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Abstrakt

Stávaj́ıćı metodologie pro návrh konstrukćı z korozivzdorné oceli daná normou EN 1993-
1-4 je založena na podobnosti s př́ıstupy definovanými pro ocel uhĺıkovou. Změny jsou
např́ıklad při kontrole stability nebo v uvažováńı elasticity ve všech výpočtech. Hlavńı
ćıl této práce je ukázat rozd́ıly mezi uvažováńım materiálové nelinearity v analýze v
porovnáńı s normovým lineárńım př́ıstupem, který může vést k nadhodnoceným a konz-
ervativńım výsledk̊um. Plně geometrická a materiálově nelineárńı analýza byla provedena
za pomoci softwaru pro výpočet metodou konečných prvk̊u Abaqus pro devět r̊uzných tř́ıd
korozivzdorné oceli a pro tři r̊uzné tř́ıdy uhĺıkové oceli. Tyto výsledky byly porovnány s
výslednými hodnotami vypoč́ıtanými dle normy. Geometrie a pr̊uřezy jednotlivých prvk̊u
portálového rámu jsou převzaty z reálné konstrukce umı́stěné v kampusu technické uni-
verzity ve Stockholmu. Závěry této práce ukazuj́ı podceněńı návrhové kapacity konstrukce
v př́ıpadě zanedbáńı materiálové nelinearity.

Kĺıčová slova: nelineárńı materiál, kozorivzdorná ocel, portalový rám, MKP, ABAQUS.
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Abstract

The current design methodology for structural stainless steel given by EN 1993-1-4 is based
on its similarities with the carbon steel approach but with minor changes in equations for
member buckling resistance and the assumption elasticity. The primary aim of this paper
is to show differences between assuming material non-linearity in the analysis compared
to the linear analysis code approach which can lead to over-predicted and conservative
results. Fully geometric and material non-linear analysis with initial imperfections is
carried out using the finite element software Abaqus for nine different grades of stainless
steel and three different grades of carbon steel. These results are compared with results
obtained by the code approach. The geometry and cross-sections of the portal frame is
based on the real structure located in the campus of the university in Stockholm. The
conclusion of this work shows the under estimation of the structure design capacity when
material non-linearity is neglected.

Keywords: non-linear material, stainless steel, portal frame, FEM, ABAQUS.
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Chapter 1

Introduction

1.1 Background

Nowadays, architectural requirements have been increasing with clients demanding more

with regards to the visual matter of the structure. Because of this, un-aesthetic bearing

structures are now being constructed with materials which appear more visually pleasing.

Stainless steel is one such material which fulfills this requirement due to its advantages

in corrosion resistance and durability when compared to common carbon steel. On the

other hand there is still a big disadvantage which is its expensiveness. This specific iron

alloy is primarily divided into five groups used in structural design. Design Manual for

Structural Stainless Steel [1] divides them namely into austenitic-ferritic (duplex), ferritic,

martensitic and austenitic stainless steel and precipitation hardening steels differing in

amounts of chromium and other chemical elements and thermomechanical treatment.

This work is focused on austenitic and austenitic-ferritic steels. Austenitic stainless

steels are the most commonly used alloys in construction with a high amount of nickel

content. According to [2] they have high ductility, are weldable and have a exceptional

corrosion resistance. Only cold working can strengthen them. Austenitic-ferritic stainless

steels have much higher mechanical strengths compared to austenitic steels and due to

lower amounts of nickel in the alloy, the market price is more or less constant and not

so volatile as it is in case of austenitic steels. With similar weldability and corrosion

resistance they are the closest to austenitic steels from all the five groups.

There are few design approaches for structures of stainless steel, but they are generally

based on the similarity with carbon steel. However, stainless steel and carbon steel have

different material properties and behaviour. Carbon steel is described by a bi-linear

stress-strain response meanwhile the characteristics of stainless steel is non-linear, curved.

Current EN 1993-1-1 [3] states rules for designing structures from carbon steel and assumes

that the material stress-strain behaviour is linear. EN 1993-1-4 [4] then supplements the

1



CHAPTER 1. INTRODUCTION 2

rules when the material is stainless steel but still assuming the linear behaviour which

can lead to conservativeness of the design capacity.

1.2 Aim and the scope

Codes mentioned in Section 1.1 are used to examine an existing part of a building structure

assumed as a portal frame. Firstly the structure is checked using the mentioned code

approach for carbon steel and secondly a FE shell model is developed and full GMNIA is

done using the Abaqus software for finite element calculations. This check is followed by

a parametric study with different stainless steel materials, both for carbon and stainless

steel with appropriate code, and its behaviour to find the difference in assuming and

neglecting stainless steel material non-linearity. The overall purpose of this work is to

show the differences in the material linearity and non-linearity of the stainless steel and

the conservativeness of the code approach. The study objectives include:

• to investigate the structure using code approach for carbon and stainless steel

• to develop a finite element model close to the real structure

• to study the influence of stainless steel material non-linearity

• to investigate the influence of different modes for initial imperfections on theoretical

load

• to assess fully geometrical and non-linear material analysis with initial imperfections

for all modelled grades of steel

1.3 Outline of the thesis

In this chapter you will find a short introduction to stainless steel as well as the objectives

of this thesis and outline of work.

In the second chapter you can find a literature review which was considered relevant

to the study.

The third chapter contains descriptions of the methods which were used on a case

study of an existing portal frame part of the structure, a description of the check using

code approaches, development of the FE shell model together with finding the suitable

mesh type and seed size used for the analysis, the process for finding the eigen modes

of the structure, a definition of initial geometric imperfections and non-linear material

modelling and its application in the software. This chapter also explains settings used in

parametric studies.
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The results of the different analysis are presented in chapter four and a final summary,

conclusions and suggestions for further research can be found in the last chapter.



Chapter 2

Literature review

2.1 European design standards and stainless steel

To keep consistency and to have a unitary system of documents for building designs, the

European Union prepared and developed a set of building approaches called Eurocodes.

These standards cover the designs of all types of structures such as timber, steel or

masonry. Each type of structure has its own document with parts explaining the basis of

design or so called ’Principles and Application Rules’.

To distinguish between country specific variables such as modification factors, the

choice of design method or whether an informative annex may be used, each of the Eu-

rocodes have essential documents called ’National Annexes’.

In the matter of structural stainless steel there is a European stainless steel design

guidance [1] firstly published by Euro Inox in 1994 which formed the basis for a European

standard for stainless steel [4].

The European design standard for common carbon steel [3] gives us rules how to design

steel structures, with material thicknesses t ≥ 3mm, in a limit state design approach. The

above mentioned standard [4] only supplements or supersedes the standard used for the

carbon steel. Therefore during designing stainless steel structures both of the codes must

be used together. Currently [4] lists a wider range of austenitic alloys but a smaller

amount of ferritic and duplex, totalling 21 grades covered in three groups.

However [3] assumes in the elastic calculations that the material behavior is linear.

Clause 5.4.2 states that elastic global analysis should be based on the assumption that the

stress-strain behaviour of the material is linear, regardless of the stress level. Furthermore

to perform calculations in the plastic state, a bi-linear material diagram is assumed as

seen in Figure 2.1. Clause 5.4.3 states that the bi-linear stress-strain relationship may

be used for the grades of structural steel specified in different sections of the standard.

Figure 2.1b describes the carbon steel behaviour quite closely compared to the real case

4
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up till 0.75% strain [1]. If such a diagram was simplified for higher strains, unrealistic

values of stress would be obtained.

Strain 

S
tr

e
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s
 

(a) Elastic relationship

Strain 

f
y
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tr

e
s
s
 

(b) Elastic-perfectly plastic relationship

Figure 2.1: Stress-strain relationships used in global analysis

However the behaviour of a stainless steel material is completely rounded (Figure 2.2)

with no defined yield point. Furthermore assuming an elastic behaviour of a stainless

steel material by using material characteristics according to the code will neglect a plastic

redistribution of loads and material strain hardening, leading to underestimation of the

material capacity.

Strain 

S
tr

e
s
s
 

Figure 2.2: Stress-strain relationships for stainless steel

Annex C of [4] gives us an alternative method of how to model the material stress-

strain behaviour when there is a need for material modelling. Otherwise this standard

gives us a table in Clause 2.1.2 with values of material strengths used for a global analysis

and material coefficients in Clause 2.1.3 for determining resistances of members and cross-

sections.
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2.2 Stress-strain non-linear behaviour

Due to the mentioned differences in the shapes of the stress-strain relationship in stainless

and carbon steel, there are few methods of material models which have been developed. It

should be noted that the bi-linear relationship acceptable for carbon steel is not acceptable

for stainless steel as it is discussed later. In Figure 2.3 we can see a comparison of different

relationships between stainless steels and carbon steel as it is showed in [1].
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Austenitic - 1.4318
Austenitic-ferritic - 1.4362
Carbon steel - S355

Figure 2.3: Comparision of carbon and stainless steel relationships

One of the first formulas of material model describing the non-linear stress-strain

relationship is the Ramberg-Osgood one stage Equation (2.1), where ε is the strain, E is

the Young’s modulus of elasticity, σ is the stress, n is the strain hardening exponent and

σ0.2 is the material 0.2% proof stress, which has been developed into the more and widely

used two-stage model because it was not provided enough accuracy.

ε =
σ

E
+ 0.002

(
σ

σ0.2

)n
(2.1)

The previously mentioned Ramberg-Osgood two-stage modification given by the An-

nex C of [4] (Equation 2.2, where n,m are strain hardening coefficients in which Rp0.01

is the 0.01% proof stress, fy is the yield stress, Ey is the tangent modulus of the stress

strain curve at the yield strength defined, εu is the ultimate strain) is found to accurately

represent the stress-strain behavior of the different stainless steel grades according to the

study made by Arrayago et al. [5]. The accuracy is especially imminent at the material
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strains above 0.2% proof strength (a more accurate description of a strain hardening), a

comparison is shown in Figure 2.4. Having a more accurate representation of the strain

hardening is important because a non-linear response may then increase the ultimate

strength of the material.
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Rasmussen two-stage model
Ramberg-Osgood one-stage model

Figure 2.4: Comparision of one and two-stage material models

ε =


σ
E

+ 0.002
(
σ
fy

)n
for σ ≤ fy

0.002 + fy
E

+ σ−fy
Ey

+ εu

(
σ−fy
fu−fy

)m
for fy ≤ σ ≤ fu

(2.2)

n =
ln(20)

ln(fy/Rp0.01)
(2.3)

2.3 Beam-column behaviour

Portal frames are very efficient and inexpensive for building and producing structures

consisting of columns and rafters (beams). When applying a load at a portal frame

(for example wind, snow and dead load), column members will be always subjected to

a combination of a bending and axial force. This kind of applied loading may lead to

lateral-torsional and flexural buckling of the member.

As noted in Section 2.1 the supplementing part for stainless steels [4] provides a

modified equation for this kind of behaviour. Unfortunately, the current formula was
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developed around 10 years ago (Jandera et al. [6]) and interaction buckling factors, which

cover the material’s non-linearity and its gradual yielding, have improved since then.

Relevant interaction factors for stainless steel beam-columns, proposed by [3], [4] and

other researchers were studied in [6]. The study was performed on three column lengths

of three different stainless steel grades and two types of open and hollow cross-sections.

Fully GMNIA was carried out and the extracted interaction factor was compared with

the interaction factor calculated by the code definition. In case of a non-uniform moment

distribution along the member length, the results showed conservativeness for members

loaded mostly by bending.

Walport et al. [7] carried out analysis of different design approaches used to assess

stainless steel portal frames. Settings of the portal frames in the study was done in a way

that the members (cross-section HE340B) were under both axial load and bending and

ratio of GMNIA to design resistance was calculated for 10 considered design approaches,

from which five of them were the Eurocode based. The results in these design approaches

in [4] showed that the design predictions are highly scattered and excessively conservative

in elastic global analysis.

2.4 Global analysis and stability

[3] states two methods for determining the internal forces and moments of the analysed

structure. Using an initial geometry of the structure is called a first-order analysis and a

second-order analysis is when the influence of the deformed structure is taken into account.

A second-order analysis should be considered only if the effects of the deformed geometry

increase the action effects or modify the structural behaviour significantly. Moreover,

portal frames and frames with a large length to height ratio usually take into account

these kind of effects unlike frames with a low length to height ratio.

The standard provides us with guidelines when it is necessary to take the second order

effects into account based on the value αcr, a critical load factor by which the design

loading would have to be increased to cause an elastic instability in a global mode.

Concerning portal frames, following the Clause 5.2.1(4)B portal frames with shallow

roof slopes and beam-column type plane frames αcr should be calculated using Equation

(2.4), where HEd is the total design horizontal load, VEd is the total design vertical load,

h is the storey height and δH,Ed is the horizontal displacement when the frame is loaded

with horizontal loads.

αcr =

(
HEd

VEd

)(
h

δH,Ed

)
(2.4)

If the influence of the deformation of the structure plays role (αcr ≤ 10) then we have
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to assess the structure considering the second order effects and imperfections which can

be accounted both totally in global analysis or partially by a global analysis and partially

through individual stability checks of members as it is stated in Clause 5.2.2(3). There is

also possibility of a simpler method using a first-order analysis and to amplify the results

of relevant action effects by a factor but αcr has to satisfy a condition 3 ≤ αcr ≤ 10. In

case of αcr < 3 a more accurate second order analysis has to be done.

In [7] a new approach is presented which assesses the necessity of second-order effects

for a stainless steel material. For all frames with αcr < 15 a second order plastic analysis

should be carried out. There is also proposed a new elastic buckling load factor αcr,mod

based on the ratio of the load-lateral deflection curve from a first order plastic analysis.

When αcr,mod < 10 a second order analysis may be performed otherwise a first order

analysis may be carried out.

2.5 Residual stresses

Residual stresses were not incorporated in the study, following the results of the finite

element study in [7] done on portal frame of a height 5 m and a width of 10 m from

austenitic stainless steel. The residual stresses showed small reductions in the stiffness

and little influence on overall behaviour and therefore negligible effects on the behaviour

of such frame. Similarly published in [6] the influence of residual stresses was assumed

negligible in beam-column behaviour even though more research may be done in a matter

of residual stresses in stainless steel open sections.

Figure 2.5: Beam and shell elements [8]

2.6 Beam and shell approach difference

Following the Abaqus manual [8], the choice of elements is based on the study’s analysis

type. In this case, any of the stress/displacement elements such as beam or shell (also
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called structural elements - Figure 2.5) in the Abaqus can be used. The behaviour of both

of them can be linear or non-linear and may or may not require numerical integration

over the section.

As [7] states in the conclusion linear beam elements in the Abaqus used for the nu-

merical modelling do not allow the member to deform locally. An Euler-Bernoulli beam

formulation only has uniaxial behaviour and neglects shear deformation. This can lead

to over-predicting of the load capacity of the section. By using shell elements which

carry forces in biaxial bending plus in-plane shear and axial forces, local buckling can be

accounted for in the study.



Chapter 3

Case study analysis

Figure 3.1: Exterior of the U-building

Figure 3.1 shows that the selected structure used for numerical analysis and parametric

study is a steel substructure of the existing U-building in the campus of KTH Royal

Institute of Technology in Stockholm. KTH’s U-building is one of the latest buildings

built in the campus with a reinforced concrete core surrounded by a steel frame carrying

concrete floors as well as the rest of the structure. It is one of the buildings in the campus

with the newest equipment and intelligent behaviour and maintenance.

Due to a relatively thick concrete roof desk the building provides an interesting choice

in a matter of actions and loading on the bearing structure. Further motivation for the

selection comes from the visible parts from inside (Figure 3.2a), having moment resisiting

connections (Figure 3.2b), and realistic dimensions as very widely used Class 1 cross

sections.

11
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As seen on the Figure 3.2 the frame is composed of two columns from the cross-section

HE300B with its main axis rotated 90◦ to obtain a higher stiffness as discussed later,

supporting a beam from the cross-section HE550A. This beam is extended on one side

with a length 1
3

of the distance between the columns. There are two stiffener plates above

the column closer to the cantilever part of the beam (more on geometry development in

Section 3.1.1).

(a) Frame part of the structure (b) Connection beam-column detail

Figure 3.2: Analyzed part of the steel structure

3.1 Code based approach

There are several stages a civil engineer or a designer should follow when it comes to

designing a steel structure. Based on these stages it is possible to do a verification check

to see if the structure was correctly designed. Following the EN 1990 [9], [3], and then

publication the Design of Steel Frame Buildings to Eurocode 3 [10] and its basis of design

and process recommendation, one of the first things in designing a structure is defining a

client’s geometry requirements whilst being a little conservative to have and allow enough

space in changes in a member size.

Afterwards, the actions should be stated acting on the analyzed structure defined by

the EN 1991 [11], [12], [13], depending on the location, site altitude and local topography

together with the self-weight of the structure and permanent loading.

Next step is a determination of internal forces of the simplified structure model and

initial member selection based on their cross-section resistance and buckling resistance.

As explained later, for columns subjected to a combination of bending and axial forces

(according to portal frames internal forces) usually the most critical check may be lateral-

torsional buckling resistance.

Frames must be assessed on their sensitiveness to the second order effects. In case

the second order effects should be assumed, it could be done by amplifying the first order
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analysis results or by completing a second order analysis.

Each member is verified afterwards, following the member cross-section classification,

the resistance to bending, shear, compression and buckling resistance.

Finally the value of the largest deflection is compared to the defined limits or to the

requirements of the client.

The whole procedure of the structure assessment done by hand and described later in

the following sections is attached as an Appendix B.

3.1.1 Geometry, loading, imperfections and internal forces

The geometry model was based on a BIM model (Figure 3.3) of KTH’s whole U-building

in which it was possible to get the most accurate and real dimensions of the structure. As

explained in the general description of the structure, all bearing steel structures are made

from the steel grade S355, cross-section properties of the columns (members no. 1, 3 in

Figure 3.4b) are HE300B and cross-section properties of the beam (members no. 2, 4 in

Figure 3.4b) are HE550A. Total length of the structure is L = 9.61 m and the height is h

= 4.21 m. The dimensions were related to the center lines of cross-sections and stiffener

plates were neglected in the code based approach analysis of the structure. The boundary

conditions were fixed supports in the points a, b and the points c, d were classified as rigid,

moment resisting joints. The movement constraint in the point e, available in a real case

scenario, was neglected.

(a) Overview of the whole building (b) Detail of the analyzed part

Figure 3.3: BIM model of the building (provided by KTH)

The acting loading was calculated based on the materials in the BIM model - for

permanent actions (self-weight of the structures - roof, other bearing structures, floors

and walls) and following the Swedish National Annex of [12] - for defining snow load and
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live load acting (technology, maintenance, people and furniture). These forces were placed

in points c and e as described in Figure 3.4b as vertical concentrated forces V .

For a global analysis of the frame according to Clause 5.3.1 of [3] global imperfections

for the frames were incorporated as a global initial sway imperfection stated in Clause 5.3.2

using Equation 3.1, where φ0 is initial basic value of imperfections, αh is the reduction

factor for a height h and αm is the reduction factor for number of columns in a row.

φ = φ0αhαm (3.1)

The sum of all vertical forces V was therefore multiplied by this coefficient and the

result was applied as a horizontal force H. Local imperfections were not introduced as

Clause 5.3.2 states that during performing a global analysis for determining the end forces

and the end moments used in member checks according to Section 6.3 local imperfections

may be neglected.

(a) Geometry and loading (b) Numbering of members and points

Figure 3.4: Details of the analyzed frame

The internal forces were firstly determined manually using a method of virtual work

for the calculation of indeterminate structures. Determining the αcr = 15.236 assumed

a first order analysis to be used as it is stated in Clause 5.2.1 of [3]. The results of the

manual approach were compared and verified together with the results produced from the

software.

3.1.2 Cross-section and member verification

As mentioned earlier, a cross-sectional resistance and a member buckling resistance were

verified following Clause 6.2 and 6.3 of [3].
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3.1.2.1 Cross-sectional resistance

Cross-section classification Each cross-section was classified according to Table 5.2

of [3]. The reason for this is to identify the extent to which the resistance and rotation

capacity of cross sections is limited by its local buckling resistance as it is explained in

Clause 5.5.1. The classification of a cross-section depends on the width to thickness ratio

of the parts subjected to compression. [3] defines four cross-sections classes and in this

case study all of the members are in Class 1. This can be defined as those which can form

a plastic hinge with the rotation capacity required from plastic analysis without reduction

of the resistance.

Cross-section verification According to the diagram of the internal forces of the

structure, the effects of bending and axial forces were verified on the column’s cross-

section as specified in Clause 6.2.9.1 in [3]. The effects of bending (Clause 6.2.5), bending

and shear (Clause 6.2.8) and bending and axial force were verified for the beam’s cross-

section.

3.1.2.2 Buckling resistance of members

Firstly the members sensitive to buckle were defined. The members no. 2 and 4 are

sensitive to flexural buckling characterized by Equation (3.2), where MEd is the design

value of the moment, Mb,Rd is the design buckling resistance moment, and the member no.

3 is sensitive to buckling resistance in combination of axial compression force and bending

moment characterized by Equations (3.3), (3.4), where NEd,My,Ed,Mz,Ed are the design

values of the compression force and the maximum moments about the y-y and z-z axis

along the member, ∆My,Ed,∆Mz,Ed are the moments due to the shift of the centroidal

axis, χy, χz are the reduction factors due to flexural buckling, χLT is the reduction factor

due to lateral torsional buckling, kyy, kzy, kyz, kzz are the interaction factors.

MEd

Mb,Rd

≤ 1.0 (3.2)

NEd

χyNRk

γM1

+ kyy
My,Ed + ∆My,Ed

χLT
My,Rk

γM1

+ kyz
Mz,Ed + ∆Mz,Ed

Mz,Rk

γM1

≤ 1.0 (3.3)

NEd

χzNRk

γM1

+ kzy
My,Ed + ∆My,Ed

χLT
My,Rk

γM1

+ kzz
Mz,Ed + ∆Mz,Ed

Mz,Rk

γM1

≤ 1.0 (3.4)

Out of these two buckling resistance checks, the most critical one was selected, which

was the bending resistance. The forces were then amplified to the level where the ratio

of the moments in Equation (3.2) was equal to unity.
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Critical moment finding To obtain the design buckling resistance moment Mb,Rd

given by Equation (3.5), where Wy is the section modulus, χLT is the reduction factor

for lateral-torsional buckling given by Equation (3.6), it was necessary to calculate the

non-dimensional slenderness λLT characterized in Equation (3.8) where the elastic critical

moment for lateral-torsional buckling Mcr is used. The greater the imperfection parameter

ΦLT is, the smaller the value of the reduction factor. The symbol αLT is the imperfection

factor and β is the correction factor for the lateral-torsional buckling curves. The symbol

λLT,0 is the plateau length of the lateral torsional buckling curves.

Mb,Rd = χLTWy
fy
γM1

(3.5)

χLT =
1

ΦLT +

√
Φ2
LT − βλ

2

LT

(3.6)

φLT = 0.5[1 + αLT (λLT − λLT,0) + βλ
2

LT ] (3.7)

λLT =

√
Wyfy
Mcr

(3.8)

Mcr = µcr
π
√
EIzGIt
L

(3.9)

G = E/2(1 + ν) (3.10)

(a) Input data (b) Results

Figure 3.5: Screenshots of the LTBeamN GUI

To obtain the elastic critical moment there exists two ways, one of them is to use

the software LTBeamN and the second one is to calculate it by hand following Equation

(3.9), where E is the Young’s modulus of elasticity, Iz is the second moment of inertia

about the minor axis, G is the shear modulus given by Equation 3.10, ν is the Poisson’s
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ratio, It is the torsional constant, L is the length of the member and µcr is the relative

non-dimensional critical moment.

To have the smallest elastic critical moment means that the non-dimensional slender-

ness will be larger and therefore the reduction factor χLT will be smaller. In this case

study both approaches of obtaining the elastic critical moment were done and compared.

3.1.3 Parametric settings for stainless steel

As explained in Section 1.1, there are minor changes in [4] in the formulas when the

structure is made of the stainless steel. All code based checks were done for nine types

of stainless steel grades. The material properties used in the calculations for the different

grades of a stainless steel were taken from Table 2.1 and the material coefficients were

taken from Clause 2.1.3.

The cross-sections were classified based on their material grade following Table 5.2.

The formula used in a flexural buckling resistance check was improved - Equation 3.6

changes its denominator to Equation 3.11 and Equation 3.7 is changed to Equation 3.12

and the formulas used in a buckling resistance during bending and axial compression

(Equation (3.3), Equation (3.4)) are changed to Equation (3.13), Equation (3.14) when

the uniaxial moment is about the major axis and to Equation (3.15) when the uniaxial

moment is about the minor axis, where NEd, My,Ed and Mz,Ed are the design values of

the compression force and the amximum moments about the y-y and z-z axis along the

member, respectively, (Nb,Rd)min is the smallest value of Nb,Rd for the four buckling modes,

(Nb,Rd)min1 is the smallest value of Nb,Rd for the three buckling modes, βW,y, βW,z are the

factors that allows for the classification of a cross-section, Wpl,y, Wpl,z are the plastic

moduli for the y and z axes respectively, Mb,Rd is the lateral-torsional buckling resistance

and ky, kz, kLT are the interaction factors and eNy, eNz are the shifts in the neutral axes

when the cross-section os subject to uniform compression.

χLT =
1

ΦLT +

√
Φ2
LT − λ

2

LT

(3.11)

φLT = 0.5[1 + αLT (λLT − 0.4) + λ
2

LT ] (3.12)

NEd

(Nb,Rd)min
+ ky

(
My,Ed +NEdeNy
βW,yWpl,yfy/γM1

)
≤ 1 (3.13)

NEd

(Nb,Rd)min1
+ kLT

(
My,Ed +NEdeNy

Mb,Rd

)
≤ 1 (3.14)
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NEd

(Nb,Rd)min
+ ky

(
Mz,Ed +NEdeNz
βW,zWpl,zfy/γM1

)
≤ 1 (3.15)

All iterations were done using developed MATLAB scripts with variable parameters

to obtain the ultimate loading of the different materials as it can be seen in Figure 3.6.

define critical moment

define material properties

execute script for EC based check

set static variables

calculate design moment

calculate reduction factors

calculate moments ratio

calculate design resistance moment

increase the force

Figure 3.6: Diagram of parametric approach in EC analysis

Firstly, the parametric study was done for Class 1 cross-sections, HE300B, HE550A.

Secondly the Class 1 was changed to Class 4, where the dimensions of the column cross-

section were b = 300 mm, h = 300 mm, tf = 12 mm, tw = 6 mm, where tf is the flange

thickness and tw is the web thickness and the dimensions of the beam cross-section were

b = 300 mm, h = 540 mm, tf = 12 mm, tw = 5 mm.

3.2 FEM approach

To analyze the structure under full geometrical and material nonlinear conditions with

initial imperfections, finite element (FE) analysis was performed in the general-purpose

FE software Abaqus.
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The FE method works by dividing the parts into smaller subdivisions and reconnecting

these elements in nodes with results in a set of algebraic equations. It consists of three

step; pre-processing or defining geometry, element type, material properties etc., solution

or computing the unknown values and post-processing of the results.

The calculation of the ultimate critical force acting in point e (Figure 3.4a) was per-

formed using two models. The first one calculates the eigenvalue (using linear perturbation

and buckle step) of the structure, extracts the resulted displacement and loads it into the

model two as initial imperfections. In this model the load-displacement graph is extracted

and the maximum critical force is determined.

3.2.1 Shell FE model

3.2.1.1 Geometry and section assignment

To prevent any mistakes in the constraints of different parts, the whole frame was modeled

as one part using the extrude function. All open sections were assigned shells of thickness

based on the cross-section thickness from the common library as it is the standard in steel

beams production nowadays. For HE300B b = 300 mm, h = 300 mm, tf = 19 mm, tw =

11 mm, where tf is the flange thickness and tw is the web thickness,and for HE550A b =

300 mm, h = 540 mm, tf = 24 mm, tw = 12.5 mm. The radius of the standard rolled

open sections in reality was neglected in the model and the shells were overlapping in the

connection of the flange and the web.

The first model for obtaining the eigenvalue of the structure was assigned elastic

material based on the properties of the material. For carbon steel, the modulus of elasticity

was E = 210 GPa and for all stainless steels, the modulus of elasticity E = 200 GPa. The

Poisson’s ratio was assigned ν = 0.3. Boundary conditions were specified as encastre -

rotation and displacement disabled in all directions - in points a, b and loading was applied

following the Figure 3.4a.

In the second model as described earlier, initial imperfections from defined buckle step

were imported with an amplifier as discussed in Section 3.2.2. Material properties were

changed to calculated non-linear materials as stated in Section 3.2.3. For obtaining the

critical force acting in point e general static step was chosen as a more robust solution

than a Riks method which was not converging in a majority of cases. That was done by

defining a specific displacement in a mentioned point and the resulting force was therefore

extracted as a reaction force - displacement controlled.
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Figure 3.7: Geometry and mesh of the model

3.2.1.2 Mesh type and element size

There exist many types of shell elements used for the calculations and by following [8]

for most analysis the standard large-strain shell elements are appropriate which include

S3R, S4R, S8R. In this case study, eight noded shell elements with reduced integration

were chosen to save time and by using S4R we would need finer mesh to obtain the same

results.

The most time dependent entity was the size of the mesh seeds. To obtain the most

suitable mesh seed size, Python and MATLAB scripts to test each mesh type were devel-

oped with varying mesh seed size from 25 mm up to 1200 mm for one of the austenitic

stainless steel materials. The variable was increasing every 5 mm up to 200 mm, every 10

mm up to 500 mm, every 25 mm up to 1000 mm and every 50 mm up to 1200 mm.

3.2.2 Imperfections

For global imperfections, the displacement of one of the eigenvalues from the first linear

elastic buckling analysis was loaded into the model number two. Its keywords were edited

and amplified by a value calculated using Equation (3.16), where λ is the relative slender-

ness of the structure, α is the imperfection factor, χ is the reduction factor, MRk is the

characteristic moments resistance and NRk is the characteristic resistance to normal force.

The imperfection amplification value was calculated for beam and column members with

the most critical values. In this study case, the column member was playing the major
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role.

(a) Global - 3D view (b) Global - side view

(c) Local - 3D view (d) Local - side view

Figure 3.8: Eigen modes used for global and local imperfections

e0 = α(λ− 0.2)
MRk

NRk

1− χλ
2

γM1

1− χλ2
(3.16)

In case of local imperfections, a different elastic buckling eigen mode was selected

which was amplified by a value e0 = b/200, where b is the web width.

3.2.3 Non-linear material modelling

As explained in Section 2.2 the non-linear material behaviour was modelled using the

two-stage modified Ramberg-Osgood model using Equation (2.2), where n given by Equa-

tion 2.3 is the strain hardening coefficient, which basically defines the degree of non-

linearity of the stress-strain curve. This is the same for the strain hardening coefficient

m given by Equation 3.18. Ey (Equation 3.17) is the tangent modulus of the stress strain

curve at the yield strength, fy is the yield stress, fu is the ultimate stress and εu is the

ultimate strain. The input parameters used for the calculation of the material curve are

stated in Table 3.1.
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Table 3.1: Material input properties

Type of
stainless

steel
Grade

Modulus of Elasticity
E (GPa)

Yield Strength
fy (MPa)

Ultimate Tensile
Strength
fu (MPa)

1

Austenitic

1.4306

200

200 520
2 1.4301 210 520
3 1.4401 220 530
4 1.4432 220 550
5 1.4311 270 550
6 1.4406 280 580
7 1.4318 330 650
8 Austenitic

-ferritic
1.4362

200
400 600

9 1.4462 460 660

Ey =
E

1 + 0.002n E
fy

(3.17)

m = 1 + 3.5
fy
fu

(3.18)

εu = 1− fy
fu

(3.19)

Figure 3.9: Multi linear plastic model

For the material description in the software a multi-linear plastic model was used

(Figure 3.9). The stress-strain curve was defined in the starting point where σ = 0 MPa

and ε = 0. The definition of the plasticity in the Abaqus is done by inputting tabular
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data of stress values and plastic strain values. These plastic strain values were calculated

using results of the total strain values from Equation 2.2 minus the elastic strain values

calculated using Hooke’s law (Equation 3.20).

εpli = εi −
σi
E

(3.20)

The difference of elastic and plastic parts of the strain can be seen in Figure 3.10

as seen in [7]. Examples of calculated stress-strain diagrams for all tested stainless steel

grades are in Figure 3.11.
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Figure 3.10: Divergence of linear-elastic and plastic stress-strain

3.2.4 Parametric FE study

The definition of the used models and calculation is generated using a Python script

executed by a MATLAB program. This program calculates different material properties

and changes them for every iteration. Load-displacement graph values are then saved into

separate files and processed in MATLAB. Examples of code used for computation and

result processing can be found in Appendix C.

As stated before, the study was done for nine grades of stainless steel, covering

austenitic and austenitic-ferritic types of stainless steel specified in Table 3.1. A brief

explanation of the parametric process can be seen in Figure 3.12.

The first case was the calculation of the ultimate force which the structure is able to

bear. All cross-sections were classified as Class 1 and the materials were defined according
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Figure 3.11: Generated stress-strain diagrams for selected stainless steels

to Section 3.2.3. Each global and local imperfections were defined by one eigen mode.

The next case was carried out with different cross-section shell thicknesses to achieve

cross-section Class 4 and to study the influence of local buckling. For HE300B b = 300

mm, h = 300 mm, tf = 12 mm, tw = 6 mm, where tf is the flange thickness and tw is

the web thickness,and for HE550A b = 300 mm, h = 540 mm, tf = 12 mm, tw = 5 mm.

Initial imperfections were assumed with the first eigen mode only.

The influence of various amounts of eigen modes for initial imperfections were studied

- in case of the Class 1 cross-section, three eigen modes were combined with the amplifi-

cation factor distributed among them based on the percentage values seen in Table 3.2.

A same study was done in the case of Class 4 cross-sections.

Table 3.2: Combinations of eigen modes for both cross-section classes

Amp.
factor

Combination no.
1. 2. 3. 4. 5.

100% 1 - - - -
70% - 1 - 1 1
50% - - 1 - -
30% - - 2 2 3
20% - 2 3 - -
10% - 3 - - -

All cases of different modes were analyzed as well with 20% and 40% increase and
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set static variables

clear folder and temporary variables

generate material and set temporary variables

execute script for both models

define model 1 and its parameters

calculate and extract eigen values

calculate

Abaqus

define model 2 and its parameters

execute script for extracting results

Figure 3.12: Diagram of parametric approach in finite element analysis

decrease of initial imperfections to study the influence of the different amplification factor.
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Results

4.1 Carbon steel and stainless steel EC based check

The assessment of the original structure gave the usage of 60% at total, the highest in

the cantilever part. The most critical point of the construction would be the joint of all

three members, cantilever (member no. 4), column (member no. 3) and beam (member

no. 2).

The critical moment used in the buckling resistance check during member bending

as explained in Section 3.1.2.2 was calculated by hand following the approach stated in

Annex I of EN 1999-1-1 [14] for cantilever and for beams. Both members have same

cross-section properties, in Class 1 case It = 3.515 · 106 mm4 Iz = 1.082 · 108 mm4, in

Class 4 case It = 3.58 · 106 mm4 Iz = 5.401 · 107 mm4, the Young’s modulus of elasticity

is E = 210 GPa for the carbon steel and E = 200 GPa for the stainless steel. The shear

modulus is calculated from Equation 3.10. The relative non-dimensional critical moment

in carbon steel Class 1 cross-section is for member no. 2 µcr = 3.21 and for member no.

4 µcr = 4.36. In Class 4, it is µcr = 5.71 for member no. 2 and µcr = 8.59 for member

no. 4.

In case of stainless steel, the values are the same up to two decimal points. The same

members were then modelled in LTBeamN to see differences in the results. In examining

the tables with results of the critical moment (Table 4.1, Table 4.2) as well as the results

Table 4.1: Elastic critical moments for different moments - carbon steel

Member
no.

Mcr (kNm)
Class 1 Class 4

By hand By LTBeamN By hand By LTBeamN

2 3751 3374 1506 1363
4 12582 12641 5587 5656

26
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Table 4.2: Elastic critical moments for different moments - stainless steel

Member
no.

Mcr (kNm)
Class 1 Class 4

By hand By LTBeamN By hand By LTBeamN

2 3571 3213 1434 1298
4 11983 12039 5321 5378

of the code based check (Table 4.3 and Table 4.4), the differences are very small. Thus,

the values of the critical bending moments for the upcoming iterations were calculated

using the software.

Little nuances in the results of the elastic critical moments could be caused by the

definition of the coordinate z of the load acting on the structure. In the calculation

by hand, acting forces were assumed in the shear center of the member meanwhile in

software it was assumed on the top edge of the beam. Furthermore, slightly different

values of torsion, warping constants and second moments of inertia were used for each

calculation.

Table 4.3: Critical force value acting in point e for carbon steel grades

Grade
fy

(MPa)

Fcr (kN)
Class 1 Class 4

By hand By software By hand By software

S235 235 407 407 183 183
S275 275 472 472 212 212
S355 355 600 600 269 270

The ultimate critical force acting in point e was calculated according to the code by

hand and by software for the three grades of carbon steel (Table 4.3) and then for nine

grades of stainless steel (Table 4.4) in both examined cross-section classes. Concerning the

carbon steel, there are nearly no differences in the results with the most critical member

being no. 4. In the case of stainless steel, the results were varying slightly and even

though member no. 4 was reaching the design capacity, member no. 2 was playing the

role in this case.

4.2 Mesh convergence and type of the mesh

As explained in section Section 3.2.1.2 the convergence study was performed to choose

the appropriate value of mesh seed size. In the following graphs it is possible to see that

the critical force does not have any significant differences after reaching a value of 400
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Table 4.4: Critical force value acting in point e for stainless steel grades

Grade
fy

(MPa)

Fcr (kN)
Class 1 Class 4

By hand By software By hand By software

1.4306 200 265 288 120 128
1.4301 210 277 298 124 134
1.4401 220 289 308 129 139
1.4432 220 289 308 129 139
1.4311 270 349 358 148 158
1.4406 280 360 365 151 162
1.4318 330 415 410 168 166
1.4362 400 484 468 188 179
1.4462 460 515 505 202 190

elements per square meter. Therefore it would be pointless choosing finer mesh since the

computation time would increase exponentially.

Therefore, eight noded shell elements mesh type with reduced integration was the best

choice for the sake of the time required for computation when compared to a four noded

shell element mesh type which would have to be two times finer.
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Figure 4.1: Convergence of critical force for S4 mesh type

Higher spikes and inconsistencies mainly in GMNIA (seen in Figure 4.1 and Figure 4.2)

could be caused by having mesh seed size large enough that it is not possible to obtain

the results correctly.
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Figure 4.2: Convergence of critical force for S4R mesh type
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Figure 4.3: Convergence of critical force for S8R mesh type
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4.3 Load-displacement graphs for different steels

Load-displacement graphs were used to determine the critical in-plane vertical force in

point e with an imperfection amplifier as explained in Section 3.2.2.

The load-displacement graph for three common carbon steel grades - S235, S275 and

S355 can be seen in Figure 4.4. In Figure 4.5, Figure 4.6 the load-displacement graph for

nine studied stainless steel grades of Class 1 and Class 4 cross-sections can be seen.

It is evident that carbon steel is a material with a defined yield point because when it

reaches it, the load-displacement curve undergoes short strain hardening and approaches

the maximum force before necking and a loss of stiffness could be observed in the material.

Compared to the stainless steel with no defined yield point, strain hardening starts earlier

than in the first case, increasing slowly, leading to the ultimate strength of the material.

Due to this, the behaviour of the stainless steel curve is then much more gradual before

reaching the capacity of the material. In the case of cross-section Class 4, the curve has

a similar shape however the slope is higher. Studied stainless steels also show that there

is a larger ductile limit before a strength loss.
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Figure 4.4: Load-displacement graph of carbon steel
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Figure 4.5: Load-displacement graph of stainless steel - Class 1
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Figure 4.6: Load-displacement graph of stainless steel - Class 4
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4.4 Comparison of GMNIA and EC approach

Resulting forces calculated using the code approach were compared with the forces de-

termined by GMNIA. These forces were extracted as a maximum of a load-displacement

graph of the material. Carbon steel differences can be seen in Table 4.5, stainless steel in

Table 4.6 and Table 4.7.

Table 4.5: Difference of critical force values between code and GMNIA approach for
carbon steel grades

Grade
fy

(MPa)
Fcr (kN) Relative

differenceCode GMNIA

S235 235 406 422 +3.79 %
S275 275 471 489 +3.68 %
S355 355 598 614 +2.61 %

Table 4.6: Difference of critical force values between code and GMNIA approach for
stainless steel grades - Class 1

Grade
fy

(MPa)
Fcr (kN) Relative

differenceCode GMNIA

1.4306 200 288 368 +21.73 %
1.4301 210 298 384 +22.39 %
1.4401 220 308 400 +23.00 %
1.4432 220 308 400 +23.00 %
1.4311 270 358 477 +24.94 %
1.4406 280 365 492 +25.83 %
1.4318 330 410 562 +27.04 %
1.4362 400 468 651 +28.11 %
1.4462 460 505 721 +29.95 %

In Table 4.8 it can be observed that the variation of the forces from both types of

analysis is quite stable and more accurate in the carbon steel case.

The increased value of critical force in a geometrically and materially non-linear anal-

ysis with initial imperfections is observed in the case of stainless steel which is due to

the behaviour of the material’s non-linearity. The smaller increase in carbon steel is

due to modelled plastic bi-linear behaviour which is similar to the real behaviour when

considering small strains.
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Table 4.7: Difference of critical force values between code and GMNIA approach for
stainless steel grades - Class 4

Grade
fy

(MPa)
Fcr (kN) Relative

differenceCode GMNIA

1.4306 200 128 152 +15.78 %
1.4301 210 134 159 +15.72 %
1.4401 220 139 166 +16.26 %
1.4432 220 139 165 +15.75 %
1.4311 270 158 198 +20.20 %
1.4406 280 162 204 +20.58 %
1.4318 330 166 235 +29.36 %
1.4362 400 179 275 +34.90 %
1.4462 460 190 307 +38.11 %

Table 4.8: Increase in critical loading for both types of steel

No. of samples
FGMNIA/Fcode

Mean COV Increase

Carbon steel 3 1.035 0.007 3.47 %
Stainless steel - class 1 9 1.337 0.038 33.70 %
Stainless steel - class 4 9 1.315 0.126 31.50 %

4.5 Imperfection and mode sensitiveness in GMNIA

4.5.1 Initial imperfections amplification

To determine how large role the error in imperfection determination could play, a study

in imperfection sensitiveness was performed together with a study when a local buckling

mode is assumed in the analysis and when it is neglected. The global imperfections

amplifier was increased and decreased by 20% and 40% and all these five cases were

calculated with and without applying a local buckling mode.

As it was expected, decrease of the imperfection amplifier leads to a larger critical

force and vice-versa.

The difference in local buckling is negligible for the present case - Class 1 cross-section

- as seen in Table 4.9. The only observable difference is from the thousandths place and

it does not play any role in the final comparison.

Class 4 cross-sections are by definition cross-sections where local buckling will appear

before the attainment of yield stress. To study the influence of imperfection amplification,

the first eigen mode was applied as an initial imperfection and increased and decreased

by the same percentage as it was in the case before.

Comparing Table 4.9 and Table 4.10, amplification of the factor leads to higher critical
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Table 4.9: Influence of local buckling and imperfection amplification - Class 1

Initial
imperfections

amplifier

FGMNIA/Fcode
w/ local buckling w/o local buckling

Mean COV Increase Mean COV Increase

-40% decrease 1.3867 0.042 38.6652% 1.3866 0.042 38.6644%
-20% decrease 1.3617 0.0398 36.1717% 1.3617 0.0398 36.1708%

no increase 1.3337 0.0385 33.7066% 1.3337 0.0385 33.7060%
+20% increase 1.3168 0.0363 31.6769% 1.3168 0.0363 31.6760%
+40% increase 1.2960 0.0349 29.5995% 1.2960 0.0349 29.5986%

force ratio increase in Class 4 cross-section.

Table 4.10: Influence of imperfection amplification - Class 4

Initial imperfections
amplifier

FGMNIA/Fcode
Mean COV Increase

-40% decrease 1.3901 0.1197 39.0074%
-20% decrease 1.3516 0.1229 35.1558%

no increase 1.3185 0.1257 31.8514%
+20% increase 1.2897 0.1279 28.9664%
+40% increase 1.2640 0.1296 26.3984%

4.5.2 Mode combination

The influence of different eigen modes for initial imperfections, defined in Section 3.2.4,

was studied for both stainless steel cross-section classes. Results of both cross-sections

classes are shown in Figure 4.7 and in Table 4.11 and Table 4.12.

4.5.2.1 Class 1

The critical forces were the lowest when only one eigen mode was applied. The combi-

nations of the first, the second and the third mode, where the first mode amplification

distribution is 70%; the first and the second mode and the first and the third mode are

close to each other with minor differences. The highest increase was observed in the last

eigen mode combination of the first, the second and the third mode with the amplifier

distribution 50% for the first mode, 30% for the second mode and 20% for the third mode.

Therefore the evaluated structure showed the highest sensitivity to the amplifier distri-

bution of the first eigen mode. Furthermore the higher the imperfection amplification is,

the larger the difference between the load capacities.
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4.5.2.2 Class 4

Analogous to Class 1, the lowest critical force was found when only one eigen mode was

applied and the highest critical force was found in the combination of the three modes

with the same amplifier distribution. However the results of all combinations are more

equally distributed compared to the previous case. The main difference was observed

between the combination of the first and the second mode and the combination of the

first and the third mode, where the second combination resulted in a smaller critical

force. Moreover this cross-section class is more sensitive to the imperfection amplification

as seen in Figure 4.7 where the structure’s stiffness is declining at a higher rate.
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Figure 4.7: Response to the different modes



Table 4.11: The influence of the different modes - Class 1

FGMNIA/Fcode

Mode comb. 1 123 - A1 123 - B2 12 13

Imp. amp. Mean COV Increase Mean COV Increase Mean COV Increase Mean COV Increase Mean COV Increase

-40% 1.387 0.042 38.665% 1.408 0.045 40.764% 1.423 0.047 42.248% 1.408 0.045 40.837% 1.406 0.045 40.614%
-20% 1.362 0.040 36.172% 1.387 0.043 38.739% 1.405 0.045 40.539% 1.388 0.043 38.817% 1.386 0.043 38.575%
0% 1.337 0.039 33.707% 1.369 0.041 36.878% 1.390 0.044 38.976% 1.370 0.041 36.957% 1.367 0.042 36.702%

+20% 1.317 0.036 31.677% 1.351 0.040 35.129% 1.375 0.043 37.516% 1.352 0.040 35.210% 1.350 0.040 34.946%
+40% 1.296 0.035 29.600% 1.335 0.039 33.469% 1.361 0.042 36.136% 1.336 0.038 33.549% 1.333 0.039 33.276%

Table 4.12: The influence of the different modes - Class 4

FGMNIA/Fcode

Mode comb. 1 123 - A1 123 - B2 12 13

Imp. amp. Mean COV Increase Mean COV Increase Mean COV Increase Mean COV Increase Mean COV Increase

-40% 1.390 0.120 39.007% 1.427 0.117 42.744% 1.448 0.116 44.825% 1.438 0.117 43.815% 1.405 0.118 40.497%
-20% 1.352 0.123 35.156% 1.393 0.120 39.340% 1.417 0.118 41.734% 1.404 0.119 40.424% 1.370 0.121 36.955%
0% 1.319 0.126 31.851% 1.363 0.122 36.343% 1.390 0.120 38.966% 1.374 0.122 37.395% 1.339 0.124 33.881%

+20% 1.290 0.128 28.966% 1.337 0.124 33.677% 1.365 0.122 36.478% 1.347 0.124 34.680% 1.312 0.126 31.204%
+40% 1.264 0.130 26.398% 1.313 0.126 31.280% 1.342 0.124 34.231% 1.322 0.125 32.219% 1.288 0.128 28.838%

1Distribution of amplifier - 70%, 20%, 10%
2Distribution of amplifier - 50%, 30%, 20%



Chapter 5

Conclusion and suggestions for

further research

5.1 Conclusion

Since the current Eurocode design methods for stainless steel are based on a carbon steel,

the behaviour of the stainless steel portal frame in the case study was examined and

assessed using these standards for three grades of carbon and nine grades of stainless

steel. The results of the code check were compared against another parametric study

carried out using a finite element approach and full geometrical and material non-linear

analysis with initial imperfections. Both of these approaches were done for two types of

cross-section classes, Class 1 and Class 4.

The hypothesis in the beginning which stated how large role material non-linearity

plays in the different analysis approaches has been strengthened. The results of the

linear-elastic approach given by equations in [4] are over-predicted and conservative due

to the strain-hardening missing part of the stress-strain non-linear material behaviour.

By neglecting the material non-linearity, safe results will be obtained, but as the study

showed, it is much more appropriate to use analysis where possible to include material

non-linearity. The triggering of local buckling showed similar results as the cross-sections

which were resistant to it. Nevertheless, the results in this study are not the same in

general for all types of portal frames. In other cases, the depedency on a critical load

factor would have to be considered.

Assuming the initial imperfections, parametric study with different amplification fac-

tors was carried out to point out and verify how large mistakes could be in defining the

imperfections amplifier incorrectly. In the studied case, the amplifier decrease and in-

crease (by twenty and forty percent) changed the results slightly, roughly by two and a

half percent when the amplifier decreased and by two percent when the amplifier increased

37
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for cross-section Class 1. Cross-section Class 4 showed similarity in both directions, three

and a half percent when the amplifier decreased and three percent when the amplifier

increased. The influence of the local buckling in cross-section Class 1 was negligible in

the present case.

The study of the influence of different modes showed importance of the first eigen

mode only and its amplification factor, because the lowest structure stiffness was found

in this case. Furthermore when the first mode was used in more combinations with other

modes, the value of the amplification factor was the same in the first mode. These results

showed nearly no differences in cross-section Class 1 compared to Class 4. In addition

to cross-section Class 4, the study also showed the differences and lower stiffness in the

combination of the first and the third modes compared to the combination of the first

and the second modes.

5.2 Suggestions for further research

It is important to design stainless steel structures as efficient as possible due to their

cost. Therefore obtaining the accurate design capacity of the frame is necessary and

that is possible using full geometrically and materially non-linear analysis with initial

imperfections.

Based on studies carried out with hollow and boxed sections, residual stresses were not

incorporated in this study. However carrying a study aimed to effects of residual stresses

in open sections and including them in the study could slightly change the results.

The flanges and the webs modelled using the shells of the open cross-sections in the

studied FE model were overlapping in their connection. More detailed FE models could

be developed together with incorporating constraints among the structure members to

achieve joint behaviour closer to the reality.
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Appendix A

Load-displacement graphs

The load-displacement graphs from Section 4.5 are attached here. From Figure A.1 to

Figure A.8 there are graphs of Class 1 cross-section when local buckling was assumed,

secondly for the cases without local buckling. Figure A.9 shows the results of the analysis

with base value of an imperfection amplifier just without local buckling. From Figure A.1

to Figure A.8 there are graphs of Class 4 cross-section, where local buckling was triggered

in all cases.

Figure A.10 to Figure A.29 displays the resulting graphs of Class 1 cross-section when

more eigen modes were loaded into the analysis and Figure A.30 to Figure A.53 of Class

4 cross-section.
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Figure A.1: Global imperfections decreased 40% (with local buckling)
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Figure A.2: Global imperfections decreased 20% (with local buckling)
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Figure A.3: Global imperfections increased 40% (with local buckling)
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Figure A.4: Global imperfections increased 20% (without local buckling)
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Figure A.5: Global imperfections decreased 40% (without local buckling)
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Figure A.6: Global imperfections decreased 20% (without local buckling)
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Figure A.7: Global imperfections increased 40% (without local buckling)
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Figure A.8: Global imperfections increased 20% (without local buckling)
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Figure A.9: Global imperfections (without local buckling)
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Figure A.10: Three modes - 123A - imperfections increased +40%

.
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Figure A.11: Three modes - 123A - imperfections increased +20%
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Figure A.12: Three modes - 123A - no imperfections amplification
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Figure A.13: Three modes - 123A - imperfections decreased -20%
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Figure A.14: Three modes - 123A - imperfections decreased -40%
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Figure A.15: Three modes - 123B - imperfections increased +40%
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Figure A.16: Three modes - 123B - imperfections increased +20%
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Figure A.17: Three modes - 123B - no imperfections amplification
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Figure A.18: Three modes - 123B - imperfections decreased -20%
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Figure A.19: Three modes - 123B - imperfections decreased -40%
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Figure A.20: Two modes - 12 - imperfections increased +40%
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Figure A.21: Two modes - 12 - imperfections increased +20%

0 50 100 150 200 250 300 350

Displacement,  (mm)

0

100

200

300

400

500

600

700

800

L
o

a
d

, 
P

C
r (

k
N

)

 1.4306 (375.854 kN)

 1.4301 (392.605 kN)

 1.4401 (409.076 kN)

 1.4432 (408.98 kN)

 1.4311 (488.221 kN)

 1.4406 (503.484 kN)

 1.4318 (576.654 kN)

 1.4362 (668.726 kN)

 1.4462 (741.894 kN)

Figure A.22: Two modes - 12 - no imperfections amplification
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Figure A.23: Two modes - 12 - imperfections decreased -20%
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Figure A.24: Two modes - 12 - imperfections decreased -40%
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Figure A.25: Two modes - 13 - imperfections increased +40%
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Figure A.26: Two modes - 13 - imperfections increased +20%
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Figure A.27: Two modes - 13 - no imperfections amplification
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Figure A.28: Two modes - 13 - imperfections decreased -20%
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Figure A.29: Two modes - 13 - imperfections decreased -40%
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Figure A.30: One mode - 1 - imperfections decreased -40%
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Figure A.31: One mode - 1 - imperfections increased +40%
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Figure A.32: One mode - 1 - imperfections increased +20%
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Figure A.33: One mode - 1 - imperfections decreased -20%
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Figure A.34: Three modes - 123A - imperfections increased +40%
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Figure A.35: Three modes - 123A - imperfections increased +20%
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Figure A.36: Three modes - 123A - no imperfections amplification
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Figure A.37: Three modes - 123A - imperfections decreased -20%
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Figure A.38: Three modes - 123A - imperfections decreased -40%
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Figure A.39: Three modes - 123B - imperfections increased +40%
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Figure A.40: Three modes - 123B - imperfections increased +20%
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Figure A.41: Three modes - 123B - no imperfections amplification
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Figure A.42: Three modes - 123B - imperfections decreased -20%
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Figure A.43: Three modes - 123B - imperfections decreased -40%
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Figure A.44: Two modes - 12 - imperfections increased +40%
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Figure A.45: Two modes - 12 - imperfections increased +20%
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Figure A.46: Two modes - 12 - no imperfections amplification
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Figure A.47: Two modes - 12 - imperfections decreased -20%
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Figure A.48: Two modes - 12 - imperfections decreased -40%
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Figure A.49: Two modes - 13 - imperfections increased +40%
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Figure A.50: Two modes - 13 - imperfections increased +20%
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Figure A.51: Two modes - 13 - no imperfections amplification
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Figure A.52: Two modes - 13 - imperfections decreased -20%
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Figure A.53: Two modes - 13 - imperfections decreased -40%
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Appendix C

Developed codes

Developed codes were splitted into two types. Codes written in Python for Abaqus

modelling, definition of the properties and extracting the results, and codes writen in

MATLAB for executing the whole process of computations and proccesing the results.

Attached there are only two Python scripts for calculating the critical force (LBA and

GMNIA - Listing C.1) and for results extracting (Listing C.2). Code developed for the

mesh convergence is slightly different in manner of mesh seed size variable. First of the

matlab codes is material properties generator according to Annex C of [4] (Listing C.3),

next code is showing the execution of the whole script (Listing C.4) and last attached

code was written to process the results of the current iterations (Listing C.5).

The rest of the codes can be found visiting the hyperlink provided by the QR code

together with the text files containing the outputs.

Figure C.1: QR code with hyperlink to the developed codes

84
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Listing C.1: Example of the code developed for calculating the critical force

### General Informat ion

# Developed s c r i p t f o r Diploma t h e s i s c a l c u l a t i o n s

# Author : Martin Kapoun

# Contact : martin . kapoun@gmail . com

# Home un i v e r s i t y : CTU in Prague

# Date : 12/2018

# Developed during ERASMUS exchange program at KTH Royal

# Technica l Un i v e r s i t y in Stockholm

###

### Descr ip t i on o f the code

# Python s c r i p t f o r mode l l ing and d e f i n i n g the p r o p e r t i e s o f the

# ana lyzed s t r u c t u r e . Two models are crea t ed wi th v a r i a b l e s o f mater ia l

# executed from d i f f e r e n t f i l e . Model one i s l i n e a r bu c k l i n g

# ana l y s i s , e x t r a c t i n g two e igen modes and l oad ing them as an i n i t i a l

# imper f e c t i on s in t o model two , model two i s non l inear bu c k l i n g

# ana l y s i s wi th output f o r load−d i sp lacement graph

###

from part import ∗
from mate r i a l import ∗
from s e c t i o n import ∗
from assembly import ∗
from s tep import ∗
from i n t e r a c t i o n import ∗
from load import ∗
from mesh import ∗
from opt imiza t i on import ∗
from job import ∗
from sketch import ∗
from v i s u a l i z a t i o n import ∗
from connectorBehavior import ∗

import os

os . chd i r ( ’C: / t h e s i s ’ )

execf i le ( ’C: / t h e s i s / s07var . py ’ )

execf i le ( ’C: / t h e s i s / s07mate r i a l . py ’ )

Me = str (Me)

Ma = str (Ma)
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load1 = −86100

load2 = 1960

load3 = −349000

### Model−1 ###

mdb. models [ ’ Model−1 ’ ] . Constra inedSketch (name=’ s w e e p ’ , s h e e t S i z e =1000.0)

mdb. models [ ’ Model−1 ’ ] . s k e t che s [ ’ s w e e p ’ ] . Line ( po int1 =(−160.0 , −100.0) ,

po int2 =(−160.0 , 6 0 . 0 ) )

mdb. models [ ’ Model−1 ’ ] . s k e t che s [ ’ s w e e p ’ ] . geometry . f indAt ((−160.0 , −20.0))

mdb. models [ ’ Model−1 ’ ] . s k e t che s [ ’ s w e e p ’ ] . V e r t i c a l C o n s t r a i n t ( addUndoState=

False , e n t i t y=mdb. models [ ’ Model−1 ’ ] . s k e t che s [ ’ s w e e p ’ ] . geometry . f indAt ( (

−160.0 , −20.0) , ) )

mdb. models [ ’ Model−1 ’ ] . s k e t che s [ ’ s w e e p ’ ] . Line ( po int1 =(−160.0 , 6 0 . 0 ) , po int2=

( 1 2 0 . 0 , 6 0 . 0 ) )

mdb. models [ ’ Model−1 ’ ] . s k e t che s [ ’ s w e e p ’ ] . geometry . f indAt ((−20.0 , 6 0 . 0 ) )

mdb. models [ ’ Model−1 ’ ] . s k e t che s [ ’ s w e e p ’ ] . Hor i zonta lCons t ra in t ( addUndoState=

False , e n t i t y=mdb. models [ ’ Model−1 ’ ] . s k e t che s [ ’ s w e e p ’ ] . geometry . f indAt ( (

−20.0 , 6 0 . 0 ) , ) )

. . . mode l l ing part o f the code i s l a r g e l y omitted . . .

mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . She l lExtrude ( depth =540.0 ,

f l i p E x t r u d e D i r e c t i o n=OFF, sketch=

mdb. models [ ’ Model−1 ’ ] . s k e t che s [ ’ p r o f i l e ’ ] , s k e t chOr i en ta t i on=LEFT,

sketchPlane=mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . f a c e s . f indAt ( ( 6 9 1 0 . 0 ,

3960 .0 , 109 .779876) , ( 0 . 0 , 1 . 0 , 0 . 0 ) ) , sketchPlaneS ide=SIDE1 , sketchUpEdge=

mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . edges . f indAt ( ( 7 6 6 2 . 5 , 3960 .0 ,

159 .779875) , ) )

del mdb. models [ ’ Model−1 ’ ] . s k e t che s [ ’ p r o f i l e ’ ]

### Mater ia l ###

mdb. models [ ’ Model−1 ’ ] . Mater ia l (name=’ s t a i n l e s s− ’+Ma+’− l i n e a r ’ )

mdb. models [ ’ Model−1 ’ ] . m a t e r i a l s [ ’ s t a i n l e s s − ’+Ma+’− l i n e a r ’ ] . E l a s t i c ( t a b l e =((

200000 .0 , 0 . 3 ) , ) )

### Sec t i ons ###

mdb. models [ ’ Model−1 ’ ] . HomogeneousShel lSect ion ( i d e a l i z a t i o n=NO IDEALIZATION,

in t eg ra t i onRu l e=SIMPSON, mate r i a l=’ s t a i n l e s s − ’+Ma+’− l i n e a r ’ , name=’HEA550−t f ’

, numIntPts=5, p o i s s o n D e f i n i t i o n=DEFAULT, p r e I n t e g r a t e=OFF, temperature=

GRADIENT, t h i c k n e s s =24.0 , t h i c k n e s s F i e l d=’ ’ , th icknessModulus=None ,

thicknessType=UNIFORM, useDens ity=OFF)

mdb. models [ ’ Model−1 ’ ] . HomogeneousShel lSect ion ( i d e a l i z a t i o n=NO IDEALIZATION,
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i n t eg ra t i onRu l e=SIMPSON, mate r i a l=’ s t a i n l e s s − ’+Ma+’− l i n e a r ’ , name=’HEA550−tw ’

, numIntPts=5, p o i s s o n D e f i n i t i o n=DEFAULT, p r e I n t e g r a t e=OFF, temperature=

GRADIENT, t h i c k n e s s =12.5 , t h i c k n e s s F i e l d=’ ’ , th icknessModulus=None ,

thicknessType=UNIFORM, useDens ity=OFF)

mdb. models [ ’ Model−1 ’ ] . HomogeneousShel lSect ion ( i d e a l i z a t i o n=NO IDEALIZATION,

in t eg ra t i onRu l e=SIMPSON, mate r i a l=’ s t a i n l e s s − ’+Ma+’− l i n e a r ’ , name=’HEB300 ’ ,

numIntPts=5, p o i s s o n D e f i n i t i o n=DEFAULT, p r e I n t e g r a t e=OFF, temperature=

GRADIENT, t h i c k n e s s =19.0 , t h i c k n e s s F i e l d=’ ’ , th icknessModulus=None ,

thicknessType=UNIFORM, useDens ity=OFF)

mdb. models [ ’ Model−1 ’ ] . s e c t i o n s . changeKey ( fromName=’HEB300 ’ , toName=’HEB300−t f ’ )

mdb. models [ ’ Model−1 ’ ] . HomogeneousShel lSect ion ( i d e a l i z a t i o n=NO IDEALIZATION,

in t eg ra t i onRu l e=SIMPSON, mate r i a l=’ s t a i n l e s s − ’+Ma+’− l i n e a r ’ , name=’HEB300−tw ’

, numIntPts=5, p o i s s o n D e f i n i t i o n=DEFAULT, p r e I n t e g r a t e=OFF, temperature=

GRADIENT, t h i c k n e s s =11.0 , t h i c k n e s s F i e l d=’ ’ , th icknessModulus=None ,

thicknessType=UNIFORM, useDens ity=OFF)

mdb. models [ ’ Model−1 ’ ] . HomogeneousShel lSect ion ( i d e a l i z a t i o n=NO IDEALIZATION,

in t eg ra t i onRu l e=SIMPSON, mate r i a l=’ s t a i n l e s s − ’+Ma+’− l i n e a r ’ , name=’PL10 ’ ,

numIntPts=5, p o i s s o n D e f i n i t i o n=DEFAULT, p r e I n t e g r a t e=OFF, temperature=

GRADIENT, t h i c k n e s s =10.0 , t h i c k n e s s F i e l d=’ ’ , th icknessModulus=None ,

thicknessType=UNIFORM, useDens ity=OFF)

### Sec t i ons Assignment ###

mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . Sect ionAssignment ( o f f s e t =0.0 ,

o f f s e t F i e l d=’ ’ , o f f s e tType=MIDDLE SURFACE, r eg i on=Region (

f a c e s=mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . f a c e s . f indAt ( ( ( 6 9 6 0 . 0 ,

1333 .333333 , −140.220125) , ( 0 . 0 , 0 . 0 , −1.0)) , ( ( 6 9 1 0 . 0 , 1333 .333333 ,

159 .779875) , ( 0 . 0 , 0 . 0 , 1 . 0 ) ) , ( ( 6 7 6 0 . 0 , 1333 .333333 , 159 .779875) , ( 0 . 0 ,

0 . 0 , 1 . 0 ) ) , ( ( 6 7 6 0 . 0 , 1333 .333333 , −140.220125) , ( 0 . 0 , 0 . 0 , 1 . 0 ) ) , ( ( 1 0 0 . 0 ,

3200 .0 , −140.220125) , ( 0 . 0 , 0 . 0 , 1 . 0 ) ) , ((−50.0 , 3200 .0 , 159 .779875) , ( 0 . 0 ,

0 . 0 , 1 . 0 ) ) , ( ( 1 0 0 . 0 , 3200 .0 , 159 .779875) , ( 0 . 0 , 0 . 0 , 1 . 0 ) ) , ((−100.0 ,

3200 .0 , −140.220125) , ( 0 . 0 , 0 . 0 , −1.0)) , ) ) , sectionName=’HEB300−t f ’ ,

th icknessAss ignment=FROM SECTION)

mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . Sect ionAssignment ( o f f s e t =0.0 ,

o f f s e t F i e l d=’ ’ , o f f s e tType=MIDDLE SURFACE, r eg i on=Region (

f a c e s=mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . f a c e s . f indAt ( ( ( 6 8 6 0 . 0 ,

2646 .666667 , −90.220124) , (−1.0 , 0 . 0 , 0 . 0 ) ) , ( ( 0 . 0 , 3200 .0 , 59 .779875) , (

1 . 0 , 0 . 0 , 0 . 0 ) ) , ) ) , sectionName=’HEB300−tw ’ , th icknessAss ignment=

FROM SECTION)

mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . Sect ionAssignment ( o f f s e t =0.0 ,

o f f s e t F i e l d=’ ’ , o f f s e tType=MIDDLE SURFACE, r eg i on=Region (

f a c e s=mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . f a c e s . f indAt ( ( (2386 . 666667 ,

4500 .0 , 144 .779877) , ( 0 . 0 , 1 . 0 , 0 . 0 ) ) , ( ( 7 7 8 0 . 0 , 4500 .0 , −90.220124) , ( 0 . 0 ,

1 . 0 , 0 . 0 ) ) , ( ( 6 8 1 0 . 0 , 3960 .0 , 109 .779876) , ( 0 . 0 , 1 . 0 , 0 . 0 ) ) , ( ( 6 9 1 0 . 0 ,

3960 .0 , −90.220124) , ( 0 . 0 , −1.0 , 0 . 0 ) ) , ( ( 7 7 8 0 . 0 , 4500 .0 , 59 .779875) , ( 0 . 0 ,

1 . 0 , 0 . 0 ) ) , ( ( 6 8 1 0 . 0 , 3960 .0 , −90.220124) , ( 0 . 0 , −1.0 , 0 . 0 ) ) , ( (



APPENDIX C. DEVELOPED CODES 88

2386 .666667 , 4500 .0 , −25.220125) , ( 0 . 0 , 1 . 0 , 0 . 0 ) ) , ( ( 1 0 0 . 0 , 4500 .0 ,

44 .779875) , ( 0 . 0 , −1.0 , 0 . 0 ) ) , ( ( 6 9 1 0 . 0 , 3960 .0 , 109 .779876) , ( 0 . 0 , 1 . 0 ,

0 . 0 ) ) , ) ) , sectionName=’HEA550−t f ’ , th icknessAss ignment=FROM SECTION)

mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . Sect ionAssignment ( o f f s e t =0.0 ,

o f f s e t F i e l d=’ ’ , o f f s e tType=MIDDLE SURFACE, r eg i on=Region (

f a c e s=mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . f a c e s . f indAt ( ( ( 7 7 8 0 . 0 , 4320 .0 ,

9 . 779875) , ( 0 . 0 , 0 . 0 , 1 . 0 ) ) , ( (4623 .333333 , 4140 .0 , 9 . 779875) , ( 0 . 0 , 0 . 0 ,

1 . 0 ) ) , ) ) , sectionName=’HEA550−tw ’ , th icknessAss ignment=FROM SECTION)

mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . Sect ionAssignment ( o f f s e t =0.0 ,

o f f s e t F i e l d=’ ’ , o f f s e tType=MIDDLE SURFACE, r eg i on=Region (

f a c e s=mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . f a c e s . f indAt ( ( ( 6 8 6 0 . 0 , 4320 .0 ,

−90.220124) , ( 1 . 0 , 0 . 0 , 0 . 0 ) ) , ( ( 6 8 6 0 . 0 , 4320 .0 , 59 .779875) , ( 1 . 0 , 0 . 0 ,

0 . 0 ) ) , ) ) , sectionName=’PL10 ’ , th icknessAss ignment=FROM SECTION)

### Assembly ###

mdb. models [ ’ Model−1 ’ ] . rootAssembly . DatumCsysByDefault (CARTESIAN)

mdb. models [ ’ Model−1 ’ ] . rootAssembly . In s tance ( dependent=OFF, name=’ Part−1−1 ’ ,

part=mdb. models [ ’ Model−1 ’ ] . par t s [ ’ Part−1 ’ ] )

### Step ###

mdb. models [ ’ Model−1 ’ ] . BuckleStep ( maxIte rat ions =100 , name=’ Step−1 ’ , numEigen=6,

prev ious=’ I n i t i a l ’ , v e c t o r s =12)

### Reference Points ###

mdb. models [ ’ Model−1 ’ ] . rootAssembly . ReferencePoint ( po int=

mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . I n t e r e s t i n g P o i n t (

mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . edges . f indAt ( (

9620 .0 , 4095 .0 , 9 . 779875) , ) , MIDDLE) )

mdb. models [ ’ Model−1 ’ ] . rootAssembly . ReferencePoint ( po int=

mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . v e r t i c e s . f indAt ( (

0 . 0 , 4800 .0 , 9 . 779875) , ) )

mdb. models [ ’ Model−1 ’ ] . rootAssembly . ReferencePoint ( po int=

mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . v e r t i c e s . f indAt ( (

0 . 0 , 0 . 0 , 9 . 779875) , ) )

mdb. models [ ’ Model−1 ’ ] . rootAssembly . ReferencePoint ( po int=

mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . I n t e r e s t i n g P o i n t (

mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . edges . f indAt ( ( 0 . 0 ,

4095 .0 , 9 . 779875) , ) , MIDDLE) )

mdb. models [ ’ Model−1 ’ ] . rootAssembly . ReferencePoint ( po int=

mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . I n t e r e s t i n g P o i n t (

mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . edges . f indAt ( (

6860 .0 , 20 . 0 , −65.220125) , ) , MIDDLE) )

mdb. models [ ’ Model−1 ’ ] . RigidBody (name=’ Constraint−1 ’ , pinRegion=Region (

edges=mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . edges . f indAt (

( ( 9 6 2 0 . 0 , 4500 .0 , −27.720125) , ) , ( ( 9 6 2 0 . 0 , 4095 .0 , 9 . 779875) , ) , ( ( 9 6 2 0 . 0 ,
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3960 .0 , −102.720125) , ) , ( ( 9 6 2 0 . 0 , 4500 .0 , 122 .279875) , ) , ( ( 9 6 2 0 . 0 ,

3960 .0 , 122 .279875) , ) , ) ) , r e fPo intReg ion=Region ( r e f e r e n c e P o i n t s =(

mdb. models [ ’ Model−1 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 4 ] , ) ) )

mdb. models [ ’ Model−1 ’ ] . RigidBody (name=’ Constraint−2 ’ , pinRegion=Region (

edges=mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . edges . f indAt (

( ( 1 1 2 . 5 , 4800 .0 , −140.220125) , ) , ( ( 0 . 0 , 4800 .0 , 47 .279875) , ) , ( ( 0 . 0 ,

4800 .0 , −102.720125) , ) , ((−37.5 , 4800 .0 , 159 .779875) , ) , ( ( 1 1 2 . 5 , 4800 .0 ,

159 .779875) , ) , ((−112.5 , 4800 .0 , −140.220125) , ) , ) ) , r e fPo intReg ion=

Region ( r e f e r e n c e P o i n t s =(

mdb. models [ ’ Model−1 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 5 ] , ) ) )

mdb. models [ ’ Model−1 ’ ] . RigidBody (name=’ Constraint−3 ’ , pinRegion=Region (

edges=mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . edges . f indAt (

( ( 3 7 . 5 , 0 . 0 , −140.220125) , ) , ( ( 0 . 0 , 0 . 0 , 47 .279875) , ) , ( ( 0 . 0 , 0 . 0 ,

−27.720125) , ) , ((−37.5 , 0 . 0 , 159 .779875) , ) , ( ( 3 7 . 5 , 0 . 0 , 159 .779875) , ) ,

((−37.5 , 0 . 0 , −140.220125) , ) , ) ) , r e fPo intReg ion=Region ( r e f e r e n c e P o i n t s =(

mdb. models [ ’ Model−1 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 6 ] , ) ) )

mdb. models [ ’ Model−1 ’ ] . RigidBody (name=’ Constraint−4 ’ , pinRegion=Region (

edges=mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . edges . f indAt (

( ( 0 . 0 , 3960 .0 , 88 .529875) , ) , ( ( 0 . 0 , 3960 .0 , −68.970125) , ) , ( ( 0 . 0 , 4095 .0 ,

9 . 779875) , ) , ( ( 0 . 0 , 4500 .0 , −16.470125) , ) , ( ( 0 . 0 , 4500 .0 , 36 .029875) , ) ,

) ) , r e fPo intReg ion=Region ( r e f e r e n c e P o i n t s =(

mdb. models [ ’ Model−1 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 7 ] , ) ) )

mdb. models [ ’ Model−1 ’ ] . RigidBody (name=’ Constraint−5 ’ , pinRegion=Region (

edges=mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . edges . f indAt (

( ( 6 9 7 2 . 5 , 20 . 0 , −140.220125) , ) , ( ( 6 8 6 0 . 0 , 20 . 0 , −65.220125) , ) , ( ( 6 8 9 7 . 5 ,

20 . 0 , 159 .779875) , ) , ( ( 6 7 4 7 . 5 , 20 . 0 , 159 .779875) , ) , ( ( 6 7 4 7 . 5 , 20 . 0 ,

−140.220125) , ) , ) ) , r e fPo intReg ion=Region ( r e f e r e n c e P o i n t s =(

mdb. models [ ’ Model−1 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 8 ] , ) ) )

### Loading ###

mdb. models [ ’ Model−1 ’ ] . ConcentratedForce ( c f 2=load1 , createStepName=’ Step−1 ’ ,

d i s t r ibut i onType=UNIFORM, f i e l d=’ ’ , l o ca lCsy s=None , name=’ Load−1 ’ , r eg i on=

Region ( r e f e r e n c e P o i n t s =(

mdb. models [ ’ Model−1 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 5 ] , ) ) )

mdb. models [ ’ Model−1 ’ ] . ConcentratedForce ( c f 1=load2 , createStepName=’ Step−1 ’ ,

d i s t r ibut i onType=UNIFORM, f i e l d=’ ’ , l o ca lCsy s=None , name=’ Load−2 ’ , r eg i on=

Region ( r e f e r e n c e P o i n t s =(

mdb. models [ ’ Model−1 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 7 ] , ) ) )

mdb. models [ ’ Model−1 ’ ] . ConcentratedForce ( c f 2=load3 , createStepName=’ Step−1 ’ ,

d i s t r ibut i onType=UNIFORM, f i e l d=’ ’ , l o ca lCsy s=None , name=’ Load−3 ’ , r eg i on=

Region ( r e f e r e n c e P o i n t s =(

mdb. models [ ’ Model−1 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 4 ] , ) ) )

### BC ###
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mdb. models [ ’ Model−1 ’ ] . EncastreBC ( createStepName=’ Step−1 ’ , l o ca lCsy s=None , name=

’BC−1 ’ , r eg i on=Region ( r e f e r e n c e P o i n t s =(

mdb. models [ ’ Model−1 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 6 ] ,

mdb. models [ ’ Model−1 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 8 ] , ) ) )

### Mesh Element type ###

mdb. models [ ’ Model−1 ’ ] . rootAssembly . setElementType ( elemTypes=(ElemType (

elemCode=S8R , e lemLibrary=STANDARD) , ElemType ( elemCode=STRI65 ,

e lemLibrary=STANDARD) ) , r e g i o n s =(

mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . f a c e s . f indAt ( ( (

6860 .0 , 4320 .0 , −90.220124) , ) , ( ( 6 8 6 0 . 0 , 4320 .0 , 59 .779875) , ) , ( (

2386 .666667 , 4500 .0 , 144 .779877) , ) , ( ( 7 7 8 0 . 0 , 4500 .0 , −90.220124) , ) , ( (

7780 .0 , 4320 .0 , 9 . 779875) , ) , ( ( 6 9 6 0 . 0 , 1333 .333333 , −140.220125) , ) , ( (

6860 .0 , 2646 .666667 , −90.220124) , ) , ( ( 6 9 1 0 . 0 , 1333 .333333 , 159 .779875) , ) ,

( ( 6 7 6 0 . 0 , 1333 .333333 , 159 .779875) , ) , ( ( 6 7 6 0 . 0 , 1333 .333333 , −140.220125) ,

) , ( ( 6 8 1 0 . 0 , 3960 .0 , 109 .779876) , ) , ( ( 6 9 1 0 . 0 , 3960 .0 , −90.220124) , ) , ( (

7780 .0 , 4500 .0 , 59 .779875) , ) , ( ( 6 8 1 0 . 0 , 3960 .0 , −90.220124) , ) , ( (

4623 .333333 , 4140 .0 , 9 . 779875) , ) , ( (2386 .666667 , 4500 .0 , −25.220125) , ) , (

( 1 0 0 . 0 , 4500 .0 , 44 .779875) , ) , ( ( 6 9 1 0 . 0 , 3960 .0 , 109 .779876) , ) , ( ( 1 0 0 . 0 ,

3200 .0 , −140.220125) , ) , ( ( 0 . 0 , 3200 .0 , 59 .779875) , ) , ((−50.0 , 3200 .0 ,

159 .779875) , ) , ( ( 1 0 0 . 0 , 3200 .0 , 159 .779875) , ) , ((−100.0 , 3200 .0 ,

−140.220125) , ) , ) , ) )

# mdb . models [ ’ Model−1 ’ ] . rootAssembly . setElementType ( elemTypes=(ElemType (

# elemCode=S4R , e lemLibrary=STANDARD, secondOrderAccuracy=OFF,

# hourg l a s sCon t ro l=DEFAULT) , ElemType ( elemCode=S3 , e lemLibrary=STANDARD)) ,

# reg ions=(

# mdb . models [ ’ Model−1 ’ ] . rootAssembly . setElementType ( elemTypes=(ElemType (

# elemCode=S4 , e lemLibrary=STANDARD, secondOrderAccuracy=OFF) , ElemType (

# elemCode=S3 , e lemLibrary=STANDARD)) , r eg ions=(

### Seed mesh ###

mdb. models [ ’ Model−1 ’ ] . rootAssembly . s eedPart Ins tance ( dev ia t i onFacto r =0.1 ,

minSizeFactor =0.1 , r e g i o n s =(

mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] , ) , s i z e=meshSeedSize )

### Mesh Part ###

mdb. models [ ’ Model−1 ’ ] . rootAssembly . generateMesh ( r e g i o n s =(

mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] , ) )

### Fie l d Output Request ###

mdb. models [ ’ Model−1 ’ ] . f i e ldOutputRequest s [ ’F−Output−1 ’ ] . s e tVa lues ( v a r i a b l e s =(

’U ’ , ’COORD’ ) )

### Create Job ###
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mdb. Job ( atTime=None , contac tPr in t=OFF, d e s c r i p t i o n=’ ’ , echoPr int=OFF,

e x p l i c i t P r e c i s i o n=SINGLE, getMemoryFromAnalysis=True , h i s t o r y P r i n t=OFF,

memory=90, memoryUnits=PERCENTAGE, model=’ Model−1 ’ , modelPrint=OFF,

mult iprocess ingMode=DEFAULT, name=’ LinearBuckl ing ’ , nodalOutputPrec i s ion=

SINGLE, numCpus=1, numGPUs=0, queue=None , resu l t sFormat=ODB, s c ra t ch=’ ’ ,

type=ANALYSIS, userSubrout ine=’ ’ , waitHours =0, waitMinutes=0)

### Copy model ###

mdb. Model (name=’ Model−2 ’ , objectToCopy=mdb. models [ ’ Model−1 ’ ] )

### Edi t ing keywords ###

mdb. models [ ’ Model−1 ’ ] . keywordBlock . synchVers ions ( storeNodesAndElements=False )

mdb. models [ ’ Model−1 ’ ] . keywordBlock . r e p l a c e (85 , ’ \n ’ )

mdb. models [ ’ Model−1 ’ ] . keywordBlock . r e p l a c e (86 ,

’ \n∗Output , f i e l d , v a r i a b l e s=PRESELECT\n∗NODE FILE\nU ’ )

#’\n∗Output , f i e l d , v a r i a b l e s=PRESELECT\n∗FILE FORMAT, ASCII\n∗NODE FILE\nU ’)

elemArr = mdb. models [ ’ Model−1 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . e lements ;

### Submit Job ###

mdb. jobs [ ’ L inearBuckl ing ’ ] . submit ( cons i s tencyCheck ing=OFF)

mdb. jobs [ ’ L inearBuckl ing ’ ] . waitForCompletion ( )

###### Model−2 ######

odb = openOdb( path = ’ LinearBuckl ing . odb ’ )

STEP = odb . s t ep s . va lue s ( ) [ 0 ]

noEl = len ( elemArr )

mode = STEP. frames [ 2 ] . d e s c r i p t i o n

e igenValueStr = mode [ 3 1 : ]

f = open( ’ Resu l t s \ s07Eigen− ’+Me+’− ’+Ma+’ . txt ’ , ’w+’ )

f . wr i t e ( ’%d , ’% noEl )

f . wr i t e ( e igenValueStr )

e igenValue = f loat ( e igenValueStr )

odb . c l o s e ( )

qu i t

### Mater ia l ###
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del mdb. models [ ’ Model−2 ’ ] . m a t e r i a l s [ ’ s t a i n l e s s − ’+Ma+’− l i n e a r ’ ]

mdb. models [ ’ Model−2 ’ ] . Mater ia l (name=’ s t a i n l e s s− ’+Ma+’−non l inea r ’ )

mdb. models [ ’ Model−2 ’ ] . m a t e r i a l s [ ’ s t a i n l e s s − ’+Ma+’−non l inea r ’ ] . E l a s t i c ( t a b l e =((

200000 .0 , 0 . 3 ) , ) )

mdb. models [ ’ Model−2 ’ ] . m a t e r i a l s [ ’ s t a i n l e s s − ’+Ma+’−non l inea r ’ ] . P l a s t i c (

t a b l e =(materialGen ) )

### Sect ion ###

mdb. models [ ’ Model−2 ’ ] . s e c t i o n s [ ’HEA550−t f ’ ] . s e tVa lues ( i d e a l i z a t i o n=

NO IDEALIZATION, in t eg ra t i onRu l e=SIMPSON, mate r i a l=

’ s t a i n l e s s − ’+Ma+’−non l inea r ’ , numIntPts=5, p r e I n t e g r a t e=OFF, t h i c k n e s s =24.0 ,

t h i c k n e s s F i e l d=’ ’ , th icknessType=UNIFORM)

mdb. models [ ’ Model−2 ’ ] . s e c t i o n s [ ’HEA550−tw ’ ] . s e tVa lues ( i d e a l i z a t i o n=

NO IDEALIZATION, in t eg ra t i onRu l e=SIMPSON, mate r i a l=

’ s t a i n l e s s − ’+Ma+’−non l inea r ’ , numIntPts=5, p r e I n t e g r a t e=OFF, t h i c k n e s s =12.5 ,

t h i c k n e s s F i e l d=’ ’ , th icknessType=UNIFORM)

mdb. models [ ’ Model−2 ’ ] . s e c t i o n s [ ’HEB300−t f ’ ] . s e tVa lues ( i d e a l i z a t i o n=

NO IDEALIZATION, in t eg ra t i onRu l e=SIMPSON, mate r i a l=

’ s t a i n l e s s − ’+Ma+’−non l inea r ’ , numIntPts=5, p r e I n t e g r a t e=OFF, t h i c k n e s s =19.0 ,

t h i c k n e s s F i e l d=’ ’ , th icknessType=UNIFORM)

mdb. models [ ’ Model−2 ’ ] . s e c t i o n s [ ’HEB300−tw ’ ] . s e tVa lues ( i d e a l i z a t i o n=

NO IDEALIZATION, in t eg ra t i onRu l e=SIMPSON, mate r i a l=

’ s t a i n l e s s − ’+Ma+’−non l inea r ’ , numIntPts=5, p r e I n t e g r a t e=OFF, t h i c k n e s s =11.0 ,

t h i c k n e s s F i e l d=’ ’ , th icknessType=UNIFORM)

mdb. models [ ’ Model−2 ’ ] . s e c t i o n s [ ’PL10 ’ ] . s e tVa lues ( i d e a l i z a t i o n=NO IDEALIZATION,

in t eg ra t i onRu l e=SIMPSON, mate r i a l=’ s t a i n l e s s − ’+Ma+’−non l inea r ’ , numIntPts=5,

p r e I n t e g r a t e=OFF, t h i c k n e s s =10.0 , t h i c k n e s s F i e l d=’ ’ , th icknessType=UNIFORM)

### Step ###

del mdb. models [ ’ Model−2 ’ ] . s t ep s [ ’ Step−1 ’ ]

mdb. models [ ’ Model−2 ’ ] . S t a t i cS t ep ( i n i t i a l I n c=i i , maxInc=mi , maxNumInc=mni ,

name=’ Step−1 ’ , nlgeom=ON, prev ious=’ I n i t i a l ’ )

### BC ###

mdb. models [ ’ Model−2 ’ ] . EncastreBC ( createStepName=’ Step−1 ’ , l o ca lCsy s=None , name=

’BC−1 ’ , r eg i on=Region ( r e f e r e n c e P o i n t s =(

mdb. models [ ’ Model−2 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 6 ] ,

mdb. models [ ’ Model−2 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 8 ] , ) ) )

mdb. models [ ’ Model−2 ’ ] . DisplacementBC ( amplitude=UNSET, createStepName=’ Step−1 ’ ,

d i s t r ibut i onType=UNIFORM, fieldName=’ ’ , f i x e d=OFF, l o ca lCsy s=None , name=

’BC−2 ’ , r eg i on=Region ( r e f e r e n c e P o i n t s =(

mdb. models [ ’ Model−2 ’ ] . rootAssembly . r e f e r e n c e P o i n t s [ 4 ] , ) ) , u1=UNSET, u2=

−500.0 , u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET)

### Mesh Element type ###
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mdb. models [ ’ Model−2 ’ ] . rootAssembly . setElementType ( elemTypes=(ElemType (

elemCode=S8R , e lemLibrary=STANDARD) , ElemType ( elemCode=STRI65 ,

e lemLibrary=STANDARD) ) , r e g i o n s =(

mdb. models [ ’ Model−2 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] . f a c e s . f indAt ( ( (

6860 .0 , 4320 .0 , −90.220124) , ) , ( ( 6 8 6 0 . 0 , 4320 .0 , 59 .779875) , ) , ( (

2386 .666667 , 4500 .0 , 144 .779877) , ) , ( ( 7 7 8 0 . 0 , 4500 .0 , −90.220124) , ) , ( (

7780 .0 , 4320 .0 , 9 . 779875) , ) , ( ( 6 9 6 0 . 0 , 1333 .333333 , −140.220125) , ) , ( (

6860 .0 , 2646 .666667 , −90.220124) , ) , ( ( 6 9 1 0 . 0 , 1333 .333333 , 159 .779875) , ) ,

( ( 6 7 6 0 . 0 , 1333 .333333 , 159 .779875) , ) , ( ( 6 7 6 0 . 0 , 1333 .333333 , −140.220125) ,

) , ( ( 6 8 1 0 . 0 , 3960 .0 , 109 .779876) , ) , ( ( 6 9 1 0 . 0 , 3960 .0 , −90.220124) , ) , ( (

7780 .0 , 4500 .0 , 59 .779875) , ) , ( ( 6 8 1 0 . 0 , 3960 .0 , −90.220124) , ) , ( (

4623 .333333 , 4140 .0 , 9 . 779875) , ) , ( (2386 .666667 , 4500 .0 , −25.220125) , ) , (

( 1 0 0 . 0 , 4500 .0 , 44 .779875) , ) , ( ( 6 9 1 0 . 0 , 3960 .0 , 109 .779876) , ) , ( ( 1 0 0 . 0 ,

3200 .0 , −140.220125) , ) , ( ( 0 . 0 , 3200 .0 , 59 .779875) , ) , ((−50.0 , 3200 .0 ,

159 .779875) , ) , ( ( 1 0 0 . 0 , 3200 .0 , 159 .779875) , ) , ((−100.0 , 3200 .0 ,

−140.220125) , ) , ) , ) )

### Seed mesh ###

mdb. models [ ’ Model−2 ’ ] . rootAssembly . s eedPart Ins tance ( dev ia t i onFacto r =0.1 ,

minSizeFactor =0.1 , r e g i o n s =(

mdb. models [ ’ Model−2 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] , ) , s i z e=meshSeedSize )

### Mesh Part ###

mdb. models [ ’ Model−2 ’ ] . rootAssembly . generateMesh ( r e g i o n s =(

mdb. models [ ’ Model−2 ’ ] . rootAssembly . i n s t a n c e s [ ’ Part−1−1 ’ ] , ) )

### Job ###

mdb. Job ( atTime=None , contac tPr in t=OFF, d e s c r i p t i o n=’ ’ , echoPr int=OFF,

e x p l i c i t P r e c i s i o n=SINGLE, getMemoryFromAnalysis=True , h i s t o r y P r i n t=OFF,

memory=90, memoryUnits=PERCENTAGE, model=’ Model−2 ’ , modelPrint=OFF,

mult iprocess ingMode=DEFAULT, name=’ Nonl inearBuckl ing ’ ,

nodalOutputPrec i s ion=SINGLE, numCpus=1, numGPUs=0, queue=None ,

resu l t sFormat=ODB, s c ra t ch=’ ’ , type=ANALYSIS, userSubrout ine=’ ’ , waitHours=

0 , waitMinutes=0)

mdb. jobs [ ’ Nonl inearBuckl ing ’ ] . s e tVa lues ( mult iprocess ingMode=THREADS, numCpus=4,

numDomains=8, numGPUs=0)

### Keywords ###

mdb. models [ ’ Model−2 ’ ] . keywordBlock . synchVers ions ( storeNodesAndElements=False )

mdb. models [ ’ Model−2 ’ ] . keywordBlock . r e p l a c e (69 ,

’ \n∗∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
\n∗IMPERFECTION, F i l e=LinearBuckl ing , STEP=1\n2 , ’+str ( imp)+ ’ \n6 , 0 . 0 625\n∗∗
\n∗∗ STEP: Step−1\n∗∗ ’ )
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### Submit ###

mdb. jobs [ ’ Nonl inearBuckl ing ’ ] . submit ( cons i s tencyCheck ing=OFF)
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Listing C.2: Example of the code developed for extracting of the results

### General Informat ion

# Developed s c r i p t f o r Diploma t h e s i s c a l c u l a t i o n s

# Author : Martin Kapoun

# Contact : martin . kapoun@gmail . com

# Home un i v e r s i t y : CTU in Prague

# Date : 12/2018

# Developed during ERASMUS exchange program at KTH Royal

# Technica l Un i v e r s i t y in Stockholm

###

### Descr ip t i on o f the code

# Python s c r i p t f o r e x t r a c t i n g the r e s u l t s and sav ing them

# in to t e x t f i l e .

###

from abaqus import ∗
from abaqusConstants import ∗
import os

execf i le ( ’C: / t h e s i s / s07var . py ’ )

Me = str (Me)

Ma = str (Ma)

s e s s i o n . Viewport (name=’ Viewport : 1 ’ , o r i g i n =(0.0 , 0 . 0 ) , width =474.605194091797 ,

he ight =176.388885498047)

s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . makeCurrent ( )

s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . maximize ( )

from caeModules import ∗
from d r i v e r U t i l s import executeOnCaeStartup

executeOnCaeStartup ( )

s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . partDisp lay . geometryOptions . s e tVa lues (

r e f e r e n c e R e p r e s e n t a t i o n=ON)

o1 = s e s s i o n . openOdb(

name=’C: / t h e s i s / Nonl inearBuckl ing . odb ’ )

s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . s e tVa lues ( d i sp layedObject=o1 )

#: Model : H:/ Diploma Thesis /ABAQUS/Model − matlab t e s t /Nonl inearBuck l ing . odb

#: Number o f Assembl ies : 1

#: Number o f Assembly in s t ance s : 0

#: Number o f Part i n s t ance s : 1

#: Number o f Meshes : 2

#: Number o f Element Se t s : 1
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#: Number o f Node Se t s : 7

#: Number o f Steps : 1

odb = s e s s i o n . odbs [ ’C: / t h e s i s / Nonl inearBuckl ing . odb ’ ]

s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . s e tVa lues ( d i sp layedObject=odb )

s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . odbDisplay . d i s p l a y . s e tVa lues ( p l o t S t a t e =(

CONTOURS ON DEF, ) )

odb = s e s s i o n . odbs [ ’C: / t h e s i s / Nonl inearBuckl ing . odb ’ ]

s e s s i o n . xyDataListFromField ( odb=odb , outputPos i t i on=NODAL, v a r i a b l e =(( ’RF ’ ,

NODAL, ( (COMPONENT, ’RF1 ’ ) , (COMPONENT, ’RF2 ’ ) , (COMPONENT, ’RF3 ’ ) , ) ) , (

’U ’ , NODAL, ( (COMPONENT, ’U1 ’ ) , (COMPONENT, ’U2 ’ ) , (COMPONENT, ’U3 ’ ) , ) ) ,

) , nodeSets=( ’REFERENCE POINT 1 ’ , ) )

x0 = s e s s i o n . xyDataObjects [ ’U: U1 PI : ASSEMBLY N: 1 ’ ]

x1 = s e s s i o n . xyDataObjects [ ’U: U2 PI : ASSEMBLY N: 1 ’ ]

x2 = s e s s i o n . xyDataObjects [ ’U: U3 PI : ASSEMBLY N: 1 ’ ]

x3 = s e s s i o n . xyDataObjects [ ’RF:RF1 PI : ASSEMBLY N: 1 ’ ]

x4 = s e s s i o n . xyDataObjects [ ’RF:RF2 PI : ASSEMBLY N: 1 ’ ]

x5 = s e s s i o n . xyDataObjects [ ’RF:RF3 PI : ASSEMBLY N: 1 ’ ]

s e s s i o n . writeXYReport ( f i leName=’C: / t h e s i s / Resu l t s / s07−RF−U− ’+Me+’− ’+Ma+’ . txt ’ ,

xyData=(x0 , x1 , x2 , x3 , x4 , x5 ) )
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Listing C.3: Example of the code developed for generating the material properties

function [V, t i t ] = s07mate r i a l (mat)

%%% General Informat ion

% Developed s c r i p t f o r Diploma t h e s i s c a l c u l a t i o n s

% Author : Martin Kapoun

% Contact : martin . kapoun@gmail . com

% Home un i v e r s i t y : CTU in Prague

% Date : 12/2018

% Developed during ERASMUS exchange program at KTH Royal

% Technica l Un i v e r s i t y in Stockholm

%%%

%%% Descr ip t i on o f the code

% Matlab func t i on wr i t t en f o r c a l c u l a t i o n s

% of non−l i n e a r mate r ia l p r o p e r t i e s based on

% Annex C of EN 1993−1−1
%%%

switch mat

case 1

disp ( ’ 1 .4306 ’ )

fy = 200 ;

fu = 520 ;

E = 200000;

t i t = ’ 1 .4306 ’ ;

case 2

disp ( ’ 1 .4301 ’ )

fy = 210 ;

fu = 520 ;

E = 200000;

t i t = ’ 1 .4301 ’ ;

case 3

disp ( ’ 1 .4401 ’ )

fy = 220 ;

fu = 530 ;

E = 200000;

t i t = ’ 1 .4401 ’ ;

case 4

disp ( ’ 1 .4432 ’ )

fy = 220 ;

fu = 550 ;

E = 200000;

t i t = ’ 1 .4432 ’ ;
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case 5

disp ( ’ 1 .4311 ’ )

fy = 270 ;

fu = 550 ;

E = 200000;

t i t = ’ 1 .4311 ’ ;

case 6

disp ( ’ 1 .4406 ’ )

fy = 280 ;

fu = 580 ;

E = 200000;

t i t = ’ 1 .4406 ’ ;

case 7

disp ( ’ 1 .4318 ’ )

fy = 330 ;

fu = 650 ;

E = 200000;

t i t = ’ 1 .4318 ’ ;

case 8

disp ( ’ 1 .4362 ’ )

fy = 400 ;

fu = 600 ;

E = 200000;

t i t = ’ 1 .4362 ’ ;

case 9

disp ( ’ 1 .4462 ’ )

fy = 460 ;

fu = 660 ;

E = 200000;

t i t = ’ 1 .4462 ’ ;

o therw i s e

disp ( ’ Choose a v a i l a b l e mate r i a l ! ’ )

end

n = 6 ; %from t a b l e 4 .1 , EN 1993−1−4
Ey = E/(1+0.002∗n∗E/ fy ) ;

epsu = 1−( fy / fu ) ;

m = 1+3.5∗( fy / fu ) ;

sigma1 = linspace ( 0 . 0 1 , fy , 2 1 ) ;

sigma2 = linspace ( fy , fu , 2 1 ) ;

sigma = [ sigma1 sigma2 ( 2 :end ) ] ;

eps = [ ] ;

epsTrue = [ ] ;
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for i =1: length ( sigma )

i f sigma ( i ) <= fy

tempEps = ( sigma ( i )/E)+0.002∗( sigma ( i )/ fy )ˆn ;

e l s e i f sigma ( i ) <= fu

tempEps = 0.002+( fy /E)+(( sigma ( i )− fy )/Ey)+epsu ∗ ( ( sigma ( i )− fy )/ ( fu−fy ) )ˆm;

end

eps = [ eps tempEps ] ;

tempEpsTrue = tempEps−(sigma ( i )/ (E ) ) ;

epsTrue = [ epsTrue tempEpsTrue ] ;

end

matAbaqus = [ t ranspose ( sigma ) t ranspose ( epsTrue ) ] ;

V = matAbaqus ;

t i t = t i t ;

end
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Listing C.4: Example of the code developed for executing the script

%%% General Informat ion

% Developed s c r i p t f o r Diploma t h e s i s c a l c u l a t i o n s

% Author : Martin Kapoun

% Contact : martin . kapoun@gmail . com

% Home un i v e r s i t y : CTU in Prague

% Date : 12/2018

% Developed during ERASMUS exchange program at KTH Royal

% Technica l Un i v e r s i t y in Stockholm

%%%

%%% Descr ip t i on o f the code

% Matlab func t i on wr i t t en f o r exec tu ing

% wr i t t en python s c r i p t s and i t e r a t e them .

% Every i t e r a t i o n c l e a r the whole f o l d e r .

%%%

clear , clc

mkdir ( ’ Resu l t s ’ ) ;

t ic

%de f i n i n g v a r i a b l e s

meshSeedSizes = 50 ;

m a t e r i a l s = 1 : 1 : 9 ;

maxInc = 0 . 0 0 2 ;

i n i t i a l I n c = 0 . 0 0 1 ;

maxNumInc = 200 ;

imp =33.5; %46.9 or 20.1 or 33.5 +−40%

%crea t i on o f v a r i a b l e s f i l e and i t e r a t i o n f o r each mesh s i z e

for i = 1 : length ( m a t e r i a l s )

%de l e t i o n o f a l l f i l e s excep t py s c r i p t s

for d = dir ( ’ .\ ’ ) . ’

i f (˜d . i s d i r && ˜any(strcmp (d . name ,{ ’ s07runMeshMaterial .m’ , ’ s07Buckl ing . py ’ , ’ s 07mate r i a l .m’ , ’ s07Non l inearBuck l ingResu l t s . py ’ , ’ s07mater ia lGenerator .m’ } ) ) )

delete ( f u l l f i l e ( ’ .\ ’ , d . name ) ) ;

end

end

%genera te mate r ia l

[V, mat ] = s07mate r i a l ( i ) ;

m a t f i l e = fopen ( ’ .\ s07mate r i a l . py ’ , ’w ’ ) ;
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fpr intf ( mat f i l e , ’ materialGen=’ ) ;

V(1 , 2 ) = 0 ; %for abaqus − f i r s t p l a s t i c s t r a i n has to be always zero

for j = 1 : length (V)

i f j ˜= length (V)

formatSpec = ’ (%18.14 f ,%18.14 f ) , ’ ;

fpr intf ( mat f i l e , formatSpec ,V( j , 1 ) ,V( j , 2 ) ) ;

else

formatSpec = ’ (%18.14 f ,%18.14 f ) ’ ;

fpr intf ( mat f i l e , formatSpec ,V( j , 1 ) ,V( j , 2 ) ) ;

end

end

fc lose ( m a t f i l e ) ;

%crea t i on o f var f i l e

v a r f i l e = fopen ( ’ .\ s07var . py ’ , ’w ’ ) ;

fpr intf ( v a r f i l e , ’ meshSeedSize=%0f \n ’ , meshSeedSizes ) ;

fpr intf ( v a r f i l e , ’Me=%0f \n ’ , meshSeedSizes ) ;

fpr intf ( v a r f i l e , ’Ma=%0s \n ’ , mat ( 3 : 6 ) ) ;

fpr intf ( v a r f i l e , ’mi=%6.3 f \n ’ , maxInc ) ;

fpr intf ( v a r f i l e , ’ i i =%6.3 f \n ’ , i n i t i a l I n c ) ;

fpr intf ( v a r f i l e , ’ mni=%0i \n ’ , maxNumInc ) ;

fpr intf ( v a r f i l e , ’ imp=%4.2 f \n ’ , imp ) ;

fc lose ( v a r f i l e ) ;

%execu t ion o f abq py s c r i p t

system ( [ ’ abq6141 cae noGUI=.\ s07Buckl ing . py ’ ] ) ;

system ( [ ’ abq6141 cae noGUI=.\ s07Nonl inearBuck l ingResu l t s . py ’ ] ) ;

end

toc

%crea t i on o f var f i l e i n t o r e s u l t s

v a r f i l e = fopen ( ’ Resu l t s \ s07var . txt ’ , ’w ’ ) ;

fpr intf ( v a r f i l e , ’S8R ’ ) ;

fpr intf ( v a r f i l e , ’ meshSeedSize=%0f \n ’ , meshSeedSizes ) ;

fpr intf ( v a r f i l e , ’ S t a t i c step , g ene ra l ’ ) ;

fpr intf ( v a r f i l e , ’mi=%6.3s \n ’ , maxInc ) ;

fpr intf ( v a r f i l e , ’ i i =%6.3s \n ’ , i n i t i a l I n c ) ;

fpr intf ( v a r f i l e , ’ mni=%3s \n ’ , maxNumInc ) ;

fpr intf ( v a r f i l e , ’ imp=%4.2 f \n ’ , imp ) ;

fpr intf ( v a r f i l e , ’ to ta lTimeAnalys i s=%0s \n ’ , toc ) ;

fc lose ( v a r f i l e ) ;
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Listing C.5: Example of the code developed for generating the material properties

%%% General Informat ion

% Developed s c r i p t f o r Diploma t h e s i s c a l c u l a t i o n s

% Author : Martin Kapoun

% Contact : martin . kapoun@gmail . com

% Home un i v e r s i t y : CTU in Prague

% Date : 12/2018

% Developed during ERASMUS exchange program at KTH Royal

% Technica l Un i v e r s i t y in Stockholm

%%%

%%% Descr ip t i on o f the code

% Matlab func t i on wr i t t en f o r p roce s s ing

% the r e s u l t i n g t e x t f i l e s i n t o f i g u r e s .

%%%

clc , clear

meshSeedSizes = 50 ;

A= [ ] ;

B= [ ] ;

m a t e r i a l s = 1 : 1 : 9 ;

mxL = [ ] ;

hold on

for i = 1 : length ( m a t e r i a l s )

[V, Ma] = s06mate r i a l ( i ) ;

Ma = Ma( 3 : 6 ) ;

Me = meshSeedSizes ;

f i l ename = [ ’ Resu l t s \ s07−RF−U− ’ ,num2str(Me) , ’ .0− ’ ,Ma, ’ . txt ’ ] ;

d e l i m i t e r I n = ’ ’ ;

h e a d e r l i n e s I n = 2 ;

B = importdata ( f i l ename , de l im i t e r In , h e a d e r l i n e s I n ) ;

B. textdata = st r2doub l e (B. textdata ) ;

r f = abs (B. textdata ( 3 :end , 6 ) ) / 1 0 0 0 ;

x = B. textdata ( 3 :end , 2 ) ;

y = abs (B. textdata ( 3 :end , 3 ) ) ;

z = B. textdata ( 3 :end , 4 ) ;

critLoadingNLA = r f ;

mxL = [mxL ; max( critLoadingNLA ) ] ;
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d i s p l a y = [ ’ 1 . ’ Ma ’ ( ’ num2str(mxL( i ) ) ’ kN) ’ ] ;

h ( i ) = plot (y , critLoadingNLA , ’ DisplayName ’ , d i s p l a y ) ;

end

hold o f f

legend ( ’ Locat ion ’ , ’ southeas t ’ )

t i t l e ( ’P−\d e l t a graph − imp 0% ’ )

ylabel ( ’ Load , P {Cr} (kN) ’ )

xlabel ( ’ Displacement , \ d e l t a (mm) ’ )

grid on

saveas ( gcf , ’ .\07−Pd−gr . f i g ’ )

saveas ( gcf , ’ .\07−Pd−gr . pdf ’ )
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