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Title: Non-reflective boundary conditions for free-surface flows

Abstract: In various fields of applications one is often interested in solving a fluid flow
problem computationally in a domain which is much smaller than the actual domain where
the governing equations hold. This approach is employed in order to reduce computational
time and usually results in possibility to use more complex mathematical model of given
physical phenomenon or solve given problem with higher accuracy or on finer grid. On
the other hand, one natural problem arising in this context is connected with posing
correct boundary conditions on artificial boundaries which are created by reducing the
original domain. These boundary conditions have to be non-reflecting, namely they should
not give rise to disturbances of the solution that propagates from within computational
domain. The topic of non-reflective boundary conditions (also called absorbing or artificial
boundary conditions) is subject of wide research activities, see [1], [2], [3], [4].

In this work some description of development of non-reflective boundary conditions for
free surface flows described by shallow-water mathematical model is given at first. The
main goal thereafter is the implementation of such boundary conditions in the framework
of volume of fluid advection method (VOF) for Navier-Stokes equations in the finite-
volume CFD toolbox - OpenFOAM. Derivation of such boundary conditions is based upon
similarity between shallow water equations and Navier-Stokes equations for two-phase
flows in certain flow regimes. Performance of the new boundary conditions is afterwards
tested in OpenFOAM on 2D dam-break problem and 3D simulation of vertical water
pump, placed in semi-opened basin with one artificial boundary.

Keywords: OpenFOAM, Volume Of Fluid, VOF, Shallow Water, Non-reflective bound-
ary conditions, Finite Volume Method, Navier-Stokes equations.

Název práce: Bezodrazové okrajové podmı́nky pro prouděńı s volnou hladinou

Abstrakt: V některých současných inženýrských problémech, spjatých s dynamikou
tekutin, naráž́ıme na problém řešitelnosti výchoźıch rovnic na omezených oblastech. V
takovém př́ıpadě je nutné p̊uvodńı oblast, na které je daný matematický problém for-
mulován, vhodným zp̊usobem zredukovat. To má za následek sńıžeńı výpočetńı náročnosti
konkrétńı úlohy a např́ıklad umožňuje využ́ıt sofistikovaněǰśı matematické modely, nebo
provést výpočet s vyšš́ı přesnost́ı na jemněǰśı śıti. Spolu s t́ım ale vyvstává otázka jaké
okrajové podmı́nky předepsat na nově vzniklých hranićıch, které jsou nyńı pouze arte-
faktem výpočetńı domény a nemaj́ı fyzikálńı význam. Problematika zabývaj́ıćı se těmito,
tzv. bez-odrazovými, podmı́nakmi pro r̊uzné typy problémů je v současné době předmětem
mnoha výzk̊umů, viz [1], [2], [3], [4].

V prezentované práci jsou na základě analýzy rovnic popisuj́ıćıch prouděńı mělké vody
odvozeny bezodrazové okrajové podmı́nky pro př́ıpad subkritického prouděńı. Dále je
popsán model dvoufázového prouděńı vody a vzduchu založený na objemových zlomćıch
tekutiny (tzv. volume of fluid model, VOF). Hlavńım ćılem práce je pak rozš́ı̌reńı be-
zodrazových okrajových podmı́nek pro mělkou vodu na VOF model. Tyto podmı́nky
jsou následně implementovány v programovém prostřed́ı softwarového baĺıku OpenFOAM.
Vlastnosti daných okrajových podmı́nek jsou testovány a porovnávány na př́ıpadech prouděńı
s volnou hladinou, konkrétně 2D problému protržené hráze a 3D problému vodńı pumpy
v otevřené nádži.

Kĺıčová slova: OpenFOAM, objemové zlomky tekutiny, VOF, mělká voda, bez-odrazové
okrajové podmı́nky, metoda konečných objemů, Navierovy-Stokesovy rovnice.
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1. Introduction
The amount of engineering problems which could be simulated by computers is continually
increasing due to the improvements in computational power and precising of description of
physical phenomena solved by mathematical tools. In practice, majority of these problems
are formulated in terms of partial differential equations (PDE), which are then solved
numerically on computers. To solve such equations we need to determine computational
domain, which corresponds with area of our interest. Some few typical examples could
be: evaluating stress in mechanical part due to the acting forces on its surface, computing
heat transfer through a body of given material or determining parameters of fluid flow in
some channel. In this work, the further concern is devoted to the category of problems in
which the last example belongs - computational fluid dynamics (CFD).

A frequently encountered problem in scientific computing is the design of artificial
boundaries. The goal is to limit a computational domain to keep the number of cells
within reasonable bounds yet still end up with a solution that approximates the correct
result for an unbounded domain. This kind of boundaries, sometimes called absorbing or
partially reflecting boundaries, allows disturbances generated within the solution domain
to pass through the artificial boundary unhampered, while information from outside the
solution domain is simultaneously specified to achieve the desired interior solution,
B. Sanders [2].

In the case of shallow water equations it means that there can be prescribed water
height and wave velocity on the artificial boundary with water waves passing out unham-
pered. In some flow regimes, Navier-Stokes equations describe same physical phenomena
as shallow water equations and therefore one can formulate boundary conditions motivated
by theory of shallow water equations for corresponding flows solved by Navier-Stokes equa-
tions.

An original motivation of this work was simulation of flow in vertical water pump situ-
ated in semi-opened basin, practically a box with one missing sidewall partially immersed
in water. And exactly this opened part of domain boundaries should be properly treated as
artificial in the numerical simulation so there is a need to prescribe non-reflective boundary
condition here.

At first, simulations of given probelm were performed in OpenFOAM software package
[5]. However currently available boundary conditions led to reflecting water waves back
to computational domain and due to further wave interactions, depending on geometry of
the case, non-physical solution was obtained.

1.1 Structure of the thesis

Section 2 is devoted to description of how Navier-Stokes equations can be simplified into
two-dimensional shallow water equations with consideration of some restrictions put on
the flow. Further, transformation of one-dimensional version of shallow water equations
into invariant form is presented.

In section 3 there are provided some details on prescription of boundary conditions
for one-dimensional shallow water equations in general sense followed by derivation of
one-dimensional non-reflective boundary conditions, see original article [2]. The section is
finished with numerical results of one-dimensional dam-break problem.

Section 4 gives brief explanation of finite volume discretisation of two-dimensional shal-
low water equations along with implementation of one-dimensional non-reflective boundary
conditions into two-dimensional case. In order to present performance of non-reflective
boundary conditions in two dimensions results of numerical simulation are included.
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Section 5 describes volume of fluid (VOF) method accompanied with two possible
treatments of phase interface resolving implemented in OpenFOAM-v5.0 and OpenFOAM-
v1712. Presented VOF model is concerned with two phase flow of a liquid-gas mixture,
namely water and air.

Section 6 elaborates the transmission of non-reflective boundary conditions from one-
dimensional shallow water theory to VOF method. The results of this effort are afterwards
tested on two-dimensional dam-break and three-dimensional water pump problems, both
solved by Navier-Stokes equations in VOF formulation in OpenFOAM software.

1.2 Main goals

The main goal of this work is to analyze shallow water equations and derive non-reflective
boundary conditions for sub-critical regime of flow at first. This is followed by validation
of these boundary conditions on 1D dam-break problem and its 2D modification. Subse-
quently, new non-reflective boundary conditions are developed for the VOF method using
the similarity with shallow water theory under certain flow conditions. Performance of
newly developed non-reflective boundary conditions is tested numerically on several cases.
For the purpose of clarity, main goals can be outlined as follows:

• Analysis of shallow water equations in order to derive non-reflective boundary con-
ditions

• Validation of these boundary conditions numerically

• Extension of the non-reflective boundary conditions from one-dimensioanl shallow
water theory to the three-dimensional two-phase VOF method

2



2. Shallow water equations
2.1 Derivation

Many types of flow, not necessarily involving water as a fluid, can be characterized as
shallow water flows. The general characteristic of such flows is that the vertical dimension
is much smaller than any typical horizontal scale and this is true in many situations.
Shallow water flows are nearly horizontal which allows a considerable simplification in the
mathematical formulation and numerical solution by assuming the pressure distribution
to be hydrostatic. However, they are not exactly two-dimensional. The flow exhibits a
three-dimensional structure due to bottom friction, just as in boundary layers. Moreover,
density stratification due to differences in temperature or salinity (in the case of modeling
some coastal hydrodynamics) causes variations in the third (vertical) direction. Yet, for
the purpose of this work, some simplifications of non-essential effects have been made.
Depth varying quantities such as density and gravitational acceleration are considered
independent of the z-coordinate. Further, water is considered to be inviscid fluid here, so
surface tension or water-air interface friction is not taken into account [6].

By following previous assumptions, desired form of shallow water equations can be
derived from Euler equations with appropriate boundary conditions. The following deriva-
tion procedure is motivated by [7].

momentum equation:

∂u

∂t
+ u · ∇u +

1

ρ
∇p = f on −η(x, y) < z < h(x, y, t) (2.1)

continutiy equation:

∇ · u = 0 on −η(x, y) < z < h(x, y, t) (2.2)

free surface condition:

p = 0,
∂h

∂t
+ u · ∇h = w on z = h(x, y, t) (2.3)

bottom condition:

u · ∇[z + η(x, y)] = 0 on z = −η(x, y) (2.4)

In the equations above, ρ(x, y, t) = const. is density, u = (u, v, w) is three-dimensional
velocity vector, p is pressure, f = (0, 0,−g) body force density, g is gravitational accelera-
tion, h the vertical displacement of free surface and η(x, y) is the bottom topography,
see Figure 2.1.

For the first step of the derivation of the shallow water equations the global mass
conservation is considered. The continuity equation (2.2) is integrated vertically as follows,

0 =

∫ h

−η
[∇ · u] dz =

∫ h

−η

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

]
dz (2.5)

=
∂

∂x

∫ h

−η
u dz − u

∣∣∣
z=h
· ∂h
∂x

+ u
∣∣∣
z=−η

· ∂(−η)

∂x

+
∂

∂y

∫ h

−η
v dz − v

∣∣∣
z=h
· ∂h
∂y

+ v
∣∣∣
z=−η

· ∂(−η)

∂y

+ w
∣∣∣
z=h
− w

∣∣∣
z=−η

(2.6)
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Figure 2.1: Schematic illustration of the Euler’s system

where the bottom boundary condition (2.4) and the surface condition (2.3) were used in
equation (2.6), so equation (2.5) becomes

∂h

∂t
+

∂

∂x

∫ h

−η
u dz +

∂

∂y

∫ h

−η
v dz = 0 (2.7)

In the next step long-wave approximation is made, by assuming that the wave length is
much longer than the depth of the fluid. However, there is not assumed that perturbations
have a small amplitudes, so that nonlinear terms are not neglected. Through the long-
wave approximation, one can neglect the vertical acceleration term in (2.1), and deduce
the hydrostatic pressure by integrating the vertical component of the momentum equation,∫ h

z0

∂p

∂z
dz = −

∫ h

z0

ρg dz (2.8)

p(x, y, h(x, y, t), t)− p(x, y, z0, t) = −ρg(h(x, y, t)− z0) (2.9)

p(x, y, z, t) = ρg(h(x, y, t)− z) (2.10)

where the surface condition (2.3), p(x, y, h, t) = 0 was used and coordinate z0 was chosen
arbitrarily as z. Using this expression for the hydrostatic pressure (2.9) and further as-
suming that there are no vertical variations in velocities u, v, the horizontal momentum
equations of the shallow-water system are obtained as follows,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
= 0 (2.11)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
= 0 (2.12)

and conservation of mass given by (2.7) becomes

∂h

∂t
+

∂

∂x
[(h+ η)u] +

∂

∂y
[(h+ η)v] = 0. (2.13)

Then, equations (2.11), (2.12), and (2.13) are called the shallow water equations.

4



2.2 Mathematical structure

The original shallow water equations (2.11), (2.12) and (2.13), rewritten in more compact
matrix form become,

hu
v


t

+

u h+ η 0
g u 0
0 0 u

hu
v


x

v 0 h+ η
g v 0
0 0 v

hu
v


y

=

−u
∂η

∂x
− v∂η

∂y
0
0

 (2.14)

or in symbolic notation

Ut + A(U)Ux + B(U)Uy = S (2.15)

where lower subscripts (t, x, y) of algebraic vectors of original variables denotes associated
partial derivatives. The eigenvalues of the coefficient matrix A are

u, u+
√
g(h+ η), u−

√
g(h+ η) (2.16)

and those of the coefficient matrix B are

v, v +
√
g(h+ η), v −

√
g(h+ η). (2.17)

Since eigenvalues (2.16) and (2.17) are real and distinct, the shallow water equations are
hyperbolic partial differential equations. The useful consequence of this is, that one can
apply method of characteristics to find analytic form of solution, which will be later used
for construction of desired non-reflective boundary conditions.

Note: By substituting term h+ η → h̃ in continuity equation (2.13), one gets after some
algebraic manipulations following matrix form of shallow water equations:h̃u

v


t

+

u h̃ 0
g u 0
0 0 u

h̃u
v


x

v 0 h̃
g v 0
0 0 v

h̃u
v


y

=

 0
gηx
gηy

 (2.18)

where now, h̃ is representing the distance between water surface and bottom and terms
gηx, gηy are acting in momentum equations as sources, dependent on the slope of bottom
surface.

In order to keep further analysis easier, yet valuable, bottom topography will be consid-
ered flat and therefore η(x, y) will be taken arbitrarily as zero. Moreover, let us for now
consider only one-dimensional case. The two-dimensional wave structure and derivation
of corresponding boundary conditions will be discussed later, in section 4. The one dimen-
sional form shallow water equations with constant, flat bottom is given by matrix form
as (

h
u

)
t

+

(
u h
g u

)(
h
u

)
x

=

(
0
0

)
. (2.19)

Now method of characteristics can be used the to find out character of analytic solution.
In order to use this method, one has to first transform the initial, coupled equations (2.19)
into set of two independent ones. This is done as follows. Let us start with compact
matrix form of equations (2.19)

Ut + A(U)Ux = 0, (2.20)

5



where now U = (h, u)T is algebraic vector of original variables h and u and A(U) is
coefficient matrix. Spectral decomposition of A(U) is now performed, with resulting terms

A =

(
u h
g u

)
=

(
1 1√
g
h −

√
g
h

)(
λ1 0
0 λ2

)
−1

2
√

g
h

−√ g
h −1

−
√

g
h 1

 = RDR−1 (2.21)

where D is diagonal matrix of eigenvalues λ1 = u+
√
gh and λ2 = u−

√
gh corresponding

with eigenvectors Vλ1 = (1,
√

g
h) and Vλ2 = (1, −

√
g
h) respectively of which, as columns,

is assembled matrix R = (Vλ1 |Vλ2) resp. its inverse R−1. With using terms in (2.21),
shallow water equations (2.19) might be written in expanded form as

−1

2
√
g
h

(−
√

g
hht − ut) + (λ1) · −1

2
√
g
h

(−
√

g
hhx − ux) = 0 (2.22)

−1

2
√
g
h

(−
√

g
hht + ut) + (λ2) · −1

2
√
g
h

(−
√

g
hhx + ux) = 0 (2.23)

and by some algebraic manipulations, assuming h 6= 0, with using following formula

1√
h

∂h

∂ζ
=
∂(2
√
h)

∂ζ
, ζ ∈ {t, x} (2.24)

final results of transformation of original equations (2.19) are obtained

(u+ 2
√
gh)t + (u+

√
gh) · (u+ 2

√
gh)x = 0 (2.25)

(u− 2
√
gh)t + (u−

√
gh) · (u− 2

√
gh)x = 0. (2.26)

Or, in more compact form

R1(u, h)t + λ1 ·R1(u, h)x = 0 (2.27)

R2(u, h)t + λ2 ·R2(u, h)x = 0 (2.28)

where

R1(u(x, t), h(x, t)) = u+ 2
√
gh (2.29)

R2(u(x, t), h(x, t)) = u− 2
√
gh. (2.30)

One can see that original, coupled shallow water equations are now separated into two hy-
perbolic partial differential equations, which represent transport of two artificial variables
R1, R2 depending on original ones. These new variables are often calledRiemann variables
or Riemann invariants. Eigenvalues λ1, λ2 represent characteristic advection speeds.
Further, method of characteristics provides following analytic form of solution for each of
equations (2.27) and (2.28), given by

Ri(x, t) = R0
i

(
x−

∫ t

0
λi(ξi(τ), τ) dτ

)
, i = 1, 2 (2.31)

where R0
i (x) = Ri(x, 0) is initial condition. Basically, it is a case of transport of initial

conditions along characteristic curves ξ1(t) and ξ2(t) in (x, t)-plane, defined by

dξ1,2

dt
= λ1,2(ξ1,2(t), t) = u±

√
gh (2.32)

Solution of the problem in terms of original variables h(x, t) and u(x, t) is given as
combination of Riemann invariants, see original article [2],

u =
1

2
(R1 +R2) h =

1

16g
(R1 −R2)2 (2.33)

which will serve as initial point for derivation of non-reflective boundary conditions.
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3. Non-reflective boundary conditions for
1-dimensional shallow-water equations

In this part a problematics of well-posedness of boundary conditions will be elaborated,
with a focus on shallow water equations. Moreover, an example of boundary condition
which is ill-posed, yet still used in numeric computation, will be described. After that
derivation of non-reflective boundary conditions will follow, provided with numerical re-
sults. Following description and demonstration of non-reflective boundary conditions will
be done using one-dimensional Riemann problem which consists of one-dimensional shal-
low water equations and initial piece-wise constant data with a single discontinuity, see
Fig.(3.1). On the right boundary (x = l), which is not a point of interest here, there is
considered wall. On the left boundary (x = 0) the performance of non-reflective boundary
condition will be examined. With respect to shallow water problematics carried here, this
case may be viewed as a dam-break problem.

Figure 3.1: Sketch of one-dimensional Riemann problem

3.1 Well-posed boundary conditions

Well-posednes means, by definition, that a problem has a solution, this solution is unique
and depends continuously on the initial data and the parameters (including boundary
conditions). Therefore, well-posed boundary conditions are the essential ingredient in
many areas of computational physics. In order to solve any physical problem described
by partial differential equations correctly in a analytic sense, one needs to know: i) how
many boundary conditions are required, ii) where to impose them and iii) which form
should they have [8]. Generally, this may be very hard task and it is a subject of wide
research activities. More on this topic can be found for example in [9].

Therefore one-dimensional shallow water equations (2.19) are 1st order hyperbolic par-
tial differential equations, the well posedness of aforementioned Riemann problem, in the
sense of boundary conditions, depends on the flow regime. The regime of flow in a given
space and time is dependent on characteristic advection speeds, λ1 and λ2 in a such way
that if λ1 · λ2 < 0 the regime is called sub-critical and otherwise super-critical. The key
issue on the boundaries of the one-dimensional computational domain of dam break prob-
lem (x = 0 and x = l) is then whether characteristics are going in or out of the domain.
On the Figure 3.2 are shown possible configurations of characteristic curves in (x, t)-plane
for an arbitrary point (x0, t0). Throughout following text attention will be paid to the left
boundary, so let us assume x0 = 0.

The first case where characteristics are going the opposite directions is illustrated on
Figure 3.2a. This situation means, that Riemann variable R2 is transported out of the
computational domain, and so there is no need to prescribe a boundary condition for it.
The second Riemann variable R1 is transported in the domain and therefore should be
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prescribed on the boundary. It means that there must be provided some combination of
u(x0, t) = u0(t) and h(x0, t) = h0(t) to get desired value of R1.

In the second case on Figure 3.2b both characteristics go out of the domain, so no
information about the solution is transported inside and therefore no boundary conditions
are required in this case.

The last case is shown on Figure 3.2b. This case is the exact opposite to the previous
one. Both characteristics go inside and one must specify boundary conditions for both
variables R1 and R2.

(a) Schematic picture of characteristics, λ1 · λ2 < 0

(b) Schematic picture of characteristics,
λ1 · λ2 ≥ 0, λ1 < 0

(c) Schematic picture of characteristics,
λ1 · λ2 ≥ 0, λ1 > 0

Figure 3.2: Characteristic curves on left boundary

3.2 An example of Ill-posed boundary condition

In the ideal case boundary conditions should be derived in correspondence with an analytic
form of exact solution of given partial differential equations, specifically shallow water
equations in our case. But, as was mentioned in section 1 solving partial differential
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equations is usually connected with some physical phenomenon and therefore requirements
on boundary conditions respecting physical nature of given problem are sometimes difficult
to fulfill in strictly analytic sense.

For example let us consider a part of a boundary as a wall, let us say x = 0. The
prescription for velocity is rather simple u(0, t) = u0(t) = 0, but there is a problem how
to determine water height on this boundary. In numerical computing there is a crafty
option based on physics. If some contact angle between water and wall is considered,
then value on the boundary could be extrapolated from interior of computational domain.
This corresponds with prescription of Neumann boundary condition, ∂h

∂~n = α = tan(90◦ −
θ), where θ is a contact-angle, usually set as 90◦ (no surface tension), resulting with
homogeneous Neumann condition.

Figure 3.3: Neumann boundary condition for h(x, t)

This boundary condition works quite well in numerical simulations, but due to the fact
that shallow water equations are 1st order, using any kind of boundary condition which
involves first derivative is mathematically incorrect.

3.3 Derivation of non-reflective boundary conditions

In order to describe the derivation process as well as present numerical results, there will
be considered 1-dimensional shallow water problem governed by equations (2.19). This
problem will be solved on following domain

Ω = {x ∈ R, 0 < x < 1} (3.1)

∂Ω = {0, 1} (3.2)

with the initial conditions

u = 0, x ∈ 〈0, 1〉 (3.3)

h =

{
0.5, 0 ≤ x ≤ 0.4

0.7, 0.4 < x ≤ 1
(3.4)

and the above mentioned wall boundary conditions prescribed for x = 1 and below derived
non-reflective boundary conditions prescribed for x = 0. Discretisation of the problem for
numerical computing will be done by finite volumes method (FVM) described as follows.

• discretised computational domain:

Ω =
⋃
i∈N

Ωi (3.5)

Ωi =
{
x ∈

〈
xi −

∆x

2
, xi +

∆x

2

〉
, xi = (i− 1

2) ·∆x
}

(3.6)

x0 = x1 − ∆x
2 = 0 (3.7)
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• discrete time:

tn = n ·∆t, n ∈ N0, ∆t ∈ R+ (3.8)

• Notation of any physical quantity φ(x, t) in discrete space and time is:

φni =
1

‖Ωi‖

∫
Ωi

φ(x, tn) (3.9)

3.3.1 Derivation

Implementation of non-reflecting boundary conditions into the framework of FVM for
shallow water equations is done by discretisation of terms in equation (2.33). Following
Figure (3.4) describes situation on the left boundary for analytic solution of equations
(2.19) evolving in time. Regime of the flow is considered subcritical (λ1 > 0 and λ2 < 0).

Figure 3.4: Transport of Riemann variables to the left boundary (x = 0)

Outside the computational domain (x < x0) is considered auxiliary Riemann invariant
(R1). It depends on water height and wave velocity which are here considered to satisfy
calm water surface conditions. So h(x−∞, t) = h−∞ is constant in time and u(x−∞, t) =
u−∞ = 0 for all x = x−∞ < x0. The result of these assumptions is that R1 is also constant
in time and thus during numerical simulation.

R1(x−∞, t) = R1(x0, t+ δt) = u−∞ + 2
√
gh−∞ = 2

√
gh−∞ (3.10)

Dealing with the second invariant which is coming to the boundary from inside the
computational domain requires some extra treatment. Let us remind the relationship for
analytic form of solution of one-dimensional shallow water equations:

Ri(x, t) = R0
i

(
x−

∫ t

0
λi(ξi(τ), τ) dτ

)
, i = 1, 2 (3.11)

dξ1,2

dt
= λ1,2(ξ1,2(t), t) = u±

√
gh (3.12)

Problem is, that equations (3.11) and (3.12) are implicitly coupled. The goal is to de-
termine R2(x0, t + δt) which is transported along the characteristic curve defined by
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dx

dt
= λ2(x, t). The transport is here considered from initial point (x̃, t) to (x0, t + δt),

so in equation (3.11) is initial condition R0
i (x) = Ri(x, t = 0) replaced by Ri(x, t) and

integration limits are changed as follows (0, t)→ (t, t+ δt) which gives us for R2 following
results

R2(x0, t+ δt) = R2(x̃, t) = R2

(
x0 −

∫ t+δt

t
λ2(ξ2(τ), τ) dτ, t

)
(3.13)

x̃ = x0 −
∫ t+δt

t
λ2(ξ2(τ), τ) dτ (3.14)

where x̃ is yet unknown point, implicitly determined to satisfy the condition so that
characteristic curve is going through this point in time t will reach point x0 in t+ δt.

There is considered λ2(x, t) (and therefore also λ1) to be continuous which means that
no shock waves are present in the solution. Therefore Lagrange’s mean value theorem in
equation (3.14) can be used

x̃ = x0 −
∫ t+δt

t
λ2(x̃, ξ) dξ = x0 − λ2(x̃∗, t∗) · δt (3.15)

where x∗ ∈ (x0, x̃) and t∗ ∈ (t, t+ δt).

Figure 3.5: Scheme of evaluating x̃ in equation 3.15 using Lagrange’s mean value theorem

3.3.2 Final formulas

In numerical simulations of unsteady problems there is a requirement for time step to be
small enough that physical quantities don’t change rapidly. It means in practice that so
called CFL condition have to be satisfied. It implies that for one-dimensional shallow
water equations following condition has to hold.

C = max |λi(x, t)|
∆t

∆x
≤ Cmax ∀x ∈ Ω, i = 1, 2. (3.16)

Here Cmax < 1 is used for explicit numerical methods and Cmax ≥ 1 for implicit methods
could be tolerated.

Since in numerical validation here is supposed that Cmax < 1, it can be shown that
x̃ ∈ (x0,∆x). Finally, time step δt is replaced by numerical time step ∆t, resulting in
following approximation

R2(x0, t+ ∆t) = R2(x̃, t) = R2(x1, t) +O(∆x) (3.17)
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where x1 = ∆x/2 (from equation (3.6)). In the end here are included final terms for
non-reflective boundary conditions which were implemented in numerical code

R1(x0, t
n+1) = 2

√
gh−∞ (3.18)

R2(x0, t
n+1) = R2(x1, t

n) (3.19)

hn+1
0 =

1

16g

(
R1 −R2

)2
=

1

16g

(
2
√
gh−∞ − un1 + 2

√
ghn1

)
(3.20)

un+1
0 =

R1 +R2

2
=

1

2

(
2
√
gh−∞ + un1 − 2

√
ghn1

)
(3.21)

where only h−∞ will be prescribed as a parameter according to the calm water surface
given by initial condition.

3.4 Numerical results

Performance of non-reflective boundary conditions was tested on 1D dam-break simulation
together with two other boundary conditions as a reference benchmark. The combination
of Dirichlet condition for the velocity, u = 0, and Neumann homogeneous condition for

the volume fraction,
∂h

∂~n
= 0, was prescribed at the right boundary (wall) whereas on the

left boundary the conditions were set according to following table (3.1),

Table 3.1: Setting of boundary conditions in dam-break problem

simulation
No.

I. II. III.

boundary
conditions
for x = 0

h(0, t) = h0,
∂u

∂~n
= 0

u(0, t) = u0,
∂h

∂~n
= 0

non-reflective

where h0 = 0.5, u0 = 0 and non-reflective conditions according equations (3.20) and
(3.21), with h−∞ = 0.5. Initial conditions are the same for all cases. Water height, h,
is matching with Figure 3.6 and u is taken as zero. In all cases, the numerical solution
of equations (2.19) was obtained using the explicit Euler method in time and the first
order finite volume scheme with the HLL numerical flux [10]. Computational domain was
divided equidistantly with ∆x = 0.001 and CFL condition was chosen as C = 0.4.

Figure 3.6: Initial condition of 1D dam-break problem, water height
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(a) h(x, t) (b) u(x, t)

Figure 3.7: Water height and velocity, water wave before approaching left boundary, the
same for all boundary conditions

(a) h(x, t) (b) u(x, t)

Figure 3.8: Water height and velocity, water wave reaching left boundary, non-reflective
boundary conditions

(a) h(x, t) (b) u(x, t)

Figure 3.9: Water height and velocity, water wave reaching left boundary, Dirichlet con-
dition for h(x, t) and Neumann homogeneous condition for u(x, t)

(a) h(x, t) (b) u(x, t)

Figure 3.10: Water height and velocity, water wave reaching left boundary, Dirichlet
condition for u(x, t) and Neumann homogeneous condition for h(x, t)
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The result of comparison of Figures 3.7 and 3.8 is that both velocity and water height
disturbances passed left boundary smoothly, without notable reflections. Although some
minor reflections cloud occur due to the boundary condition and numerical flux schemes
being first order of spatial accuracy.

On the other hand on Figures 3.9 and 3.10 is shown that simple combinations of
Dirichlet and Neumann conditions cause strong reflections. Either velocity or water height
is reflected as a result of one variable is always prescribed constant and thus not reply for
incoming disturbances from within computational domain.

The boundary condition on the right boundary represents physical wall. Despite the
fact it is ill-posed, the performance in numerical simulation is sufficient for this purpose.

(a) h(x, t) (b) u(x, t)

Figure 3.11: Water height and velocity, water wave reflected form right wall now reaching
left boundary, non-reflective boundary conditions

(a) h(x, t) (b) u(x, t)

Figure 3.12: Water height and velocity, water height reflected form left boundary, wave
interaction in the middle of domain, Dirichlet condition for h(x, t) and Neumann homo-
geneous condition for u(x, t)

(a) h(x, t) (b) u(x, t)

Figure 3.13: Water height and velocity, water velocity reflected form left boundary, wave
interaction in the middle of domain, Dirichlet condition for u(x, t) and Neumann homo-
geneous condition for h(x, t)
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In the series of Figures 3.11, 3.12, 3.12 there is depicted solution of dam-break problem
in the moment when reflections from left boundary, if present, reached approximately the
middle of domain. The comparison between Figure 3.11 and Figures 3.12 and 3.12 shows
that combination of Dirichlet and Neumann condition prescribed on the left boundary not
only caused some reflections in the vicinity of the boundary, but spoiled entire solution.
In this example, due to the initial condition, reflections are considerably large but even
smaller ones could lead to nonphysical solution. Importance of this issue will be discussed
in section 6 in connection with 3D volume-of-fluid water pump simulation.
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4. Non-reflective boundary conditions for
2-dimensional shallow-water equations

In this part is discussed an extension of previous one-dimensional non-reflective boundary
conditions into two-dimensional shallow water mathematical model. The whole procedure
is based on work of B.Sanders, described in article [2].

4.1 Finite volume method for 2D shallow-water equations

At the beginning let us perform some formal manipulations with equation (2.14). At first
an integration of this equation through computation domain is done

∂

∂t

∫
Ω

U dΩ +

∫
Ω
∇ ·
(
F,G

)
dΩ =

∫
Ω

S dΩ (4.1)

where Ω ⊂ E2 is compact and has a piecewise smooth boundary ∂Ω and

U =

hu
v

 , F =

 uh

u2h+ gh2

2
uvh

 , G =

 vh
uvh

v2h+ gh2

2

 , S =

−u
∂η

∂x
− v∂η

∂y
0
0

 . (4.2)

In following proceeding there is considered flat bottom topography, so that S = 0. Nu-
merical discretisation of computational domain is done by Cartesian grid

Ω =
⋃

i,j∈N0

Ωi,j , Ωi,j ∩ Ωk,l = ∅ ∀i 6= k, j 6= l, i, j, k, l ∈ N0, (4.3)

Ωi,j =
{

[x, y] ∈ E2; i∆x < x < (i+ 1)∆x; j∆y < y < (j + 1)∆y
}
. (4.4)

where ∆x, ∆y > 0. Discretisation of time is straightforward.

tn := n∆t, n ∈ N0, ∆t > 0 (4.5)

Now, several procedures are done with equation (4.1). There is used the Gauss’s divergence
theorem to rewrite the second term on the left side as a surface integral. Time derivation
is substituted by Crank–Nicolson discretisation method. Following notation is employed

Un
i,j =

1

‖Ωi,j‖

∫
Ωi,j

U(x, y, tn) dΩ (4.6)

‖Ωi,j‖ = ∆x∆y (4.7)

The equation (4.1) can be now rewritten as

Un+1
i,j = Un

i,j + ∆t · 1

2

[(
Fn+1
i+1/2,j + Fn

i+1/2,j

)
−
(
Fn+1
i−1/2,j + Fn

i−1/2,j

)]
∆y (4.8)

+ ∆t · 1

2

[(
Gn+1
i,j+1/2 + Gn

i,j+1/2

)
−
(
Gn+1
i,j−1/2 + Gn

i,j−1/2

)]
∆x

where Fn+1
i+1/2,j = F(Un

i,j ,U
n
i+1,j) denotes numerical flux evaluated on boundary between

volumes Ωi,j and Ωi+1,j in time tn. The same rule applied to other flux symbols is an
analogy.

16



4.2 Implementation of 2D non-reflective boundary condi-
tion

In spite of fact that method of characteristics can not be generalized into 2D shallow water
equations [7], there is an alternative of using modified version of 1D boundary conditions.
Proposed modification is quite simple. The internal velocity ( un1 ) in equations (3.20)
and (3.20) is substituted by normal component of 2D velocity vector. Tangent component
of velocity vector is neglected here (taken as 0 at boundary), due to the upwind nature
of scheme used for computing numerical flux. Treatment of water height is the same for
both 1D and 2D case. Following terms summarize implementation of 2D non-reflecting
boundary condition.

un+1
b =

1

2

(
2
√
gh∞ − (unb+1 · n)− 2

√
ghnb+1

)
(−n) (4.9)

hn+1
b =

1

16g

(
2
√
gh∞ + (unb+1 · n) + 2

√
ghnb+1

)
(4.10)

where subscripts b and b + 1 denote values at boundary and boundary adjacent cells
respectively. Two dimensional velocity is denoted as u = (u, v), with all belonging indices.
Outer-pointing normal at boundary is expressed as n = (nx, ny). Value h∞ stands for
prescribed water height of outer, calm surface.

4.3 Numerical results

Numerical simulations of equation (4.8) have been done using C++ in-house code. The
numerical fluxes were calculated by HLL scheme, first order in space. Temporal accu-
racy is second order due to the Crank–Nicolson scheme and CFL condition is C = 0.5.
Computational domain was chosen as rectangle: Ω = {[x, y] ∈ E2; 0 < x < 2, 0 < y < 2},
discretised by 200× 200 cells. Initial conditions are as follows

u(x, y, 0) = 0 (4.11)

and

h(x, y, 0) =

1 + 2 sin(π
x− 0.8

0.4
) sin(π

y − 0.8

0.4
) x, y ∈ 〈0.8, 1.2〉

1
(4.12)

Figure 4.1: Two-dimensional shallow water equations, initial condition for water height
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Figure 4.2: Two-dimensional shallow water equations, numerical results, water height
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On the above Figure 4.2 there is showed comparison between aforementioned simula-
tion (left) and its modificated version (right), equipped with elongated domain
Ω̃ = {[x, y] ∈ E2; 0 < x < 3, 0 < y < 3}, divided into 300 × 300 FVM cells. The initial
condition was re-centered in the middle of domain. In both simulations the non-reflective
boundary conditions at all boundaries were prescribed.

One can see that initial condition was transported from within computational domain
out without any significant reflections. This result supports the idea that there is a
possibility to limit an arbitrary computational domain while still getting the same solution
on smaller one.
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5. Navier-Stokes equations - Volume of
Fluid formulation

5.1 Introduction

The subject of multiphase flows encompasses a vast field, a host of different technological
contexts, a wide spectrum of different scales, a broad range of engineering disciplines and
a multitude of different analytical approaches [11]. Sometimes it is difficult to formulate
precise definition of this phenomenon. It is due to the fact that one of the crucial task
here - resolving of phase interface - could be dealt with various kinds of approaches. For
example, solid-liquid system of some rigid bodies flowing in water can be qualified as a
one-phase flow with solid fraction considered as computational boundary. On the other
hand, one can simulate this problem - and it has been done - as multiphase one. This
and many others examples demonstrate common denominator of multiphase flow - the
complexity.

In the previous paragraph one of the key features of multiphase flow was mentioned,
namely, the interface of two or more phases. Modeling of this phenomenon is complicated
by geometric nature (e.g. curvature of interface, complex and unstructered computational
grid) as well as the very physics of the problem (e.g. the advancing of a solid–liquid–gas
contact line or the transition between different gas–liquid flow regimes). From topological
point of view one can identify multiphase flows as disperse flows or separated flows.
Disperse flows are those consisting of finite particles, drops or bubbles (the disperse phase)
distributed in a connected volume of the continuous phase. On the other hand separated
flows consist of two or more continuous streams of different fluids separated by interfaces.

In order to solve multiphase problems computationally, several methods were devel-
oped since 1960s, [12]. Some of them became obsolete, naturally, but led to many useful
and provoking ideas which later turned out to be essential for developing new methods.
One such idea proposes that the governing equations are solved on a fixed grid and the
different fluids are identified by a marker function that is advected by the flow which
allows to use only one set of equations for several fluid phases accompanied by equations
for marker functions, describing phase interface. Several methods have been developed
for that purpose. The volume-of-fluid (VOF) method is the oldest [12] and after many
improvements and innovations continues to be widely used.

5.2 Mathematical model

Volume of fluid method has experienced a few changes since it has been presented in
original article by Hirt and Nichols [13]. The original idea was to improve older, so-
called SLIC (simple line interface calculation), method by proposing different treatment
of advection scheme for the marker function. The new scheme was based on reconstruction
of the phase interface in each cell using the values of the marker function in the neighboring
cells. Since then, main development in domain of VOF method is aimed to propose better
reconstruction schemes.

In following text only two phase flow of a mixture of liquid and gas phase will be
considered. The liquid phase will be tracked with the step function α = α(x, t) which
represents volumetric fraction occupied by this phase in arbitrary control volume. In the
framework of FVM it means that α = 1 in computational cells filled entirely with liquid
phase and α = 0 corresponds to a control volume containing only gaseous phase. As said
above, the step function α allows to use only one set of equations in the entire flow domain
for describing the local properties instead of one set of equations for each phase. This is
done by calculating fluid properties as a linear combination of two phases, using α as a
weight factor. For example total density in each computational cell is given by following
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equation
ρ = αρliquid + (1− α)ρgas. (5.1)

Because there are many variants, versions and software implementations of VOF
method, the following description will be given according to up-to-date implementation
in OpenFOAM software package. In subsections 5.3 and 5.4 two solvers treating VOF
method of two-phase flows in OpenFOAM software will be discussed:

i) interFoam solver [14], equipped by MULES numerical scheme

ii) interIsoFoam solver [15], equipped by isoAdvector method

5.2.1 Governing equations

The fluids studied in this section are considered Newtonian, therefore the governing equa-
tions include continuity equation (5.2) and momentum equation (5.3) at first place.

∂ρ

∂t
+∇ · (ρu) = 0 (5.2)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ ·T + ρf + fσ (5.3)

Here ρ is density, u is velocity, p is pressure, f represents body forces and fσ stands for
surface tension. Tensor T is the deviatoric viscous stress tensor, expressed in full form as

T = 2µS− 2

3
µ(∇ · u)I (5.4)

with the strain rate tensor

S =
1

2

(
∇u + (∇u)T

)
(5.5)

where I = (δij) is Kronecker delta tensor. In order to make previous set of equations
complete in the sense of two-phase flows, there has to be provided an equation describing
behavior of a phase interface. Supposing that aforementioned marker step function α(x, t)
changes only in region where phase transition is present, it can be regarded as a boundary
condition for phase interface. So the following equation describes transport of phase
interface in terms of function α.

∂α

∂t
+∇ · (αu) = 0, (5.6)

This equation can be also viewed as a differential analog of marker particles used in
Lagranigian oriented approaches [13].

Due to the fact that VOF model in OpenFOAM deals with both phases being incom-
pressible one can drop out the second term from stress tensor, resulting in

T = 2µS (5.7)

The continuity equation (5.2) is then reduced into

∇ · u = 0 (5.8)

Note: Transport equation for marker function (5.6) can be also derived strictly from
continuity equation (5.2) by substitution of total density term (5.1) as follows

∂(αρl + (1− α)ρg)

∂t
+∇ ·

(
(αρl + (1− α)ρg)u

)
= 0 (5.9)[

ρl
∂α

∂t
+ ρl∇ · (αu)

]
+

[
ρg
∂(1− α)

∂t
+ ρg∇ ·

(
(1− α)u

)]
= 0 (5.10)
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where subscripts l and g stand for liquid and gas. Densities ρl and ρg are constant and
terms in square brackets in equation (5.10) are linearly dependent equations, identical
with equation (5.6).

The momentum equation (5.3) has been modified by surface tension fσ, which can be
further expressed as

fσ = σκ∇α (5.11)

where

κ = −∇ · ∇α
|∇α|

(5.12)

Regarding the body forces term in momentum equation (5.3), it only act here due to the
difference between phase fraction densities which by gravitational field cause buoyancy.
Thus this term can be expressed as

ρf = −x · g∇ρ (5.13)

where g = (0, 0,−g) is gravitational acceleration vector with g = 9.81 and x is position
vector.

Finally, governing equations of complete mathematical model in detailed form are
presented hereby.

∇ · u = 0 (5.14)

∂α

∂t
+∇ · (αu) = 0 (5.15)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ ·

[
µ
(
∇u + (∇u)T

)]
− x · g∇ρ− σκ∇α (5.16)

5.3 interFoam

This solver is included in OpenFOAM-v5.0. version and represents the category of algebraic
methods for phase interface reconstruction. This way of interface reconstruction is gener-
ally simple to implement, not restricted to structured grids, but on the other hand consid-
ered less accurate than geometric methods used interIsoFoam, which will be described
later in separate section [16].

Above mentioned mathematical model of VOF method for two-phase flow consists
of Navier-Stokes equations for incompressible fluid with appropriate modification of mo-
mentum equation (5.16) plus one extra equation for phase-interface transport (5.15) to
make the model closed. In order to obtain proper coupling of velocity and pressure while
solving these equations numerically, there is employed PISO algorithm where equations
for u coupled with appropriately modified Poisson equation for pressure, p, are solved
simultaneously with the interface advection problem.

Since the methodology of solving continuity and momentum equations (5.14),(5.16)
is the same in both solvers, interFoam and interIsoFoam, and relies on PISO loop,
following description will be focused on different approaches of handling interface transport
equation (5.15).

At first there will be provided some description of how transport equation for marker
function (5.15) is modified in interFoam solver followed by description of MULES (Multi-
dimensional Universal Limiter for Explicit Solution) numerical scheme for advection term.
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5.3.1 Compression term

Throughout the Section (5) until now there was used concept of flow velocity u as a by-
product of combination of one-phase formulation equipped with marker function, which
together allowed to describe two-phase flow. Nevertheless no physical meaning was added
to this velocity. So, in following proceeding there is used analogy between VOF approach
and two-fluid Eulerian model for two-phase flow, where phase fraction equations are solved
separately for each individual phase [17]. This analogy can be expressed by defining the
velocity of the effective fluid in a VOF model as linear combination of phase velocities as
follows

u = αul + (1− α)ug (5.17)

where ul denotes velocity of liquid phase and ug velocity of gas phase. Now, by replacing
velocity in equation (5.15) by term (5.17) one gets

∂α

∂t
+∇ · (αul + (1− α)ug) = 0. (5.18)

Here, by defining relative velocity of phases

ur = ul − ug (5.19)

and doing some algebraic manipulations, following form of phase transport equation results

∂α

∂t
+∇ · (αul)−∇ ·

(
α(1− α)ur

)
= 0 (5.20)

where holds
∂α

∂t
+∇ · (αul) = 0 (5.21)

by definition of liquid phase transport, so finally one gets

∇ ·
(
α(1− α)ur

)
= 0 (5.22)

which is usually called compression term1. As long as the term (5.22) remains valid in
continuum formulation, where with assumption of infinitesimal phase interface thickness
α becomes step function and therefore α(1 − α) is identically zero, it can be added to
original transport equation (5.15).

∂α

∂t
+∇ · (αu) +∇ ·

(
α(1− α)ur

)
= 0 (5.23)

This reformulation of transport equation for marker function is very useful because of
additional compression term, which has no meaning in continuum formulation, but in
numerical computation plays significant role in protection of phase interface smearing
[18].

5.3.2 MULES

For numerical discretisation of convecting terms in equation (5.23) previously mentioned
MULES explicit solver was used. Using Gauss’s divergence theorem yields the equation
(5.23) in semi discrete form follows

∂αi
∂t

+
∑
f

(αiui)f · Sf +
∑
f

(
αi(1− αi)(ur)i

)
f
· Sf = 0 (5.24)

1The term compression here refers to ’compress’ the free surface towards sharper one, not to compress-
ible flow (two phases of flow, i.e. water and air are here still considered incompressible)
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where f denotes summation over all faces of arbitrarily chosen computational cell with
index i. All physical quantities with lower index i are then considered as their mean values
over computational cell (see Figure 5.1).

Figure 5.1: Sketch of a 2D unstructured computational cell

By rewriting equation (5.24) in a terms of face fluxes and using forward Euler temporal
scheme following form is obtained

αn+1+ν
i − αni

∆t
‖Ωi‖+

∑
f

[
(αn+ν

i )f F
L,n+ν +

(
αn+ν
i (1− αn+ν

i )
)
f
FNL,n+ν

]
= 0 (5.25)

with ‖Ωi‖ denoting volume of arbitrary computational cell, n and n+1 discrete time steps
with ν being actual fixed-point inner iteration in order to deal with non-linearity of the
fluxes during computation. Flux FL,n is the flux due to the center-of-volume velocity and
FNL,n is the flux due to the relative velocity of phases (5.19) at the phase interface, which
is calculated indirectly via flux, as in following equation

FNL,n = nf min

[
Cα
|ΦL,n|
|Sf |

,max

(
|ΦL,n|
|Sf |

)]
(5.26)

where Cα is adjustment constant, ΦL,n is the volumetric face flux given by some low order
scheme which guarantees to give monotonic results,

nf =
(∇α)f

|(∇α)f + δn|
· Sf (5.27)

is the face unit normal flux, where Sf is face normal vector and

δn =
ε(∑

i ‖Ωi‖
N

)1/3
(5.28)

being stabilization factor to avoid division by zero [19]. Here N denotes number of all
computational cells and ε = 1×10−8. As one can see, direction of relative (or compression)
velocity is given by (∇α)f and thus acting perpendicular to phase interface. Computing
FL,n face flux is done by high resolution scheme with following form

FL,n = λ(Φn
i − Φn

N ) + Φn
N (5.29)

where Φn
i is flux in volumetric center of current cell and similarly Φn

N the same in corre-
sponding neighbor cell.
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Blending factor λ is then given by

λ = min

(
max

(
1−max

(
(1− 4αi(1− αi))2, (1− 4αN (1− αN ))2

)
, 0
)
, 1

)
(5.30)

with αi and αN denoted in the same way as fluxes in equation (5.29).
Further treatment of interFoam in OpenFOAM involves an adaptive-step control

(based on face-computed Courant number) and sub-cycling in the solution of alpha trans-
port equation in order to obtain stability of numerical computation.

Brief summation of an approach used in interFoam is that compression term, equa-
tion (5.22), reduces numerical diffusion of α at the phase interface and MULES scheme
gives good combination between boundness and convergence [19].

5.4 interIsoFoam

As stated above, in subsection 5.3, interIsoFoam belongs in a family geometric meth-
ods, where treatment of phase interface reconstruction is done from volume fraction data.
Original idea, presented in article [16], was to develop an algorithm, which works on un-
structured grids is not computationally expensive and yet posses accuracy of the geometric
schemes by explicitly approximating the interface. In following proceeding will be pro-
vided description of isoAdvector algorithm, implemented in OpenFOAM-v1712, which
calculates face fluxes for the cells containing the interface. Description is adopted form
original article [16] by Roenby, Bredmose and Jasak.

Governing equation for phase interface transport is here derived from mass conservation
through arbitrary volume as follows.

d

dt

∫
V
ρ(x, t) dV +

∫
∂V

u(x, t)ρ(x, t) dS = 0 (5.31)

Here V ∈ Ω is stationary arbitrarily chosen sub-domain of computational domain Ω and
position vector x and velocity vector u are of corresponding dimensions. Now, considering
that both fluids are incompressible with constant densities of liquid and gas phase (ρg and
ρg), following density indicator field could be employed

H(x, t) ≡ ρ(x, t)− ρg
ρl − ρg

(5.32)

such that H(x, t) = 1 where liquid phase is present at given position x and time t.
Analogously, for gas phase H(x, t) = 0.

Substituting term (5.32) in equation (5.31) and choosing integration domain as an
arbitrary computational cell Ωi one gets

d

dt

∫
Ωi

H(x, t) dV = −
∑
j

∫
fj

u(x, t)H(x, t) dS (5.33)

where index j denotes neighboring cells and thus fj is common face between cells i and j.
Vector dS is perpendicular to the boundary and by convention points out from i-th cell,
see Figure 5.1.

Volume fraction field in i-th cell is naturally defined as

αi(t) ≡
1

‖Ωi‖

∫
Ωi

H(x, t) dV (5.34)

where αi(t) ∈ 〈0, 1〉 represents volume fraction of given cell filled by liquid phase.
If equation (5.33) is integrated with respect to t on interval 〈t,∆t〉

25



(formally relabeled with t), following form is obtained after some algebraic manipulations

αi(t+ ∆t) = αi(t)−
1

‖Ωi‖
∑
j

∫ t+∆t

t

∫
fj

u(x, t)H(x, t) dS dτ. (5.35)

For further easier handling is the integral in equation (5.35) denoted as

∆Vj(t,∆t) ≡
∫ t+∆t

t

∫
fj

u(x, t)H(x, t) dS dτ. (5.36)

thus ∆Vj(t,∆t) represents total volume of liquid phase fluid, transported during time
interval 〈t, t + ∆t〉 across the face fj . In order to present isoAdvector algorithm there
need to be provided some further terms, used later, such as

ui(t) ≡
1

‖Ωi‖

∫
Ωi

u(x, t) dV , φj(t) ≡
∫
fj

u(x, t) dS (5.37)

The task for isoAdvector algorithm is to solve equation (5.35) numerically, which means
that one needs determine its ∆Vj(t,∆t) part in some feasible way. Note, that up to now
there hasn’t been done any approximations in equation (5.35), so it holds exactly.

First, in the following procedure there is made approximation of velocity field u(x, t)
in equation (5.35) so that velocity is considered constant during time integration, implying

u(x, τ) ≈ u(x, t) ∀τ ∈ 〈t, t+ ∆t〉. (5.38)

With this assumption, after some manipulations one can obtain

∆Vj(t,∆t) ≈
φj(t)

|Sj |

∫ t+∆t

t
Aj(τ) dτ. (5.39)

where

Aj(τ) ≡
∫
fj

H(x, τ) dS (5.40)

with dS ≡ d|S|. Hereby, the whole problem of phase interface resolving has shrunk into
computing integral ∫ t+∆t

t
Aj(τ) dτ. (5.41)

Hence Aj(τ) in fact represents area of face fj of computational cell intersected by liq-
uid phase, the integral (5.41) then represents evolution of this intersection in time. In
other words one has to determine motion of phase interface in the cell, represented by
moving intersections of this interface with cells faces, within the numerical time step, see
Figure(5.2). The whole procedure can be summarized into three steps.

At first, there is a need to determine initial position and orientation of phase interface
in i-th arbitrary cell at time t. In order to do that, one has to interpolate volume fractions
(marker function values) from cell centers to the grid points (red dots on Figure 5.2). After
this step follows procedure of finding phase interface intersection with cell edges (blue dots
on Figure 5.2). This is done by linear interpolation as follows

xcut = Xk +
fX − fXk

fXl
− fXk

(Xl −Xk) (5.42)

where xcut is the position vector of phase interface intersection with cell edge given by
(Xk,Xl). Here indexes k, l ∈ {1, ..., N} denote any of the N vertices of cell i connected by
an edge. Values fXk

, fXl
represent previously mentioned volume fractions interpolated to
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matching cells vertices. The interpolation on given edge is then done only if parameter
fk < fX < fl otherwise entire edge lies whole in liquid or gas phase. The parameter
fX here represents unknown position of phase interface in cell i to be computed so that
divides cell in two parts in the way that liquid and gas phase are in the same ratio as
given by cell centered marker function at initial time αi(t). Summing up, xcut and fX
are implicitly connected via phase fraction ratio in given cell. Broadly speaking, it means
that in given cell phase fraction position and orientation are solved all together. Details
of solution can be found in original article [16].

(a) time t (b) time t+ ∆t

Figure 5.2: Scheme of phase interface surface motion in i-th computational cell during
times t and t+ ∆t

Second step of the isoAdvector algorithm deals with determining of phase fraction ve-
locity in order to estimate its motion within the computational timestep. In the beginning
there are used common OpenFOAM tools for computing geometric center, xS , of moving
phase interface and the velocity vector in this center, US , as some linear combination of
known velocity field at initial time, t. After that is computed normal component of US ,
perpendicular to phase interface, given by (US · nS) nS , with nS representing unit normal
vector pointing out of liquid phase by convention. While phase surface movement is de-
termined, one can calculate its time integral, equation 5.41, by some numerical method.
During the time integration on interval 〈t,∆t〉 one has to keep in mind that intersection
of phase interface with cells faces (blue dots on Figure 5.2) passes through different faces
so the flow has to be always computed on correct face. This is ensured by breaking in-
tegration interval into some sub-intervals on which intersection does not change the any
face. There is provided closer description of this procedure in original article, including
some further implementation details about bounding procedure, employed to provide strict
boundedness of solution.

Finally, substituting all adequate terms back to equation 5.35, which governs the trans-
port of phase interface, values of α in next time step can be evaluated.
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6. Implementation of non-reflective
boundary condition to VOF method

6.1 Motivation

As stated in first section, the original motivation of this work was simulation of water
pump placed in a semi-opened basin. In order to make this case easier to handle for
developing and implementing non-reflective boundary conditions, original geometry was
trimmed of unimportant features. Though using the simplified geometry, shown on Figure
(6.1), the original (un)physical phenomena causing problems during the computation of
flow are still present.

Figure 6.1: Geometry of a 3D semi-opened basin

On the Figure (6.1) is presented 3D geometry of a tank equipped with vertical tube
serving as water pump. Solid walls of the tank are composed of bottom (yellow), front
and back wall, top, pipe and right wall (all grey). Front wall is transparent here. The red
left wall is only artificial computational boundary, physically not present in the basin.

The primary goal of the original engineering task was to determine behavior of water
level when its height is ’close’ at the inlet of pipe at specified outflow when pumping the
water out.

The first numerical simulation was performed with basin placed in the water so that
water level set up with flat surface near the pipe. Hence the basin is semi-opened and
considered to be placed in sufficiently large water source, the water level is expected to vary
around initial state only slightly during the pumping. Nevertheless, after some time from
computation start there occurred bigger waves in the tank, presumed to be an artifact
of reflecting smaller ones form both sides, right and left wall of the basin. Due to the
superposition of waves at the position of pipe inlet (together with their breaking) the
pump sometimes sucked mixture of water and air and started working unstationary.

The simulation was performed in the OpenFOAM-v5.0 where reflections from left
boundary appeared while using currently available boundary conditions. This initiated
the effort to prescribe more suitable boundary conditions and finally led to creating new,
non-reflective, boundary conditions inspired by shallow water flows.
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Figure 6.2: Scheme of situation where wave is approaching left boundary in time t1. After
passing the boundary being unhampered, the (imaginary) wave propagates unchanged,
time t2.

6.2 Implementation

The construction of non-reflective boundary conditions will be demonstrated for the case
of aforementioned left artificial boundary of the water tank. Considering VOF model
governed by equations (5.14), (5.15) and (5.16) with ρ = αρl + (1 − α)ρg and µ = αµl +
(1− α)µg where ρl, ρg, µl and µg are constant, one has to prescribe boundary conditions
for pressure, p, velocity, u and marker function, α. So, the task is to prescribe combination
of α and u as an equivalent of h and u in shallow water terminology. The u and α in the
center of boundary adjacent cells are known at the beginning of each time step tn, but
they are varying along the water depth because of 3D nature of VOF model. To be able
to use similarity with shallow water equations one must do some type of vertical averaging
of these quantities.

Figure 6.3: Scheme of computational domain with highlighted computational cells at left
boundary and with reconstructed water surface.
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Figure 6.4: Scheme of boundary adjacent computational cells colored according to the
value of marker function. Dark blue for α = 1 light blue for α = 0 and mixed shade for
0 < α < 1.

In the following approach there is used averaging not only in vertical direction (z),
but also in horizontal direction (y) since the implementation in OpenFOAM is simple to
proceed in this way. Although that 3D nature of waves incoming to the non-reflective
boundary is destroyed by this approximation, the errors of solution are rather small con-
sidering that variation of water level in y-direction at the boundary is not large. The
averaging of α and u is expressed by following relations

h(xb+1, t
n) =

∫
Ωb

α(xb+1, y, z, t
n) dydz

W
(6.1a)

u(xb+1, t
n) =

∫
Ωb

α(xb+1, y, z, t
n) · u(xb+1, y, z, t

n) dydz∫
Ωb

α(xb+1, y, z, t
n) dydz

(6.1b)

where xb+1 denotes x-coordinate of boundary cells centers, Ωb represents the boundary,
W is the width of the tank and u is the velocity in x-direction (u = (u, v, w)).2 With
the h(xb+1, t

n) and u(xb+1, t
n) one can now determine water height and velocity at the

boundary in time tn+1 in a similar way as it was done in equations (3.20) and (3.20) in
the case of one-dimensional shallow water problem. Once h(xb, t

n+1) and u(xb, t
n+1) are

obtained, boundary conditions for u and α are computed as

α(xb, y, z, t
n+1) =

{
0, z > h(xb, t

n+1)

1, z < h(xb, t
n+1)

(6.2a)

u(xb, y, z, t
n+1) = α(xb, y, z, t

n+1)
(
u(xb, t

n+1), 0, 0
)
. (6.2b)

2Note that integrals over the boundary Ωb in equations (6.1) turn into sums when implemented to FVM
method
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For pressure is prescribed homogenous Neumann condition,
∂p

∂n
= 0.

The way of spatial discretisation (actually employed in OpenFOAM) of terms in equa-
tion (6.2) is described as follows. Since the computational grid could be generally both
structured or unstructured the cells faces at boundary are then rectangles or more gener-
ally convex polygons. Physical quantities in these faces are then represented by average
values in the centers of gravity of each face. Let us denote positions of these centers as
(xb, yi, zi) where i represents index of an arbitrary face, see Figure 6.5.

Figure 6.5: Scheme of boundary cells for structured and unstructured computational grid

In the case of structured, rectilinear grid, shown on top picture of Figure 6.5, there is a
possibility to make simple linear interpolation of term 6.2a as shown below

α(xb, yi, zi, t
n+1) = min

[
1, max

(
0,

(
h(xb, t

n+1)− zi −∆zi
∆zi

))]
(6.3)

because ∆zi is easy to determine here. The equation 6.3 expresses that if entire cell face
is under computed water height, h(xb, t

n+1), its marker function value is set as α = 1 and
if the face is above, α = 0. When face is intersected by h(xb, t

n+1), the value of α is set
according to face fraction bellow the intersection.
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The situation of unstructured grid is more difficult to deal with. The current imple-
mentation is done with simple substitution of vertical position, z, by discrete value of
arbitrary cell center, zi

α(xb, yi, zi, t
n+1) =

{
0, zi > h(xb, t

n+1)

1, zi < h(xb, t
n+1)

. (6.4)

This simplification is less accurate than linear interpolation used in the case of orthogonal
grid. Therefore, the goal of the future work is to use OpenFOAM tools which can do re-
mapping of unstructured boundary grid with all physical quantities to cartesian reference
grid. The computation on reference grid is then done as in equation 6.3 followed by inverse
re-mapping to original grid.

Figure 6.6: Scheme of remapping original boundary grid with values of α onto reference
grid

6.3 Numerical results

6.3.1 Two dimensional dam-break problem

All following numerical simulations were performed in OpenFOAM. As a testing case there
was naturally chosen dam-break problem, solved by VOF method as two-dimensional flow,
which corresponds with one-dimensional shallow water problem. Computational domain
is described by Ω = {[x, z] ∈ E2; 0 < x < 1, 0 < z < 0.5} with finite volume discretisation
done by cartesian grid with 200 × 100 cells in corresponding directions (x × z). Initial
condition for α is set according Figure 6.7, being chosen opposite to the 1D shallow water
simulation (Figure 3.6) while artifificial boundary still considered on the left. This is done
in order to overcome possible discontinuities in water surface.

Figure 6.7: VOF, dam-break, initial condition (t = 0s)
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Initial conditions for velocity and pressure are set as u = 0 and p = 0 in entire domain.
At the top, right and bottom boundary the homogeneous Neumann condition is pre-

scribed for α and p−x ·gρ and the non-slip boundary condition is used for u. At the left,
artificial boundary there are tested two types of boundary conditions. In first case there
are prescribed native OpenFOAM boundary conditions for α and u. These conditions
are linked to each other allowing water level to vary (∂α/∂n = 0) in accordance with
prescribed volumetric flow rate. In the second case there are prescribed non-reflective
boundary conditions for α and u. For the pressure there is on the left boundary in both
cases prescribed boundary condition setting the pressure gradient to the provided value
such that the flux on the boundary is that specified by the velocity boundary condition.
[20]

Both cases are solved with either by MULES or isoAdvector numerical scheme for ad-
vection term in equation (5.23) and with LES model for turbulence equipped by additional
turbulence kinetic energy equation.

On the following series of figures are compared water heights (obtained as a isosurface
contours for α = 0.5) in several times for MULES and isoAdvector schemes with both,
standard and non-reflective boundary conditions.

Figure 6.8: VOF, dam-break, water heights, t = 0.1 s

Figure 6.9: VOF, dam-break, water heights, t = 0.5 s

33



Figure 6.10: VOF, dam-break, water heights, t = 0.8 s

Figure 6.11: VOF, dam-break, water heights, t = 1.5 s

Figure 6.12: VOF, dam-break, water heights, t = 3.2 s
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On the Figure 6.8 there are depicted water heights slightly after beginning of simula-
tions, therefore no significant differences between used solvers or boundary conditions are
present. The Figure 6.9 shows water waves have been reflected from right wall and now
approaching to the left artificial boundary. There also start to emerge little variations
between MULES and isoAdvector with that isoAdvector tends to resolve water surface
slightly sharper, with capturing higher frequency waves. On the other hand MULES
seems like to possessing some kind of numerical viscosity. Figures 6.10 and 6.11 dis-
play significant differences between standard and non-reflective boundary conditions, with
waves being reflected from side to side using standard boundary conditions. Moreover,
MULES and isoAdvector schemes lead to different water heights here. On the Figure
6.11 are nearly calm water surfaces in the case of non-reflective boundary conditions.
This is because majority of disturbances passed out of computational domain and there is
constituting calm surface, given by h−∞ = 0.3, specified as water level outside of compu-
tational domain. In the contrast, standard boundary conditions still generate oscillations
in solution.

Following figures show comparison between original computational domain and its
elongated version, given by Ω̃ = {[x, z] ∈ E2; −1 < x < 1, 0 < z < 0.5}. Water height is
obtained by isosurface contours, as in previous cases.

Figure 6.13: VOF, dam-break, water heights, t = 0.2 s

Figure 6.14: VOF, dam-break, water heights, t = 0.8 s

Figure 6.15: VOF, dam-break, water heights, t = 1.2 s
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One can see that throughout Figures 6.13-6.15 solutions on the original domain (plotted
on 0 < x < 1) agree with ones on the elongated domain (plots of water heights of related
solutions mostly overlap each other). It implies that non-reflective boundary conditions
allow to effectively reduce computational domain and therefore computational cost.

6.3.2 Three dimensional water pump

Following case demonstrates the performance of the non-reflective boundary conditions on
simulation of vertical water pump draining out water from semi-opened basin, Figure 6.1,
as also presented in [20]. This case is computed in three dimensions by VOF method with
MULES approach for resolving phase interface. Computational domain is unstructured,
mainly composed of hexahedral cells with total number of 380 000 cells. On the left,
artificial side (x = −10) there is considered either standard, variable water height or non-
reflective boundary condition for u an α. The non-slip boundary conditions for u are
prescribed on front and back wall, bottom and right wall. Boundary conditions for α
and p − x · gρ are set the in correspondence with two-dimensional dam-break problem.
There is left one extra set of boundary conditions need to be imposed on the water pump
outlet, see Figure 6.16. Velocity is here determined by specified volumetric flow rate of
V̇out = 4 m3/s, known as flowRateOutletV elocity in OpenFOAM. For α and p − x · gρ
there are prescribed homogeneous Neumann conditions. Initial conditions for u and p are
set as zero in entire domain, α is set in correspondence with Figure 6.16. There is used the
same turbulence model (LES with k-Equation) as in the 2D dam-break VOF simulation.

Figure 6.16: VOF, water pump, water heights, t = 0.0 s

On the Figures 6.17 and 6.18 there can be seen a noticeable difference between non-
reflective boundary condition (upper picture) and standard, variable height boundary
condition (lower picture). The non-physical behavior is caused by water waves being
reflected back into computational domain.
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Figure 6.17: VOF, water pump simulation, water heights, variable water height boundary
conditions (upper picture), non-reflective boundary conditions (lower picture), t = 14.0 s
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Figure 6.18: VOF, water pump simulation, water heights, variable water height boundary
conditions (upper picture), non-reflective boundary conditions (lower picture), t = 33.0 s
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Figure 6.19: VOF, water pump simulation, water heights, variable water height boundary
conditions (upper picture), non-reflective boundary conditions (lower picture), t = 47.0 s

Despite the fact that waves of larger amplitudes are effectively removed by non-
reflective boundary condition, there are still present small wavelets on the lower picture of
Figure 6.19. This phenomenon might be explained by several facts. First, as was stated
in section 6.2, while implementing non-reflective boundary condition there was used aver-
aging of α not only in vertical direction (which would result in h(xb+1, y, tn), water height
still depending on y-coordinate) but also along the width of water tank, compare with
equation 6.1a. This kind of treatment is easier to accomplish in OpenFOAM, but makes
non-reflective boundary condition for three-dimensional VOF method to behave in cor-
respondence with the one derived for one-dimensional shallow water flow. This implies
that spatial character of waves incoming to the artificial boundary is destroyed, causing
probably major part of present errors. Second problem may be related with the possibility
of violating the flow regime during the VOF simulation. This means that nature of flow
computed by VOF method should be as close as possible to the flow described by theory
of shallow water from which non-reflective boundary condition is derived (i.e. low vertical
velocity of flow at the artificial boundary, continuous water surface, etc.). Another issue
could be the first order spatial accuracy of derived boundary condition.
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7. Conclusion
Main goals of the thesis presented in the beginning have been fulfilled. At first, analysis
of shallow water equations has been carried out in order to derive non-reflective boundary
conditions. In following part, performance of the non-reflective boundary conditions has
been tested on the one-dimensional dam-break problem and its two-dimensional parallel.
Furthermore, description of two-phase VOF mathematical model has been given with the
emphasis on two different, widely used methods for capturing phase interface. After that
the major contribution of this work, consisting of adoption of shallow water non-reflective
boundary conditions into the VOF method has been presented. In the end, performance
of non-reflective boundary conditions in the framework of VOF method has been demon-
strated on results of numerical simulations of two-dimensional dam-break problem and
three-dimensional water pump problem. Some of these results have been also presented
in [20] and [21].

Even though non-reflective boundary conditions perform satisfactorily in VOF model,
in the end of the section 6 have been mentioned some minor errors related with aspects of
derivation of boundary condition. The most significant assumption that has been made
during the derivation has been addressed with averaging of water height along the width
of water tank at the boundary, hence neglecting its spatial character in that direction.

The future research is therefore aimed to evaluate the water height with respect to the
y-coordinate (see i.e. Figure 6.5). Because this could be quite hard task to do on unstruc-
tured grids, there is expected a bypass with the mapping procedure being employed, as
has been proposed in subsubsection 6.2. This treatment will also allow to compute water
height more precisely in vertical direction but moreover it is promising when extending
the boundary condition for non-flat bottom topography (especially along y-coordinate of
water tank). Last, but not the least perspective for future work is to improve spatial
accuracy of the boundary condition to the 2nd order.

The VOF method and shallow water theory are attached to many actual research
activities, some of them are either employing or at least proposing the combination of
those approaches in order to reduce computational cost (i.e. I.Vandebeek et al. [22],
González Rodŕıguez et al. [23]). This is done with using shallow water equations to
describe phenomena of less interest in order to save computational effort (i.e. water waves
far form shore), followed by applying VOF method for describing waves breaking on the
shore. With awareness of mentioned research subjects there is a hope that the work
presented in this thesis might be utilized to a greater extend.

40



References
[1] Dan Givoli. High-order local non-reflecting boundary conditions: a review. Wave Mo-

tion, 39(4):319 – 326, 2004. New computational methods for wave propagation. URL:
http://www.sciencedirect.com/science/article/pii/S0165212503001203,
http://dx.doi.org/https://doi.org/10.1016/j.wavemoti.2003.12.004 doi:https:

//doi.org/10.1016/j.wavemoti.2003.12.004.

[2] Brett Sanders. Non-reflecting boundary flux function for finite volume shallow-water
models. 25:195–202, 02 2002.

[3] John R Dea. High-Order Non-Reflecting Boundary Conditions for the Linearized
Euler Equations. PhD thesis, Naval Postgraduate School Monterey, California, 2008.

[4] Joseph B. Keller and Dan Givoli. Exact non-reflecting boundary condi-
tions. Journal of Computational Physics, 82(1):172 – 192, 1989. URL:
http://www.sciencedirect.com/science/article/pii/0021999189900417,
http://dx.doi.org/https://doi.org/10.1016/0021-9991(89)90041-7 doi:https:

//doi.org/10.1016/0021-9991(89)90041-7.

[5] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to com-
putational continuum mechanics using object-oriented techniques. Comput. Phys.,
12(6):620–631, November 1998. URL: http://dx.doi.org/10.1063/1.168744,
http://dx.doi.org/10.1063/1.168744 doi:10.1063/1.168744.

[6] C.B. Vreugdenhil. Numerical Methods for Shallow-Water Flow. Water Science and
Technology Library. Springer Netherlands, 1994. URL: https://books.google.cz/
books?id=8uohwO1mgaEC.

[7] H. Segur and H. Yamamoto. Lecture 8: The shallow-water equations, June 2009.
URL: https://www.whoi.edu/fileserver.do?id=136564&pt=10&p=85713.

[8] Jan Nordstrom. Well posed problems and boundary conditions in computational
fluid dynamics. In 22nd AIAA Computational Fluid Dynamics Conference, page
3197, 2015.

[9] Y.P. Petrov and V.S. Sizikov. Well-posed, Ill-posed, and Intermediate Problems with
Applications. Inverse and ill-posed problems series. VSP, 2005. URL: https://books.
google.cz/books?id=J43XGdOcX8sC.

[10] E.F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction. Springer Berlin Heidelberg, 2013. URL: https://books.google.cz/
books?id=zkLtCAAAQBAJ.

[11] Christopher Earls Brennen and Christopher E Brennen. Fundamentals of multiphase
flow. Cambridge university press, 2005.

[12] A. Prosperetti and G. Tryggvason. Computational Methods for Multiphase Flow.
Cambridge University Press, 2009. URL: https://books.google.cz/books?id=

KBuKZkEUWMIC.

[13] C.W. Hirt and B.D. Nichols. Volume of fluid (vof) method for the dynam-
ics of free boundaries. J. Comput. Phys.; (United States), 39:1, 1 1981.
http://dx.doi.org/10.1016/0021-9991(81)90145-5 doi:10.1016/0021-9991(81)

90145-5.

41



[14] The OpenFOAM Foundation Ltd. Openfoam v5.0, August 2018. URL: https://
openfoam.org/version/5-0/.

[15] ESI Group. Opencfd release openfoam R© v1712, August 2018. URL: https://www.
openfoam.com/releases/openfoam-v1712/.

[16] Johan Roenby, Henrik Bredmose, and Hrvoje Jasak. A computational method for
sharp interface advection. Royal Society open science, 3(11):160405, 2016.
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