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Abstract

Prace je zaméfFena na mozné utoky pomoci diferencialni analyzy vykonu na
maskované implementaci AES-128 na mikrokontroleru AVR. Implementace je
rozdélena do t¥i ¢asti. Prvni ¢ast obsahuje nemaskované verze AES-128. Druha
cast pouziva konstantni hodnotu masky nastavené v celém koédu. Treti cast
generuje nahodnou masku, kterd je pouzita na 10 kol. Nakonec jsou DPA
prvniho fadu a DPA druhého Fadu a DPA druhého fadu pouzity k pokusu
rozbiti Sifry a nalezeni klice.

Klic¢ova slova Differential power analysis, masked, cipher, attacks, AES-
128, AVR microcontroller.

Abstract

The thesis is focused on possible attacks using differential power analysis
on a masked AES-128 implementation onto an AVR microcontroller. The
implementation is divided into three parts. The first part comprises of an
unmasked version of AKES-128. The second part uses a constant value of mask
used throughout the code. The third part generates a random mask which is
then applied to the 10 rounds. Finally, first order DPA and second order DPA
are used to try and break the cipher and find the key.

X



Keywords Differential power analysis, masked, cipher, attacks, AES-128,
AVR microcontroller.
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Introduction

Encryption is a part of cryptography where information is secured such that
only you and the people who the information is intended for can read it. The
original text, referred to as the plaintext is converted into a ciphertext after
undergoing some operations. For the project, we have used the Advanced
Encryption Standard (AES).

Advanced Encryption Standard (AES), is a symmetric encryption algorithm
that was designed to be a secure cipher being mathematically strong and resist-
ant to cryptanalysis. However, like most ciphers, attacks emerge that exploit
the smallest flaws within the design. One of these attacks include the Power
analysis attacks that present a grave threat to the implementation of these
algorithms. Over the years, countermeasures have been developed to protect
the implementation against differential power analysis attacks.

A masked implementation of AES has been frequently used as a counter-
measure against these attacks where the intermediate results are randomized
during the computation of the algorithm to make the power consumption in-
dependent of the intermediate values of the algorithm.






CHAPTER 1

Analysis

1.1 What is the Advanced Encryption Standard
(AES)?

Advanced Encryption Standard (AES) is a symmetric block cipher which of-
ficially came into existence in 2001 by the US National Institute of Standards
and Technology (NIST). It was the much-needed successor of the Data En-
cryption Standard (DES) which was found to be vulnerable to brute force
attacks [4]. The algorithm chosen for AES was submitted by two Belgian
cryptographers, Joan Daemen and Vincent Rijmen .

AES has three distinct types of block ciphers, namely AES-128 [5], AES-
192 and AES-256 where the numeric represent the bit-length of the key.

1.2 Working of AES

AES algorithm involves several computations which are done on bytes and
operations which involve various substitutions and bits shuffling. These oper-
ations are done repeatedly in rounds. The number of rounds differ with respect
to the type of block cipher being used. AES-128, which has been used in this
project, comprises of a total of 10 rounds. AES-192 contains 12 rounds and
finally, AES-256 has 14 rounds.

Figure shows the general schematic of the AES-128 structure |6]. The
left side of figure 1 shows the progression of 10 rounds and the 128-bit input
round key which is generated from the original key. The round keys of all the
rounds differ from each other in value. The right side shows the structure of
each round and their four sub-processes. The last round, however, does not
contain the MixColumns operation.

The 128 bits of the input data are processed as 16 bytes which are arranged
in a 4 x 4 array shown in
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Fig. 1.1. Data path for AES-128 and the structure of one internal round
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Fig. 1.2. Input data array for AES-128

These are referred to as the state or data path. The first four bytes are
organized in the first column, the next four in the second, and so on. According
to our project, we are going to use Electronic Codebook (ECB) encryption

mode which makes the use of a single block.

Prior to the operations performed during the rounds, the first four words of
the key are XORed with the input state array. During the encryption process,
we use the operations mentioned in figure 1 respectively. The output of the
first three steps are XORed with four words from the key schedule.

1.3 Mathematical operations and structures of AES

The operations involved in the AES design are simple. In case that round
constant (Rcon), Rijndael field multiplication and S-box are stored in memory,

there are no other arithmetical operations.
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1.3. Mathematical operations and structures of AES

1.3.1 Round Constant (Rcon)

The operation of Rcon is defined as follows:

reon(i) =z ' mod 2% + 2t + 2 + z +1 (1.1)

Operations are performed in the finite field GF(28).

The round constants help in changing each round slightly than the other
to avoid symmetry. This gives it protection from various attacks that try to
exploit symmetry such as the slide attack.

The 32-bit input word of an expanded key is rotated to the left by 8 bits
after which each byte is transformed using the S-box and finally, the first byte
is XORed with rcon. For our case, we have a total of 10 rcon values as 11
round keys are required.

The derived rcon values can be stored in memory as a look-up table to
speed-up the execution. Rcon is also essential in the the computation of the
S-box which we are going to be talking about next.

1.3.2 S-box

The S-box is a fixed table which can be edited known as a substitution box or
a look up table shown in [T.3}

00 /01|02 03|04 05 06|07 08 09|0a Ob| Oc 0d Oe Of
00 63 |7c |77 |7b|f2 |6b|6f [c5|30(01|67|2b|fe |d7 [ab |76
10 (ca |82 |c9|7d fa |59 |47 |f0 |ad | d4 | a2 | af |9c a4 |72 ]|cO
20 | b7 |fd |93 |26 |36 |3f |f7 |cc |34 |a5|e5|f1 |71|d8 [31[15
30|04 |c7|23|c3|18|96|05|9a|07|12|80|e2|eb|27 [b2|75
40 |09 |83 |2c|1a|1b|6e|ba|a0d |52 |3b|d6|b3 |29 |e3 |2f |84
50 |53 |d1|00|ed|20|fc |b1|5b|6a|cb|be|39|4a|4c |58 |cf
60 | dO |ef |@aa|fb |43 |4d|33|85|45|f9 |02|7f |50 |3c |9f |ad
70 |51 |a3 |40 | 8f |92 |9d |38 (f5 |bc|b6|da|21[10|ff [f3 |d2
80 |cd |Oc |13 |ec |5f |97 |44 |17 |c4 |a7 |7e|3d |64 |5d |19 |73
90 |60 |81 |4f |dc|22|2a |90 |88 |46 |ece |b8|14 |de |5e [0Ob|db
a0 | e0|32|3a|0a|49|06 |24 |5c|c2|d3|ac|62|91|95 |ed |79
b0 |e7 |c8 |37 |6d|8d|d5>|4e|a9 6c |56 |f4 [ea |65 |7a |ae |08
cO | ba|78|25|2e|1c|a6|b4|c6|e8|dd|74|1f |4b|bd [8b|8a
d0 |70 |3e | b5 |66 |48|03|f6 |0e|61|35|57|b9 |86 |cl|1d|9e
e0 el |f8 |98 | 11|69 |d9|8e |94 9b|1e |87 (el |ce|55|28|df
f0 |8c a1 89 |0d | bf e6|42 |68 41|99 |2d | 0f b0 | 54 bb|16

Fig. 1.3. S-box for AES-128
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The computation of the S-box involves a series of operations starting with
the multiplicative inverse in:

GF(2%) =GF2)[z]/(2® + 2 + 23 + 2 + 1) (1.2)

This is done using the Extended Euclidean Algorithm. Thereafter, the
inverse is then transformed using the affine transformation. It is a non-linear
transformation defined in [I.4

1 T |
000111 T 1
00011 To 0

| £y 0

00 0 Iy 0
1 0 0 x5 1
1 1 0 €Ig |
L L 1 T7 0

e —

e e e

0 0 0

Fig. 1.4. Affine transformation

Even though the non-linearity helps in securing the algorithm, it also means
additional amount of memory usage and more steps needed for masking coun-
termeasures.

1.3.3 SubBytes

SubBytes is one of the four sub processes that are performed in almost every
round. It is a simple byte substitution which is looked up from a fixed table
named the S-box. The bytes shown in figure [I.2] are each substituted according
to the S-box. For instance, if we have a value of Oza2, the value substituted
would be 0x3a. Similarly, all the bytes in the matrix are replaced.

1.3.4 ShiftRows

The ShiftRows operation involves shifting of all the rows towards the left. The
left most byte is reinserted on the right. However, the operation is slightly
different for each row in terms of how much shifting is going to be carried
out. The first row is not shifted or is shifted by 0. The second row is shifted
one-byte position to the left, the third is shifted by two and the fourth row is
shifted by three.

1.3.5 MixColumns

The MixColumns operation involves using each column as a four-term poly-
nomial and performing modular multiplication whose coefficients are elements
of GF(28). Multiplication is carried out using the modulo % 4 1.

6



1.4. Attacks on Cryptographic Devices

The first column of the new block is computed as follows:

0 02 03 01 01 By
2 01 02 03 01| | Bs
Cy 01 01 02 03| [ By
Gy 03 01 01 02) \Bis

Fig. 1.5. Computation matrix used during MixColumns

In the matrix shown in figure [I.5] Cp, C1,C2 and Cj are the results after
the transformation takes place. By, Bs, Big and Bjps are the first column of
the new block. From the original block shown in figure [I.2] we can see the
positions of these bytes before the transformations took place.

As opposed to ShiftRows, the same operation is performed on each column.
MixColumns does not occur in the last round.

1.3.6 AddRoundKey

AddRoundKey uses the logical operation XOR. The 16 bytes of the 4 x 4 array
are taken together as 128 bits and are XORed to the 128 bits of the round key.
In the final round, this gives us the ciphertext.

The initial execution of the AddRoundKey operation is extremely vulner-
able and in case that countermeasures have not been applied, the original key
is exposed through the power consumption.

1.4 Attacks on Cryptographic Devices

Over the years, numerous kinds of attacks on cryptographic devices have come
into existence which have the sole purpose of trying to retrieve the secret key
that is being used in the encryption. These attacks have been categorized into
passive and active attacks.

1.4.1 Passive and active attacks

Passive attacks make the use of the physical properties of a device to attain the
secret key like the power consumption or electromagnetic radiation of circuit
during execution. The device is operated within its specification.

Active attacks are fault injection attacks in which we inject the fault at
the boundary of the chip. An active attack is carried out by tampering with
the input or the environment of the device. The secret key is found out by
exploiting the abnormal behavior of the device.
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1.4.2 Invasive, semi-invasive and non-invasive attacks

An invasive attack is a reliable and strong attack that can be carried out on
a cryptographic device. The attack involves direct access to the device and
its various components using a probing station. In case where the probing is
done only to observe signals, the attack falls into the passive attack category.
However, if the signals in the device are altered in any way in attempts to
change the functionality of the device, it becomes an active attack.

Like in invasive attacks, semi-invasive attacks start with the depackaging
of the device. However, these attacks do not involve direct electrical contact
onto the chip. The purpose of these attacks is to be able to read the content
in the memory without using or probing the normal read-out circuits.

In non-invasive attacks, the attacker does not try to depackage the device
or try to access various components of it. Only the directly accessible inter-
faces are used and nothing is changed. In doing so, the attacker does not leave
any evidence of an attack.

We are going to be focusing on side channel attacks which are passive non-
invasive attacks meaning we do not place anything on the chip that might alter
its functionality or introduce glitches. We passively snoop the data and use
it to find the secret key. The upcoming sections are going to talk about the
different kinds of attacks that we can use.

1.4.3 Power consumption

This attack exploits the fact that the operations performed, and the processing
of the data generates different amounts of current and this difference in power
consumption is used to reveal the secret key [2|. This will be talked about in
further detail in

1.4.4 Electromagnetic emanation

There is a discharge of electromagnetic signals by the circuit during the pro-
cessing of the algorithm. The attack is successful against implementations
where there are several operations being performed. Since each type of op-
eration emits a different amount of radiation, a trace of the EM signal may
help in figuring out the operation that was performed and in turn, helping the
attacker in getting the full or partial private key.

1.4.5 Timing attacks

This attack exploits the time required for the execution of the operations and
the algorithm. These are successful on algorithms that are data dependent.

For our case, we are going to talk about the power consumption side channel
attack.
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1.5 Power analysis attacks

As mentioned before, the attack makes use of the differing power consumptions
in the algorithm due to the operations that are performed and the data that
is processed. This attack is perhaps the hardest to control.

The microcontroller chosen for this project, ATMegal63, uses the CMOS
technology which operates with digital data. The power consumption of CMOS
circuits mainly comprises of two components: static power and dynamic power.
Static power is dependent only on the design of the circuit since it is the current
leakage of the transistors. Dynamic power, on the other hand, is dependent
on the data that is being processed or the operations performed during the
algorithm and occurs because of the switching between transistors. Dynamic
power is what we are interested in as we need to look at intermediate values,
preferably during the first round of the encryption in the AddRoundKey and
SubBytes process. This is because, during these two processes, the original
secret key and plaintext are being used. Furthermore, the variation of the
total power is mostly due to the changes in the dynamic power rather than
the static power since that remains somewhat constant and because of that,
we can easily make use of the net power consumption for the attack.

For every attack, a power model is needed so that we can map the values
during the processing of the algorithm by the smart card to power consumption
values. We used the Hamming distance and the Hamming weight models. In
order to understand what the Hamming distance and Hamming weight imply,
lets look at the following example:

a =11110110,b = 01110101 (1.3)
HW (a) = 6, HW (b) = 5 (1.4)
HD(a,b) = HW(a ®b) = 3 (1.5)

Equation shows two 8-bit numbers which are going to be used to cal-
culate the Hamming weight and Hamming distance. The Hamming weight of
a value is the number of 1s in its binary representation. Equation [1.4] gives us
the result for the Hamming weight of the two binary numbers a and b. Finally,
the Hamming distance, as shown in equation [1.5]is the Hamming weight of
the XOR of the two binary values.

The Hamming distance model counts the number of transitions from 0 to 1
and 1 to 0 within the digital circuit. The observed number of transitions give
us information about the power consumption of the device. Using these trans-
itions, we can make a power trace that shows us the Hamming distance. The
Hamming weight model is used while performing differential power analysis on
the processed traces and will be talked about in[1.5.2]

The ATMegal63, like most microcontrollers is built with registers, data
bus, memory, arithmetic logic unit (ALU), and such other components. Typ-
ically, the data bus is connected to most of these due to which its capacitive

9
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load is quite high. Hence, it plays an important role in the power consumption
of the device. Also, the loads on the individual wires of the bus are almost
equal which is of concern since we assume that there is no difference between
the wires or cells. Also, the registers, another component of the micro control-
ler, work according to the clock signals and thus, only change their value after
every clock cycle and the Hamming distance can then be calculated for consec-
utive clock cycles. The Hammming distance, however, is always tightly coupled
to the hardware and since we do not know the internal micro-architecture of
the controller, we can not be sure of the leakage. In case we have a register
which would contain the result of AddRoundKey and then we loaded a value
onto that register from the S-box, then the Hamming distance would be a good
option to use.

1.5.1 Simple power analysis

In this approach, the attacker measures the power consumption during the
cryptographic operations and uses those traces to find possible leakage points
that may in turn be used to get some processed values. This technique is
easy to execute but the least powerful approach because of which it is used
more commonly in other algorithms like the square and multiply in RSA. The
square and multiply algorithm is very easy to attack in most implementations
since it squares and multiplies if the bit is 1 and in case the bit is 0, it only
squares. These operations are clearly visible in a single power consumption
trace, giving away the secret key.

1.5.2 Differential power analysis

The DPA is a method where we make the use of a set of power consumption
measurements using different inputs by comparing it with a chosen measure-
ment that contains all possible combinations of the secret key and then finding
the one with the best correlation. This is especially useful where there is a lot
of noise present since the large amount of measurements used help in finding
the best correlation. DPA does not require detailed knowledge regarding the
cryptographic device.

Over the course of time, masking has become a popular approach used to
protect one from DPA. This works well against single order differential power
analysis. However, an attacker may do multiple correlations of the power
consumption in the scenario where the key is being used several times. In our
case, second order DPA could be bought to use since the secret key is used for
key expansion and then afterward, for encryption. On the other hand, these
attacks are recognized as highly complex in nature and hard to execute because
detailed knowledge regarding the cryptographic device is a prerequisite for its
success.

10



1.5. Power analysis attacks

DPA was the main method used to attack the key bytes. When taking a
sample of say, 200 plaintexts, we can apply our power model on a matrix of
intermediate values. We consider each byte separately and hence, take the first
key byte which has a total of 256 possibilities. Using this information, we get
a 200 x 256 matrix. Each element of the matrix contains the number of 1s in
the result of the operations AddRoundKey and SubBytes in the first round of
the algorithm. This is where the algorithm is applied and then further, used
to find the correct key.

1.5.2.1 Higher-order DPA

Higher order DPA attacks are used when the implemented AES-128 scheme is
not vulnerable to single order DPA. This is usually the case when the AES is
masked. The attack exploits the leakage of two intermediate values which are
related to each other because of the same mask. However, the two values may
occur at different points in the power consumption since they may be found in
two different operations of the algorithm because of which preprocessing of the
traces is necessary so that we attain power consumption values that depend
on both the intermediate values.

There are mainly three cases that occur practically when doing prepro-
cessing. The first case is when the intermediate values are in different clock
cycles. In this scenario, the two points in the trace are combined before the
application of DPA. The second case is when the intermediate values are found
in a single clock cycle. In this case, the preprocessing is applied to single points
in the trace. The third scenario is when the values are found to be within one
clock cycle and the power consumption characteristics are such that the pre-
processing step may not be needed at all. Our case involved the first case,
which is typical for software implementations.

The first step of a second-order DPA attack involves choosing two interme-
diate values u and v. Since we are looking at masked implementations when
applying second-order DPA, we should know that these two intermediate val-
ues do not occur in the device. This is because only the masked intermediate
values v, = v ®m and u,, = u @ m are present in the device. Once the inter-
mediate values have been chosen, we measure the power traces and start the
preprocessing step. Usually, we are not aware of the exact points of where the
two intermediate values, u,, and v,, occur, but we can make an educated guess
about the interval that they might be in. The preprocessing function that is
chosen is then applied to all points within that interval. Several kinds of pre-
processing functions exist but the absolute difference preprocessing function is
the most frequent one used. The next step involves calculating hypothetical
values which are done so by computing the XOR of u,, and v,,. Supposing
the result of the computation of wu,, ® v, is w, we map w to the hypothetical
power consumption values and compare it with the preprocessed traces.

11
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1.5.3 DPA with correlation coefficients

Differential power analysis, combined with correlation coefficients, becomes a
much stronger tool. Most dependencies in power traces that could otherwise
go unnoticed can be revealed by correlation coefficients. For two sets of data
e.g. measured power traces and our consumption model, correlation shows
how much values from one set differ when values from the other one change.
Correlation does not imply causation and the two sets might be independent,
it only claims that statistically the two sets appear to be dependent. The
degree of correlation can be measured by correlation coefficients.

1.6 Countermeasures

Instead of figuring out the weaknesses in the algorithm implemented, the at-
tacks that are based on the information that is gathered from the implement-
ation of the system itself, are called side channel attacks. They are not in
abundance, however, due to their unique nature, their impact is higher than a
significant other. The countermeasures to avoid these threats could be found
either in hardware or software form. The software countermeasures are cheaper
and are used to increase the level of security on devices that are not secure
from hardware.

1.6.1 Hardware design

Hardware designing can include various techniques for countermeasures. Power
consumption can be largely altered in hardware; hence it is a useful tool for
countermeasures.

We may use masked logic gates which serves as an alternative to masking
at algorithm level. No value that is stored in the hardware corresponds to the
intermediate values. The idea is to never let the true secret value expose until
we have the final output by masking the gates input and output signals.

For example, a regular 2-input AND gate (y = a.b) is transformed into a
5-input (am, Ma, bm, My, My ), 2-output (Ym, m,) masked AND as shown below:

Ym = Qm-bry, @ Mg.bpy & [Mp.ap & (Mg.mypy & my)] (1.6)
m = a B Mg, by, =D Mp, Y, =y B my (1.7)

The mg, my and m, are random 1-bit masks that can be equal or different.

Similarly, any basic gates can be converted into masked versions and hence,
any circuit can be built using masked gates. When compared with algorithmic
masking, at gate level, masking does not utilize very high-level functions by
logic gates. In a cryptographic circuit consisting of regular gates, one can swap
them for masked gates for form a version with lessor loopholes. However, gate
counts will increase and thereby will consume extra power. Standard tools

12



1.6. Countermeasures
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Fig. 1.6. Hardware design for using masked logic gates |[1]

that synthesis logic does not support such a design flow. Their main goal is to
optimize timing and area. Hence, more effort is required for functioning and
timing verification of the masked gate netlist.

Disregarding the real hardware behavior changes, masking is a complete
mathematically provable countermeasure and ends up securing the linkages
between secret data and the final values of outputs. Attacks like the Hamming
weight and Hamming distance are countered since these attacks utilizes only
the final values.

On the other hand, a real design of hardware is complex. Input signals
arrive to logic gates at different timings, hence the design overlooks the glitches
in the system. In the figure above, the design contains imbalanced signal paths
and variations may exist already before the signals enter the first masked
layer level, thereby, some glitches end up appearing at the final stage before
final value settles and end up correlating with the secret key values which are
supposed to be hidden. Masked gates are hence vulnerable to attacks against
those that use more precise toggle count power model.

Simple masking may not be enough to sustain attacks, however, combined
with other counter measures, it increases the difficulty level.

1.6.2 Masking algorithm

When we attempting to hide the relations between processed values and secret
values, masking as we have seen, ends up converting the processed values itself.
On software, it is easier to implement masking rather than hiding. Moreover, if
new attacks of side-channel attacks occur, rather than changing the hardware,
masking scheme implementation can simply be changed. Main goal stays to
combine intermediate values with masks to change the characteristic power
traces. Even though, the value may leak, but it is not the real value but the
masked value, which if carefully imbedded, the attacker cannot analyze the
measured traces easily.
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Um =V %m (1.8)

In equation[I.8] m stands for the mask generated on device and differs with
each execution of the algorithm. m should be truly random and should not
be such that it can be predicted. The operation "*" is an arbitrary one, while
its inverse should be known to obtain the original intermediate value at the
end, failing which, we would have to figure out a compensation mask along
with the algorithm execution. We must adjust the algorithm execution with
respect to each type of operation.

When we apply a mask on a device, we must keep in mind that the oper-
ations that our processes which transforms the values are linear:

f@)+ fly) = flz+y) (1.9)

(v1 *m) + (vgxm) = (v] +v2) xm (1.10)

If we do not keep the masks linear, they will disrupt our calculation, making
it difficult to achieve the desired outcome after unmasking. While using more
masks, the algorithms mix them at some stage. Consequently, we would either
keep in mind that the mixing should not remove the masks, or we select the
masks in such a way that interfering becomes impossible. We are going to talk
about the masked algorithms in further detail in

1.6.3 Dual Rail Precharge (DRP) Logic

Another method used to convert the result is that instead of integrating a mask
at input level, we design DRP logic cells that make output switching activities
independent of inputs and hence attaining constant power consumption ranges
at gate level. In dual-rail gate, logic 0 and 1 are shown by complementary pairs
such as (0,1) or (1,0). (1,1) is not a valid state of a circuit and before the charge,
the state is defined as (0,0). The purpose is that the counts of transitions of
0 to 1 and 1 to 0 appearing at each gate per clock cycle remain the same,
and not disturbed by the input values. Cross coupled inverters are also called
Sense amplifiers, hence transistor level DRP designs are also known as Sense
amplifier-based logic (SABL).
They hold the following advantages:

e Output changing processes are independent of input values.
e Glitches in the system do not affect the output changes.
e Balanced internal capacitance.
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On the other hand, SABL based designs must balance external loads on
routing wires. To relax this constraint, we have Three Phase Dual Rail Pre-
Charge Logic (TDPL), which involves another discharge phase after evaluation.
Hence, in TDPL, the differential outputs discharge once and charges once.
Consequently, the unbalanced external loads have a lower effect.

Even though, SABL designs do achieve constant power usage while simu-
lating the circuit, it still requires an expensive fully customized IC design flow,
especially due to its dynamic logic. Hence, the later developments of DRP
cells utilize static CMOS standard cells to enhance the switching activities
of SABL cells. We also have the Wave Dynamic Differential Logic (WDDL)
which is compatible with standard cell based semi-custom ASIC design. Due
to the positive monotonic gates, pre-charged signals do not necessarily have
to be distributed around the world to every combinational gate. In the initial
stage, the inputs of any compound gate are pre-charged to Os and any AND
or OR gate output logic should be 0 too. Consequently, the AND gates at the
output stage of a SDDL gate are removed.

Even though, WDDL designs are imbedded through existing standard cells,
however, normal IC tools do not always support it. Assuming a cryptographic
circuit is designed using hardware languages like Verilog, the designer initially
narrows the cells to AND, OR and INV. Once we obtain a synthesized cell
netlist, a custom script is executed. It replaces every gate by its WDDL
alternative and hence removes the invertors, by exchanging the outputs. In
the physical layout, strict designing barriers are applied. Those barriers that
are used to rout the differential wires however, should be on the same metal
layers, on adjacent routing paths, must have same lengths and breadths, must
be protected with Vyg or ground lines to eradicate crosstalk, forming every
other metallic layer into a ground plane to regulate the inter layer capacitance.
Hence, the designers should enforce commercial IC design tools in several ways
to meet the physical design barriers.

Theoretically, power consumption of SABL or WDDL gates are independ-
ent of the input data values and hence thwart the power analysis attacks,
whereas practically, in the IC designs, the capacitances of the complementary
outputs are impossible to be perfectly in balance because of the complexities
in logic building, placing and routing. While the most powerful IC design-
ing tools may make a desired balanced output when even the chips are being
made-up, there still exist manufacturing variances that hence disturb the bal-
ance. Evidently, there are loopholes and leakages and when given sufficient
magnitudes of power, it traces the secrets that are supposed to be extracted.

1.6.4 Masked Dual Rail Precharge Logic

Masked Dual-Rail Pre-charge Logic (MDPL), as the name suggests, combines
masking and DRP method to stop DPA attacks. The MDPL has dual-rail
design to access data-independent output switching activity and means to use
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a random mask bit to recompense for the loss imbalances in routing. An
MDPL AND gate has six dual-rail inputs (am, (@m), bm, (bm), m,m) and gives
two outputs (Y(m), (Y(m)))- The truth table is in the given figure and the

outputs are hence found as

Ym = ((am ®m).(byy ®m)) ®m (1.11)

Um = (((am) ® (M))-((bm) (@) (m))) & (m) (1.12)
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Fig. 1.7. Truth table with its hardware design

From the truth table, we can observe that y,, and (y,,) may be obtained
through the majority function (MAJ). If the inputs contain more 1s than the
number of Os, the result will yield an output of 1. However, if the inputs
contain more Os than 1s, then the output will yield an output of 0. A gate
that proceeds with the majority function is meant to be found in a standard cell
library. In an MDPL, all the signals are precharged to 0 and just like the wave
dynamic differential logic, the precharge waves launch from registers and sweep
all combinational logic. The majority gate is a positive monotonic function,
therefore, the MDPL gates are protected from all the glitches. Moreover,
since both the dual-rail outputs can be obtained using an identical majority
function, MDPL has balanced current paths internally.

Like RSL, MDPL also utilizes a single-bit mask m (and its complementary
m) for every data byte encryption. MDPL, however, does not require balancing
the loads and routing constraints. The imbalance is by all accounts rewarded
by the random masks. The authors of this model imitated their project by
utilizing a 0.35um standard cell library, and then concluded, by using the
strategy of mounting DoM assaults on the gate-level netlist power simulation
that the secret key was not yet exposed. While comparing this with the regular
but leaky standard cell design, the MDPL version is 4.5x larger in the area
while having half the operating speed.
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Even though SABL, WDDL, RSL and MDPL are all intended to be glitch-
free, their execution still fails to completely prevent different arrival periods of
signals that depend on cell and route suspensions. A lot of the usual Boolean
logic gates contain the property which their logical outputs may be determ-
ined in a unique manner without essentially getting to know all of the inputs.
Consequently, a gate often calculates its logical output earlier, before waiting
for all of its logical inputs. Due to this changed time of calculation, which
is called early propagation (or early evaluation), data-dependent power dy-
namics are exploited. It is explained by Suzuki and Saeki that the leakage
using WDDL and MDPL as examples. They showed that a cell which evades
early propagation has to postpone the calculation moment until all of the in-
put signals have arrived, for e.g., all the inputs of MDPL have established to
differential values. It is confirmed that the leakage on a model MDPL chip
and proposed improved MDPL (iMDPL) to respond to early propagation. The
proposed antidote in iMDPL remarkably surged the area compared to MDPL.
For instance, one more NAND), three more OR and six more NOR gates were
joined to the MDPL AND gate in the above figure [I.7]

It was discovered that another origin of outflow in RSL and MDPL that
is the mask bit itself. For example, in RSL, the process of encryption with m
= 0 consumed higher (or lower) power as compared to the encrypting process
withm = 1. This is anticipated as the mask bit places the circuit in one of the
two harmonizing forms. To find the time when the two distributions evidently
distinguish from one another deserves some effort related to searching. Tiri
and Schaumont recommend folding one portion around the nick on top of the
other and then execute a standard DoM based attack. Thus, research works
done later usually point toward this method as the folding attack. The authors
used toggle count simulation and demonstrated the concept. Now the Gaussian
curve shows us a probability density function, to use it to then filter the mask
bit is called probability density function filtering. In case of MDPL, an alike
approach is appropriate too. It was further found that leakages in iMDPL
using the folding attack and a few other advanced mask detections techniques.
Therefore, once the mask effect vanishes from RSL or MDPL countermeasures,
the circuit demotes to simple and standard precharge or dual-rail logic without
balanced load capacitance and is then found susceptible to attacks.

It is widely understood that one single countermeasure cannot be effective
to secure the hardware that is meant for security against several side-channel
attacks. Hence, a simple thought is to then merge different types of counter-
measures. Sadly, some countermeasures are not appropriate. Therefore, to
choose a mixture of appropriate countermeasures is rather a challenging and
uphill task and requires a lot of work as practice.

Of course, by using multiple countermeasures simultaneously may further
increase the circuit area, power, cost and makes the design flow very complex,
however, to improve the level of security is never free and never optimal. There
is always room for improvement. The cost and effort for the security measures
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should also be near to the value of the device itself. For a selected combination
of countermeasures, it must also be used with equivalent key updating policies
to make permissible power trace queries of the same key within its tolerance.

1.6.5 Hiding

Hiding countermeasures try to break the link between the processed value or
executed operation and the power consumption. There are several ways how
to do that and most of those countermeasures are applied in hardware. Hiding
countermeasures do not alter the processed values and they are insensitive to
the algorithm that’s executed on the device. There are two methods on how to
hide the dependency in power consumption - by randomizing the consumption
or making it constant for all operations and all values. Both methods will stop
the attacker from obtaining any exploitable information from his measurement
of the consumption. The perfectly random or constant consumption cannot be
achieved, but the attempts to create the best hiding design can be separated
in two categories according to the dimension they use - time or amplitude.

1.6.6 Randomization

Another method to counter side channel attacks is to randomize data that
might leak through various side channels, such as power consumption, elec-
tromagnetic radiation, or execution time. The problem is to assure that an
attacker may gather random information only, and therefore cannot gain any
useful knowledge about the real initial and/or intermediate data involved in
computations. In case of elliptic curve cryptosystem, randomized projective co-
ordinates method is a practical countermeasure against side channel attacks in
which an attacker cannot predict the appearance of a specific value because the
coordinates have been randomized. The proposed scheme principally intends
to resist the simple power analysis, not the differential power analysis. The
standard DPA utilizes the correlation function that can differentiate whether
a specific bit is related to the observed calculation. To resist DPA, we need to
randomize the parameters of elliptic curves. However, if these randomization
methods are simultaneously used, no attack is known to break the combined
scheme. In other words, SPA-resistant schemes can be easily converted to be
DPA-resistant ones using these randomization.

The mask can be generated randomly after which we should ensure that
the generator we used to acquire the random numbers is not predictable. If
the device has any peripheries or the temperature or voltage on components
can be measured, we can use the measurements as a source of entropy and
use true random number generator. However, mask generation should not
take too long, otherwise, especially in masking approaches that use multiple
random masks, the efficiency of the encryption will drop significantly.
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Random masks in AES implementation mean an extra S-box look-up table
conversion for each used mask because non-linear S-box process must fit the
rule: Sbox(v @ m) = Sbox(v) & m. S-box conversion itself is very simple, but
all 256 values have to be read, altered and written each time it is changed
- with the used smart card AVR ATMegal63’s 8-bit instruction set the S-
box conversion means 2 clock cycles for each read and write operation or
3 clock cycles if the look-up table is stored in the program memory. The
exclusive OR operation costs another extra clock cycle and the loop counter
decrement adds another cycle. Converting one S-box look-up table takes at
least 256 * (2 + 1 4+ 1) = 1024 extra clock cycles. The cost of the S-box
conversions for random masks led to the introduction of fixed masks and low
entropy masking schemes (LEMS) with precomputed converted S-boxes stored
in memory.

1.6.7 Blinding

Blinding is originally a notion in cryptography that allows a user to have a
provider compute a mathematical function y = f(x), where the user provides
an input x and retrieves the corresponding output y, but the provider would
neither learn x nor y. This concept is beneficial if the user cannot compute the
mathematical function f all by himself because the provider uses an additional
private input to calculate f efficiently. It is based on a homomorphic property
of the RSA signing function. Blinding techniques are also the most effect-
ive countermeasure against remote timing analysis of web servers and against
power analysis and/or timing analysis of hardware security modules.

The masking method used in Blinding is for asymmetric cryptography. The
arithmetic mask can be applied by additive or multiplicative operation. In case
of RSA, it is used either as message blinding or exponent blinding. Message
blinding masks the message with me by multiplication where m is the random
mask and e is the public key. Exponent blinding takes benefit of adding the
mask m = m.¢(n) that does not alter the output because vd + m.¢(n) =
vd(mod (n)). Using the masking like this is possible because of the arithmetic
nature of the algorithm.

1.6.8 Secret sharing

The intermediate value v is separated into a number of shares and only when
the attacker categorizes all the shares he can get the secret value itself. Secret
sharing with two shares (m,vm) is accomplished by applying a mask on the
intermediate value vm = v@®m. Dividing the intermediate value into additional
shares increases the security |7].
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1.6.9 Fixed memory usage

The encryption algorithms should essentially balance the security and per-
formance. Randomly generated masks reduce the performance with repeated
conversions of all the non-linear operations. Precomputing all probable Sboxes
in AES would be possible but for one-byte mask, we would need 256 masks X
256 S-box elements = 64KB of memory. For smart cards, 64KB in extra look-
up tables is not the best choice because of memory constraints. The memory
and time constraints caused the researchers to look for other feasible options
and design lightweight countermeasures against selection of the most import-
ant and powerful attacks. In low entropy masking scheme, we don’t use the full
randomness and instead we select a subset of masks with good properties, e.g.
they don’t cancel out each other during execution. The small set of possible
masks can then be rotated randomly before being applied [8].

1.7 ATMegal63 Smart Card

The ATmegal63 is a low-power CMOS 8-bit microcontroller created on the
AVR architecture described in [9]. By executing robust instructions in a single
clock cycle, the ATmegal63 achieves outputs approaching 1 MIPS per MHz
allowing the system designer to enhance power consumption versus processing
speed.

The AVR core combines the instruction set with 32 general purpose work-
ing registers. All the 32 registers are directly linked to the Arithmetic Logic
Unit (ALU), allowing two independent registers to be read in one single in-
struction completed in one clock cycle. The subsequent architecture is more
code efficient while realizing throughputs up to ten times quicker than predict-
able CISC microcontrollers.

The ATmegal63 offers the following characteristics: 16K bytes of In-System
Self-Programmable Flash, 512 bytes EEPROM, 1024 bytes SRAM, 32 general
purpose I/O lines, 32 general purpose working registers, three flexible Timer-
/Counters with compare modes, internal and external interrupts, a byte ori-
ented Two-wire Serial Interface, an 8-channel, 10-bit ADC, a programmable
Watchdog Timer with internal Oscillator, a programmable serial UART, an
SPI serial port, and four software selectable power saving modes. The Idle
mode halts the CPU while permitting the SRAM, Timer/Counters, SPI port,
and interrupt system to remain operative. The Power-down mode saves the
register contents but restricts the Oscillator, disabling all other chip functions
until the next interrupt or Hardware Reset. In Power-save mode, the asyn-
chronous Timer Oscillator remains running, permitting the user to uphold a
timer base while the rest of the device is sleeping. The ADC Noise Reduc-
tion mode breaks the CPU and all I/O modules except asynchronous timer
and ADC, to diminish switching noise through ADC conversions. The On-chip
ISP Flash can be programmed over a SPI serial interface or a conventional pro-

20



1.7. ATMegal63 Smart Card

grammer. By installing a Self-Programming Boot Loader, the microcontroller
can be reorganized within the application without any external components.
The Boot Program can use any interface to download the application program
in the Application Flash memory. By combining an 8-bit CPU with In-System
Self-Programmable Flash on a monolithic chip, the Atmel ATmegal63 is a pre-
vailing microcontroller that delivers a highly flexible and cost-effective result
to many embedded control applications. The ATmegal63 AVR is supported
with a full suite of program and system development tools including: C com-
pilers, macro assemblers, program debugger/simulators, In-Circuit Emulators,
and evaluation kits.

1.7.1 Architecture

The fast-access Register File idea contains 32 x 8-bit general purpose occupied
registers through a single clock cycle access time. This means that in one
single clock cycle, one Arithmetic Logic Unit (ALU) process is performed.
Two operands are output from the Register File, the operation is completed,
and the result is kept back in the Register File, all in a single clock cycle.

Six of the 32 registers can be expended as three 16-bits indirect address
register pointers for Data Space addressing - allowing effective address calcu-
lations. One of the three address pointer is also used as the address pointer for
look-up tables in Flash Program memory. These additional function registers
are the 16-bits X-, Y-, and Z-register. The ALU supports arithmetic and logic
operations amongst registers or among a constant and a register. Similarly,
single register operations are performed in the ALU.

Conventional memory addressing modes can be used on the Register File
as well. This is permitted by the fact that the Register File is allocated the 32
lowest Data Space addresses (00—1F), allowing them to be accessed as though
they were normal memory locations. The I/O Memory space comprises of 64
addresses for CPU peripheral functions as Control Registers, Timer/Counters,
A /D-converters, and other I/O functions. The I/O Memory can be accessed
directly, or as the Data Space locations following those of the Register File,
20—5F.

The AVR makes the use of a Harvard architecture concept - with separate
memories and buses for program and data. The Program memory is implemen-
ted with a two-stage pipeline. While one instruction is being performed, the
next instruction is pre-fetched from the Program memory. This concept en-
ables instructions to be executed in every clock cycle. The Program memory
is In-System Re-Programmable Flash memory. With the jump and call in-
structions, the whole 8K word address space is directly accessed. Most AVR
instructions have a single 16-bit word format. Every program memory address
contains a 16- or 32-bit instruction. Program Flash memory space is divided
in two sections, the Boot Program section (256 to 2,048 bytes) and the Applic-
ation Program section. Both sections have dedicated Lock bits for write and
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Fig. 1.8. ATMegal63 RISC Architecture

read/write protection. The SPM instruction that writes into the Application
Flash memory section is allowed only in the Boot Program section. During
interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data
SRAM, and consequently the Stack size is only limited by the total SRAM
size and the usage of the SRAM. All user programs must initialize the SP in
the reset routine (before subroutines or interrupts are executed). The 11-bit
Stack Pointer SP is read/write accessible in the I/O space.

The 1,024 bytes data SRAM can be easily accessed through the five differ-
ent addressing modes supported in the AVR architecture. The memory spaces
in the AVR architecture are all linear and regular memory maps. A flexible
interrupt module has its Control Registers in the I/O space with an additional
Global Interrupt Enable bit in the Status Register. All interrupts have a sep-
arate Interrupt Vector in the Interrupt Vector table at the beginning of the
Program memory. The interrupts have priority in accordance with their Inter-
rupt Vector position. The lower the Interrupt Vector address, the higher the
priority.

1.7.2 Flash program memory

The programmable flash memory is where the program instructions are stored.
It’s significantly bigger and it’s non-volatile. If we need to store any big data
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structures such as S-box look-up tables, we must store them in Flash Pro-
gram memory though storing the data in program memory will lead to the
consumption of an extra clock cycle for all the read and write operations.

The ATmegal63 comprises of 16K bytes On-chip In-System Self-Programmable
Flash memory for program storage. Since all instructions are 16- or 32-bit
words, the Flash is organized as 8K x 16. The Flash Program memory space
is separated in two sections, Boot Program section and Application Program
section. The Flash memory has a strength of at least 1,000 write/erase cycles.
The ATmegal63 Program Counter (PC) is 13 bits wide, therefore addressing
the 8,192 Program Memory locations.

Program memory is implemented with a two-stage pipeline - one instruc-
tion is performed while the next one is pre-fetched. This enables the execution
of instructions in each clock cycle. The Program memory is separated in two
sections - the Boot program section and the Application Program section.
Those two sections have distinct Boot Lock bits and user can select the level
of protection for these sections. The combination of the bits will regulate the
size of the Boot program section and it can be set up to 1024 bytes.

The two sections can be distinguished by their ability to execute Store Pro-
gram Memory(SPM) instruction as it can rewrite any address in the Program
memory but can only be accomplished from the Boot program section. The
Boot program section can use the SPM instruction to update both the Boot
and the Application sections, but they can only be altered page by page (128
bytes). This leads us to the conclusion that the Program memory can be used
for storing additional data that do not fit into SRAM, but those data must be
read-only and must be saved in memory before the program execution with
the rest of the Flash Program memory.

Practically, we need to precompute any converted masked S-box look-up
tables before placing them into the program memory. We also need to mark
them with the PROGMEM macro in C source code and program the AVR
Flash memory with them. In case we generate only one mask randomly, the
look-up table will fit into the SRAM and can be recomputed on every imple-
mentation of the algorithm. However, to use two or more masks scheme, we
would quickly use up the space in SRAM (each S-box takes 256 bytes from the
total 1024 bytes of SRAM).

For randomly created multiple masks, we would have to precompute and
save all 256 possible S-box look-up tables which would cost us 64KB in total
and would surpass even the Flash memory limit of ATMegal63. However, if
we only use a fixed subset of all possible masks, we can fit their look-up tables
in the Flash memory.

1.7.3 EEPROM

The usage of Additional Electronically Erasable Read-Only Memory is to
identify device identification data that does not change frequently. It would
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take too much time to store or load any data from EEPROM during algorithm
execution-unlike SRAM or Flash memory EEPROM can only be accessed via
data bus. It can be rewritten by certain program instructions, despite being
read only, though its latency too high and the data that can be stored is very
limited.

1.7.4 Instruction set

A single clock cycle is enough to execute most of the instructions set described
completely in which contain 130 instructions. Before executing a single in-
struction, the next one already pre-fetched. ATMegal63 is designed as RISC
load /store architecture where the instructions are strictly divided in two cat-
egories - memory access (load value from Data space into register or store
register content into Data space) and ALU operations. ALU operations can
only be performed on registers, on immediate value and never on register.
Total Execution Time of one ALU operation consists of Register Operands
Fetch, ALU Operation Execute and Result Write Back phases.

Such operation power consumption can be measured, so we can change
both the consumption of the ALU Operation Execute phase and the register
value. Thus, we realize using C language to write the software countermeasures
in not sufficient, so we make use of AVR assembly language to implement the
critical parts.

1.7.4.1 Data transfer instructions

The data space takes 2 clock cycles to load and store instructions and it takes
3 clock cycles to load program memory with LPM instructions. An extra cycle
is required to load any data from the program memory and even storing is
not used in practice. We made the use of program memory for the original
static s-box look-up table and Rijndael field multiplication look-up tables in
our implementation. The instructions to data load and store can use either
direct or indirect addressing.

The Hamming weight of the value will be exposed if loading value from
SRAM or flash memory and before the load operations the destination register
Rd was cleared. Before we load the secret value, we can precharge the register
with random value to prevent the leakage.

Many Logical operations are not used by AES encryption algorithm with
look-up tables. EOR is the most frequently used instruction on ATMegal63
platform. Execution of an exclusive by EOR instruction OR on registers Rd,
Rr and store the result into Rd [3]:

Rd+ Rd&® Rr (1.13)

The EOR instructions can be exploited in multiply ways. The Hamming
distance of the two operands is the easiest which leaks during the instruction
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execution.

HD(Rd, Rr) = HW (Rd & Rr) (1.14)

If only one of the operands is known to the attacker, the leakage can be
prevented. It is then not possible for him to use plaintext and key combination
in his power consumption model. Masking the plaintext value or key value with
random masks, the visibility of the hamming weight of their combination is
nonexistent in the traces and the power consumption of their exclusive OR is
also masked.

The EOR instruction can be exploited in another way by targeting the
destination register. The number of 1s that are flipped during the write back
phase determine the power consumption. Rr is the difference between old and
new value of register Rd which can be used in DPA if we used the operation
with the secret key loaded into Rr:

Rd + 10010101 plaintext 0295 (1.15)
Rr < 10101010 key 0zAA (1.16)
Rd < 10010101 & 10101010 (1.17)

HD(Rd, Rd ® Rr) = HW (Rr) (1.18)
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CHAPTER 2

Design and Implementation

This chapter introduces the objectives of this project, the masked algorithm
that was implemented and the countermeasures used.

2.1 Objectives

Our goal is to use an existing algorithm of AES and mask it to make it more
secure. Two different types of masking schemes were adopted which have been
described in further detail in the upcoming sections.

The first part of this project was to use an unmasked AES implementation
and try to break it using single-order DPA. Moving forward, we used a masked
implementation but the mask was a single pseudo-random number which was
loaded after one round of dummy encryption. We tried to use the single-order
and double-order DPA on this implementation. After getting the results from
this part, we moved over to the six masks masking scheme and attempted the
single-order and double-order DPA on that as well. The results were recorded
and are displayed in chapter

2.2 Masked AES implementation

We implemented two types of masking schemes. One of them was a single
pseudo-random mask and the other contained six random masks implemented
after various operations during the encryption.

2.2.1 Boolean masking

The Boolean operation used in masking scheme can be implemented by exclus-
ive OR-ing a byte of mask to byte of key or plaintext. It is very straightforward
for linear operations in AES, the non-linear S-box substitution done by Sub-
Bytes on the other hand converted masked s-box look-up must be computed.
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2.2.1.1 Single mask

The masking of power consumption of AddRoundKey(0) and SubBytes in the
first attempt was made with one pseudo randomly generated mask. This mask
was applied at the end of the first round in order to separate the inconsistent
run time of the function rand from the principle of masking. Due to this, the
first encryption round is not encrypted with the mask and it acts like a dummy
encryption.

This way was successful in masking the Hamming weight of the output
of AddRoundKey(0) — SubBytes() result. After the measured power con-
sumption and correlating the traces with the consumption model based on
Hamming weight, we were unable to retrieve the 16 bytes of key. The single
mask scheme was successful on the Hamming weight model, but was not able to
mask the Hamming distance of the value before SubBytes() and after because
SubBytes() performs substitution:

p@k@&m— Sbox(pd k) dm (2.1)

where p is one byte of plaintext, k is one byte of secret key and m is
random mask. The difference between the input and output of unmasked

S-box is defined as:
(p@k)® (SBox(p® k)) (2.2)

If we use the same mask for input and output, the difference will be:

(p®k®m)® (SBox(p ® k) ®m) (2.3)

2.2.1.2 Multiple masks

This scheme makes the use of six independent masks. The masks are distrib-
uted amongst several operations of each round. The first two masks are the
input and output masks for the masked SubBytes operation. The remaining
masks are the inputs of the MixColumns operations.

We made the use of six independent masks in our algorithm. The masked
SubBytes operation used two masks, m and m/ as its input and output. The
other four masks are the input masks for the MixColumns operation.

Two precomputations take place at the beginning of the encryption. Firstly,
a masked S-box table is computed. Secondly, output masks are generated for
the MixColumns operation. The output masks of the MixColumns operation
are denoted as m/1, mlo, ml3, mly.

The plaintext is masked with m/q, m/y, m/3, m/4 at the beginning of each
round. Thereafter, the AddRoundKey operation takes place. The masking at
the round key operation is performed such that the masks m/i, m/a, m/3, miy
are changed to m. Then the table look-up is performed from the S-box table.
This further change the masks to m/. ShiftRows, as mentioned earlier, has no
impact or influence on the masks since all of the bytes of the state are masked
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with m/ already. Before going into the operation for MixColumns, we change
the mask from m/ to my in the first row, mo in the second row, mg in the
third row and my in the fourth. Several rounds are masked in this way. The
masks are removed by the final AddRoundKey operation at the end of the last
round [2].

As mentioned above, I was unable to place these masks in the later parts of
the code but were instead placed at the beginning of each round. We wanted
to isolate hiding and not being able to do so caused issues later when trying
to apply higher-order DPA. Due to time constraints, we decided to leave the
updates needed to make this implementation better as future work.

A graphical representation of this algorithm is shown in figure [2.1

2.2.2 Random register precharging

This countermeasure uses the worst possible value - 0200 for the registers that
we are working with. There is a possibility that the registers from the previous
routines are cleared and loading any secret value into the cleared register is
equal to the leaking of the hamming distance of the value 0x00 which is the
Hamming weight of the value itself.

The hamming weight can help the attacker to narrow down the list of
possible candidates but itself does not give away the contained value. If the
exposition is to be prevented of the loaded value, the destination register is
precharged with the random value that can be overwritten later. For each
algorithm execution the leaked hamming distance is different.

We can apply a similar countermeasure to the SRAM store instruction, but
the algorithm would be slowed even more, and the change of the values stored
in the SRAM did not prove to be as clear as the change in the register stored
values.
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m | m'|m'|m, &m [om|&m |&m
( AddRoundKey )
m| m|m|m
m|m| m|m

State
m|m| m|m
m|m|m|m
( SubBytes, ShiftRows )
m [m [m' | m
m' | m° | m' | m
State
m | m' | m | m
m' |m" | m' | m
( Remasking )
m [m | m | m
m, [ m, | m [ m
State
m, [m, | m [ m,
mal ml m‘ m-l
( MixColumns )
m' | mfm' | m
m' | m" | m' | m
State £ k = =
my | my | my' | my
m |m | m [m/

Fig. 2.1. The AES round functions change the mask of the AES state byte H
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2.3 Unused masking countermeasures

The masking countermeasures for operations ShiftRows and MixColumns are
also present. These operations are much harder to analyze because they do
not work with a single byte but with combinations of 2 to 4 bytes.

The countermeasures specified in this section were not implemented due
to their expected inefficiency.

2.3.1 ShiftRows

The leakage of the operation depends on the implementation of the shifts. In
ShiftRows, each byte is rotated one byte towards the left. There is no shift
in the first row; the values are rotated one byte left in second row as shown
below.

'mEalkal

B4 Bs | Bio | Bis

Fig. 2.2. ATMegal63 RISC Architecture

The value stored originally on B1 position is defined as:
By = Sbox(K; & Pi) (2.4)
With applied mask it’s:
By = Sbox (K1 @ P1) ®m (2.5)
The neighbor shifted on Bl position is defined with applied mask as:
Bs = Sbox(K5 @ Ps) ®m (2.6)

When the value on position B1 changes to B5, the leaked Hamming distance
will be the Hamming weight of their difference:

HD(By,Bs) = HW (Sbox (K1 & P1) & m & Sbox(Ks & Ps) & m) (2.7)

The mask on By will interfere with the mask on Bs. If we wanted to model
the power consumption, the hypothetical consumption for the combination of
By and Bj would need to be created, that’s 2'® = 65536 possible combina-
tions and doing that would mean that the two keys could be guessed at once.
Compared to 2 x 28 cost of acquiring two bytes with DPA on operations that
only work with one byte, it’s more difficult.
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We should implement the rotation for the third and fourth row as direct
displacement of two values and refrain from consecutive shifts of two and three.
The number of leaking values will be lowered, and execution will be sped up. If
the ShiftRows operation is masked, we would need four distinct random masks
for the four values each row mg, m1, ms, m3. In this operation, no mixing of
row happens. Hence, the same set of 4 masks on all three rows can be used.
The first of these rows does not need to be masked, because the shift has not
happened. The difference between By and Bs with new mask would be:

HD(Bl, B5) = HW(SbOl‘(Kl D Pl) D mo D SbOl‘(K5 & P5) & ml) (2.8)

And the mask that will be intact are m0 and m1. With each execution,
the hamming distance of every pair of masks changes to keep the consumption
random.

The operations that our attack targets are those that only use one byte of
the key. Therefore, this countermeasure was not used in practice.

2.3.2 MixColumns

MixColumns is the last operation left to analyze and protect. Values from each
column are mixed in this operation. After ShiftRows, the byte C; is defined
as:

C1 = Sbox(Ks @& Ps) &m (2.9)

and with MixColumns it changes to:

C1=01%By+02% Bs +03* Big+ 01 % Bis+m (2.10)

To shorten the definition, we define Sbox; = Sbox(K; ® P;), where i is the
position of byte in the block.

C1 = 01 (Sboxo®m)+02x (Sboxs Bm)+ 03 (Sboxio®m)+01%(SboxisdHm)

(2.11)

First, the operation MixColumns is linear which is shown and mask from
the output can be easily removed:

Cy = Sboxy+ 02 % Sboxs+ 03 Sbox1g+ Sbox1s+m+ (024 03) xm+m (2.12)

C1 = Sboxy + 02 x Sboxs + 03 * Sbox1g + Sbox1s + 01 x m (2.13)
The original C and the new ones difference can be defined as:

HD(Ch, C’i) = HW (Sboxs®m® Sboxo® 02 Sboxs B 03+ Sbox19®H Sbox15Hm)
(2.14)
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The power consumption model that can be created based on hamming
distance of value on specific position would require a combination of 4 bytes,
which is 232 = 4294967296 possible values for 4 bytes of the key compared to
4 % 28 with operations using only one byte. The operation MixColumns can
be attacked separately because it is divided into multiple multiplication and
addition operations to avoid the combination of multiple bytes.

The need for similar masking scheme as ShiftRows is required to mask this
operation, the application will be on columns. Each column would have 4
distinct masks with random Hamming distance of all pairs for each execution.

2.3.3 Dummy cycles

The insertion of dummy cycles was considered one of a countermeasure briefly
but was soon abandoned. This is a hiding countermeasure that was described
before, and it has its few downsides. One of the downsides of dummy cycle is
that it adds empty operation in algorithm executions that do not contribute
to it, and secondly with some pre-processing it can be filtered from the traces.
We could fix the misaligned traces with pre-processing, due to the reason that
there will be parts that occur in all traces randomly interleaved with traces of
dummy cycle.

For every execution the number of inserted dummy cycles and their total
duration must be same. If this measure is not considered there will be an op-
portunity for timing attack because of different lengths. Should the operation
in the dummy cycle stay the same, it will be easily being detected in the traces
because of the repeating pattern.

Insertion of the dummy cycles as software countermeasures was not used
due to the reason that it downgrades the performance significantly and by
pre-processing the traces it can be invalidated.

2.4 Used programming languages

Two languages are used by the Implementation - the main language of the
project is C and the AVR, assembly language is used to write the few important
functions. C code is more readable when we need to get a grasp of the program
functionality, assembly language enables us to define the executed instructions
exactly as we want them.

2.4.1 C and assembly mixing

With avr-gce, we can either use the inline assembler functionality in C or com-
bine C and assembly source codes. To write the whole functions in assembly we
need to combine C and assembly source codes which helps us to avoid writing
chunks of codes inside existing C functions. In AVRGCC project the C and
assembly codes are combined which are described in Atmel Application Note.
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The implementation makes the use of calling assembly routines, sharing global
variables and passing variables to assembly. The two files with the extensions
.c and .S are the C and assembly code respectively.

2.4.1.1 Using registers

The certain usage of registers dictated by the convention of avr-gcc must be
complied with, to prevent the unpredictability and incorrectness of the beha-
vior of code generated by avr-gce from C. the table depicts the complete
summary of register usage. To make use of "call-saved" registers in our as-
sembly routine, these registers must be pushed onto the stack and then popped
back before returning form the routine. This should be accomplished before we
start working with them. Avr-gcc expects that the "call-saved" registers and
r0 stay intact and rl contains the value 0x00. All other registers are available
freely to assembly code, but their contents are not defined.

Register | Description | Usage in assembly |

il Temporary | save and restore

rl fero clear before returning
r2-rl7

r28 "eall-saved” | save and restore

r29

r18-r27

30 "call-used” | use freely

rl

Fig. 2.3. Register usage in assembly with avr-gcc H

As we can see from table assembly code can use two of three extended
registers freely: X-pointer and Z-pointer.

2.4.1.2 Sharing global variables

From C, only the global variables can be made visible to assembly, since the
rest of them are defined as the local context of their functions. The global
variable must not be declared as static because it makes it invisible to other
object files.

uint8 t mask; // in  .c

.extern mask; // in .S

The value of global variable mask can then be loaded into register 795
accessing the address that was passed indirectly via extended Y-pointer:
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.extern mask; at 16—bit address 0x0061
Ids r31 , mask+1

Ids r30 , mask

Id r25 , Z

2.4.1.3 Calling assembly routines from C

The routine called from C code must be declared in C and assembly as follows:

extern void subBytes ( void ); // in .c

.global subBytes
subBytes:
;routine

Ret //in .S

Arguments are not needed by the function in this example. Thus, we are
not obliged to acquire them in assembly. If it made any exceptions in terms
of arguments, they would be passed in accordance to avr-gcc convention.

Arguments in fixed argument list are passed in registers rg — ro5. In Atmel
manual and Atmel Libc reference manual, this range differs. Even numbers of
registers are consumed by each argument. The unused byte in case of one-byte
values is not touched. It is passed on the stack if the argument does not fit
into available registers. Arguments of function with variable argument list are
also passed on stack but in the right to left order. The order of assignment is
from left to right as depicted in Figure [2.4]

extern uint1é_t function{ uintg t first, uint16_t second, uint32 t third, ... , wint16 _t extra };
-V
r118 third0
r1e third1
r20 third2
r2 third3d [—— Sitack Pointer
r22 socond0 extra
raa sacondl axtral
red lirstd
res e
Register File Stack

Fig. 2.4. Parameters mapping
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The return value must be stored in the same manner - starting from 795
and maintaining the same byte order as passed arguments. The source of
leakage generated by the compiler will be passing the real key value as function
argument, therefore we declare the variable as global and only use associated
pointer.

2.4.2 Avr-gcc compilation and optimization issues

The project in C is compiled to AVR platform executable code using avr-gcc
compiler. The level of optimization is set as the smallest and fastest code: -0s.
This is great for the efficiency and size of the executable but could in turn
affect the designed countermeasures unintentionally.

2.4.2.1 Operation EOR

The optimization cannot negatively affect instruction EOR, but a possible
leakage which is described in [I.7.4.1] is caused by its transition into assembly
code.

The order of operands of EOR, enables the leakage in the write back phase
of the instruction execution in ALU, because the order of operands in avr-gcc
generated assembly code does not change according to the order in the original
C code but it rather depends on the destination variable in C.

2.5 Random number generators

ATMegal63 itself does not have internal support for generating random num-
bers with true random number generator. In the designed countermeasures,
only pseudo random numbers are used as an output of standard C function
rand(). The random number generator in the AVR version of standard library
avr-libc is the standard linear congruential generator [10]. For this platform,
RAND MAX is not defined as the highest 23! — 1, but only 2'> — 1 = 32767.

Initial seed takes the value of 1 by default. If we start again after dis-
connecting the card, the state of the pseudo random generator will reset and
start from the same initial state. For this level of DPA the linear congruential
random number generator from the standard library is sufficient since it does
not target the generator in attempts to exploit it. If we wanted more random-
ized mask generation, a source of entropy would be needed available to the
smart card such as using a built-in real-time clock or the bits of ADC that are
most noisy. Another possible way to keep the information about number of
reboots would be saving an initial state into EEPROM and incrementing it on
every start-up and using it as new seed. Each restart would guarantee distinct
numbers. However, we would not be able to truly randomize the increments
since it would still be predictable.
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2.6 Card firmware

The modified version of Simple Operating System for Smartcard Education
(SOSSE) is run by the smart card. Each time we change the executable the
card needs to be re-programmed with a programmer. Writing the boot pro-
gram code that would be able to update the application program code section
is another possible way to update the implemented code, but the use of a
programmer is more straightforward. The modified version of SOSSE is used
and further developed for the purposes of the course Security and Hardware
(MI-BHW) taught at Faculty of Information Technology, Czech Technical Uni-
versity in Prague.

2.6.1 APDU

The communication between our custom implemented functions and smart
card interface is mediated by SOSSE. Application protocol data unit (APDU)
is used in implementing the communication. The communication unit between
the smart card and the reader defined in ISO/IEC7816 [11] is the APDU. The
communication between the card and reader is divided into APDU command
and APDU response.

2.6.1.1 Command

Card receives the command by the reader. Mandatory header length should
be at least 4 bytes containing the instruction class, two bytes of instruction
parameters and instruction code. The command might contain the body with
length of sent data, data itself and expected maximum length of response data.

The class byte CLA says to what extent the command and response comply
with the definition in ISO/IEC 7816 and the format of secure messaging and
the logical channel number. Our CLA is defined as 0x80, the first nibble says
that the structure of command and response is used according to the definition
except for features defined by the second nibble. The second nibble contains
the information about secure messaging in two high bits and about logical
channel number in two low bits. Our second nibble indicates that no secure
messaging and no logical channel is used.

Offset for writing might be indicated by the parameters P1 and P2. How-
ever, they are not used after they are set to 0x00.

The instruction implemented by the card we request to be used are indic-
ated by the instruction byte INS. Our implementation of AES-128 is invoked
by 0x60 instruction code and it was our SOSSE supports several instructions.

Our sent data, Lc, can be defined as 0, 1 or 3 bytes. Each byte length may
contain values from 1 to 255. 3 bytes indicates the maximum data length, but
if we are making the use of 3 bytes length, the first byte must be set to zero.
Thus, only values from 1 to 65535 can be contained in it. Zero length is only
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allowed for 0-byte length. Our Lc is defined as 0x10 for one 16-byte block of
plaintext data to be encrypted by the card

The length of expected maximum length of response, Le, is defined by 0, 1,
2 or 3 bytes. Zero byte length defines zero bytes length of expected response.
One-byte defines the length in the range 1 to 256 where 0 means 256. Two
bytes is used if the length of sent data was defined in the command. It’s in the
range 1 to 65536 where 0 means 65536. Three bytes is used when the length of
sent data was not defined in the command. It’s in the range 1 to 65535 with
the first byte equal to 0.

2.6.1.2 Response

Received by the reader from card, contains two bytes SW1-SW2 with command
processing status and the response data. Command processing status gives us
the detail of whether it has been successful or contains an error. If the return
code is 0x9000, it shows that it has been successful. In case the return code is
0x6800, it means that it is an unsupported instruction and for 0x6a00, it tells
us that an unexpected length of the command or of the expected response was
encountered.

2.6.2 Instruction 0x60

Our instruction 0x60 encrypts 16 bytes of data from input and returns 16 bytes
on output. We expect that the length always matches 16 bytes and ignore any
extra bytes. The encryption function receives allocated input, output and key
buffers and saves the encrypted block into output. The implementation of the
AES-128 algorithm is described in detail in the following section.

2.7 Masked AES-128

The implemented AES-128 function encrypts one block of input using an em-
bedded key. The masking scheme makes the use of Boolean masks. Some
of the masks were exclusive-ORed with the plaintext and some others were
exclusive-ORed with the first round key. Following sections describe the mask-
ing schemes that were encountered and chosen for this project.

2.7.1 Key expansion

A constant array contained the full key in our masked implementation mainly
because the key was not expected to change and the expansion that was taking
place before the execution of the algorithm was slowing down our measure-
ments.

The results of the simulation before masking showed that each round key
except the original one takes 5386 clock cycles to compute and expandKey()
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in total takes 55410 clock cycles. The function is still present in the C source
code, but it’s never called.

2.7.2 Key addition

Key addition is implemented by the AddRoundKey function of our algorithm.
The unprotected version of our code only ex-ORed the plaintext with the key
byte by byte. The function was then changed in the masked implementation
where it loaded a random mask;, and random precharge value from the global
context. The destination register is precharged with the random precharge
value before the loading of the round key. Each time a new byte of the key is
loaded, the same value is precharged to the register.

After the random precharge, the mask;, value needs to be added. The
key value is executed with the instruction EOR in the destination register and
mask in the other one. The value that is leaking the Hamming distance during
the step of the register write back phase is the mask, not the key. The masked
key byte is exclusive-ORed with the corresponding byte of the plaintext.

2.7.3 SubBytes

The only non-linear operation of AES is SubuBytes. Typically, this is im-
plemented as a table look-up. Hence, we used a masked S-box table for this
operation.

The S-box look-up table, which is stored in the program memory, is needed
by the function that describes the SubBytes(). The function makes the use of
one byte of block as an index into the look-up table and makes the substitution
for that byte with the value that is stored in that index.

2.7.4 S-box masking

This is implemented in the function maskSbox() which iterates over the S-box
look-up table and fills in another look-up table with the masked S-box:

void maskSbox () {
uint8 t i = 0;

uint8 t x sbox ptr = sbox mem;

register uint8 t x0, x1, x2, x3;

do {
x0 = pgm_read byte(sbox ptr++) mask;
x1 = pgm_ read byte(sbox ptr++) mask;
x2 = pgm_read byte(sbox ptr+-+) mask;
x3 = pgm_read byte(sbox ptr++) mask;

sbox masked [ i++ mask]| = x0;
sbox masked [ i++ " mask| = x1;
sbox masked [ i++"mask| = x2;
sbox masked [ i++ mask]| = x3;

} while(i);
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If the input masks equal to zero, the key value would not be masked and
there would be no difference. However, the S-box substitution would do mask
removal and the value obtained by Sbox substitution would be the unmasked
product of key addition and S-box substitution. This would be easily detected
by using the Hamming weight power model and the values in the rest of the
execution would stay unmasked.

If the value of the inputs and outputs of the mask were equal, the execution
would be like the single mask masking scheme which is not sufficient in our
case due to the drawback that the Hamming distance between the key addition
and S-box substitution product leaks information.

2.7.5 ShiftRows

This operation moves the bytes of the state to different positions. At this
point of our algorithm, all the states are already masked with the same mask
because of which this part does not affect the masking. It rotates each row to
the left by zero, one, two or three bytes.

void shiftRows (void){
register uint8 t s0,sl, *state;
state = (uint8 t =) (xblock);
sO=state [1];
state[l]=state [5];
state[5]=state [9];
state[9]=state [13];
state[13]=s0;
sO=state [2];
sl=state [6];
state[2]=state [10];
state[6]=state [14];
state[10]=s0;
state[14]=s1;
sO=state [15];
state[15]=state [11];
state[ll]=state [7];
state[7]=state [3];
state[3]=s0;

Each byte is moved directly to its new position instead of byte by byte
which helps us in making the code more efficient.

2.7.6 MixColumns

MixColumns were implemented by using multiplication using 02 and 03 poly-
nomials from Rijndael finite field as a function. This is important because it
mixes the bytes from different rows of a column. If two masks are used for
the bytes of a column, we need to make sure that all the intermediate val-
ues stay masked which is inefficient. Therefore, it is better to make sure that
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each row is masked with a separate mask at this point of our algorithm. The
same operations are performed on each column and a for loop was used for the
algorithm.

void mixColumns(void) {

uint8 t xstate = (uint8 tx*)(xblock) ;

3 register unsigned char s0,sl,s2,s3;

register unsigned char c0,cl,c2,c3;

5 register short i;

s for (1 =0; 1 < 4; i++) {

sO=x(state++);

sl=x(state++);

s2=x(state++);

s3=x(state++);

c0 = field 2x(s0) =~ field 3x(sl) ~ s2 ~ s3;
cl = s0 ~ field 2x(sl) =~ field 3x(s2) ~ s3;
c2 = s0 ~ sl ~ field 2x(s2) ~ field 3x(s3);
c3 = field 3x(s0) ~ sl ~ s2 ~ field 2x(s3);

state —= 4; //rewrite current column, move to the next column
x(state++) = c0;
*(state++) = cl;
x(state++) = ¢2;
x(state++) = ¢3;
}
}

This implementation was also used by keeping a single pseudorandom mask
throughout the algorithm which was precomputed.

2.8 Differential power analysis

Differential power analysis could have been implemented using Wolfram Math-
ematica or even MATLAB. For this project, we chose Wolfram Mathematica
due to its familiarity. Measurements that were done through the oscilloscope
were loaded in Mathematica where we chose to run the DPA.

2.8.1 Range

The range of the traces was chosen such that the important operations of the
round were in them. It should be wide enough for the key addition and S-box
substitution at least since that is where we expected leakage to occur. In case
we missed these operations, later computations for the Hamming weight model
and the Hamming distance model would not leak any information. Similarly, if
the range is too wide, it would mean additional time needed for the correlation
process to complete.

When choosing the range for a masked implementation, we should be more
careful since the repeating round patterns tend to dissolve and we cannot see
a drastic difference between them. Therefore, before we chose the range for
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the masked implementation, we decided to choose the range for the case where
the masks and precharges were equal to 0x00. Similar ranges were chosen for
the masked implementation then, given that the oscilloscope configurations
remained constant as shown in figure

100

50

-50

Fig. 2.5. Range of traces chosen for the masked AES-128 implementation

2.8.2 Power models used

We used the Hamming weight and Hamming distance power models. For the
unmasked version of the code or in the case where the mask was set to 0x00,
we used single order DPA and the Hamming weight power model. This was
successful. Later, we also tested second order DPA with both the Hamming
weight model and the Hamming distance model. However, the original DPA
and the Hamming weight helped us to acquire the key one byte at a time.
This was done by first generating all 256 possible byte values of the key. Then
we applied AddRoundKey(0) on all possible pairs of keys x plaintexts. The
next step was to apply SubBytes() on the combinations of keys and plaintexts.
After the computation of the Hamming weight following these operations, we
correlated the resulting matrix with a selected number of power traces and a
selected range. The coefficient with the highest correlation in the matrix was
chosen. The row which contains the highest coefficient is the correct key value
and the column marks the offset in trace where the leakage occurred. This can
occur in multiple offsets since the Hamming weight leaks several times after
the SubBytes operation.

As mentioned earlier, this model was successful in retrieving all the correct
bytes of the key using a total of 200 measured plaintext inputs and a range
of 100000 samples. The correct correlation coefficient was always significantly
better than the ones that followed it. This method, however, was not successful
for the masked implementations.
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The Hamming distance model differs from the Hamming weight model in
the way that it computes the Hamming distance of the application of the
AddRoundKey(0) on all pairs of keys x plaintexts with the application of
SubBytes() on the combinations of keys and plaintexts. For the second order
DPA, we targeted the S-box input and the S-box output since we believed the
leakage to occur over there.

For this attack, we measured the power consumption of our masked AES
implementation and we compressed the traces so that we could reduce the
number of points. After identifying where the first round begins and correctly
choosing the starting position and the length, we tried to identify the interval
where the first S-box look-up took place. This was done by first finding out
the number of clock cycles in our code that were needed from the beginning
of the encryption to the operation of SubBytes() during the execution of the
first round. The instruction that was chosen was around the time where the
first S-box look-up is likely to occur. The clock cycles that we found out from
the code for the operation where we expected the leakage were 7695. Using
this value and our chosen values for the trigger position and the start, we were
able to depict the position in the traces. The following formula was used for
that calculation:

Position = (No. of Clock cycles)*(25) + (Trigger postion) - (Start) (2.15)

The 25 in the formula was the value of a single clock cycle. We were able to
attain the value of this clock cycle by plotting a single trace and zooming it to
detect the value. Also, we were able to cross-check it by using the frequency
from the oscilloscope and calculating the value of a single clock cycle. Our
trigger position was 12,803 and our start was at 190000. We chose a total of
2000 plaintext inputs. Since the SubByte() position was found out to be at
7695, we chose a range of 7690 - 7705 so that we could use our operations on
this particular part of the traces. Using these values and plugging them into
our equation, we got 10053 and 10428. The Hamming distance was applied
around these points through which we were able to break the first key byte for
the masked implementation. Using the same equation with values that were
shifted a little bit in front of the previous, we were able to attain the rest of the
bytes. A loop was used inside Mathematica that contained both the Hamming
weight and Hamming distance power model. This loop helped us to choose
our power model with ease and we did not have to change the data manually
on every evaluation of the notebook.

2.8.3 Used tools

We used AVRStudio 4.19 with a GCC compiler for the AES implementation.
The hardware was done using the ATMegal63 smart card. The power meas-
urement was done on Agilent DSO-X 3012A oscilloscope. Inputs and outputs
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were controlled by the SC power measurement program that helped us in gen-
erating the plaintexts, ciphertexts and the file for the traces. This program
makes the use of the linear congruential generator from the standard library
and the generated plaintexts sequence is always the same for each respective
session.

The DPA of the measured traces was then done using Mathematica 10.3.0.0.
Though the software features were suitable for our work, it was slow when large
amounts of data were used as input. For instance, when doing the second or-
der DPA for our masked implementation, we had to load 2000 plaintexts and
breaking each byte would take a considerable amount of time.
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CHAPTER 3

Evaluation

Our results will be talked about in this section. We will discuss the success of
our implementation, conclusions after applying single order and higher order
DPA and finally, comparison with the unmasked version of the code.

3.1 Ewvaluation Criteria

The section will look at various aspects used for assessing the characteristics
of the countermeasures and we will talk about their efficiency.

3.1.1 Quality

The quality of the differential power analysis lies mainly with finding out the
correct key. It depends on the chosen number of traces, amongst other factors.
It could happen that some of the key bytes may be found out correctly and
some others may not be correct.

For the key bytes that were guessed correctly, we need to look at the
correlation coefficients. The value of the correlation coefficients lies between
—1 and +1. In our implementation, the highest correlation value is chosen and
looking at the difference between the the second best value of the correlation
coeflicient, we can guess whether the found key byte is correct or not. If the
distance is large, the found byte is usually usually correct. In the case where
the distance is small, the key byte may be incorrect.

3.1.2 Efficiency

In order for our implementation to be efficient, we need to have a balance
between security and time. We can not let the encryption take up too many
clock cycles for operations that could be managed in less. Similarly, we want
our algorithm to be as secure as possible and we would need operations that
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might take additional time and so, finding a good balance between the two is
important.

3.2 Results

3.2.1 Unmasked AES-128

The unmasked version is the one where the value of the mask is 0x00. The
program was loaded onto the smart card and the traces were measured. We
chose a total of 200 plaintexts for this version. In the analysis using single order
DPA, we tried to analyze the output of the SubBytes operation in the first
round. Both the power models were used for this version: Hamming weight
and Hamming distance. As expected, they were both successful with high
correlation coefficient peaks. The following table shows the observed results:

Differential power analysis

Hamming Weight |Hamming Distance
Number of plaintexts 200 200
Average correlation coefficient peak 0812689625 0.754493188

Fig. 3.1. Average correlation peaks for unmasked implementation

The above given data in table shows us that the correlation peaks were
quite high for the key bytes and we did not need many traces to successfully
attack the implementation. All 16 key bytes were retrieved.

For the hamming distance implementation, we used the second-order DPA
before trying it for the masked implementation. For the first key byte, we were
able to see two high peaks. The first peak was for the SubBytes operation and
the second was for the MixColumns. As talked about before, this is where we
expected the leakage. The peak for SubBytes occurred at 10293, which helped
us to get the clock cycle at which the leakage occurred. This was done by
using equation [2.15] The clock cycles found were 7699. For the second peak,
which occurred at 17830, the clock cycles found were 8000. Using the values
of these clock cycles, we are able to depict the exact instructions that leaked
information.

The number of plaintexts that were encrypted during the measurement
stage were directly proportional to the correlation coefficient peak. Using a
large number of plaintexts would give us better coefficients, ensuring that our
key bytes were correct. Since an average correlation coefficient peak of 0.81269
is already quite high, we did not need to use a larger number of plaintexts.

The correlation coefficient peaks for the first byte are shown below in figure
From the plot, we can observe that the peaks have good correlation
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Fig. 3.2. Correlation peaks for the first byte of the unmasked implementation

coefficients for the unmasked version. The peak with the highest correlation
coefficient is then chosen to get the correct key byte.

3.2.2 Masked AES

For the single and random mask implementation, we were able to find the
correct key using second order DPA and a total of 2000 plaintexts. Using
the information about where the leakage occurs from the unmasked masking
scheme, we were able to use that over here to find the clock cycles and then the
position in the traces. The clock cycles from the code for the leakage during
the operation SubBytes() were 7695. Using equation and choosing the
range of clock cycles from 7690 to 7705, we were able to get the points in the
traces and we applied our second order DPA on those points. We used the
absolute difference preprocessing function which is shown below:

Table[Abs[t[[All, P1]| —t[[All, P2]]], {P1,10053,10427} , { P2, P1 + 1,10428}];
(3.1)

The equation|3.1]is a representation of the preprocessing function that was
used to find the first key byte for the single mask masking scheme. t is the
matrix of traces and P1 and P2 are the two points that we discovered from
the equation [2.15] using the clock cycles found around the leakage. As we can
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see above, the equation computes the absolute difference of all the values and
P1 is incremented from 10053 to 10427 while P2 is incremented from P1 + 1
to 10428. The matrix that we get from this result is transposed and then the
Hamming distance model is applied to get the correlation.

The table below shows the average correlation coefficient that was ob-
tained for all the correct key bytes.

Hamming Distance
Number of plaintexts 2000
Average correlation coefficient peak 0.1597298

Fig. 3.3. Average correlation peaks for masked implementation

However, our correlation peaks were quite low. A larger number of traces
would give us better peaks but would also increase the time needed to process
the data. If an attacker would be trying to attain the correct key, he would
most definitely opt for larger number of inputs so that his correlation coeffi-
cients would be more convincing since he would not be aware of the correct
key. Figure[3.4]shows the values of the correlation coefficient peaks for the first
byte. We can clearly see the difference from the unmasked implementation by
having a look at the values of the peaks on the y-axis. The same range of the
traces and the same key bytes were chosen for the comparison of these two.
We can see that the peaks for the masked implementation do not go beyond
0.11 in this plot.

0.10

-0.10

Fig. 3.4. Correlation peaks for the first byte of the single mask
implementation
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Finally, we had to apply second-order DPA on our multi-masked masking
scheme. Unfortunately, our implementation contained the rand function before
the processing of the rounds and we were not able to guess the correct clock
cycles for the operations during SubBytes that were leaking information. Our
times were shifted on each iteration of the code due to hiding which was not
the case for our single mask masking scheme. When trying to move the rand
function to the end of the round, other issues started to present themselves
which were not faced due to time constraints and will be touched in the future.
I believe that if we are able to successfully move the rand instructions to the
end of the round, we would be able to exploit this using second-order DPA,
just as we were able to exploit the single mask masking scheme.

3.3 Efficiency

The single mask masking scheme was much faster from our multi-mask masking
scheme since our functions were less time consuming. Instead of using nested
for loops, we opted for directly assigning values. The highest number of clock
cycles were needed by the maskSbox function which iterated over 256 values
and used XOR for each value twice, consuming more memory as well.

Improvements could be made by implementing the functions in assembly.
However, that may make them incompatible with some other platforms while
C code is easily usable and can be compiled on machine code without any
changes.
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Conclusion

Summary

This thesis started with the description of AES and possible countermeasures
to protect it from side channel attacks. Our used countermeasures involved
two masking schemes - single mask masking scheme and multi-mask masking
scheme.

Differential power analysis was initially used on an unprotected version of
AES in which the mask was set to zero. Single-order DPA was more than
enough to break this implementation. Thereafter, single-order DPA was at-
tempted on the single and multi-mask masking scheme. This, however, was
not successful. Following this conclusion, second-order DPA was applied to
break the masked implementation. We were able to break the single mask
masking scheme using second-order DPA after which we tried it on the multi-
mask masking scheme. This was not successful because we were unable to
isolate hiding from masking in our code. Our rand instruction that computed
the pseudo-random number that was used for the mask, was at the begin-
ning of the round which was not the case in the single mask masking scheme.
Due to this, we were unable to depict the clock cycle around which the leak-
age occurred and because of that, we were not able to successfully use the
second-order DPA on it.

Mainly, the implementation lacks a true random number generator which
would surely be needed to generate such a mask that can not be predicted
easily. However, ATMegal63 has very limited options for the implementation
of this task so this was out of scope for this thesis.

Future work

The implementation of the multi-mask masking scheme can surely be im-
proved. First, the rand function should be used at the end of the round

51



CONCLUSION

without disrupting other parts of the code. Secondly, it can be made more
efficient by avoiding the usage of nested for loops and using better algorithms
to complete the operations in the rounds.

While processing large inputs, like when we measured the encryption of
2000 plaintexts, Wolfram Mathematica was quite slow and we were not able
to compute the second-order DPA for all bytes along with the computation of
the correlation coefficients in a single loop. This had to be done separately for
each byte. One probable solution would be to automatize large data inputs to
enable larger than 1 GB to be correlated without running out of memory.
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Acronyms

AES Advanced Encryption Standard

CMOS Complementary Metal-Oxide-Semiconductor

DPA Differential Power Analysis

EEPROM Electrically Erasable Programmable Read-Only Memory
GCC GNU Compiler Collection

RISC Reduced Instruction Set Computing

SCA Side-Channel Attack

SPA Simple Power Analysis

SRAM Static Random Access Memory
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readme.tXt ...oiviiiin i the file with CD contents description
T o o the directory of source codes
| _aes single mask faster.the source code of the single mask masking
scheme
| _Mathematica experiments..Results obtained during the experimental
part
| Multi mask masking code the source code of the multi-mask masking
scheme
| _thesis.............. the directory of IX¥TEX source codes of the thesis
| o*text ..o the IATEX source codes of the thesis
| thesis.pdf .ooviiiiiiiii i the thesis text in PDF format
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