

)
(2.56)

This approach has been adopted in industry as a way of dealing with implicit feedback
(e.g. Spotify [49], Quora [107]).

It is noteworthy that the optimization process takes into account the whole rating
matrix, making it impossible to use certain techniques, such as the optimized ALS as
described in [11]. The authors of [47], however, came with an optimized solution by
exploiting the structure of the problem and the decomposition to be able to effectively
compute the solution using only the observed ratings. Assuming fixed Q ∈ Rf×|I|, the
solution for pu ∈ Rf can be found independently for each u ∈ U as:

pu =
(
Q ·Cu ·QT + λI

)−1 ·Q ·Cu · yTu,∗ (2.57)

where Cu ∈ R|I|×|I| is a diagonal matrix with ∀i ∈ I: cui,i = cu,i, and I is an f × f identity
matrix.

Symmetrically, assuming fixed P ∈ Rf×|U |, the solution for qi ∈ Rf can be computed
using:

qi =
(
P ·Ci ·PT + λI

)−1 ·P ·Ci · y∗,i (2.58)

where Cu ∈ R|U |×|U | is a diagonal matrix with ∀u ∈ U : ciu,u = cu,i.
Another approach to dealing with missing ratings lies in imputation of non-zero values.

Under the assumption that ratings are not missing at random (MNAR assumption), [100]
proposes a MF model based on weighted-RMSE optimization problem on the same basis
as above in [47].

The proposed score function in [100] is:

score(u, i) = rm + qT∗,i · p∗,u (2.59)

where rm ∈ R is the imputed value.
The optimization problem states:

min
P∈Rf×|U|

Q∈Rf×|I|

∑
u∈U
i∈I

wu,i ·

((
ro&i
u,i − rm − qT∗,i · p∗,u

)2
+ λ ·

f∑
`=0

(
p2
`,u + q2

`,i

))
(2.60)

37

2. Background and State-of-the-Art

where Ro&i ∈ R|U |×|I| is the imputed rating matrix:

∀u ∈ U, i ∈ I: ro&i
u,i =

{
ru,i if ru,i 6= ?
rm if ru,i = ?

(2.61)

and W ∈ R|U |×|I| is the weight matrix:

∀u ∈ U, i ∈ I:wu,i =

{
w (ru,i) if ru,i 6= ?
wm if ru,i = ?

(2.62)

All the following:

◦ observed ratings weighting function w ∈ R→ R,

◦ imputed value rm ∈ R,

◦ weight of imputed values wm ∈ R+
0 ,

are model hyperparameters proposed as subject to meta-optimization by means of cross-
validation (see 2.5.1), with values like wm = 0.01 and rm = 2, and w(r) = 1 discovered in
experimental part of [100]. Despite [100] focuses on explicit rating matrices, the method
can be used for implicit matrices as well, being structurally similar to [47]. In [100], an
efficient method to solve Eq. 2.60 optimization problem using ALS is proposed.

While in [100] are only single (chosen) values of rm ∈ R and wm ∈ R assigned to all the
ru,i =?, more complex methods have been proposed that require (u, i)-dependent weighting.
In [101], item-dependent weighting based on overall item popularity in the rating matrix
has been proposed (this is discussed in more detail below and later in this thesis).

There are many other possible weighting strategies, and the intuitions behind them
may not seem obvious. User-oriented approach from [77] postulates that users with more
observed ratings are more likely to dislike unobserved items, and hence proposes higher
weights for missing ratings for such users. But completely different reasoning can be used
as well: The more observed ratings (positive examples in implicit feedback), the higher
possibility to also like the unknowns, and thus lower weight for the (negative) missing
ratings for such user. This dichotomy is mentioned in [109], referring to [53] where just
the opposite strategy compared to [77] has been used.

Most of the mentioned user-/item-dependent weighting strategies suffer from compu-
tational inefficiency as in naive implementation, they require computations on the full
|U |×|I| imputed rating matrix and not only the observed ratings, size of which may easily
go to trillions or quadrillions on real-world datasets. In [109], a novel way of using specific
weights for the unknowns while keeping the computation efficient, i.e. using only the ob-
served ratings, is presented. It is applicable as long as the weight for a particular ru,i =?
can be expressed as a product of user and item weight:

wu,i =

{
1 if ru,i 6= ? ∧ ru,i > 0

wUu · wIi if ru,i = ? ∨ ru,i ≤ 0
(2.63)

38

2.4. Recommendation Models

for some weight vectors wU ∈ R|U | and wI ∈ R|I|.
This allows us to use e.g. the weighting schemes from [77] on real-world rating matrices.

Furthermore, optimization procedure called the Coordinate Descent (CD) is described in
[109]. CD is based on ALS, but solves the least squares problem using only one latent
dimension at a time. This ensures linear scaling in the number of factors. See [109] for
more about performance in terms of both computation time and quality of results.

2.4.6 Deep Learning Approaches

Together with increasing popularity of Deep Learning (DL) in the recent years, accompan-
ied by application of deep neural networks to more and more areas of human activity [58],
it is natural that many approaches have appeared aiming at application of DL methods
in recommender systems. In this section, we will introduce some of the most prominent
approaches.

2.4.6.1 Wide & Deep Learning For Recommender Systems

This approach has been introduced and described in [20]. The model takes available
information about given (u, i) ∈ U × I pair and predicts the probability that i is relevant
to u. While the models presented earlier in this chapter typically focus on some limited
and specific type of information, such as the interaction vectors (rating-based UserKnn,
ItemKnn, ARs, MF) or the attributes (demographic UserKnn, attribute-based ItemKnn),
Wide & Deep models take into account a whole mixture of both the interaction and the
attribute data regarding both u and i. This makes the model highly robust and capable
of learning complex non-linear relationships between all mentioned.

All the input information about u and i originates from a highly sparse feature vectors
xu,i ∈ [0, 1]d. Individual elements of these vectors represent various data inputs:

◦ User interaction data: For each j ∈ I, there is an element xu,i` of xu,i storing
information about ru,j, such

xu,i` =

{
0 if ru,j = ?
ru,j if ru,j 6= ?

(2.64)

assuming ∀y ∈ 2Y : 0 ≤ Γ(y) ≤ 1 in Eqs. 2.2 or 2.4 in 2.1.4, whichever has been used
to produce the rating matrix.

◦ Item attribute data: Tokenization process as described in 2.1.2 is used on aI(i).
For each possible token t ∈

⋃
j∈I tokenization

(
aI(j)

)
, there is an element xu,i` of xu,i

encoding whether i has t in its tokenized attributes:

xu,i` =

{
0 if t /∈ tokenization

(
aI(i)

)
1 if t ∈ tokenization

(
aI(i)

) (2.65)

39

2. Background and State-of-the-Art

◦ User attribute data: Similarly to items, for each possible t ∈
⋃
v∈U tokenization(

aU(v)
)
, there is an element xu,i` of xu,i encoding whether u has t:

xu,i` =

{
0 if t /∈ tokenization

(
aU(u)

)
1 if t ∈ tokenization

(
aU(u)

) (2.66)

Wide Models Deep ModelsWide & Deep Models

Hidden Layers

Sparse Features

Output Units

Dense
Embeddings

Figure 2.4: The spectrum of Wide & Deep models [20].

The structure of the model aims at balancing between memorization (learning feature
co-occurrences) and generalization (learning transitions on top of feature co-occurrences).
To achieve that, it combines the wide and the deep components, respectively. Both are
feedforward neural networks that are trained in joint manner (Fig. 2.4).

The wide network can be thought as a simple generalized linear model

x̂u,i 7→ wT · x̂u,i + b (2.67)

where w is the weight vector obtained while training (see below), x̂u,i ∈ [0, 1]d+m is a con-
catenation of xu,i ∈ [0, 1]d (constructed as described above) and vector of cross-product
transformations (φk1(x

u,i), . . . , φkm(xu,i)) ∈ [0, 1]m, where

φkj(x
u,i) =

d∏
`=1

(
xu,i`
)ckj` (2.68)

For each transformation kj, ckj ∈ {0, 1}d is a vector boolean variables representing the
transformation. Effectively, φkj ∈ [0, 1] is a composite feature similar to product conjunc-

tion from fuzzy logic [74] of variables at positions
{
` ∈ {1, . . . , d} | ckj` = 1

}
.

While the wide network accepts high-dimensional, sparse vectors, the deep network
uses low-dimensional, dense vectors on input. These vectors are obtained using autoencoder
network trained on top of original sparse vectors xu,i for various (u, i) ∈ U × I pairs. The
autoencoder has a bottleneck of small size f (from 10 to 100), from which dense vector
x̃u,i ∈ Rf is obtained for given xu,i. The deep network consists of n layers, where activation
vector a(j+1) of (j + 1)-th layer computes as

a(j+1) = f (j)
(
W(j) · a(j) + b(j)

)
(2.69)

40

2.4. Recommendation Models

where, denoting number of neurons in j-th layer as N (j), a(j) ∈ RN(j)
is the activation

vector from preceeding (j-th) layer
(
putting a(0) = x̃u,i

)
, W ∈ RN(j+1)×N(j)

is a matrix

of synaptic weights, b ∈ RN(j+1)
is a vector of biases, and f (j):RN(j+1) → RN(j+1)

is an
activation function performing element-wise operations on

(
W(j) · a(j) + b(j)

)
. Rectified

linear units (ReLUs) [36] are proposed to be used for f (j):

∀` ∈
{

1, . . . , N (j+1)
}

:
(
f (j)(x)

)
`

= max(0, x`) (2.70)

Both the wide network and the deep network are put together using a sigmoid function,
resulting in the score function:

score(u, i) = σ
(
wwide ·

(
xu,i1 , . . . , xu,id , φk1

(
xu,i
)
, . . . , φkm

(
xu,i
))

+ w
(n)
deep · a

(n) + b
)

(2.71)

where σ(x) = 1
1−e−x is the sigmoid function. The whole model is trained by back-

propagation [87] of gradients from the output to both the wide and deep part of the model
simultaneously.

2.4.6.2 AutoRec

AutoRec is a novel autoencoder framework for Collaborative Filtering presented in [95].
The model is based on training a neural network with one hidden layer, based on au-
toencoder paradigm (see Fig. 2.5). It exists it two symmetric variants: the User-Based
AutoRec (or U-AutoRec for short) and the Item-Based AutoRec (or I-AutoRec for short).
In both cases, the whole sparse vector from the rating matrix with ?→ 0 replacements,
that is either r̂Tu,∗ or r̂∗,i, is passed to the input layer, and is expected also at the output,
modeled through a bottleneck of smaller size f . The authors experimented with f from 10
to 500 on different datasets.

r (i) = ()R1i R3iR2i Rm i

+ 1

+ 1

r (i) = ()R1i R3iR2i Rm i

. . .

. . .

V

W

i = 1...n

Figure 2.5: AutoRec model architecture [95].

For U-AutoRec, the score function is given as

score(u, i) =
(
h
(
W · g

(
V · r̂Tu,∗ + µ

)
+ b

))
i

(2.72)

41

2. Background and State-of-the-Art

where r̂u,∗ ∈ R|I| is a row vector from rating matrix of user u with ?→ 0 replacements,
V ∈ Rf×|I| is the weights matrix for the hidden (bottleneck) layer, µ ∈ Rf are the biases
for the hidden layer, g:Rf → Rf is the hidden layer’s activation function, W ∈ R|I|×f is
the weights matrix for the output layer, b ∈ R|I| are the biases for the output layer, and
h:R|I| → R|I| is the output layer’s activation function.

Symmetrically, for I-AutoRec, the score is

score(u, i) = (h (W · g (V · r̂∗,i + µ) + b))u (2.73)

where r̂∗,i ∈ R|U | is a column vector from rating matrix for item i, V ∈ Rf×|U | and
W ∈ R|U |×f are the synaptic weights matrices, µ ∈ Rf and b ∈ R|U | are the biases, and
g:Rf → Rf and h:R|U | → R|U | are the activation functions.

In [95], only explicit rating matrices and Rating Prediction task are considered, which
affects how the network is trained. Given rating matrix R|U |×|I|, for U-AutoRec the loss
function of the optimization problem is given as

min
V∈Rf×|I|

W∈R|I|×f

µ∈Rf

b∈R|I|

∑
u∈U
i∈I

ru,i 6=?

(
ru,i −

(
h
(
W · g

(
V · r̂Tu,∗ + µ

)
+ b

))
i

)2

+
λ

2
·
(
‖V‖2 + ‖W‖2

)
(2.74)

and for I-AutoRec as

min
V∈Rf×|U|

W∈R|U|×f

µ∈Rf

b∈R|U|

∑
u∈U
i∈I

ru,i 6=?

(
ru,i − (h (W · g (V · r̂∗,i + µ) + b))u

)2
+
λ

2
·
(
‖V‖2 + ‖W‖2

)
(2.75)

The parameters V, W, µ, and b are trained using backpropagation [87]. Similarly to
MF, there is a regularization parameter λ to prevent overfitting. Omitting ru,i 6= ? in the
loss function means that only the weights associated with observed ratings are updated.

Considering implicit feedback matrices, it is natural idea to extend ideas from [47]
(imputation of zeros with confidence-based loss weighting as in Eq. 2.56) and [100] (im-
putation of optimized values with (u, i)-dependent error weight). This has been proposed
in [60].

Mentioning MF, it is especially noteworthy that using identity functions g(x) = x and
h(y) = y makes AutoRec roughly equivalent to MF with biases as proposed in [56] and
shown in Eq. 2.50.

With identity activation functions, considering U-AutoRec, Eq. 2.72 reduces to

score(u, i) =
(
W ·

(
V · r̂Tu,∗ + µ

)
+ b

)
i

(2.76)

Substituting W ∈ R|I|×f with QT ∈ R|I|×f from Eq. 2.50 and
(
V · R̂T

)
∈ Rf×|U | with

P ∈ Rf×|U | from 2.50, we get

score(u, i) =
(
QT · (p∗,u + µ) + b

)
i

= qT∗,i · p∗,u + qT∗,i · µ + bi (2.77)

42

2.5. Evaluation in Recommender Systems

which is form very similar to 2.50. The same holds for I-AutoRec with reduced form
score(u, i) = (W · (V · r̂∗,i + µ) + b)u, where substituting W ∈ R|U |×f with PT ∈ R|U |×f

and
(
V · R̂

)
∈ Rf×|I| with Q ∈ Rf×|I| yields

(
PT · (q∗,i + µ) + b

)
u

= pT∗,u·q∗,i+pT∗,u·µ+bu.

Considering the above, AutoRec brings generalization on top of MF only when non-
linear activation functions are provided. Several experiments are done in [95], showing
particularly the importance of non-linearity of g for the hidden layer. Based on the exper-
imentally obtained results, sigmoid function

(
1

1−e−x

)
for g and identity function for h were

stated as optimal. In the experiments performed in this thesis, we are using hyperbolic
tangent (tanh) for g, because several advantages has been reported for tanh over sigmoid
thanks to its centering around 0 [35].

2.5 Evaluation in Recommender Systems

While the research in the recent years has been highly focused on recommendation al-
gorithms/models. All the models share a common goal: help users discover items that
the will like. This may include they will find them interesting, enjoy them, or will be
interested in consuming them, where “consuming” may stay for reading (online news, blog
posts, books), playing (audio/video streaming, gaming), installing (applications and plu-
gins), purchasing (E-Commerce), attending (courses, E-learning), visiting (cultural events
and venues), etc. This closely follows the business goals of RSs, which may vary from
simply improving user experience and satisfaction, decrease time spent searching for a rel-
evant content or shortening purchase cycle, increasing the amount/total price of items that
the users purchase, increasing number of pages they visit (often hand in hand with more
advertisements being displayed), etc.

These high-level goals are common in practice, but it is not easy to set a clear per-
formance measure for them that would allow comparing them to each other. Difficulties
especially arise in the field of research, where a well-defined and measurable performance
criteria are crucial to show how well the proposed method works. Moreover, it is quite
common that researchers don’t have access to production systems, where the users would
be in interaction with the models, allowing to collect immediate feedback from them. This
led to a whole line of approximative, yet mathematically well-defined measures, with intu-
ition behind them that maximizing/minimizing them should lead to better satisfaction of
the aforementioned goals.

From a high-level perspective, we may distinguish between two main classes of such
measures: the offline measures and the online measures.

The offline measures as crucial for research, as well for searching for good models
and their parameterizations, without the need to deploy them to production and risk
exposing the users to recommendations of poor quality in case of model malfunction. All
that is needed for such evaluation is the dataset of already collected historical interactions.
Techniques like split or cross validation have predominant position here. It can be said

43

2. Background and State-of-the-Art

that these measures are relatively well-studied, and that there is some elementary consensus
among researchers on a set of measures that make the most sense.

On the contrary, the online measures require production deployment. Real users
have to interact in live environment with the deployed models, so we can estimate model
quality based on user feedback or behavior. However, not all researchers have access to
such environments. Furthermore, online experiments are unreproducible from their very
nature, undermining the need for repeatability of scientific results. They are executed dur-
ing specific timeframe and circumstances that will not be repeated. For example, running
an online experiment on a news portal will yield results that are specific for the actual
social/political/cultural events that happened during the experiment and resulted in spe-
cific set and characteristics of the published articles (items) available, not even mentioning
possible shifts in structure and social mood of the userbase over time.

The measures themselves reflect the recommendation task (see 2.2) that the system or
model solves. We will discuss individual task-specific measures below in this chapter.

2.5.1 Split and Cross Validation

Provided a recommendation dataset, standard way of measuring the performance of the
training algorithm (that is algorithm which constructs the model, as defined in 2.2) is to
use the split or the cross validation.

In split validation, considering training set T ⊆ X ×Y (as introduced in Sec. 2.2.1),
only a random subset Ttrain ⊂ T is selected and passed to learning algorithm, while the
rest is left apart. Typically, T \ Ttrain is further divided into the validation set Tval and
test set Ttest such that Tval ∩ Ttest = ∅ and Tval ∪ Ttest = T \ Ttrain.

Validation set is used to optimize hyperparameterization P ∈ PA of A. Repeatedly,
for different hyperparameterizations P ∈ PA, in compliance with Eq. 2.7, A (P, Ttrain)
is executed to produce different candidate model mP :X → Y . Individual models are
then evaluated on Tval in such a way that for each mP ∈ {A (P, Ttrain) | P ∈ PA}, all the
validation examples (x`,y`) ∈ Tval are taken and for each example, mP (x`) is compared to
known y`.

The comparison is typically done using a loss function L:Y2 → R which expresses
the difference (error) between y` and m(x`) as a real number. The lower value of L(ŷ, y),
the lower error and hence the better. Considering the validation set Tval, it is useful to
define a validation loss function on the whole Tval as

L:YX × 2X×Y → R (2.78)

which takes a model m and set of validation examples Tval and produces an aggregated
loss as a real number. One possible implementations of L may be simple sum

L (m, Tval) =
∑

(x`,y`)∈Tval

L (m (x`) ,y`) (2.79)

but more sophisticated functions are often used as will be presented later in this section.

44

2.5. Evaluation in Recommender Systems

For a given learning algorithm A, optimal hyperparameterization P ∗A ∈ PA is then
determined as

P ∗A = arg min
P∈PA

L (A (P, Ttrain) , Tval) (2.80)

Complementarily to using loss function which evaluates the model in negative nature
by error, we can also use accuracy function F :Y2 → R which expresses the similarity
between y` and m(x`) in terms of positive utility. Considering whole Tval, a validation
reward function can be defined as

F :YX × 2X×Y → R (2.81)

with optimal hyperparameterization P ∗A ∈ PA given as

P ∗A = arg max
P∈PA

F (A (P, Ttrain) , Tval) (2.82)

Validation set is used for tuning the hyperparameterization of one particular learning
algorithm A. When a whole set of algorithms A = {A1, . . . ,Ar} is available, not yet
used test set Ttest is utilized to do the cross algorithm comparison. Given validation loss
function L for a model m ∈ YX as defined in Eq. 2.78, we can also define validation loss
of algorithm L(A) for given A ∈ A as the overall loss on Ttest of a model trained on the
whole Ttrain ∪ Tval using optimally hyperparameterized A:

L(A) = L (A (P ∗A, Ttrain ∪ Tval) , Ttest) (2.83)

Symmetrically, validation reward of algorithm F (A) for given A ∈ A can be defined as:

F(A) = F (A (P ∗A, Ttrain ∪ Tval) , Ttest) (2.84)

Finally, for given dataset T , algorithm loss function L (or reward function F), and
set of available algorithms A = {A1, . . . ,Ar}, optimal algorithm A∗ is defined as A∗ =
arg minA∈A L (A) or, symmetrically, as A∗ = arg maxA∈A F (A). It is the search for couple
(A∗, P ∗A∗) which defines optimization problem that data scientists are typically solving for
given T and L (or F).

The mechanism of splitting T into Ttrain, Tval, and Ttest, typically consists of putting
all (x`,y`) ∈ T into a list, random shuffling that list, and splitting the shuffled list using
ratios such as 80:10:10. The actual numbers depend mostly of the size of the dataset
with the aim of getting stable enough estimate. For very large datasets consisting of
billions of training examples, ratios like 98:1:1 may be sufficient, considering especially the
combinatoric explosion in size of PA if it consists of multiple independent hyperparameters
(such as f and λ in MF), and the computation time needed to evaluate the trained model
on each example.

The motivation for introducing Ttest besides Tval (instead of partitioning only into Ttrain

and Tval), comes from the fact that the split is done randomly, and there is a risk of hyper-
overfitting the algorithm (through hyperparameterization search) towards particular split.

45

2. Background and State-of-the-Art

This may lead to performance overestimation for determined (A, PA∗). Evaluation on Ttest

is meant as unbiased performance estimate of the resulting A(P ∗A, T) model.

To overcome the general hyper-overfitting risk connected with split validation, k-fold
cross validation is often the more preferred approach. T is randomly partitioned into k
equally-sized sets T = {T1, . . . , Tk} such that ∀i, j ∈ {1, . . . , k}: Ti∩Tj = ∅∧||Ti|−|Tj|| ≤ 1

and
⋃k
i=1 Ti = T . The performance is estimated as an average over k rounds, taking Tj as

the validation set and
⋃
Tj∈T\{Ti} Tj as the training set at the i-th round. Given validation

loss function L:YX × 2X×Y → R (Eq. 2.78), learning algorithm A hyperparameterized by
P ∈ PA, and a training set T with cross-validation partition T = {T1, . . . , Tk}, we may
define cross-validation loss LXV (A, P) as

LXV (A, P) =
1

k

k∑
i=1

L
(
A
(
P,∪Tj∈T\{Ti}Tj

)
, Ti
)

(2.85)

and, symmetrically for validation reward function F :YX × 2X×Y → R (Eq. 2.81), cross-
validation reward FXV (A, P) as

FXV (A, P) =
1

k

k∑
i=1

F
(
A
(
P,∪Tj∈T\{Ti}Tj

)
, Ti
)

(2.86)

Using cross-validation, additional test set it typically not necessary as the method is
robust enough to provent hyper-overfitting.

2.5.2 Rating Prediction Measures

As discussed in previous sections of this chapter, rating prediction is popular task in re-
search related to Collaborative Filtering. Being slightly biased towards publicly avail-
able datasets missing implicit feedback, it strictly assumes explicit rating matrices. Since
mRP(u, i), as defined in Sec. 2.2.2, returns real number as an estimate of ru,i in the rating
matrix, rating prediction measures have typically form of validation loss functions (as in
Eq. 2.78) measuring the numerical predictive accuracy.

Following terminology from Secs. 2.2.1 and 2.5.1, given rating matrix R ∈ (R ∪ {? })U×I
trivially induces a training set

T = {((u, i), ru,i) | u ∈ U ∧ i ∈ I ∧ ru,i 6= ?} (2.87)

The most popular methodology lies in randomly splitting this training set into Ttrain and
Tval as in 2.5.1. It is noteworthy that it is completely random subset of the whole explicit
rating matrix for different observed (u, i) pairs. For rating prediction models (Eq. 2.8)
mRP:U×I → R, the measures are given as validation loss functions LRP:R(U×I)×2U×I×R →
R.

46

2.5. Evaluation in Recommender Systems

2.5.2.1 Mean Absolute Error

One of the simplest validation loss functions is the Mean Absolute Error (MAE), which
simply averages individual deviations of predicted ratings from the true ratings in the
validation set. The validation loss function is defined as

MAE (mRP, Tval) =
1

|Tval|
∑

((u,i),ru,i)∈Tval

|mRP(u, i)− ru,i| (2.88)

MAE was popular in earlier stages of research in Collaborative Filtering [93, 94, 81,
70, 1], all before 2006, when the Netflix Prize Challenge took place and the focus has been
shifted towards RMSE (see below).

In [38], Normalized Mean Absolute Error (NMAE) has been proposed to allow com-
parison between different datasets (the authors used rating scale from −10 to 10, while
datasets like MovieLens used ratings from 1 to 5). Given training dataset T , NMAE
validation loss function is given simply as

NMAE (mRP, Tval) =
MAE (mRP, Tval)

max
((u,i),ru,i)∈T

(ru,i)− min
((u,i),ru,i)∈T

(ru,i)
(2.89)

2.5.2.2 (Root) Mean Squared Error

Alternatively to MAE, which gives all the errors equal weights, Mean Squared Error (MSE)
can be used. It increases the impact of higher errors, and provides provides more math-
ematical elegance and compatibility with numerical optimization methods involved in e.g.
MF optimization tasks (Eqs. 2.47, 2.51, 2.53). MSE validation loss function is given as

MSE (mRP, Tval) =
1

|Tval|
∑

((u,i),ru,i)∈Tval

(mRP(u, i)− ru,i)2 (2.90)

Despite used in some studies (e.g. [21, 42]), MSE has not received much popularity.
On the contrary, Root Mean Squared Error (RMSE), given as

RMSE (mRP, Tval) =
√

MAE (mRP, Tval) (2.91)

became absolutely dominant evaluation method for Rating Prediction tasks after the
Netflix Prize Challenge organized in 2006, where it was used as the only evaluation criterion.
Since then RMSE have been adopted by the research community and used for comparison
between newly introduced algorithms [11, 55, 95, 80, 68]. Similarly to MSE, RMSE puts
emphasis on higher errors, but allows more intuitive interpretation of the resulting value,
being it on the same scale of the original ratings.

47

2. Background and State-of-the-Art

2.5.3 Binary Classification Measures

While most of the earlier research in Recommender Systems mainly focused on the Rating
Prediction task, many publications started to appear over time pointing out the fact that
recommendation can also be thought as binary classification. Already in 1998, transform-
ation of explicit rating matrix into a binary one, using either technique similar to Eq. 2.9
[13], or by setting user-dependent threshold [8], has been proposed, opening the possibil-
ities of using measures from Information Retrieval, mainly the precision, recall, and the
F-Measure (see below). Many researchers followed this: precision and recall e.g. in the
original paper presenting matrix factorization [92].

Considering binary rating matrix R ∈ (R ∪ {? })U×I , we may consider training sets

T = {((u, i) , ru,i) | u ∈ U ∧ i ∈ I ∧ ru,i 6= ?} (2.92)

or

T = {((u, i) , 0) | u ∈ U ∧ i ∈ I ∧ ru,i ∈ {0, ? }} ∪ {((u, i) , 1) | u ∈ U ∧ i ∈ I ∧ ru,i = 1}
(2.93)

depending on whether unobserved ratings are treated as zeros (unless rated, items are
considered irrelevant by default) or not.

2.5.3.1 Precision, Recall, F-Measure

In Binary Classification, the measures are mostly given as validation reward functions. In
compliance with Eq. 2.81, we may define precision as portion of truly relevant items in
all the items that were predicted relevant by the model:

precision (m, Tval) =
|{((u, i) , ru,i) ∈ Tval | m(u, i) = 1 ∧ ru,i = 1}|

|{((u, i) , ru,i) ∈ Tval | m(u, i) = 1}|
(2.94)

Similarly, we may define the recall as the portion of all relevant items that were really
predicted relevant:

recall (m, Tval) =
|{((u, i) , ru,i) ∈ Tval | m(u, i) = 1 ∧ ru,i = 1}|

|{((u, i) , ru,i) ∈ Tval | ru,i = 1}|
(2.95)

Precision is sometimes referred to as the positive predictive value (PPV) and recall is
sometimes referred to as the true positive rate (TPR) or the sensitivity.

Precision and recall are complementary to each other and each brings specific informa-
tion. Constant model m(u, i) = 1 will have recall (m, Tval) = 1, but very low precision. To
address this fact, complementary measures have been invented. Of the most prominent,
the F-Measure can be defined as validation reward function combining both the precision
and the recall in form of harmonic mean:

F1 (m, Tval) =
2 · precision (m, Tval) · recall (m, Tval)

precision (m, Tval) + recall (m, Tval)
(2.96)

48

2.5. Evaluation in Recommender Systems

2.5.3.2 Area Under Receiver Operating Characteristic Curve

As suggested in [44], Area Under Receiver Operating Characteristic Curve (AUC
ROC) provides a theoretically grounded alternative to precision and recall. In Sec. 2.4, we
introduced several recommendation models under the common framework of the score:U×
I → R function. In Eq. 2.16, we showed that using score, we can easily build binary
classification model using threshold θ ∈ R such that the model predicts as relevant for user
u ∈ U exactly those items i ∈ I for which score(u, i) ≥ θ. Thinking about θ as a continuous
parameter, uncountably infinite set of binary classification models can be built on top of
score. Assuming ∀i ∈ I, u ∈ U : θmin ≤ score(u, i) ≤ θmax, AUC ROC is a measure for
evaluating this whole set of models for θ ∈ [θmin, θmax].

Besides already defined validation reward function recall , let us further define validation
loss (as in Eq. 2.78) function fallout : {0, 1}(U×I)×2U×I×{0,1} → R as the portion of irrelevant
items that were falsely predicted as relevant:

fallout = (m, Tval) =
|{((u, i) , ru,i) ∈ Tval | m(u, i) = 1 ∧ ru,i = 0}|

|{((u, i) , ru,i) ∈ Tval | ru,i = 0}|
(2.97)

Given a training set T as in Eq. 2.92 or in Eq. 2.93 partitioned into Ttrain and Tval as
in Sec. 2.5.1, and a function score:U × I → R (assuming the function has been somehow
constructed using Ttrain), let us introduce a binary classification learning algorithm (as in
Eq. 2.10) ABC

score with hyperparameterization PABC
score

= [θmin, θmax] ⊆ R as:

ABC
score (θ, Ttrain) =

(
(u, i) 7→

{
0 score(u, i) < θ
1 score(u, i) ≥ θ

)
(2.98)

Because Ttrain is not used while building model (we assume that the knowledge from it is
somehow captured in provided function score), let us simply write ABC

score (θ) instead of the
full ABC

score (θ, Ttrain). It should be obvious that for given θ ∈ [θmin, θmax], we obtain a pair(
fallout

(
ABC

score (θ) , Tval

)
, recall

(
ABC

score (θ) , Tval

))
∈ [0, 1]2 with the most desirable point at

[0, 1] (only true positives without false negatives), and that both fallout
(
ABC

score (θ) , Tval

)
and recall

(
ABC

score (θ) , Tval

)
are monotonically increasing with θ. In case of fallout, it holds

∀θ, θ′ ∈ [θmin, θmax]: θ > θ′ =⇒ fallout
(
ABC

score (θ) , Tval

)
≥ fallout

(
ABC

score (θ′) , Tval

)
(2.99)

because setting higher threshold, we can never produce less positives ((u, i) pairs predicted
relevant), and hence we can neither get less false positives ((u, i) pairs where ru,i 6= 1 but
the prediction is falsely relevant). Similarly, in case of recall, it holds

∀θ, θ′ ∈ [θmin, θmax]: θ > θ′ =⇒ recall
(
ABC

score (θ) , Tval

)
≥ recall

(
ABC

score (θ′) , Tval

)
(2.100)

because again, greater or equally sized set of positives cannot lead to smaller set of true
positives ((u, i) pairs where ru,i = 1 and the prediction really is 1). As a consequence of
Eqs. 2.99 and 2.100, recall is monotonically increasing with fallout, that is

∀θ, θ′ ∈ [θmin, θmax]: fallout
(
ABC

score (θ) , Tval

)
> fallout

(
ABC

score (θ′) , Tval

)
=⇒ recall

(
ABC

score (θ) , Tval

)
≥ recall

(
ABC

score (θ′) , Tval

)
(2.101)

49

2. Background and State-of-the-Art

Set of points X =
{(

fallout
(
ABC

score (θ) , Tval

)
, recall

(
ABC

score (θ) , Tval

))
| θ ∈ [θmin, θmax]

}
hence forms a (discontinuous) curve in the fallout-recall [0, 1]2 plane, starting at [0, 0] for
θ = θmin and ending at [1, 1] for θ = θmax. Area under this curve gives us the quality of the
provided score function as:

AUC ROC(score) =

∫ 1

0

 arg max
(fallout ,recall)∈X
w.r.t. fallout≤f

fallout


2

df (2.102)

The formula reflects the fact that X is not continuous (U × I is finite), and hence
when integrating by fallout f , the recall value associated with arbitrary f ∈ [0, 1] is given
as the recall of the point in (fallout , recall) ∈ X with the greatest fallout ≤ y. It holds
0 ≤ AUC ROC(score) ≤ 1 with 0 being worst possible and 1 the best possible value.

2.5.4 Top-N Recommendation Measures

As we stated earlier, Top-N Recommendation (Sec. 2.2.4) is one the most important and
practical recommendation tasks. User is presented N items and it is desirable for as many
of them as possible to be relevant. A lot of measures were hence been researched and
suggested for recommendation sets of fixed size N (typically ranging from 5 to 30). There
exist measures expressing accuracy and relevancy of the recommend items to given user,
but other measures, focusing mainly on the overall composition of the recommended items
across the whole userbase, exist as well. We will summarize them in this section.

2.5.4.1 Precision@N , Recall@N

While the precision and the recall as defined in Eqs. 2.94 and 2.95 comply with general
Binary Classification task, they are far from being practical in their pure sense [44]. Many
authors noticed that, proposing binary classification measures which take set of items
of size N into account [13, 92, 23, 100]. Measuring precision and recall on such sets is
known from Information Retrieval as precision at k (most often written at precision@k or
precision@10 for specific k = 10) and recall at k (written as recall@k). To avoid confusion
between the letters k (Information Retrieval) and N (Top-N in Recommender Systems),
we will use the terms precision@N and recall@N .

Considering construction of the training set T as in 2.5.1, the situation is not as straight-
foward as in Rating Prediction or simple Binary Classification. Assuming there is binary
rating matrix R ∈ {0, 1, ? }U×I provided, one of the possibilities is processing the matrix
in user-wise manner, and create observation (x) and target (y) set for each user u ∈ U by
randomly partitioning the set of items which are relevant for that user. In other words,
denoting r+(u) = {i ∈ I | ru,i = 1} as the set of relevant items for user u ∈ U , the training
set can be defined as follows:

T =
{

((u, obs), target) | u ∈ U∧obs∪target = r+(u)∧obs∩target = ∅∧obs 6= ∅∧|target |= N
}

(2.103)

50

2.5. Evaluation in Recommender Systems

Note the |target |= N condition: We want non-empty observation set and target set
of size at least N . Considering N = 5 or N = 10, this may be practical on academic
datasets, but on implicit rating datasets with anonymous sessions in industrial practice,
it is very common that |r+(u)| often follows power-law distribution, with vast majority of
users having ≤ 3 relevant items in their history. We may then relax on such condition,
which may result in increase in size of T in order of magnitude on industrial datasets:

T =
{

((u, obs), target) | u ∈ U∧obs∪target = r+(u)∧obs∩target = ∅∧obs 6= ∅
}

(2.104)

Given Tval ⊆ (U × 2I) × 2I as in Eqs. 2.103 or 2.104, and a Top-N recommendation
model m modified against Eq. 2.11 in the sense that for user u, it only takes observation
set obs of relevant items into account (m:U × 2I → {I ′ ⊂ I | |I ′| = N}), we can define
precision@N as a validation reward function (in compliance with Eq. 2.81) as

precision@N (m, Tval) =
1

|Tval|
∑

((u,obs),target)∈Tval

|m(u, obs) ∩ target |
|m(u, obs)|

(2.105)

For each user, we let the model recommend N items and compute the portion of them
that really were relevant (that is, they were in set of hidden items target). The result is
then average over all the users. Similarly, we can define recall@N as a validation reward
function which computes the portion of all the hidden revelant items in target that were
recommended by the model as

recall@N (m, Tval) =
1

|Tval|
∑

((u,obs),target)∈Tval

|m(u, obs) ∩ target |
|target |

(2.106)

In case of training set as in Eq. 2.103, where ∀((u, obs), target) ∈ Tval: |target |= N , it
holds precision@N (m, Tval) = recall@N (m, Tval), because recommending N ′ ≤ N relevant
items means that N ′

N
of recommended items really were relevant, as well as that N ′

N
of all

relevant items really were recommended. This doesn’t hold for training set according to Eq.
2.104 where |target |< N for some users. For such users, recall is still from [0, 1], because
using N recommendations, it is easily possible to recommended all the N ′ < N relevant

items, but precision will be from
[
0, |target |

N

]
with |target |

N
< 1 for |target | < N . To make

both precision and recall be from [0, 1], we can further modify the evaluation procedure
by asking for exactly |target | recommendations for each user instead of fixed N across all
users.

A completely different methodology of computing recall@N has been proposed in [17].
There is fixed splitting of users into obs and target , and the training set consists simply of
the full set of relevant items for each user:

T =
{

(u, r+(u)) | u ∈ U
}

(2.107)

When computing the recall, one user in the testing set is selected (the active user). Iterat-
ively, one rated item (the test item) is removed from the profile of the active user at time.

51

2. Background and State-of-the-Art

The model learned on training set is used to generate Top-N recommendations based on
the reduced profile. If the test item is in the Top-N set, a counter is incremented. Given
Tval ⊆ U×2I , and a Top-N recommendation model m:U×2I → {I ′ ⊂ I | |I ′| = N} taking
both the user and the observation set into account same as in Eqs. 2.105 and 2.106, we
can define

recall@NLOO (m, Tval) =
|{(u, i) | (u, r+(u)) ∈ Tval ∧ i ∈ r+(u) ∧ i ∈ m (u, r+(u) \ {i})}|

|{(u, i) | (u, r+(u)) ∈ Tval ∧ i ∈ r+(u)}|
(2.108)

Such a definition of recall is more practical and fits well to almost any explicit rating
dataset, including industrial dataset including users with |r+(u)| < N .

2.5.4.2 Precision and Recall vs. RMSE

Rating prediction models are often used to generate Top-N recommendations such that
model mRP:U × I → R (Eq. 2.8) is provided as the score:U × I → R function (Eq.
2.15) to produce Top-N recommendation model mTop-N (Eq. 2.11) through mechanism
presented in Sec. 2.16. As we mentioned in Sec. 2.5.2.2, popular learning algorithms, such
as the MF, are often internally minimizing RMSE to train the model, with RMSE being
subsequently also used for its evaluation. It is henceforth natural question how the rating
prediction measures like RMSE actually impact Top-N binary classification measures like
precision@N and recall@N . In many scenarios, minimizing RMSE effectively only serves
as a proxy to maximizing precision@N and recall@N .

Using RMSE as the main criterion in the aftermath of the Netflix Prize Challenge has
been questioned e.g. in [55], where using Top-K evaluation approach has been proposed
based on ranking. The conclusion was that even “small improvements in RMSE translate
into significant improvements in quality of the top K products”. However, in a follow-up
study [23], where the authors focused on performance evaluation in Top-N recommendation
tasks, they denied their general claims in [55] and stated that “the convenient assumption
that an error metric such as RMSE can serve as good proxy for top-N accuracy is question-
able at best”, and that there is no monotonic relation between rating prediction metrics
an precision and recall on Top-N recommendation tasks.

Very interesting comparison in RMSE vs. precision and recall was also done in [17]
using recall as defined in Eq. 2.108. Measuring relation between RMSE and recall on the
MovieLens and the Netflix Prize datasets, the authors even show completely contradictory
results: F-measure and recall growing with RMSE, although F-measure and recall express
validation reward, whilst RMSE expresses validation loss.

In a bachelor thesis [40] (in Czech) supervised by the author of this thesis, similar
results have been achieved with UserKnn following Eq. 2.22 using the score function for
rating prediction as discussed above.

Our comment to the topic is that nonmonotonicity between RMSE and precision/recall
can be trivially shown by considering two rating prediction models rRP, r

′
RP:U × I → R

such that r′RP(u, i) = rRP(u, i) + c for c ∈ R. When used for Top-N recommendation, for

52

2.5. Evaluation in Recommender Systems

different c ∈ R, we are guaranteed to obtain all the possible values of RMSE(m′RP, T) ∈
[RMSE(mRP, T),∞] despite the fact that both models will always have the same precision
and recall. But even besides artificial examples like that, results like [17], [23], and [40]
show that monotonicity doesn’t hold even under “good will” to optimize recall through
the RMSE proxy.

2.5.4.3 Popularity-Stratified Recall@N

In [101], it is stated that validation reward measures like precision and recall tend to
decrease towards the long tail (less popular items liked by users distinctive taste), while such
recommendations are particularly valuable. In response to that, popularity-stratitified
recall@N is suggested as a reward measure that is biased towards the long tail.

Provided binary rating matrix R ∈ {0, 1, ?}U×I , we can denote relative item popularity
p: I → [0, 1] as

p(i) = |{u ∈ U | ru,i = 1}| (2.109)

Given Tval ⊆
(
U × 2I

)
× 2I as in as in Eqs. 2.103 or 2.104, popularity-stratified recall is

given as validation reward function

recallβ,wPS @N (m, Tval) =
∑

((u,obs),target)

wβ(u) ·
∑

i∈target∩m(u,obs) p(i)
−β∑

i∈target p(i)
−β (2.110)

where wβ : U → [0, 1] is an optional user-dependent weight, normalized such that
∑

u∈U w
β(u) =

1, with suggested

wβ(u) =
1

|U |
·

∑
i∈r+(u)

p(i)−β

∑
v∈U

i∈r+(v)

p(i)−β
(2.111)

where r+:U → 2I denotes set or relevant items of u as in Eq. 2.103. For β = 0, we get
recall@N as in 2.106. For β = 1, weight of each item is inverse proportional to its observed
popularity. Experiments are done for different β ∈ [0, 1] in [101] with β-weighting not only

in evaluation
(

using recallβ,wPS @N
)

, but also during training matrix factorization model to

optimize for the biased recall. The optimization problem is given for identical to Eq. 2.60
with popularity stratification given by wu,i representing the weight for each (u, i)-part:

wu,i =



∑
i∈r+(u)

p(i)−β∑
v∈U

i∈r+(v)

p(i)−β
if score(u, i) 6= ?

wm if score(u, i) = ?

(2.112)

with wm as a hyperparameter optimized using cross-validation.

53

2. Background and State-of-the-Art

2.5.4.4 Catalog and User Coverage

Besides various measures that in general measure the accuracy by comparing ŷ` = m(x`)
with y` from the validation set (Sec. 2.5.1), multiple alternative measures exist to assess
additional qualitative aspects of the provided model. Of the most prominent, the coverage
measures estimate the portion of users u ∈ U or items i ∈ I for which the model is somehow
useful.

Specifically, the catalog coverage [44, 33, 96] estimates the portion of all the items
that provided Top-N recommendation model is able to recommend. Thanks to our general
definition of validation reward function in Eq. 2.81, provided Tval ⊆ (U × 2I) × 2I and
Top-N recommendation model m:U×2I → {I ′ ⊂ I | |I ′| = N} as in Eqs. 2.105 and 2.106,
we can define catalog coverage as validation reward:

catalog-coverage (m, Tval) =
1

|I|

∣∣∣∣∣∣
⋃

((u,obs),target)∈Tval

m(u, obs)

∣∣∣∣∣∣ (2.113)

It is common that different models focus on different subsets of items, leaving the rest
unrecommendable. For example, popularity models only recommend items from the top of
global popularity list. Popularity model m will hence have catalog-coverage (m, Tval) very
close to N1. Collaborative Filtering models, on the other hand, focus only on items with
enough ratings, and they do not recommend cold-start items, again focusing them only on
a certain subset of items. The same holds for content-based algorithms, such as ItemKnn
with attribute similarity (Sec. 2.4.3.2). Such a model is only able to recommend the items
with attribute values provided, leaving the unannotated items aside. This makes catalog
coverage very meaningful and useful measure of assessing model quality.

There also exists an alternative measure to assess diversity, expressed as Gini index
[96, 19], which tells how unequally often different items are recommended. Let us define
p(i, Tval) as the empirical probability of item i ∈ I being recommended by Top-N recom-
mendation model m for a random user u ∈ U in the validation set Tval:

p (i, Tval) =
|{((u, obs), target) ∈ Tval | i ∈ m(u, obs)}|∑
j∈I |{((u, obs), target) ∈ Tval | j ∈ m(u, obs)}|

(2.114)

and sequence P of such probabilities for all items i ∈ I sorted by p(i) in non-decreasing
order:

P Tval =
(
p (i1, Tval) , . . . , p

(
i|I|, Tval

))
w.r.t. ∀j, ` ∈ {1, . . . , |I|}: j < ` =⇒ P Tvalj ≤ P Tval`

(2.115)
Gini index is then given as a validation reward function:

gini (m, Tval) =

|I|∑
j=1

P Tvalj · (2j − |I|−1) (2.116)

1not exactly equal to N but slightly larger because of Eq. 2.12 requirement to not recommend already
rated items, and there may be users who have rated items from the top of the list

54

2.5. Evaluation in Recommender Systems

Yet another alternative diversity measure is the Shannon entropy [96], given (using
p(i) defined in Eq. 2.114) as validation reward function

shannon (m, Tval) = −
∑
i∈I

p (i, Tval) · log (p(i, Tval)) (2.117)

Besides measuring coverage on items, it is also possible to measure coverage on users.
The user coverage is by far not that popular as catalog coverage, but has been used
in several studies, being typically defined [15, 111, 88] as the portion of users from the
validation set for which the model was able to generate any recommendation. Formally, it
can be defined as a validation reward function

user -coverage(m, Tval) =
1

|U |
∑

((u,obs),target)∈Tval

{
0 if m(u, obs) 6= ∅
1 if m(u, obs) = ∅ (2.118)

An alternative version of user coverage is possible, requiring the model to recommend
full set of N requested items:

user -coverage(m, Tval) =
1

|U |
∑

((u,obs),target)∈Tval

{
0 if |m(u, obs)| < N
1 if |m(u, obs)| = N

(2.119)

2.5.4.5 Click-Through Rate

All the measures mentioned so far could be classified as the offline measures. They are
based on split validation (or cross-validation), but they do not require production deploy-
ment as the provided training set T alone is enough for them. As we mentioned in the
introduction of Sec. 2.5, there are online measures as well, allowing production evaluation
of the deployed model.

One of the most important to mention is the click-through rate (CTR) [113, 9,
32]. It assumes a Top-N recommendation model m running in production for a certain
period of time, producing set of k recommendations R = {ru1,t1,I1 , . . . , ruk,tk,Ik} where
Ij ∈ {I ′ ⊂ I | |I ′| = N} are the recommended items for the user uj associated with
the j-th recommendation which took place at time tj. To make the CTR possible to
compute, there is also need for user feedback, which is basically a projection f :R →
I ∪{∅}, encoding whether of the recommended items have been clicked by the user in the
user interface

(
f
(
ruj ,tj ,Ij

)
= i ∈ Ij

)
or not

(
f
(
ruj ,tj ,Ij

)
= ∅

)
. The feedback can either be

explicit, collected by proper tracking of clicks in the interface and given as an enumeration
f : ru1,t1,I1 7→ i1 . . . ruk,tk,Ik 7→ ik, or implicit if proper tracking is not implemented or
possible. Implicit feedback can be obtained e.g. by pairing recommendations with future
interactions in set Y = {(u1, i1, t1, d1) , . . . , (uq, iq, tq, dq)} (as introduced in Sec. 2.1.3)
such that the recommended item has been interacted within a time window of size w ∈ R+

from the recommendation. If more such interactions exists, we take the item from the

55

2. Background and State-of-the-Art

interaction with the lowest timestamp fulfilling the time window condition:

f
(
ruj ,tj ,Ij

)
=


arg min (uj ,i`,t`,d`)∈R

t`>tj∧t`−tj≤w
i`∈Ij

t`


2

if ∃(uj, i`, t`, d`) ∈ R: t` > tj ∧ t` − tj ≤ w ∧ i ∈ Ij

∅ otherwise
(2.120)

The CTR of given model is then given simply as:

CTR(m) =
|{r ∈ R | f(r) 6= ∅}|

|R|
(2.121)

CTR is a very simple and is hence quite often in practise when optimizing the models
or making business decisions between multiple recommendation system vendors. Online
evaluation is typically closely connected with A/B testing [25, 39].

Other, more business and long-term oriented measures exists as well. They include the
Conversion Rate (CR), Average Time Spent (ATS), Average Order Value (AOV),
and Return Of Investment (ROI).

2.5.5 Model Capacity, Underfitting and Overfitting

In Sec. 2.5.1, we defined learning algorithm as a projection which takes the training
set Ttrain and produces a model. We introduced the notion of split/cross validation as
the method of assessing quality of such a model. We stated that with each learning
algorithm A, there is a space of hyperparameters PA associated, making the process of
model construction based not only on provided data, but also on P ∈ PA.

Subsequently, we introduced several accuracy measures for different recommendation
tasks. Namely the MAE (Eq. 2.88), NMAE (Eq. 2.89), MSE (Eq. 2.90), and RMSE (Eq.
2.91) for Rating Prediction, precision (Eq. 2.94), recall (Eq. 2.95), F-measure (Eq. 2.96),
and AUC (Eq. 2.102) for Binary Classification, precision@N (Eq. 2.105), recall@N (Eq.
2.106), leave-one-out recall (Eq. 2.108), and popularity-stratified recall (Eq. 2.110) for
Top-N recommendation.

In context of this thesis, it is especially important to mention the relation between
accuracy measures and model capacity. The notion of model capacity has been in-
troduced in [104] in 1971, with a measure known today as the Vapnik-Chervonenkis
dimension (or VC dimension for short). It can be simply understood as the maximal
size of Ttrain such that for arbitrary examples in Ttrain, it is theoretically possible for
learning algorithm A with given hyperparameterization P ∈ PA to produce a model
m = A (P, Ttrain) such that ∀ (x`,y`) ∈ Ttrain:m (x`) = y`, meaning the model captures
the whole training set without making an error on it. For such a model m:X → Y , given
accuracy-based validation reward function (such as the recall) F (as in Eq. 2.78), and
given accuracy-based validation loss function (such as the RMSE) L (as in Eq. 2.81),
it holds F (m, Ttrain) = maxm′∈YX F (m′, Ttrain) and L (m, Ttrain) = minm′∈YX L (m′, Ttrain),
simply because m, having memorizing it, is optimal of Ttrain.

56

2.5. Evaluation in Recommender Systems

Memorizing the whole training set, however, is not always desirable, as the model
possibly lacks proper generalization. This is closely connected to property of set of models
called the bias-variance tradeoff. It refers to a dilemma between trying to simultaneously
minimize two sources of model error. The bias part of error is caused by abstraction and
generalization performed by the learning algorithm while training the model. Due to bias,
the resulting model may miss important relations in the data, which is also known as the
underfitting. The variance part of error is caused by sensitivity to noise and learning
too granular relations that may be too specific only for the training set, with not enough
abstraction, which is also known as the overfitting.

As an example, let us consider the UserKnn model on given rating matrix, for simplicity
in the unweighted version (Eq. 2.21). In Eq. 2.20, there is a hyperparameter k ∈ N,
determining the number of neighbors to be examined when building the recommendations.
Let us further consider that we use this model for rating prediction task putting simply
m(u, i) = score(u, i). We may consider that there is a learning algorithm AUserKnn:Pk ×
(R ∪ {?})U×I → R(U×I) with Pk = N as the single hyperparameter staying for the k. Now
consider mk=1 = AUserKnn (1, Ttrain) and mk=|Ttrain| = AUserKnn (|Ttrain| , Ttrain). Ignoring
(again for simplicity) possible contradictory examples in Ttrain, we may say that mk=1 has
VD dimension equal to ∞, because when predicting for a given user from Ttrain, the 1st
nearest neighbor is the user itself, making the prediction from itself to itself. The algorithm
is hence able to fully memorize arbitrarily large set of training examples. Fully memorizing
the whole Ttrain makes mk=1 a low-bias, high-variance model. In contrast, mk=|Ttrain| has
VC dimension equal to 1, because no matter the source user, all the users are always
considered, and because we declared the UserKnn is unweighted, if effectively behaves as
a popularity model compliant to Eq. 2.19. Being only able to do global averaging, it
effectively behaves as a constant model with high bias and low variance. From these two
edge case examples, it should be obvious that some compromise 1 < k < |Ttrain| is more
desirable.

It is important to distinguish between the theoretical model capacity and the actual
abilities of the learning algorithm. While in case of UserKnn the learning algorithm has
quite easy job just to store the given data into memory for future use, in case of training MF
or neural network model, the situation is much more complicated. High-capacity models
(large number of latent features, large network) may fail to capture the information during
training and get stuck in local optimum e.g. because of wrong learning rate in SGD or
in backpropagation. Despite having high VD dimension, such models may exhibit low
accuracy even on the training set, caused by both high bias and high variance.

Because manipulation with model capacity is on of the key contributions of this theses,
we well revisit the topic in the following chapters.

57

Chapter 3

Overview of Our Approach

In this chapter, we present our approach of systematically controlling the magnitude of
long-tail recommendations generated by the models. The key idea is in picking proper
hyperparameters which control the capacity of the resulting model for individual learning
algorithms. For each hyperparameter, we discuss its impact on the long-tail recommend-
ations. Besides algorithm-specific hyperparameters, we also propose model-independent
popularity-based regularization through generalized β-boosting as proposed in [101], lever-
aging the unified way in which we introduced the algorithms in the previous chapter.
Finally, we propose searching for Pareto-optimal front of models in multiobjective top-N
evaluation, proposing specifically the leave-one-out recall and the catalog coverage as the
most relevant measures for optimizing long-tail recommendations.

3.1 Popularity-Based Regularization

In Sec. 2.4, we introduces several recommendation algorithms producing models that
can be used for different recommendation tasks: Rating Prediction, Binary Classification,
Top-N Recommendation, and Ranking. The resulting models were described under unified
framework of the score function score:U × I → R (Eq. 2.15), showing that provided such
a function, we can easily construct a recommendation model for any of the aforementioned
tasks.

In Sec. 2.5.4.3, we discussed an approach from [101], where a novel method for model
evaluation bonifying long-tail recommendations, coming from assumption that such recom-
mendations are particularly valuable. Together with the proposed evaluation method (the
popularity stratified recall), a biased version of training the MF model has been proposed
in [101], showing that model trained using popularity stratified weighting in the loss func-
tion leads to model biased towards the long tail. Specifically, hyperparameter β ∈ [0, 1] in
proposed to control the size of popularity stratified bias, with β = 0 meaning zero bias,
and β = 1 full bias.

Based on long-term experience in building and running productionalized models, in-

59

3. Overview of Our Approach

cluding empirical, offline, and online evaluation, we independently discovered the very
same hyperparameter, finding it very important for model quality. While in [101] the hy-
perparameter is used in the loss function of MF learning algorithm, putting higher weight
observed ratings ru,i where i ∈ I is a long-tail item, we propose large generalization to this
approach.

Our generalization includes:

1. Excluding β-biasing from the MF model training (loss function in Eq. 2.112) and
postponing it for the recommendation phase.

2. Making β-biasing applicable to any of the presented models. To do that, we exploit
the fact that all the models were presented using the internal score:U × I function.
Given such a function, and a general rating matrix R ∈ (R ∪ {?})U×I , we define the
popularity-stratified score as follows:

scoreβPS(u, i) =


score(u, i)

|{v ∈ U | rv,i > 0}|β
if ∃v ∈ U : rv,i > 0

0 otherwise
(3.1)

This makes β-biasing applicable not only for the original version of MF (Eq. 2.60
with Eq. 2.112), but also for:

◦ UserKnn

– unweighted as in Eq. 2.21,

– weighted as in Eq. 2.22,

– with non-normalized neighborhood following [23] as in Eq. 2.23,

◦ ItemKnn as introduced in [93]

– unweighted as in Eq. 2.29,

– weighted as in Eq. 2.30,

– with non-normalized neighborhood following [23] as in Eq. 2.31,

◦ Association Rules

– using on the best-rule method based on [91] and [61] as in Eq. 2.44,

– using weighted voting based on idea from [54] as in Eq. 2.45,

– using different rule-quality measures based on [6] as in Eqs. 2.41, 2.42, and
2.43,

◦ Matrix Factorization

– in simplest form as in 2.46,

– with user, item, and global biases following [56] and Eq. 2.50,

– with mixed implicit and explicit data proposed in [55] and Eq. 2.52,

– with imputed unobserved values following [100] and Eq. 2.59,

60

3.2. Manipulating Model Capacity

– using different learning objectives in model learning phase: Eq. 2.47, Eq.
2.51 [56], Eq. 2.53 [55], Eq. 2.56 [47],

– trained using different optimization algorithms (SGD, ALS),

◦ Deep Learning Models

– Wide & Deep Learning proposed in [20] as in Eq. 2.71,

– U-AutoRec and I-Autorec proposed in [95] as in Eqs. 2.72 and 2.73.

3. Generalizing β-boosting also for β < 0. In [101], the assumption is that the (MF)
model generally tends to be biased towards popular items, and hence correction
towards the long-tail is needed using β ∈ [0, 1]. We state that this is not always the
case and that there are models biased towards long-tail in default behavior. For such
models, β < 0 makes sense in order to bonify popular items instead on penalizing
them using β > 0. In general, we propose β ∈ R as a universal model hyperparameter
with β ∈ [−1, 1] being the most reasonable in most cases.

3.2 Manipulating Model Capacity

In Sec. 2.5.5, we introduced the notion of the bias-variance trade-off connected with
model capacity. We also mentioned that the capacity of the resulting model can be often
controlled by the hyperparameterization of the learning algorithm (as introduced in Sec.
2.2.1). One the most important contributions of this thesis is showing that all the models
presented in Sec. 2.4 have a learning algorithm A with hyperparameterization PA that
directly affects the capacity of the model, leading to similar behavior for all the models in
the Recall-Coverage plane.

Therefore, in this section, we will introduce such hyperparameterization for different
recommendation algorithms from Sec. 2.4. Assuming A is a learning algorithm hyper-
parameterized by PA, let us denote PA = {p1 ∈ D1, . . . , pr ∈ Dr} the fact hyperpara-
meter space PA is a cartesian product D1 × . . . × Dr with individual hyperparameters
p1 ∈ D1, . . . , pr ∈ Dr. Furthermore, let us denote [p1 = d1, . . . , pr = dr] ∈ PA the one
specific hyperparameterization given by value assignments to individual hyperparameters.
Let us discuss capacity hyperparameters for individual models in the following subsections.

3.2.1 β as Universal Model Capacity Hyperparameter

In [101], the β-stratification has been introduced on top of strong assumption that the
missing data (denoted as ru,i = ? throughout this thesis) are not distributed in the rating
matrix at random, which is called the MNAR (Missing Not At Random) assumption. It is
stated that there is positive correlation between item popularity p(i) of item i ∈ I and the
probability of observing the rating for the item Pr(ru,i 6= ? | i), which is actually against
true users’ interests. It is furthermore stated that such as a bias is by default learned by the
MF model, suggesting popularity-based weighting of the interactions in the rating matrix

61

3. Overview of Our Approach

with β = 0 corresponding to no correction, and β = 0.5 as the correction to situation when
Pr(ru,i 6= ? | i) grows linearly with p(i).

While we don’t generally agree that all the models by default capture the MNAR trend
(and we will show counterexamples in the experiments), we agree thar MNAR is valid
in general. It often happens in many domains that some items are generally well-known
(for example, thanks to good marketing), making users search for them and hence view
them much more likely simply because they are popular. Another source of MNAR bias
may be influencing users by editorial choice, such as putting hand-picked items on the
home/welcome page of the system. A good example is online news, where articles about
recent important events are put on the frontpage.

Let us consider usage of β as proposed in Eq. 3.1 on top of the score function of an
arbitrary model. We defined the score(u, i) as the relevance of item i ∈ I to user u ∈ U .

Now consider a low-capacity model m based on score. As discussed in Sec. 2.5.5,
m has high bias and low variance. The learning algorithm is hence only able to capture
general trends in data into m, being unable to encompass rare events. Because of the
MNAR assumption, the general trend is that popular items are often relevant, resulting
in high value of score(u, i) for popular items i among the all users u ∈ U . Simply said,
popular items have high score for everybody in such weak learners. As an example, imagine
a product which is very popular in a supermarket, such as the shopping bag. Based on the
purchase data, shopping bag seems like a very good recommendation for everybody: no
matter what is being purchased, it is put to the shopping bag in the end. If we take, for
example, ARs with confidence (Eq. 2.41) as the rule quality measure, there will be lot of
rules with shopping bag on right-hand side with confidence close to highest possible value
of 1. That is because 99% of users who purchase diapers also purchase a shopping bag, as
well as 99% of user who purchase beer, purchase shopping bag, too.

When we put β > 0, we start correcting that: Items i ∈ I that are globally not
so popular, but are still identified as possibly slightly relevant for given user u, that is
score(u, i) > 0, start to be released from their unpopularity handicap, and possibly replace
the original popular items in, say, Top-N recommendation. In our example with ARs
and confidence quality measure, some other items with lower confidence will replace the
shopping bag, hopefully recommending goods that are more relevant, such as the baby oil
for user with diapers in the shopping cart, despite conf ({diapers} =⇒ {baby-oil}) = 0.2,
unlike conf ({diapers} =⇒ {shopping-bag}) = 0.99.

In contrast, consider a high-capacity model m based on score. Such a model has
high variance and low bias. A good example may be the UserKnn model with small k.
The model tends to capture even the small user groups and offer niche recommendations
to them. The problem here, however, may be that the model is too long-tail. Imagine
an online news portal with a niche spare time section about cycling, and an anonymous
user who came to that portal and viewed one or two cycling articles. The most similar
users will also have cycling articles in their history. Henceforth, there is very high chance
that the recommended article will be about cycling again, simply because too small cluster
of niche users has been considered. Viewing an article about cycling, however, doesn’t
mean that general news are irrelevant for that user, because many articles are by their

62

3.2. Manipulating Model Capacity

nature interesting to everybody. In this case, the error doesn’t come from high bias as in
the “shopping bag example”, but, quite oppositely, from the high variance. In this case,
β < 0 is the correction. Because articles about cycling are popular only among small
set of users, but unpopular in general, they will start being penalized. This may cause
that if some of the neighboring users also viewed something more mainstream, it will get
boosted and replace the long-tail items. Instead of another cycling article, the user may be
recommended some generally popular article about sports, releasing her from the “cycling
bubble”.

In general, each model has some default bias-variance ratio, and using negative or
positive β, we can shift it in one or the other direction. For extreme values of β → −∞
and β → ∞, we may obtain the popularity and “antipopularity” models, respectively, at
least on the set of items {i ∈ I | score(u, i) 6= 0} for given u ∈ U . In the our experiments,
we will demonstrate the impact of β on different model.

3.2.2 User-Based k-Nearest Neighbors

For the UserKnn learning algorithm AUserKnn, the space of capacity-manipulating hyper-
parameters is

PAUserKnn
= [k ∈ N, β ∈ R] (3.2)

We basically discussed impact of both hyperparameters in the previous sections while
using UserKnn as example to introduce model capacity (Sec. 2.5.5) and universal β-
boosting (Sec. 3.2.1). Just to summarize: small value of k leads to low-bias, high-variance
model, which is prone to overfitting. If the k is extremely small, such as k = 1, the
model may capture pure noise. Oppositely, for high value of k, we obtain a high-bias,
low-variance model. Especially for the unweighted version (Eq. 2.21), such a model is
prone to overfitting, yielding pure popularity model (Eq. 2.19) for k →∞.

3.2.3 Item-Based k-Nearest Neighbors

The ItemKnn learning algorithmAItemKnn has, similarly toAUserKnn, capacity-manipulating
hyperparameterization

PAItemKnn
= [k ∈ N, β ∈ R] (3.3)

In case of ItemKnn, however, the k has a different meaning, and hence deserves separate
discussion. The difference can be best illustrated on a user u ∈ U who had rated only
single item iu, that is {i ∈ I | ru,i 6= ?} = {iu}. For such a user, considering the Top-N
recommendation task, the k doesn’t have significant impact, because the candidates are
sorted according to the sim function in Eq. 2.27, and only the top k most similar can obtain
non-zero score (they appear in NNk(iu) in Eq. 2.28 and hence also in Eqs. 2.29, 2.30, or
2.31, depending on the ItemKnn version used). Specifically, for Top-N recommendation,
it is always the Top-(min(N, k)) items most similar to iu which are recommended for such
a single-item user u. WithN = 10, the recommendations are all the same ∀k ∈ {10, 11, . . .}.

63

3. Overview of Our Approach

This would not be the case in UserKnn where the recommendations for such user can change
easily with growing k.

Having mentioned that, it is the users with more that 1 rated item, for who bigger k
plays a role, because multiple neighborhoods get mixed together. Provided well-working
sim function, ItemKnn is quite good long-tail recommender by default. The rating-based
cosine similarity as proposed in the original paper [93], works quite well. It tends to
recommend long-tail items to long-tail items, because the similarity is basically measured
by the intersection of sets users who interacted with both. Let us consider the “diapers”
example from Sec. 3.2.1, and for simplicity, only binary rating matrix, such the one created
from purchases. Furthermore, consider set D ⊆ U of users who purchased diapers. The set
of users O ⊆ U who purchased baby oil will be much more similar to D compared to set of
users B ⊆ U who purchased the shopping bag. Even though |D ∪O| may be smaller than
|D ∪B|, it is the very large |B| which highly penalizes B in the cosine similarity reduced

to Ochiai similarity coefficient |D∩B||D|·|B| (because the rating matrix is binary).

3.2.4 Association Rules

In case of Association Rules, the capacity-manipulating hyperparameterization PAAR
of

the learning algorithm AAR is:

PAAR
= [smin ∈ [0, 1], β ∈ R] (3.4)

In Eq. 2.38, we defined smin as the minimal popularity (relative to |U |) of an itemset
X ∪Y for an association rule X ⇒ Y . Therefore, it directly controls the granularity of the
discovered rules, and hence the capacity of the model.

For high value of smin, the ARs model m has low capacity, and hence exhibits high bias
and low variance. Only the most important associations are learned in such case, because
for rule X ⇒ Y , there must be at least dsmin · |U |e users u ∈ U having ru,i = 1 ∀i ∈ X ∪ Y
in the given binary rating matrix R ∈ {0, 1, ?}U×I .

For small value of smin, on the other hand, the resulting model has high capacity, leading
to low bias and high variance. It is able to capture rules also for the long-tail items, not
requiring too many users to support a rule. In an extreme case of smin → 0, there will be an
explosion in the number of rules as the learning algorithm will extract rules as granular as
supported by only single user. That is, for user u ∈ U who positively rated items r+(u) =
{i ∈ I | ru,i = 1}, we are guaranteed that all the rules {X ⇒ Y | X ⊂ r+(u)∧ Y ⊂ r+(u)}
will be contained in the resulting model. This is an obvious overfitting.

In case of ARs, it is also the β hyperparameter which deserves separate discussion. In
Sec. 2.4.4.3, we mentioned that the original paper proposing the best-rule method [91] came
with the confidence as the suggested rule-quality measure. Let us consider special class of
rules X ⇒ Y where the right-hand side contains only one item, that is Y = {iy}. Ignoring
the cases when no rules are applicable, assuming rules with |Y |= 1, and using confidence
(Eq. 2.41) as the rule-quality measure, the score function for the best-rule method from

64

3.2. Manipulating Model Capacity

Eq. 2.44 simplifies to

score(u, i) = max
(X⇒{i})∈R
T (u)⊆X

conf (X ⇒ {i}) (3.5)

and for the weighted voting method from Eq. 2.45 to

score(u, i) =
∑

(X⇒{i})∈R
T (u)⊆X

conf (X ⇒ {i}) (3.6)

Looking once more at our definition of general β-boosting in Eq. 3.1 and considering our
definition of support in Eq. 2.37, it appears that in case of binary matrices, scoreβPS rewrites
to nothing but

scoreβPS(u, i) =
score(u, i)

supp ({i})β
(3.7)

Applied to Eq. 3.5:

scoreβPS(u, i) =

max
(X⇒{i})∈R
T (u)⊆X

conf (X ⇒ {i})

supp ({i})β
= max

(X⇒{i})∈R
T (u)⊆X

conf (X ⇒ {i})
supp ({i})β

(3.8)

Applied to Eq. 3.6:

scoreβPS(u, i) =

∑
(X⇒{i})∈R
T (u)⊆X

conf (X ⇒ {i})

supp ({i})β
=

∑
(X⇒{i})∈R
T (u)⊆X

conf (X ⇒ {i})
supp ({i})β

(3.9)

In both cases, β propagated to the rule-quality measure, replacing conf (X ⇒ {i}) with

conf (X ⇒ {i})
supp ({i})β

(3.10)

Now putting β=0, we get the original conf (X ⇒ {i}), which is not surprising. But

putting β = 1, we get conf (X⇒{i})
supp({i}) , which is nothing but the lift(X ⇒ {i}) according

to Eq. 2.42. In case of ARs, β ∈ [0, 1] can be hence thought as hyperparameter for
continuous transition from confidence to lift, if confidence was provided as the original
measure. Similarly, for β ∈ [−1, 0], we get continuous transition from lift to confidence, if
lift was provided as the original measure. While the confidence tends to be biased towards
globally popular items, the lift is a long-tail recommender.

65

3. Overview of Our Approach

3.2.5 Matrix Factorization

For Matrix Factorization learning algorithms, there are multiple capacity hyperparameters:

PAMF
= [f ∈ N, λ ∈ R, β ∈ R] (3.11)

The number of factors f is a natural capacity hyperparameter simply from the logic
that the larger matrices P ∈ Rf×U and Q ∈ Rf×I , the more data from the training set can
be stored into them. For very large f , in extreme case f = max (|U | , |I|), it is possible for
the learning algorithm to learn P and Q on arbitrary rating matrix R ∈ (R ∪ {?})U×I such
that PT · Q reconstructs the matrix without error, that is ∀(u, i) ∈ U × I: ru,i 6= ? =⇒
pT∗,u · q∗,i = ru,i. Such a model for high f hence represents low-bias, high-variance model
prone to overfitting with no abstraction learned from the original rating matrix.

In contrast, lower values of f push the learning algorithm to generalize, producing
high-bias, low-variance model. In extreme case of f = 1, the model tends to behave like
a popularity model. For f = 1, instead of being represented by a vector of factors, each
user u ∈ U and each item i ∈ I are represented by a single number, pu ∈ R and qi ∈ R,
respectively. In order to minimize the objective function of the optimization problem (Eqs.
2.47, 2.51, 2.53, or 2.56), the learning algorithm is forced to assign the highest values to
those pus of the highest

∑
i∈I

ru,i 6=?
ru,i, and to those qis of the highest

∑
u∈U
ru,i 6=?

ru,i. When

such a model is about to recommend to user u ∈ U , then as long as pu > 0, it holds
score(u, i) ∝ qi, and hence the popularity model behavior in Top-N recommendation.

Considering the hyperparameter λ ∈ R+
0 , it is intended as a regularization, which

makes limiting model capacity its primary purpose. For small values of λ, we get low-
bias, high-variance model. For λ = 0, the learning algorithm may minimize the objective
function by using very large numbers in the factor matrices, achieving perfect fit the
observed values, but possibly completely out-of-scale results when computing pT∗,u · q∗,i for
unobserved ru,i = ?. This can be seen as clear overfitting.

For λ � 0, on the other hand, the objective function prevents the learning algorithm
to fit the observed values, because the losses from high ‖p∗,u‖2 and ‖q∗,i‖2 start getting
higher importance than

∑
(u,i)∈U×I
ru,i 6=?

(ru,i − pT∗,u · q∗,i)2, leading to low-capacity model.

3.2.6 AutoRec

The last model we will briefly discuss is the AutoRec. For both the U-AutoRec and I-
AutoRec, the capacity hyperparameterizations are the same:

PAU-AutoRec
= [f ∈ N, λ ∈ R, β ∈ R]

PAI-AutoRec
= [f ∈ N, λ ∈ R, β ∈ R] (3.12)

In Sec. 2.4.6.2, Eqs. 2.76 and 2.77, we showed that both the U-AutoRec and I-AutoRec
can be thought as non-linear generalizations of MF. Henceforth, the roles of f ∈ N and
λ ∈ R remain basically the same as discussed in the previous Sec. 3.2.5.

66

3.3. Multi-Objective Top-N Evaluation

3.3 Multi-Objective Top-N Evaluation

In Sec. 2.2.1, we introduced a formal framework for hyperparameterized learning al-
gorithms that can produce models on given training dataset/rating matrix. After the
introduction of various algorithms in Sec. 2.4, in Sec. 2.5.1 we also introduced a formal
framework for evaluation of both the individual models and the learning algorithms that
produce them. In the same section, we introduced various performance measures.

Our approach lies in putting the components together, focusing namely on the Top-
N Recommendation task as defined in Sec. 2.2.4. The reasons why we consider this
task the most important have been mentioned at the beginning of Sec. 2.2.4: It the most
important, practical, and widespread task in industrial practice. While the other tasks
and approaches to their evaluation focus also on (u, i) pairs other than those where user
u ∈ U will actually see the item i ∈ I, Top-N Recommendation focuses exactly on those
N items from i, that may bring value to the user or the service provider: the items which
that are presented in the user interface. We believe that evaluation measures build on
top of these N items are henceforth the most important, because all the remaining items
are practically irrelevant.

3.3.1 Searching For Pareto-Optimal Models

We showed that various performance measures exist for the Top-N recommendations task.
We believe that considering only single measure is insufficient for practical evaluation, and
that searching for good models based on multiple criteria is the right approach.

For the purposes of multi-objective optimization, it is useful to define Pareto-domination
and Pareto-optimality first. Let X be a set and let F = {f1, . . . , fn} ⊆ RX , that is
fi:X → R ∀i ∈ {1, . . . , n}. We say that x ∈ X Pareto-dominates x′ ∈ X across F ,
denoting x �F x′, if and only if the following two conditions are satisfied:

1. ∀i ∈ {1, . . . , n}: fi(x) ≥ fi(x
′),

2. ∃i ∈ {1, . . . , n}: fi(x) > fi(x
′).

We also say that x∗ ∈ X is Pareto-optimal across F , denoting POF (x∗), if and only
if it is not Pareto-dominated by any x ∈ X, that is POF (x∗) ⇐⇒ ¬∃x ∈ X:x �F x∗.
Finally, we define Pareto-optimal front across F , denoted PF(F), as the set of all Pareto-
optimal elements across F , that is PF(F) = {x∗ ∈ X | POF (x∗)}. The graphical intuition
of Pareto-optimal front for F = {f1, f2} and set X such that {(f1(x), f2(x)) | x ∈ X} form
3 continuous curves in R2, is presented in Fig. 3.1.

In our context, the functions from F are the validation reward functions for indi-
vidual models as defined in Eq. 2.81, with various instances for Top-N Recommend-
ation task introduced in Sec. 2.5.4. Given training dataset T partitioned into Ttrain

and Tval as in Sec. 2.2.1, set of validation reward functions F = {F1, . . . ,Fn}, and
set of hyperparameterizable Top-N learning algorithms A = {A1, . . . ,Ar}, we may put

67

3. Overview of Our Approach

f2

f1

Figure 3.1: Visual intuition of Pareto-optimal front.

X = {A (PA, Ttrain) | A ∈ A ∧ PA ∈ PA}. We may then say that we are basically search-
ing for all the algorithms tied with their hyperparameterization, (A, PA)∗, such that
A (PA, Ttrain) produces a model belonging to Pareto-optimal front across F , which is gen-
eralization of statement from Sec. 2.5.1. Formally:

1. ForA (PA, Ttrain) ∈ X andA′ (P ′A′ , Ttrain) ∈ X, it holdsA (PA, Ttrain) �F A′ (P ′A′ , Ttrain)
if and only if the following two conditions are met:

a) ∀Fi ∈ F :Fi (A (PA, Ttrain) , Tval) ≥ Fi (A′ (P ′A′ , Ttrain) , Tval),

b) ∃Fi ∈ F :Fi (A (PA, Ttrain) , Tval) > Fi (A′ (P ′A′ , Ttrain) , Tval),

2. POF (A (PA, Ttrain)∗) ⇐⇒ ¬∃A′ (P ′A′ , Ttrain) ∈ X:A′ (P ′A′ , Ttrain) �F A (PA, Ttrain)∗,

3. PF(F) = {A (PA, Ttrain)∗ ∈ X | POF (A (PA, Ttrain)∗)}.

Please note that for simplicity, we assume that A (PA, Ttrain) if a fixed model as a res-
ult of one particular model training. This holds also for Sec. 2.5.1 where the validation
is meant as practical. Assuming that model learning is non-deterministic in general and
may produce different models over multiple runs, we could further generalize our defini-
tions, replacing Fi (A (PA, Ttrain) , Tval) with EFi (A (PA, Ttrain) , Tval) as the expected value
of Fi (A (PA, Ttrain) , Tval) over infinite number of runs. We don’t use such generalization
in this thesis, simply assuming that running k-fold cross-validation, with k single training
iterations as in Eq. 2.86, is sufficient to get stable enough and computationally feasible
estimate.

3.3.2 Recall-Coverage Optimization

Because one of the main contributions of this thesis is manipulation with model capacity
as stated in Sec. 3.2, we propose the following two Top-N validation reward functions as
the most important for multi-objective Top-N evaluation:

◦ recall@NLOO as defined in Eq. 2.108, extended by normalization,

68

3.3. Multi-Objective Top-N Evaluation

◦ catalog-coverage as defined in Eq. 2.113.

In our experiments, we will show that using F = {recall@NLOO, catalog-coverage}
makes very good sense when searching for Pareto-optimal models, because both the meas-
ures:

◦ strongly correlate with model capacity,

◦ are contradictory when manipulating model capacity.

Let us explain our modification of recall@NLOO, which adds user-based normalization.
In its original version, proposed in [17] and shown in Eq. 2.108, there is a “global counter”
for all items hidden from the profiles of all the users. From a higher perspective, this is
somehow similar to standard versions of Rating Prediction measures, such as the MAE or
the RMSE, as well – they also average across all hidden ratings, ignoring their source users.
The resulting yet questionable behavior of accuracy measures implemented in this way is
that the more hidden ratings from given user u ∈ U , the more this user impacts the value of
the measure. It may easily happen that for two users u, u′ ∈ U , there is a huge difference
in number of observed ratings in given rating matrix R, that is |{i ∈ I | ru,i 6= ?}| �
|{i ∈ I | ru′,i 6= ?}|. Considering the original leave-one-out recall, recall@NLOO, users will
impact the measure proportionally to their |r+(u)|.

While such behavior may be acceptable on clean, well-preprocessed academic datasets,
in industrial datasets, such disproportions in |r+(u)| may cause serious issues. Considering,
for example, implicit rating matrices generated from clickstreams on Internet websites,
there are many users with only very few interactions (see the |r+(u)| distributions on
industrial datasets used in our experiments in Table 4.2). It does not hold that such
users are unimportant from business perspective: they may be newcomers acquired from
a search engine, and it may be desirable to provide them quality recommendations as fast
as possible to keep them on the site. In contrast, if the data isn’t properly cleaned, there
may be users with thousands or even hundreds of thousands of interactions, representing
robots and crawlers. It does not hold that these users are in order of magnitude more
important. Instead, they behave rather randomly and are irrelevant for the evaluation.

To address these issues, we propose user-normalized leave-one-out recall@N val-
idation reward function as a modification to Eq. 2.108 given as:

recall@NUN
LOO (m, Tval) =

1

|Tval|
∑

(u,r+(u))∈Tval

|{i ∈ r+(u) | i ∈ m (u, r+(u) \ {i})}|
|r+(u)|

(3.13)

With recall@NUN
LOO, each user’s leave-one-out recall is normalized to [0, 1], and the final

value is computed as the average across all users. As a result, each user in the validation
set contributes to the recall with equal weight. The measure could be further improved we
user-dependent weighting, but for our experiments, we consider recall@NUN

LOO sufficient.
As a complementary measure to recall@NUN

LOO, we use catalog-coverage, because it well
indicates the long-tailness of the recommendation. Being relatively simple compared to

69

3. Overview of Our Approach

more sophisticated measures such as the Gini index (Eq. 2.116) or Shannon entropy (Eq.
2.116), it gives decent yet easy to interpret insight into how the recommendations vary for
different users. It is expected that low-capacity models will rather small catalog coverage,
because they can learn relations only for the most popular items, as has been discussed
earlier. In contrast, high-capacity models with long-tail recommendation will have larger
catalog coverage, because they are able to capture unique taste of long-tail users, and hence
recommend long-tail items to them. We will support this claim with experimental results
in Chap. 4.

We call our approach the Recall-Coverage Optimization (RCO). In Sec. 2.5.4.3,
we also mentioned the popularity-stratified Recall@N as proposed in [101], which is the
same paper where β-based popularity stratification has been introduced. The author uses
β-stratified recall recallβ,wPS @N (Eq. 2.110) as a measure capturing both the long-tailness
and the recall into single number. Although we recognize the approach as very smart and
logically motivated, in our opinion, a significant disadvantage is that recallβ,wPS @N takes β
as a parameter, which may lead to concurrent optimization of the model and the measure
itself. As stated by the author himself, the exponent β used in model training can be
expected to be similar in value to β used in recallβ,wPS @N . That is rather logical, because
for chosen β in the measure, similar β will be optimal for the model. In our approach
of multi-objective optimization, two well-defined and fixed measures are used, allowing us
to explore model behavior based on algorithm hyperparameterization in a convenient and
systematic way.

70

Chapter 4

Main Results

In this chapter, we present number of experiments showing that our concepts proposed in
the previous chapter really work as expected. Specifically, we perform exhaustive recall-
coverage evaluation for all the previously proposed capacity-controlling hyperparameters of
different learning algorithms. The experiments are done on a mixture of publicly available
and industrial dataset, showing the robustness of the proposed methods and stability of
the results.

4.1 Experimental Setup

Let us first introduce the datasets we selected for our experiments, as well as the selected
learning algorithms with brief implementational notes.

4.1.1 Experimental Datasets

For our experiments, we have chosen mixture of publicly available datasets and industrial
datasets. A high-level overview of the algorithms is shown in Table 4.1. While the first
three (MovieLens 1M, MovieLens 20M, and Last.FM 2K) are publicly available, the rest
(BUBB.Store, Casa Cenina, Just Spotted, Moodings) are closed, industrial datasets.

Tables 4.2 and 4.3 offer an insight to the distribution of numbers of interactions per
user and per item, respectively. P1 stays for the 1st percentile, Q1 is the first quartile (25th
percentile), Q2 is the median (50th percentile), Q3 is the third quartile (75th percentile)
and P99 is the 99th percentile.

As can be seen especially from Table 4.2, there is huge difference between public and
industrial datasets. Because we intentionally didn’t do any cleaning such as removing
users with too few interactions, a trend common for online websites is obvious: Vast
majority users come from ephemeral, anonymous sessions, without the possibility to collect
long-term interactions from them. This corresponds to practical conditions, where the
recommendation algorithms must be able to respond to newly incoming data and generate
as quality recommendations as possible from the data collected so far.

71

4. Main Results

The following subsections provide brief descriptions of individual datasets.

Table 4.1: Interaction Types and Item Attributes of Experimental Datasets

Dataset
Name

Total
Interactions

Interaction
Types

Item
Attributes

MovieLens
1M

1,000,209 Explicit ratings Genres, Title, Year

MovieLens
20M

20,000,263 Explicit ratings Genres, Title, Year

Last.FM 2K 92,834 Plays ∅

BUBB.Store 8,697,556
Detail-views, Cart-additions,
Purchases, Explicit ratings

Store ID, Brand,
Categories, Name

Casa Cenina 9,891,560
Detail-views, Bookmarks,
Cart-additions, Purchases,

Explicit ratings

Categories, Product tags,
Manufacturer,
Product model

Just Spotted 875,013
Detail-views, Bookmarks,
Cart-additions, Purchases,

Explicit ratings

Product name,
Vendor, Type

Moodings 2,884,636
Detail-views, Bookmarks,
Cart-additions, Purchases,

Explicit ratings

Product name,
Vendor, Type

4.1.1.1 MovieLens 1M and MovieLens 20M Datasets

These are very well known datasets collected over years by the GroupLens Research labor-
atory in the Department of Computer Science and Engineering at the University of Min-

Table 4.2: User Interaction Characteristics of Experimental Datasets

Dataset Name |U | Interactions per User
P1 Q1 Q2 Q3 P99

MovieLens1M 6040 20 44 96 208 909
MovieLens20M 138493 20 35 68 155 1114
Last.FM 2K 1892 10 50 50 50 50
BUBB.Store 6119542 1 1 1 1 12
Casa Cenina 465519 1 1 2 6 335
Just Spotted 340842 1 1 2 4 41
Moodings 562170 1 1 2 5 75

72

4.1. Experimental Setup

Table 4.3: Item Interaction Characteristics of Experimental Datasets

Dataset Name |I| Interactions per Item
P1 Q1 Q2 Q3 P99

MovieLens1M 3883 0 26 109 330 1783
MovieLens20M 27278 0 3 16 194 14309
Last.FM 2K 17632 1 1 1 3 81
BUBB.Store 51380 0 0 2 32 1906
Casa Cenina 124559 0 4 23 82 837
Just Spotted 4179 0 14 48 143 3063
Moodings 11975 0 29 77 211 2721

nesota. The datasets [43] consist of explicit ratings on rating scale from 1-5 stars, collected
through a web interface by the participating users.

Besides the ratings, there are additional metadata about the movies available. For the
purposes of our experiments, we picked item attributes AI = {Genres ,Title,Year} where
dom(Genres) are tags, dom(Genres) are unstructured texts, and dom(year) = N.

4.1.1.2 Last.FM 2K Dataset

This dataset contains social networking, tagging, and music artist listening information
from a set of 2K users from Last.fm online music system. It was released in the framework of
the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender
Systems (HetRec 2011) and at the 5th ACM Conference on Recommender Systems (RecSys
2011) [18].

From the dataset, we picked the artist listening information, containing 92K implicit
ratings preprocessed as tuples (user , art , listening-count). We did not extract any item
attributes for this dataset.

4.1.1.3 BUBB.Store Dataset

The BUBB.Store dataset was provided for our experiments with kind agreement of Lucas
Colette, CEO at BUBB WEB STUDIO1, a Brazilian web agency. BUBB.Store2 is the
flagship product of BUBB WEB STUDIO. The provided dataset contains aggregated users,
items, and interactions from multiple web stores. When deployed in production, Recombee
Query Language (ReQL) is used to ensure that customers of particular shop will only be
recommended items from that shop. For our experiments, we do not use ReQL and allow
any item to be recommended to any user, ignoring the fact that there are actually multiple
distinct user- and item-sets.

The item attributes are shared across all the products and equal to AI = {StoreID ,
Brand , Categories , Name}, where dom(StoreID) = N are the unique shop identifiers,

1https://www.bubb.com.br/
2https://www.bubbstore.com.br/

73

https://www.bubb.com.br/
https://www.bubbstore.com.br/

4. Main Results

dom(Brand) = N is a set of unique brand identifiers, dom(Categories) contains all category
strings across all shops, and dom(Name) are unstructured texts.

4.1.1.4 Casa Cenina Dataset

Casa Cenina3 dataset was provided with kind consent of Giovanni Bartoli, CEO at online
retailer company specializing at needlework crafts (stitching, quilting, scrapbooking, knit-
ting/crocheting) based in Italy. It is available in four different languages with customers
(users) mostly from Italy, France, Spain, Netherlands, and Germany.

The attributes picked for the experiment are AI = {Categories , Manufacturer , Product-
Tags , Product-Model}, where dom(Categories) = 2N are sets of unique category identifiers
(one product may belong to multiple categories), dom(Manufacturer) = N are unique
indentifiers of individual manufacturers, dom(Product-Tags) = 2N are sets of tags, and
dom(Product-Tags) = Σ∗ are unique model identifiers.

4.1.1.5 Just Spotted and Moodings Datasets

Moodings4 and Just Spotted5 datasets were provided with kind consent of Nicholas Blicker
Larsen, CTO and Co-founder at Design Group ApS, a Denmark based online retailer
running the two corresponding E-Commerce websites. The websites specialize at styl-
ish furniture and home accessories, working with brands as Hay, Gubi, &tradition, and
Menu. Despite both website focus on different types of products, they share set of sim-
ilar attributes, from which we picked for the purposes of our experiments the following:
AI = {Product-name,Vendor ,Type}, where dom(Product-name) are unstructured texts,
dom(Vendor) = Σ∗ are strings uniquely identifying individual vendors, and dom(Type) =
Σ∗ are strings serving as unique category identifiers.

4.1.1.6 Preprocessing

All the aforementioned datasets from Secs. 4.1.1.1, 4.1.1.2, 4.1.1.3, 4.1.1.4, and 4.1.1.5,
were preprocessed in unified way. For each dataset, using notation from Sec. 2.1.3, the
interactions were taken in form of two sets:

◦ Set of implicit interactions Y = {y1, . . . , yk}, where yj = (uj, ij, tj, dj) such that
uj ∈ U , ij ∈ I, tj ∈ R, dj ∈ {detail -view , bookmark , cart-addition, purchase, play}.

◦ Set of explicit ratings X = {x1, . . . , x`}, where xj = (uj, ij, tj, gj) such that uj ∈ U ,
ij ∈ I, tj ∈ R, and gj ∈ [−1, 1] is the assigned rating normalized to [−1, 1].

From Y , an implicit rating matrix has been created in compliance with Eq. 2.2 and
Eq. 2.3 such that:

3https://www.casacenina.com/
4https://moodings.com/
5https://justspotted.dk/

74

https://www.casacenina.com/
https://moodings.com/
https://justspotted.dk/

4.1. Experimental Setup

◦ Interactions of all types were mixed into the matrix, that is ϕ(y) = 1 ∀y ∈ Y .

◦ Implicit rating matrix RI ∈ (R ∪ {?})U×I was hence simply computed element-wise
as rIu,i = Γ({(uj, ij, tj, dj) ∈ Y | uj = u ∧ ij = i}) with

Γ(Y ′) =

 min

(∑
y′∈Y ′

w(y′), 2

)
if Y ′ 6= ∅

? otherwise

(4.1)

using weighting function w:Y → R:

w (u, i, t, d) =


0.25 if d = detail -view
0.5 if d = bookmark
0.75 if d ∈ {cart-addition, purchase, play}

(4.2)

From set of explicit ratings X, an explicit rating matrix RE ∈ (R ∪ {?})U×I has been
created according to Eq. 2.1.

Finally, implicit rating matrix RI was merged with explicit rating matrix RE into final
matrix R ∈ (R ∪ {?})U×I using Eq. 2.4.

As a result, for purely explicit rating datasets (MovieLens 1M and MovieLens 20M),
the matrix was filled only by explicit rating data, for implicit rating datasets (Last.FM
2K) only by implicit rating data, and for mixed datasets (BUBB.Store, Casa Cenina, Just
Spotted, Moodings) by a mixture of both.

4.1.2 Algorithms

For our experiments, we chose the set of learning algorithms corresponding to Sec. 3.2.
These algorithms are:

◦ User-Based k-Nearest Neighbors (UserKnn),

◦ Item-Based k-Nearest Neighbors (ItemKnn),

◦ Association Rules (ARs),

◦ Matrix Factorization (MF), and

◦ AutoRec.

The implementational details of individual algorithms are discussed below.

75

4. Main Results

4.1.2.1 User-Based k-Nearest Neighbors

We use our own implementation mostly compliant with description in Sec. 2.4.2. The
following are some important implementational notes:

1. We use weighted version of UserKnn with non-normalized neighborhood (Eq. 2.23)
and cosine similarity (Eq. 2.24).

2. As a modification to NNk(u) in Eq. 2.20, we exclude the users with empty intersection
in ratings with the source user u ∈ U . It means that for a given rating matrix
R ∈ (R ∪ {?})U×I , it holds:

∀u, v ∈ U : {i ∈ I | rv,i 6= ?} ∩ {i ∈ I | ru,i 6= ?} = ∅ =⇒ v /∈ NNk(u) (4.3)

This is due to an indexing technique which allows us search for nearest neighbors fast,
and it was necessary to use this technique for computationally expensive experiments.

3. In compliance with Eq. 2.20 and the definition of cosine similarity in Eq. 2.24,
even the users who rated only a subset of items rated by the source user u ∈ U , are
members of NN→∞(u), meaning:

∀u, v ∈ U : {i ∈ I | rv,i 6= ?} ⊆ {i ∈ I | ru,i 6= ?} =⇒ v ∈ NN→∞(u) (4.4)

Because the used version is weighted (1) and because of (1), our implementation isn’t
fully equivalent with the popularity model for k → ∞ as mentioned in Sec. 4.1.2.1,
although for high k, the inclination to popular items is still present in limited form.

4.1.2.2 Item-Based k-Nearest Neighbors

Similarly to UserKnn, we also use our own implementation of weighted ItemKnn with
similar rules: non-normalized cosine neighborhood (Eq. 2.31) with indexing omitting zero-
intersection items from the neighborhood:

∀i, j ∈ I: {u ∈ U | ru,i 6= ?} ∩ {u ∈ U | ru,j 6= ?} = ∅ =⇒ i /∈ NNk(j) (4.5)

We experiment with both the interaction similarity (as proposed in [93] and described
in Sec. 2.4.3.1) and token similarity (Sec. 2.4.3.2). For the token similarity, we use
tokenization fully compliant with Eq. 2.33 and Sec. 2.1.2.

4.1.2.3 Association Rules

We use our own implementation fully compliant with 2.4.4. Because ARs require each item
being explicitly relevant or irrelevant, we set a relevance threshold θ = 0.25 to produce
binary rating matrix for training.

Because for each dataset, we iterate smin up to so high granularity that the support
corresponds to only single user, it is noteworthy that we had to implement a lot of optimiz-
ation to make the experiments possible. We maintain the equivalence with the APRIORI

76

4.2. Capacity Manipulation Experiments

algorithm presented in Alg. 1. However, because for too low smin, the number of rules
would easily achieve several billions, we do not discover all the rules in advance. Instead,
we search for the rules in lazy manner at the moment of generating recommendations for
provided observation set obs ⊆ I. Given obs , we prune the search space only for rules
X ⇒ Y such that X ⊆ obs .

4.1.2.4 Matrix Factorization

We use MF for implicit feedback matrices as proposed in [47], with model learning described
in Eqs. 2.56, 2.57, and 2.58, using simple score function from Eq. 2.46. We used Python
implicit package6, which is highly-optimized implementation compliant to [47].

4.1.2.5 AutoRec

We use our own implementation in Python language using the TensorFlow7 package. Our
implementation is fully compliant with Sec. 2.4.6.2. Specifically, we used the U-AutoRec
version trained as in 2.74, with score function as in Eq. 2.72.

4.2 Capacity Manipulation Experiments

Let us now demonstrate the effect of individual capacity-manipulating hyperparameters
on individual learning learning algorithms. For each algorithm, we will present set of
measurements of different datasets and discuss the observed behavior.

4.2.1 User-Based k-Nearest Neighbors

Our first set of experiments is done using the UserKnn algorithm. On different datasets,
we iterated through different values of k ∈ N and β ∈ [0, 1]. The results for the industrial
datasets are shown in Fig. 4.1, and for publicly available datasets in Fig. 4.2. Instead of
separately discussing individual subfigures, most of which are rather similar, let us use few
prototypic curves presented in 4.3.

For convenient description, we assigned capital letters to specific segments of the curves.
Let us first analyze the curves in Fig. 4.3 (a). We can observe that there are two curves:
one without β-biasing (that it β = 0) and the other with quite high value of β = 1.0, both
curves drawn by iterated k. For the β = 0 curve, there are three segments: A, B , and C .

6https://github.com/benfred/implicit
7https://www.tensorflow.org/apidocs/python/

77

https://github.com/benfred/implicit
https://www.tensorflow.org/api_docs/python/

4. Main Results

0801

08015

0802

08025

0803

08035

0804

08045

0805

08055

0805 081 0815 082 0825 083 0835 084

C
at

al
og

,C
ov

er
ag

e

Recall

BUBB8Store:,Weighted,UserbkNNK,Manipulating,BETA

k=1

0

k=2

081

k=3

01

k=4

0
1

k=5

0

1

k=6

0

1

k=7

0
0805
1

k=10

0

0805
085

k=12

0

081
084

1
k=21

0

081
082

083
085

08751

k=37
0

0805
0815

084
085

1

k=117
0

081

083

085

0875

1

k=653
0

0805

083
084

085

1

k=1693

082

083

084
085

0875

1

k=9412
0

082

0875

1

k=29540
0

0815

085

0875
1

0801

08015

0802

08025

0803

08035

0804

08045

0805

08055

0805 081 0815 082 0825 083 0835 084

C
at

al
og

,C
ov

er
ag

e

Recall

BUBB8Store:,Weighted,UserbkNNK,Manipulating,K

beta=080

3

4
5

6 7 10 14 16 19 31 45 80
229593 2048

3992
8557

29540

beta=0815

6

10 14 17
23 31 41 66

129

2999
6429

beta=083

12
16 19

28
80129335 1693

2999
7072

beta=085

1

13
16

21
28

41 60 107 172335
593 2048

4391

10354
26855

beta=0875

2

16
21

26
37
66
129189 446593 2479

4830

12528
29540

beta=180

3

4

5

8
12

14

45
60

88
405

1862
3629

8557
10354

15159
22194

08004

08006

08008

0801

08012

08014

08016

0805 081 0815 082

C
at

al
og

,C
ov

er
ag

e

Recall

Casa,Cenina:,Weighted,UserbkNNK,Manipulating,K

beta=080

1

2

3

4
5

6
7
8

9
11

13
16
21

26
31 3480

539
790

1156
2048

29540

beta=083
2

4

7

9
11

13
14

16

23
2631

73107117
189

252
368

593

29540

beta=085
1

3

5
6

8

10
11
1314

1921

26
37 45

50
60 156

304
490

29540

beta=0875

4

5
6

8
10

11
12

13
14

16
1921

23
28

50
88142

277405

1693
29540

beta=180

2

3

5
6
7

8
9

11

13

16
21

26
3445

6697
189
304

446
718

1272
29540

08004

08006

08008

0801

08012

08014

08016

0805 081 0815 082 0825

C
at

al
og

,C
ov

er
ag

e

Recall

Casa,Cenina:,Weighted,UserbkNNK,Manipulating,BETA

k=1

01

k=2

01

k=3

00841

k=4

008150851

k=5

0
0820851

k=6

0
0820851

k=7

0
0820851

k=9

0
081508508751

k=12

0
08208308508751

k=16
0

0805
081508308408508751

k=28

0

081
08308408508751

k=80

0

0815

08508751

k=172

0805

0815

08508751

k=539

0

081
0815

083

0851

k=1693

0

084

0875

k=29540

0

081
0815

083
084

085

0875

1

0805

081

0815

082

0825

083

0835

084

0 0805 081 0815 082 0825 083

C
at

al
og

,C
ov

er
ag

e

Recall

Just,Spotted:,Weighted,UserbkNNK,Manipulating,K

beta=080

3
4

6
7 9 1113 17 26 3760 117

277
446

29540

beta=0815

2

4

6
7 810 121419 28 3755

107
189

335
446

29540

beta=083

7
8
10

13
19

28 45 117

368

653

29540

beta=085

1

8
9

11
14

19
31

45

97 142252
405

490
653

790

1051

1399

29540

beta=0875

3

6
7

9

19
21
31

45
60

80

229
446

718

1156
1539

2479

29540

beta=180

4

6
7

9
11
13

19
23

34
45

405

593
718

956

1156
1272

1693
2048
2479

3299
26855

0805

081

0815

082

0825

083

0835

084

0 0805 081 0815 082 0825 083

C
at

al
og

,C
ov

er
ag

e

Recall

Just,Spotted:,Weighted,UserbkNNK,Manipulating,BETA

k=1

1

k=2

0

k=3

0
1

k=4

0

1

k=6

0

0805

1

k=8

0

0805

0851

k=10

0

082

085
1

k=13

0

0805

082

083
085

1k=19

0

082

083
084

08751

k=28

0

0805

082

083

085

08751

k=45

0

0805
081

082

085
0875

1

k=73

0

0805
081

0815

083

085

0875
1

k=189

0

0805

082

083

085

0875
1

k=446

0

081

082

085

0875
1

k=1539

0

083

085

0875

1

k=29540

0

0815

085

0875

1

Figure 4.1: UserKnn Experiments on Industrial Datasets.

78

4.2. Capacity Manipulation Experiments

0

0T02

0T04

0T06

0T08

0T1

0 0T02 0T04 0T06 0T08 0T1 0T12 0T14 0T16

C
at

al
og

kC
ov

er
ag

e

Recall

LastTFMk2K:kWeightedkUserEkNNBkManipulatingkK

beta=0T0

1

2

3

5
6

8
10
16

41
55

15627729540

beta=0T1

1 2

4
5

6
8

28
37

beta=0T32
3 4 5

6
7

8

10
11

13
14

17
21

26
34

45
60

29540

beta=0T5

1

4 9 11 14
17 19 21 23

26
28

31

37
41
45

55
66

80
97

29540

beta=0T75

23
73 88 107117

142
189

229
277

405
593

29540

beta=1T0
2

5

8

29540

0

0T01

0T02

0T03

0T04

0T05

0T06

0T07

0T08

0T09

0T1

0T11

0 0T02 0T04 0T06 0T08 0T1 0T12 0T14 0T16

C
at

al
og

kC
ov

er
ag

e

Recall

LastTFMk2K:kWeightedkUserEkNNBkManipulatingkBETA

k=1

0

1

k=2

0

0T1

0T15
k=4

0

0T05
0T1

0T15

0T2

0T3

0T4

1
k=8

0

0T15

0T2

0T3

0T4

0T5

1

k=26

0

0T1

0T2

0T3

0T4

1

k=80

0

0T4

0T5

0T75
k=172

0

0T3

0T75
k=29540

0
0T15

0T3
0T4

0T75

0

0T1

0T2

0T3

0T4

0T5

0 0T05 0T1 0T15 0T2 0T25 0T3

C
at

al
og

kC
ov

er
ag

e

Recall

MovieLensk1M:kWeightedkUserEkNNBkManipulatingkK

beta=0T0

1 2

4
5

9 10

19

45
73

189405
7901156186229540

beta=0T3
1

2 4 5
6

7
8

9 10
11

13
14

17
19

23
28

3134
41

50
66
88

117

304

beta=0T41
3

6
9 11

14
16

19
23

28
31

34
41
45

55

208
335

718
1156

beta=0T5
1
5

8
13

17
21

26
31

3437
4550

73
8897

117
156
208

277
368

490
653
1272

2253

beta=0T75
2

3
4

29540

beta=1T0

1

2

4
5
6
7

9
12
14
19
23
28
37
50
66
97
156
304

29540

0

0T1

0T2

0T3

0T4

0T5

0 0T05 0T1 0T15 0T2 0T25 0T3

C
at

al
og

kC
ov

er
ag

e

Recall

MovieLensk1M:kWeightedkUserEkNNBkManipulatingkBETA

k=1

0

0T05
0T2

k=2

0

0T05
0T1

0T15

0T3
0T5

1
k=4

0

0T1

0T15

0T3

0T75
1

k=8

0

0T1

0T2

0T30T5

0T75

1

k=19

0

0T1

0T2

0T3

0T5

0T75
1

k=41

0

0T15
0T2

0T4

0T5

0T75
1

k=172

0

0T3

0T4

0T5

0T75

k=335

0

0T3

0T4
0T5

k=653

00T1
0T3
0T4

0T5
0T75
1

k=1693

0 0T3
0T5

k=29540

0T3
0T5

0T75

0

0T005

0T01

0T015

0T02

0T025

0T03

0T035

0 0T05 0T1 0T15 0T2 0T25 0T3

C
at

al
og

kC
ov

er
ag

e

Recall

MovieLensk20M:kWeightedkUserEkNNBkManipulatingkBETA

k=1

0

0T151

k=3

0

0T1

0T15

0T31

k=4

0

0T1

0T2

0T30T5
1

k=8

0

0T1
0T15

0T2

0T31

k=21

0
0T1

0T751

k=97

0
0T15

0T4

0T5
0T751

k=718

0
0T1

0T3
0T4

0T5
0T75

1

k=1693

0
0T2

0T3
0T4

0T5
0T75

1

k=4830

0
0T150T2

0T40T5
0T75

1

k=13781

0
0T150T20T30T40T5

0T75
1

k=29540

0 0T1
0T51

0

0T005

0T01

0T015

0T02

0T025

0T03

0 0T05 0T1 0T15 0T2 0T25 0T3

C
at

al
og

kC
ov

er
ag

e

Recall

MovileLensk20M:kWeightedkUserEkNNBkManipulatingkK

beta=0T0

1
2

3

6
8

10
14 16

31
5597

229
593

1399
3992

8557
1834229540

beta=0T4

1
2 5 6 7 9

12
16
19
23 31

41
55

73
97

229

653
1156

1862
3299

4830
7072

9412
13781

2219424413
29540

beta=0T5
1

4

13 17
19

31
41
55

73

208
335

446
869

1272
1693

2726
3992

5313
6429

8557
15159

beta=0T7513
4

12
17

2341
50
73

97
189
252

446
593
956

1272
1862

2726
4830
7072

11389
22194

beta=1T0
1

4
679

12
2328

41
55

88
97
117
172

252
405
539

790
1051
1539
2253
2999
4391
7072
12528
29540

Figure 4.2: UserKnn Experiments on Public Datasets.

79

4. Main Results

TBTT4

TBTT6

TBTT8

TBTA

TBTA2

TBTA4

TBTA6

TBT5 TBA TBA5 TB2

C
at

al
og

kC
ov

er
ag

e

Recall

=a3kCasakCenina:kWeightedkUserFkNNLkManipulatingkK

beta=TBTA

A3

2T48

beta=ABT

7

TBT2

TBT3

TBT4

TBT5

TBT6

TBT7

TBT8

TBT9

TBA

T TBT2 TBT4 TBT6 TBT8 TBA TBA2 TBA4 TBA6

C
at

al
og

kC
ov

er
ag

e

Recall

=b3kLastBFMk2K:kWeightedkUserFkNNLkManipulatingkBETA

k=26

T

TBA

A2954T

539

A

B

CD

E
F

8T

66

TB75

TB5

G

H
I

TB4

TB2

TB3

Figure 4.3: Selected Prototypic Curves For The UserKnn Algorithm.

Segment A starts with k = 1 with very low both recall and coverage. As k grows, both
measures also grow within A. The reason for this behavior comes from the fact mentioned
in Sec. 4.1.2.1: The set NNu(k) contains also users whose ratings form a subset of u’s
ratings. Coming from the definition of cosine similarity, such users are the most similar
to u. As a result, the model with too low k fails to recommend the full set of N = 10
requested items, simply because the neighboring users don’t bring anything new: user u
already rated the items that the neighbors have rated. We can say that such low-k model
has low user coverage as defined in Eqs. 2.118 and 2.119, which negatively affects both
the recall and catalog coverage: Not using all the N available “shots” decreases the chance
that there will be a hit for the recall@NUN

LOO, as well as the chance that the catalog coverage
set will be extended by something.

With growing k, more and more users with something additional to what u already
rated, start appearing in NNu(k). In the chosen example curve, there is a saturation at
k ≈ 80. At that point, we can say that the model achieved maximal user coverage for
the UserKnn algorithm. Please note the difference between Fig. 4.1 with the industrial
datasets and Fig. 4.2 with public datasets. While for industrial datasets, the A part is
always present, for the public datasets, it is very short or missing. This comes from the
nature of the data as presented in Table 4.2. The reason is that public datasets has been
cleaned not to contain users with too few ratings, and the rating vectors of all the users
are very rich. Therefore, it is highly unlikely that one user would form a rating subset
of another, and instead, only single nearest neighbor has often all needed N = 10 items
additional to u’s items.

For k ≈ 80, as the Fig. 4.3 (a) shows, the model is still rather long-tail, prone to over-
fitting. It may happen that some noisy items, completely irrelevant to u, are recommended
from the nearest neighbors for such a low k. Why the noisy items definitely increase the

80

4.2. Capacity Manipulation Experiments

catalog coverage, they negatively impact the recall. As we enter the segment B and keep
increasing k, we are decreasing the model capacity, reducing noise, decreasing catalog cov-
erage and increasing recall. This trends keep up to k ≈ 539 in the figure, where the k start
being so high, that the resulting model starts having too low capacity to contain even the
important relations in the data.

While with k growing from k ≈ 80, the catalog coverage keeps constantly decreasing
because the set of recommended items keeps reducing to more and more globally popular
items, within the C starting from k ≈ 539, it is also the recall which starts decreasing.
With k → ∞, the model tends to recommend mostly bestsellers. Because we are using
weighted version of the algorithm, the popular items from too distant neighbors do not
get that high score, and together with the implementational detail that users with rating
set distinct with u will not appear in NNk(u), the model for k → ∞ does not behave as
pure popularity model. In the unweighted version with distinct users also appearing in the
neighborhood, the curve would get very close to zero coverage, because it would become
pure popularity model recommending only very limited set of items.

From the above description, and maybe more conveniently from the figure, it should
be obvious that segment B for the Pareto-optimal front for the given β = 0 curve. All
the models in segments B and C are suboptimal, because there exist models with higher
catalog coverage and greater or equal recall, or with higher recall with greater or equal
catalog coverage.

Let us also describe the other curve in 4.3 (a) for high value of β = 1, consisting on
segments D , E , and F . This curve behaves differently, but it is the very high value of β
which causes that candidate items i ∈ I obtaining score(u, i) > 0, get boosted by their
inverse popularity, and hence mostly the least popular of them appear in the resulting
Top-N recommendation set.

The growth of segment D starting from very low k, has similar justification as the
segment A in the β = 0 curve. The model starts recommending something rather than
nothing, which logically leads to improvement in both the recall and the coverage. However,
because of the very high β-boosting, the models tends to pick “the worst” (meaning the
most random, globally unknown) items, and hence as the set of candidate score(u, i) > 0
items extends, the recall starts getting lower. This happens at k ≈ 7 in the figure, where
the transition to segment E begins.

Within E , the trend of “picking the worst candidates by high β” keeps intensifying, as
more and more neighbors generate more candidate score(u, i) > 0 items, and from these,
more marginal, random, noisy items can be picked. Therefore, the catalog coverage keeps
increasing withing E , but the recall deteriorates. Another break points is at k ≈ 66 in
the figure. While the curves are slightly affected by noise, it should be obvious that this
is basically very similar k where the user coverage got saturated also it the β = 0 curve.
Entering segment F , the catalog coverage starts to decrease. This is caused by the fact
that the more candidate items, the more noisy items to be “picked” by high β = 1, but
the set of marginal, noisy items in the dataset is limited. With growing k, it happens
that these most marginal items start appearing in neigborhoods for more and more users,
and being constantly picked. Hence the decreasing coverage: the model becomes “inverse

81

4. Main Results

bestseller”, more and more focusing on a limited set of marginal items. This is somehow
symmetric to segment C with popularity replaced by “anti-popularity” due to β = 1.

The two curves on Fig. 4.3 (a) represent two extremes with β = 1 being obviously
a bad choice. But looking at results for individual datasets on Figs. 4.1 and 4.2, it is clear
that for moderately high β, the original model gets improved toward new Pareto-optimal
points. For smaller values of β, the segment F is not present and it rather turns to B .
Let us explain this using Fig. 4.3 (b). On a different dataset, for fixed k, we present
a prototypic recall-coverage curve when iterating over increasing β.

We can see, that the chosen dataset, the model with k = 26 has rather low capacity. It
seems like weighted cosine similarity, used in the score function, is unable to pick enough
long-tail items even from small neighborhoods. In segment G, with β = 0, we obtain the
original model. With growing β, the capacity of the original high-bias, low-variance model,
is increased, which improves both the recall and the coverage. Note that some curves in
Figs. 4.1 and 4.2 are missing the G segment, simply because the original, non-β-boosted
models has high capacity already. Segment G can be seen as equivalent to segment C
when iterating over k.

Reaching β ≈ 0.2 in Fig. 4.3 (b) and approaching segment H , the β-biasing starts being
quite high, and while the catalog coverage keeps growing with k, the recall deteriorates
as the increasing capacity shifts the model more and more towards the long-tail and the
recommending items are become too marginal. The decrease of recall comes from the
(apparently correct) MNAR assumption, that impopular items are unlikely to be present
in the r+(u) of the given testing user. Segment H can be seen as equivalent to segment B
when iterating over k.

Finally, at β ≈ 0.5, the boosting of marginal items is becoming so high, that we are
reaching the “antipopularity” model, focusing on a limited set of marginal items, and
catalog coverage hence starts decreasing as well.

Besides the UserKnn results presented in Figs. 4.1 and 4.2, let us also present additional
interesting results from a bachelor thesis [69] supervised by the author of this thesis. In [69],
optimization of the UserKnn algorithm through the use of technique known as Locality-
Sensitive Hashing (LSH) [48] is proposed to make the construction NNk(u) asymptotically
bound to sublinear time with |U |, and studied in relation to recall-coverage curves.

The idea of using LSH with cosine similarity (Eq. 2.24) in UserKnn lies in generating
a random projection matrix A ∈ Rf×I (for relatively small f ≈ 10), typically drawn
from normal distribution MNf×U (0, I, I). From the rating matrix R ∈ RU×I with ? → 0
replacements, matrix X ∈ Rf×U is computed as X = A ·RT . Values of X are subsequently
binarized to matrix H ∈ {0, 1}f×U such that

∀u ∈ U, ` ∈ {0, . . . , f}:hu,` =

{
1 iff xu,` ≥ 0
0 iff xu,` < 0

(4.6)

82

4.2. Capacity Manipulation Experiments

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

co
v
e
ra

g
e

recall

reference k-NN

1

2

4

8

16

32 64

128

256

512

1024

2048
409681921638420000

dim 7, time 88.27 %, recall 99.38 %

1

2

4

8

16

32 64

128

256

512

1024

2048409681921638420000

dim 9, time 17.07 %, recall 98.60 %

1

2

4

8

16

32
64

128

256

512

1024
2048409681921638420000

dim 11, time 4.59 %, recall 97.45 %
1

2

4

8

16
32

64

128

256

512
10242048409681921638420000

dim 12, time 1.93 %, recall 95.44 %

1

2

4

8

16 32

64

128

256
512

10242048409681921638420000

dim 13, time 1.14 %, recall 94.25 %

1

2

4

8

16 32
64

128
256

51210242048409681921638420000

dim 14, time 0.83 %, recall 91.45 %

1

2

4

8

16 32
64

128
256

51210242048409681921638420000

dim 15, time 0.68 %, recall 87.89 %

1

2

4

8

16 32 64 128 256 51210242048409681921638420000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

co
v
e
ra

g
e

recall

reference k-NN

1

2

4

8 16 32
64

128

256

512

1024

2048

4096

8192

16384
20000

dim 14, time 13.35 %, recall 99.05 %

1

2

4

8 16
32

64

128

256

512

1024

2048

4096

8192
1638420000

dim 15, time 7.89 %, recall 98.82 %

1

2

4
8

16
32

64

128

256

512

1024

2048

4096
8192

1638420000

dim 16, time 4.28 %, recall 97.85 %

1

2

4
8 16

32

64

128

256

512

1024

2048

4096
81921638420000

dim 17, time 2.9 %, recall 97.42 %

1

2

4
8 16

32

64

128

256

512

1024

2048
4096

81921638420000

dim 18, time 1.98 %, recall 96.76 %

1

2

4

8
16

32

64

128

256

512

1024
2048

409681921638420000

dim 19, time 1.31 %, recall 96.02 %

1

2

4
8

16

32

64

128

256

512
1024

2048
409681921638420000

dim 20, time 1.05 %, recall 95.02 %

1

2

4
8

16

32

64

128

256

512
1024

2048
409681921638420000

Figure 4.4: UserKnn Results Using Locality-Sensitive Hashing [69].
83

4. Main Results

Row vector h∗,u for user u in the resulting matrix represents a hash of the bucket that
u belongs to. In total, there are 2f buckets, and when searching for NNk(u), only the
users from the corresponding h∗,u bucket (and possibly also the buckets closest to it in
the Hamming distance) are considered as candidates. Fig. 4.4 shows the results achieved
on the chosen datasets. The shape of curves on approximate neighborhood is preserved,
typically leading to slightly reduced recall, but also improved Pareto-optimal front when
considering also the coverage.

4.2.2 Item-Based k-Nearest Neighbors

Another set of experiments was performed with the ItemKnn algorithm. Similarly to
UserKnn, we iterated the learning algorithm over different values of k ∈ N and β ∈ R.
Besides using the rating cosine similarity (Sec. 2.4.3.1), we also investigated the behavior
for the token similarity.

4.2.2.1 Rating (Interaction) Similarity

The results for ItemKnn with rating similarity are shown in Fig. 4.6, To thoroughly explore
the space, we iterated different values of β ∈ [−10, 10], showing the behavior also for high
biases. Let us again discuss some prototypic curves. These are shown in Fig. 4.5.

beta=1070
k0705

0

0705

071

0715

072

0725

0 0705 071 0715 072 0725 073 0735 074 0745

C
at

al
og

hC
ov

er
ag

e

Recall

9aBhMoodings:hWeightedhRatingkItemKnnAhManipulatinghK

beta=k1070

5

13

31

66

956

beta=0705

1

3
4

956

1

4
5

9

956

B

C

A

0

0705

071

0715

072

0725

0 0705 071 0715 072 0725 073 0735 074 0745

C
at

al
og

hC
ov

er
ag

e

Recall

9bBhMoodings:hWeightedhRatingkItemKnnAhManipulatinghBETA

k=956
k10

k2

k1

k0775

0775

1

10

D

E
F

k074

075

0

073

Figure 4.5: Selected Prototypic Curves For The ItemKnn Algorithm.

Looking at Fig. 4.5 (a), similarly to UserKnn, there is segment A starting from k = 1,
where both the recall and the coverage grow with k. In the figure, there are 3 different
curves for different values of β. All the three curves share the A segment. With more items
in the neighborhoods of individual source user’s rated items, the higher chance that the
model will be able to generate the full set of N = 10 items in the Top-N recommendation.

84

4.2. Capacity Manipulation Experiments

Again, more recommended items increase the chance of a hit within the leave-one-out recall,
same as adding something to the catalog coverage set build over the group of validation
users.

Depending on the value of β, segment A may either form the whole curve (for β close
to 0), or may continue to segments B or C . For too low value of β (segment B), with
growing k, there is again a transition towards the popularity model, which results in nearly
zero coverage, as well as very low recall. For too high value of β the transition is into the
“anti-popularity” model, for the same reasons as in the UserKnn model.

Consider the curve iterated over β in Fig. 4.5 (a), it is noteworthy that unlike with
UserKnn, the curve tends to start at a point of balance between the recall and the coverage.
This is because ItemKnn is rather long-tail recommender by default. This is because the
algorithm is by design based on recommending very similar item to these in the user’s
observation. Therefore, in compliance with the presented results, the β = 0 point often
lies withing the E segment, which is a Pareto-optimal front for the whole β-iterated curve.
Putting β < 0, we start moving toward low capacity model with higher recall and lower
coverage, and vice versa for β > 0.

The interpretation to the D and F segments is the same as for UserKnn segments G
and I , respectively, in 4.3 (b).

4.2.2.2 Token Jaccard Similarity

For the attribute-based ItemKnn, we used the token similarity (Sec. 2.4.3.2) on top item
attributes summarized in Table 4.1, described for individual datasets in Secs. 4.1.1.1,
4.1.1.3, 4.1.1.4, and 4.1.1.5, and tokenized through a process described in Sec. 2.1.2.

The experiment results are shown in Fig. 4.7. As seen on the examples of Just Spotted
and Moodings, the token-based ItemKnn can hardly compete with the rating-based one,
but the curves share very similar behavior and shape. This is because the fact, that the
algorithm tends to recommend items very similar to the observed ones, does not hold only
for interaction similarity, but logically, for the token similarity as well. Looking for items
with very similar attributes leads to long-tail recommendation by default. Again, using β,
the capacity can be manipulated, shifting to more long-tail or to more popular items being
recommended.

85

4. Main Results

L

LAF

LA2

LA3

LA4

LA5

LA6

LA7

L LAL5 LAF LAF5 LA2 LA25 LA3

C
at

al
og

nC
ov

er
ag

e

Recall

JustnSpotted:nWeightednRatingTItemKnnEnManipulatingnK

beta=TFLAL
F

2
3

6

7
8

9
FL

F2
F4

F7
2F

26
34

5L
8L956

beta=T2AL

3 5

6
7
8
9

FL
F2
F4

F9
23

3F

45
66

97
F89956

beta=TFAL

5
6

8
FL

F7
26
37

55
88

F42
3L4

956

beta=TLA5

3 4 5

FF
F9
4F

956

beta=TLA2

2

4 7F2
956

beta=LAL

F

956

beta=LAF

2

3
4
956

beta=LA3

2

3
4
7

956

beta=LA5

F

2

3
57

55956

beta=FAL

2

3
4

6F328FL7956

beta=FLAL

F

2

3
4

568

F723
45

956

L

LAF

LA2

LA3

LA4

LA5

LA6

LA7

L LAL5 LAF LAF5 LA2 LA25 LA3

C
at

al
og

nC
ov

er
ag

e

Recall

JustnSpotted:nWeightednRatingTItemKnnEnManipulatingnBETA

k=F
TF
L

FL

k=2

TFL

L
LA5FL

k=3

TFL

TLA5
L

LA5F2FL

k=4

T5T2

TLA3
L

LA5F2FL

k=6

TFL
T2

TF

FL

k=7

TFL
T2

TF

TLA4

L

LA752FL

k=9

TFLT5
T2

TF

25FL

k=F3

TFL T5

T2

TF

FL

k=F7

TFL T5

T2

TF

TLAF

LA2LA3LA4

FL

k=34

TFL T5

T2

TF

TLA3

FL

k=956
TFLT5 T2

TF

TLA75

TLA4

TLA3

LA4LA5

FL

L

LALF

LAL2

LAL3

LAL4

TLAL2 L LAL2 LAL4 LAL6 LAL8 LAF LAF2 LAF4

C
at

al
og

nC
ov

er
ag

e

Recall

LastAFMn2K:nWeightednRatingTItemKnnEnManipulatingnK

beta=TFLAL
2
3
5

7
F2F7

66956

beta=T2AL

F

2
345
8F3

5L
956

beta=TLA75

F

2
3

7
F9
8L

956
beta=TLA4

2 3 6 7
FF
28
FL7
956

beta=TLA2

F 2 3 567 8
F9

8L
956

beta=TLAF

F 2
3

5 67 8 FL
2F

FL7
956

beta=LAL5

F 2 34 6 7
8 9

F2 F7
37FL7

956

beta=LA2

F
2

3 4 5 67 9FL
F3

2F
348L 956

beta=LA3

F
2

3
5 67 8 FL

23
6L956

beta=LA4

F

2
3

5
6 8FLF2 F7 26

FF7
956

beta=LA5

F

2
5

8 F2
956

beta=LA75

2

FL
37

956

beta=FAL

F

2
956

beta=2AL

956

beta=5AL

F
2

3
8

5L

229

956

beta=FLAL

4

956

L

LALL5

LALF

LALF5

LAL2

LAL25

LAL3

LAL35

LAL4

LAL45

L LAL2 LAL4 LAL6 LAL8 LAF LAF2 LAF4

C
at

al
og

nC
ov

er
ag

e

Recall

LastAFMn2K:nWeightednRatingTItemKnnEnManipulatingnBETA

k=F

TFL

TLAF5

TLAL5
L

LAF
LA2

LA4FL

k=2

TFL TF

TLA5

TLA3
TLA2

TLAF
TLAL5
L

LAL5
LAF

LA2
LA3

LA5F
FL

k=5 TFL T2
TF
TLA75

TLA4

TLA2

TLAF
TLAL5
L

LAL5
LAF

LAF5
LA2

LA3LA4LA5

FL

k=9 TFL
T2

TLA75

TLA5

TLA3
TLA2

TLAF5
TLAF

L
LAL5

LAF

LAF5
LA2

LA3
LA4LA5

LA75

FL

k=97
TFL T5

TLA75

TLA4

TLA2
TLAF

L

LAF
LAF5
LA2

LA3

LA4

LA5
LA75

FL

k=956 TFL
T2

TF
TLA75

TLA4

TLA2

TLAF

L
LAL5

LAF

LA2

LA4

LA5LA75

F

FL

TLAL5

L

LAL5

LAF

LAF5

LA2

LA25

L LAL5 LAF LAF5 LA2 LA25 LA3 LA35 LA4 LA45

C
at

al
og

nC
ov

er
ag

e

Recall

Moodings:nWeightednRatingTItemKnnEnManipulatingnK

beta=TFLAL

3
5
6

7
8

9
FF

F3
F7

2F
26

3F
37

5L
668L

FF7
F72

956 beta=T2AL

2
3

45

8
FF

F4

23

37
55

88
F42

277
956

beta=TFAL

F

5

FF

26
55

F56
3L4

956

beta=TLA4

2

3
4 9

26
956

beta=TLAF5

3
4 956

beta=TLAL5

2

5

beta=LAL5

F

3
4

956

beta=LA2

2

3

4

F6956

beta=LA5

F

2

3

4

7FL28956

beta=FAL

2

3

4

68F2

FF7
956

beta=FLAL

F

2

3
4

56
89FL

F3
F9

3F

97
956

L

LAL5

LAF

LAF5

LA2

LA25

L LAL5 LAF LAF5 LA2 LA25 LA3 LA35 LA4 LA45

C
at

al
og

nC
ov

er
ag

e

Recall

Moodings:nWeightednRatingTItemKnnEnManipulatingnBETA

k=F

TFL
L

FL

k=2

TFL

L
LA5FL

k=3

TFL

TLA3
L

LA2
LA5

F2FL

k=4

TFL
TF

TLA3
L

LA2
LA5

F2FL

k=8

TFL

T2

TLA2
L

LA3
LA5

LA75

FL

k=F9

TFL

T2

LA75

2

FL

k=88

TFL T5

T2

TLA75

LA5
LA75

2

FL

k=956
TFL

T2

TF

TLA75

TLA4

LA75

F

FL

Figure 4.6: ItemKnn Experiments Using Rating Cosine Similarity

86

4.2. Capacity Manipulation Experiments

0J01

0J02

0J03

0J04

0J05

A0J02 0 0J02 0J04 0J06 0J08 0J1

C
at

al
og

IC
ov

er
ag

e

Recall

CasaICenina:IWeightedITokenAItemKnnEIManipulatingIK

beta=A10J0

3

4

7

14
21

28
34

41
55

66
80

107
129

172

252
335

446
653

956

beta=A2J0

37

172
229
335
446

653
956

beta=A1J0

2

4
10

66

446
653
956

beta=A0J4

50
156
956

beta=A0J2

1

3

4

6 8 718

beta=A0J1

2

3

5
8
19 956

beta=0J0

4

956

beta=0J05

1

3

4

5

790

beta=0J15

2

3

4

5
8

26

956

beta=0J3

1

2

3

4

5626

80
156

277
539

956

beta=1J0

2

3

4

5810
12

16
21

31
45

66
97

117

189

956

beta=10J0

1

2

3

4

5678
1011

16
21

28

41

55

277

0J01

0J02

0J03

0J04

0J05

0 0J02 0J04 0J06 0J08 0J1

C
at

al
og

IC
ov

er
ag

e

Recall

CasaICenina:IWeightedITokenAItemKnnEIManipulatingIBETA

k=1

A10010 k=2

A1000J3
10

k=3

A1000J20J7510

k=4

A10
00J20J5110

k=6

A10
A0J400J10J3

210

k=14

A10
A2
A1

A0J5

A0J0500J150J2
0J3

0J75110

k=41

A10 A5

A1
A0J75

A0J5

A0J10J05

0J5
0J75

2
10

k=117

A10

A2

A1

A0J15

0J2

0J3

0J5

0J75
1

10

k=304

A10

A2

A1

10

k=956

A10

A2

A1

A0J2

0J3

0J4

10

0

0J1

0J2

0J3

0J4

0J5

0J6

0J7

0 0J05 0J1 0J15 0J2 0J25 0J3

C
at

al
og

IC
ov

er
ag

e

Recall

JustISpotted:IRatingITokenAItemKnnEIManipulatingIK

beta=A10J0

3

5
6
7

8
9
10
11

1314

19
23

28
34

45
60

80
117

156
335956

beta=A2J0

4 7
8

10
12

14

23

60
88

129
189

304
956

beta=A0J75

5 6

11
13

19

55

208
405
956

beta=A0J4

1

4 10
14

23
60
277
956

beta=A0J2
3

4

681123
66

956
beta=A0J1

4

5 31
956

beta=A0J05

3

21956

beta=0J0

1

4

7
956

beta=0J05

3

5
21956

beta=0J2

1

3

4

5
41

60
97

156

335
539

956

beta=0J5

3

4

56
8

12

17

23

45

55

73

107

172
277
956

beta=10J01

3

5
6

7

9

11
13

16

21

28

37

55

956

0

0J1

0J2

0J3

0J4

0J5

0J6

0J7

0 0J05 0J1 0J15 0J2 0J25

C
at

al
og

IC
ov

er
ag

e

Recall

JustISpotted:IWeightedITokenAItemKnnEIManipulatingIBETA

k=1

A10
10

k=2

A10
0

10

k=3

A10

0
0J3

10 k=4

A10

0
0J2

10

k=5A10

0

10

k=7
A10

A0J15
1

10

k=10

A10
A2

A0J4

A0J2

0

10

k=13

A10

A0J5

10
k=19

A10

A1

A0J5

0J05

10
k=31

A10

A210

k=50

A10

A2

0J2

0J3

0J5

10

k=97

A10 A5

A2

A1

0J3

10

k=956

A10 A5
A2

A1

A0J5

A0J3

A0J2
A0J15

A0J1
A0J05

0

0J15

10

0

0J05

0J1

0J15

0J2

0J25

0 0J05 0J1 0J15 0J2 0J25 0J3 0J35

C
at

al
og

IC
ov

er
ag

e

Recall

Moodings:IWeightedITokenAItemKnnEIManipulatingIK

beta=A10J0
1

3
4

5
6
7

8

11

16
21

28
37

50
66

88
129

189
304

956

beta=A0J75

2

5 6
8

12

41

129

368
956

beta=A0J4

3

4
5 6 9

16

956

beta=A0J15

1

2

3

4

5 13
956

beta=0J0

2

3

4

5
956

beta=0J15

1

3

4
5

97
189

956

beta=0J4

2

3

5

1113
16

19
23

28
37

50
73

107

172
304

653

beta=1J0

1

3

5
67

8
9

11
13

16
19

23

37

956

beta=10J0

2

3

5
6

7
8

10
12

16

23

41

55

0

0J05

0J1

0J15

0J2

0J25

0 0J05 0J1 0J15 0J2 0J25 0J3 0J35 0J4

C
at

al
og

IC
ov

er
ag

e

Recall

Moodings:IWeightedITokenAItemKnnEIManipulatingIBETA

k=1

A10
010

k=2

A10

010

k=3

A10

00J510

k=4

A10

00J20J510

k=5

A10
A1

A0J2
00J20J510

k=7

A10

0J75
210

k=10

A10
A2

0J75210

k=19

A10

A2

A0J5

A0J3
A0J2

0J05

0J4
0J5

0J75
10

k=41

A10 A5

A2

0

0J2

0J3

0J4
0J5

1
10

k=129

A10 A5

A2

A1

A0J5

0J3

0J4

0J5

10

k=956

A10 A5

A2

A1

A0J5

A0J05

0J15

0J2

0J3

10

Figure 4.7: ItemKnn Experiments Using Token Jaccard Similarity

87

4. Main Results

4.2.3 Association Rules

Our experiments continue with Association Rules, exploring both the best-rule and weighted
voting method. The results for the best-rule method are shown in Fig. 4.9, and for weighted
voting method in Fig. 4.10. As the rule quality measure, we used the confidence (Eq. 2.41)
in compliance with [91], but as shown in Sec. 3.2.4, using β ∈ [0, 1] can be seen as a trans-
ition to lift (Eq. 2.42).

0

0m002

0m004

0m006

0m008

0m01

0m012

0m014

0 0m02 0m04 0m06 0m08 0m1 0m12 0m14 0m16

C
at

al
og

MC
ov

er
ag

e

Recall

-a5MCasaMCenina:MAssociationMRulesEMBestMConfidenceEMManipulatingMS_MIN

beta=0m0

1eT05

0m0002

beta=1m0

0m005

2eT06

A A

B
B

C

0m008

0m009

0m01

0m011

0m012

0m013

0m014

0 0m05 0m1 0m15

C
at

al
og

MC
ov

er
ag

e

Recall

-b5MCasaMCenina:MAssociationMRulesEMBestMConfidenceEMManipulatingMBETA

sTmin=2eT06

0

0m05

0m75

1

0m2

0m3
0m5

5eT06

0m0001

2eT06

D

E

F

Figure 4.8: Selected Prototypic Curves For The Association Rules.

The segments shown in 4.8 are very similar to segments commented in the neighborhood-
based algorithms. High value of smin can be thought as equivalent to high value of k in the
UserKnn algorithm. As discussed in 3.2.4, high smin causes that only the most important
inter-item relations are learned, while low smin leads to high granularity of discovered rules,
and therefore to high-capacity, long-tail model. Segments A and B in 4.8 (a) are equival-
ent to segments C and B , respectively, in 4.3 (a) for UserKnn. The β-iterated curve in
4.8 (b) does not require any additional comments either, since it behaves in the same way
as for neighborhood-based algorithms. The only difference is in the exact shape, which is
caused by different underlying model, and of course depends on given dataset.

88

4.2. Capacity Manipulation Experiments

0

08005

0801

08015

0802

08025

0803

08035

0 0805 081 0815 082 0825 083 0835 084

C
at

al
og

MC
ov

er
ag

e

Recall

BUBB8Store:MAssociationMRulesmMBestMConfidencemMManipulatingMS_MIN

beta=080

1eL06

5eL06

2eL05

080001

081

beta=082

1eL06

2eL06

5eL06

2eL05

5eL05

080002

beta=084
1eL06

2eL06

5eL06

1eL05

2eL05

beta=085

1eL06

2eL06

5eL06

1eL05

2eL05

5eL05

080001

beta=0875

1eL06

2eL06

5eL06

1eL05

08001

beta=180

1eL06

2eL06

5eL06

1eL05

2eL05

5eL05

080001
080002

L08005

0

08005

0801

08015

0802

08025

0803

08035

0804

0 0805 081 0815 082 0825 083 0835 084

C
at

al
og

MC
ov

er
ag

e

Recall

BUBB8Store:MAssociationMRulesmMBestMConfidencemMManipulatingMBETA

sLmin=1eL06

0

081

082
083

084
08508751sLmin=2eL06

0

081

082
083

08408508751
sLmin=5eL06

0
0805

0815
08308408508751

sLmin=1eL05

0
0815

08308408508751

sLmin=2eL05

0
0815

0830840851

sLmin=5eL05

0810840851

sLmin=080001

0810840851

sLmin=080005

0810840851

sLmin=08002

0

0

0805

081

0815

082

0825

083

0835

084

0845

085

0855

0 0805 081 0815

C
at

al
og

MC
ov

er
ag

e

Recall

MovieLensM1M:MAssociationMRulesmMBestMConfidencemMManipulatingMS_MIN

beta=080

080001
080002

080005

08002
0802

081

beta=0815

080001

080005

08002

0802

beta=083080001

080005

08005

0802

081

beta=084

080002

080005

0801

0802

beta=085

080001

080002

08001

08002

08005

0801

0805

beta=0875

0800108002

08005

0801

0802

0805

081

beta=180

080001

08001

0801

0802

0805

081

0

0805

081

0815

082

0825

083

0835

084

0845

085

0855

0 0805 081 0815

C
at

al
og

MC
ov

er
ag

e

Recall

MovieLensM1M:MAssociationMRulesmMBestMConfidencemMManipulatingMBETA

sLmin=080001

0

081

082

083
084

085

0875

1

sLmin=08001

0805

0815

082

084

085

0875

1

sLmin=08005

0

083

085

08751

sLmin=0802

0
081

083

0875
1

sLmin=0805

0
083

08751

sLmin=081

0 08308751

L08002

0

08002

08004

08006

08008

0801

08012

08014

0 0805 081 0815

C
at

al
og

MC
ov

er
ag

e

Recall

CasaMCenina:MAssociationMRulesmMBestMConfidencemMManipulatingMBETA

sLmin=2eL06

0

0805

083085

0875

1

sLmin=5eL06

081

082
083085

0875

1

sLmin=2eL05

0

081

0840850875
1

sLmin=5eL05

0
0805

081

082
0840850875

1

sLmin=080001

0

081
082

08508751

sLmin=080002
0
0815
08508751

sLmin=0800050
0831

sLmin=080010831

sLmin=08002
0811

sLmin=08005
0

sLmin=0801

0

0

08002

08004

08006

08008

0801

08012

08014

0 0802 0804 0806 0808 081 0812 0814 0816

C
at

al
og

MC
ov

er
ag

e

Recall

CasaMCenina:MAssociationMRulesmMBestMConfidencemMManipulatingMS_MIN

beta=080

1eL05

5eL05

080001

080002

080005

08002

beta=081

1eL05

2eL05

5eL05

080001

beta=083

5eL06
1eL05

2eL05

5eL05

080002

beta=085

2eL06
1eL05
2eL05

5eL05

080001

08001

081 beta=0875

1eL06

5eL06
1eL05

2eL05

5eL05

080002

beta=180

2eL06

5eL06
2eL05

5eL05

080001

080005

08002
08005

Figure 4.9: Association Rules Experiments Using Best-Confidence Method

89

4. Main Results

L

L4L5

L4F

L4F5

L4K

L4K5

L43

L L4L5 L4F L4F5 L4K L4K5 L43

C
at

al
og

fC
ov

er
ag

e

Recall

JustfSpotted:fAssociationfRulesTfWeightedfConfidenceTfManipulatingfS_MIN

beta=L4L

FemL6
FemL5

5emL5
L4LLLF

L4LLLK

beta=L4K

5emL6
FemL5

KemL5

L4LLL5
L4LLF

L4LLKL4F

beta=L45

KemL6
FemL5

KemL5

L4LLLK

beta=L475

KemL6

5emL6
FemL5

KemL5

5emL5

beta=F4L

KemL6

5emL6

FemL5

KemL5

5emL5

L4LLLF

L4LLLK

L

L4L5

L4F

L4F5

L4K

L4K5

L43

L L4L5 L4F L4F5 L4K L4K5 L43

C
at

al
og

fC
ov

er
ag

e

Recall

JustfSpotted:fAssociationfRulesTfWeightedfConfidenceTfManipulatingfBETA

smmin=KemL6

L

L4K

L43

L45

L475

F

smmin=5emL6

L

L4F
L4F5

L4K

L43

L45

L475

F
smmin=KemL5

L

L4F5

L44

L475

F

smmin=5emL5

L475
F

smmin=L4LLLF

L
L4K

L475F

smmin=L4LLLK

L
L45L475F

smmin=L4LLL5

L475

smmin=L4LLF

L475

smmin=L4LLK

L

smmin=L4LL5

L

smmin=L4LF

L

L

L4LK

L4L4

L4L6

L4L8

L4F

L4FK

L4F4

L L4LK L4L4 L4L6 L4L8 L4F L4FK L4F4 L4F6

C
at

al
og

fC
ov

er
ag

e

Recall

Last4FMfKK:fAssociationfRulesTfWeightedfConfidenceTfManipulatingfS_MIN

beta=L4L

L4LLL5

L4LL5L4LKL4L5L4F

beta=L4F5

L4LLL5

beta=L44

L4LLL5

beta=L45L4LLL5

L4LLF

L4LLK

L4LL5

beta=L475

L4LLL5

L4LLF

L4LLK

L4LF

beta=F4L

L4LLL5

L4LLF

L4LLK

L4LL5

L4LF
L4LK

L

L4LK

L4L4

L4L6

L4L8

L4F

L4FK

L4F4

L L4LK L4L4 L4L6 L4L8 L4F L4FK L4F4 L4F6

C
at

al
og

fC
ov

er
ag

e

Recall

Last4FMfKK:fAssociationfRulesTfWeightedfConfidenceTfManipulatingfBETA

smmin=L4LLL5

L

L4F5
L4K

L44

L45

L475
F smmin=L4LLF

L

L45

L475F

smmin=L4LLK

L43

L45

L475

F

smmin=L4LL5

L4L5L43
L45

F

smmin=L4LF

F

smmin=L4LK

L4L5
F

smmin=L4L5

L4L5

smmin=L4F

L4L5

L

L4LK

L4L4

L4L6

L4L8

L4F

L4FK

L4F4

L L4L5 L4F L4F5 L4K L4K5 L43 L435 L44 L445

C
at

al
og

fC
ov

er
ag

e

Recall

Moodings:fAssociationfRulesTfWeightedfConfidenceTfManipulatingfS_MIN

beta=L4L

KemL5
5emL5

L4LLLF

beta=L4F

KemL5
5emL5

L4LLLK

beta=L4K

KemL6
KemL5

5emL5

L4LLLF

beta=L45

KemL6
FemL5
KemL5

5emL5

L4LLLF

L4LLL5

L4F beta=L475

FemL6

KemL6

5emL5

beta=F4L

FemL6

KemL6
5emL6

KemL5

5emL5

L4LLLF

L4LLLK

L

L4LK

L4L4

L4L6

L4L8

L4F

L4FK

L4F4

L L4L5 L4F L4F5 L4K L4K5 L43 L435 L44 L445

C
at

al
og

fC
ov

er
ag

e

Recall

Moodings:fAssociationfRulesTfWeightedfConfidenceTfManipulatingfBETA

smmin=FemL6

L

L4F

L4K

L43

L44
L45

L475

F

smmin=KemL6

L4L5

L44

L475

F

smmin=FemL5

L

L4K

L43

L44

L475
F

smmin=5emL5

L
L4F
L4K
L44

L475F

smmin=L4LLLF

L
L43

L475F

smmin=L4LLLK

L
F

smmin=L4LLL5

F

smmin=L4LLFL

smmin=L4LLK
L

Figure 4.10: Association Rules Experiments Using Weighted-Confidence Voting Method

90

4.2. Capacity Manipulation Experiments

4.2.4 Matrix Factorization

We have also done a number of experiments with the Matrix Factorization. Fig. 4.12 shows
the results for the Moodings and the Last.FM 2K datasets, iterated over different capacity-
manipulating hyperparameters: the number of factors f ∈ N, the regularization λ ∈ R,
and, as usually, β ∈ R. Unlike for previous algorithms, the capacity hyperparameterization
space has 3 dimensions, making the search for interesting ares slightly more difficult.

D

DBDD5

DBDf

DBDf5

DBD2

DBD25

DBD3

DBD4 DBD6 DBD8 DBf DBf2 DBf4 DBf6

C
at

al
og

zC
ov

er
ag

e

Recall

SabzLastBFMz2K:zMatrixzFactorizationdzManipulatingzFACTORS

beta=Ddzlambda=DBDDf

5D

fDDD

2DDD

5DD

f

A

C
B

DBDf

DBDf5

DBD2

DBD25

DBD3

DBD35

DBD4

DBf DBff DBf2 DBf3 DBf4 DBf5 DBf6 DBf7

C
at

al
og

zC
ov

er
ag

e

Recall

SbbzLastBFMz2K:zMatrixzFactorizationdzBETA=DBDdzManipulatingzLAMBDA

factors=2DDD

DBDDf

DBDD3
DB3

2

D

DBD5
DB2

E

F

Figure 4.11: Selected Prototypic Curves For The Matrix Factorization.

Because the behavior for β is algorithm-independent as shown above, the prototypic
curves for MF in Fig. 4.11 include only the number of factors f and regularization λ.
Segment A for the number of factors in 4.11 (a) starts at low capacity, popularity-based
model for f = 1, and traverses towards higher-capacity models with in increasing f , growing
in both the recall and the coverage. This is equivalent for transition from smin = 1 in case
of ARs, and from k →∞ in case of UserKnn model. The Pareto-optimal front is segment
B .

What deserves separate comment is C segment, which decreases in coverage despite
β = 0. In this case, it is the low chosen value of λ which causes this overfit. Given too high
number of factors without enough regularization, the model overfits to the provided rating
matrix through too high absolute values of individual elements in matrices P ∈ Rf×U and
Q ∈ Rf×I . If for some items the values go too high (lowering error on the training set), the
result on the testing set will be that dot product with latent vectors with such items will
be the highest for majority user latent vectors build for users from the testing set. This
impact of λ is shown in 4.11 (b), where segment D represents underfitting (popular items),
segment E the desired Pareto-optimal front, and segment F overfitting (noisy items).

91

4. Main Results

SKbK2

K

KbK2

KbK4

KbK6

KbK8

Kb1

Kb12

Kb14

K KbK5 Kb1 Kb15 Kb2 Kb25 Kb3 Kb35 Kb4

C
at

al
og

,C
ov

er
ag

e

Recall

Moodings:,Matrix,FactorizationO,LAMBDA=1bKO,Manipulating,BETA

factors=1

S1K1K
factors=21K
factors=5

S1K

Kb751
1K

factors=1K

Kb75
1

1K

factors=2K

Kb4

Kb75
1

2
1K

factors=5K

K
Kb4

Kb75

1
2
1K

factors=1KK

K

Kb4

Kb75
1

1K

factors=2KK

S1

K

Kb5
Kb751

factors=5KK
S1K

SKb75
SKb5

K
Kb3

Kb5
Kb751

1K

factors=1KKK

S1K

S2

S1

SKb2
K

Kb3Kb4
Kb5

Kb75
1

1K

factors=2KKK

S1K

S2

S1

SKb75

SKb4
SKb2SKb1

K
Kb15

Kb3
Kb4Kb5

Kb75

1

1K

K

KbK2

KbK4

KbK6

KbK8

Kb1

Kb12

Kb14

K KbK5 Kb1 Kb15 Kb2 Kb25 Kb3 Kb35

C
at

al
og

,C
ov

er
ag

e

Recall

Moodings:,Matrix,FactorizationO,Manipulating,FACTORS

beta=KO,lambda=KbKK1

5KK

1KKK

2KKKbeta=KO,lambda=KbKK4

2K

beta=KO,lambda=KbK3
2KKK

beta=KO,lambda=Kb3
1KKKbeta=KO,lambda=1bK

5
2K

2KKK

beta=KO,lambda=1b2

2KK

1KKK

beta=KO,lambda=1b75

1

5K

1KK

2KKK

beta=KO,lambda=2bK

1K

5KK

1KKK

K

KbK2

KbK4

KbK6

KbK8

Kb1

Kb12

Kb14

K KbK5 Kb1 Kb15 Kb2 Kb25 Kb3 Kb35

C
at

al
og

,C
ov

er
ag

e

Recall

Moodings:,Matrix,FactorizationO,Manipulating,LAMBDA

beta=KO,factors=1
beta=KO,factors=2
beta=KO,factors=5

beta=KO,factors=1K
beta=KO,factors=2K
beta=KO,factors=5K

beta=KO,factors=1KK
beta=KO,factors=2KK

2

beta=KO,factors=5KK
KbKK1 2

beta=KO,factors=1KKK

KbKK1 Kb1 1 1b5 2

beta=KO,factors=2KKK

KbKK1 KbK1 Kb5 1
1b5 2

K

KbK2

KbK4

KbK6

KbK8

K KbK5 Kb1 Kb15 Kb2 Kb25

C
at

al
og

,C
ov

er
ag

e

Recall

LastbFM,2K:,Matrix,FactorizationO,LAMBDA=Kb2O,Manipulating,BETA

factors=1

S1K1K

factors=2

1K

factors=5

Kb5Kb751K

factors=1K

S2

Kb5

Kb75

1K

factors=2K

Kb3
Kb5

Kb75

1K

factors=5K

Kb4
Kb5

Kb75

1K

factors=1KK

Kb3
Kb4

Kb5

Kb75

1K

factors=2KK

Kb4

Kb5

Kb75

1

1K

factors=5KK

SKb1

Kb2

Kb3

Kb4

Kb5

Kb75

factors=1KKK

S1

Kb3

Kb4
Kb5

factors=2KKK

S1K

SKb5
SKb4

SKb3

SKbK5

K

Kb3

Kb75

1K

K

KbKK5

KbK1

KbK15

KbK2

KbK25

KbK3

KbK35

KbK4

KbK4 KbK6 KbK8 Kb1 Kb12 Kb14 Kb16 Kb18

C
at

al
og

,C
ov

er
ag

e

Recall

LastbFM,2K:,Matrix,FactorizationO,Manipulating,FACTORS

beta=KO,lambda=KbKK1

5
2K

5K

1KKK

2KKK

beta=KO,lambda=KbKK2

5

5K

5KK
2KKK

beta=KO,lambda=KbKK5

2 1K
5K

2KK

5KK
1KKK

2KKK
beta=KO,lambda=KbK15

1K

2KK

5KK2KKK

beta=KO,lambda=Kb1

1

1K
2K

5K

1KK

2KKK

beta=KO,lambda=Kb15
5KK

1KKK

beta=KO,lambda=Kb3
2KKK

beta=KO,lambda=2bK

2K

1KK
2KK
2KKK

K

KbKK5

KbK1

KbK15

KbK2

KbK25

KbK3

KbK35

KbK4

KbK4 KbK6 KbK8 Kb1 Kb12 Kb14 Kb16 Kb18

C
at

al
og

,C
ov

er
ag

e

Recall

LastbFM,2K:,Matrix,FactorizationO,BETA=KbKO,Manipulating,LAMBDA

factors=1
factors=2

factors=2K

KbKK2

KbK3
2

factors=2KK

KbK5

Kb1

Kb15
Kb2

Kb3

2

factors=5KK

KbKK1

KbKK15
KbKK4

Kb1

Kb15

Kb4
Kb5

2

factors=2KKK

KbKK1

KbKK15

KbKK3

KbKK75

KbK5
Kb2

Kb3

2

Figure 4.12: Matrix Factorization Experiments

92

4.2. Capacity Manipulation Experiments

4.2.5 AutoRec

Finally, we present results for the AutoRec algorithm on the MovieLens 1M dataset in
Figs. 4.13 and 4.14. Since the algorithm is basically a generalized matrix factorization,
the behavior for individual parameters is also similar. Small number of neurons in the
bottleneck leads to popularity-based model, raising their number increases model capacity.
We iterated only up to 200 neurons, so there wasn’t overfit to noisy achieved, but it’s
expected that for higher number of neurons, the coverage would start decreasing. Using
λ regularization, we show all the three well-known segments: Underfitting for too high λ,
Pareto-optimal front for decreasing values of λ, and overfitting to noisy items for very low
λ = 10−7. For β, the behavior is the same as for other algorithms.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

C
at

al
og

=C
ov

er
ag

e

Recall

MovileLens=1M:=AutoRecb=BETA=0.0b=Manipulating=LAMBDA

factors=10

1ed07 1ed05

0.0005
0.01

factors=20

1ed07
1ed05

3ed05

0.0001

factors=60

1ed07
1ed06

factors=200

1ed07

1ed06

1ed05

5ed05

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

C
at

al
og

=C
ov

er
ag

e

Recall

MovieLens=1M:=AutoRecb=Manipulating=FACTORS

lambda=1ed07 10

20

60

200

lambda=1ed06

20

60

200

lambda=1ed05

20

60200

lambda=3ed05

10

20
60

lambda=5ed05

200

lambda=0.0001

10
60

lambda=0.0005 200

lambda=0.01
200

0

0.05

0.1

0.15

0.2

0.25

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

C
at

al
og

=C
ov

er
ag

e

Recall

MovieLens=1M:=AutoRecb=FACTORS=200b=Manipulating=LAMBDA

beta=d1.0

1ed07
1ed06

1ed05

5ed05

beta=d0.125

1ed07

1ed06

5ed05

beta=0.1875

1ed07
1ed06

1ed05

3ed05
5ed05

0.01

beta=0.375

1ed07

1ed05

3ed05

beta=0.5

1ed07
1ed06

1ed05

3ed05

5ed05

0.0001

0.01

0

0.05

0.1

0.15

0.2

0.25

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

C
at

al
og

=C
ov

er
ag

e

Recall

MovieLens=1M:=AutoRecb=LAMBDA=1ed7b=Manipulating=FACTORS

beta=d1.0

10

60

200

beta=d0.5

10

60

200

beta=d0.25

20

60

200

beta=0.0

10

20

60

200

beta=0.25

10

20

60

200

beta=0.5

10

20

60

200

Figure 4.13: AutoRec Experiments on MovieLens 1M Dataset for f and λ

93

4. Main Results

0

0f05

0f1

0f15

0f2

0f25

0 0f02 0f04 0f06 0f08 0f1 0f12 0f14 0f16

C
at

al
og

OC
ov

er
ag

e

Recall

MovieLensO1M:OAutoRec9OFACTORS=2009OManipulatingOBETA

lambda=1eD07

D1

0

0f25

0f5

0f75

1

lambda=1eD05

D1

D0f125

0f1875

0f3125

0f4375

0f5

1

lambda=3eD05

D1

0

0f3125

0f4375

lambda=5eD05

D1
0f06250f75

lambda=0f0001

D1

0f43750f5
0f75

1

lambda=0f0005

D10f43750f5

lambda=0f01

D10f51

0f01

0f02

0f03

0f04

0f05

0f06

0f07

0f08

0f09

0f1

0 0f02 0f04 0f06 0f08 0f1 0f12 0f14 0f16

C
at

al
og

OC
ov

er
ag

e

Recall

MovieLensO1M:OAutoRec9OLAMBDA=3eD59OManipulatingOBETA

factors=10

D1

0

0f5

0f75

1

factors=20

D0f75

0f25

0f5

factors=60

D1

0f75

factors=200

0f125
0f1875

0f3125

0f5

Figure 4.14: AutoRec Experiments on MovieLens 1M Dataset for β

94

Chapter 5

Conclusions

In this final chapter, we will conclude the whole thesis, including its main contributions
and opportunities for future research.

5.1 Summary

In this thesis, we addressed the long-tail recommendation problem from both the al-
gorithmic and evaluation perspective. Most importantly, we proposed controlling the mag-
nitude of long-tail recommendations generated by models through the manipulation with
capacity hyperparameters of learning algorithms. For multiple state-of-the-art algorithms,
we defined such hyperparameters. Thanks to summarizing all the algorithms under the
common framework of the score function, we also generalized popularity-based regulariza-
tion proposed in [101] for Matrix Factorization, to all the presented models. We proposed
searching for Pareto-optimal states in the Recall-Coverage plane as the right way to search
for long-tail, high-accuracy models. On the set of exhaustive experiments, we empirically
demonstrated the corectness of our theory on a mixture of public and industrial datasets
for 5 different algorithms and their different versions.

5.2 Contributions of the Dissertation Thesis

◦ Unified framework for generating rating matrices from mixed data sources, including
both the explicit and implicit ratings.

◦ Summarizing multiple state-of-the-art recommendation algorithms under the com-
mon framework based on the score: I × U → R function.

◦ Generalizing Collaborative Filtering ItemKnn algorithm as proposed in [93] to
sim: I2 → R functions other than rating cosine similarity. The newly proposed
similarity functions include the tokenized attributes similarity, embedding similarity,

95

5. Conclusions

and predicted similarity. This allows using the algorithm for Content-Based recom-
mendation as well.

◦ Association Rules for recommendation. While this is type of model didn’t receive
enough attention in the research community, we proposed unified framework for rule-
based recommendation, including the best-rule method, novel method of weighted
voting, and different rule-quality measures. We also showed how the β-boosting
(popularity regularization) applied to ARs translates to continous transition from
confidence to lift. In the experiments, we showed that rule-based recommenders can
compete to other state-of-the-art models.

◦ Survey of Matrix Factorization methods and Deep Learning approaches in Recom-
mender Systems.

◦ Formal framework for hyperparameterizable learning algorithms producing recom-
mendation models. Generalized definion of validation reward function, capturing not
only accuracy measures, but other measures (inluding catalog and user coverage) as
well. Unifying UserKnn, ItemKnn, ARs, MF, and AutoRec under this framework.

◦ Survey to Top-N evaluation in Recommender Systems.

◦ Generalization of popularity-based regularization, proposed in [101] for one specific
MF algorithm, to all the algorithms presented in the State-of-the-Art chapter.

◦ Proposing model capacity manipulation as a method of controlling magnitude of
long-tail recommendations.

◦ Defining model capacity manipulation parameters for UserKnn, ItemKnn, ARs, MF,
and AutoRec.

◦ Proposing multi-objective top-N evaluation as searching for Pareto-optimal front in
the hyperparameter space of learning algorithms.

◦ Proposing recall-coverage plane as highly relevant for optimizing long-tail recom-
mendations.

◦ Exhaustive set of experiments on a mixture of 7 public and industrial datasets. Thor-
ough investigation of manipulation with algorithm-dependent capacity parameters
and the response in the recall-coverage plane.

◦ For UserKnn, showing that recall-coverage behavior is preserved even for Locality-
Sensitive Hashing (LSH).

96

5.3. Future Work

5.3 Future Work

The author of the dissertation thesis suggests to explore the following:

◦ It would be interesting to include additional reward functions other than recall and
coverage, such as intra-recommendation diversity, novelty, and serendipity.

◦ Set of online A/B testing experiments should be performed to further investigate the
correlation between recall, coverage, and measures like CTR and CR. We performed
few such experiments already with results suggesting that models with lower recall
to the benefit of higher coverage lead to better online results.

In the Appendix A, we include our recent paper on comparison between online and
offline results in RS. It would be particularly interesting to combine the two methods
together.

97

Bibliography

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge & Data Engineering, (6):734–749, 2005.

[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of
items in large databases. SIGMOD Rec., 22(2):207–216, June 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings of the 20th International Conference on Very Large Data
Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[4] R. Agrawal and R. Srikant. Mining sequential patterns. In Data Engineering, 1995.
Proceedings of the Eleventh International Conference on, pages 3–14. IEEE, 1995.

[5] Y. Aytar, C. Vondrick, and A. Torralba. Soundnet: Learning sound representations
from unlabeled video. In Advances in Neural Information Processing Systems, pages
892–900, 2016.

[6] P. J. Azevedo and A. M. Jorge. Comparing rule measures for predictive association
rules. In Proceedings of the 18th European Conference on Machine Learning, ECML
’07, pages 510–517, Berlin, Heidelberg, 2007. Springer-Verlag.

[7] M. Bajer. Framework pro vyhodnocováńı úspešnosti algoritmu castých sekvenćı v
doporucovaćıch systémech., 2017.

[8] C. Basu, H. Hirsh, W. Cohen, et al. Recommendation as classification: Using social
and content-based information in recommendation. In Aaai/iaai, pages 714–720,
1998.

[9] J. Beel, M. Genzmehr, S. Langer, A. Nürnberger, and B. Gipp. A comparative ana-
lysis of offline and online evaluations and discussion of research paper recommender

99

Bibliography

system evaluation. In Proceedings of the international workshop on reproducibility
and replication in recommender systems evaluation, pages 7–14. ACM, 2013.

[10] R. M. Bell and Y. Koren. Lessons from the netflix prize challenge. SIGKDD Explor.
Newsl., 9(2):75–79, Dec. 2007.

[11] R. M. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neigh-
borhood interpolation weights. In Seventh IEEE International Conference on Data
Mining (ICDM 2007), pages 43–52, Oct 2007.

[12] J. Bennett, S. Lanning, and N. Netflix. The netflix prize. In In KDD Cup and
Workshop in conjunction with KDD, 2007.

[13] D. Billsus and M. J. Pazzani. Learning collaborative information filters. In Icml,
volume 98, pages 46–54, 1998.

[14] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022, Mar. 2003.

[15] T. Bogers and A. Van den Bosch. Recommending scientific articles using citeulike. In
Proceedings of the 2008 ACM conference on Recommender systems, pages 287–290.
ACM, 2008.

[16] R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, 12(4):331–370, Nov. 2002.

[17] E. Campochiaro, R. Casatta, P. Cremonesi, and R. Turrin. Do metrics make recom-
mender algorithms? In Advanced Information Networking and Applications Work-
shops, 2009. WAINA’09. International Conference on, pages 648–653. IEEE, 2009.

[18] I. Cantador, P. Brusilovsky, and T. Kuflik. 2nd workshop on information hetero-
geneity and fusion in recommender systems (hetrec 2011). In Proceedings of the 5th
ACM conference on Recommender systems, RecSys 2011, New York, NY, USA, 2011.
ACM.

[19] P. Castells, N. J. Hurley, and S. Vargas. Novelty and diversity in recommender
systems. In Recommender Systems Handbook, pages 881–918. Springer, 2015.

[20] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson,
G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, and
H. Shah. Wide & deep learning for recommender systems. In Proceedings of the
1st Workshop on Deep Learning for Recommender Systems, DLRS 2016, pages 7–10,
New York, NY, USA, 2016. ACM.

[21] Y.-H. Chien and E. I. George. A bayesian model for collaborative filtering. In
AISTATS, 1999.

100

Bibliography

[22] M. Claesen and B. D. Moor. Hyperparameter search in machine learning. CoRR,
abs/1502.02127, 2015.

[23] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms
on top-n recommendation tasks. In Proceedings of the Fourth ACM Conference on
Recommender Systems, RecSys ’10, pages 39–46, New York, NY, USA, 2010. ACM.

[24] W. B. Croft, D. Metzler, and T. Strohman. Search engines: Information retrieval in
practice, volume 283. Addison-Wesley Reading, 2010.

[25] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He,
M. Lambert, B. Livingston, et al. The youtube video recommendation system. In
Proceedings of the fourth ACM conference on Recommender systems, pages 293–296.
ACM, 2010.

[26] M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM
Transactions on Information Systems (TOIS), 22(1):143–177, 2004.

[27] E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, and W. Nejdl. Real-time top-n
recommendation in social streams. In Proceedings of the sixth ACM conference on
Recommender systems, pages 59–66. ACM, 2012.

[28] X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and F. Zhang. A hybrid collaborative
filtering model with deep structure for recommender systems, 2017.

[29] P. Forbes and M. Zhu. Content-boosted matrix factorization for recommender sys-
tems: experiments with recipe recommendation. In Proceedings of the fifth ACM
conference on Recommender systems, pages 261–264. ACM, 2011.

[30] S. Funk. Netflix update: Try this at home. http://sifter.org/~simon/journal/
20061211.html, 2006.

[31] C. Gallicchio, A. Micheli, and L. Pedrelli. Deep reservoir computing: A critical
experimental analysis. Neurocomputing, 268:87–99, 2017.

[32] F. Garcin, B. Faltings, O. Donatsch, A. Alazzawi, C. Bruttin, and A. Huber. Offline
and online evaluation of news recommender systems at swissinfo. ch. In Proceedings
of the 8th ACM Conference on Recommender systems, pages 169–176. ACM, 2014.

[33] M. Ge, C. Delgado-Battenfeld, and D. Jannach. Beyond accuracy: evaluating re-
commender systems by coverage and serendipity. In Proceedings of the fourth ACM
conference on Recommender systems, pages 257–260. ACM, 2010.

[34] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factoriz-
ation with distributed stochastic gradient descent. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’11, pages 69–77, New York, NY, USA, 2011. ACM.

101

http://sifter.org/~simon/journal/20061211.html
http://sifter.org/~simon/journal/20061211.html

Bibliography

[35] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Y. W. Teh and M. Titterington, editors, Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics, volume 9
of Proceedings of Machine Learning Research, pages 249–256, Chia Laguna Resort,
Sardinia, Italy, 13–15 May 2010. PMLR.

[36] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In
G. Gordon, D. Dunson, and M. Dudik, editors, Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings
of Machine Learning Research, pages 315–323, Fort Lauderdale, FL, USA, 11–13 Apr
2011. PMLR.

[37] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to
weave an information tapestry. Commun. ACM, 35(12):61–70, Dec. 1992.

[38] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time
collaborative filtering algorithm. information retrieval, 4(2):133–151, 2001.

[39] C. A. Gomez-Uribe and N. Hunt. The netflix recommender system: Algorithms,
business value, and innovation. ACM Transactions on Management Information
Systems (TMIS), 6(4):13, 2016.

[40] M. Hak. Porovnáńı r̊uzných metod měřeńı úspěšnosti v kolaborativńım filtrováńı,
2014.

[41] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
SIGMOD Rec., 29(2):1–12, May 2000.

[42] A. S. Harpale and Y. Yang. Personalized active learning for collaborative filtering.
In Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, pages 91–98. ACM, 2008.

[43] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4):19:1–19:19, Dec. 2015.

[44] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collab-
orative filtering recommender systems. ACM Transactions on Information Systems
(TOIS), 22(1):5–53, 2004.

[45] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recommenda-
tions with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

[46] T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf.
Syst., 22(1):89–115, Jan. 2004.

[47] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback
datasets. In 2008 Eighth IEEE International Conference on Data Mining, pages
263–272, Dec 2008.

102

Bibliography

[48] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 604–613. ACM, 1998.

[49] C. Johnson. Algorithmic music discovery at spotify. https://www.slideshare.net/
MrChrisJohnson/algorithmic-music-recommendations-at-spotify, 2014.

[50] A. Karatzoglou, L. Baltrunas, and Y. Shi. Learning to rank for recommender systems.
In Proceedings of the 7th ACM conference on Recommender systems, pages 493–494.
ACM, 2013.

[51] G. Karypis. Evaluation of item-based top-n recommendation algorithms. In Pro-
ceedings of the tenth international conference on Information and knowledge man-
agement, pages 247–254. ACM, 2001.

[52] P. Kasalický. Content-based recommendation model trained using interaction simil-
arity, 2018.

[53] N. Koenigstein and U. Paquet. Xbox movies recommendations: Variational bayes
matrix factorization with embedded feature selection. In Proceedings of the 7th ACM
Conference on Recommender Systems, RecSys ’13, pages 129–136, New York, NY,
USA, 2013. ACM.

[54] I. Kononenko. Combining decisions of multiple rules. Artificial Intelligence V: Meth-
odology, Systems, Applications, pages 87–96, 1992.

[55] Y. Koren. Factorization meets the neighborhood: A multifaceted collaborative fil-
tering model. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’08, pages 426–434, New York, NY,
USA, 2008. ACM.

[56] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, Aug. 2009.

[57] J. Langford, A. J. Smola, and M. Zinkevich. Slow learners are fast. In Proceedings
of the 22Nd International Conference on Neural Information Processing Systems,
NIPS’09, pages 2331–2339, USA, 2009. Curran Associates Inc.

[58] Y. LeCun, Y. Bengio, and G. E. Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

[59] C. W.-k. Leung, S. C.-f. Chan, and F.-l. Chung. Applying cross-level association rule
mining to cold-start recommendations. In Proceedings of the 2007 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Technology -
Workshops, WI-IATW ’07, pages 133–136, Washington, DC, USA, 2007. IEEE Com-
puter Society.

103

https://www.slideshare.net/MrChrisJohnson/algorithmic-music-recommendations-at-spotify
https://www.slideshare.net/MrChrisJohnson/algorithmic-music-recommendations-at-spotify

Bibliography

[60] Q. Li and X. Zheng. Deep collaborative autoencoder for recommender systems: A
unified framework for explicit and implicit feedback. CoRR, abs/1712.09043, 2017.

[61] W. Li, J. Han, and J. Pei. Cmar: accurate and efficient classification based on
multiple class-association rules. In Data Mining, 2001. ICDM 2001, Proceedings
IEEE International Conference on, pages 369–376, 2001.

[62] S. Liao, T. Zou, and H. Chang. An association rules and sequential rules based recom-
mendation system. In Wireless Communications, Networking and Mobile Computing,
2008. WiCOM ’08. 4th International Conference on, pages 1–4, 2008.

[63] Y. J. Lim and Y. W. Teh. Variational bayesian approach to movie rating prediction.
In Proceedings of KDD cup and workshop, volume 7, pages 15–21, 2007.

[64] C.-J. Lin. Matrix factorization and factorization machines for recommender systems.
https://www.csie.ntu.edu.tw/~cjlin/talks/sdm2015.pdf, 2015.

[65] W. Lin, S. A. Alvarez, and C. Ruiz. Collaborative recommendation via adaptive
association rule mining. In Proceedings of the International Workshop on Web Mining
for E-Commerce (WEBKDD, 2000.

[66] G. Linden, B. Smith, and J. York. Amazon. com recommendations: Item-to-item
collaborative filtering. IEEE Internet computing, (1):76–80, 2003.

[67] T.-Y. Liu et al. Learning to rank for information retrieval. Foundations and Trends R©
in Information Retrieval, 3(3):225–331, 2009.

[68] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social
regularization. In Proceedings of the fourth ACM international conference on Web
search and data mining, pages 287–296. ACM, 2011.

[69] L. Mart́ınek. Evaluace algoritmů lokálně senzitivńıho hashováńı (lsh)
v doporučovaćıch systémech, 2018.

[70] P. Massa and P. Avesani. Trust-aware collaborative filtering for recommender sys-
tems. In OTM Confederated International Conferences” On the Move to Meaningful
Internet Systems”, pages 492–508. Springer, 2004.

[71] P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative filtering
for improved recommendations. Aaai/iaai, 23:187–192, 2002.

[72] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repres-
entations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[73] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effective personalization based on
association rule discovery from web usage data. In Proceedings of the 3rd international
workshop on Web information and data management, WIDM ’01, pages 9–15, New
York, NY, USA, 2001. ACM.

104

https://www.csie.ntu.edu.tw/~cjlin/talks/sdm2015.pdf

Bibliography

[74] F. Montagna. An algebraic approach to propositional fuzzy logic. Journal of Logic,
Language and Information, 9(1):91–124, Jan 2000.

[75] M. Nakagawa and B. Mobasher. Impact of site characteristics on recommendation
models based on association rules and sequential patterns. In Proceedings of the
IJCAI, volume 3, pages 1–10, 2003.

[76] F. Niu, B. Recht, C. Re, and S. J. Wright. Hogwild!: A lock-free approach to par-
allelizing stochastic gradient descent. In Proceedings of the 24th International Con-
ference on Neural Information Processing Systems, NIPS’11, pages 693–701, USA,
2011. Curran Associates Inc.

[77] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-
class collaborative filtering. In Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining, ICDM ’08, pages 502–511, Washington, DC, USA, 2008.
IEEE Computer Society.

[78] Y.-J. Park and A. Tuzhilin. The long tail of recommender systems and how to
leverage it. In Proceedings of the 2008 ACM conference on Recommender systems,
pages 11–18. ACM, 2008.

[79] M. Pavĺıček. Doporučovaćı modely založené na obrázćıch, 2018.

[80] I. Pilászy, D. Zibriczky, and D. Tikk. Fast als-based matrix factorization for explicit
and implicit feedback datasets. In Proceedings of the fourth ACM conference on
Recommender systems, pages 71–78. ACM, 2010.

[81] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A. Konstan, and
J. Riedl. Getting to know you: learning new user preferences in recommender sys-
tems. In Proceedings of the 7th international conference on Intelligent user interfaces,
pages 127–134. ACM, 2002.

[82] B. Recht and C. Re. Parallel stochastic gradient algorithms for large-scale matrix
completion. Math. Program. Comput., 5(2):201–226, 2013.

[83] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. In Proceedings of the twenty-fifth con-
ference on uncertainty in artificial intelligence, pages 452–461. AUAI Press, 2009.

[84] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An open
architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative Work, CSCW ’94, pages 175–186,
New York, NY, USA, 1994. ACM.

[85] F. Ricci, L. Rokach, and B. Shapira. Recommender systems: introduction and chal-
lenges. In Recommender systems handbook, pages 1–34. Springer, 2015.

105

Bibliography

[86] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative
to sift or surf. In Computer Vision (ICCV), 2011 IEEE international conference on,
pages 2564–2571. IEEE, 2011.

[87] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Foundations
of research. chapter Learning Representations by Back-propagating Errors, pages
696–699. MIT Press, Cambridge, MA, USA, 1988.

[88] A. Said and A. Belloǵın. Comparative recommender system evaluation: benchmark-
ing recommendation frameworks. In Proceedings of the 8th ACM Conference on
Recommender systems, pages 129–136. ACM, 2014.

[89] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for col-
laborative filtering. In Proceedings of the 24th International Conference on Machine
Learning, ICML ’07, pages 791–798, New York, NY, USA, 2007. ACM.

[90] J. J. Sandvig, B. Mobasher, and R. Burke. Robustness of collaborative recommend-
ation based on association rule mining. In Proceedings of the 2007 ACM conference
on Recommender systems, RecSys ’07, pages 105–112, New York, NY, USA, 2007.
ACM.

[91] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recommendation al-
gorithms for e-commerce. In Proceedings of the 2nd ACM conference on Electronic
commerce, EC ’00, pages 158–167, New York, NY, USA, 2000. ACM.

[92] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality
reduction in recommender system-a case study. Technical report, Minnesota Univ
Minneapolis Dept of Computer Science, 2000.

[93] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th International Conference on
World Wide Web, WWW ’01, pages 285–295, New York, NY, USA, 2001. ACM.

[94] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Incremental singular value decom-
position algorithms for highly scalable recommender systems. In Fifth International
Conference on Computer and Information Science, pages 27–28. Citeseer, 2002.

[95] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. Autorec: Autoencoders meet
collaborative filtering. In Proceedings of the 24th International Conference on World
Wide Web, WWW ’15 Companion, pages 111–112, New York, NY, USA, 2015. ACM.

[96] G. Shani and A. Gunawardana. Evaluating recommendation systems. In Recom-
mender systems handbook, pages 257–297. Springer, 2011.

[97] Y. Shi, M. Larson, and A. Hanjalic. List-wise learning to rank with matrix fac-
torization for collaborative filtering. In Proceedings of the Fourth ACM Conference

106

Bibliography

on Recommender Systems, RecSys ’10, pages 269–272, New York, NY, USA, 2010.
ACM.

[98] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[99] Y. Song, A. M. Elkahky, and X. He. Multi-rate deep learning for temporal recom-
mendation. In Proceedings of the 39th International ACM SIGIR conference on
Research and Development in Information Retrieval, pages 909–912. ACM, 2016.

[100] H. Steck. Training and testing of recommender systems on data missing not at
random. In Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’10, pages 713–722, New York, NY,
USA, 2010. ACM.

[101] H. Steck. Item popularity and recommendation accuracy. In Proceedings of the Fifth
ACM Conference on Recommender Systems, RecSys ’11, pages 125–132, New York,
NY, USA, 2011. ACM.

[102] H. Steck. Evaluation of recommendations: Rating-prediction and ranking. In Pro-
ceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13, pages
213–220, New York, NY, USA, 2013. ACM.

[103] R. Tripodi and S. L. Pira. Analysis of italian word embeddings. CoRR,
abs/1707.08783, 2017.

[104] V. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its Applications,
16(2):264, 1971.

[105] S. Vargas and P. Castells. Rank and relevance in novelty and diversity metrics for
recommender systems. In Proceedings of the fifth ACM conference on Recommender
systems, pages 109–116. ACM, 2011.

[106] H. Wang, N. Wang, and D. Yeung. Collaborative deep learning for recommender
systems. CoRR, abs/1409.2944, 2014.

[107] D. Yarats and A. Bietti. Qmf – a matrix factorization library. https://github.com/
quora/qmf, 2016.

[108] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen. Challenging the long tail recommendation.
Proceedings of the VLDB Endowment, 5(9):896–907, 2012.

[109] H.-F. Yu, M. Bilenko, and C.-J. Lin. Selection of negative samples for one-class
matrix factorization. In SDM, 2017.

[110] M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Know-
ledge and Data Engineering, 12(3):372–390, May 2000.

107

https://github.com/quora/qmf
https://github.com/quora/qmf

Bibliography

[111] M. Zanker and M. Jessenitschnig. Case-studies on exploiting explicit customer re-
quirements in recommender systems. User Modeling and User-Adapted Interaction,
19(1-2):133–166, 2009.

[112] X.-Z. Zhang. Building personalized recommendation system in e-commerce using as-
sociation rule-based mining and classification. In Machine Learning and Cybernetics,
2007 International Conference on, volume 7, pages 4113–4118, 2007.

[113] R. Zhou, S. Khemmarat, and L. Gao. The impact of youtube recommendation system
on video views. In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, pages 404–410. ACM, 2010.

[114] Z. Zhu and J. yan Wang. Book recommendation service by improved association
rule mining algorithm. In Machine Learning and Cybernetics, 2007 International
Conference on, volume 7, pages 3864–3869, 2007.

[115] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A fast parallel sgd for matrix
factorization in shared memory systems. In Proceedings of the 7th ACM Conference
on Recommender Systems, RecSys ’13, pages 249–256, New York, NY, USA, 2013.
ACM.

[116] M. A. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient
descent. In Proceedings of the 23rd International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’10, pages 2595–2603, USA, 2010. Curran
Associates Inc.

108

Reviewed Publications of the Author
Relevant to the Thesis

[A.1] Rehorek T., Kordik P. A Soft Computing Approach to Knowledge Flow Synthesis and
Optimization. Snášel V., Abraham A., Corchado E. (eds) Soft Computing Models
in Industrial and Environmental Applications. Advances in Intelligent Systems and
Computing, vol 188., Springer, Berlin, Heidelberg, 2013.

[A.2] T. Rehorek, O. Biza, R. Bartyzal, P. Kordik, I. Povalyaev, O. Podsztavek Comparing
offline and online evaluation results of recommender systems. REVEAL 2018, a
RecSys 2018 workshop, Vancouver, CA, 2018.

[A.3] S. Kuznetsov, P. Kordik, T. Rehorek, J. Dvorak, P. Kroha Reducing cold start
problems in educational recommender systems. International Joint Conference on
Neural Networks (IJCNN), Vancouver, BC, pp. 3143-3149, 2016.

109

Remaining Publications of the Author
Relevant to the Thesis

[A.4] T. Rehorek. Multiobjective Optimization in Recommender Systems using Ensemble
Methods. Ph.D. Minimum Thesis, Faculty of Information Technology, Prague, Czech
Republic, 2013.

111

Remaining Publications of the Author

[A.5] T. Rehorek, P. Kordik Using Interactive Evolution for Exploratory Data Ana-
lysis. Proceedings of the 6th International Scientific and Technical Conference
(CSIT’2011). Lviv, UA, LPNU, pp. 131–135, ISBN 978-966-2191-04-2. 2011.

113

Appendix A

Comparing Offline and Online
Evaluation Results of Recommender

Systems

115

Comparing Offline and Online Evaluation Results of
Recommender Systems

REVEAL Workshop paper

Tomas Rehorek
Czech Technical University,

Recombee
tomas.rehorek@recombee.com

Ondrej Biza
Czech Technical University

bizaondr@fit.cvut.cz

Radek Bartyzal
Czech Technical University,

Recombee
radek.bartyzal@recombee.com

Pavel Kordik
Czech Technical University,

Recombee
kordikp@fit.cvut.cz

Ivan Povalyev
Recombee

ivan.povalyev@recombee.com

Ondrej Podsztavek
Czech Technical University

podszond@fit.cvut.cz

ABSTRACT
Recommender systems are usually trained and evaluated on histor-
ical data. Offline evaluation is, however, tricky and offline perfor-
mance can be an inaccurate predictor of the online performance
measured in production due to several reasons. In this paper, we
experiment with two offline evaluation strategies and show that
even a reasonable and popular strategy can produce results that are
not just biased, but also in direct conflict with the true performance
obtained in the online evaluation. We investigate offline policy eval-
uation techniques adapted from reinforcement learning and explain
why such techniques fail to produce an unbiased estimate of the
online performance in the “watch next” scenario of a large-scale
movie recommender system. Finally, we introduce a new evaluation
technique based on Jaccard Index and show that it correlates with
the online performance.

CCS CONCEPTS
• Information systems → Collaborative filtering; • Theory
of computation → Reinforcement learning;

KEYWORDS
Recall, CTR, Recommender Systems, Policy Evaluation

ACM Reference Format:
Tomas Rehorek, Ondrej Biza, Radek Bartyzal, Pavel Kordik, Ivan Povalyev,
and Ondrej Podsztavek. 2018. Comparing Offline and Online Evaluation
Results of Recommender Systems: REVEAL Workshop paper. In Proceedings
of RecSyS conference (RecSyS’18).ACM,NewYork, NY, USA, Article 4, 5 pages.
https://doi.org/10.475/123_4

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSyS’18, , Vancouver, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

1 INTRODUCTION
Online evaluation is the best approach to assessing the performance
of recommender systems, but it poses many challenges: deploying
models online is time-consuming, models with poor performance
harm user experience and the measurements are irreproducible.
Therefore, offline evaluation on historical data is often used to train
recommender systems and select candidates that might perform
well online. The more offline measures correlate with online results
the better.

There are many problems preventing offline evaluation methods
from being unbiased estimates of the online performance. Many
studies [20] have shown that offline measures such as root-mean-
square error (RMSE) on historical ratings are poor estimators. More-
over, it is hard to estimate how the user would have reacted if pre-
sented with a different set of recommendations. When an evaluated
algorithm generates a different recommendation than the algo-
rithm used to collect historical user interactions, the performance
estimate is poor.

Recommendation, similarly as search or any other learning-to-
rank problem, can also be viewed as a reinforcement learning prob-
lem, where selecting good recommendation leads to higher future
rewards (clicks, purchases). Although most companies running
recommender systems are oriented towards short-term rewards
that are easier to measure (e.g., immediate click-through-rate and
conversion rate), optimizing long-term rewards such as customer
lifetime value leads to lower churn of users, increased satisfaction
and loyalty, and pays off in the long-term. In this paper, we also
focus on short-term performance criteria, but there is space for
further extension of the proposed method to long-term evaluation.

Recommendation as a reinforcement learning problem has been
studied in [2, 23, 28]. It is easy to map a recommendation task
into the reinforcement learning domain. Actions are possible rec-
ommendations for a given user in a given state, rewards can be
derived from implicit user ratings and policies are recommenda-
tion algorithms. The main problem is that the number of possible
actions (ranked lists of recommended items) can be enormous for
real-world recommenders (having millions of items that can be rec-
ommended alone, not even taking their combinations into account).
Even simple bandit-based reinforcement learning algorithms suffer
from scalability issues.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

RecSyS’18, , Vancouver, Canada Tomas Rehorek, Ondrej Biza, Radek Bartyzal, Pavel Kordik, Ivan Povalyev, and Ondrej Podsztavek

Considering a recommendation task simplified to generate a
single item, it is possible to imagine a context-free greedy k-bandit
such as the “trending bestseller” model that generates recommen-
dations based on the recent global popularity of items. Such an al-
gorithm is not very competitive in most recommendation scenarios,
and hence contextual bandit algorithms [21] should be employed
instead. Deep learning embeddings [3] can be utilized to process
and represent the context (e.g. a sequence of deep embeddings of
purchased items for each user) so the challenge is to predict the
reward [24] or the Q-function [28].

Instead of designing a good and scalable reinforcement learning
algorithm for recommendation, which is still a work in progress,
this paper targets another important challenge: evaluating recom-
mendation algorithms properly on offline data.

Sampling methods use selected historical recommendations to
reduce bias. Weighted importance sampling [15] can be viewed as
a special case of weighting the error of individual training samples.
Doubly robust evaluation [5, 10] is useful when there is either a
good model of rewards or a good model of past policy.

In recommender systems, there are different probabilities of the
user observing particular an item. When these probabilities can be
estimated from historical data, the Inverse-Propensity-Scoring (IPS)
estimator [19] can compute an unbiased offline score. However,
estimating these probabilities in large-scale dynamic environments
is neither practical nor easy. Basic IPS estimators can even have
a negative correlation with the online performance as measured
in [8].

We experiment with classical content-based and collaborative
filtering algorithms for recommendation and run large-scale exper-
iments to show how different offline evaluation strategies correlate
with the online performance.

2 RELATEDWORK
Said et al. evaluated basic recommendation algorithms from three
different open-source frameworks onMovielens and Yelp datasets [17].
They measure how various aspects of evaluation, including strate-
gies for data splitting (e.g. cross-validation vs. 80%-20% split) and
candidate item generation, affect prediction accuracy (RMSE), rank-
ing quality (nDCG@10), catalog coverage and running times. Their
unified evaluation uncovered significant differences in prediction ac-
curacy between different implementations of the same algorithms.

Offline evaluation of Contextual Bandits was studied in [5–7, 9,
11–14, 16, 27]. A replay-based evaluation method was first proposed
in [11] and further studied in [12, 13]. The method considers only
the logged data that match the recommendations of the evaluated
model. [13] proved their evaluator is unbiased given an infinite
data stream of i.i.d. events from a uniformly random logging policy.
A common trait of replay-based evaluators is that only a fraction of
events generate the final score. This can cause the evaluator to be
biased towards short sequences of events (because the data stream
in never infinite), as discussed in [16], where controlling the bias
with bootstrapping techniques is suggested.

A benefit of replay-based methods over simulating the environ-
ment is that we can avoid modeling bias. [5] combined a model of
the reward function with Importance Sampling to form a Doubly
Robust estimator that mitigates the bias introduced by the model

Figure 1: The Jaccard index maximizes the relative size of
the region where new algorithmmatches the old one on the
first recommendation when it was successful (the user has
clicked). The other regions are considered a failure. Recom-
mendations that are both unmatched and unclicked are not
taken into account, because there is no hint if they can suc-
ceed.

and the high variance of Importance Sampling. [10] derived the
Doubly Robust estimator for the full reinforcement learning prob-
lem and [7, 25, 27] proposed further improvements to the estimator.
A lower bound on a return of a trajectory (a sequence of recom-
mendations for a single user) based on Importance Sampling was
derived in [26] and compared with online evaluation in [24].

Handling selection bias in the evaluation and training of recom-
mender systems was explored in [19]. The introduced approach is
based on Propensity Scoring, where propensities were estimated
by Naive Bayes. Results on two datasets indicate that bias is re-
duced, but the online performance was not measured to confirm
the hypothesis.

In [22] offline evaluation for slates recommendation is discussed.
The number of possible slates (ranked lists of recommended items)
is almost infinite given the number of items in real-world databases.
It is also not practical to assume that we can estimate the probability
that a particular state is generated given complex recommendation
algorithms and a high number of slates.

3 OUR APPROACH
We argue that all the above-mentioned approaches either do not
give us an unbiased estimate of the online performance or come
with too strong assumptions that are inappropriate or hardly appli-
cable in production environments. When offline data are generated
by standard collaborative filtering based algorithms, most of the
assumptions that were used to derive the estimators are violated.

We designed and explored several estimators and found out
that one performs particularly well. We extended an IPS estimator
(Algorithm 2 from [12]) which is penalizing algorithms similar to
the one used to obtain offline data as we explain in the next Section.

Our Jaccard Index based Estimator (JIE) reduces this penalty
by normalizing successful hits (number of recommendations with
matched first item followed by a click or a conversion) by unsuccess-
ful attempts when the evaluated algorithm a) has not recommended
clicked first item successful predicted by online data producer, or
b) recommended the same item as online data producer but there
was no click or conversion (see Figure 1).

Comparing Offline and Online Evaluation Results of Recommender Systems RecSyS’18, , Vancouver, Canada

J IE =
clicked ∩matched
clicked ∪matched

Compared to [13], we do not assume i.i.d. generation process.
This has two important consequences. 1) The online performance
estimation is biased towards the online generation process, such
as the currently deployed collaborative filtering algorithm. Specifi-
cally, we are possibly unfairly penalizing models that would have
good performance, yet by recommending completely different items.
This disadvantage is, however, compensated by 2) There is no need
to expose users to random recommendations, significantly damag-
ing their trust in the recommendations and possibly the product
image of the whole system. In scenarios like similar/related items
recommendation, using a random model is hardly possible.

To compute JIE, we iterate through all recommendations gener-
ated by the original model modelo during a selected, recent time
period. We denote Rorig the set of records containing collected in-
formation about these recommendations. Each entry (usero , timeo ,
recomo , clickedo) ∈ Rorig holds information that usero has been
shown recomo as the first recommend item at timeo with boolean
flag clickedo determining whether the user was a reward or not.
For each record in Rorig , we generate alternative recommendation
recomi by all the models fromM , simulating exactly the same con-
ditions to those that were present when generating recomo by pro-
duction model at timeo . This includes hiding all interaction data
that appeared after timeo and using the exact same business rules
applied to the corresponding recommendation request.

Finally, we compute JIE for all the alternative modelsmodeli ∈ M
by aggregating numbers from cases when there is either match be-
tween recomo and recomi , or when recomo has been clicked, consid-
ering successful only the cases when bothmatch and click happened.
See the JIE computation methodology in Alg. 1 below.

Algorithm 1 Jaccard Index based Estimator computation

1: for modeli ∈ M do
2: successi ← 0
3: clickedi ← 0
4: end for
5: for (usero , timeo , recomo , clickedo) ∈ Rorig do
6: for modeli ∈ M do
7: recomi ←modeli (usero , timeo)
8: matchedi ← recomo = recomi
9: if clickedo ∨matchedi then
10: totali ← totali + 1
11: if clickedo ∧matchedi then
12: successi ← successi + 1
13: end if
14: end if
15: end for
16: end for
17: return

(
successi
totali

, . . . ,
success |M |
total |M |

)

4 EXPERIMENTS
An important contribution of our work is that we were able to
validate our theoretical hypotheses in a large-scale production

environment. We are aware of the limited reproducibility of our
results; however, it is hard to reproduce online tests with real users.
We believe that our findings are still interesting for the research
community and can be reproduced by another team with access to
a large-scale recommendation infrastructure.

Our aim was to measure the correlation between the proposed
Jaccard Index based Estimator (JIE) and the true online performance
(CTR) of candidate models. Our client Showmax agreed with online
experiments on a small portion of the “watch next” recommen-
dation scenario to verify the hypotheses discussed in this paper.
Henceforth, during the evaluation period, we let the current produc-
tion model (modelo) generate the recommendations for the majority
of users, but for a limited subset of users, we deployed individual
candidate models modeli ∈ M . These models were evaluated both
online (measuring true CTR) and offline by JIE. Thanks to this, we
are able to compare the estimation performance of JIE.

One of the challenges is that our customers use a query language
(ReQL) on top of each recommendation request, allowing them to
filter out or boost particular items and more. It is crucial to exactly
emulate ReQL business rules offline to get results comparable to the
online behavior of algorithms under investigation. This again com-
plicates reproducibility and generalization of our results to other
recommendation scenarios with different dynamics. Nevertheless,
we believe our results are valuable with reasonable chance that the
hypotheses holding for a particular “watch next” scenario will hold
for other scenarios as well.

The model currently used in production is an improved version
of Collaborative Filtering User-kNN algorithm with cosine simi-
larity and Non-normalized Cosine Neighborhood as defined in [4],
using aggregated implicit ratings. The modification is based on
using attribute-based or popularity-based models when there is
not enough confidence. But considering the given scenario, data
density, and used ReQL business rules, the difference between pure
and our modified version of User-kNN is small in the most cases.

The models inM we decided to evaluate were:

• user-knn – a pure form of Collaborative Filtering User-kNN
algorithmwith cosine similarity and Non-normalized Cosine
Neighborhood as defined in [4], nearly identical to the one
running in production,
• rating-itemknn – Item-Based Collaborative Filteringk-Nearest
Neighbor with cosine similarity as defined in [18],
• token-itemknn – Item-Based k-Nearest Neighbor algorithm
as defined in [18], but with significantly different similar-
ity measure sim(i, j) working with item attributes, making
the algorithm Content-Based rather then Collaborative Fil-
tering. Specifically, Showmax has a mixture of categoric
attributes, tags, and text descriptions, all of which are parsed
and converted to a common set of tokens for each item.When
measuring the similarity between two items i and j, mod-
ified Jaccard similarity with a TF-IDF-based weighting of
individual tokens is used.

We compare online and offline evaluation results for the three
models using two different offline evaluation algorithms. We chose
Algorithm 2 from [13] as a baseline. The algorithm assumes the
logging policy is uniformly random, which is not the case in our
experiments. To correct for the bias introduced by the production

RecSyS’18, , Vancouver, Canada Tomas Rehorek, Ondrej Biza, Radek Bartyzal, Pavel Kordik, Ivan Povalyev, and Ondrej Podsztavek

Table 1: Online test results on first recommended item

model name total recomms actions CTR (%)

rating-itemknn 9580 368 3.84
token-itemknn 9829 537 5.46
user-knn 9476 588 6.21
default 168848 10234 6.06

Table 2: Bias in offline results - user-knn similar to default
recommendations leading to much more matches but also
less percentage of actions

model name total recomms actions CTR (%)

rating-itemknn 9536 352 3.69
token-itemknn 12937 668 5.16
user-knn 109027 1372 1.26

Table 3: Jaccard Index Estimator correlates with the online
performance

algorithm recomms hits match ∪ click JIE

rating-itemknn 148337 372 16681 0.022
token-itemknn 148340 252 11104 0.022
user-knn 148327 2228 76698 0.029

model, we use the Jaccard Index based Estimator described above
as the second evaluation algorithm.

5 RESULTS
The results of the online test match our expectations (Table 1). The
performance of the user-knn was not statistically different from the
default recommendation policy. Token-based itemknn performed
slightly worse and the worst performer was the rating-itemknn.

Table 2 shows offline estimates measured using the Algorithm 2
in [13]. The results are strongly biased, greatly underestimating the
performance of the user-knn. The source of the bias is the policy that
generated the offline data: instead of a randomly uniform logging
policy, the recommendations were generated by an ensemble of
the user-knn and other methods. As you can see, the number of
matching recommendations for the user-knn is much higher than
for the other two algorithms. The problem is that, for rating- and
token-itemknn, we only consider recommendations that match the
logging policy and in such cases (when two diverse algorithms
compromise on the first recommendation) the confidence of the
recommendation is high, hence higher CTR and biased estimate.

Table 3 shows offline estimates by our proposed JIE method
implemented by Algorithm 1. In thematch ∪ click column show-
ing denominators of Jaccard similarity, we can see that token −
itemknn has much higher overlap with the production algorithm
than ratinд − itemknn on the first recommended item. The biggest
with user − knn is orderly larger because the two algorithms are
nearly identical.

Figure 2:Whereasuserknnmatchesmost of the recommenda-
tions produced by default policy, the overlap in clicks is also
high. For token − itemknn as a different algorithm, the num-
ber of matching first items was significantly smaller and a
lot of clicks was not predicted. Even worse match and fails
in prediction was measured for the ratinд − itemknn.

token

user-knn

rating

token

user-knn

rating

-0.5

0

0.5

1

Figure 3: Heatmap of matched recommendation between
logging and evaluated policy shows that token and user
item-knn share slightly more recommendations than user
and rating knn. Proportions of matched recommendations
can be used to evaluate diversity of policies.

Similar results can be observed in Figure 2 decomposing JIE
to components for an independent evaluation run. Again, offline
results correlate with the online performance of the algorithms.

Finally, we decided to run an additional experiment on different
recommendation scenario. Contrary to the watch next scenario,
the selected scenario presented many items in a row so the visual
dominance of first recommended items was absent. We found out,
that for this scenario, it is beneficial to compute JIE not just from
the single first item, but from K first items displayed to users.

In this scenario, we count match as number of corresponding
items between the online and evaluated policy for each recom-
mendation. For match equal to 1, recommendations have to be
identical. Zero match means no overlap. We summarized and nor-
malized matches for all recommendations and for all policies in a
cross-validation manner.

Comparing Offline and Online Evaluation Results of Recommender Systems RecSyS’18, , Vancouver, Canada

Figure 3 shows that all three policies are significantly different.
The strongest match was always when policies were identical. The
number of matched items is also symmetrical following theoretical
expectations.

6 DISCUSSION
The proposed offline evaluation methodology and the Jaccard Index
Estimator is not completely unbiased.

One possible problem arises when the recommendation algo-
rithm is largely different from the logging policy. The number of
matches will be very low in this case and so the number of hits
and the confidence of our estimator. We will perform additional
experiments to explore such cases.

7 CONCLUSION
Estimation of the online performance from offline data is a difficult
task. The main contribution of this paper is that we measured and
explained the bias of existing evaluation methods. We showed that
the best correlation with the online performance was achieved by
Jaccard Index between successful conversions and corresponding
recommendations of the evaluated algorithm and the algorithm
used to obtain the offline data. Our future work is to investigate
the proposed estimator in a much broader experimental setup with
hundreds of policies and tens of different recommendation scenar-
ios. We also plan to study how to further improve the robustness of
estimates by incorporating propensity scoring where propensities
will be estimated by a recently proposed approach [1].

8 ACKNOWLEDGEMENT
This research was partially supported by grant no. GA201/05/0325
of the Grant Agency of the Czech Republic.

REFERENCES
[1] Aman Agarwal, Ivan Zaitsev, and Thorsten Joachims. 2018. Consistent Posi-

tion Bias Estimation without Online Interventions for Learning-to-Rank. arXiv
preprint arXiv:1806.03555 (2018).

[2] Sungwoon Choi, Heonseok Ha, Uiwon Hwang, Chanju Kim, Jung-Woo Ha, and
Sungroh Yoon. 2018. Reinforcement Learning based Recommender System using
Biclustering Technique. arXiv preprint arXiv:1801.05532 (2018).

[3] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. New York, NY, USA.

[4] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of
Recommender Algorithms on Top-n Recommendation Tasks. In Proceedings of
the Fourth ACM Conference on Recommender Systems (RecSys ’10). ACM, New
York, NY, USA, 39–46. https://doi.org/10.1145/1864708.1864721

[5] Miroslav Dudík, John Langford, and Lihong Li. 2011. Doubly Robust Policy
Evaluation and Learning. In Proceedings of the 28th International Conference
on International Conference on Machine Learning (ICML’11). Omnipress, USA,
1097–1104. http://dl.acm.org/citation.cfm?id=3104482.3104620

[6] Miroslav DudÃŋk, Dumitru Erhan, John Langford, and Lihong Li. 2014. Doubly
Robust Policy Evaluation and Optimization. Statist. Sci. 29, 4 (11 2014), 485–511.
https://doi.org/10.1214/14-STS500

[7] Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. 2018. More
Robust Doubly Robust Off-policy Evaluation. CoRR abs/1802.03493 (2018).
arXiv:1802.03493 http://arxiv.org/abs/1802.03493

[8] Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham,
and Simon Dollé. 2018. Offline A/B testing for Recommender Systems. In Pro-
ceedings of the Eleventh ACM International Conference on Web Search and Data
Mining. ACM, 198–206.

[9] WilliamHoiles andMihaela Van Der Schaar. 2016. Bounded Off-policy Evaluation
with Missing Data for Course Recommendation and Curriculum Design. In
Proceedings of the 33rd International Conference on International Conference on
Machine Learning - Volume 48 (ICML’16). JMLR.org, 1596–1604. http://dl.acm.
org/citation.cfm?id=3045390.3045559

[10] Nan Jiang and Lihong Li. 2016. Doubly Robust Off-policy Value Evaluation for
Reinforcement Learning. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48 (ICML’16). JMLR.org,
652–661. http://dl.acm.org/citation.cfm?id=3045390.3045460

[11] John Langford, Alexander Strehl, and Jennifer Wortman. 2008. Exploration Scav-
enging. In Proceedings of the 25th International Conference on Machine Learning
(ICML ’08). ACM, New York, NY, USA, 528–535. https://doi.org/10.1145/1390156.
1390223

[12] Lihong Li, Wei Chu, John Langford, Taesup Moon, and Xuanhui Wang. 2012.
An unbiased offline evaluation of contextual bandit algorithms with generalized
linear models. In Proceedings of the Workshop on On-line Trading of Exploration
and Exploitation 2. 19–36.

[13] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. 2011. Unbiased Of-
fline Evaluation of Contextual-bandit-based News Article Recommendation Al-
gorithms. In Proceedings of the Fourth ACM International Conference on Web
Search and Data Mining (WSDM ’11). ACM, New York, NY, USA, 297–306.
https://doi.org/10.1145/1935826.1935878

[14] Lihong Li, Remi Munos, and Csaba Szepesvari. 2015. Toward Minimax Off-
policy Value Estimation, In Proceedings of the 18th International Conference
on Artificial Intelligence and Statistics (AISTATS). https://www.microsoft.com/
en-us/research/publication/toward-minimax-off-policy-value-estimation/

[15] A Rupam Mahmood, Hado P van Hasselt, and Richard S Sutton. 2014. Weighted
importance sampling for off-policy learning with linear function approximation.
In Advances in Neural Information Processing Systems. 3014–3022.

[16] Olivier Nicol, Jérémie Mary, and Philippe Preux. 2014. Improving offline evalua-
tion of contextual bandit algorithms via bootstrapping techniques. In International
Conference on Machine Learning (Journal of Machine Learning Research, Workshop
and Conference Proceedings; Proceedings of The 31st International Conference on
Machine Learning), Eric Xing and Tony Jebara (Eds.), Vol. 32. Beijing, China.
https://hal.inria.fr/hal-00990840

[17] Alan Said and Alejandro Bellogín. 2014. Comparative recommender system
evaluation: benchmarking recommendation frameworks. In Proceedings of the
8th ACM Conference on Recommender systems. ACM, 129–136.

[18] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th
International Conference on World Wide Web (WWW ’01). ACM, New York, NY,
USA, 285–295. https://doi.org/10.1145/371920.372071

[19] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. 2016. Recommendations As Treatments: Debiasing Learning
and Evaluation. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48 (ICML’16). JMLR.org, 1670–1679.
http://dl.acm.org/citation.cfm?id=3045390.3045567

[20] Harald Steck. 2011. Item popularity and recommendation accuracy. In Proceedings
of the fifth ACM conference on Recommender systems. ACM, 125–132.

[21] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An
Introduction. IEEE Transactions on Neural Networks 16 (1998), 285–286.

[22] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miro Dudik, John
Langford, Damien Jose, and Imed Zitouni. 2017. Off-policy evaluation for slate
recommendation. In Advances in Neural Information Processing Systems. 3632–
3642.

[23] Nima Taghipour, Ahmad Kardan, and Saeed Shiry Ghidary. 2007. Usage-based
web recommendations: a reinforcement learning approach. In Proceedings of the
2007 ACM conference on Recommender systems. ACM, 113–120.

[24] Georgios Theocharous, Philip S Thomas, and Mohammad Ghavamzadeh. 2015.
Personalized Ad Recommendation Systems for Life-Time Value Optimization
with Guarantees.. In IJCAI. 1806–1812.

[25] Philip Thomas and Emma Brunskill. 2016. Data-efficient off-policy policy evalua-
tion for reinforcement learning. In International Conference on Machine Learning.
2139–2148.

[26] Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. 2015.
High-Confidence Off-Policy Evaluation. https://www.aaai.org/ocs/index.php/
AAAI/AAAI15/paper/view/10042

[27] Yu-Xiang Wang, Alekh Agarwal, and Miro DudÃŋk. 2017. Optimal
and Adaptive Off-policy Evaluation in Contextual Bandits, In Proceed-
ings of the 34th International Conference on Machine Learning. 70,
3589–3597. https://www.microsoft.com/en-us/research/publication/
optimal-adaptive-off-policy-evaluation-contextual-bandits/

[28] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. 2018. DRN: A Deep Reinforcement Learning Frame-
work for News Recommendation. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 167–176.

https://doi.org/10.1145/1864708.1864721
http://dl.acm.org/citation.cfm?id=3104482.3104620
https://doi.org/10.1214/14-STS500
http://arxiv.org/abs/1802.03493
http://arxiv.org/abs/1802.03493
http://dl.acm.org/citation.cfm?id=3045390.3045559
http://dl.acm.org/citation.cfm?id=3045390.3045559
http://dl.acm.org/citation.cfm?id=3045390.3045460
https://doi.org/10.1145/1390156.1390223
https://doi.org/10.1145/1390156.1390223
https://doi.org/10.1145/1935826.1935878
https://www.microsoft.com/en-us/research/publication/toward-minimax-off-policy-value-estimation/
https://www.microsoft.com/en-us/research/publication/toward-minimax-off-policy-value-estimation/
https://hal.inria.fr/hal-00990840
https://doi.org/10.1145/371920.372071
http://dl.acm.org/citation.cfm?id=3045390.3045567
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10042
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10042
https://www.microsoft.com/en-us/research/publication/optimal-adaptive-off-policy-evaluation-contextual-bandits/
https://www.microsoft.com/en-us/research/publication/optimal-adaptive-off-policy-evaluation-contextual-bandits/

