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Instructions

Cluster analysis is an unsupervised method for identifying groups of similar instances in a dataset.
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be reduced with sufficient results by utilizing approximation algorithms.

1) Review and theoretically describe state of the art algorithms for approximation of clustering.
2) Implement at least one of the reviewed algorithms for clustering approximation.
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January 10, 2019





Acknowledgements

I would like to thank my supervisor for providing great feedback on my thesis
and for pushing me to do better. I would like to thank my parents and Karina
Kulaga for their support and encouragement. I would also like to thank Hoang
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Abstrakt

Aglomerativńı hierarchické shlukováńı je d̊uležitý shlukovaćı algoritmus, který
má mnoho praktických využit́ı, na př́ıklad pro segmentaci trhu. Jeho největš́ı
nevýhodou je jeho velká časová složitost O(n3). Ćılem této práce je popsat
a zanalyzovat algoritmy aproximuj́ıćı aglomerativńı hierarchické shlukováńı.
Tyto algoritmy maj́ı nižš́ı časovou složitost a produkuj́ı srovnatelné výsledky
s exaktńımi metodami. Experimenty ukázaly, že aproximačńı algoritmus LSH-
link je signifikantně rychleǰśı na velkých datech než exaktńı algoritmus MST-
linkage algoritmus.

Kĺıčová slova Hierarchické shlukováńı, LSH-link, MST-linkage, hybridńı
shlukováńı
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Abstract

Agglomerative hierarchical clustering is an important clustering algorithm
which has many real life applications such as customer segmentation. Its
biggest drawback is its large time complexity of O(n3). This thesis presents
and describes approximation algorithms to the agglomerative hierarchical clus-
tering. Such algorithms have lower time complexity and produce similar re-
sults to the agglomerative hierarchical clustering. The experiments showed
that for the large data sets the approximation method LSH-link performed
significantly faster then the MST-linkage, an agglomerative hierarchical clus-
tering algorithm for the single linkage.

Keywords Hierarchical clustering, LSH-link, MST-linkage, Hybrid cluster-
ing

viii



Contents

Introduction 1

1 The clustering problem 3

2 Agglomerative hierarchical clustering 5
2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Distance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Linkage criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Clustering evaluation . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Approximate methods 17
3.1 LSH-link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Hybrid hierarchical clustering . . . . . . . . . . . . . . . . . . . 21

4 Experiment 25
4.1 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Conclusion 33

Bibliography 35

A Acronyms 37

B Contents of enclosed USB flash drive 39

ix





List of Figures

1.1 Objects grouped by color fill . . . . . . . . . . . . . . . . . . . . . 3

2.1 Visualization of Euclidean and Manhattan distances . . . . . . . . 8
2.2 Single and complete linkage criteria . . . . . . . . . . . . . . . . . 9
2.3 Centroid linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Dendrogram produced by agglomerative hierarchical clustering . . 13

3.1 Points that are close to each other are in the same bucket of the
hash table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Objects are first clustered using the k-means algorithm resulting
in three partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Trees obtained by the first level hierarchical clustering are merged
into a single tree using the second level hierarchical clustering . . . 22

4.1 MST-linkage dendrogram . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 LSH-linkage dendrogram . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Execution time for artificial data set with respect to the number

of data points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Execution time for Spam data set with respect to the number of

data points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Execution time for Digits data set with respect to the number of

data points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi





List of Tables

2.1 Contingency table . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Real world data sets used in the experiment . . . . . . . . . . . . . 27
4.2 Supervised clustering performance scores for each data set . . . . . 27

xiii





Introduction

As data becomes more and more available and the amount of data grows ex-
ponentially, there is a need to extract valuable information from that data.
Today, many different approaches exist in order to achieve that goal. One of
such approaches is called clustering. Clustering is used to structure the data
in order to discover different possible groupings within the data. It has many
practical applications in the areas such as medicine, information science and
biology [1]. One common clustering method is called hierarchical clustering.
Hierarchical clustering partitions the data in a way that it is possible to ob-
serve the obtained groupings at different levels of granuality. This property
makes hierarchical clustering an important tool for observing complex pat-
terns. However, due to its high computational time complexity, its usage is
inpractical with large data sets, which are common in many problems. In order
to overcome this limitation, there exist several approximation methods that
attempt to produce similar results to the standard algorithm while reducing
the running time of the algorithm. In this thesis, some of those approximation
methods will be presented and described in detail. Some of those algorithms
will be compared to the exact algorithm in terms of clustering performance,
and the required computation time complexity. The theoretical background
required to understand the hierarchical clustering algorithm will be presented
in the following chapters.
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Chapter 1
The clustering problem

In real world there are many occasions when it is necessary to perform group-
ings. For example, clustering can be used to group the human genes, or it
can be used to detect several target groups among the users of some service.
Regardless of the task, the goal of clustering is to produce a grouping of ob-
jects, such that the objects within each group are as similar as possible, and
the objects from different groups are as different as possible. However, it is
difficult to say if such grouping is correct for a specific task. Even if the ob-
tained grouping satisfies the general definition of clustering, it might not be
suitable for a specific domain. Therefore, it is very difficult or even impossible
to justify a specific clustering result without the domain knowledge. In Figure

Figure 1.1: Objects grouped by color fill

1.1 there is an example illustrating the objects grouped by their color fill. It is
important to notice that there are more possible groupings. For example, the
objects can also be grouped by their corresponding letters. Which grouping
is correct is highly dependent on the domain. The difficulty of verifying the
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1. The clustering problem

correctness of the result is one of the big challanges of clustering, and it is an
important research topic on its own.

Formally, the task of clustering is stated as follows. Given a set of n data
points X = {~x1, · · · , ~xn}, where each ~xi is a d-dimensional vector, find the
partitioning of data R = {P1, · · · , Pk}, consisting of k subsets of X. The
points within each Pi should be as close as possible, and the points between
Pi and Pj should be as far apart as possible.

There are several algorithms that can perform clustering [2]. Each algo-
rithm has its own advantages and disadvantages, both in terms of produced
results and computational resources required. It is highly dependent on the
problem which algorithm to use. Connectivity and centroid models are a good
example of commonly used clustering algorithms.

The connectivity models are based on a distance connectivity. An example
of a connectivity model would be hierarchical clustering. The centroid models
use the centroids in order to represent various clusters. An example of a
centroid model would be the k-means clustering.

This thesis will focus only on the connectivity models, in particular, the
agglomerative hierarchical clustering. This method is of interest because it
is deterministic and it allows to observe the groupings at different levels of
granuality.[1] Those are very important properties and are very useful in many
areas of research. The biggest drawback of agglomerative hierarchical cluster-
ing is its high computational time complexity, which makes it inpractical [1]
for large data sets. This is why it is important to explore various approxima-
tion methods that attempt to overcome the time complexity limitation, while
preserving the good properties of the algorithm.
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Chapter 2
Agglomerative hierarchical

clustering

Agglomerative hierarchical clustering is a method of cluster analysis that aims
to build a hierarchy of clusters. Instead of producing one clustering result, it
gives several clustering partitions for different numbers of clusters. It is also
flexible as it is possible to use various distance metrics within the algorithm
[3], making it more suitable for a larger variety of problems.

This chapter presents agglomerative hierarchical clustering algorithm and
some of its important properties and components such as distance metrics
and linkage criteria. There is a dedicated section on its time and memory
complexity, showing why the algorithm is not suitable for large data sets.
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2. Agglomerative hierarchical clustering

2.1 Algorithm

Given a data set X = {~x1, . . . , ~xn} of size n the algorithm produces an ordered
sequence of cluster merges L, such that each element of L is a tuple consisting
of clusters to be merged and the corresponding distance between the two
clusters. The sequence L can be refered to as a linkage [3].

At the beginning of the algorithm every point is a cluster. Then, the pair-
wise distances between all clusters are computed. A pair of clusters with the
smallest distance is merged into a single cluster. The process repeats until
there is only one cluster left.

Algorithm 1 AHC(X)
1: L← [ ]
2: N ← |X|
3: S ← {index(~x)} (∀~x ∈ X) . Get indices of all points
4: D[a, b]← d(~xa, ~xb) (∀a, b ∈ S) . Compute all pairwise distances
5: for i← 0 to N − 2 do
6: (a, b)← argminS×S(D) . Find the closest points
7: Append (a, b, D[a, b]) to L
8: S ← S \ {a, b}
9: Pn ← Pa ∪ Pb : n /∈ S . Merge the two clusters

10: D[n, c]← l(Pn, Pc) (∀c ∈ S) . Update the distance matrix
11: S ← S ∪ {n}
12: R← R \ {Pa, Pb}
13: R← R ∪ {Pn}
14: end for
15: return L

Algorithm 1 presents agglomerative hierarchical clustering in more detail. Dif-
ferent distance metrics and linkage criteria can be used within the algorithm.
They are discussed in more detail in the following sections.
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2.2. Distance metrics

2.2 Distance metrics

Various metrics can be used to measure pairwise distances between the points.
Each metric has its own advantages for a particular task and has the following
properties :

1. d(~x, ~y) ≥ 0

2. d(~x, ~y) = d(y, x)

3. d(~x, ~y) ≤ d(~x, ~z) + d(~z, ~y)

This section presents some of the widely used distance metrics, and shows how
each metric can be computed.

Euclidean distance
One of such metrics is the Euclidean distance. Given two points ~x = [x1, . . . , xd]
and ~y = [y1, . . . , yd], the Euclidean distance is calculated as follows:

d(~x, ~y) =

√√√√ d∑
i=1

(xi − yi)2.

Euclidean squared distance
Euclidean squared distance is very similar to the Euclidean distance. The
only difference is that it does not take the square root of the result. It can be
calculated as follows:

d(~x, ~y) =
d∑

i=1
(xi − yi)2.

Manhattan distance
Another metric that can be used with the hierarchical clustering is called
Manhattan distance and is calculated as follows:

d(~x, ~y) =
d∑

i=1
|xi − yi|.

Unlike the Euclidean distance, the Manhattan distance is measured at right
angles along the axes. This difference is illustrated in Figure 2.1.

Minkowski distance
It is important to note that the Euclidean and Manhattan distances can be
generalized as the p-norm which can be computed as follows:

‖~x− ~y‖p =
( d∑

i=1
|xi − yi|p

)1/p

.

For the Euclidean distance p = 2 and for the Manhattan distance p = 1.
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2. Agglomerative hierarchical clustering

(a) Euclidean distance (b) Manhattan distance

Figure 2.1: Visualization of Euclidean and Manhattan distances

Chebychev distance
The Chebychev distance [4] is defined as the maximum distance between the
two points for any single dimension. It can be found as follows:

d(~x, ~y) = max
i
|xi − yi|.

It is useful when the distances between the vectors are influenced more by
some dimensions then the other.

Canberra distance
Canberra distance is very similar to Manhattan distance. The only difference
is that there is a division by the sum of absolute values of two variables before
the summation. Canberra distance can be calculated as follows:

d(~x, ~y) =
d∑

i=1

|xi − yi|
|xi|+ |yi|

.
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2.3. Linkage criteria

2.3 Linkage criteria

Linkage criteria have an important role in hierarchical clustering. They are
used to determine how clusters will be merged during the algorithm. There
are various linkage criteria that directly influence the outcome of clustering.
Different linkage criteria use different strategies to determine the distances
between two clusters P and P ′.

Single linkage
The single linkage [3] calculates the distance between two clusters as the dis-
tance between two closest points of those clusters. It can be calculated as
follows:

l(P, P ′) = min
~x∈P,~y∈P ′

d(~x, ~y).

The distance between two points d(~x, ~y) can be calculated using any distance
metric presented in Section 2.2.

Complete linkage
The complete linkage [3] is similar to the single linkage. The only difference is
that it uses points that are furthest from each other to determine the distance
between two clusters. It uses the following distance:

l(P, P ′) = max
~x∈P,~y∈P ′

d(~x, ~y).
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(b) Complete linkage

Figure 2.2: Single and complete linkage criteria

The difference between the two linkages can be seen on Figure 2.2.

Average linkage
Another popular approach is to use the average linkage [3], which uses the
distance determined by calculating all pairwise point distances between two
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2. Agglomerative hierarchical clustering

clusters, and taking their average. The average linkage uses the following
distance before each merge operation:

l(P, P ′) =
1

|P | · |P ′|
∑

~x∈P,~y∈P ′

d(~x, ~y).

Centroid linkage
The centroid linkage [3] uses the distance determined by the distance between
the centers of each cluster. It can be found using the following formula:

l(P, P ′) = d

(∑
~x∈P

~x

|P |
,
∑

~y∈P ′

~y

|P ′|

)
.
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Figure 2.3: Centroid linkage

The centroid linkage can be seen in Figure 2.3.
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2.4. Complexity

2.4 Complexity

The agglomerative hierarchical clustering algorithm has many useful proper-
ties. It is deterministic and, it finds several clusters, at different levels of
granuality, which are then presented in the form of a dendrogram. Unfortu-
nately, the agglomerative hierarchical clustering algorithm is not scalable. It
performs poorly on the large data sets. The biggest drawback of this algorithm
is its time complexity.

In order to observe this limitation, it is important to analyze each step
of the algorithm. The outermost loop of the algorithm performs n iterations
of the merge operation, each having a constant time complexity. Before each
merge operation, there is a need to recompute the distance matrix and find
the smallest dissimilarities between any two clusters. This operation requires
to compute all of the pairwise distances, and it has the time complexity of
O(n2). Pairwise distance computation is the most demanding part of the
algorithm. It is easy to derive the overall time complexity of the algorithm.
The outermost loop has the time complexity of O(n), and each iteration of the
loop has the time complexity of O(n2). Hence, the overall time complexity
is O(n3). Since there is a need to store the dissimilarity matrix, the memory
complexity of the agglomerative hierarchical clustering algorithm is O(n2). It
is important to note that this time complexity is for the general form of the
algorithm. There are methods that can reduce the time complexity for certain
linkages, while still preserving the properties of the algorithm. For example,
there is the MST-linkage algorithm [3], which is the algorithm for the single-
linkage clustering, and it has the time complexity of O(n2). The MST-linkage
keeps the record of the smallest distances in an array, and does not require
to recalculate the distance matrix at each iteration. Algorithm 2 shows the
MST-linkage algorithm in more detail. It can be seen that there is an outer
loop that performs n− 1 iterations, and there are two inner loops. Each inner
loop starts with n iterations, but this number decreases by one with each outer
loop iteration of the algorithm. Therefore the time complexity of MST-linkage
is O((n− 1)n/2) which simplifies to O(n2).
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2. Agglomerative hierarchical clustering

Algorithm 2 MST-linkage(X)
1: L← [ ]
2: N ← |X|
3: S ← {index(~x)} (∀~x ∈ X) . Get indices of all points
4: D[a, b]← d(~xa, ~xb) (∀a, b ∈ S) . Compute all pairwise distances
5: c← s (s ∈ S) . Get any index from the set
6: M [s]←∞(∀s ∈ S \ {c}) . Keep record of minimum distances
7: for i← 1 to N − 1 do
8: S ← S \ {c}
9: for each s in S do

10: M [s]← min(M [s], D[c, s]) . Update the minimum distances
11: end for
12: n← argminS(M) . Get the closest point
13: Append (c, n, M [n]) to L
14: c← n
15: end for
16: return L

2.5 Visualization

The results of hierarchical clustering can be visualized using a dendrogram. A
dendrogram is a binary tree. Its leaves represent individual observations, and
all other nodes represent the clusters, to which those observations belong to.

Such a dendrogram is shown in Figure 2.4. In this particular example,
there are five observations A, B, C, D, and E. The vertical edges between the
nodes show the distances between clusters. It can be seen that observations
C and D are closer to each other than A and B. The dashed horizontal lines
show some possible cuts of the dendrogram. The bottommost cut produces
five clusters {A}, {B}, {C}, {D}, and {E}. The middle cut produces three
clusters {A, B}, {C, D}, and {E}. Deciding where to cut the dendrogram,
and what number of clusters to obtain is not an easy task. One of the ways it
can be done, is by observing the dendrogram, and by finding such a level to
cut, where the distances between the clusters, indicated by vertical lines, are
relatively large.

12



2.6. Clustering evaluation

Figure 2.4: Dendrogram produced by agglomerative hierarchical clustering

2.6 Clustering evaluation

There are cases when it is necessary to measure how well a clustering algo-
rithm partitioned the data. It is generally a hard problem since there are
many ways in which the data can be partitioned. The correctness of a par-
ticular partition highly depends on the domain knowledge. There are several
unsupervised performance metrics, that do not require the ground truth la-
bels. Such metrics include the silhouette score [5] and Calinski-Harabaz index
[6]. However, those metrics evaluate the performance purely in terms of gen-
eral clustering definition. The score only depends on how close the points are
within each cluster, and how far apart are individual clusters. There can be
several partitionings that can give high unsupervised scores, but only a few
would be useful for a particular domain.

Another way to evaluate the clustering results is to use the ground truth
labels. The ground truth labels assign each element of the data set to one
of the partitions. Given such labels, it is possible to evaluate how well the
algorithm performed considering a specific domain. Three popular supervised

13



2. Agglomerative hierarchical clustering

metrics are v-measure [7], adjusted rand index [8], and mutual-info score [8].
These metrics are functions that take two arguments, which are the true labels
and the predicted labels. The output of each function is the score bounded
by [-1.0, 1.0]. Scores that are close to 0.0 or negative indicate bad clustering,
and scores that are close to 1.0 indicate good clustering. These metrics are
symmetric, which means that if the argument positions are swapped, the score
will still remain the same. The permutations are also taken into considera-
tion, therefore it does not matter what label value is assigned to the points
belonging to the same cluster. For example, the label assignment [0, 0, 1, 1, 2]
is equivalent to the label assignment [2, 2, 0, 0, 1].

Silhouette score
The silhouette score directly evaluates the clustering results using the original
data points. It does not require the true label assignment, hence it can be
used for unsupervised clustering perfomance evaluation. It measures how close
an object is to other objects in the same cluster, and how far it is from the
other clusters. The silhouette score is bounded by [−1, 1], where higher value
indicates better clustering.

s(~xi) =
b(~xi)− a(~xi)

max(a(~xi), b(~xi))
(2.1)

Equation 2.1 shows how to compute the silhouette score for a single point. The
value of a(~xi) indicates how dissimilar a point is to its own cluster, therefore
it is better if this value is small. The value of b(~xi) indicates how dissimilar
a point is from the other clusters, hence it is better if this value is greater.
The algorithm is as follows. For each point ~xi in the data set X calculate
the average distance to the points in the same cluster, and denote it as a(~xi),
and then calculate average distances to other clusters, and denote the smallest
distance as b(~xi). Now it is possible to calculate s(~xi) using the Equation 2.1.
The final score is obtained by averaging all the values s(~xi) for all points.

Calinski-Harabaz index
Similarly to silhouette score, the Calinski-Harabaz score does not require the
knowledge of true labels. It uses both the features and the clusters obtained
to measure the perfomance. The greater the Calinski-Harabaz score is, the
better the obtained clusters are. Unlike the silhouette score, it is not bounded.
In order to obtain the score, it is first necessary to obtain between the group
dispersion matrix Bk and within-cluster dispersion matrix Wk.

Wk =
k∑

q=1

∑
~x∈Pq

(~x− cq)(~x− cq)T (2.2)

Bk =
∑

q

nq(cq − c)(cq − c)T (2.3)

14



2.6. Clustering evaluation

The matrices are obtained using the Equation 2.2 and Equation 2.3, where k
is the number of clusters, ~x ∈ Pq is the point belonging to the cluster Pq, cq

is the center of the cluster Pq, nq is the number of points in cluster Pq, and c
is calculated as follows:

c =
k∑

q=1

nq

n
· cq.

Here, n is the total number of points in the data set.

s =
Tr(Bk)
Tr(Wk)×

n− k

k − 1 (2.4)

The final score is obtained using the Equation 2.4.

Adjusted Rand index
If the true labels are available, the adjusted Rand index can be used to cal-
culate the similarity between two cluster assignments, such that the permu-
tations are ignored. It takes two cluster assignments as an input and returns
a score in the range [−1, 1], where the higher the score, the more similar two
cluster assignments are, which means better clustering if one of the cluster as-
signments is the true assignment. The adjusted Rand index is symmetric and
it does not assume any clustering algorithm, hence it can be used with various
clustering algorithms. It is suitable for small sample sizes or large numbers
of clusters. In order to obtain the adjusted Rand index it is necessary to
construct the contingency table. In Table 2.1 {P1, · · · , Pr} and {P ′1, · · · , P ′s}

P ′1 P ′2 · · · P ′s Sum
P1 n11 n12 · · · n1s a1
P2 n21 n22 · · · n2s a2
...

...
... . . . ...

...
Pr nr1 nr2 · · · nrs ar

Sum b1 b2 · · · bs n

Table 2.1: Contingency table

represent true and predicted cluster assignments. For example, P1 represents
the set of elements belonging to the true cluster 1, and each nij = |Pi ∩ P ′j |
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2. Agglomerative hierarchical clustering

represents the number of elements contained in both Pi and P ′j .

s =

∑
ij

(
nij

2

)
−

∑
i

(
ai

2

)∑
j

(
bj

2

)
(n

2
)

∑
i

(
ai

2

)
+
∑

j

(
bj

2

)
2 −

∑
i

(
ai

2

)∑
j

(
bj

2

)
(n

2
)

(2.5)

Once the contingency table is constructed, the adjusted Rand index can be
obtained by using the Equation 2.5.
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Chapter 3
Approximate methods

The biggest drawback of hierarchical clustering is its time complexity [1]. Since
the algorithm has to evaluate all pairwise distances between the points, it is
not suitable for large or even medium data sets. On the other hand it has some
good properties when compared to other algorithms such as k-means, and it
is used for many practical applications. Approximate hierarchical clustering
is one of the ways to address the problem of complexity. There exist several
approximate methods, and each has its own advantages and disadvantages.
This chapter will present and compare some of those methods.

3.1 LSH-link

The LSH-link [1] is an approximate algorithm for the agglomerative hierarchi-
cal clustering with the single-linkage and it has the time complexity of O(nB).
It uses the idea of locality-sensitive hashing [9] to achieve better performance,
while producing similar results to the standard algorithm. Locality-sensitive
hashing is an approximate nearest-neighbor search method that attempts to
reduce the curse of dimensionality. It uses hash functions that map points
in multidimensional space into a single scalar value, and try to store similar
points into a single hash entry. For that purpose, locality-sensitive hashing
maximizes the collisions for the objects that are close to each other. As a
result the relative distances between the original points are preserved after
the hash operation. This property is very useful in the context of hierarchical
clustering. The standard hierarchical clustering algorithm requires to com-
pute all of the pairwise distances between the points. It equally considers the
points that are actually close to each other, and the points that are far apart.
Locality-sensitive hashing speeds up the pairwise computation by considereng
only the points that are more likely to be similar, and this is the key idea be-
hind the LSH-link algorithm. There can be different hash functions that can
project the points from higher dimensional spaces to lower dimensional spaces
and still preserve the relative distances. One of such hash functions utilizes
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3. Approximate methods

(a) Points in a two dimensional space (b) Hash table created from the points

Figure 3.1: Points that are close to each other are in the same bucket of the
hash table

the random projection [9]. Let ~x be a point in a multi-dimensional space. In
order to obtain a hash value it is necessary to perform dot products between
that point and a sequence of vectors V = [~v1, . . . , ~vk]. The components of
each vector ~vi are drawn from the normal distribution. A sequence of ones
and zeros, which is the final hash value, is produced as follows:

hk(~x) = [~x · ~v1 > 0, . . . , ~x · ~vk > 0].

For example, in the Figure 3.1 there are 4 points. The solid orange line
represents the hyperplane given by the equation ~xi · ~v1 > 0, the dashed blue
line represents the hyperplane given by the equation ~xi ·~v2 > 0, and the dotted
purple line represents the hyperplane given by the equation ~xi · ~v3 > 0. The
hyperplanes are used to partition the space, which makes it possible to obtain
a hash value for each point. The hash value for the point ~A is obtained by
performing the dot product with each of the vectors ~v1, ~v2, and ~v3 which
results in 010. In general, for k hyperplanes, there will be 2k regions. It can
be observed that k is the length of the hash value. This hash function is
different from the one presented in the original LSH-link paper [1], which was
used for the demonstration purposes and worked only with integer data sets.
The hash function specified above works with real valued variables. The fact
that vectors of V are randomly sampled, means that there is always a chance
that similar points might not actually end up in the same bucket of a hash
table. In order to overcome this problem it is necessary to create several hash
functions, each having its own V . When the hash tables are created using the
corresponding hash functions, the unions between the point related buckets
are performed. The idea behind multiple hash tables is that it is not very
likely that similar points will end up in different buckets for all of the hash
tables. However, if the number of hash tables is too big then there is a higher
chance that points which are far appart can also end up in the same bucket.
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3.1. LSH-link

Therefore, the number of hash tables is also a parameter that needs to be
optimized depending on a problem.

Given the knowledge of the locality-sensitive hashing it is now possible to
describe the LSH-link algorithm. At each iteration of the algorithm l hash
functions are generated. Each point is then inserted into l hash tables unless
there is already a point from the same cluster in the same bucket. In order
to get all of the neighboring points to a point of interest, the union of the
corresponding buckets is performed. The actual distances between the point
and its neighbors are then computed. If the distance between the two points
is below the specified distance threshold r then the clusters corresponding
to these points are merged. The algorithm terminates when there is only one
cluster left. Initially, the distance r should be selected to be relatively small, so
that close points are merged first. At each iteration r is increased by a factor of
A in order to ensure that distant points are eventually merged into one cluster.
The value of A is also a parameter of the algorithm. Smaller values of A will
produce closer approximations at the cost of higher computational cost. The
value k is decreased in each iteration in order to increase the collision between
more distant points. Algorithm 3 presents the LSH-link in more details.

Algorithm 3 LSH-link(X, A, r)
1: L← [ ]
2: d← dim(X)
3: C ← max(X)
4: S ← {index(~x)} (∀~x ∈ X) . Get indices of all points
5: while |R| 6= 1 do
6: k ← dC

√
d/2r . Update the value k

7: T ← {t1, . . . , tl} . Generate l hash tables
8: Insert ~x into t (∀~x ∈ X,∀t ∈ T )
9: for each a in S do

10: M ←
⋃

t∈T t[~xa] . Get all potential neighbors
11: for each b in M do
12: if d(~xa, ~xb) ≤ r and Pa 6= Pb then
13: Pa ← Pa ∪ Pb . Merge the two clusters
14: R← R \ {Pb}
15: Append (a, b, d(~xa, ~xb)) to L
16: end if
17: end for
18: end for
19: r ← r ∗A
20: end while
21: return L
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3. Approximate methods

3.1.1 Complexity

It is important to show that the time complexity of the LSH-link algorithm
is O(nB). Here, the value B is the maximum number of points that can
enter a single bucket of a hash table [1]. There is a dependence of B on n,
since n points are distributed in the hash tables. In order to understand the
overall time complexity it is important to analyze each part of the algorithm
individually. The algorithm consits of three major parts: generation of hash
tables, finding the clusters to be merged, and updating the clusters. In the
hash table generation phase it is necessary to create l hash tables. Each
point is hashed through the l hash tables. In total there are n points. The
application of the hash function has a constant time complexity. Hence, the
time complexity of hash table generation is O(nl) which simplifies to O(n)
since l is a constant independent of n. The next phase of the algorithm is
to find the clusters to be merged. That operation requires to compute the
distance between each point and its corresponding l buckets that can contain
at most B elements. Hence the time complexity of such operation is O(nlB).
As in the previous step, l is a constant independent of n, therefore, the time
complexity of finding the clusters to be merged is O(nB). The last part of the
algorithm requires to update the clusters, that is to merge clusters together.
Each cluster can be represented as a vertex in a graph. The two clusters which
are to be merged will have an edge between them. The problem of merging the
clusters can be seen as the graph decomposition into connected components,
which is achieved in O(N + M), where N is the number of vertices and M is
the number of edges. In this case N is bounded by n, and M is bounded by
nlB. Therefore the time complexity of finding the connected components is
O(n+nlB), which simplifies to O(nB). Therefore the overall time complexity
of the LSH-link algorithm is O(n + nB + nB), which simplifies to O(nB).
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3.2. Hybrid hierarchical clustering

3.2 Hybrid hierarchical clustering

The hybrid hierarchical clustering algorithm [10] attempts to overcome the
time complexity overhead by using the combination of the partitional k-means
algorithm [11] and the standard agglomerative hierarchical clustering algo-
rithm. It is common to perform clustering using the k-means algorithm due
to its linear time complexity and simplicity. Given the data set X of n ob-
servations, where each observation is a d-dimensional vector, the k-means
algorithm starts with the random initialization of k centroids, which are es-
sentially additional d-dimensional vectors. Each centroid corresponds to one
of the k clusters. At the second step the Euclidean distances between each
point and the k centroids are computed. Each point is then assigned to its
closest centroid. At the next step the positions of the centroids are updated.
The new position of each centroid is obtained by computing the mean of its
corresponding points. If there was a change in the position of the centroids
and it is not the last iteration, as specified by the user, the algorithm contin-
ues from the second step. Otherwise, the algorithm terminates. The hybrid
hierarchical clustering uses the k-means algorithm in order to create k parti-
tions P1, . . . , Pk of the original data set. The greater the value k the closer
the hybrid algorithm will approximate the standard agglomerative hierarchi-
cal clustering algorithm. In order to achieve the running time of O(n

√
n), k

should be picked close to
√

n [10]. The exact hierarchical clustering is then
performed on each partition Pi in order to create the trees T1, . . . , Tk. This
step can be referred to as the first level hierarchical clustering. The obtained
trees are then treated as nodes during the second level hierarchical clustering.
This means that all of the trees are clustered into a single tree T , which is the
final result of the algorithm.

Figure 3.2 shows how points are initially partitioned using the k-means
algorithm, and then each partition is clustered using the first level hierarchi-
cal clustering to create trees. Figure 3.3 shows how the obtained trees are
clustered into a single tree using the second level hierarchical clustering. The
difference between the first and second levels of clustering is that the first
level is performed on the points and the second level is performed on the par-
titions. The Algorithm 4 shows the hybrid hierarchical clustering algorithm
in more detail. It can be observed that there is recursion involved in one of
the steps. It is required for the case when the number of points in a partition
is higher then the specified threshold t, which can slow down the exection of
the agglomerative hierarchical clustering.
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Figure 3.2: Objects are first clustered using the k-means algorithm resulting
in three partitions

(a) First level hierarchical clustering (b) Second level hierarchical clustering

Figure 3.3: Trees obtained by the first level hierarchical clustering are merged
into a single tree using the second level hierarchical clustering

3.2.1 Complexity

The time complexity of the hybrid hierarchical clustering can be O(n
√

n). It
highly depends on the parameter k. For larger values of k the algorithm will
perform slower, but the obtained results will closer resemble the ones produced
by the exact hierarchical clustering algorithm. The overall time complexity is
affected by two parts of the algorithm. The first part is the partitioning of
data using the k-means algorithm, which has the time complexity of O(knI),
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3.2. Hybrid hierarchical clustering

Algorithm 4 HHC(X)
1: R← k-means(X)
2: for each Pi in R do
3: ri ← argminjl(Pi, Pj)
4: for each p in Pi do
5: if d(p, Ci) > ri then
6: Pi ← Pi \ p
7: R← R ∪ {p}
8: end if
9: end for

10: end for
11: for each Pi in R do
12: if |Pi| > t then
13: Ti ← HHC(Pi)
14: else
15: Ti ← AHC(Pi)
16: end if
17: end for
18: T ← AHC({T1, . . . , Tm})
19: return T

where k is the number of centroids, n is the number of observations and I
is the number of iterations. The second part is the agglomerative hierarchi-
cal clustering of the obtained partitions. There are k partitions, each of size
approximately n/k. Assuming the quadratic time complexity of agglomera-
tive hierarchical clustering, the time complexity of clustering each partition is
O(n2/k). The time complexity of clustering k trees into a single tree is O(k2).
Therefore the overall time complexity is O(knI + n2/k + k2). If k is set to
approximately

√
n, then the time complexity is O(n

√
nI + n

√
n + n) which

simplifies to O(n
√

n) since I is a small constant value.
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Chapter 4
Experiment

This chapter presents the experimental part of the thesis. The previous chap-
ter showed the theoretical time complexity improvements of the approximation
methods. It is important to show that those improvements also hold in prac-
tice. In order to do this, it is necessary to test one of proposed methods on
the real data sets, and compare it with the exact agglomerative hierarchical
clustering algorithm. The experiment setup will be described first. It will
present what quantities will be measured and how they will be measured and
compared. Then, there will be a description of each data set used, and the
motivation behind choosing each data set. The implementation details of the
used algorithms will be described as well as the motivation behind implement-
ing each algorithm. The algorithms will be run and compared on the real data
sets, and the results will be presented.

4.1 Experiment design

In this experiment two algorithms will be compared. The first algorithm is
the agglomerative hierarchical clustering using the single linkage called MST-
linkage. The second algorithm is the approximate method called the LSH-link.
It is important to note that LSH-link is an approximation method for the single
linkage. The MST-linkage algorithm will provide the reference results that will
help evaluate the results obtained by the LSH-link algorithm. The goal of the
experiment is to show that the approximation method indeed performs faster
than the standard algorithm, while still producing similar results.

In order to quantatively compare the approximation method to the ex-
act agglomerative hierarchical clustering it is important to specify how the
clustering quality and the running time will be measured. To achieve a fair
comparison, all of the algorithms will be run on the same machine, and the
same data sets will be used throughout the experiment. There are several
methods to verify the validity of the clustering results.
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4. Experiment

The first way is to use supervised performance metrics for clustering. Such
metrics require the ground truth labels. There are several metrics that can
be used, and their selection is dependent on the problem and its underlying
domain. Such metrics were presented in Section 2.6. Both algorithms need
to run on the same data set and produce the two linkages. If a data set
has n points, then the linkage will have n levels. Both linkages are then
iterated over each level simultaneously. At each level, both linkages are cut
in order to produce two flat cluster assignments. Each flat cluster assignment
produced by the MST-linkage will serve as the true label assignment, and each
flat cluster assignment produced by the LSH-link will serve as the predicted
label assignment. The supervised metrics are then used to obtain the scores
between each pair of such assignments. As a result, there will be n scores, each
corresponding to the specific cut of the linkage. The final score is the median
of the n scores. The intuition behind this approach is that if the produced
linkages are similar, then the flat clusters at each level should also be similar,
and this similarity can be measured by using the supervised metrics.

The second way is to produce a dendrogram using the exact agglomerative
hierarchical clustering algorithm and then visually compare it to a dendrogram
produced by the approximation methods. Visual similarity is not a reliable
way to evaluate the performance, however it can give an insight on the overall
structure of the produced results.

After the clustering performance is evaluated, both algorithms will ran on
large data sets to show the difference in running time performance. One of
the ways to achieve this is to split a large data set into a sequence of data sets,
where each consequent data set has a greater number of data points. Then, for
each such data set in the sequence, both algorithms will run 10 times, and the
average execution times will be recorded. The obtained execution times can
then be plotted, which should show the difference between the two algorithms
in terms of running time with respect to data size.

Another important factor influencing the experiment is the selection of
the data sets. Several real world data sets were chosen to be used with the
clustering. The first data set is called Iris. It is useful for the purpose of
dendrogram visualization, since it has few points. Another data set is called
Sonar. It is of intereset because of its higher number of features, which can
influence the running time of the algorithm. The third data set is called
Glass. The Digits and Spam data sets were used as well, mainly because
they both have large amount of samples and features. In order to measure
the execution time of each algorithm, it is necessary to have a large data set.
Such data set was generated from the multivariate normal distribution with
the variance 1, but different means to represent different clusters. The data
sets are summarized in Table 4.1.
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4.2. Implementation

Dataset Number of instances Number of features
Iris 150 4
Sonar 208 60
Glass 214 9
Spam 4601 57
Digits 1593 256
Artificial 10000 2

Table 4.1: Real world data sets used in the experiment

4.2 Implementation

Both algorithms used in this experiment were implemented in the C++ pro-
gramming language. At the time of writing this thesis, there was no publicly
available implementation of the LSH-link algorithm, therefore it was necessary
to implement it in order to run the experiments. On the other hand, there
are some implementations of the MST-linkage algorithm, however they have
different interfaces. Both algorithms were implemented to share a common
interface in terms of inputs and outputs. They both require a data set as an
input and they both produce a linkage matrix that can be used to visualize a
dendrogram, or to get the cluster assignments at any level of that dendrogram.
For that reason, both algorithms confirm to the linkage interface specified by
the SciPy scientific and technical computing library.

4.3 Results

This section presents the results of the experiments. The details of the exper-
iment design were presented in Section 4.1.

4.3.1 Supervised scores

In order to evaluate the clustering performance of the algorithm it is necessary
to use quantative measures such as the supervised clustering performance
metrics. Table 4.2 shows the median performance scores obtained for each data

V-measure Adjusted Rand index Mutual information
Iris 0.90 0.57 0.61
Sonar 0.85 0.58 0.48
Glass 0.91 0.58 0.57
Spam 0.79 0.44 0.44
Digits 0.83 0.22 0.36

Table 4.2: Supervised clustering performance scores for each data set
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4. Experiment

set. It can be seen that the clustering assignments agree the most according
to the V-measure score. The V-measure score is the harmonic mean between
homogeneity and completeness. Homogeneity means that each cluster contains
only members of a single class. Completeness means that all members of a
given class are assigned to the same cluster. However, the V-measure will
not yield zero scores for random labelings if the number of clusters is above
10, and the sample sizes is below 1000 [7]. Therefore, the adjusted Rand
index and the adjusted mutual information scores should also be taken into
consideration. For these data sets the adjusted Rand scores and the adjusted
mutual information scores are lower then the V-measure scores. This might be
due to the LSH-link hyperparameters not being optimized for these particular
data sets.

4.3.2 Visual comparison

In order to show the similarity between the produced dendrograms, both al-
gorithms were run on the Iris data set. Even though this data set is very
small, it serves well for the purpose of dendrogram visualization. In Figures
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Figure 4.1: MST-linkage dendrogram

4.1 and 4.2 are the dendrograms produced by MST-linkage and LSH-link. It
can be observed that the overall shapes of the dendrograms are similar. Vi-
sualization of dendrograms is crucial for many practical problems, therefore
it is important to show that the dendrograms produced by LSH-link are of
a similar structure to those produced by the single-linkage algorithm. It is
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Figure 4.2: LSH-linkage dendrogram

important to note that visual comparison is not a reliable way to measure the
clustering performance of the algorithm.
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4.3.3 Execution time

One of the main goals of this thesis is to show that the approximation method
performs faster then the the standard method. For each data set, the algo-
rithms were ran several times, and the average execution times in milliseconds
were recorded. The number of hash tables l was set to 1. The plots in Figures
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Figure 4.3: Execution time for artificial data set with respect to the number
of data points

4.3, 4.4, and 4.5 show that as the number of points increases, the approxima-
tion algorithm performs significantly faster then the exact algorithm.
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Figure 4.4: Execution time for Spam data set with respect to the number of
data points
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Figure 4.5: Execution time for Digits data set with respect to the number of
data points
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Conclusion

The general clustering problem, as well as the agglomerative hierarchical clus-
tering algorithm, which is a determininstic algorithm that obtains a hierarchy
of clusters, were introduced. It was shown that the agglomerative hierarchi-
cal clustering algorithm suffers from high time complexity of O(n3), and is
not suitable for large data sets. The algorithm components such as distance
metrics, and the linkage criteria were presented and explained in detail. It
was also shown how it is possible to evaluate the clustring results using the
supervised metrics, and how to interpret the visualization using the dendro-
grams. Agglomerative hierarchical clustering approximation methods, that
have lower time complexity then the exact algorithm, were explained, and the
corresponding algorithms were analyzed in terms of their time complexities.

Two of the algorithms were implemented. The first implemented algo-
rithm is the exact hierarchical clustering algorithm for the single linkage called
MST-linkage with the time complexity of O(n2). The second implemented al-
gorithm, is an approximation algorithm LSH-link, that uses the nearest neigh-
bor search method called locality sensitive hashing. It was shown that the time
complexity of LSH-link is O(nB).

The implemented algorithms were ran on both real world and artificially
generated data sets. The linkages produced by the two algorithms were com-
pared using the supervised metrics. In terms of running time, it was shown
that the LSH-link algorithm performed significantly faster then the MST-
linkage algorithm, which supports the statement that it has lower time com-
plexity.
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Appendix A
Acronyms

LSH Locality-sensitive hashing

MST Minimum spanning tree

AHC Agglomerative hierarchical clustering

HHC Hybrid hierarchical clustering
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Appendix B
Contents of enclosed USB flash

drive

readme.txt............the file with USB flash drive contents description
src.......................................the directory of source codes

implementation ............................ implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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