
doc. Ing. Hana Kubátová, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 23, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Security analysis of USB drive

 Student: Bc. David Jagoš

 Supervisor: Ing. Jiří Buček, Ph.D.

 Study Programme: Informatics

 Study Branch: Design and Programming of Embedded Systems

 Department: Department of Digital Design

 Validity: Until the end of winter semester 2019/20

Instructions

Research existing vulnerabilities of encrypted USB drives. Perform a security analysis of Kingston
DataTraveler Vault Privacy encrypted flash drive. Try to find its vulnerabilities in order to extract stored
data without knowledge of the password.
- Analyze the internal structure of the flash drive.
- Analyze the client software supplied with the flash drive.
- Analyze and document undocumented APIs.
- Perform experiments in order to analyze the dependency of the encryption key on the password.
Evaluate the results and discuss potential impact of your findings.

References

Will be provided by the supervisor.

Master’s thesis

Security analysis of USB drive

Bc. David Jagoš

Department of Digital Design
Supervisor: Ing. Jǐŕı Buček

January 10, 2019

Acknowledgements

I’d like to thank my supervisor, Ing. Jǐŕı Buček, for his counsel and immense
patience.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on January 10, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 David Jagoš. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Jagoš, David. Security analysis of USB drive. Master’s thesis. Czech Techni-
cal University in Prague, Faculty of Information Technology, 2019.

Abstrakt

Tato práce shrnuje bezpečnost flash disk̊u s hardwarovou podporou šifrováńı
a poskytuje bezpečnostńı analýzu disku Kingston DataTraveler Vault Privacy.

Kĺıčová slova šifrováńı flash disk̊u, Kingston, DataTraveler Vault Privacy,
DTVP, Phison, PS2251-63, PS2263

Abstract

This thesis provides an overview of the security of flash drives with hardware
encryption support and a security analysis of Kingston DataTraveler Vault
Privacy.

Keywords flash drive encryption, Kingston, DataTraveler Vault Privacy,
DTVP, Phison, PS2251-63, PS2263

vii

Contents

Introduction 1

1 Flash drives with hardware encryption support 3
1.1 Where is the encryption performed 3
1.2 User input methods . 5
1.3 Typical hardware configuration 6

2 Past attacks 9
2.1 The SySS hack . 9
2.2 The Google hacks . 10
2.3 Unverified claims . 13

3 Kingston DataTraveler Vault Privacy 15
3.1 Specifications . 15
3.2 Hardware . 16
3.3 Software . 17

4 Phison flash drive controllers 21
4.1 General characteristics . 21
4.2 Firmware . 22
4.3 Features . 23

5 Control software analysis 25
5.1 Challenges . 25
5.2 Choosing a target . 26
5.3 Analysis setup . 26
5.4 Static analysis . 26
5.5 Dynamic analysis . 28
5.6 Summary . 32

ix

6 Relation between the password and the encryption key 35
6.1 The NAND flash interface . 35
6.2 Logic analyzer . 35
6.3 Black-box testing . 37
6.4 Summary . 39

7 Attempting to bypass the password try limit with a hard-
ware modification 41
7.1 Plan . 41
7.2 Execution . 43
7.3 Result . 44

Conclusion 47

Bibliography 49

A Acronyms 53

B Contents of enclosed CD 55

x

List of Figures

1.1 Kingston DataTraveler 2000 16 GB 5
1.2 Hama “ProtectionKey” FlashPen 6
1.3 Typical hardware configuration of a flash drive with hardware en-

cryption support . 7

2.1 Generic flash drive with a fingerprint scanner 11
2.2 Structure of a flash drive with a fingerprint scanner 11
2.3 Digittrade RS64 . 12
2.4 DM PD061 . 12

3.1 Kingston DataTraveler Vault Privacy 8GB 15
3.2 Enclosure taken apart . 16
3.3 Front and back views of the PCB 17
3.4 Kingston DataTraveler Vault Privacy 8GB hardware diagram . . . 17
3.5 Windows unlock dialog . 18
3.6 Windows settings dialog . 18
3.7 Windows device information dialog 19

4.1 PS2251-31 block diagram . 22
4.2 Phison firmware configuration tool 23

6.1 Free space decrypted with the current key 38

7.1 Write protect signal trace on the PCB 42
7.2 Safely tying the write protect pin to ground 43
7.3 Safely tying the write protect pin to ground using a switch 43
7.4 Kingston DTVP with the write protect override switch installed . 44

xi

List of Tables

6.1 Pinout of MT29F64G08CFACA . 36

xiii

Introduction

We live in a world of information and protecting that information is becoming
more important with each passing year. The never-ending barrage of infor-
mation leaks forces us to realize just how much damage can be done when
sensitive information falls into the wrong hands.

Private citizens risk their personal information being leaked and misused
for identity theft or blackmail and corporations could lose their intellectual
property or leak business strategies. These scenarios may not seem too fright-
ening, but there are others, much more serious ones as well. Governments have
sensitive information about all of us, not to mention lists of undercover police
and intelligence operatives, locations of military bases, personnel rosters and
details of national defense systems just to name a few. And let us not forget
dissidents who could end up being persecuted by oppressive regimes if their
data fell into the wrong hands. In these scenarios, security of information is
literally a matter of life and death, whichever side you are on.

One of the most prominent ways we store and transport data are USB
flash drives. Their small size and portability make them very practical, but
also very easy to lose. In a survey conducted by the Ponemon Institute at
Kingston’s behest [1] 70 percent of respondents reported the organization they
were working for suffered a loss of sensitive or confidential data as a result
of losing a flash drive. That is a staggering statistic. If those flash drives
were recovered by a third party and the data on them were unprotected, this
could result in huge loses as well as prosecution by authorities for mishandling
personal information.

It is clear that if we are to store sensitive data on flash drives, we need
to protect it. But how? There are of course traditional software based en-
cryption tools such as archive managers with encryption support (e.g. 7-zip)
and tools for creating encrypted virtual volumes as well as encrypting physical
drives (e.g. BitLocker, TrueCrypt and its successor VeraCrypt), but they all
share one common weakness—there is no limit to how many passphrases the
attacker may try, as well as no rate limiting other than the inherent computa-

1

Introduction

tional complexity of the cryptographic algorithms used. If you rely purely on
software solutions to secure your data and lose your flash drive, an attacker
will be able to try passphrase after passphrase, potentially at the speed of
millions per second, for as long as he or she needs to. Are you really confident
your passphrase will be able to withstand such a barrage? And what if you
accessed your encrypted data on a different computer—the purpose of a flash
drive is to be portable after all—which was running a keylogger?

Flash drives with hardware encryption support offer solutions to many
of these issues, but do they really work, or are they just empty promises?
The relatively long history of failed products in this category doesn’t seem
very encouraging, but perhaps manufacturers have learned their lesson from
past failures. Furthermore, there are no standards or certifications designed
specifically for flash drives with hardware encryption support. There are some
more general standards for cryptographic modules (like the FIPS-140) which
are often applied to these flash drives, but they are hardly comprehensive for
this use case.

With identity theft on the rise and the General Data Protection Regula-
tion looming over companies’ heads, there has arguably never been a greater
demand for secure flash drives.

Privacy is a right and security of information is increasingly often a legal
necessity, but do we have the technical means to ensure them?

This thesis attempts to answer those question.
In chapter 1 I explain what are flash drives with hardware encryption

support and summarize their defining characteristics. In chapter 2 I go over
past attacks against flash drives with hardware encryption support. In chapter
3 I introduce the Kingston DataTraveler Vault Privacy and explain why it was
chosen as the subject of this thesis. In chapter 4 I divine the properties of
PS2251-63—the controller used in Kingston DataTraveler Vault Privacy. In
chapter 5 I analyze the control software supplied with Kingston DataTraveler
Vault Privacy and explore its undocumented APIs. In chapter 6 I determine
the relation between the user’s password and the key used to encrypt the data.
Finally, in chapter 7 I attempt to bypass the password try limit by physically
modifying the flash drive.

2

Chapter 1
Flash drives with hardware

encryption support

First, I would like to define what I mean when I talk about flash drives with
hardware encryption support. This chapter lays out the key characteristics of
the encrypted flash drives I encountered in the course of my research and how
they differ from their normal counterparts.

1.1 Where is the encryption performed

The main difference between flash drives with hardware encryption support
and ordinary flash drives is where the potential encryption is performed. This
is their defining characteristic.

1.1.1 Ordinary flash drives

If encryption is used at all with an ordinary flash drive, it is performed by the
host computer. This can be problematic, because the cryptographic secrets
are—at least for the duration of encryption or decryption—present on the
host computer. If the computer is compromised at that time, the secrets can
be retrieved by an attacker.

1.1.1.1 Encrypted archives

Among the most commonly used tools for protecting data (not only) on a flash
drive are archive managers. Archive managers weren’t designed with data
encryption in mind. That functionality was only added as an afterthought.
For example WinZip introduced encryption support in version 6.2 and only
added support for AES in version 9 [2]. Similarly, 7-zip introduced encryption
support in version 2.30 [3]. This results in them being quite cumbersome to use
for this purpose as well as lacking in security because—since most programs

3

1. Flash drives with hardware encryption support

do not have the ability to access files within archives—for a file to be viewed
or edited, it generally needs to be extracted first, meaning it will exist in its
unencrypted form somewhere on the computer (probably in some temporary
location). Despite this issue (and perhaps because of lack of public awareness),
their ubiquity still makes them the first choice of many. In fact, WinZip even
explicitly advertises this use case [4].

1.1.1.2 Encrypted virtual disks

Another option is using a product such as VeraCrypt which utilizes encrypted
container files whose contents are exposed to the host system as a virtual disk.
This greatly improves usability as well as security. As far as the host operating
system is concerned, any file being viewed or modified is already present in
the clear, so there is no need to copy the file onto an unencrypted disk for
viewing or editing; the file’s unencrypted version will only exist in RAM [5].

The encryption software can be stored on a flash drive alongside the en-
crypted container, making this solution portable [6].

1.1.1.3 Full disk encryption

The last commonly used method for protecting data on ordinary flash drives
to be discussed in this chapter is full disk encryption. In this scenario the
entire content of the drive (including partition headers) is encrypted. The
only advantage of full disk encryption over an encrypted virtual disk of which
I am aware is plausible deniability (i.e. the owner could claim that his or her
flash drive is filled start to finish with random data and it would technically
be impossible to prove that it actually contains an encrypted volume [7]). A
major disadvantage in usability compared to encrypted virtual disks is that
the decryption software can not be stored alongside the data (since the entire
drive is encrypted and therefore inaccessible without use of the decryption
software), requiring the user to load it onto the target computer separately.

Notable products in this category are VeraCrypt and BitLocker.

1.1.2 Flash drives with hardware encryption support

In flash drives with hardware encryption support, the encryption is performed
by the controller of the flash drive. Once the drive is unlocked, the encryp-
tion/decryption process is completely transparent to the host computer—as
far as it is concerned a completely ordinary flash drive is connected [8][9].

If this scheme is implemented properly, no cryptographic secrets ever leave
the flash drive, so even if the host computer is compromised, an attacker should
only be able to steal data currently saved on the drive, but should not be able
to unlock it him or herself later.

4

1.2. User input methods

1.2 User input methods

Flash drives with hardware encryption support can be split into categories
based on how users authenticate themselves.

1.2.1 Software

Some flash drives authenticate the user via software running on the host com-
puter. These drives usually present themselves to the system as a CD-ROM
drive containing the software necessary for unlocking the encrypted partition.
After the user is authenticated, a USB mass storage device is presented to the
host computer [10].

This approach allows users to comfortably input even very long passphra-
ses, but it suffers from the same weakness as all software-based encryption:
the user’s passphrase is, even if only for a short time, present in the memory
of the host computer.

1.2.2 Hardware

Hardware-based approaches to authenticating users make it possible to keep
all cryptographic secrets only on the device itself, but they are often less
practical or less secure [10].

1.2.2.1 Keypads

Some drives opt for a physical keypad on the drive itself where a user can
enter his or her password. The physical dimensions of a flash drive severely
limit the number of distinct characters available (usually decimal digits) and
the bad ergonomics limit the practical length of a password. As a result,
passwords input via a physical keypad on a flash drive tend to have relatively
low entropy. An example of a flash drive with a hardware keypad can be seen
in figure 1.1.

Figure 1.1: Kingston DataTraveler 2000 16 GB [11]

5

1. Flash drives with hardware encryption support

1.2.2.2 Fingerprint scanners

Fingerprint scanners offer much better ergonomics as well as much higher en-
tropy, making them, in theory, almost a perfect solution. In practice, however,
many finger print scanners have a relatively high rate of false positives and are
easily fooled (sometimes even with just a printout of the user’s fingerprint)
[12]. An example can be seen in figure 1.2.

Figure 1.2: Hama “ProtectionKey” FlashPen [13]

1.2.2.3 RFID readers

This approach is mostly used in portable hard drives with hardware encryption
support. The drive is unlocked with an RFID tag. The obvious flaw of this
scheme is that for practical use, the RFID tag needs to be transported with
the hard drive and if an attacker can get one, there is no reason to think he
or she will not be able to obtain the other.

1.3 Typical hardware configuration

By combining information from previous research [14] with my own findings
I have compiled what I believe to be the typical hardware configuration of
a flash drive with hardware encryption support (figure 1.3). The host sys-

6

1.3. Typical hardware configuration

Flash drive

Host computer ControllerUSB

Peripherals

Memory

Figure 1.3: Typical hardware configuration of a flash drive with hardware
encryption support

tem communicates with the flash drive over USB. The encryption process is
completely transparent, so once the drive is unlocked, the communication is
exactly the same as with an ordinary USB mass storage device. The con-
troller performs the encryption and decryption, as well as all the standard
housekeeping tasks associated with using flash memory. Some controller man-
ufacturers provide the controller and flash memory in a single package for
increased security (eavesdropping or MitM would require decapping the chip)
as well as simpler PCB layout. Finally the controller may also communicate
with peripherals such as keypads or fingerprint readers.

7

Chapter 2
Past attacks

In this chapter I will go over some past attacks on encrypted flash drives.

2.1 The SySS hack

In late December 2009 SanDisk issued a security bulletin [15] announcing sev-
eral drives from their Cruzer Enterprise lineup had “a potential vulnerability
in the access control mechanism” and that they released a software update
addressing the issue. Kingston [16] and Verbatim [17] soon followed suit.
Kingston even issued a recall, offering to replace affected drives with newer
models.[18]

The vulnerability was discovered by SySS GmbH, a German pen-testing
company.[19] While reverse engineering the control application for one of the
affected drives, SySS researchers noticed that the application always sent the
same binary string to the flash drive to unlock it, irrespective of the password
used. They then tried simply replaying this sequence and the drive unlocked.
Every one of the affected drives across different manufacturers could be un-
locked by simply sending it this magic sequence.

This tells us something very important: Flash drive manufacturers are
not the ones implementing the cryptography, that is done by a third party,
presumably the controller manufacturer.

This vulnerability affected the following drives:

• SanDisk Cruzer Enterprise USB flash drive, CZ22—1 GB, 2 GB, 4 GB,
8 GB

• SanDisk Cruzer Enterprise FIPS Edition USB flash drive, CZ32—1 GB,
2 GB, 4 GB, 8 GB

• SanDisk Cruzer Enterprise with McAfee USB flash drive, CZ38—1 GB,
2 GB, 4 GB, 8 GB

9

2. Past attacks

• SanDisk Cruzer Enterprise FIPS Edition with McAfee USB flash drive,
CZ46—1 GB, 2 GB, 4 GB, 8 GB

• Kingston DataTraveler BlackBox (DTBB)

• Kingston DataTraveler Secure—Privacy Edition (DTSP)

• Kingston DataTraveler Elite—Privacy Edition (DTEP)

• Verbatim Corporate Secure USB Flash Drive—1 GB, 2 GB, 4 GB, 8 GB

• Verbatim Corporate Secure FIPS Edition USB Flash Drives—1 GB, 2
GB, 4 GB, 8 GB

Please note that these drives were FIPS 140-2 Level 2 certified by the US
National Institute of Standards and Technology.

2.2 The Google hacks

In July 2017 three Google engineers gave a talk at BlackHat USA titled “At-
tacking Encrypted USB Keys the Hard(ware) Way.” Sadly, they did not pub-
lish a paper, so all we have is a recording of the talk[10] and a PDF with the
slides[14]. They also chose not to directly identify any of the products they
had cracked. I did manage to identify most of them, but even in cases where
I failed to identify the product, we can still gleam the kinds of mistakes the
manufacturers made while designing the drives.

2.2.1 Generic flash drive with a fingerprint scanner

This flash drive is being sold under many obscure brand names as well as
without any branding whatsoever (see figure 2.1). As such, the expectations
of quality are not too high.

The flash drive has a separate fingerprint manager chip and flash controller
and the two communicate over UART (see figure 2.2). The message sent from
the fingerprint manager to the flash controller is not some form of a fingerprint
digest as one might expect, it is a simple number—an ID of the recorded
fingerprint that matched the scanned finger. Furthermore the IDs aren’t even
randomized, they’re assigned sequentially, starting from a known value.

All an attacker needs to do to break into this flash drive is to tap into
the UART lines and send the ID of the first recorded fingerprint to the flash
controller. This is very similar to the SySS hack. The attack is harder to
carry out as the device needs to be physically opened and two wires need be
connected (not too much harder though—the UART pins are nicely laid out
and labeled on the PCB), but it is worse in that it can not be fixed with a
software patch.

10

2.2. The Google hacks

Figure 2.1: Generic flash drive with a fingerprint scanner[14]

Flash drive

Host computer ControllerUSB

Memory

Fingerprint managerUART

Fingerprint scanner

Figure 2.2: Structure of a flash drive with a fingerprint scanner

2.2.2 Digittrade RS64 RFID portable hard drive

While not a flash drive, the weakness demonstrated here could very well apply
to one.

The drive is unlocked with a simple RFID tag which can be surreptitiously
cloned using equipment anyone can easily and cheaply obtain. If a drive like
this is left unattended under the presumption that the data on it can only
be accessed by authorized personnel, a malicious actor could quickly read the
RFID tag belonging to one of the authorized operators and later create a copy
of this tag and use it to access the data.

Another critical flaw in this product is that while it does limit the num-
ber of login attempts, the value of this counter seems to be stored in volatile
memory and is reset to 0 when the device is power cycled. The process of
trying several IDs and power cycling the device could be easily and cheaply
automated for a brute-force attack. The feasibility of this attack would de-

11

2. Past attacks

Figure 2.3: Digittrade RS64[14]

pended on the length of the ID of the used RFID tag as well as on whether
the IDs are assigned randomly or sequentially. This information was sadly not
revealed during the presentation.

2.2.3 DM PD061 flash drive with a fingerprint reader

This flash drive uses a fingerprint scanner to authenticate users and a software
tool to manage them. Multiple users can be registered simultaneously and to
manage users an administrator password is used. It also has an extremely silly
undocumented feature: you can request the administrator password and the
flash drive will give it to you. In cleartext. With no authentication required.

Figure 2.4: DM PD061[14]

12

2.3. Unverified claims

With this password an attacker can then log into the user management
program, register him or herself as a new user and unlock the drive using his
or her own fingerprint.

2.3 Unverified claims

While working on this thesis I came across a number of individuals claiming
they had broken the encryption of various flash drives from obscure ones to
Kingston’s IronKey D300. The individuals making these claims never pub-
lished their work, nor have they shown any proof of concept, making their
claims unverifiable. While a lot of these claims were obvious lies, some seemed
plausible and two of them were made by highly respected gurus on their re-
spective flash drive hacking forums. I am not going to cite any specific claims
here, but I will say I strongly believe at least some of them are true and that
there are many more compromised flash drives than the public is aware of.

13

Chapter 3
Kingston DataTraveler Vault

Privacy

Originally released in 2009, the Kingston DataTraveler Vault Privacy is quite
an old device. It was chosen for analysis despite its age because it is the
drive Kingston offered as a replacement for drives compromised in the SySS
hack,[18] so there was a reasonable expectation it should be secure and I
wanted to ascertain how well that expectation was met.

Figure 3.1: Kingston DataTraveler Vault Privacy 8GB

In this chapter I will go over the drive’s specifications, its hardware struc-
ture and the control software bundled with it.

3.1 Specifications

The Kingston DataTraveler Vault Privacy boasts the following features[20]:

• All data is encrypted with 256-bit AES in CBC mode.

• Up to 24 MB/s read speed.

• Up to 10 MB/s write speed.

• Can be mounted in a read-only mode.

15

3. Kingston DataTraveler Vault Privacy

Figure 3.2: Enclosure taken apart

• The drive destroys stored data after 10 unsuccessful login attempts.

• Windows, Linux and Mac OS X support.

• USB 2.0 compliant.

• IPX8 rating (waterproof up to 4 feet).

• Operational temperature from 0 ◦C to 60 ◦C.

• Storage temperature from −20 ◦C to 85 ◦C.

The drive comes in 4 GB, 8 GB, 16 GB, 32 GB and 64 GB variants.

3.2 Hardware

The circuit board is placed in a black plastic enclosure with an outer aluminum
shell (figure 3.2).

The drive is built around the Phison PS2251-63-6 flash controller and one
or two 48-pin TSOP NAND flash chips. My testing unit came with a single
MT29F64G08CFACA flash chip (figures 3.3 and 3.4).

With the help of the flash chip’s datasheet[21] I can decode the part num-
ber: It is a 64Gbit MLC NAND flash with an 8-bit shared address and data
bus and asynchronous I/O.

I could not find a datasheet for the PS2251-63-6; I will address this issue
in chapter 4.

16

3.3. Software

Figure 3.3: Front and back views of the PCB

Kingston DataTraveler Vault Privacy 8GB

Host computer Phison PS2251-63-6USB MT29F64G08CFACA

Async I/O with
8-bit bus

Figure 3.4: Kingston DataTraveler Vault Privacy 8GB hardware diagram

3.3 Software

When the flash drive is connected, it presents itself to the host computer as a
CD-ROM drive containing the control software and a manual.

The Windows control software is a simple GUI-based application allowing
the unlocking of the drive or resetting it (figure 3.5), changing settings such
as the password or contact Information (figure 3.6) and viewing the device
information (figure 3.7).

The Mac OS X application is visually and functionally identical to its
Windows counterpart. It is written in Objective-C.

Lastly the Linux control software consists of 5 command line tools:

• dtvp about

• dtvp forgotpassword

• dtvp initialize

• dtvp login

• dtvp logout

17

3. Kingston DataTraveler Vault Privacy

Figure 3.5: Windows unlock dialog

Figure 3.6: Windows settings dialog

18

3.3. Software

Figure 3.7: Windows device information dialog

The password is limited to a length between 6 and 16 characters and
must contain characters from at least three of the following groups: uppercase
letters, lowercase letters, digits and special characters (all printable ASCII
characters not belonging to the previous three categories).

19

Chapter 4
Phison flash drive controllers

Since I could not find a datasheet for the PS2251-63-3, alternatively called
PS2263 (datasheets are not public, presumably they are only officially avail-
able to Phison’s customers under an NDA and are therefore often found in very
dubious places), I decided to compile information from datasheets of a couple
other models of Phison flash controllers (specifically PS2251-31/PS2231 [22]
and PS2251-33/PS2233 [23]) as well as bits of information shared on various
flash drive repair and hacking forums to get an idea of the general structure
and feature set of these controllers.

I focused on USB 2.0 NAND flash controllers.

4.1 General characteristics

They are an all-in-one solution specifically designed for USB flash drives. The
following characteristics seem to be common to all models:

• USB 2.0 support

• four endpoints

– Endpoint 0: 64 Bytes CONTROL transfer
– Endpoint 1: 512 Bytes BULK transfer for IN transaction
– Endpoint 2: 512 Bytes BULK transfer for OUT transaction
– Endpoint 3: 64 Bytes INTERRUPT transfer for IN transaction

• supports SLC and MLC NAND with 2 kiB and 4 kiB pages

• 3.3V and 1.8V NAND

• in-system programming via USB

• 8051 compatible processor core

21

4. Phison flash drive controllers

Following are characteristics supported only by some models which I believe
to be relevant to the PS2251-63-6:

• MLC NAND with 8 kiB pages

• Secure Hidden Area

• 256-bit AES hardware module

• hardware RNG

It seems reasonable to assume that the encryption key or a part of it could be
stored in the Secure Hidden Area.

4.2 Firmware

As expected, I could not find a PS2251-63 firmware image. I did manage to
find leaked firmware images for 6 different Phison flash controllers, but none
of them were for controllers with hardware AES support (or Secure Hidden
Area support), so there would be little to gain from analyzing them.

Micro

Processor

USB

USB

CONTROLLER

Flash

Data

Control

Module

SRAM_EB SRAM_BUF
Ring

Oscillator

Mask

ROM

USB

PHY

EXT IO Port

PC

USB

Cable

NAND Flash

External

ROM Code

RAM

256-bit AES

H/W Module

1024-bit RSA

H/W Module

64-byte Random

Number H/W Module

Figure 4.1: PS2251-31 block diagram [22]

According to a block diagram from the PS2251-33 datasheet (figure 4.1),
the controller stores one part of the firmware in mask ROM (programmed

22

4.3. Features

during chip fabrication, unchangeable; probably a bootloader of sorts) and
the other (presumably main) part is stored off-chip. Since there are no chips
on the board other than the controller and the NAND flash, the firmware
must be stored in the NAND flash memory.

There is a leaked toolset called MPALL for flashing firmware on flash drives
based on Phison controllers via USB. According to USBDEV.ru, there also is
a tool for dumping the firmware via USB, both however require a so-called
“burner file” which is unique for each controller and is usually leaked alongside
the firmware image. Unfortunately the burner file for PS2251-63 seems to not
have been leaked, so if the firmware were to be obtained, it would need to be
retrieved from the NAND flash directly.

4.3 Features

While the firmware for PS2251-63 hasn’t been leaked, the firmware configu-
ration tool bundled with MPALL does support it, so, combined with a leaked
manual for an older Phison firmware configuration tool, we can gleam what
features this controller has to offer.

Figure 4.2: Phison firmware configuration tool

The most interesting part of the configuration tool is partition settings tab
seen in figure 4.2 (the rest is about flash NAND used, device name and IDs and
how the LED should behave). Here we can see that the controller supports up
to 3 partitions which can be presented to the system as a removable drive, a

23

4. Phison flash drive controllers

CD-ROM or a hard drive (the grayed-out options are disabled because of the
selected mode, not because the controller does not support them). The first
partition can be encrypted with AES. We can also choose data to be preloaded
onto the partitions. Finally, we can configure the Normal Hidden Area and
the Protected Hidden Area which seems to be protected with a password.

According to a patent awarded to Phison[24], the Hidden Area is a part
of the flash the host computer will not be allowed to access by the controller.
Combined with the fact that the controller seems to have no writable non-
volatile on-board memory, the Hidden Area (and the Secure Hidden Area
especially) seems like a good place for cryptographic secrets to live.

24

Chapter 5
Control software analysis

In this chapter I will analyze the control software supplied with Kingston
DataTraveler Vault Privacy. The goal of this analysis is to identify ways to
(in order of desirability):

• retrieve the password or encryption key

• dump the contents of the NAND flash for purposes of offline cracking
and obtaining the firmware

• reset or bypass the wrong password counter

5.1 Challenges

A huge setback to all my efforts was the fact that we were only able to source
one testing unit. Being released in 2009, the drive had not been for sale in
shops for some years. I searched high and low, combing through Amazon,
eBay and even Craigslist. There were some offers, but the new drives were
prohibitively expensive (by then more or less only the 64 GB and 32 GB models
were left for sale new and those always were hideously expensive). Even though
not ideal for research as they theoretically could have been tampered with, I
would have settled for second-hand drives, but none of the sellers were willing
to ship internationally. I even tried asking on reddit, offering to pay cash or
exchange the drive for the updated USB 3.0 model. I did have a couple takers
initially, but when it came down to business, they backed out citing privacy
concerns.

This meant that I had to very carefully consider the risks involved with
performing all actions and avoid ones deemed too dangerous as damaging the
drive would prevent further testing.

25

5. Control software analysis

5.2 Choosing a target

As stated earlier, the flash drive comes with three control applications—one
for Windows, one for Mac OS X and one for Linux.

The Windows application is a single 1 MiB GUI executable built on top of
the Microsoft Foundation Class Library (MFC). No form of obfuscation seems
to be used. There are over 3000 functions, but most of them are MFC library
code. Analysis of this application would be possible, only made a bit tedious
by the presence of the extraneous GUI handling code.

The Max OS X application is a fat binary containing Mach-O executables
compiled for the x86 and PowerPC architectures. The application is written
in Objective-C. Class and method names are present, which makes it an in-
teresting target, however the fact that I do not own a Mac OS X computer
means I would be limited to static analysis of the code. That combined with
my limited experience reverse engineering Mac applications led to me ruling
out the Mac application as a candidate for analysis.

Finally there is the Linux application. Or rather applications—there are
five separate command line utilities for performing different tasks. When I
loaded one of the binaries into IDA, I got a very nice surprise—Kingston did
not strip the binaries. That means I have the name and prototype of every
function in these binaries. On top of that, Linux distributions are free and
readily available, making dynamic analysis possible. This, combined with the
fact that there is virtually no superfluous code for handling the user interface,
makes the Linux utilities the perfect target for analysis. They were written
in C++ and compiled for the x86 and x86-64 architectures. In my analysis I
am going to use the 32 bit x86 variants.

5.3 Analysis setup

To analyze the binaries I decided to use IDA Pro 7 with the Hex-Rays Decom-
piler plugin. However I only have access to a license for the Windows version,
so to facilitate dynamic analysis of the Linux utilities I set up a virtual ma-
chine running Ubuntu 16.04 and used IDA’s remote debugging feature. To
allow the utilities to interact with the flash drive, I redirected one of the USB
ports on my PC to the virtual machine.

5.4 Static analysis

There are five command line utilities in total:

• dtvp about

• dtvp forgotpassword

26

5.4. Static analysis

• dtvp initialize

• dtvp login

• dtvp logout

Looking at symbols present in the binaries with objdump suggests they all
share the exact same codebase. The file and function names are identical
across all five binaries, suggesting only the main function was ever changed.
Comparing the binaries with zynamics’ BinDiff reveals all the functions with
the exception of main are indeed identical, confirming this hypothesis. It
would seem Kingston did not even bother changing the main source file name—
it is “DTVP Login.cpp” in all five tools. Following is a list of all source file
names:

• crtstuff.c

• DTVP Login.cpp

• KT SDK.cpp

• Rijndael.cpp

• FunctionalityLayer.cpp

• HashSDK PWS.cpp

• integer.cpp

• nbtheory.cpp

• RSA.cpp

• SCipher.cpp

• sha2.cpp

• rand.cpp

• CommandLayer.cpp

• hashFFour SDK PWS.cpp

• hashFOne SDK PWS.cpp

• hashFThree SDK PWS.cpp

• hashFTwo SDK PWS.cpp

• TransportLayer.cpp

Many of the files seem to be dealing with standard cryptographic functions
and can be safely ignored. DTVP Login.cpp seems to only contain the main
function.

27

5. Control software analysis

5.5 Dynamic analysis

While a big portion of the analysis could be performed statically, I prefer dy-
namic analysis, so I performed the majority of the analysis with the help of a
debugger. In this section I am going to go over tracing through the normal exe-
cution flow of select binaries (specifically dtvp login and dtvp forgotpassword),
trying to call some functions with my own arguments and finally examining
some functions not used by any of the five binaries and calling some of them.

5.5.1 Tracing dtvp login

First I wanted to know how the user’s password was used for authentication—
whether it was verified by the application itself (least secure), whether an
encryption key was derived from it by the application and sent to the flash
drive, or whether the password itself was sent over (most secure)—so I began
my analysis with dtvp login.

The program is rather straight-forward: It starts by calling the KTInitAPI
function, collects the password from the user and calls the KTLogin function,
checking for and reporting errors along the way.

KTInitAPI looks for the flash drive by iterating over all the /dev/sg*
devices (backed by the Linux SCSI General driver), sending SCSI inquiry
command to each using the ioctl function (in fact, that is how all the SCSI
communication is handled). If the returned device type is 5 and the area
designated for vendor specific data (offset 0x24) contains either the string
“PMAP1234” or “FFAP1234” the device is selected. Then the serial number
and version are retrieved and finally the ReadInfo command (a vendor specific
SCSI command 0xc6) is issued to determine whether the device is locked or
unlocked.

KTLogin begins by setting up a Secure Session. The device and control
application first authenticate each other by exchanging public RSA-512 keys
and issuing a challenge to each other. Curiously, the application does not
compare the public key provided by the device to a known value (or verify
it in any other way) which lead me to wonder whether the device checks
the application’s public key. To test this, I patched the program with my
own RSA-512 key and ran it again. This time the Secure Session failed to
initialize with the device returning error code 0x53, indicating it does verify
the application’s RSA key. All communication within the Secure Session is
encrypted with AES-128 (which explains the difficulties I experienced during
my initial attempts to monitor the communication with Wireshark). Finally
the password is sent unaltered (only encrypted by the Secure Session) to the
device and the Secure Session is terminated.

The program ends by displaying a status message indicating the result
of KTLogin—success (0), wrong password (0x38), wrong password and retry
limit reached (0x39) or other.

28

5.5. Dynamic analysis

5.5.2 Tracing dtvp forgotpassword

Next I wanted to know how a password is set and whether it would be pos-
sible to change it without losing the data stored on the drive. To that end
I needed to analyze a utility used to set the password, that means either
dtvp initialize or dtvp forgotpassword. I had previously initialized my drive
and since dtvp initialize does not allow users to re-initialize an already ini-
tialized drive, the choice was rather simple. Also, since—as an attacker—I
would not know the password, dtvp forgotpassword seemed like the more fit-
ting choice anyway.

Once again, the program is fairly straight-forward: It starts by calling the
KTInitAPI function, warns the user that proceeding will result in loss of all
data on the drive, collects the new password and calls KTSetCredentials.

KTSetCredentials starts off by calling CS03::PRA Configure Private Area
which creates a Secure Session and sends the new password to the drive. At
this point the drive is unlocked. Next a FAT32 partition is created (there is
also support for FAT16 partitions for drives up to 2 GiB in size, however the
smallest Kingston DTVP sold has capacity of 4 GB, so this function is never
used). Finally KTLogout and KTLogin are called, presumably to force the
OS to mount the newly created partition.

It is possible to skip the new partition creation process using a debugger,
however that only results in garbled data where the partition header should
be, presumably because the encryption key has changed.

I should note that there is a bug in this utility which results in the new
partition header being invalid, however the rest of it works as intended.

5.5.3 Dtvp about, dtvp initialize and dtvp logout

The remaining three utilities—dtvp about, dtvp initialize and dtvp logout—
turned out to be not very interesting.

Dtvp about simply calls KTInitiAPI, followed by KTGetDeviceInfo (some-
thing all five utilities do) and displays the returned information (serial number
of the drive and firmware version). The only information unique to this utility
is the version number of the Linux utilities—2.0.0.2.

Dtvp initialize is almost identical to dtvp forgotpassword in terms of func-
tionality. The only functional difference is that dtvp initialize only works on
uninitialized drives, whereas dtvp forgotpassword only works on initialized
drives.

Dtvp logout calls KTInitAPI and then KTLogout. The only thing notable
about this utility is how badly it is written. KTLogout still takes a credentials
structure as an argument, although the password is completely unused. Not
only does main explicitly check for error codes that should not be possible
(e.g. 0x38—wrong password), but the password is copied into the credentials
structure from an uninitialized buffer.

29

5. Control software analysis

5.5.4 Dumping the Protected Hidden Area

As mentioned in chapter 4, the drive should contain a 128 kiB Protected
Hidden Area. All the utilities (with the exception of dtvp about) read from
the Protected Hidden Area, but they only ever access three pages: 9, 0xa and
0xc. Page 9 contains device configuration, page 0xa contains copyright notice
(“Copyright (c) 2013 Kingston Technology Company, Inc.”) and a support
page address (“http://www.kingston.com/support/”) and page 0xc contains
the password hint put in by the user. Naturally, I was wondering what is
stored in all the other pages.

The Protected Hidden Area is split into 512 byte pages. Individual pages
are read by the KTReadHiddenPage function. KTReadHiddenPage first reads
the page and then decrypts it with AES, using the following key:

50 44 4D 47 FE 87 31 30 B9 61 88 45 02 C6 78 20

This key seems to be quite ubiquitous in Kingston products. For example it
was also used to decrypt an ISO image in an updater utility for a different
encrypted flash drive from Kingston.

The prototype of KTReadHiddenPage is as follows (return type and pa-
rameter names filled in by me):

int KTReadHiddenPage(char device, ushort page_number,
uchar *buffer, ulong buffer_len)

I used IDA’s Appcall functionality to call KTReadHiddenPage with my
own parameters. I wrote a simple debugger script which read all 256 pages (128
kiB) of the Protected Hidden Area and stored their contents into individual
files. Sadly, after examining the resultant files it became apparent that only
pages 9, 0xa and 0xc contain any data. All the other files only contained a
repeating sequence of 16 bytes:

57 E7 A8 A1 5B 1F DF 91 35 04 2A 16 19 29 4F 62

It turns out that these bytes are the result of decrypting zeros with the afore-
mentioned key.

I also tried fuzzing the parameters to see if the function could be used for
reading arbitrary data from the flash. Page numbers higher than 255 (beyond
the 128 kiB of the Protected Hidden Area) resulted in an error and providing
a larger buffer resulted in the same data being returned, only padded with
zeros. I traced execution flow all the way to the SCSI command being sent
and it seems the bounds check is being performed by the drive itself.

5.5.5 Unused functions

There are quite a few functions in the Linux binaries which are not used by
any of the tools. I picked out a few that I felt were worth looking into:

30

5.5. Dynamic analysis

• CS03::HA Get Current Number of Attempts

• CS03::HA Read Page

• CS03::HA Write Page

• CS03::HA Read Secure Page

• CS03::HA Write Secure Page

• CSCSICommand::ClearPassword

• CSCSICommand::LoginPassword

• CSCSICommand::SetPassword

• CSCSICommand::ReadKeyFromFlash

• CSCSICommand::WriteKeyToFlash

• CSCSICommand::ReadKeyFromSRAM

• CSCSICommand::WriteKeyToSRAM

• KTChangeCredentials

• KTUnblockCredentials

• KTReadBlockRaw

• KTWriteBlockRaw

CS03::HA Get Current Number of Attempts seemed interesting to me be-
cause its analysis could reveal the location of the password try counter and
perhaps even a way of overwriting it. Unfortunately, to get this information
it uses a vendor specific SCSI command, which does not reveal the counter’s
location. An undocumented write variant of the command could potentially
exist, but if it does, its structure is not obvious.

CS03::HA Read Page and CS03::HA Write Page seemed interesting be-
cause they share the same prefix (“HA ”, which I am guessing could stand for
Hidden Area) with the attempt count retrieval function and could therefore
potentially provide a different way of reaching the counter. CS03::HA Write -
Page is completely unused while CS03::HA Read Page is only used by KT-
GetHiddenSN which itself is unused and doesn’t provide much insight into
how the function is supposed to be used (most of the parameters—including
the ones I presumed to be buffer size and page number—are zero). I tried
calling the function and fuzzing the parameters, but to no avail.

CS03::HA Read Secure Page and CS03::HA Write Secure Page piqued
my interested because some sort of a secure area sounds like a nice place

31

5. Control software analysis

to store passwords and keys. Once again, these functions are not used at all
in the five utilities. Despite my best efforts I could not get this function to
work. No matter what I tried it always returned an error. Perhaps I didn’t
identify the parameters correctly or maybe it requires some form of authenti-
cation (the Phison flash controller datasheets do mention a host with “Trusted
host ID” being able to access the secure area).

CSCSICommand::ReadKeyFromFlash sounds like exactly the API I am
looking for. Unfortunately, it only retrieved 5 bytes of data.

CSCSICommand::ReadKeyFromSRAM did retrieve 32 bytes of data, which
is the correct length for an AES-256 key, the data doesn’t look random at all
and doesn’t change between drive resets. For what it’s worth, here it is:

12 01 00 02 00 00 00 40 51 09 0D 16 10 01 01 02
03 01 04 03 09 04 FF FF FF FF FF FF FF FF FF FF

KTChangeCredentials takes two passwords—current and new. It seems
to require the correct current password in order for it to work, and both
passwords are directly passed to the device, so it wasn’t much use to me. I
believe this is the function used by the Windows application to change the
password without loss of data (a feature the Linux utilities lack).

I hoped KTUnblockCredentials might be used to reset the retry counter.
Frustratingly, it requires the correct password to work. Internally it calls a
function called CS03::PRA Make SecureDisk Public (not used by anything
else) which encrypts the password and passes it to the device. I got it to work
(return 0), but I have no idea what it actually does.

KTReadBlockRaw and TWriteBlockRaw start by calling CS03::GetHidden-
AreaSize. Since there is no Normal Hidden Area on this device (it is configured
to have size 0), the function immediately returns. If the device had a Nor-
mal Hidden Area, next the CS03::ReadHiddenArea or CS03::WriteHiddenArea
function would be called. I tried calling CS03::ReadHiddenArea anyway with
various parameters, but unsurprisingly it always failed.

Out of fear of bricking the drive, I did not attempt to call functions that
could write potentially invalid values to the flash, namely CSCSICommand-
::ClearPassword, CSCSICommand::LoginPassword and CSCSICommand::Set-
Password.

5.6 Summary

Despite the oversight of leaving in the debug symbols, the software is quite
secure. There seems to be no way to directly retrieve either the password or the
encryption key. All the tested APIs verify the supplied credentials correctly.
There are no APIs for dumping the NAND flash or resetting the password
try counter. I tried to get to this data by out of bounds access through other

32

5.6. Summary

APIs, but in all the tested APIs the bounds checks are performed by the flash
drive and seem to be implemented correctly.

I am a bit perplexed by the implementation of the Secure Session. The
short RSA key aside (I do not think RSA-512 was a good idea even back in
2009 and it certainly did not age well [25]), the fact that both the application’s
public and private keys are hard-coded in the binary, combined with the fact
that the application does not verify the device’s public key, makes the au-
thentication process unreliable since an attacker can easily extract the private
key needed to communicate with the flash drive from the binary. Encrypting
the communication between the host system and the drive is certainly a good
idea, but the implementation of the authentication process is inadequate.

The stark difference in code quality between the main functions and the low
level functions (cryptography, SCSI, etc.), together with many of the source
file names containing “SDK” suggests multiple developers. Presumably, a
large portion of the code comes directly from Phison and the individual flash
drive vendors for the most part only develop the user interface (this would
explain why several vendors were affected in the 2009 SySS hack).

33

Chapter 6
Relation between the password

and the encryption key

In this chapter I explore the relation between the user’s password and the
key actually used to encrypt and decrypt data stored on the drive. Primarily
I am interested in whether the key is derived from the password, randomly
generated or fixed. I attempt hardware-based approaches as well as software-
based black box testing.

6.1 The NAND flash interface

The NAND chip used in my testing unit is MT29F64G08CFACA in a TSOP-
48 package. According to its datasheet [21] it is an Open NAND Flash Inter-
face (ONFI) 2.2 compatible chip with two dies (referred to as LUNs—logical
units—by the ONFI standard) using asynchronous I/O. The ONFI is a uni-
fied interface for NAND flash chips designed by a working group composed
of dozens of companies manufacturing and using NAND flash memory for the
purposes of compatibility and ease of integration [26]. The ONFI 2.2 spec-
ification [27] is freely available from the ONFI website. The pinout of the
NAND flash is described in table 6.1.

6.2 Logic analyzer

The most reliable way to determine whether the encryption key used changes
with the user’s password would be to write and read the same data before and
after a password change or a drive reset and monitor the data actually being
written to the flash. My first naive attempt was using a logic analyzer. I used
a generic Chinese 16 channel logic analyzer. To record and analyze the data
I used the Sigrok software suite with the PulseView GUI. I could not find a
plugin for ONFI decoding, so I would have to decode the data manually using

35

6. Relation between the password and the encryption key

Table 6.1: Pinout of MT29F64G08CFACA
TSOP-48
pin number

Pin name Description

17 ALE Address Latch Enable. Loads data on the
bus into the address register.

9 CE Chip enable for the 1st die.
10 CE2 Chip enable for the 2nd die.
16 CLE Command Latch Enable. Loads data on

the bus into the command register.
29 DQ0 Data input/output bus. Bit 0.
30 DQ1 Data input/output bus. Bit 1.
31 DQ2 Data input/output bus. Bit 2.
32 DQ3 Data input/output bus. Bit 3.
41 DQ4 Data input/output bus. Bit 4.
42 DQ5 Data input/output bus. Bit 5.
43 DQ6 Data input/output bus. Bit 6.
44 DQ7 Data input/output bus. Bit 7.
8 RE Read Enable. Transfers serial data from

flash to host.
18 WE Write Enable. Transfers commands, ad-

dresses and serial data from host to flash.
7 R/B Ready/busy for the 1st die (LUN). Pulled

low when the 1st die is busy.
6 R/B2 Ready/busy for the 2nd die (LUN). Pulled

low when the 2nd die is busy.
19 WP Write Protect. Disables program and

erase operations. Active low.
12, 37 VCC Core power supply (3.3 V).
13, 36 VSS Core ground (0 V).

the ONFI 2.2 specification. I considered writing my own decoder plugin for
PulseView, but I quickly realized just how extensive the ONFI protocol is and
decided against it.

There are 18 signals in total (see table 6.1), but my logic analyzer only
had 16 channels, so I had to omit at least two signals. I decided to omit the
R/B and R/B2 signals as they only serve as an indication to the host that
the device is ready to receive new commands and therefore should not be
essential to decoding the commands and data. I discovered that the pads on
the unpopulated flash chip footprint on the other side of the board (see figure
??) were electrically connected with the pads on the front side. All the signals
were in the same positions except the two pairs of chip enable and read/busy
signals which were swapped. This allowed me to solder on wires for my logic

36

6.3. Black-box testing

analyzer with minimal risk of damaging the flash chip on the other side of the
board.

The first experiment I planned was to write 8 kiB (one page) of zeros to a
fixed 8 kiB aligned address using the dd utility, reset the drive, write zeros to
the same address again and compare the recorded data. After recording the
first trace I was overwhelmed by the sheer amount of data. I was anticipating
a simple program command, but I had neglected to consider the overhead of
the file system. I tried to get around this problem by only looking at the
program commands, but there still were many more than I had anticipated.
Even more frustrating was the fact that even without changing the password
or resetting the device I could not get two traces that would look remotely
similar. This was probably in part caused by Ubuntu’s implementation of
the FAT32 driver. I believe the data was not actually written to the drive
as a single 8 kiB block, but rather in smaller pieces. Since, according to the
Kingston DTVP datasheet ??, the flash drive is using AES in cipher block
chaining mode, a change in the middle of a page would cause all the data
following it to change as well (this would also explain why the drive’s rated
write speed is so much lower than the read speed).

Faced with these issues, I decided not to pursue this approach any further
unless no satisfactory alternative could be found.

6.3 Black-box testing

Black-box testing is a method of examining the behavior of a system without
peering into its internal structures and workings. I noticed that the password
change function only took a few seconds to complete. If the encryption key
were changed by this operation, the whole drive would have to be re-encrypted,
which would be a very lengthy process. This alone meant that the encryption
key could not be derived solely from the user’s password. Similarly, the drive
reset operation—which supposedly destroys all data on the drive—also only
took a few seconds. That meant it could not be actually overwriting the data.
Presumably, it was only changing the encryption key.

I tried opening the mounted protected partition in a hex editor and dis-
covered it was full of large blocks of a repeating 16 byte sequences (see figure
6.1). I assumed this was the default value stored in the flash decrypted with
the current key. If this assumption were correct, it would mean I have a way
to observe a key change.

To test this hypothesis and to examine the relation between the password
and the encryption key, I picked one of these blocks of repeating data and
wrote down the address. Then I performed a series of experiments on the
drive and checked the data at this address after each one.

1. I tried simply disconnecting and reconnecting the drive. After this op-
eration the data was unchanged.

37

6. Relation between the password and the encryption key

Figure 6.1: Free space decrypted with the current key

2. I reset the drive, choosing a different password. The data changed after
this operation.

3. I changed the password. After this operation the data was unchanged.

4. I reset the drive, using the current password (i.e. the password was
the same before and after the reset). After this operation the data did
change.

From the fact that the pattern remained constant across power cycles, but
did change after drive reset, I conclude this method is a valid way of detecting
an encryption key change.

From the fact that the encryption key did change after resetting the drive
with the same password, I conclude that the encryption key is not solely
dependent on the password and is at leas partially randomly generated. The
presence of a hardware random number generator (see figure 4.1) supports
this conclusion.

Finally, from the fact that the encryption key did not change after a pass-
word change (without drive reset), I conclude it is either completely indepen-
dent of the password and stored alongside the encrypted data, or only partially
dependent on the password. An example of a system where the encryption
key is dependent on the password, but allows the password to be changed
without the need to re-encrypt the data, would be one where a random value
is generated and stored alongside the data and the encryption key itself is
obtained by adding this value to the password (or a hash thereof) by some
reversible operation (e.g. XOR). To change the password in such a system,
one simply needs to add the existing password to the stored value (obtaining
the encryption key) and then subtract (in case of XOR by simply performing

38

6.4. Summary

XOR) the new password and storing the resultant value in place of the origi-
nal. When the new stored value is added to the new password, the same key
is produced. Or in a more comprehensible way:

key1 = rnd1 + pass1

rnd2 = key1 − pass2 = rnd1 + pass1 − pass2

key2 = rnd2 + pass2 = key1 − pass2 + pass2 = key1

6.4 Summary

I conclude with high confidence that the encryption key is randomly generated
and is either completely independent of the user’s password or only partially
derived from it. I believe the key or its part to be stored on the NAND flash
alongside the encrypted data, but without dumping the flash memory (and
possibly analyzing the controller firmware, if it could be obtained), I can not
make that claim for certain.

39

Chapter 7
Attempting to bypass the
password try limit with a

hardware modification

Since I found no way to bypass or reset the password try counter while ana-
lyzing the control software, I wondered if it could be done in hardware.

7.1 Plan

When I was reading through the ONFI standard, one signal caught my atten-
tion—write protect. Supposedly, when held low, this signal should prevent all
program and erase operations, but still allow read operations. Since I believe
the password try counter to be stored in the flash memory, I hoped that forcing
this signal low could prevent updating the counter after an unsuccessful login
attempt, while still allowing the password verification to take place.

To determine how the WP signal was currently driven and how it could
be safely tied to ground, I followed the trace on the PCB (see figure 7.1,
WP trace highlighted in red). Since this was my only testing unit, I had to
be absolutely certain that any hardware modification I perform would not
damage the device.

The trace goes directly from pin 38 of the controller to pin 19 of the NAND
chip as well as pin 19 of the unpopulated NAND footprint. This meant that
if I were to tie the signal to ground, I would be shorting the output of the
controller directly to ground, which would probably lead to irreparable damage
the moment the controller tries to bring the signal high. To avoid this I would
first have to break the connection between the controller and the flash chip.
This could be achieved either by desoldering and lifting the corresponding leg
on either the controller or the flash chip or by cutting the trace connecting the
two. I decided cutting the trace was the safest option as it avoided the risk of

41

7. Attempting to bypass the password try limit with a
hardware modification

Figure 7.1: Write protect signal trace on the PCB (highlighted in red)

damaging either of the chips with heat. As in the logic analyzer experiments,
I would use the unpopulated footprint on the back side of the PCB to access
the signal. The closest pad with a solid ground connection was pin 23 of the
same footprint. The proposed modification is visualized in figure 7.2.

In case I needed to be able to toggle the write protect signal at will, I
could reconnect the cut trace through a high value resistor and connect the
write protect signal to ground through a switch. The switch would function
as an override. With the switch open, the controller could drive the signal
through the resistor normally. Since logic inputs tend to have very high input
impedance, the relatively low impedance of the series resistor should have no
significant effect on the signal. With the switch closed, pulling the signal to
ground, the series resistor would limit the current drawn from the controller
(e.g. a 1 kΩ resistor would limit the current to 3.3 mA). This version of the
modification is visualized in figure 7.3.

I decided to implement the second version of the modification.

42

7.2. Execution

Figure 7.2: Safely tying the write protect pin to ground

Figure 7.3: Safely tying the write protect pin to ground using a switch

7.2 Execution

First I started by carefully cutting the trace and connecting pads 19 and 23 of
the unpopulated footprint with a piece of wire as indicated in figure 7.2. At
this stage I tried plugging the flash drive into my computer. Unfortunately, in
this state the flash drive was not functional. It was picked up by the system
and the virtual CD-ROM appeared, but it was inaccessible.

I proceeded with the modification as planned. First I chose an appropriate
resistor. Due to space constraints I decided to go for an 0603 package. Out
of the 0603 resistors I had on hand I picked a 1.2 kΩ one. I measured where

43

7. Attempting to bypass the password try limit with a
hardware modification

its ends would land on the PCB and scraped off the solder resist from the cut
trace in those places. Because solder connection to such a thin trace would
have very low mechanical strength, I secured the resistor to the board with
superglue and then soldered both ends. Finally I soldered two wires to pins
19 and 23 of the unpopulated footprint, connected their other ends to a slide
switch and secured it to the PCB with hot-melt adhesive. I covered the wires
with Kapton tape to prevent snagging. The result can be seen in figure 7.4.

Figure 7.4: Kingston DTVP with the write protect override switch installed

7.3 Result

As mentioned in the previous section, connecting the flash drive with write
protect already enabled resulted in the drive not working at all, but now I
was able to toggle write protect with ease, so I could try enabling it during
various phases of authentication.

First I tried enabling write protect after connecting the drive and running
the login utility, but before entering the correct password. When the password
was entered, the login utility returned error 0x34 and the LED started flashing
rapidly (my best guess is the controller kept trying to write to the flash over
and over) and the device became unresponsive. To bring it out of this state,
the device had to be power cycled. Next I tried entering an incorrect password
and the login utility returned error 0x15 (and the device entered the same
unresponsive state as before). I was very excited. If the counter did not
decrement, this would mean I had a way to test an unlimited amount of
passwords, albeit very slowly. I immediately started trying other passwords.
Unfortunately, this turned out to be a fluke. All subsequent attempts with
both correct and incorrect passwords returned error 0x34.

As a last resort I tried running the login utility in a debugger, pausing
right before the actual SCSI command containing the password is sent and
enabling write protect at that point. Sadly, this resulted in the same 0x34
error code. I even tried examining the data returned by the SCSI command,
but it was always identical; the validity of the password had no effect on it.

44

7.3. Result

In the end I was not able to get an infinite number of password guesses
using this method (although the counter was indeed not decremented).

45

Conclusion

Even though I ultimately failed to break the encryption of Kingston DataTrav-
eler Vault Privacy, I believe I still achieved the objective of this thesis. My
analysis of the control software was very thorough; there were only a handful
of APIs I did not dare test out of fear of breaking my only testing unit (and
given how robust the rest of the APIs seemed to be, I would be very surprised
if testing these remaining APIs lead to any significant discoveries).

I determined with high confidence the relation between the user’s password
and the encryption key and I also demonstrated the drive is resilient to simple
hardware attacks.

Overall Kingston DataTraveler Vault Privacy is a significant improvement
in terms of security over the drives it replaced after the 2009 hack. My only rec-
ommendations to Kingston for future improvements would be stripping debug
symbols from the binaries where possible and implementing the authentication
of the Secure Session more securely, since the current implementation relying
on an RSA-512 key hard-coded in the binaries is, in my opinion, inadequate.

The only worthwhile avenue I did not explore is dumping the contents of
the NAND flash chip. This task is non-trivial to say the least, but it could lead
to very interesting discoveries from determining how and where the encryption
key and password try counter are stored to extracting and reverse engineering
the firmware of the flash controller. I would recommend this subject for future
research.

47

Bibliography

[1] Ponemon Institute, LLC. The State of USB Drive Security in Europe.
2011, [cit. 2018-05-09]. Available from: https://media.kingston.com/
pdfs/Ponemon/Ponemon_research_EMEA_summary_UK_1111.pdf

[2] Corel Corporation. WinZip Version History. [cit. 2019-01-09]. Available
from: https://www.winzip.com/win/nl/version.html

[3] Pavlov, I. History of the 7-Zip. December 2018, [cit. 2019-01-09]. Available
from: https://www.7-zip.org/history.txt

[4] Corel Corporation. Data Protection. [cit. 2019-01-09]. Available from:
https://www.winzip.com/en/features/data-protection.html

[5] IDRIX SARL. Introduction. In VeraCrypt Documentation, [cit. 2019-01-
09]. Available from: https://www.veracrypt.fr/en/Introduction.html

[6] IDRIX SARL. Portable Mode. In VeraCrypt Documentation, [cit.
2019-01-09]. Available from: https://www.veracrypt.fr/en/Portable%
20Mode.html

[7] IDRIX SARL. Plausible Deniability. In VeraCrypt Documentation,
[cit. 2019-01-09]. Available from: https://www.veracrypt.fr/en/
Plausible%20Deniability.html

[8] Kingston Technology Corporation. DataTraveler Vault Privace User
Manual. [cit. 2019-01-09]. Available from: http://media.kingston.com/
support/downloads/DTVP_userManual_002.pdf

[9] Apricorn, Inc. Aegis Secure Key 3.0 User’s Manual. August 2017, revi-
sion 1.7, [cit. 2019-01-09]. Available from: https://www.apricorn.com/
media/document/file//a/s/ask3_manual_online.pdf

49

https://media.kingston.com/pdfs/Ponemon/Ponemon_research_EMEA_summary_UK_1111.pdf
https://media.kingston.com/pdfs/Ponemon/Ponemon_research_EMEA_summary_UK_1111.pdf
https://www.winzip.com/win/nl/version.html
https://www.7-zip.org/history.txt
https://www.winzip.com/en/features/data-protection.html
https://www.veracrypt.fr/en/Introduction.html
https://www.veracrypt.fr/en/Portable%20Mode.html
https://www.veracrypt.fr/en/Portable%20Mode.html
https://www.veracrypt.fr/en/Plausible%20Deniability.html
https://www.veracrypt.fr/en/Plausible%20Deniability.html
http://media.kingston.com/support/downloads/DTVP_userManual_002.pdf
http://media.kingston.com/support/downloads/DTVP_userManual_002.pdf
https://www.apricorn.com/media/document/file//a/s/ask3_manual_online.pdf
https://www.apricorn.com/media/document/file//a/s/ask3_manual_online.pdf

Bibliography

[10] Picod, J. and Audebert, R. and Bursztein, E. Attacking Encrypted USB
Keys the Hard(ware) Way. December 2017, [cit. 2018-05-09]. Available
from: https://www.youtube.com/watch?v=jVKl3GuazEs

[11] Kingston DataTraveler 2000 16 GB. [cit. 2018-05-09]. Available from:
https://cdn-reichelt.de/bilder/web/xxl_ws/E910/KINGSTON_
DT2000_16GB_02.png

[12] van der Putte, T.; Keuning, J. Biometrical Fingerprint Recognition:
Don’t get your Fingers Burned. In Smart Card Research and Advanced
Applications, edited by J. Domingo-Ferrer; D. Chan; A. Watson, Boston,
MA: Springer, 2000.

[13] Hama ”ProtectionKey” FlashPen. [cit. 2018-05-09]. Available from:
https://www.hama.com/bilder/00124/abx/00124197abx.jpg

[14] Picod, J. and Audebert, R. and Blumenstein, S. and Bursztein, E. At-
tacking encrypted USB keys the hard(ware) way. 2017, [cit. 2018-05-09].
Available from: https://www.blackhat.com/docs/us-17/thursday/
us-17-Picod-Attacking-Encrypted-USB-Keys-The-Hard%28ware%
29-Way.pdf

[15] SanDisk Corporation. Security Bulletin December 2009. December
2009, [cit. 2018-05-09]. Available from: https://web.archive.org/
web/20091220042009/http://www.sandisk.com/business-solutions/
enterprise/technical-support/security-bulletin-december-
2009

[16] Kingston Technology Corporation. Kingston’s Secure USB Drive
Information Page. December 2009, [cit. 2018-05-09]. Available
from: https://web.archive.org/web/20091224102747/http:
//www.kingston.com/driveupdate/

[17] Verbatim Americas, LLC. Important Security Update De-
cember 2009. December 2009, [cit. 2018-05-09]. Available
from: https://web.archive.org/web/20100108171617/http:
//www.verbatim.com/security/security-update.cfm

[18] Kingston Technology Corporation. Kingston Digital to Replace Af-
fected Secure USB Flash Drives with Upgraded Security Architec-
ture, New Drives. 2010, [cit. 2018-05-09]. Available from: https://
www.kingston.com/us/company/press/article/40506

[19] Schmidt, J. NIST-certified USB Flash drives with hardware encryp-
tion cracked. The H, 2010, [cit. 2018-05-09]. Available from: http:
//www.h-online.com/security/news/item/NIST-certified-USB-
Flash-drives-with-hardware-encryption-cracked-895308.html

50

https://www.youtube.com/watch?v=jVKl3GuazEs
https://cdn-reichelt.de/bilder/web/xxl_ws/E910/KINGSTON_DT2000_16GB_02.png
https://cdn-reichelt.de/bilder/web/xxl_ws/E910/KINGSTON_DT2000_16GB_02.png
https://www.hama.com/bilder/00124/abx/00124197abx.jpg
https://www.blackhat.com/docs/us-17/thursday/us-17-Picod-Attacking-Encrypted-USB-Keys-The-Hard%28ware%29-Way.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Picod-Attacking-Encrypted-USB-Keys-The-Hard%28ware%29-Way.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Picod-Attacking-Encrypted-USB-Keys-The-Hard%28ware%29-Way.pdf
https://web.archive.org/web/20091220042009/http://www.sandisk.com/business-solutions/enterprise/technical-support/security-bulletin-december-2009
https://web.archive.org/web/20091220042009/http://www.sandisk.com/business-solutions/enterprise/technical-support/security-bulletin-december-2009
https://web.archive.org/web/20091220042009/http://www.sandisk.com/business-solutions/enterprise/technical-support/security-bulletin-december-2009
https://web.archive.org/web/20091220042009/http://www.sandisk.com/business-solutions/enterprise/technical-support/security-bulletin-december-2009
https://web.archive.org/web/20091224102747/http://www.kingston.com/driveupdate/
https://web.archive.org/web/20091224102747/http://www.kingston.com/driveupdate/
https://web.archive.org/web/20100108171617/http://www.verbatim.com/security/security-update.cfm
https://web.archive.org/web/20100108171617/http://www.verbatim.com/security/security-update.cfm
https://www.kingston.com/us/company/press/article/40506
https://www.kingston.com/us/company/press/article/40506
http://www.h-online.com/security/news/item/NIST-certified-USB-Flash-drives-with-hardware-encryption-cracked-895308.html
http://www.h-online.com/security/news/item/NIST-certified-USB-Flash-drives-with-hardware-encryption-cracked-895308.html
http://www.h-online.com/security/news/item/NIST-certified-USB-Flash-drives-with-hardware-encryption-cracked-895308.html

Bibliography

[20] Kingston Technology Corporation. Kingston DataTraveler Vault - Pri-
vacy datasheet. 2013, [cit. 2018-05-09]. Available from: https://
www.kingston.com/datasheets/DTVP_en.pdf

[21] Micron Technology, Inc. Micron Technology 64Gb, 128Gb, 256Gb, 512Gb
Asynchronous/Synchronous NAND Features. November 2009, rev. A.

[22] Phison Electronics Corporation. USB 2.0 Flash Controller Specification
PS2231. October 2007, revision 1.6.

[23] Phison Electronics Corporation. USB 2.0 Flash Controller Specification
PS2251-33. January 2009, revision 1.2.

[24] File protecting method and system, and memory controller and memory
storage apparatus thereof. 2012, United States, [cit. 2018-05-09]. Available
from: http://www.freepatentsonline.com/8954692.html

[25] Valenta, L.; Cohney, S.; et al. Factoring as a Service. Cryptology
ePrint Archive, Report 2015/1000, October 2015. Available from: https:
//eprint.iacr.org/2015/1000

[26] ONFI Workgroup. Why ONFi. [cit. 2019-01-07]. Available from: https:
//www.onfi.org/about

[27] ONFI Workgroup. Open NAND Flash Interface Specification. October
2009, revision 2.2.

51

https://www.kingston.com/datasheets/DTVP_en.pdf
https://www.kingston.com/datasheets/DTVP_en.pdf
http://www.freepatentsonline.com/8954692.html
https://eprint.iacr.org/2015/1000
https://eprint.iacr.org/2015/1000
https://www.onfi.org/about
https://www.onfi.org/about

Appendix A
Acronyms

AES Advanced Encryption Standard

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CBC Cipher Block Chaining

FAT File Allocation Table

I/O Input/Output

LED Light-emitting Diode

LUN Logical Unit

MFC Microsoft Foundation Class

MitM Man in the Middle

MLC Multi-level Cell

NDA Non-disclosure Agreement

ONFI Open NAND Flash Interface

PCB Printed Circuit Board

RAM Random Access Memory

RFID Radio-frequency Identification

RNG Random Number Generator

ROM Read-only Memory

RSA Rivest Shamir Adleman

53

A. Acronyms

SCSI Small Computer System Interface

SDK Software Development Kit

SLC Single-level Cell

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

54

Appendix B
Contents of enclosed CD

dtvp cd.........................DTVP read-only CD partition contents
re......................directory containing reverse engineering outputs

ha dump.directory containing the dump of the Protected Hidden Area
idb directory containing IDA databases
dtvp login rsa patch......dtvp login utility patched with a custom
RSA-512 key
function.txt..complete list of function names and prototypes of the
Linux utilities
hw notes.txt..notes pertaining to the hardware analysis of Kingston
DTVP
sw notes.txt.notes pertaining to the analysis of the Kingston DTVP
control software

src...source codes directory
thesis....................................source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

55

	Introduction
	Flash drives with hardware encryption support
	Where is the encryption performed
	User input methods
	Typical hardware configuration

	Past attacks
	The SySS hack
	The Google hacks
	Unverified claims

	Kingston DataTraveler Vault Privacy
	Specifications
	Hardware
	Software

	Phison flash drive controllers
	General characteristics
	Firmware
	Features

	Control software analysis
	Challenges
	Choosing a target
	Analysis setup
	Static analysis
	Dynamic analysis
	Summary

	Relation between the password and the encryption key
	The NAND flash interface
	Logic analyzer
	Black-box testing
	Summary

	Attempting to bypass the password try limit with a hardware modification
	Plan
	Execution
	Result

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

