
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Master’s Thesis

Web application for demonstrating
domain-independent
game-playing algorithms

Bc. Nikita Mishchenko
Study programme: Open Informatics
Specialization: Software Engineering

January 2019
Supervisor: Mgr. Branislav Bošanský, Ph.D.

Acknowledgement / Declaration

I thank Mgr. Branislav Bošanský,
Ph.D., the supervisor of the diplo-
ma thesis for his valuable advice and
suggestions, which were very helpful.

I declare that presented work was
made independently and that I have
listed all sources of information used
within it in accordance with the me-
thodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague 06. 01. 2019

. .

iii

Abstrakt / Abstract

Diplomová práce se zabývá úlohou
vytvoření webové aplikace pro de-
monstraci a hraní her pomoci doménové
nezávislých algoritmu. V této práci jsme
se seznámili s herní teoretickou knihov-
nou, která obsahuje sbírku algoritmů
nezávislých na doménách schopných ře-
šit a hrát různé třídy her. Zanalyzovali
jsme existující řešení a zvolili vhodné
technologií pro vývoj serverové aplikace,
která se slouží jako adaptér pro herně-
teoretickou knihovnu. Porovnali jsme
různé JavaScript knihovny pro vývoj
webových aplikaci a vizualizace grafic-
kého rozhraní ve webovém prohlížečů.
Na základě toho jsme zvolili techno-
logií, které použili pro vývoj klientské
části. Byly implementovány aplikace na
straně klienta a na straně serverů. Byli
implementovány React komponenty,
které umožňují vývojáři vytvářet a vi-
zualizovat karetní, grafové a deskové
hry. Byla navržena a implementována
infrastruktura aplikací, která umožňuje
vývojáři spravovat a přidávat nové hry
a algoritmy.

Klíčová slova: gtlibrary, herně-
teoretická knihovna, teorie her, Java,
Javascript, webová aplikace, desková
hra, karetní hra, grafová hra, vizuali-
zace algoritmu.

This master thesis deals with the
task of creating a web application for
demonstrating domain-independent
game-playing algorithms. In this work,
we got familiar with the game-theoretic
library that contains a collection of
domain-independent algorithms ca-
pable of solving and playing various
classes of games. We reviewed and
chose suitable technologies for games
visualization and building a back end
application that appears as an adapter
for the game-theoretic library. This
work contains a comparison of various
JavaScript libraries for game visual-
ization. The technology stack was
selected. Client-side and server-side
applications were implemented. React
components that allow a developer to
build and visualize card, graph, board
games were implemented. Back end
application infrastructure that allows
a developer to manage and add new
games and algorithms was designed and
implemented.

Keywords: gtlibrary, game-theoretic
library, game theory, Java, Javascript,
web application, board game, card
game, graph game, algorithm visualiza-
tion.

iv

Contents /

1 Introduction .1
2 Background .2
2.1 Game theory .2
2.2 Game playing algorithms2

2.2.1 Double-Oracle αβ3
2.2.2 MCTS UTC3
2.2.3 Online Outcome Sam-

pling .4
2.2.4 Random algorithm4

2.3 Game domains4
2.3.1 GoofSpiel game5
2.3.2 Pursuit-Evasion game5
2.3.3 Oshi-Zumo game5

2.4 Server-side technologies5
2.4.1 Client-server style5
2.4.2 Java and JVM based

languages6
2.4.3 Spring framework and

modules .6
2.5 Client-side technologies8

2.5.1 JavaScript and EC-
MAScript standard8

2.5.2 Babel compiler9
2.5.3 Webpack9
2.5.4 Node.js 10

3 Analysis and design of the
server-side application 11

3.1 Core technology 11
3.2 Communication between

client and server 12
3.2.1 Simple Object Access

Protocol 12
3.2.2 Representational State

Transfer 12
3.2.3 GraphQL 13
3.2.4 Summary 13
3.2.5 Server-sent communi-

cation methods. 14
3.3 Building tool 15

3.3.1 Apache Maven 15
3.3.2 Gradle . 15
3.3.3 Summary 15

4 Analysis and design of the
client-side application 17

4.1 Core technology 17
4.1.1 Angular. 18

4.1.2 React.js 18
4.1.3 Vue.js . 19
4.1.4 Summary 20

4.2 Card games . 21
4.2.1 Cards.js 21
4.2.2 Phaser . 21
4.2.3 Card Game Library 22
4.2.4 MelounJS. 22
4.2.5 HTML5 Deck of Cards . . 23
4.2.6 Summary 23

4.3 Board games 23
4.3.1 Crafty . 23
4.3.2 Babylon.js 23
4.3.3 Stage.js 24
4.3.4 Enchant.js 24
4.3.5 Boardgame.io 24
4.3.6 Konva.js 25
4.3.7 Summary 25

4.4 Graph games 26
4.4.1 Sigma.js 26
4.4.2 D3.js . 26
4.4.3 Cytoscape.js 26
4.4.4 React-digraph 27
4.4.5 Vis.js . 27
4.4.6 Summary 28

5 Server-side application imple-
mentation . 29

5.1 Application structure 29
5.2 Game theoretic library inte-

gration . 31
5.3 Summary . 36

6 Client-side application imple-
mentation . 38

6.1 Application structure 38
6.2 Game loader. 40
6.3 Game component and higher

order wrapper component 41
6.4 Oshi-Zumo implementation . . . 44
6.5 GoofSpiel implementation 45
6.6 Pursuit-Evasion implemen-

tation . 47
7 Communication between

client and server 50
7.1 Oshi-Zumo . 50

7.1.1 Request 50
7.1.2 Response 51

v

7.2 GoofSpiel . 52
7.2.1 Request 52
7.2.2 Response 52

7.3 Pursuit-Evasion 53
7.3.1 Request 53
7.3.2 Response 54

8 Evaluation. 55
8.1 Automated testing 55

8.1.1 JUnit . 55
8.1.2 Spock framework. 55
8.1.3 Spring Boot test 56
8.1.4 Jest . 57
8.1.5 Checkstyle 57
8.1.6 Summary 58

8.2 Manual verification 58
9 Installation . 59
9.1 Back end application 59
9.2 Front end application 59

10 Conclusion . 61
10.1 Future work . 62

References . 63
A Specification . 67
B Symbols . 69
C Code listings . 70
D Content of attached CD 71

vi

Tables / Figures

3.1. SOAP, REST, GraphQL
comparison . 14

3.2. SOAP, REST, GraphQL
match requirements 14

4.1. Angular, React.js, Vue.js
Github statistics 18

2.1. Monte Carlo Tree Search4
2.2. Spring Boot structure7
2.3. ECMAScript 6 browser sup-

port .8
2.4. Webpack module bundler9
3.1. Polling and WebSocket com-

parison . 14
3.2. Gradle and Maven perfor-

mance comparison. 16
4.1. React component lifecycle 19
4.2. Frontend frameworks com-

parison results 20
5.1. Back end application module

dependencies 29
5.2. Back end application project

structure . 30
5.3. Algorithm loaders hierarchy . . . 34
5.4. GameService execution se-

quence diagram. Oshi-Zumo
implementation. 36

6.1. Client application project
structure . 38

6.2. Redux work principle 40
6.3. GameLoader component step . . 41
6.4. Game configuration sidebar . . . 42
6.5. Oshi-Zumo game visualiza-

tion . 44
6.6. GoofSpiel game visualization . . 45
6.7. Pursuit-Evasion game visual-

ization . 47
8.1. Spock tests execution result . . . 56
9.1. Back end application start

output . 59

vii

Chapter 1
Introduction

Game theory is a huge scientific area. It could solve wide range of decision making
problems using various algorithms.

Games are often used to test and evaluate game playing algorithms and its quality.
Many different games(domains) and algorithms are implemented in the game the-

oretic library [1]. This library was developed in the Artificial Intelligence Center of
Faculty of Electrical Engineering in Czech Technical University in Prague. Game-
theoretic library is a software library that contains a collection of domain-independent
algorithms capable of solving and playing various classes of games.

One of the use cases how to demonstrate algorithms capabilities is to let a human
player play against them. However, as a library, it does not have any visualization and
does not provide an interface for the human player that will allow him to interact with
algorithms.

The main goal of this diploma thesis is to create a web application that allows
human participants to play against selected algorithms on a collection of at least 3
fundamentally different games.

In this work, we have to solve the following tasks:

. Get familiar with the game-theoretic library, main implemented algorithms, and
select domains (games) for the web application.. Get familiar with existing web frameworks and libraries that allow designing different
types(board, card, graph, etc.) of games supported by the game-theoretic library,
compare their characteristics, and choose the most suitable one for the work.. Design the web application that allows human participants to play against selected al-
gorithms with the emphasis on possible future extensions (new games or algorithms).. Implement the web application and demonstrate its practical usability when multiple
users will be simultaneously playing different games against different algorithms.. Analyze and describe possible improvements, interesting use cases, existing problems
and ways of solving them for the future application development and extension.

The resulting web application will be the only first part of game-theoretic library
visualization. We will touch only a small part of the functionally provided by this
library.

One of the outputs of this work is a technology stack that later will be used to
implement other algorithms and domains.

1

Chapter 2
Background

In this chapter, we will get acquainted with a technical background and key definitions
which will be used in this work. We are using these definitions in whole work. For this
reason, it is important to understand their meaning to be in the context of this work.

2.1 Game theory
Game theory is a widely used methodology for analyzing multi-agent systems by ap-
plying formal mathematical models and solution concepts. One focus of computational
game theory is the development of scalable algorithms for reasoning about very large
games [2].

Since the main goal of this work is to develop a web application to visualize games
and let people play against the algorithms, game theory is one of the key terms. It is
a very huge scientific area and here we are touching an only small part of it.

A core of the application is the game theoretic library [1]. It contains a huge set of
different domains and algorithms. We will focus on some of them.

Simultaneous move games is a finite two-player game with simultaneous moves and
chance events (also called Markov games, or stacked matrix games) is a tuple (N , S,
A, T , ∆?, ui, s0), where S = D ∪ C ∪ Z [3].

. Z is a set of terminal states.. D is a set of states where players make decisions.. C is a set of states where chance events occur. Could be empty.. S is a set of all states.. N =
{

1, 2, ?
}

is a set of players. It contains a player labels, where ? denotes the
change player. A player is denoted i ∈ N .. A = A1 × A2 is a set of joint actions of individual players. Ai(s) is a set of actions
available for the player i in state s, where i ∈ N, s ∈ S.. T is a transition function definded by T : S × A1 × A2 7→ S. This function defines
the successor state by given a current state and actions for both players.. ∆? : C 7→ ∆(S) describes a probability distribution over possible successor states of
the chance event.. ui is the utility function. ui : Z 7→

[
vmin, vmax

]
⊆ IR gives the utility of player i,

where vmin and vmax are the minimum and maximum possible utility.. s0 is an initial state. We assume zero-sum games: ∀z ∈ Z, u1(z) = −u2(z). The
game begins in an initial state s0 and a subset of a game that starts in some node s
is called a subgame.

2.2 Game playing algorithms
In this work, we are working only with on-line algorithms.

2

. 2.2 Game playing algorithms

The on-line algorithm is an algorithm that receives a sequence of requests and per-
forms an immediate action for each request [4].

For the demonstration purposes we selected the following algorithms:

. Backward Induction. Backward Induction with Serialized Alpha-Beta Bounds. Double-Oracle. Double-Oracle with Serialized Alpha-Beta Bounds. Online Outcome Sampling. Monte Carlo Tree Search Upper Confidence Bounds for Trees. Monte Carlo Tree Search Exponential-Weight Algorithm for Exploration and Ex-
ploitation. Monte Carlo Tree Search Regret Matching. Random

For the reason that implementation details of these algorithms are not part of this
work, we will briefly describe a few of them. Detailed information about these algo-
rithms could be found in paper „Algorithms for Computing Strategies in Two-Player
Simultaneous Move Games“ [3].

2.2.1 Double-Oracle αβ

Double-Oracle with Serialized Alpha-Beta Bounds is an enhancement of Backward In-
duction with Serialized Alpha-Beta Bounds algorithm with doulbe-oracle algorithm.
Instead of immediately evaluating each of the successors of the current game state and
solving the linear program, the algorithm can exploit the double-oracle algorithm [3].

The goal of double-oracle algorithm is to find a solution of the matrix game without
solving complete the whole game [3].

We can split the algorithm to the following steps [3]:

. Algorithm tests, if the whole game can be solved by using serialized variants of the
game.. If not, then the algorithm initializes the restricted game with an arbitrary action for
each game state.. The algorithm starts iterations of the double-oracle algorithm.. The algorithm computes the value for each of the successors of the restricted game
that have the current value not known.. The algorithm solves the restricted game and stores the optimal strategies.. The algorithm computes best responses for each player and updates bounds.. The algorithm expands the restricted games with the new best response actions until
lower and upper bound are equal.

2.2.2 MCTS UTC

Monte Carlo Tree Search is a heuristics best-first search algorithm that uses stochastic
simulations [5]. This algorithm is trying to choose most benefitial actions. An algorithm
builds a tree of possible future game states. Each iteration consist from four steps:
Selection, Expansion, Simulation, Backpropagation.

3

2. Background .

Figure 2.1. Monte Carlo Tree Search [5].

Upper Confidence Bounds for Trees [6] is a Upper Confidence Bound 1 [7] algorithm
applied to trees. It is used to balance between nodes with high reward and depth.

In UCT [6] algorithm we select an action that maximizes Qt(s, a, d) + cNs,d(t),Ns,a,d(t),
where:

. s is a state.. d is a depth.. Qt(s, a, d) is the estimated value of action a in state s at depth d and time t.. Ns,d(t) is the number of times state s has been visited up to time t at depth d.. Ns,a,d(t) is the number of times action a was selected when state s has been visited
up to time t at depth d.

2.2.3 Online Outcome Sampling

Online Outcome Sampling (OOS) is a simulationbased algorithm based on Monte Carlo
Counterfactual Regret Minimization [8]. OOS adds to main modifications: Incremen-
tal Game Tree Building and In-Match Search Targeting. It starts from a single root
information set and adds at most one set to the memory in each iteration in case if
information set that is not in memory reached. Also, this algorithm trying to search
towards the histories that are more likely to occur during the match currently played
instead of start searching from the root in each iteration.

2.2.4 Random algorithm

Random algorithm has very simple logic. It expands current game state to get a set of
available actions for the player and then select a random action from this set.

2.3 Game domains

In this section, we will describe games rules and principles. As it was mentioned in
Section 1, we have to create a web application that allows human players to play
against game playing algorithms on a collection of 3 fundamentally different games.
These games are GoofSpiel, Oshi-Zumo, and Pursuit-Evasion.

4

. 2.4 Server-side technologies

2.3.1 GoofSpiel game

GoofSpiel is a simultaneous move card game. Usually is playing with 3 identical decks
of cards. One deck is for the chance player and one for each player.

Each deck could have from 1 to d cards, where d is a natural number. In standard
rules, d is equal to 13. Every card has its value. Values of the number cards are equal
to their number. Ace value is equal to 1. Jack value is equal to 11. Queen value is
equal to 12. King value is equal to 13.

The game is played in rounds. At the beginning of each round, one card from the
chance deck is revealed. Then each player selects one of his cards and makes a bid. Both
players show their selected card at the same moment. Then the player who selected
a card with the biggest value is winning the round and receive a reward equal to the
revealed card value from the chance player deck. In a case when both players select the
card with the same value, the round result is drawn and both players receive 0 points.

When there are no cards left, the game ends. The winner of the game is a player
with the biggest sum of card values he received during the whole game.

2.3.2 Pursuit-Evasion game

Pursuit-Evasion is a graph game. There is a single evader and a pursuer that controls
2 pursuing units on a four-connected grid.

Players are starting at the predefined positions and are making moves simultaneously.
During one turn players can move each of their units to adjacent nodes. There is also
a goal node.

Evader player wins when is reaching a goal node avoiding a pursuer player. Pursuer
player wins when is catching the evader by one of his units.

2.3.3 Oshi-Zumo game

Oshi-Zumo is a board game. There are two players, both starting with N coins. The
game is played on the board with 1 × 2K + 1 dimensions. There is also a wrestler
starting at position K (in the center of the board).

The game is played in rounds. In each round, both players simultaneously bid a
number of coins from M to the amount they have, where M is predefined constant and
represent the minimum bid. If the player has less then M coins he can bid only zero.
At the round end, the player with the highest bid moves the wrestler one position closer
to the opponent. If player bids are equal, the wrestler does not move.

The game ends when both players will have 0 or less then M coins, or if the wrestler
will leave the playing field. The winner is the farthest player from the wrestler.

2.4 Server-side technologies
We need to develop a web application. It means that we need to allow the human player
to interact with a game theoretic library via the web interface. For this purposes, we
have to separate application to two parts - client and server.

2.4.1 Client-server style

Client-server is a two-level layered architectural style. It has 2 parts client and server. A
client is requesting for some services. A server is providing these services. In this style,
communication is initiated by the client. The client makes a request with parameters

5

2. Background .
to the server to get the required data or to execute some process. The server responds
to this request with the result of request evaluation.

In the scope of this work we call a client or fronted a JavaScript application running
in the web browser and server or backend a Java application which uses game theoretic
library running on the server.

Game theoretic library is written in Java.

2.4.2 Java and JVM based languages

Java is a general-purpose, concurrent, class-based, object-oriented programming lan-
guage [9]. Java was inspired by C++ but writing code in Java is easier and safer than
in C++.

Java applications are compiled to bytecode which is then executed on Java Virtual
Machine (JVM). It helps to execute Java code on different platforms without any mod-
ifications. Java Virtual Machine is written for the specific platform, but there are
many implementations for all most popular platforms. JVM is doing many different
optimizations to provide good performance and optimize hardware resource usages.

Java has automatic memory management. It uses a garbage collector to manage
object lifecycle. When we create an object, it will be automatically allocated in memory.
We don’t need to care about object destruction, the garbage collector will do it for us,
using principles based on its type.

Relatively fast and safe development, lots of extensions and different built-in tools
makes Java one of the most popular programming languages in the world.

Java ideas inspired developers to create new JVM based languages. These languages
are also compiled to the bytecode, and bytecode could be executed on Java Virtual
Machine. It also brings full compatibility with Java classes. One of these languages is
Groovy.

Apache Groovy is a optionally typed and dynamic language with familiar to Java
syntax. It has capabilities to use static-typing and static compilation. Groovy features
allow us to use it as scripting language as well. Groovy is often used for domain specific
languages definition. It has nice built-in language features which could simplify code
writing and make code more readable.

Groovy characteristics makes this language very useful for specific tasks and domains.
In this work, we used Groovy for writing tests. It is described more in details in Section
8.1.

2.4.3 Spring framework and modules

Spring is a very flexible open source application framework. It provides all necessary
tools to the developer to create Java enterprise application easily. It gives the flexibility
to use any kind of architecture we need.

At its core, Spring offers a container referred to the Spring application context.
Spring automatically create and manage these containers. It could limit their scope,
control instantiation policy, add additional functionally using proxies, etc. One of the
main Spring benefits is dependency injection. Spring can inject required components
to other components and will care about providing correct instance based on defined
rules. An application composed of such components is maintainable, extensible, flexible
and clean. It could also be used to keep isolation on the level we wanted.

It is important to know, that in simple words in the context of Spring component is
an auto-configured bean.

Some of the Spring Framework principles [10]:

6

. 2.4 Server-side technologies

. Provide choice at every level. Spring lets programmer defer design decisions as late
as possible. It allows us to switch functionality providers using configurations. For
example, we can switch persistence providers through configuration without changing
your code.. Accommodate diverse perspectives. Spring embraces flexibility and is not opinionated
about how things should be done. It supports a wide range of application needs with
different perspectives.. Maintain strong backward compatibility. Spring’s evolution has been carefully man-
aged to force few breaking changes between versions. Spring supports a carefully
chosen range of JDK versions and third-party libraries to facilitate maintenance of
applications and libraries that depend on Spring.. Care about API design. The Spring team puts a lot of thought and time into making
APIs that are intuitive and that hold up across many versions and many years.. Set high standards for code quality. The Spring Framework puts a strong emphasis
on meaningful, current, and accurate Javadocs. It is one of very few projects that
can claim clean code structure with no circular dependencies between packages.

Spring has a big number of different modules. By combining them, we can achieve
the desired functionality. One of these modules is a Spring Boot 2.2.

Figure 2.2. Spring Boot structure.

Spring Boot let the developer create and run an application even faster. It pro-
vides a powerful and flexible way to configure an application using configuration beans,

7

2. Background .
application.properties, etc. Spring Boot autoconfiguration mechanism dramatically de-
crease the amount of code to run an application. Furthermore, it generates fat jars. It
means that as build result we will receive a normal jar file which could be run like ordi-
nary Java SE application, but it will contain all necessary dependencies, configurations
and application server. And Spring Boot Test allow writing integration tests easy and
comfortable.

By using the Spring framework and its modules, a developer can concentrate on
application logic and do not spend much time on configurations and integrations.

2.5 Client-side technologies
On the client-side the only one language supported by all web browsers is a JavaScript.

2.5.1 JavaScript and ECMAScript standard

JavaScript is a high-level, dynamic, weakly typed, multi-paradigm, interpreted pro-
gramming language that conforms to the ECMAScript specification. It allows us to
write complex dynamic applications for the web. With JavaScript, we can manipulate
HTML page content and use various APIs provided by the web browser.

ECMAScript(ES) is a scripting language specification. It was created to standardize
JavaScript implementations by specifying standard methods, APIs and functionally.

We can often hear JavaScript code of ECMAScript 6 standard. It means that this
code is using functionality specified by the 6th edition of ECMAScript standards. It
also used to validate browser support for the specific technology.

ECMAScript the 6th edition (ECMAScript 2015) adds some significant syntax
changes. It defined support for classes, modules, arrow functions, generators, iterators,
promises, new collections, typed arrays, reflections, and other improvements.

Figure 2.3. ECMAScript 6 browser support [11].

In Figure 2.3 we can see the percentage of ECMAScript 6 functions supported
by most popular web browsers. For the reason that peoples want to run their ES6
applications in all browsers, and it is still not fully supported, they are using babel
compiler. It can compile ES6 code to the previous standard which is supported by all
modern browsers.

8

. 2.5 Client-side technologies

2.5.2 Babel compiler
Babel is JavaScript compiler tool. It was created to compile JavaScript code of EC-
MAScript 2015+ to the version supported by all browsers. Currently ECMAScript
standard, supported by all web browsers is ECMAScript 5th edition. Using babel, we
can write nice and beautiful code and use it everywhere. For example, following arrow
function:

[1, 2, 3].map(n => n + 1);

Listing 2.1 ECMAScript 6th standard syntax example.

will be converted to

[1, 2, 3].map(function(n) {
return n + 1;

});

Listing 2.2 ECMAScript 5th standard syntax example.

For this reason, babel is often used in JavaScript development to simplify it and make
sure that application will work correctly in any web browser.

Nowadays modern JavaScript applications are compiled to the resulting files on the
backend using different building tools. One of these tools is a webpack.

2.5.3 Webpack
Webpack is an open-source JavaScript module bundler. It helps to build an application.
Webpack builds dependencies trees and bundle required parts. It also can preprocess
and organize resources.

Figure 2.4. Webpack module bundler. [12].

Webpack can do different code manipulations using various extensions. For example,
it could minimize JavaScript files, compile .sass and .less files to .css, modify class
names, optimize images, execute babel compiler. And as a result, it will generate static
assets, supported by all web browsers.

Webpack has flexible configuration model. A developer can specify everything he
wants to do with his code.

To use webpack, we need to have a Node.js because webpack runs on it.

9

2. Background .
2.5.4 Node.js

Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine. It is asyn-
chronous event-driven runtime.

V8 engine compiles JavaScript code to machine native code. It allows Node.js to ex-
ecute JavaScript code not only in web browsers but also at any platform. Using various
modules and extensions, we can write any application in JavaScript. For example, it
could be a web server, command line tools, desktop application. It uses a non-blocking
asynchronous approach, which makes an application very efficient.

The main idea of Node.js is JavaScript everywhere. It allows developers to write
applications for different environments in a single language.

Node.js has preinstalled package manager called npm.
npm is a package manager for JavaScript world technologies. It has a huge public

repository with different packages, called the npm registry. npm can simply install the
required package and will take care of all its child dependencies with correct versions.

npm store downloaded dependencies in the node_modules directory and is able to
save packages names and versions in the package.json file in JSON format. With this
file, we don’t need to have installed packages source codes as part of the project. They
could be automatically installed by calling npm install command.

10

Chapter 3
Analysis and design of the server-side
application

In this chapter, we will analyze what technology stack we will need to use to implement
the server-side application. We will analyze all aspects of the application, define the
goals, and compare different technologies options to choose the best combination for
the back end application.

The purpose of the back end part is to let the client communicate with the game-
theoretic library and obtain opponent actions and information about the game from
algorithms based on the current game state. First, we need to define the requirements
for the server-side application.

Back end application requirements:

. Provide information about supported games to the client.. Provide information about supported game playing algorithms to the client.. Provide information about game roles which player can play to the client.. Provide available configurations for a specific game to the client.. Allow the client to execute game playing algorithms for a concrete game for current
game state and game configuration.. Let players play simultaneously in different games with different configurations.

3.1 Core technology
Because game-theoretic library was written in Java, we chose Java as the main pro-
gramming language for a back end application. The back end should be able to receive
requests and respond to the client. It means that it will make sense to use one of the
realizations of Java Enterprise Edition specification.

Java EE is a powerful tool to build an application. There are a lot of realizations
from different companies such as Wildfly application server from Red Hat that imple-
ments pure Java EE specification. But also exists different application frameworks that
provide us with a lot of functionality out of the box. To pick the best framework for
our purposes, we need to define what we want to achieve:

. Modern framework - it should be a modern framework that supports most of the
popular technologies or provides a simple way to extend it to get the support of the
desired technology.. Big community - when software has a big community, it usually means that we
will be able to quickly find an answer to our question or get a valuable solution. Big
community means that it used by many peoples and they help to find and report bugs.
Also, for open source projects bugs could be fixed much faster. A big community is
a good sign that software is good, otherwise, it will not be so popular. It also means
that in most cases project will be supported and developed in the future. Last but

11

3. Analysis and design of the server-side application .
not least fact is that projects with a big community usually have many examples and
third-party projects and extensions that could be helpful for specific tasks.. Easy to use and configure - we want to be able to start using it relatively quick and
without hundreds of configurations and incrementally improve and add configurations
and functionality based on our needs.. Offering lots of modules and extensions - we want to use existing, tested and reviewed
by many other peoples solutions where it is possible.. Extensible and Flexible - we should be able to customize or extend different pieces
of application depending on application-specific logic.. Good documentation, articles and examples - learn new things is always easier when
examples and reasonable explanations are provided. It could help solve some prob-
lems.

The best choice is Spring framework 2.4.3. It is the most popular Java framework
now. Spring has a huge community and a big number of projects and extensions. It
allows us to do everything we need fast and in a structural way. Moreover, the appli-
cation could be easily maintained by any developer with knowledge in Java enterprise
area. Spring has good integration in all modern IDEs. And using Spring Boot project
we can create and run an application as a fat jar in a few minutes.

3.2 Communication between client and server
Server and client need to communicate between themselves. To choose the way of
communication we have compared the most popular methods:

. REST. SOAP. GraphQL. WebSockets. Server-sent events

We have to choose a method that is easy to use and fit our aim.

3.2.1 Simple Object Access Protocol
SOAP (Simple Object Access Protocol) is a messaging protocol specification for ex-
changing structured information. It operates with two functions GET and POST for
retrieving and adding or modifying data. It uses XML format for its messages. For web
service purposes XML schema is required written with WSDL (Web Services Descrip-
tion Language). To exchange data between applications, request and response formats
should be defined. Use single endpoint URL.

3.2.2 Representational State Transfer
REST (Representational State Transfer) is a software architectural style that defines a
set of constraints to be used for building web services. Web services which provide API
in REST architectural style called RESTful. RESTful API is typically mapping HTTP
request methods:

. GET - retrieve record or collection of records with or without details. POST - create a record or collection of records. UPDATE - replace the record or collection of records. DELETE - delete the record or collection of records

12

. 3.2 Communication between client and server

. PATCH - partial or full modification of existing record or collection of records

Methods without parameters are typically used for reading or modifying a list of
elements. Calling methods with parameters used to read or modify specific record or
subset of records. Sometimes POST method could be used to query data when one of
the parameters values contains sensitive data. For example, searching person by social
security number.

RESTful API should support OPTIONS method. When the application receives
OPTIONS request, it should provide information about supported methods and content
types for current URL.

RESTful APIs also have the following constraints [13]:

. Client server architecture - separate client and server brings portability, scalability
and allow to do development independently.. Stateless - by calling RESTful API we do not create session and do not keep context
for each client. It induces visibility, reliability, and scalability. We do not need to
share context between service instances and keep additional information in memory.. Cacheabillity - using cache become very simple. We can easy cache responses for
same read requests.. Uniform Interface - implementations are decoupled from the services they provide.
REST is defined by four interface constraints: identification of resources, manipula-
tion of resources through representations, self-descriptive messages and hypermedia
as the engine of application state.. Layered System - client does not know if is connected to end server or not. Client
could communicate with end application via gateway application, load balancer etc.
It gives pliability to scale application, modify or duplicate requests on server side.. Code-On-Demand - REST allows client functionality to be extended by download-
ing and executing code in the form of applets or scripts. This simplifies clients by
reducing the number of features required to be pre-implemented.

3.2.3 GraphQL
GraphQL is an application-layer query language that can be used with any database [14].
GraphQL requires a schema with data definition to be able to make requests. It is a
powerful query language which allows the client to query data it needs. For example,
when we need to get only a person’s date of birth and address, we can specify only
these fields in request instead of query whole entity. Using GraphQL, we decrease the
amount of data which server send and give a possibility to the client to choose what
it needs. It could be useful for CRUD applications but brings extra complexity to
back end part implementation because developer must define a schema and deal with
all tricky moments, such as circular dependencies, by limiting depths or size of the
response. Also, it slightly decreases performance.

3.2.4 Summary
To choose which option fits better we defined the following requirements:

. Fast and easy to develop, maintain and extend - we do not want to add unnecessary
extra complexity.. Stateless - in terms of this work we are using online algorithms, we want to receive
a response based on request body as soon as possible. From this perspective, it
will make sense to add stateless requirement. In other words, we want to receive a
request, calculate opponent move based on received data and send a response.

13

3. Analysis and design of the server-side application .
SOAP REST GraphQL

Type Protocol Architectural style Query language
Data formats XML JSON, XML, HTML JSON

and other microformats
Communication protocol SMTP, TCP, HTTP HTTP HTTP

Data typing Strong Weak Strong
Use complexity High Low Medium

Table 3.1. SOAP, REST, GraphQL comparison

. Client friendly - we also should care about client application. Because we are de-
veloping a web application, the client will be executed in the web browser. And
main programming language for web applications is JavaScript. From these facts, we
conclude that one of the requirements is comfortable usage from JavaScript.

In table 3.2 we summed up requirements matches.

SOAP REST GraphQL
Easy to use - + -

Client friendly - + +
Stateless - + +

Fit to the aim - + -

Table 3.2. SOAP, REST, GraphQL match requirements

As sum up, we chose REST with JSON format for communication between client
and server.

3.2.5 Server-sent communication methods
There were mentioned two more options above - WebSockets and Server-sent events.
These two methods are interesting from the side that they allow the server to provide
data even if client didn’t request it.

Figure 3.1. Polling and WebSocket comparison.

14

. 3.3 Building tool

At first glance, it makes no sense to use for online algorithms, but it could be used
in further application development for offline algorithms and even for cases when the
algorithm will not be limited by execution time, but by human player move time.
For example, while the human player makes his move, algorithm on server side could
continue calculating best action and provide better options to the client to move. And
at the moment when the player will make his action, the client application will use the
best received action.

WebSocket is a protocol which makes possible two-way communication between
server and web browser. Handshaking initiated by client required to establish Web-
Socket connection. After a connection is established server can send messages to the
client. From the definition, we see that it’s stateful.

Using WebSocket could decrease the load on the server and as we see in Figure 3.1
it provides updates more accurate from the time perspective.

Server-sent events are similar to WebSockets but are only unidirectional. A client
could listen for events from the server using the EventSource interface. Server sent
events in text/event-stream format.

As it was described above. We could use server-sent messages to increase time al-
gorithm could use to achieve a better result without any discomfort for the human
player.

3.3 Building tool
In JVM based programming languages world exists set of building tools. Building
tool helps to build and manage a project. It could make different code manipulations,
execute scripts to make code optimizations, download required libraries and care about
their versions to make them compatible with each other, managing application versions,
build correct artifacts, run tests and code analysis, doing publishing and many other
useful features. Nowadays the two most popular tools are Gradle and Maven.

3.3.1 Apache Maven

Apache Maven is a build automation and dependency management tool. It has different
goals to achieve the desired result. For example, we can call mvn compile, to execute
compile goal using maven. mvn compile will compile the project. Some of the goals
have prerequisites, in other words, the execution of the goal could depend on other
goals. It means that some goals must be completed so that the required goal could
start its execution. Maven uses XML files to describe the application and define goals.
Maven uses the Project Object Model (POM) to provide all configuration for a project.

3.3.2 Gradle

Gradle is a build automation system. It uses Maven concepts but use Groovy-based DSL
for project configuration. Latest versions of Gradle support Kotlin DSL. Gradle has a
lot of useful features like incremental building, caching, parallel execution. Because it
based on Groovy language, we can write code directly in configuration. It makes super
flexible and easy to use.

3.3.3 Summary

Gradle is more efficient then Maven. We can see performance comparison in Figure 3.2

15

3. Analysis and design of the server-side application .

Figure 3.2. Gradle and Maven performance comparison [15].

There are many debates about which tool is better, but Gradle does everything that
Maven can do and even more. Moreover, Gradle is easier to debug, extend and it works
much faster. We chose Gradle to build backend application.

16

Chapter 4
Analysis and design of the client-side
application

Every game is dynamic content. In modern web browsers, only one technology with
built-in support is a JavaScript. This simple scripting language in combination with
various APIs provided by the web browser becomes a powerful tool to build interactive
dynamic content.

In this chapter, we will define the requirements for a front end application, analyze
existing solutions, and choose technologies for the needs of the application.

4.1 Core technology
The first thing we did was choosing the backbone of our application. The following
criteria were defined to choose the best tool for the application:

. Should be open source and with free to use license.. Simple to use - we want to start to use the basic functionality as fast as possible and
incrementally increase its complexity.. Support of all popular web browsers - the main host of our application is a web
browser. We want the application to work and look the same in all web browsers.. Fast to develop - it is important when a library has some basic functionality imple-
mented, and we do not need to write a lot of boilerplate code. We want to start
implementing application-specific logic instead of solving problems that already have
a solution.. Popular in modern web - usage of modern technologies helps us to achieve a defined
goal much faster and simpler. It could also increase code performance and visual
representation.. Has good integration capabilities with third-party libraries - selected technology
should not solve all our problems, but it is good when we can extend it using third-
party libraries or libraries written by ourselves.. Good performance - the end user should not wait for a long time to get the results
of his action. We need to find a solution that will have a good architecture for
manipulating with different blocks and content.. Flexible - we need to find a tool that will allow us to build what we want.. Big community - community is a good indicator of software quality. Also, this is a
great source of information and solutions for problems we could meet. Community
for the open source project is a testers group as well.. Has different extensions and plugins - using already implemented solutions is often a
good way of solving some task if it fits our needs. It is tested by various peoples and
save our time.. Perspective - we want to find a technology that will be supported and developed in
the future.

17

4. Analysis and design of the client-side application .
. Well documented - documentation is very important to start working with new things

and even to remind some specific functionality.

There were 4 candidates selected matches most of these criteria.

. React.js library. Angular framework. Vue.js framework. Pure JavaScript

On the table 4.1 we can see some statistics based on Github data related to popu-
larity, support and development process.

Angular [16] React.js [17] Vue.js [18]
Watches 3310 6596 5723

Stars 43837 118488 123273
Forks 11293 21496 17631
Issues 2235 394 163

Commits 12397 10561 2750
Licence MIT MIT MIT

Table 4.1. Angular, React.js, Vue.js Github statistics.

4.1.1 Angular

Angular is an open source JavaScript framework maintained by Google, which provides
different APIs and structures to help develop modern applications quickly and simply.

Angular taps into some of the best aspects of server-side development and uses them
to enhance HTML in the browser, creating a foundation that makes building rich ap-
plications simpler and easier. Angular applications are built around a design pattern
called Model-View-Controller (MVC) [19]:

. Extendable - it is easy to enhance applications to create new and useful features.. Maintainable - Angular apps are easy to debug and fix.. Testable - Angular has good support for unit and end-to-end testing.. Standardized - Angular builds on the innate capabilities of the web browser with-
out getting in your way, allowing you to create standards-compliant web apps that
take advantage of the latest features (such as HTML5 APIs) and popular tools and
frameworks.

Angular applications are usually written in TypeScript. TypeScript is open source
programming language developed by Microsoft. It is kind of JavaScript extension which
provides more functionality than pure JavaScript and allow to write code in a more
readable and simpler manner. Using TypeScript compiler, we can compile TypeScript
code to JavaScript code compatible with a standard supported by all popular modern
desktop and mobile browsers.

4.1.2 React.js

React.js is a JavaScript library for building user interfaces. For writing React applica-
tions is typically used pure JavaScript in ECMAScript 6 style. This code then compiled
to JavaScript of ECMAScript 5 standard using babel compiler to be compatible with
all web browsers.

18

. 4.1 Core technology

React allows writing code in a clear declarative way. It uses component-based archi-
tecture style which helps to divide application to different components and reuse them.
The component has its own state and properties. Using them, we can define how the
component should behave and look. This is a great benefit, we do not care about the
outside situation, we just have current state and properties and process them, if state
or properties are changed React will handle it for us.

React component has its own lifecycle. We can see it in Figure 4.1.

Figure 4.1. React component lifecycle [20].

Using these hooks, we can control component by performing or not performing re-
quired actions based on the current situation.

One more important note about a component state is that state is immutable. It
means that we cannot modify component state, we can only replace one immutable
state with another. That is a great approach. It helps to avoid collisions and make
logical flow transparent clear.

For the goal of this work state also is a great benefit, because we concept of game
state is ideally fits into React component state.

The great innovation which React bring to web development is a virtual DOM. DOM
manipulation operations are very computationally expensive. React has its own virtual
DOM model which is linked to HTML DOM elements. Also, react do not replace an
element when is possible to change some of their parts or update only some part of
DOM tree. This approach made React extremely fast.

React uses JSX. It is an extension on JavaScript used for markup. Instead of sep-
arating technologies by putting markup and logic in separate files, React separates
concerns. It becomes very comfortable to use JSX in components, we can manipulate
with content by using a mix of HTML and JavaScript syntax.

4.1.3 Vue.js

Vue.js is a JavaScript framework which becomes more and more popular. It mixes ideas
of React and Angular. It allows to use JSX and ECMAScript 6 and let the developer
decide to use the core library or whole infrastructure provided by the framework. In

19

4. Analysis and design of the client-side application .
the standard library it uses ECMAScript 5 style with pure javascript object syntax to
define all aspects of the component. It is very similar to React and uses most of its
ideas like components with their lifecycle, virtual DOM, etc.

By comparing all positive and negative aspects of these tools is hard to tell if it will
be comfortable to use until we do not try it by ourselves. Even after sample run of each
of them is better to check what development community thinks about this. On figure
4.2 we can see statistics for year 2018 [21].

Figure 4.2. Frontend frameworks comparison results.

4.1.4 Summary

Using pure JavaScript was also considered as an option. In combination with babel,
we can use the ECMAScript 6 standard without caring about browser compatibility.
But we will need to implement a lot of things which are already implemented in these
frameworks.

We tried to write a simple application with each of these tools but React is more
comfortable for us. And as we can see for most developers as well.

React provides us with component-based architecture. Using this property, we can
develop small components which then will be reused for games of the same type. Also,
state term fits our needs ideally. It is easy to learn, and a lot of third-party libraries and
components exists. Furthermore, it is considered a good practice to use a maximum of
native language abilities in software engineering and React uses pure JavaScript. We
should not forget that this is a library, but not a framework. It allows us to build
an application as we want by adding libraries we need. It will reduce the number of
unnecessary dependencies. By choosing React, we can be confident that the application
will be simply maintained and extended in the future.

20

. 4.2 Card games

4.2 Card games
In this, 4.3 and 4.4 sections we will analyze existing libraries for solving the corre-
sponding type of games. Some of these libraries could be applied for a few types of
games, so we will describe them only once.

The requirements to the libraries were the following:

. Is open source.. Is maintained - we want to find a library that is supported and meets modern stan-
dards.. Can be integrated with a client application - library should allow us to integrate with
a client application without using any hack solutions.. Is not overfit client application needs - we need a library that will do exactly what
we want or close to it.. Supports features we need to implement corresponding game type.. It makes sense to use it instead of writing everything manually.. Is admissible well documented - documentation is important to be able to work with
the library correctly. We need to have at least basic documentation.

A huge number of different libraries was reviewed. We include only the most inter-
esting and open source solutions which are most relevant to the application aims.

4.2.1 Cards.js
Cards.js [22] is a JavaScript library for playing cards. From the first view looks promis-
ing. But it has very limited documentation and visual representation is not ideal. Also,
this library was written almost 7 years ago what is a very long period for the modern
web world. And it is not maintained anymore.

4.2.2 Phaser
Phaser [23] is a JavaScript framework for developing desktop and mobile HTML5
games. It is open source and well documented. Phaser allows developing game us-
ing HTML5 Canvas and WebGL. It has a relatively big community and set of different
plugins. Also, Phaser supports coding using TypeScript. It provides everything to
build a game:

. WebGL & Canvas - Phaser uses both and can automatically swap between them
based on browser support.. Preloader - Images, Sounds, Sprite Sheets, Tilemaps, JSON data, XML - all parsed
and handled automatically, ready for use in the game and stored in a global Cache
for Game Objects to share.. Physics - Phaser support 3 physics systems: Arcade Physics, an extremely light-
weight AABB library perfect for low-powered devices. Impact Physics for advanced
tile support and Matter.js - a full-body system with springs, constraints and polygon
support.. Sprites - allow to use sprites and do everything with them: rotate, drag, animate,
scale etc. Also, provide support for different event handlers for sprites.. Groups - allow to group sprites and apply things we can do with sprites to the whole
group.. Animation - Phaser supports classic Sprite Sheets with a fixed frame size as well as
several common texture atlas formats including Texture Packer, Starling and Unity
YAML. All of these can be used to easily create animations.

21

4. Analysis and design of the client-side application .
. Particles - a particle system is built-in, which allows you to create fun particle effects

easily.. Camera - Phaser has advanced multi-camera support.. Input - Phaser support different input devices like Touch, Mouse, Keyboard,
Gamepad.. Audio - Phaser supports both Web Audio and legacy HTML Audio. It automati-
cally handles mobile device locking, easy Audio Sprite creation, looping, streaming,
volume, playback rates and detuning.. Tilemaps - Phaser can load, render and collide with a tilemap with just a couple of
lines of code. It supports CSV and Tiled map data formats with multiple tile layers.. Device Scaling - Phaser has a nice build in scaling manager. It allows to make
application looks well on all screen resolutions. Supports full screen.. Plugin System - Phaser has a reach plugin system.

Phaser is actively maintained. It is a very good and flexible framework. Could be
a nice basis for any game. But it is overfitting our needs. We do not need so complex
tool for our games.

4.2.3 Card Game Library

Card Game Library [24] is a JavaScript library for building card games for the web. It was
developed as a hackathon project. The library uses HTML DOM for visualization. It
looks well, but it was developed 8 years ago. Has no documentation and not maintained
anymore. Also on the webpage was mentioned that it is compatible only with Chrome
web browser.

4.2.4 MelounJS

MelounJS [25] is a lightweight HTML5 framework designed from the ground and it is
open source. MelounJS has the following features:

. A fresh & lightweight 2D sprite-based engine.. Standalone library - do not need anything, but HTML5 compatible browser.. Compatible with most major browsers and mobile devices.. Device motion & accelerometer support.. High DPI & auto scaling.. Multi-channel HTML5 audio support and Web Audio on supported devices.. Lightweight physics implementation to ensure low cpu requirements.. Polygon (SAT) based collision algorithm for accurate detection and response.. Fast Broad-phase collision detection using spatial partitioning.. 3rd party tools support for physic body definition (PhysicEditor, Physic Body Edi-
tor).. Advanced math API for Vector and Matrix.. Animation with different effects.. Object Pooling.. Basic Particle System.. Standard spritesheet and Packed Textures (Texture Packer, ShoeBox) support.. A state manager - help to manage loading, menu, options, in-game state.. Maltiple tools to work with tiles.. Mouse and Touch device support with mouse emulation.. Asynchronous messaging support.. Basic GUI elements included.

22

. 4.3 Board games

It is a very good tool with a big community and support. MelounJS is actively
developed. And we can use it for any type of 2D game. But it is too much for the
games we want to visualize. It will well fit for bigger games with advanced graphics.
Means that we can implement what we want using this framework or Phaser, but it
will give as extra complexity we do not want to have.

4.2.5 HTML5 Deck of Cards

HTML5 Deck of Cards [26] is a pure JavaScript implementation of a deck of cards. This
library allows to manipulate with card decks, shuffle them, show certain cards, add or
remove cards from the deck. It uses HTML DOM elements for cards visualization. It
has poor documentation. Also, it is not actively maintained now. The author mentioned
that he plans to rewrite this library. This library was the main candidate to use it in
the client application for card games, because of it simple and lightweight. But there
is no big advantage of using this library against a code card deck by ourselves.

4.2.6 Summary

Based on reviewed solutions we decided to implement base components for card games
by ourselves using HTML DOM elements. It seems to be the most logical decision. We
do not need any extra features, and it will be easier and faster to write it by ourselves.

There were nice game development frameworks, but all of them are too complex for
us. We do not need functionality that we will not use.

4.3 Board games

4.3.1 Crafty

Crafty [27] is a flexible open source framework for JavaScript games. Contains following
features:

. Cross Browser compatible.. Canvas or DOM - allows using canvas or DOM for rendering keeping logic the same
for both cases.. Entity Component System.. Sprite Map support.. Collision Detection.. Fire & Forget Events - provide a flexible system to manage and handle events.. Animation and effects support.. Simple physics support.

Crafty is a very nice lightweight and well-documented framework. More suitable for
dynamic games.

4.3.2 Babylon.js

Babylon.js [28] is a complete JavaScript framework for building 3D games and expe-
riences with HTML5, WebGL, WebVR and Web Audio. Probably one of the biggest
game development frameworks for the web. Has a very rich list of features. Baby-
lon.js provides too much for the needs of the client application and was mentioned to
demonstrate everything that could be done on the web.

23

4. Analysis and design of the client-side application .
4.3.3 Stage.js

Stage.js [29] is an open source lightweight 2D HTML5 JavaScript library for cross-
platform game development. It provides DOM-like tree data model to compose appli-
cation and internally manages rendering cycles and drawing. Stage.js allow to handle
and process mouse and touch event on each element. Each node is pinned to its parent
and can have any number of image textures. It has optimized redrawing logic. Stage.js
provide a set of standard features like animation, scaling, positioning, etc.

Stage.js is a very simple, well-documented tool. It has exact features we need and
do not have unnecessary complex functionality.

4.3.4 Enchant.js
Enchant.js [30] is an open source JavaScript framework for developing simple games
and applications. It has the following features:

. Objected Oriented - all items displayed are objects.. Event-driven - based on asynchronous processing via event listeners.. Animation Engine - allows the use of standard animation such as tweens.. Hybrid Drawing - supports drawing with both the Canvas API and the DOM.. WebGL Support - supports 3D games using WebGL with a plugin.. Content Library - includes a royalty-free image library which could be used in an
application.

It was a very popular framework in the past. Enchant.js was released in 2011. There
are over 1000 games implemented using this framework. Unfortunately, it not main-
tained for more than two years.

4.3.5 Boardgame.io
Boardgame.io [31] is an open source game engine for turn-based games. Beside visual-
ization, it also cares about game definition. Boardgame.io provides interfaces to define
turn-based games logic. It has the following features:

. State Management - the Game state is managed seamlessly across clients, server and
storage automatically.. Cross-platform Multiplayer - All clients are kept in sync in real-time.. Declarative AI - Tell the bots what to do and they will figure out how to do it.. Game Phases - with different game rules (including custom turn orders) per phase.. Prototyping - Debugging interface to simulate moves even before you render the
game.. Logs - Game logs with the ability to time travel (viewing the board at an earlier
state).. View-layer Agnostic - Vanilla JavaScript client with bindings for React / React Na-
tive.. Component Toolkit - Components for hex grids, cards, tokens.. Extendable - Subsystems (storage, networking, etc.) can be replaced with custom
implementations.

It has a nice way of game logic definition by separating it into different methods.
Also, boardgame.io has good integration with React. The library relies more on client
side logic definition. And has only basic HTML DOM based visualization capabilities.
This is not acceptable for bigger board games. We decided to use a canvas to be able
to scale the board.

24

. 4.3 Board games

Boardgame.io has integrated implementation of some game theory algorithms, but
we already have this functionality in backend application. If the task were to implement
the client-side only application for playing turn-based games from scratch, we could go
for this solution as the core engine, but replace the visualization part.

4.3.6 Konva.js
Konva.js [32] is a very popular open source HTML5 2d canvas library for desktop
and mobile applications. It allows to interact with HTML5 canvas API in a comfort-
able object-oriented performant way, handle and process events and is simple to use.
Konva.js has the following features:

. Built-in in support for HDPI devices with pixel ratio optimizations for sharp text
and shapes.. Object Oriented API.. Node nesting and event bubbling.. High performance event detection via color map hashing.. Layering support.. Node caching to improve draw performance.. Nodes can be converted into data URLs, image data, or image objects.. Animation support.. Tween support.. Drag and drop with configurable constraints and bounds.. Filters.. Ready to use shapes including rectangles, circles, images, text, lines, polygons, SVG
paths, and more.. Custom shapes.. Event driven architecture which enables developers to subscribe to attribute change
events, layer draw events, and more.. Serialization & de-serialization.. Selector support - we can select element in CSS selectors like way.. Desktop and mobile events.. Custom hit regions.

Konva.js has a big community, lots of examples and good documentation. It has rich
API which gives the ability to customize every element and have full control over what
we want to achieve.

React Konva [33] is a JavaScript library for drawing complex canvas graphics using
React. It provides declarative and reactive bindings to the Konva Framework. Using
this library, we can have full control of Konva.js in React-like style. The goal of this
library is to have similar, declarative markup as normal React and to have a similar
data-flow model.

4.3.7 Summary
In this section we skipped many game developing frameworks. Almost all of them are
really great and provides a big number of different functionalities out of the box. But
all of them overfitting our needs. They could be useful for big and complex games or
real-time arcade games.

We decided to use Konva.js and React Konva as an adapter for React in frontend
application. It matches all requirements and give us flexibility, good control on appli-
cation and allows to keep components separately without any additional manipulation
to be able to reuse them in the same environment.

25

4. Analysis and design of the client-side application .

4.4 Graph games
For graph games, we wanted to find a library which will be able to visualize graph,
support different graph layouts with auto positioning, allow to select nodes and handle
events. Optional, but also important requirement is a clean look.

4.4.1 Sigma.js
Sigma.js [34] is a JavaScript library dedicated to graph drawing. It makes easy to
publish networks on Web pages and allows developers to integrate network exploration
in rich Web applications. Sigma.js provides the following features:

. Custom rendering - allow to use the Canvas or WebGL built-in renderers or write
own. And the built-in renderers also provide a lot of ways to already customize the
rendering.. Interactivity oriented - allow to handle and process different events like click, drag,
zoom, etc.. Powerful graph model - sigma graph model is customizable. It allows adding custom
indexes on the data.. Extendable - it is easy to develop plugins or simple snippets to augment sigma’s
features. Some are already available in the main repository to read some popular
graph file formats, or to run complex layout algorithms, for instance.. Compatibility - sigma runs on all modern browsers that support Canvas and works
faster on the browser with WebGL support.

Sigma is simple, nice looking and actively developed library.

4.4.2 D3.js
D3.js [35] is a JavaScript library for manipulating documents based on data. D3 helps
you bring data to life using HTML, SVG, and CSS. D3’s emphasis on web standards
gives you the full capabilities of modern browsers without tying yourself to a proprietary
framework, combining powerful visualization components and a data-driven approach
to DOM manipulation.

D3.js allows to bind data to DOM and then apply data-driven transformations to
the document. It provides a huge set of different data manipulation, transformation,
and visualization tools. Library provides custom data structures and able to visualize
data in different forms like box plots, various types of charts, calendars, dendrograms,
direct graphs, stacked bards, Voronoi diagrams, scatterplot matrices, maps, sequences
sunburst and many others.

D3.js is a very great tool to visualize data and is must have tool when developing any
graphical statistics dashboard. Has big community, documentation and examples. But
our aim is different. Data visualization is an only small part of the client application.
We need to be able to interact with graphs.

4.4.3 Cytoscape.js
Cytoscape.js [36] is graph theory library for visualization and analysis. Part of Cy-
toscape platform for visualizing complex networks and integrating these with any type
of attribute data. Cytoscape.js allows to display and manipulate rich, interactive graphs
and hook into user events. It includes different types of gestures out-of-the-box, includ-
ing pinch-to-zoom, box selection, panning, etc. Cytoscape.js also has graph analysis in
mind: The library contains many useful functions in graph theory.

26

. 4.4 Graph games

Cytoscape.js has the following features:

. A fully featured graph library is written in pure JavaScript.. Permissive open source license (MIT) for the core Cytoscape.js library and all first-
party extensions.. Highly optimized Compatible with all modern browsers, legacy browsers with ES5
and canvas support, module systems and package managers like npm, yarn, bower.. Has a large suite of tests that can be run in the browser or the terminal.. Documentation includes live code examples, doubling as an interactive requirements
specification.. Fully serializable and deserializable via JSON.. Uses layouts for automatically or manually positioning nodes.. Supports selectors for terse filtering and graph querying.. Uses stylesheets to separate presentation from data in a rendering agnostic manner.. Abstracted and unified touch events on top of a familiar event model.. Built-in support for standard gestures on both desktop and touch.. Supports functional programming patterns.. Supports set theory operations.. Includes graph theory algorithms, from BFS to PageRank.. Animatable graph elements and viewport.. Fully extendable.. Well maintained.. Used in various well-known projects.

As it was mentioned, Cytoscape.js has very good documentation with lots of exam-
ples. It gives full control of the graph and its parts events. It is a highly customizable
and optimized library.

4.4.4 React-digraph

React-digraph [37] is a React component which makes it easy to create a directed graph
editor without implementing any of the SVG drawing or event handling logic.

React-digraph is an open source solution from Uber. It allows to create and edit
graphs on canvas. It works and looks good. Using this component, we can simply
manipulate with the graph, adding and removing nodes, edges and labels. But this is
a graph editor. It helps to create a graph, but we need to use an existing graph and
interact with it.

4.4.5 Vis.js

Vis.js [38] is a dynamic, browser-based visualization library. The library is designed to
be easy to use, to handle large amounts of dynamic data, and to enable manipulation
of and interaction with the data.

The library is logically separated into the following parts:

. DataSet - Manage unstructured data using DataSet. Add, update, and remove data,
and listen for changes in the data.. Timeline - Create a fully customizable, interactive timeline with items and ranges.. Network - display dynamic, automatically organized, customizable network views.. Graph2d - Draw graphs and bar charts on an interactive timeline and personalize it.. Graph3d - Create interactive, animated 3d graphs. Surfaces, lines, dots and block
styling out of the box.

27

4. Analysis and design of the client-side application .
We are interested in the Network part. The Network is a visualization to display

networks and networks consisting of nodes and edges. The visualization is easy to use
and supports custom shapes, styles, colors, sizes, images, and more. The Network has
clustering support. The Network uses HTML canvas for rendering.

Network part allows stylising nodes and edges, adding labels, using different layouts
and handle element’s events. Library provides an API to dynamically manipulate with
data and supports animations and physics. It is an open source solution with good
documentation, examples, and support.

4.4.6 Summary
We have been evaluated all options, few of them were suitable for application needs, but
we decided to choose cytoscape.js. It specializes in graph manipulation and interactions.
Provides wide well-documented APIs to for interactions and gives full control on the
graph. It used in many different projects and has good feedback.

28

Chapter 5
Server-side application implementation

In this chapter, we will describe implementation details of the back end application.

5.1 Application structure

Figure 5.1. Back end application module dependencies.

Back end application is separated into four modules:

. Module API - contains DTO (Data Transfer Object) classes. These classes are used
for interactions with the outer infrastructure. They are defining request and response
content format. Using these structures front end and back end are communicating
with each other. Keeping such DTOs in a separate module, which is built in its own
jar file is a good practice. It could be reused in other applications for interaction.. Module GT Library - contains game theoretic library implementation [1]. Because
of this library required additional dependencies which are not abled from maven
repositories and CPLEX solver from IBM, we decided to put it in a separate module
and automate these processes. It is possible to specify the path to the CPLEX
binaries in gradle.properties file. Another reason to keep the library as part of
the application is that we needed to make small changes in it to be able to execute
game playing algorithms simultaneously.. Module Core - contains main part of the code of this work. It is an adapter for
the game theoretic library. The core logic is implemented here. It takes care about

29

5. Server-side application implementation .
receiving a request, converts it, process with game theoretic library and responds
back. Code from this module is responsible for a lot of logic and is described more
in details in Section 5.2.. Module App - is a wrapper for a whole back end application. It contains the main
application class, different configuration files and integration tests for the back end
application. In this module, we are able to configure algorithms parameters in a
comfortable, structured manner, application attributes, and logging templates.

Figure 5.1 demonstrates module dependencies.

Figure 5.2. Back end application project structure.

In Figure 5.2 project structure is shown. It is important to know where different
parts of the project are located.

. buildSrc - contains version utilities which are used for versioning during the build.. gradle - contains Gradle configuration scripts.. gradle/publishing - contains configurations for build artifacts depending on project
type such as API project or fat jar project. Also, there is a configuration for pub-
lishing artifacts to the nexus.. gradle/testing/checkstyle - contains checkstyle plugin integration to Gradle and
its configuration. This plugin is used to control code style rules. Described in details
in Section 8.1.. gradle/wrapper - contains Gradle wrapper jar which allow us to execute build with-
out Gradle installed on the operating system by using ./gradlew from the root
directory.

30

. 5.2 Game theoretic library integration

. module-gt-api, module-gt-core, module-gt-library and module-gt-app - con-
tains the modules described above.. build.gradle - main build file. Contains common configuration for all projects
(modules). Additionally, every module has its own build.gradle file with a specific
configuration.. gradle.properties - contains properties which Gradle use during the script execu-
tion. It could be not managed libraries versions, application build version, Gradle
attributes, and limitations. The path to CPLEX should be defined here as well by
setting cplexJarPath and cplexBinPath properties for the path to CPLEX jar file
and binary files respectively.

...
cplexJarPath=/path/to/jar/cplex.jar
cplexBinPath=/path/to/binaries/cplex/bin/x86-64_osx
...

Listing 5.1 CPLEX path configuration in gradle.properties.

5.2 Game theoretic library integration
We have to implement an adapter to the game theoretic library with minimum changes
to the library itself and keeping backward compatibility.

The game theoretic library was initially developed to test game-playing algorithms.
For these purposes, an application should be executed with predefined parameters and
after the evaluation is complete, a user has to receive the result and application is
going to shut down. From this perspective for configuration were used static variables.
This fact brings some problems for algorithms execution with different configurations
and states in parallel on a single JVM. We have to improve it to be able to execute
algorithms on single JVM instance.

Only a few changes were made in module-gt-library. We added additional con-
structors to the game classes to be able to pass them dynamic configuration. After
these changes game-theoretic library still could be used in an old manner, but now
we could pass there our custom configuration. Unfortunately, we have to make ad-
ditional customizations for some game info and state classes by using inheritance to
be able to override some methods to use provided configuration instead of a static
one. For example, we implemented a class CustomGoofSpielGameState that extends
GoofSpielGameState class and overrides its methods that are using static variables. It
brings us small logic duplication, but there is no other more acceptable way to do this.
All these classes are located in module-gt-core.

We wanted to provide a structural way for loading games and algorithms indepen-
dently on each other. For example, the game-theoretic library has implemented different
algorithms and games, and they are working with this back end application. When the
new game will be added to the library, we don’t want to care about integration with
all algorithms. Only some game-specific logic should be added to the application, and
it will work with all already supported algorithms. Same should work for algorithms as
well. If the new algorithm was added to the library, it should work with all supported
games.

Because library features exceed application features and from a style perspective,
two enumeration classes were defined. First is a game(cz.cvut.fel.gt.game.Game).

31

5. Server-side application implementation .
public enum Game {

GS("GoofSpiel"),
PE("Pursuit-Evasion"),
OZ("Oshi-Zumo");

...

}

Listing 5.2 Game enumeration definition.

And the second one is an algorithm(cz.cvut.fel.gt.game.Algorithm).
public enum Algorithm {

BI("Backward induction"),
BIAB("Backward induction \u03B1\u03B2"),
DO("Double-oracle"),
DOAB("Double-oracle \u03B1\u03B2"),
OOS("Online Outcome Sampling"),
MCTS_UCT("MCTS Upper Confidence Bounds for Trees"),
MCTS_EXP3("MCTS EXP3"),
MCTS_RM("MCTS Regret Matching"),
RAND("Random");

...

}

Listing 5.3 Algorithm enumeration definition.

To add support of new game to the back end application, we need to add game loader
component 2.4.3. This component must implement GameLoader interface.

public interface GameLoader {

Game getGame();

SingleGameState<MCTSInformationSet> loadMCTSGame();

SingleGameState<MCTSInformationSet> loadMCTSGame(GameInfo gameInfo);

SingleGameState<SimABInformationSet> loadSMGame();

SingleGameState<SimABInformationSet> loadSMGame(GameInfo gameInfo);

}

Listing 5.4 GameLoader interface.

We must mention that game-theoretic library uses three main components to describe
a game domain:

. GameInfo interface implementation. This interface provides information about the
game configuration.

32

. 5.2 Game theoretic library integration

. GameState interface implementation. This interface provides information about the
current game state.. Expander interface implementation. This interface allows us to expand current game
state and get available actions for the current player. This interface also keeps infor-
mation about algorithm configuration and its information set. The information set
contains information about the single player and game states for this player.

GameLoader interface has 5 methods:

. getGame() method is a helper function which returns us the name of the game.. loadMCTSGame(GameInfo gameInfo) method creates a game instance from con-
figuration provided in GameInfo.class. SingleGameState<InformationSet>
is a wrapper class. It contains game information (GameInfo.class), root
game state(GameState.class) and expander(Expander.class). By calling this
method expander will be initiated with MCTSConfig. For example, for Oshi-
Zumo game this method will return SingleGameState<MCTSInformationSet>
instance containing OshiZumoGameInfo instance, OshiZumoExpander instance and
CustomOshiZumoGameState instance.. loadMCTSGame() method works the same as loadMCTSGame(GameInfo gameInfo),
but since gameInfo is not provided, the game will be initialized with default config-
uration.. loadSMGame(GameInfo gameInfo) method has similar functionality and aim
as loadMCTSGame(GameInfo gameInfo), but expander will be initialised with
SimABConfig instead of MCTSConfig. Such segregation helps us to support algo-
rithms with different information set types.. loadSMGame() method works the same as loadSMGame(GameInfo gameInfo), but
the game will be initialized with default configuration.

To add support of the game playing algorithm to the back end application, we
need to add algorithm loader component 2.4.3. This component must implement
AlgorithmLoader interface.

public interface AlgorithmLoader {

Algorithm getAlgorithm();

GameInstance load(Game game, int posIndex);

GameInstance load(Game game, int posIndex, GameInfo gameInfo);

}

Listing 5.5 AlgorithmLoader interface.

This interface cares about loading everything we need to be able to run a specific game
playing algorithm for a certain game.

. getAlgorithm() method provides information about the algorithm.. load(Game game, int posIndex) method return GameInstance.class instance.
This is a wrapper class which contains SingleGameState.class instance and
GamePlayingAlgorithm.class instance. This method loads the game using
GameLoading interface based on its type and initializes all things algorithm needs to
work. Input parameters are name of the game we want to load and player’s position.

33

5. Server-side application implementation .
. load(Game game, int posIndex, GameInfo gameInfo) method has the same logic

as load(Game game, int posIndex) but allows to pass game configuration informa-
tion.

Back end application has implementations of GameLoader and AlgorithmLoader
interfaces for supported games and algorithms. Furthermore, algorithm loader could
have the same code inside for similar algorithms. For this reason, there are abstract
classes which could be reused for new game playing algorithms integration. Figure 5.3
shows a hierarchy of algorithm loaders.

Some of algorithm configuration parameters could be set in application.yaml in-
stead of system properties as it was before. This file is located in module-gt-app in
resource directory. For example, we can specify a time limit for algorithm execution
and use it in code by via AlgorithmConfiguration interface.

...
algorithm:

configuration:
comp-time: 500

...

Listing 5.6 Algorithm specific properties configuration.

Figure 5.3. Algorithm loaders hierarchy.

34

. 5.2 Game theoretic library integration

Next part of the application is a GameSpecificationService interface.

public interface GameSpecificationService {

GamesSpecificationDTO getGamesSpecification();

GameConfigurationsDTO getGameConfigurations(Game game);

}

Listing 5.7 GameSpecificationService interface.

This interface is responsible for providing information about the games. It was created
to let the client know what kind of games and algorithms are exists. And in what
configuration player is able to play single games.

. getGamesSpecification() method returns a list of all games with main game at-
tributes. Every item of this list contain the following fields:

. The name of the game. An alias - the name of the game from Game enumeration. For example, OZ, GS,
PE.. Type of the game. Should be one of the board, graph or card values.. List of player’s roles.. List of roles which human can play. For example, in Pursuit-Evasion game player
are able to choose between evader and pursuer.. List of supported algorithms.. Parameters map - additional optional parameters which could be specified for a
single game. For example, we could specify the graph type for graph games.

. getGameConfigurations(Game game) method provides configurations for the pro-
vided game. Each configuration contains different game parameters, like game field
definition, players start positions, goals and many other attributes based on the game.

GameService interface is the main part of the back end application. It has only
one method execute which receives an algorithm and request from client process it and
return a result with opponent actions and new game state. This service manages player
move evaluation and executes game-playing algorithm to receive new game state and
opponent action. In Figure 5.4 we can see the simplified version of sequence diagram
based on implementation for Oshi-Zumo game. In simple words we are getting algorithm
configuration parameters, loading game, loading algorithm runner, setting current game
state, executing player action and then run algorithm evaluation to get an opponent
move and new state. In the end, we should put all the required information into the
response DTO instance. The developer can do it based on specific domain requirements
by adding functionality he wants.

35

5. Server-side application implementation .

Figure 5.4. GameService execution sequence diagram. Oshi-Zumo implementation.

5.3 Summary
To sum up this section we described steps which should be done to add a new game
and game playing algorithm.

To add support of new game playing algorithm developer should do the following
steps:

36

. 5.3 Summary

. Add algorithm to the Algorithm enumeration class from cz.cvut.fel.gt.game
package.. Create Spring component implementing AlgorithmLoader interface from package
cz.cvut.fel.gt.loader.algorithm.

To add support of new game developer should do the following steps:

. Add game to the Game enumeration class from cz.cvut.fel.gt.game package.. Create Spring component implementing GameLoader interface from package
cz.cvut.fel.gt.loader.game.. Create Spring component implementing GameService interface from package
cz.cvut.fel.gt.service and all required objects which would be required, such as
DTOs, game states, players, etc.. Create Spring component implementing GameSpecificationService interface from
package cz.cvut.fel.gt.service to provide information about game and possible
configurations.. Create a class implementing GameInfo interface from game theoretic library to be
able to use custom configuration for each simultaneously running game.. Create a controller to handle requests.

Some game implementations require custom game state which is usually extended
from the game state from the game theoretic library, to provide non-static configuration
into the game.

37

Chapter 6
Client-side application implementation

In this chapter, we will describe implementation details of the front end application.
Front end application implementation is built with React.js library. For package

managing we used npm, but it is possible to use yarn or npx, since they also can read
package.json. To build an application, we are using webpack. These technologies
were described in Section 2.5.

6.1 Application structure

Figure 6.1. Client application project structure.

In Figure 6.1 we can see the client application project structure. It is important to
orientate in it to be able to configure and extend the application.

. config directory contains configuration files for webpack production and develop-
ment build, paths definitions, environment configuration, and development server
configuration.

38

. 6.1 Application structure

. node_modules directory contains sources of all required dependencies from
package.json. It does not exist in the project by default, but npm will cre-
ate it after calling npm install to store required dependencies.. public directory contains index.html file which serves as entry point for React
application and manifest file.. scripts directory contains npm scripts for running production build, start develop-
ing server and running tests.. src directory contains all application source codes:

. src/assets directory contains image files used in the application.. src/components directory contains React components and their CSS module files.
CSS modules are used to limit the scope of styles to a single component. When
webpack is building sources, it automatically hashes style classes to make a unique
name.. src/hoc directory contains higher order components with special functions such
as Layout for managing main application layout, or AsyncComponent which could
wrap normal component to make component and all its dependencies loading asyn-
chronously. By using AsyncComponent webpack will split resulting JavaScript file
to smaller bundles and then the web browser will be able to download only required
parts of the application.. src/shared directory contains shared utility helper functions.. src/store directory contains Redux action definitions and reducers. It is de-
scribed more in details below.. src/App.js is client application main component. App component wraps other
components and logic.. src/axiosBackend.js contains default configuration and instantiation of axios
client. In this file we can set default HTTP request attributes such as header.
Also, in this file default back end application address is defined.. src/index.css contains global application CSS styles.. src/index.js is used to initialize App component, router, Redux, and other mid-
dleware.. src/routes.js contains application routes.

. package.json contains all required dependency definitions for the client application.
After installation, all these dependencies will be stored in node_modules directory.

In structure description, we mentioned few libraries. Next, we will describe them
and their role in the application.

Axios is a Promise based JavaScript HTTP client. It allows us to control HTTP
requests in a convenient way. Using axios, we can configure default request attributes
which would be applied to every request. We can manage the lifecycle of the request, by
setting timeouts and handling positive and negative scenarios. Axios provides universal
API for all web browsers.

React router is a JavaScript routing library which allows to load and unload React
components based on browser URL. Also, it provides API for manipulating with browser
history. It helps to show different pages for different URLs and handle history state
change, for example, with browser back and forward buttons click.

As was mentioned in Section 4.1 React component could have its own local state.
Definition of the state is very important. A state could describe the whole current
situation. Using the state design pattern makes application logic very clear and trans-
parent. It helps us without extra manipulations pass current game state to the backend

39

6. Client-side application implementation .
application to be evaluated by game playing algorithm. Because React shares the same
principle, it becomes a good choice.

React component state has local scope and share the scope or its parts, become
complicated for not child components. The solution to this problem is Redux.

Redux is a predictable state container for JavaScript apps [14]. Redux is mainly a
library responsible for issuing state updates and responses to actions. In the beginning,
the Redux store is created. This store holds global application state, Redux then able
to manage this state using reducers and actions. Components are able to subscribe to
required state properties and receive them as normal component properties.

Redux sticks to these three principles:

. Single source of truth - The global application state is stored in an object tree within
a single store.. The state is read-only - The only way to change the state is to emit an action, an
object describing what happened.. Changes are made with pure functions - Pure reducers are used to specify how the
state tree is transformed by actions.

Figure 6.2. Redux work principle.

6.2 Game loader

To be able to load the game we need to know what kind of games are exists and what
configurations do they have. For these purposes, we were implemented GameLoader
component.

40

. 6.3 Game component and higher order wrapper component

Figure 6.3. GameLoader component step.

It was made using a wizard design pattern. GameLoader is separated into four steps.
Figure 6.3 demonstrates one of these steps.

. The first step allows us to choose the game.. The second step allows us to choose a player’s role.. The third step allows us to choose the game configuration.. The fourth step allows us to choose a game-playing algorithm.

GameLoader automatically manages the game loading process from information
provided by backend application endpoints /specifications/{game_name} and
/specifications. It means that when we add new game implementation support to
the backend application, we do not need to do any additional changes to GameLoader.

GameLoader also provides Back and Forward buttons to navigate between single steps
when it is possible. GameLoader can skip one of the steps it has zero or only one option.
If there is only one option provided, the component will automatically choose it without
showing it to the user.

When last step’s option will be selected, GameLoader will combine selected data and
store it in the global state using Redux actions. When action completes, the player will
be able to play selected game.

6.3 Game component and higher order wrapper
component

A higher order component is an advanced technique in React for reusing component
logic. Higher order components could wrap other components and provide them addi-
tional functionality.

Game higher order component provides additional functionality to game implementa-
tion. It accepts two parameters first is a single game implementation component and
the second one is game configuration.

game(BoardGame, gameConfiguration);

Listing 6.1 Wrapping BoardGame component with the higher-order Game component.

41

6. Client-side application implementation .
The game configuration could contain any configurable property for the game. For
example, it could be a seed or animation delay. Game configuration is an array of
objects with the following structure:

{
name: ’binaryUtilities’,
label: ’Use binary utils’,
value: true,
type: ’bool’,
options: {

’true’: ’Yes’,
’false’: ’No’

}
}

Listing 6.2 Single game configuration item structure.

. name is an attribute name.. label used as a label in the user interface.. value is a default value for an attribute.. type is an attribute type. It used to convert and store a value in the correct data
type.. options are values range which could be selected.

Figure 6.4. Game configuration sidebar.

Game higher order component has its own state. Which is initialized from the game
configuration, moves array, and game status attributes such as gameEnd and win. It

42

. 6.3 Game component and higher order wrapper component

also provides properties and methods to the wrapped component and automatically
appends some user interfaces.

Figure 6.4 demonstrates us such interface for game configuration. It could be opened
by clicking on the gear wheel icon in the top right corner of the application screen.

Game component provides a method to store players actions. Moves history is a
required attribute for some games and also could be used for debugging and monitoring
a game process.

One of the main features of the Game component is a method provided to the wrapped
component for communication with backend application. This method acts as an in-
terceptor for requests. It automatically updates request with game configuration and
moves history, so when we are implementing single game logic, we do not need to care
about this part of application logic. Also, when we are receiving a response from the
server it extracts information about game end status and if it is the end of the game,
popup screen with the game result will be automatically displayed and the developer
does not need to care about it as well.

This part of Game higher order component automatically displays loader which locks
the screen while processing a request and shows user visual information that request is
processing and the user should wait.

Another feature is a requests failure handling. For example, when a user has network
problem and request will not be able to complete, the user will receive a graphical
notification popup in the right bottom corner with information about a problem and
two options - retry and cancel. By choosing retry action application will try to resend
request again so that game state will not be lost, and the user will be able to continue
playing.

Usually, React component has to implement Component class provided by React. We
added GameComponent class which extends PureComponent class and could be used for
game components implementation. It provides additional functionality for wrapped by
higher order Game component.

GameComponent add properties validation and trigger new game start method, pro-
vided by Game component automatically. Using this component is not necessary, but it
automates some game lifecycle methods and defines base game functions.

43

6. Client-side application implementation .

6.4 Oshi-Zumo implementation

Figure 6.5. Oshi-Zumo game visualization.

Every game could be separated into a few logical blocks:

. Start a new game - initial game state initialization.. Make first player action - contains logic which handles the first player move. This
functionally allows the human player to make an action using a graphical user inter-
face.. Make second player action - contains logic which handles the second player move.
Collects all required data and makes a request to the server to get an opponent
action.. Game end - contains logic which handles the end of the game.

This pattern was used in all game components implementation.
Oshi-Zumo is a board game. Because of this, we implemented the Board component

using React Konva.
This component uses a Stage component from React Konva to define stage parame-

ters and bind drag and zoom event handlers. Stage also accepts default offsets to put
the resulting board to the screen center.

To draw a board, we used the Rectangle component with precalculated positions.
Board component accepts the following properties:

. cellSize is a size of board cell. Could accept any positive numeric value.. rows is a number of rows of the board. Could accept any positive integer value.. cols is a number of columns of the board. Could accept any positive integer value.. elements is a Map of additional elements, where the key is a position in cell coor-
dinates and value is an array of components to be displayed. For example, we pass
wrestler using this property.

44

. 6.5 GoofSpiel implementation

In Oshi-Zumo implementation, Board component was used the following:

<Board cellSize={50}
rows={1}
cols={configuration.locK * 2 + 1}
elements={boardElements}/>

Listing 6.3 Board component usage example.

In Figure 6.5 we can see the implementation result. The black circle on the board is a
wrestler. When the game starts, the wrestler position is in the middle of the board.

On the bottom of the screen, we have an action bar. It displays a number of player’s
coins and currently selected player’s bid on the left side and amount of opponent’s coins
and last opponent bid on the right side. In the middle, we have placed a tool which
player use to make an action. It shows possible player’s bid values. A player can pick
them by clicking on it. To confirm an action player needs to click on the Bid button.
After player confirms his bids, the game will collect this data and will send it to the
server to evaluate an opponent’s action.

6.5 GoofSpiel implementation

Figure 6.6. GoofSpiel game visualization.

GoofSpiel is a card game. Every card game has two main components card and hand.
We implemented them in Card and Hand components.

We decided to use HTML DOM elements for the implementation. It was a good
option to compare with other approaches. And we can see the result in Figure 6.6.

Card component has the following parameters:

45

6. Client-side application implementation .
. suit is a card suit. Can be one of the C, D, H, S values. Where C is clubs, D is

diamonds, H is hearts, S is spades.. rank is a card rank. Can be a number from 1 to 13. Where 1 is an Ace, 11 is a Jack,
12 is a Queen, 13 is a King, other numbers have the same value.. selectable is a flag to set card selectable or not.. open is a flag which determines if the card is open and we can see it, or it is turned
by the back.

Also, card has standard react attributes such as onClick and style. Using style
attribute, we are defining card position and size related to game table size. The Card
can be used as follows:

<Card suit="H"
rank={12}
style={cardStyle}
onClick={() => props.onCardSelectHandler(card)}
selectable={true}
open={false}/>

Listing 6.4 Card component usage example.

Hand component is a set of Card components. It corresponds to a player’s hand. We
can call it a container for player’s cards. This component was developed for GoofSpiel
game care about cards positions and sizes relative to the component itself. It has the
following parameters:

. suit is a suit of player’s hand cards. Could be one of the C, D, H, S values. It is the
same as for Card component.. open is a boolean flag. Can be either true or false. It determines if a human player
can see the card or not.. position is a card deck position on the playing table. Could be one of the 1, 2, 3
value. Where position 1 is an upper left corner, 2 is a center-right side, 3 is a bottom
left corner. Hand positioning is absolute related to the parent element.. compact determine if cards should be displayed in compact mode or wide. In compact
mode, cards are positioned closer to each other. Could be either true or false.. cards is an array of card ranks. It defines the ranks of the cards in player’s hand.. selectable defines if the player can select one of the cards or not. Could be either
true or false. For example, it makes sense to make human player’s cards selectable
and opponent cards not.. selected defines the rank of the selected card. It will be displayed as an open card,
and everyone will be able to see it.. onCardSelectHandler allows to specify card select event handler. In game imple-
mentation used to let the game know that player did select a card.. containerHeight is a parent element height in pixels. Hand component needs this
to be able to calculate position and card sizes. In the game implementation, we used
a FluidGameContainer component, which automatically passes its sizes to all first
level child components and handles window resizing.. containerWidth is a parent element height in pixels. Is used for the same purposes
as a containerHeight parameter. FluidGameContainer is passing this attribute
automatically as well.

Hand component could be used in the following way:

46

. 6.6 Pursuit-Evasion implementation

<Hand suit="S"
open={true}
position={3}
compact={false}
cards={this.state.playerCards}
selectable={this.state.selectedPlayerCard === null}
selected={this.state.selectedPlayerCard}
onCardSelectHandler={(rank) => this.makeFirstPlayerMove(rank)}/>

Listing 6.5 Hand component usage example.

GoofSpiel game implementation consists of 3 hands. Each hand is positioned at different
positions. We can see it in Figure 6.6. The human player can choose one of his open
cards. And then, the game will take his choice and send data to the server to get
opponent action and round score.

6.6 Pursuit-Evasion implementation

Figure 6.7. Pursuit-Evasion game visualization.

Pursuit-Evasion is a graph game. This game allows to human player to play two
different roles - evader and pursuer. From the reason, that pursuer must do two moves
we have to implement it in two steps. It means that when human plays pursuer, he
needs to choose an action for the first pursuer, submit it, and then do the same for the
second pursuer.

We can see the implementation result in Figure 6.7. Green nodes are current player
positions. Light green nodes are possible actions. The player can choose one of them
and submit his action by clicking on the green button at the bottom of the screen. Blue
node is a currently selected node. The blue node will be taken as a player’s action if

47

6. Client-side application implementation .
the player will click on submit button. Red nodes are current opponent positions. And
the yellow node is an evader goal.

The Pursuit-Evasion game implementation use cytoscape.js library for graph visual-
ization and interaction. Cytoscape.js library has the support of different layouts. As it
was described in Section 5.2, we can pass additional parameters with the game specifi-
cation. One of such parameters we used in graph game implementation was the layout.
For Pursuit-Evasion game we used a grid layout.

Game implementation takes care about game-specific logic. It provides an interface
to make actions to the player and send the required data to the backend application.
Also, implementation evaluates possible actions and make them selectable for a player.

Cytoscape.js is able to manage for us zoom event, positioning and drag events.
So, we don’t need to handle them manually. For the rest functionality, we created
CytoscapeGraph component. It has the following parameters:

. nodes is a list of all graph nodes. Each node is a Cytoscape node object. In current
implementation we are using the following structure for the node definition:

{
group: ’nodes’,
data: {

id: ’n1’,
label: ’N1’,

},
selectable: false,
classes: ’graph_game_goal graph_game_player’

}

Listing 6.6 Graph game node definition example.

. edges is a list of all graph edges. Each edge is a Cytoscape edge object and has the
following structure:

{
group: ’edges’,
data: {

id: ’e10’,
source: ’n1’,
target: ’n5’

},
selectable: false

}

Listing 6.7 Graph game edge definition example.

. layout is a layout we want to use for the graph. CytoscapeGraph component will
calculate grid dimensions automatically based on properties if the layout value is
equal to a grid.. cyInitHandler allows us to pass callback function which will be invoked after Cy-
toscape graph object will be initialized. The method parameter cy is a reference to
Cytoscape graph object. We use it for graph manipulations. For example, in the
callback, we are setting selectable nodes for the initial game state after we started a
new game.. onNodeSelect allows us to specify an event handler for node select event.

48

. 6.6 Pursuit-Evasion implementation

CytoscapeGraph component could be used as follows:

<CytoscapeGraph nodes={nodes}
edges={edges}
layout={layout}
cyInitHandler={cy => this.onCyInitHandler(cy)}
onNodeSelect={event => this.onNodeSelectHandler(event)}/>

Listing 6.8 CytoscapeGraph component usage example.

49

Chapter 7
Communication between client and server

In this section, we will cover communication between client and server applications. We
will describe request and response formats to show what data they are sending to each
other. These examples will give an overview of designed API.

As it was described in Section 3.2 client and server are communicating with each
other using REST API provided by the server-side application. The message body is
in JSON format.

The request usually has to use the following URL pattern:

POST http://{host}:{port}/{game_alias}/{algorithm_alias}

Listing 7.1 Game API endpoint URL pattern.

For example, for Oshi-Zumo game using Monte Carlo Tree Search Upper Confidence
Bounds for Trees algorithm, request URL to the backend application running with
default configuration on localhost will be http://localhost:8100/OZ/MCTS_UCT.

The request body composed from attributes which could be segregated to three
groups. Attributes from the first group are related to the algorithm configuration.
Attributes from the second group are related to the game configuration we chose during
the new game start process. And the third group is describing the current game state,
it could contain player action, moves history etc.

The response also has a similar structure for all games. It always has attributes
win, gameEnd and opponentActions. The rest attributes in response a game specific
and provide information about game state after evaluation of human player action and
opponent (algorithm) action.

. opponetActions contains a list of selected by algorithm actions. For games when a
player can make only one action during his turn it will contain a single item. But,
for example, in Pursuit-Evasion game, when the human player has an evader role, it
will contain two items, one for each pursuer.. gameEnd determine the end of the game. Could be either true or false.. win is a game result for the human player. Evaluation of this decision is done based
on internal game rules. It could use utilities or some constraints to assign one of the
following values: win, lose, draw. Make sense to check the value of this attribute
when gameEnd is true.

7.1 Oshi-Zumo

7.1.1 Request

In Listing 7.2 is shown sample request from the client application.

50

. 7.1 Oshi-Zumo

{
"seed": 10,
"binaryUtilities": true,
"generalSum": true,
"moves": [

{
"playerMove": 3,
"opponentMove": 4

}
],
"startingCoins": 7,
"locK": 3,
"minBid": 2,
"playerMove": 2

}

Listing 7.2 Oshi-Zumo request example.

Attributes seed, binaryUtilities and generalSum are related to the algorithm con-
figuration. Attributes locK, minBid, startingCoins are defining game configuration.
And attributes moves and playerMove are describing the current game state.

Since requests for different games have a similar structure, we will describe only single
game related attributes mapping to game domain terms.

. locK is a value of the middle field cell index. It means that whole game field will
have 2 * locK + 1 cells. For example above, it will be equal to 7.. minBid is a minimal amount of coins player can bid.. startingCoins is a number of coins each player has at the begging of the game.. In moves attribute we have a history of players actions from previous rounds.. playerMove is a value of player bid in this round.

7.1.2 Response

In Listing 7.3, we have a response from the backend application.

{
"opponentActions": [

"2"
],
"gameEnd": false,
"win": "LOSE",
"playerCoins": 2,
"opponentCoins": 1,
"wrestlerPosition": 2,
"playerBids": [

2
]

}

Listing 7.3 Oshi-Zumo response example.

As we can see, it contains common attributes described above and game specific at-
tributes which define a new game state.

51

7. Communication between client and server .
. playerCoins - the new amount of human player’s coins after previous round evalu-

ation.. opponentCoins - the new amount of opponent’s coins after previous round evalua-
tion.. wrestlerPosition - the new position of the wrestler after the previous round results
evaluation.. playerBids - a list of the bids human player can do in this round.

7.2 GoofSpiel

7.2.1 Request
In Listing 7.4, we can see request body for GoofSpiel game. It contains similar at-
tributes, but there is one game specific attribute called natureMove.

This attribute reflects open card in a chance deck. At the very begging, when the
game starts, the client making a request to the server with empty playerMove attribute
to get the value of this card.

{
"seed": 7,
"binaryUtils": true,
"moves": [

{
"playerMove": 6,
"opponentMove": 10,
"natureMove": 10

}
],
"playerMove": 12,
"natureMove": 2

}

Listing 7.4 GoofSpiel request example.

7.2.2 Response
The response is shown in Listing 7.5.

{
"opponentActions": [

"2"
],
"gameEnd": false,
"win": "LOSE",
"natureMove": 8,
"score": "2 - 10",
"playerHand": [

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13
],
"opponentHand": [

1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13
],
"natureHand": [

52

. 7.3 Pursuit-Evasion

1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13
]

}

Listing 7.5 GoofSpiel response example.

Except for standard attributes, it has game specific attributes.

. playerHand, opponentHand, natureHand are cards in players decks after previous
round evaluation.. score is a current game score.. natureMove is a new open card in the chance deck.

7.3 Pursuit-Evasion

7.3.1 Request
For the reason that in Pursuit-Evasion game human can play as an evader as well as a
pursuer. Request body format is a bit different. In Listing 7.6, we can see an example
of the request for a case when human is playing as an evader.

{
"seed": 7,
"firstPlayerPositions": [

0
],
"firstPlayerMoves": [

1
],
"secondPlayerPositions": [

7, 13
],
"secondPlayerMoves": [],
"goal": [

10
],
"humanRole": 0,
"graphFile": "pursuit_evasion/pursuit_simple4x4.txt"

}

Listing 7.6 Pursuit-Evasion evader request example.

. graphFile is a name of the file which contains graph definition from the selected
configuration.. firstPlayerPositions is a list of current positions of evader. Each item is a node
identifier.. firstPlayerMoves is a list of evader moves. Since evader is usually only one node,
this list will contain only one item.. secondPlayerPositions is a list of current positions of the pursuer.. secondPlayerMoves is a list of pursuer moves.. goal is a list of evader goals.. humanRole determine of human plays as evader(0) or pursuer(1).

53

7. Communication between client and server .
As we can see when a player is playing as an evader, we are sending only attribute

firstPlayerMoves, and secondPlayerMoves is empty. In Listing 7.7, the situation is
the opposite. It shows a sample request for a case when human is playing as a pursuer.

{
"seed": 7,
"firstPlayerPositions": [

0
],
"firstPlayerMoves": [],
"secondPlayerPositions": [

7, 13
],
"secondPlayerMoves": [

6, 9
],
"goal": [

10
],
"humanRole": 1,
"graphFile": "pursuit_evasion/pursuit_simple4x4.txt"

}

Listing 7.7 Pursuit-Evasion pursuer request example.

7.3.2 Response
For the reason that we don’t need any additional information, a response for Pursuit-
Evasion game consists only from standard fields.

{
"opponentActions": [

"3", "9"
],
"gameEnd": false,
"win": "LOSE"

}

Listing 7.8 Pursuit-Evasion response example.

54

Chapter 8
Evaluation

Tests are very important in any software. It helps to validate its consistency and verify
functionality. It is much easier to maintain and extend an application with correct
written tests. Tests could significantly decrease the number of bugs.

8.1 Automated testing
In this section, we will review and describe the tests and tools we used for automating
testing. These tests are executed every time we run build. An application will not be
built successfully until all these tests pass.

8.1.1 JUnit
JUnit is a well-known popular unit testing framework for Java code. It is a commonly
used tool to write unit tests. It provides all necessary functions to clearly define pre-
conditions and postconditions for tests and gives us tools to check different scenarios
based on input parameters.

JUnit is often use as core framework for other testing frameworks.

8.1.2 Spock framework
Spock framework [39] is a testing and specification framework for Java and Groovy
applications. It was inspired by different testing frameworks, such as JUnit. Spock
allows us to write clear and descriptive specifications for an any scenario.

Spock has a powerful mocking system. It allows us to mock objects simulating their
behavior or its parts. This is a commonly used practice that helps to isolate tested
code unit from outer dependencies behavior.

private GameSpecificationProvider mockGameSpecificationProvider = Mock {
getGame() >> Game.PE
getSpecification() >>

new GameSpecificationDTO(name: TEST_PE_GAME_SPECIFICATION_NAME)
getConfigurations() >>

new GameConfigurationsDTO([Mock(GameConfigurationDTO) {
getName() >> TEST_PE_GAME_CONFIGURATION_NAME

}])
}

Listing 8.1 Mocking an object with Spock framework.

Spock defines specifications in Groovy programming language. In Listing 8.1, we can
see a mocking example. In combination with Groovy specific syntax, we are able to
make tests simple and descriptive.

Using Spock, we can strongly separate a single test into logical parts. Spock provides
keywords given, then, when, expect, where that could help to do it. We could even

55

8. Evaluation .
separate some of these sections into subsections using the keyword and. Each of these
parts is executed in a predefined order. As the result, the test definition could be read
as - given statement one and statement two, when executing code, then we expect the
result, where parameters are equal to predefined values.

@Unroll
def "should provide a configuration with name #gameConfigurationName

for #game game"() {

given:
GameSpecificationService gameSpecificationService =

new GameSpecificationServiceImpl([
mockPEGameSpecificationProvider,
mockGSGameSpecificationProvider,
mockOZGameSpecificationProvider

])

when:
GameConfigurationsDTO configurations = gameSpecificationService

.getGameConfigurations(game)

then:
configurations.getConfigurations().size() == 1
configurations.getConfigurations()

.get(0).getName() == gameConfigurationName

where:
game | gameConfigurationName
Game.GS | TEST_GS_GAME_CONFIGURATION_NAME
Game.OZ | TEST_OZ_GAME_CONFIGURATION_NAME
Game.PE | TEST_PE_GAME_CONFIGURATION_NAME

}

Listing 8.2 Spock test definition example.

In Listing 8.2, we can see an example of such definition.
Another important part is an ability to simply execute parametrized tests and name

them using dynamic string templates.

Figure 8.1. Spock tests execution result.

The result of test execution from Listing 8.2 is shown in Figure 8.1. We can notice
that Spock generated three tests with different names based on input parameters.

Spock has good integration with Spring framework.

8.1.3 Spring Boot test
Spring Boot test is one of the Spring projects. It combines different testing libraries
and utilities that can be used for unit and integration testing.

To make an integration test, we need just add @SpringBootTest annotation at the
class level. Spring will run a real application and start to execute test scenarios.

56

. 8.1 Automated testing

Spring Boot test provides various configuration options for integration testing. It is
possible to have additional properties for an application executed for integration testing.
We can define or override beans definitions and make application context manipulations.
It is allowed to have different parameters for each integration test, in this case, Spring
will group tests by these parameters and start a new application for each group with
corresponding properties.

8.1.4 Jest
Jest [40] is a JavaScript testing framework. It provides a full set of functions to test
a JavaScript code. Jest provides a mocking engine, assertation methods, let us test
asynchronous code and many others.

Jest is provided by default as a testing tool for React application. It has good inte-
gration with React. We can simply use everything that we are using in real components
code. Jest allows us to create React components, mock them, simulate events, and write
a real use case scenarios to test our application.

Jest framework was created for testing not only React applications. It could be
used for vanilla JavaScript applications as well. It has the support of ECMAScript 6
standard syntax and TypeScript.

The naming of methods in Jest is very descriptive. It helps a developer to write
transparent tests.

Jest is developed and supported by Facebook. It has a big community, good docu-
mentation, and many examples. These facts mean that writing tests in Jest will not be
complicated and we will be always available to find a solution for possible problems.

8.1.5 Checkstyle
There are many different testing techniques. Tests that are verifying code functionality
is the only part of it.

Another important part is code quality. Good programming code should be readable,
clean, well-organized and separated to the smaller reusable parts that respond for only
one small piece of logic. Also, the code should fulfill commonly used syntax standards
specific for each programming language. Naming is also very important. A well-written
code should be readable like a book. Moreover, it would help to add new functions much
faster.

Without team made code review is hard to achieve the desired result, but we can
cover some basic things using tools like Checkstyle.

Checkstyle [41] is a development tool that helps to write a Java code that adheres
to coding standards. This tool has set of predefined rules that are validated on build
execution. It allows a programmer to define his own rules and flexible configure all
rules for his needs.

For better understanding, we will give an example of some of the rules.

. Unused imports - check that there are no unused imports left. It is a common mistake.
Sometimes developer could just miss them.. Avoid nested blocks - check nested blocks complexity. We can specify how many
nested blocks we could have in the scope of one function. Usually, it is zero or one
but is possible to set up bigger complexity.. Equal and hash code - check that classes that override equals() method are also
override hashCode().. File length - check for long source files. We should have small classes that are
responsible for only one thing.

57

8. Evaluation .
. Inner assignment - checks for assignments in subexpressions.. Class, variable, method names - check that related pieces of code are written in a

coding standard case.. Method count - check that the number of methods is not too big. If this check
matches, it means that refactoring is required using a suitable design pattern.

This is a very small part of existing standard checks. And we can define our own. It
will also help to keep a code written by different persons similar.

8.1.6 Summary
Client and server applications are covered with unit and integration tests using tools
described in this section.

We know that having automated tests is very important. It helps us to verify a
software quality and will be helpful in future extensions.

Checkstyle is also integrated into a build process. The build will not be successful if
any Checkstyle rule is violated. This tool helps to keep code clean and consistent.

8.2 Manual verification
Manual verification is also an important part. It is a part of every deployment process
to the production environment.

A user interface is part of the application as well. The end user will not use an
application if an interface is not comfortable for him, even if everything works perfectly.
During the development process we made various improvements to the user interface
to make it intuitive and user-friendly.

Both applications were manually tested during development. And few times after
development was complete, to verify that everything works as expected.

The web application was tested in most popular web browsers to catch browser
specific problems.

An application was demonstrated to different peoples. Feedback was positive. Issues
were not found.

58

Chapter 9
Installation

In this chapter, we will describe how to build and install applications.

9.1 Back end application
Most of the modern IDEs provide integration with Gradle model. For development
purposes, we can import a Gradle project to IDE and run the main application class
cz.cvut.fel.gt.GTApplication.

To install an application we need to build it first. To do that, we need to have a Java
Development Kit version 8 installed, and then execute command ./gradlew build
from a command line interface in the application directory.

When we will run this command, Gradle will automatically download all required
dependencies, execute tests and build jar files. As it was described in Section 5, we
don’t need to have Gradle instance installed in the operating system.

Note: Do not forget to specify CPLEX path as it was described in Section 5.1.
After command will successfully finish execution, source jar files will be generated

for every application module. They are located in <module_directory>/build/libs
directory, where <module_directory> is a single module directory name.

For module module-gt-app additional jar file will be generated. This is a fat jar.
Both jars are located in module-gt-app/build/libs directory. The fat jar has classifier
boot in its name. Now, we can deploy fat jar to any environment that has Java Runtime
Environment.

The fat jar contains all required dependencies inside. To start an applica-
tion, we need just execute fat jar as normal jar file using standard command
java -Djava.library.path=<path_to_CPLEX_binaries> -jar <jar_file_name>.

Figure 9.1. Back end application start output.

When the application will be started, we will see the same output as in Figure 9.1.

9.2 Front end application
To build a client application, we need to have NodeJS installed.

59

9. Installation .
The first thing we need to do is to run npm install command in the project directory.

It will download all required dependencies to node_modules directory.
We can start an application in development mode using npm start command. It

will start NodeJS server that will allow us to dynamically change and use an applica-
tion. In development mode, sources are not compiled, also it provides various helpful
information to a programmer.

To make a production build we need to run command npm run build. This com-
mand will build all dependencies, bundle it and make all defined transformations. As
the result we will get a static assets located at build directory, that can be placed to
any environment.

To make a production build, we need to run command npm run build. This com-
mand will build all dependencies, bundle it and apply all defined code transformations.
As the result, we will get static assets located in the build directory. We could deploy
compiled resources in any environment.

60

Chapter 10
Conclusion

The diploma thesis was created according to the assigned task under the Department
of Computer Science of the Faculty of Electrical Engineering of the Czech Technical
University in Prague within the study program Open Informatics, the specialization
Software Engineering.

The main goal of this work is to create a web application that allows the human player
to play in fundamentally different games against selected game-playing algorithms.

In this work, we became acquainted with game-theoretic library, compared various
technologies needed for implementation and implement a web application consisted from
the server-side application and client application that is running in a web browser.

Developed back end application is built on Spring framework and provides REST
API that allows the client application to interact with game-theoretic library. We
made few modifications into game-theoretic library to be able to play against game-
playing algorithms simultaneously without any side effects. These changes were made
with respect to backward compatibility. It means that they will not affect any use of
game-theoretic library in other projects. Also, infrastructure for a comfortable game
and algorithm loading was implemented.

For the front end part, we have to compare many different JavaScript libraries and
frameworks. As core library, we chose a React.js. It was hard to find a library that
will fit application aim for game-specific visualizations. There are a lot of JavaScript
frameworks for big and complex games development with physics and nice graphics
support. But they are not suitable for such game types as we need. Games for testing
game theory algorithms are very specific. Often similar games are written manually
as a project without providing any solution as a library. For this reason, we were
implemented most of the required components by ourselves using libraries that allow
us to interact with Canvas API in a comfortable way.

In this work, we analyzed and chose a technology stack that fits the current web
application development and its future extensions.

Different components were created to visualize different types of games. These com-
ponents could be reused in other games implementations or extended for game-specific
goals.

We used different approaches to diverse games. Oshi-Zumo was implemented using
only adapter library for a Canvas API. GoofSpiel was implemented without any third-
party libraries using only HTML DOM elements for visualizations. Pursuit-Evasion
was implemented using Cytoscape.js as graph visualization that is using a Canvas API.
Using these different approaches, we are able to compare them. All of them are fits to
application needs. We could use a Konva.js as a universal solution for all game types.
The disadvantage of this approach is that we will need to write a lot of code from
scratch, but we will get the solution that will do exactly what we want.

61

10. Conclusion .

10.1 Future work
This work is the first part of a bigger application that should cover all capabilities of
game-theoretic library. In this section, we will describe possible improvements of the
web application.

. A JavaScript framework could be created. This framework could use Konva.js library
and provide React components to operate with its blocks. The framework will provide
building blocks for different games. Using it, we should be able to visualize any type
of game. The framework should not depend on back end application and game-
theoretic library. A game visualization should be the main goal of this framework.
It should allow a developer to build a game using provided components without
any modifications. It could be used by third-parties to implement their own custom
games.. Server-sent events could be used to provide additional decision improvements as
described in Section 3.2.5.. The game-theoretic library could be also improved by providing an ability to use an
event-driven approach. For example, game-playing algorithm implementation could
provide to bind asynchronous event listeners for different types of events. Such an
event could be complete of one algorithm iteration. In this case, an algorithm will
trigger an event with the current algorithm state. It could be used to incrementally
maximize the evaluation result utility. It would also help to debug an algorithm.. The web application could be extended for other game domains and game-playing
algorithms.. Algorithms that require keeping context could be added.. NoSQL databases could be used for storing evaluation result for a specific game
instance. For example, we can whole game tree and store the result in a NoSQL
database. When we will need to get an algorithm player action, we will be able
to retrieve it from the database. Neo4j or other implementations of graph NoSQL
databases may fit the requirements the best.. Some of the game-playing algorithms could be probably parallelized using CPU or
GPU if present.

62

References
[1] Game theoretic library.

http://jones.felk.cvut.cz/repo/gtlibrary/. (Accessed on 12/20/2018).
[2] Branislav Bosansky, Christopher Kiekintveld, Viliam Lisy, and Michal Pechoucek.

An exact double-oracle algorithm for zero-sum extensive-form games with imper-
fect information. Journal of Artificial Intelligence Research. 2014, 51 829–866.

[3] Branislav Bošanskỳ, Viliam Lisỳ, Marc Lanctot, Jiří Čermák, and Mark HM
Winands. Algorithms for computing strategies in two-player simultaneous move
games. Artificial Intelligence. 2016, 237 1–40.

[4] Richard M Karp. On-line algorithms versus off-line algorithms: How much is it
worth to know the future?. In: IFIP Congress (1). 1992. 416–429.

[5] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-Carlo
Tree Search: A New Framework for Game AI.. In: AIIDE. 2008.

[6] Levente Kocsis, and Csaba Szepesvári. Bandit based monte-carlo planning. In: Eu-
ropean conference on machine learning. 2006. 282–293.

[7] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine learning. 2002, 47 (2-3), 235–256.

[8] Viliam Lisỳ, Marc Lanctot, and Michael Bowling. Online monte carlo counterfac-
tual regret minimization for search in imperfect information games. In: Proceedings
of the 2015 International Conference on Autonomous Agents and Multiagent Sys-
tems. 2015. 27–36.

[9] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. The Java
Language Specification, Java SE 8 Edition. 1st edition. Addison-Wesley Profes-
sional, 2014. ISBN 013390069X, 9780133900699.

[10] FELIPE GUTIERREZ. PRO SPRING BOOT 2 an authoritative guide to build-
ing microservices, web and enterprise... applications, and best practices. APRESS,
2018. ISBN 9781484236765.

[11] Can I use... Support tables for HTML5, CSS3, etc.
https://caniuse.com/#search=es6. (Accessed on 01/01/2019).

[12] webpack.
https://webpack.js.org/. (Accessed on 01/01/2019).

[13] Roy T Fielding, and Richard N Taylor. Architectural styles and the design of
network-based software architectures. University of California, Irvine Irvine, USA,
2000.

[14] Carlos Santana Roldan. React Cookbook: Create dynamic web apps with Re-
act using Redux, Webpack, Node.js, and GraphQL. Packt Publishing, 2018.
ISBN 9781783980727.
https://www.xarg.org/ref/a/1783980729/.

[15] Gradle — Gradle vs Maven Comparison.
https://gradle.org/maven-vs-gradle/. (Accessed on 12/24/2018).

63

http://jones.felk.cvut.cz/repo/gtlibrary/
https://caniuse.com/#search=es6
https://webpack.js.org/
https://www.xarg.org/ref/a/1783980729/
https://gradle.org/maven-vs-gradle/

References .
[16] angular/angular: One framework. Mobile & desktop.

https://github.com/angular/angular. (Accessed on 12/27/2018).
[17] facebook/react: A declarative, efficient, and flexible JavaScript library for building

user interfaces.
https://github.com/facebook/react/. (Accessed on 12/27/2018).

[18] vuejs/vue: Vue.js is a progressive, incrementally-adoptable JavaScript framework
for building UI on the web.
https://github.com/vuejs/vue. (Accessed on 12/27/2018).

[19] Adam Freeman. Pro Angular 6 . Apress, 2018.
https://www.xarg.org/ref/a/B07FMLRBTD/.

[20] React lifecycle methods diagram.
http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/. (Accessed on
12/27/2018).

[21] The State of JavaScript 2018: Front-end Frameworks - Overview.
https://2018.stateofjs.com/front-end-frameworks/overview/ . (Accessed on
12/27/2018).

[22] Einar Egilsson. einaregilsson/cards.js: Javascript library for card games.
https://github.com/einaregilsson/cards.js. (Accessed on 12/28/2018).

[23] Phaser - A fast, fun and free open source HTML5 game framework.
https://phaser.io/. (Accessed on 12/28/2018).

[24] Tikhon Jelvis. Card Games Library — jelv.is.
http://jelv.is/cards/. (Accessed on 12/28/2018).

[25] melonJS .
http://melonjs.org/. (Accessed on 12/28/2018).

[26] pakastin/deck-of-cards: HTML5 Deck of Cards.
https://github.com/pakastin/deck-of-cards. (Accessed on 12/28/2018).

[27] Crafty - JavaScript Game Engine, HTML5 Game Engine.
http://craftyjs.com/. (Accessed on 12/28/2018).

[28] BabylonJS - 3D engine based on WebGL/Web Audio and JavaScript.
https://www.babylonjs.com/. (Accessed on 12/28/2018).

[29] Ali Shakiba. shakiba/stage.js: 2D HTML5 rendering engine for game development.
https://github.com/shakiba/stage.js. (Accessed on 12/28/2018).

[30] enchant.js - A simple JavaScript framework for creating games and apps.
http://enchantjs.com/. (Accessed on 12/28/2018).

[31] Overview - boardgame.io.
https://boardgame.io. (Accessed on 12/28/2018).

[32] Konva - JavaScript 2d canvas library.
https://konvajs.github.io/. (Accessed on 12/28/2018).

[33] konvajs/react-konva: React + Canvas = Love. JavaScript library for drawing com-
plex canvas graphics using React.
https://github.com/konvajs/react-konva. (Accessed on 12/28/2018).

[34] Sigma js.
http://sigmajs.org/. (Accessed on 12/28/2018).

[35] D3.js - Data-Driven Documents.
https://d3js.org/. (Accessed on 12/28/2018).

64

https://github.com/angular/angular
https://github.com/facebook/react/
https://github.com/vuejs/vue
https://www.xarg.org/ref/a/B07FMLRBTD/
http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
https://2018.stateofjs.com/front-end-frameworks/overview/
https://github.com/einaregilsson/cards.js
https://phaser.io/
http://jelv.is/cards/
http://melonjs.org/
https://github.com/pakastin/deck-of-cards
http://craftyjs.com/
https://www.babylonjs.com/
https://github.com/shakiba/stage.js
http://enchantjs.com/
https://boardgame.io
https://konvajs.github.io/
https://github.com/konvajs/react-konva
http://sigmajs.org/
https://d3js.org/

. .
[36] Cytoscape.js.

http://js.cytoscape.org/. (Accessed on 12/28/2018).
[37] uber/react-digraph: A library for creating directed graph editors.

https://github.com/uber/react-digraph. (Accessed on 12/28/2018).
[38] vis.js - A dynamic, browser based visualization library.

http://visjs.org/. (Accessed on 12/28/2018).
[39] Spock.

http://spockframework.org/. (Accessed on 01/03/2019).
[40] Jest - Delightful JavaScript Testing.

https://jestjs.io/en/. (Accessed on 01/03/2019).
[41] checkstyle – Checkstyle 8.16 .

http://checkstyle.sourceforge.net/. (Accessed on 01/03/2019).

65

http://js.cytoscape.org/
https://github.com/uber/react-digraph
http://visjs.org/
http://spockframework.org/
https://jestjs.io/en/
http://checkstyle.sourceforge.net/

Appendix A
Specification

67

Appendix B
Symbols

Java EE Java Enterprise Edition
Java SE Java Standard Edition

CD Compact disc
JSON JavaScript Object Notation

HTML Hypertext Markup Language
SOAP Simple Object Access Protocol
REST Representational State Transfer

WS WebSocket
IDE Integrated development environment
URL Uniform Resource Locator
API Application programming interface

CRUD Create Read Update Delete
JVM Java Virtual Machine
DSL Domain Specific Language
DTO Data Transfer Object
JAR Java Archive

MCTS Monte Carlo Tree Search
DOM Document Object Model
GUI Graphical User Interface

HTTP Hypertext Transfer Protocol
CSS Cascading Style Sheets
ES ECMAScript

69

Appendix C
Code listings

Listing 2.1 ECMAScript 6th standard syntax example.
Listing 2.2 ECMAScript 5th standard syntax example.
Listing 5.1 CPLEX path configuration in gradle.properties.
Listing 5.2 Game enumeration definition.
Listing 5.3 Algorithm enumeration definition.
Listing 5.4 GameLoader interface.
Listing 5.5 AlgorithmLoader interface.
Listing 5.6 Algorithm specific properties configuration.
Listing 5.7 GameSpecificationService interface.
Listing 6.1 Wrapping BoardGame component with the higher-order Game component.
Listing 6.2 Single game configuration item structure.
Listing 6.3 Board component usage example.
Listing 6.4 Card component usage example.
Listing 6.5 Hand component usage example.
Listing 6.6 Graph game node definition example.
Listing 6.7 Graph game edge definition example.
Listing 6.8 CytoscapeGraph component usage example.
Listing 7.1 Game API endpoint URL pattern.
Listing 7.2 Oshi-Zumo request example.
Listing 7.3 Oshi-Zumo response example.
Listing 7.4 GoofSpiel request example.
Listing 7.5 GoofSpiel response example.
Listing 7.6 Pursuit-Evasion evader request example.
Listing 7.7 Pursuit-Evasion pursuer request example.
Listing 7.8 Pursuit-Evasion response example.
Listing 8.1 Mocking an object with Spock framework.
Listing 8.2 Spock test definition example.

70

Appendix D
Content of attached CD

The content of a CD has the following structure:

. diploma thesis – folder that contains diploma thesis source tex files and images.. gt-app.zip - contains back end application source files.. gt-app-web.zip - contains front end application source files.. Web application for demonstrating domain-independent game-playing algorithms.pdf
- diploma thesis in pdf format.

71

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Background
	Game theory
	Game playing algorithms
	Double-Oracle $alpha �eta $
	MCTS UTC
	Online Outcome Sampling
	Random algorithm

	Game domains
	GoofSpiel game
	Pursuit-Evasion game
	Oshi-Zumo game

	Server-side technologies
	Client-server style
	Java and JVM based languages
	Spring framework and modules

	Client-side technologies
	JavaScript and ECMAScript standard
	Babel compiler
	Webpack
	Node.js

	Analysis and design of the server-side application
	Core technology
	Communication between client and server
	Simple Object Access Protocol
	Representational State Transfer
	GraphQL
	Summary
	Server-sent communication methods

	Building tool
	Apache Maven
	Gradle
	Summary

	Analysis and design of the client-side application
	Core technology
	Angular
	React.js
	Vue.js
	Summary

	Card games
	Cards.js
	Phaser
	Card Game Library
	MelounJS
	HTML5 Deck of Cards
	Summary

	Board games
	Crafty
	Babylon.js
	Stage.js
	Enchant.js
	Boardgame.io
	Konva.js
	Summary

	Graph games
	Sigma.js
	D3.js
	Cytoscape.js
	React-digraph
	Vis.js
	Summary

	Server-side application implementation
	Application structure
	Game theoretic library integration
	Summary

	Client-side application implementation
	Application structure
	Game loader
	Game component and higher order wrapper component
	Oshi-Zumo implementation
	GoofSpiel implementation
	Pursuit-Evasion implementation

	Communication between client and server
	Oshi-Zumo
	Request
	Response

	GoofSpiel
	Request
	Response

	Pursuit-Evasion
	Request
	Response

	Evaluation
	Automated testing
	JUnit
	Spock framework
	Spring Boot test
	Jest
	Checkstyle
	Summary

	Manual verification

	Installation
	Back end application
	Front end application

	Conclusion
	Future work

	References
	Specification
	Symbols
	Code listings
	Content of attached CD

