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1Abstract—Mechanical response of elastic materials undergoing 

large deformations exhibit several kinds of a loss of stability. Such 

a situation may occur, for instance, when a thin-walled cylinder is 

inflated by an internal pressure. The loss of stability is manifested 

by a non-monotonic relationship between the inflating pressure 

and the circumferential stretch of the tube. The results, known 

from the literature, show that hyperelastic materials with so called 

limiting chain extensibility property always exhibit a stable 

response for  sufficiently small values of the limiting extensibility 

parameter Jm. In other words, rapid large strain stiffening 

prevents elastomeric materials from an onset of instability. The 

present study demonstrates how axial prestretch of the thin-walled 

tube affects the stability of the deformation. It is shown that for 

axial prestretches λz = 1 (non-prestretched), 1.05, 1.1, 1.2, 1.5, 2, 3, 

and 5 the stable inflation is obtained for materials with Jm = 19.11, 

20.32, 21.55, 24.06, 32.1, 47.43, 87.23, and 207.8, respectively. From 

which can be concluded that the higher the prestretch is, the more 

compliant material will show stable inflation. It was also found 

that the higher the prestretch is, the lower is the pressure at which 

the instability occurs. 

 

Index Terms—Axial prestretch, Hyperelasticity, Inflation 

instability, Limiting chain extensibility, Pressurization.    

 

I. INTRODUCTION 

ATERIALS undergoing large elastic deformations 

exhibit many non-self-evident phenomena in their 

mechanical behavior. Some of them are linked to a loss of 

stability during deformation. For instance, non-monotonic 

inflation of thin-walled cylinders and spheres, kink formation 

on a twisted rod, or wrinkling of the surface of the bent block 

are good examples [1-4]. Traditionally, they have been 

discussed with reference to rubber-like materials; however, 

possible applications to the mechanics of soft tissues (arteries, 

veins, skin), which inherently undergoing large deformations, 

has also been recently recognized [4-10]. 

A typical example is the instability of a pressurized thin-

walled cylindrical tube, which can manifest in two different 

ways. The first is the onset of buckling instability manifested 

by a transverse deflection (in the biomechanics of blood vessels 

this is usually referred to as tortuosity) similar to the buckling 

seen in a long slender column [6-10]. H.C. Han and coworkers 

investigated this problem in detail and developed mathematical 
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expressions relating critical pressure to axial load, torsion 

couple, and geometry [6, 8-10]. 

Another mechanism by which pressurized tubes become 

unstable is through non-monotonic inflation [1, 2, 11-15]. It is 

a well-known phenomenon to all who have inflated a party-

balloon. In this situation the radius of the balloon monotonically 

increases in contrast to applied pressure. The balloon appears to 

be stiff at initial deformations, however, the pressure-stretch 

relationship reaches a local maximum at a certain deformation. 

After the local maximum is passed, the pressure-stretch 

relationship forms a decreasing function and may reach a local 

minimum, which can be followed again by an increasing 

function, depending on the constitutive model used. In 

experiments, non-monotonic inflation may be accompanied 

with localized deformation (bulging – a loss of constant radius 

along the axis of the tube) which resembles aneurysm formation 

in arteries [12-15].  

Non-monotonic inflation is one of the most studied 

instabilities in the context of rubber-like materials and will be 

of our concern. We will focus on the behavior of thin-walled 

cylindrical tubes with closed ends made from a material 

undergoing rapid large strain stiffening. Kanner and Horgan [2] 

recently investigated this problem in isotropic hyperelastic 

tubes exhibiting limiting chain extensibility. Limiting chain 

extensibility involves statistical polymer mechanics that explain 

large strain stiffening of elastomer materials based on the finite 

extensibility of macromolecular chains. In [2], a 

phenomenological analogue of molecular models based on a 

logarithmic form of the strain energy density function, which 

was originally proposed by A.N. Gent [16] (see also [17] for 

molecular statistical interpretation, and [18, 19] for details of 

the application in arterial biomechanics), was used.  

It has been shown that, depending on the specific value of the 

limiting extensibility parameter Jm, non-monotonic inflation of 

thin-walled cylindrical tubes may or may not occur [2]. To be 

more specific, cylindrical tubes made from the material with Jm 

< 18.2 are always stable during a pressurization and tubes with 

Jm > 18.2 exhibit local maximum followed by local minimum. 

Kanner and Horgan [2] investigated tubes operating in their 

natural state – that is without any axial force except the force 

induced by the pressure acting on the closed ends of the tube. 

There are, however, situations when tubes are axially 
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prestretched in a mounting. One nice example are blood vessels. 

In our bodies, arteries are longitudinally prestrained. This fact, 

although known since 1880 due to Roy [20], did not receive 

large scientific attention in comparison with the circumferential 

stiffness and distensibility of arteries, but at present its 

significant physiological role comes to light [19, 21-27].  

In the present study, the effect of axial prestretch on the 

inflation instability will be investigated from two points of 

view. It will be shown that axial prestretch enables materials 

with Jm > 18.2 to be stable in the inflation. For one specific Jm 

(Jm = 25), it will be also shown that increased prestretch leads 

to the decreased internal pressure in the onset of the instability.  

  

II. METHODS 

    A. Constitutive model 

The material of the tube will be considered to be 

incompressible and hyperelastic characterized by the strain 

energy function W defined per unit reference volume. In such a 

case the constitutive equation can be written in the form (1) 

[28].  

 

I F
F

TW
p

∂
= − +

∂
σ     (1) 

 

Here σ  denotes the Cauchy stress tensor. F is the 

deformation gradient defined as F = ∂x/∂X, where x and X, 

respectively, denote the position vector of a material particle in 

the deformed and the reference configuration. p plays the role 

of a Lagrangean multiplier, which represents the hydrostatic 

contribution to σ, not captured by W, due to the 

incompressibility constraint.    

Over the last decades, several models for W have been 

developed to describe the mechanical behavior of elastomers 

and soft tissues under large strains. We will focus ourselves on 

the so called limiting chain extensibility model proposed by 

Gent in 1996 [16]. It will be used in the form (2) which has 

appeared in the studies of arterial mechanics [18,19].    

 

1
3

1
2

lnm

m

J I
W

J

µ  −
= − − 

 
    (2) 

 

Here µ is the shear modulus at infinitesimal strains. I1 

denotes the first invariant of the right Cauchy-Green strain 

tensor C (I1 = trace(C)), where C = FTF (alternatively one can 

also use left Cauchy-Green strain tensor b, b = FFT, because 

I1(C) = I1(b)). Jm is referred to as the limiting extensibility 

(dimensionless) parameter because it restricts admissible 

deformations of the material to the domain where I1 – 3 < Jm 

applies. In other words, I1 – 3 → Jm
‒ implies W → ∞. Thus finite 

extensibility of a macromolecular chain is, in the 

phenomenological approach, captured by a suitable 

mathematical form of the strain energy (logarithmic function).  

Regarding inflation instability, Kanner and Horgan [2] found 

that there is a critical value of Jm, Jm = 18.2, which discriminates 

behaviors of pressurized thin-walled cylindrical tubes. The 

inflation is stable (monotonically increasing pressure for 

increasing circumferential stretch) for materials with Jm < 18.2. 

Whereas for materials with Jm > 18.2, there is a local maximum 

followed by local minimum that is subsequently followed by a 

steeply increasing section of the pressure-stretch curve (see 

Figure 5 in [2]). Substituting from (2) into (1) one obtains 

constitutive equations in the form (3). 
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B. Inflation-extension of the thin-walled tube 

Consider a long thin-walled cylindrical tube with closed ends 

that, in the reference configuration, has a middle radius R, 

thickness H, and length L. Assume that during pressurization, 

the motion of the material particle located originally at  

(R, Θ, Z), which is sufficiently distant from ends, is described 

by the equations summarized in (4).  

 

               
r z

r R h H z Zθλ λ λ θ= = = = Θ   (4) 

 

Here r and h respectively denote deformed middle radius and 

thickens. The equations (4) express the fact that the tube is 

uniformly inflated and extended (or shortened) and that it is not 

twisted. The stretches λk (k = r, θ, z) are the components of the 

deformation gradient F, F = diag[λr, λθ,λz], and for the right 

Cauchy-Green strain tensor C = diag[λr
2,λθ

2,λz
2] applies. In this 

kinematics, the invariant I1 has the form (5). 

 
2 2 2

1 r z
I θλ λ λ= + +     (5) 

 

The material of the tube is considered to be incompressible, 

thus the volume ratio J, J = det(F), gives equation (6) 

expressing J = 1. 

 

1
r zθλ λ λ =      (6) 

 

Equilibrium equations of a thin-walled tube with closed ends 

loaded by an internal pressure P and axial (prestretching) force 

Fred can be written in the form (7). Here σr, σθ, and σz 

respectively, denote the radial, circumferential and axial 

component of the Cauchy stress tensor.  

 

          
2 2 2

red

r z

FP rP rP

h rh h
θσ σ σ

π
= − = = +   (7) 

 

The combination of constitutive equation (3), I1 (5), and 

equilibrium equations (7) gives the system of equations 

governing the inflation-extension response (8–9). 
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From the first equation, (9), it can be concluded that the 

Lagrangean multiplier p has the form (11). 
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Now we will substitute (11) into (9) and (10). Prior doing so, 

the application of the equations (4a) and (4b) enable us to work 

with known reference geometry. Bearing in mind the 

incompressibility condition (6), we also eliminate explicit 

dependence on λr, λr = 1/λθ/λz. After some simple algebra, we 

arrive at equations governing the inflation-extension response: 

(12) for circumferential direction, and (13) for axial direction. 
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As the final step, the equations (12) and (13) will be divided by 

µ to obtain dimensionless pressure. In (14) and (15), the 

notation ε = H/R is also introduced. 
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C. Simulation of the inflation-extension response 

The equations (14) and (15) will be used to simulate 

mechanical response of internally pressurized and axially 

prestretched thin-walled tube. The simulations will show how 

axial prestretch affects circumferential stretch and internal 

pressure at the onset of instability (SIM 1), and that imposing 

of the prestretch elevates the value of Jm which discriminates 

between stable and unstable mechanical response of the tube 

(SIM 2). 

All the computations were performed numerically in the 

computer algebra system MAPLE 18 using the command fsolve 

and incrementing λθ by 0.001. The simulations were conducted 

in two steps. In the first step, initial circumferential stretch λθ
ini 

and prestretching axial force Fred were solved with prescribed 

axial prestretch λz
ini and internal pressure P = 0. In the second 

step, λθ was incremented whereas Fred hold constant, and 

unknown P and λz were obtained by the fsolve procedure.  

SIM1 was performed for λz
ini = 1, 1.01, 1.025, 1.05, 1.075, 

1.1, 1.15, 1.2, 1.23 and 1.3 with Jm = 25. In SIM2, λz
ini = 1, 1.1, 

1.2, 1.5, 2, 3, and 5 were used and Jm was incremented from 

18.2 to the value at which local maximum appeared for the first 

time. In SIM2, four significant digits were considered in the 

procedure.    
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III. RESULTS AND DISCUSSION 

Predicted inflation-extension responses for SIM1 are in the 

Figure 1 (P/µ – λθ in the panel A, and P/µ – λz in B). The Figure 

2 depicts the results obtained in SIM2 (P/µ – λθ in the panel A, 

and P/µ – λz in B). 

 

 

Figure 1 The inflation-extension response in SIM1. In SIM1, Jm = 25 

was prescribed. Note that increased axial prestretch led to decreased 

P/µ  and λθ at the onset of instability which is indicated by solid 

circles. For λz
ini > 1.23, the instability does not occur. The last curve, 

brown color, was compute for λz
ini = 1.3. 

 

 

 

 
 

Figure 2 The inflation-extension response in SIM2. When tubes 

operate axially prestretched, they will exhibit stable response for 

higher Jm than in non-prestretched case. Presented values of Jm are 

upper bounds showing stationary point. They were obtained in the 

computations with λθ incremented by 0.001 and with four significant 

digits considered. 

 

The positions of local maxima with respect to circumferential 

and axial stretch, normalized prestretching force and 

dimensionless internal pressure are detailed in the Figure 3 for 

SIM1, and for SIM2 in the Figure 4.   
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Figure 3 SIM1 results. A – Dimensionless pressure and 

circumferential stretch at the local maximum. B – Circumferential 

stretch and axial stretch at the local maximum. C – Normalized 

prestretching force and dimensionless pressure at the local maximum. 

D – Axial and circumferential stretch during the pressurization. 

 

The results of the simulations demonstrate that the higher the 

axial prestretch is, the lower is the internal pressure at which the 

instability occurs. The fact that local maximum pressure 

decreases in SIM2 could be expected because the curves are 

obtained for different values of Jm. Ordinarily, Jm increases with 

increasing prestretretch which implies that the domain of 

admissible deformations extends and the material, from the 

certain point of view, could be regarded as more compliant. 

However, the pressure at local maxium decreases also in SIM1. 

The simulations clearly demonstrate that by the imposing of 

the sufficient axial prestretch, finitely extensible tube is 

prevented from the onset of instability (SIM1, Figure 1). 

Although the internal pressure at the local maximum decreases 

with axial prestretch, the circumferential stretch, and thus 

distensibility of the tube, increases (SIM1, Figure 1 and 3B). In 

case of SIM2, there is, however, local minimum for λz
ini = 1.1 

and Jm = 21.55 (Figure 4B).    

The dependence of the upper bound of Jm for stable response 

was fitted by quadratic polynomial Jm = 6.464(λz
ini)2 + 8.279λz

ini 

+ 4.681 with coefficient of determination equal 0.9999 (Figure 

4A). For the sake of completeness, it should be noted that the 

prestetching force increases with the increment in axial 

prestretch.    

  

 

 

 

 

 

 
 

Figure 4 SIM2 results. A – Dependence of maximum Jm with the 

stable inflation on axial prestretch. Obtained data is fitted by  

Jm = 6.464(λz
ini)2 + 8.279λz

ini + 4.681. B – The position of the local 

maxima in the circumferential and axial stretch diagram. C – 

Dependence of the position of local maxima on prestretching force 

and dimensionless internal pressure. D – Axial and circumferential 

stretch during the pressurization. 

 

In contrast to Kanner and Horgan [2], minimum Jm ensuring 

stable response of the non-prestretched tube was found to be 

19.11 (in [2] 18.2 is presented). The difference in the results 

comes from two sources. The first is the finite thickness of the 

tube entering our computation via ε = 0.1. Another reason for 

mutual mismatch is a different handling of the radial stress. In 

the present study, it was assumed that σr = – ½P, however in 

[2] plane stress condition σr = 0 is used. 

Finally it should be reminded that the onset of inflation 

instability may in experiments be accompanied with a localized 

deformation (bulging of the tube). Thus presented shapes of 

resulting curves in post-instability domain should be strictly 

considered as only estimates of the true behavior. Similarly to 

post-buckling behavior analyses, the determination of the true 

deformed geometry should leave the assumption of uniform 

cylindricality [12-15].     

 

 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

6

IV. ACKNOWLEDGEMENT 

Present study has been supported by the Ministry of Health 

of the Czech Republic in the project NT13302. 

 

   

REFERENCES 

[1] A. N. Gent, “Elastic instabilities in rubber,” International Journal 

of Non-Linear Mechanics, vol. 40, no. 2-3, pp. 165-175, 2005. 

[2] L. M. Kanner, C. O. Horgan, “Elastic instabilities for strain-

stiffening rubber-like spherical and cylindrical thin shells under 

inflation,” International Journal of Non-Linear Mechanics, vol. 42, 

no. 2, pp. 204-215, 2007. 

[3] M. Destrade, A. Ní Annaidh, C. D. Coman, “Bending instabilities 

of soft biological tissues,” International Journal of Solids and 

Structures, vol. 46, no. 25-26, pp. 4322-4330, 2009. 

[4] M. Destrade, R. W. Ogden, I. Sgura, L. Vergori, “Straightening 

wrinkles,” Journal of the Mechanics and Physics of Solids, vol. 65, 

no. 1, pp. 1-11, 2014. 

[5] Y. C. Fung, “Biomechanics: Circulation,” Second edition, Springer 

Science+Business Media, New York, 1997. 

[6] H.-C. Han, J. K. Chesnutt, J. R. Garcia, Q. Liu, Q. Wen, “Artery 

buckling: New phenotypes, models, and applications,” Annals of 

Biomedical Engineering, vol. 41, no. 7, pp. 1399-1410, 2013. 

[7] P. Badel, C. P. Y. Rohan, S. Avril, “Finite element simulation of 

buckling-induced vein tortuosity and influence of the wall 

constitutive properties,” Journal of the Mechanical Behavior of 

Biomedical Materials, vol. 26, pp. 119-126, 2013. 

[8] J R. Garcia, S. D. Lamm, H.-C. Han, “Twist buckling behavior of 

arteries,” Biomechanics and Modeling in Mechanobiology, vol. 12, 

no. 5, pp. 915-927, 2013. 

[9] H.-C. Han, “Nonlinear buckling of blood vessels: A theoretical 

study,” Journal of Biomechanics, vol. 41, no. 12, pp. 2708-2713, 

2008. 

[10] H.-C. Han, “Determination of the critical buckling pressure of blood 

vessels using the energy approach,” Annals of Biomedical 

Engineering, vol. 39, no. 3, pp. 1032-1040, 2011. 

[11] J. S. Ren, J. W. Zhou, X. Yuan, X., “Instability analysis in 

pressurized three-layered fiber-reinforced anisotropic rubber tubes 

in torsion,” International Journal of Engineering Science, vol. 49, 

no. 4, pp. 342-353, 2011. 

[12] D. C. Pamplona, P. B. Gonalves, S. R. X. Lopes,  “Finite 

deformations of cylindrical membrane under internal pressure,” 

International Journal of Mechanical Sciences, vol. 48, no. 6, pp. 

683-696, 2006. 

[13] S. Kyriakides, Y. C. Chang, “On the inflation of a long elastic tube 

in the presence of axial lad,” International Journal of Solids and 

Structures, vol. 26, no. 9-10, pp. 975-991, 1990. 

[14] Y. B. Fu, S. P. Pearce, K. K. Liu, “Post-bifurcation analysis of a 

thin-walled hyperelastic tube under inflation,” International Journal 

of Non-Linear Mechanics, vol. 43, no. 8, pp. 697-706, 2010. 

[15] Y. B. Fu, Y. X. Xie, “Stability of localized bulging in inflated 

membrane tubes under volume control,” International Journal of 

Engineering Sciences, vol. 48, no. 11, pp. 1242-1252, 2010. 

[16] A. N. Gent, “A new constitutive relation for rubber,” Rubber 

Chemistry and Technology, vol. 69, no. 1, pp. 59-61, 1996. 

[17] C. O. Horgan, G. Saccomandi, “A molecular-statistical basis for the 

gent constitutive model of rubber elasticity,” Journal of Elasticity, 
vol. 68, no. 1-3, pp. 167-176, 2002. 

[18] C. O. Horgan, G. Saccomandi, “A description of arterial wall 

mechanics using limiting chain extensibility constitutive models,” 

Biomechanics and Modeling in Mechanobiology, vol. 1, no. 4, pp. 

251-266, 2003. 

[19] L. Horny, T. Adamek, R. Zitny, "Age-Related Changes in 

Longitudinal Prestress in Human Abdominal Aorta." Archive of 

Applied Mechanics, vol. 83, no. 6, pp.875-888, 2013. 

[20] C. S. Roy, “The elastic properties of the arterial wall,” Journal of 

Physiology (London), vol. 3, pp. 125-159, 1880-1882. 

[21] L. Horny, T. Adamek, E. Gultova, R. Zitny, J. Vesely, H. Chlup, S. 

Konvickova, "Correlations between Age, Prestrain, Diameter and 

Atherosclerosis in the Male Abdominal Aorta," Journal of the 

Mechanical Behavior of Biomedical Materials, vol. 4, no. 8, pp. 

2128-2132, 2011. 

[22] L. Horný, M. Netušil, T. Voňavková. 2013. "Axial Prestretch and 

Circumferential Distensibility in Biomechanics of Abdominal 

Aorta," Biomechanics and Modeling in Mechanobiology, vol. 13, 

no. 4, pp. 783-789, 2014. 

[23] L. Horny, T. Adamek, H. Chlup, R. Zitny, "Age Estimation Based 

on a Combined Arteriosclerotic Index," International Journal of 

Legal Medicine, vol. 126, no. 2, pp. 321-326, 2012. 

[24] A. V. Kamenskiy, I. I. Pipinos, Y. A. Dzenis, C. S. Lomneth, S. A. 

J. Kazmi, N. Y. Phillips, and J. N. MacTaggart, "Passive Biaxial 

Mechanical Properties and in Vivo Axial Pre-Stretch of the 

Diseased Human Femoropopliteal and Tibial Arteries," Acta 

Biomaterialia, vol. 10, no. 3, pp. 1301-1313, 2014. 

[25] J. N. MacTaggart, N. Y. Phillips, C. S. Lomneth, I. I. Pipinos, R. 

Bowen, B. Timothy Baxter, J. Johanning, et al., "Three-Dimensional 

Bending, Torsion and Axial Compression of the Femoropopliteal 

Artery during Limb Flexion." Journal of Biomechanics, vol. 47, no. 

10, pp. 2249-2256, 2014. 

[26] A. V. Kamenskiy, Y. A. Dzenis, S. A. J. Kazmi, M. A. Pemberton, 

I. I. Pipinos, N. Y. Phillips, K. Herber, et al., "Biaxial Mechanical 

Properties of the Human Thoracic and Abdominal Aorta, Common 

Carotid, Subclavian, Renal and Common Iliac Arteries." 

Biomechanics and Modeling in Mechanobiology, 2014, in press. 

[27] J. D. Humphrey,  J. F. Eberth, W. W. Dye, and R. L. Gleason, 

"Fundamental Role of Axial Stress in Compensatory Adaptations by 

Arteries." Journal of Biomechanics, vol. 42, no. 1, pp. 1-8, 2009. 

[28] G. A. Holzapfel, “Nonlinear solid mechanics: A continuum 

approach for engineering,” John Wiley & Sons, Chichester, 2000. 

 

 

 

 

 

 

 

 

 

 

 

 


