
MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

464925Personal ID number:Argirova MargaritaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science and Engineering

Open InformaticsStudy program:

Artificial IntelligenceBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Enhancing transport network graphs using GPS tracking data

Master’s thesis title in Czech:

Zpřesňování grafů dopravních sítí na základě GPS záznamů projetých tras

Guidelines:
Transport network graphs representing the topology of road, cycleway and footpath networks are the basis for automated
route planning systems. Unfortunately, network graphs generated frommap data contain errors -- edges are either labelled
with wrong attributes or completely missing. Such errors can be detected and corrected by analysing GPS tracking data
on people or vehicle movement. The aim of this thesis is to explore this approach.
Specific instructions:
1) Familiarize yourself with transport network graphs and their construction from OpenStreetMap maps.
2) Survey existing approaches for using GPS tracking data to enhance transport network graphs.
3) Design and implement a suitable algorithm for GPS tracks-based transport network graph enhancement.
4) Evaluate the enhancement algorithm on real-world map and GPS tracking data.

Bibliography / sources:
[1] Ahmed, M., Karagiorgou, S., Pfoser, D. andWenk, C., 2015. A comparison and evaluation of map construction algorithms
using vehicle tracking data. GeoInformatica, 19(3), pp.601-632.
[2] Liu, X., Biagioni, J., Eriksson, J., Wang, Y., Forman, G. and Zhu, Y., 2012, August. Mining large-scale, sparse GPS
traces for map inference: comparison of approaches. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining (pp. 669-677). ACM.
[3] Cao, L. and Krumm, J., 2009, November. From GPS traces to a routable road map. In Proceedings of the 17th ACM
SIGSPATIAL international conference on advances in geographic information systems (pp. 3-12). ACM.

Name and workplace of master’s thesis supervisor:

doc. Ing. Michal Jakob, Ph.D., Department of Computer Science and Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________Date of master’s thesis assignment: 19.09.2018

Assignment valid until: 19.02.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
Head of department’s signaturedoc. Ing. Michal Jakob, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1

ENHANCING TRANSPORT NETWORK GRAPHS

USING GPS TRACKING DATA

by

Margarita Argirova

Bachelor of Engineering, Bauman Moscow State Technical University, 2016.

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of Master of Computer Science

in the Department of ​Department of Computer Science

Faculty of Electrical Engineering

Adviser:

Doc. Ing. Michal Jakob, Ph.D.

Czech Technical University

 January 2019

I hereby declare that I have completed this thesis independently and that I have listed all

the literature and publications used. I have no objection to usage of this work in

compliance with the act §60 Z´akon ˇc. 121/2000Sb. (copyright law), and with the rights

connected with the copyright act including the changes in the act.

In Prague on December 7, 2019 .

2

ABSTRACT

The aim of this work is to detect to localize missing edges in road graph and propose

changes in the map.

The map of Prague was chosen for implementation, testing and visualization as an

example of the city with very basic bicycle infrastructure, but the algorithm can be

applied to any city or country.

The given data was GPS trajectory from cyclists, who recorded their routes in

Prague. This data was preprocessed and filtered to fit the algorithm.

In order to solve the problem of missing edges algorithmically, it was

decomposed to some less complexed known ones. First one is map matching, which was

solved with modified Dijkstra algorithm with minimization the area between track and

graph path.

Optimal paths did not always match with original track, which proved existence

of missing edges in the graph. Thus the points lying too far from track were detected as

outliers. For experiments were used many algorithms and attributes, but the most precise

results were obtained with modified z-score outlier detection technique on interpolated

graph paths.

After having the outliers for each path the closest points to outliers were

recovered with kd-tree, where the missing edge can exist. From obtained nodes some

edges were added until the area between initial track and new graph path decrease.

3

TABLE OF CONTENTS

ABSTRACT 2

TABLE OF CONTENTS 3

CHAPTER 1. INTRODUCTION 5
1.1 MOTIVATION 5
1.2 AIM 6

CHAPTER 2. PROBLEM SPECIFICATION 7
2.1 FORMAL DEFINITION 7
2.2 POSSIBLE SOURCES OF THE PROBLEM 8
2.3 OUTLINE OF THE ALGORITHM 9

CHAPTER 3. RELATED WORK 10
3.1 MAP MATCHING ALGORITHMS 10

3.1.1 ALGORITHMS BASED ON GEOMETRY 10
3.1.2 PROBABILISTIC MAP MATCHING ALGORITHM 13
3.1.3 OTHER ALGORITHMS 14

3.2 OUTLIER DETECTION ALGORITHMS 15
3.2.1 K-Means 15
3.2.2 K-Medoids 16
3.2.3 Z-Score 17
3.2.4 Modified (robust) Z-Score 18
3.2.5 Interquartile range 19

CHAPTER 4. SOLUTION 22
4.1 SOLUTION ARCHITECTURE 22
4.2 MODIFIED DIJKSTRA SHORTEST PATH ALGORITHM 23
4.3 PROBLEMATIC POINTS EXTRACTION 27
4.4 GRAPH REFINEMENT 28

4

CHAPTER 5. IMPLEMENTATION DETAILS 29
5.1 GIVEN DATA 29
5.2 DATA INSPECTION 30
5.3 PARSING THE DATA AND CREATING THE TRANSPORTATION GRAPH
30
5.4 MAP MATCHING DETAILS 31
5.5 GEO VISUALIZATION TOOLS 31
5.6 STATISTICS CALCULATION 35
5.7 STATISTICS VISUALIZATION 37
5.8 OUTLIER DETECTION DETAILS 39
5.9 POINT LOCALIZATION DETAILS 40

CHAPTER 6. EVALUATION 41
6.1 GENERAL METRICS 41
6.2 EVALUATION METRICS 42
6.3 TESTING SCENARIOS 43
6.4 RESULTS 47

6.4.1 OBJECTIVE FUNCTIONS FOR MODIFIED DIJKSTRA ALGORITHM
TESTING 47
6.4.2 RESULTS OF OUTLIER DETECTION 47
6.4.3 PROBLEMATIC POINT LOCALIZATION RESULTS 57
6.4.4 GRAPH REFINEMENT DEMONSTRATION 57

CHAPTER 7. CONCLUSION 59
7.1 DISCUSSION 59

7.1.1 APPROACH DRAWBACKS 59
7.1.2 APPROACH ADVANTAGES 60

7.2 FUTURE WORK 60

REFERENCES 61

5

CHAPTER 1. INTRODUCTION

1.1 MOTIVATION

According to [24] only 52 out of 1000 inhabitants of Czech Republic own a bicycle and

use it for everyday transportation. For Prague the reasons of such low usage are simple,

the city is hilly and there is no infrastructure for bikes.

However, there are many software applications, which suggest the shortest route

for bicycles between given locations. These applications usually use Google Maps or

Open Street Maps for the space representation. But some cyclists report, that some of the

routes are far from optimal because of possible errors in the maps, caused by incorrect

labeling of the elements.

It happens because cyclist behave both as cars and pedestrians at the same time,

therefore they need special treatment in routing.

6

1.2 AIM

The goals of the thesis are described further.

1. To match the dataset of recorded GPS routes into road network.

2. To detect imperfections of the map for cyclists based on the matched tracks.

3. The errors they should be localized and based on their positions, corrections of the

map should be proposed.

7

CHAPTER 2. PROBLEM SPECIFICATION

2.1 FORMAL DEFINITION

The problem of missing edges detection in the road graph can be decomposed to several

less complex ones.

The given data can be represented as set of tracks Ⲧ and the road graph G. Let the

track be the sequence of n GPS points recorded from a user route T ∈ Ⲧ

. The map can represented as directed {(lat , lon), (lat , lon), .. , (lat , lon)}T = 1 1 2 2 . n n

weighted graph where V is the set of vertices with GPS coordinates V , E, D),G = (

latitude and longitude, E is the set of edges between nodes and D is the set corresponding

distances between nodes.

Graph path P is the ‘projection’ of the track on the graph. ​Map matching is the

problem of how to match recorded geographic coordinates to a logical model of the real

world and relate them to edges in an existing street graph (network), more details are

presented in Section 3.1.

The path P is the optimal sequence of m GPS points obtained after matching the

track T into graph G, . The distance {(lat , lon), (lat , lon), .. , (lat , lon)}P = 1 1 2 2 . m m

8

between track in corresponding path is defined as and its formal definition will (T , P)F

be discussed in Section 4.2.

Based on the distance F it has to be decided, if the path P is optimal path for the

given track T.

Let be the distance between point of track T and path P. Then is a F i ith (T , P)F

list of . After processing of all input tracks Ⲧ and recording the distances of their F i

points, there can be applied anomaly or outlier detection techniques.

Outlier is an observation point that is distant from other observations. Anomaly

detection (also outlier detection) is the identification of rare items, events or observations

which raise suspicions by differing significantly from the majority of the data. [] Three

broad categories of anomaly detection techniques exist [22, 23]. Unsupervised anomaly

detection techniques detect anomalies in an unlabeled test data set under the assumption

that the majority of the instances in the data set are normal by looking for instances that

seem to fit least to the remainder of the data set. Supervised anomaly detection

techniques require a data set that has been labeled as "normal" and "abnormal" and

involves training a classifier (the key difference to many other statistical classification

problems is the inherent unbalanced nature of outlier detection). Semi-supervised

anomaly detection techniques construct a model representing normal behavior from a

given normal training data set, and then test the likelihood of a test instance to be

generated by the learnt model. [22]

It is not too convenient to label all processed data based on visual evaluation.

Thus further in Section 6.2 there will be described unsupervised anomaly detection

techniques to classify the track-path pair into ‘successful’ or ‘failure’.

2.2 POSSIBLE SOURCES OF THE PROBLEM

There might be various sources of these errors. Usually they are missing or excess

segments of the real world path.

● Some of the ways are wrongly “oneway” tagged or bikes are were not mentioned.

9

● Other cases can be caused by multimodality of the graph with no connection

points between pedestrian and car modes (as bicycle might behave like both).

● Also it is possible to be a wrong tagging of the way or node.

● The real city is always changing and the map can not always track these changes.

2.3 OUTLINE OF THE ALGORITHM

The algorithm for graph refinement requires further steps:

1. Parsing the street network (Section 5.3)

2. Creating the transport graph (Section 5.3)

3. Filtering the tracks (Section 5.2)

4. Matching tracks with the map (Sections 5.4, 4.2)

5. Visually detecting the errors

6. Classification each point as inlier or outlier (Sections 3.1, 5.8)

7. Localization the problematic graph nodes (Section 5.9)

8. Refining the transport graph (Sections 5.9, 6.4.4)

10

CHAPTER 3. RELATED WORK

3.1 MAP MATCHING ALGORITHMS

There are many different algorithms for matching the GPS-track with the transport graph.

They can be roughly divided in three groups: geometrical, probabilistic, other.

3.1.1 ALGORITHMS BASED ON GEOMETRY

In [2] further algorithm was proposed. Given a series of position samples representing a

vehicle trajectory, the map-matching algorithm pursues a position-by-position sample and

edge-by-edge strategy. To match a position to a road network edge, given that its pi

previous position has already been matched, the algorithm proceeds as follows p i−1

(figure 1). First, the candidate edges to be matched to the current position are identified

as the set of the incident edges “exiting” the last matched edge (including also the

matched edge itself). In figure 1, these edges are labeled , and , with , being c1 c2 c3 c3

the edge matched to .p i−1

11

Figure 1. Incremental map-matching example. [2]

Two similarity measures are used to evaluate the candidate edges.

The measure reflecting the distance from the position sample to the various c d

edges is computed based on the weighted line segment distance, ​d​, of from each p i

candidate, , using the scaling factors and as:c j μ d n d

(p , c) μ (p , c)sd i j = d − a · d i j
nd (1)

The measure reflects the orientation of the trajectory with respect to the sα

candidate edge. It is computed based on the angle difference between the directed αi,j

candidate edge and the directed line segment , using the scaling factors c j li = p , pi−1 i

 and as: μ α n α

(p , c) μ os(α)sα i j = α · c i,j
 nα (2)

The scaling factors and represent the maximum score and a power μ[d|α] n[d|α]

parameter, respectively. Choosing a higher compared to means that distance μd μα

weighs more than orientation. The power parameter determines the rate of decrease for

12

the respective weight with an increasing line segment distance or angle difference. The

use of the cosine further implies that with an increasing angle difference the score of sα

decreases and with angle differences 90 < α < 270 and the choice of an odd number for

the power and a positive constant , even becomes negative. nα μα sα

The combined similarity measure is computed as the sum of the individual scores,

i.e.,

 s s = α + sd (3)

The higher the score of this measure, the better is the match.

Depending on the type of projection/match of to , i.e., (i) its projection is pi cj

between the endpoints of , or, (ii) it is projected onto the end points of the line cj

segment, the algorithm does, or does not advance to the next position sample. Following

the example of Figure 2, after matching to edge , the algorithm advances to p1 e1 p2

(case (i)) and matches it also to . Advancing to , it tries to match this point to e1 p3 e2

and since this projection reflects case (ii) it does not advance to the next position sample

but finally matches to . The edge is recorded as a traversed edge. In Figure 2, e3 p3 e2

the mapped position samples are drawn as gray circled crosses.

Figure 2. Matching example: advancing position samples

13

and edges, and matching result. [2]

[2, 3, 4]

3.1.2 PROBABILISTIC MAP MATCHING ALGORITHM

In [1] was introduced probabilistic map matching algorithm Hidden Markov Models

(HMM). The HMM models processes that involve a path through many possible states,

where some state transitions are more likely than others and where the state

measurements are uncertain. the states of the HMM are the individual road segments, and

the state measurements are the noisy vehicle location measurements. The goal is to match

each location measurement with the proper road segment. This state representation

naturally fits the HMM, because transitions between road segments are governed by the

connectivity of the road network.

Figure 3. For each measurement , the HMM considers all the road segments as wellzt ri

14

as all the transitions between the road segments. [1]

More formally, the discrete states of the HMM are the road segments, , ​i = N r ri

1 ... In this representation, distinct road segments run between intersections. For each .N r

2D latitude/longitude location measurement , the goal is to find the road segment that zt

the vehicle was actually on. Figure 3 shows an illustration of the HMM for the map

matching problem. Here, each vertical slice represents a point in time corresponding to a

location measurement for the three times t = 1, 2, 3. At t = 1 there are three roads near zt

, shown as three black dots in the first column. There is a feasible driving path,z1

possibly very circuitous, from each of the nearest points on these three roads to points on

the two roads near at t = 2, and similarly for t = 3. The goal of the algorithm is to find z2

the most probable path through the lattice by picking one road segment for each t. This

path should be sensitive to both the measurements and the reasonability of the paths

between the road segments. This tradeoff is made based on the probabilities governing

the measurements and probabilities governing the transitions between the road choices at

each time.

This algorithm utilizes measurement probabilities, the likelihood that a

measurement resulted from a given state, based on that measurement alone. The

transition probabilities are the probabilities of a vehicle moving between the candidate

road matches at moments t and t+1. These two kinds of probabilities are used in Viterbi

algorithm to compute the best path through the HMM lattice. The Viterbi is essentially

dynamic programming, and quickly finds the path through the lattice that maximizes the

product of the measurement probabilities and transition probabilities. In constructs an

inference of the correct road segment for each location measurement. [1]

3.1.3 OTHER ALGORITHMS

In [8] there was vaguely described an idea of algorithm similar to Dijkstra’s shortest path:

[5]

15

The graph ​G (V, E, F)​, where V, E - vertices and edges of the transport graph, F,

unlike D, are distances between given track T and the path P in the transport graph. The

algorithm incrementally builds the shortest path P point by point, minimizing the distance

between current point and the track. The details of this approach and its modifications are

described in Section 4.2.

3.2 OUTLIER DETECTION ALGORITHMS
There were considered some methods of anomaly detection: K-means algorithm and its

varieties and three statistical methods.

3.2.1 K-Means

On 2 dimensional area-distance data was tested K-Means clustering algorithm. The

definition of the algorithm is: Let be the set of n d-dimensional {x }, i , ..,X = i = 1 . n

points to be clustered into a set of ​K clusters, . K-means c , k 1, ..., K}C = { k =

algorithm finds a partition such that the squared error between the empirical mean of a

cluster and the points in the cluster is minimized. Let be the mean of cluster . The μk ck

squared error between and the points in cluster is defined as:μk ck

(c) ||x ||J k = ∑

x ∈ci k

 k − μk
2 (4)

The goal of K-means is to minimize the sum of the squared error over all K

clusters:

(C) ||x ||J = ∑
K

k=1
∑

x ∈ci k

 k − μk
2 (5)

Minimizing this objective function is known to be an NP-hard problem (even for

K = 2). Thus K-means, which is a greedy algorithm, can only converge to a local

minimum, even though recent study has shown with a large probability K-means could

converge to the global optimum when clusters are well separated. K-means starts with an

initial partition with K clusters and assign patterns to clusters so as to reduce the squared

error. Since the squared error always decreases with an increase in the number of clusters

16

K (with ​J(C) ​= 0 when ​K = n​), it can be minimized only for a fixed number of clusters.

The main steps of K-means algorithm are as follows:

1. Select an initial partition with ​K clusters; repeat steps 2 and 3 until cluster

membership stabilizes.

2. Generate a new partition by assigning each pattern to its closest cluster center.

3. Compute new cluster centers.

The K-means algorithm requires three user-specified parameters: number of

clusters ​K​, cluster initialization, and distance metric. The most critical choice is ​K​. While

no perfect mathematical criterion exists, a number of heuristics are available for choosing

K​. Typically, K-means is run independently for different values of ​K and the partition that

appears the most meaningful to the domain expert is selected. Different initializations can

lead to different final clustering because K-means only converges to local minima. One

way to overcome the local minima is to run the K-means algorithm, for a given ​K​, with

multiple different initial partitions and choose the partition with the smallest squared

error. K-means is typically used with the Euclidean metric for computing the distance

between points and cluster centers. As a result, K-means finds spherical or ball-shaped

clusters in data. K-means with Mahalanobis distance metric has been used to detect

hyperellipsoidal clusters, but this comes at the expense of higher computational cost.

In K-means the outlier is an element of the group which has few data and is

located far from other groups and can be considered as new cluster.

It was tested the basic version of K-means with different cluster number and

Euclidean distance metric. [9, 10, 11, 12, 13]

3.2.2 K-Medoids

K-medoids is very similar to K-means, but represents each cluster using an actual point

and a radius rather than a prototype (average) point and a radius. K-medoids is robust to

outliers as it does not use optimisation to solve the vector placement problem but rather

17

uses actual data points to represent cluster centres. K-medoids is less susceptible to local

minima than standard k-means during training where k-means often converges to poor

quality clusters. It is also data-order independent unlike standard k-means where the

order of the input data affects the positioning of the cluster centres and it is shown that

k-medoids provides better class separation than k-means and hence is better suited to a

novelty recognition task due to the improved separation capabilities. However, k-means

outperforms k-medoids and can handle larger data sets more efficiently as k-medoids can

require O() running time per iteration whereas k-means is O(n). [14]n2

3.2.3 Z-Score

Let be random samples of some value. The mean is calculated as:, , ..., X X1 X2 n

 m = n

∑
n

i
xi

(6)

And the standard deviation:

 s = √ n−1

∑

i
(x −m)i

2

 (7)

Z-score expresses a particular score in terms of how many standard deviations (figure 4)

it is away from the mean and can be computed as:

Z i = s
x −mi (8)

Outliers are detected based on the value of |Z-score|, if it exceeds 3 or 4. In case

of distances it makes sense to discard the absolute value, because even values less than

Z-score are technically outliers, but closer distance is better. [16]

18

3.2.4 Modified (robust) Z-Score
Although it is common practice to use Z-scores to identify possible outliers, this can be

misleading (particularly for small sample sizes) due to the fact that the maximum Z-score

is at most . In [17] there was proposed using the modified Z-score:n)/ (− 1 √n

 Z i = MAD
0.6745(x − median)i (9),

where

AD median(|x edian(x)|) M = i − m (10)

The outliers are those values, modified Z-score of which is greater than 3.5. The

method is robust to potential outliers because of using median value instead of mean. [17]

19

Figure 4. Normal distribution with mean, standard deviation and Z-scores [21].

3.2.5 Interquartile range

Interquartile range or IQR is a measure of statistical dispersion, being equal to the

difference between 75th and 25th percentiles, or between upper and lower quartiles,

QR Q I = 3 − Q1 (11).

Percentile is a number where a certain percentage of scores fall below that

number. It is calculated as:

/100 (n) R = P + 1 (12),

20

Figure 5. Normal distribution with Interquartile ranges. [20]

where P is percent, n - number of measurements in the data.

These quartiles can be clearly seen on a box plot on the data (Figure 5). It is a

trimmed estimator, defined as the 25% trimmed range, and is a commonly used robust

measure of scale.

The IQR is a measure of variability, based on dividing a data set into quartiles.

Quartiles divide a rank-ordered data set into four equal parts. The values that separate

parts are called the first, second, and third quartiles; and they are denoted by Q1, Q2, and

Q3, respectively.

21

Outliers here are defined as observations that fall below Q1 − 1.5 IQR or above

Q3 + 1.5 IQR . As in Z-scores, for deviating distance detection was used only Q3 + 1.5

IQR. [18, 19]

22

CHAPTER 4. SOLUTION

4.1 SOLUTION ARCHITECTURE
For map matching there was implemented and refined the Dijkstra shortest path

algorithm and its functions for optimization. Details are described in this chapter in

Section 4.2.

After processing the tracks T and obtaining the paths P on the dataset, all the

distances F were stored to detect the outliers. For anomaly detection there were

implemented K-means, K-medoids, Z-scores, modified Z-scores and IQR and then

compared in Section 6.4.

After the data classification there were implemented point localization algorithm,

described in Section 5.9 and 4.4.

After point localization there were also implemented naive approach to refine the

graph (Section 4.5).

The testing, evaluation and results are discussed in Section 6.4. Details and

justification of algorithmical options are explained as well.

The final pipeline of the algorithm is presented below:

23

1. Parse the given data, obtain graph G and tracks T.

2. For each input track perform the graph matching modified Dijkstra shortest

path algorithm with minimization of the area between track T and path P.

3. Collect the statistics for each path and for each path point, representing the

distance to closest track point and store it together.

4. Perform the modified (robust) Z-score outlier detection on the dataset obtained

above.

5. Localize the points, where the distance starts to grow and store them to another

dataset.

6. Suggest the improvements in the graph.

4.2 MODIFIED DIJKSTRA SHORTEST PATH ALGORITHM

These distances can be defined as ​Fréchet distances between two curves. Practical

definition of ​Fréchet distance is Hausdorff distance. Let A = { , , ... , } and B = { a1 a2 an

, , … , } in . The one-sided Hausdorff distance from A to B is defined as [6,b1 b2 bm E2

7]:

 (A, B) max min ||a || δH = a∈A b∈B − b (13)

In Dijkstra’s algorithm each node appears incrementally, therefore the aligned

path changes its length. The Hausdorff distance can be reformulated incrementally:

 (A, b) ||a ||, for b δH = mina∈A − b ∈ B (14)

Thus, the problem of fitting the track to the graph can be formulated as

optimization task of minimization the distance between two discrete set of points. ​[8]

The last algorithm shows neat results and will be used in further implementation

with several enhancements.

24

Firstly, there are several approaches to define minimum distance objective

function.

1. Minimization of vanilla Hausdorff distances (minimum).

2. Minimization of the sum of incremental minimum distances.

3. Minimization of the area between two discrete sets of points.

Computation of the area between two curves is not trivial task, therefore there was

suggested further approximation algorithm.

1. The first point in the matched track (curve B) has the closest first point in original

track (curve A). Initial area between tracks is equal to zero (figure 6).

Figure 6. First step of area approximation algorithm.

2. Dijkstra algorithm produces the next point. It’s neighbours’ distances can be

computed for two situations:

a. The closest point in A of previous point in B is known and is X. If the

closest point of neighbour is also X, the area is computed as a triangle

△12X (figure 7).

25

Figure 7. The second step of the area approximation algorithm.

b. The closest point of the previous point is X, of the neighbour is Y.

Therefore the area is computed as △12X plus △3XY or more additional

triangles (figure 8):

Figure 8. The third step of the approximation algorithm.

26

Before match starts, the first closest node should be found. This can be done using

kd-trees, containing all nodes with coordinates from the graph.

Kd-tree is data structure, proposed in []. It implements search in d-dimensional

space and each level has a “cutting dimension”. The search performs by cycling through

the dimensions down the tree. Each node contains a point P = (x,y), to find desired point

it is necessary to compare coordinate from the cutting dimension.

The final matching algorithm pseudocode with all optimizations and

enhancements is presented on the next.

function​ modified_dijkstra()

input:​ Graph G(V, E, D), track T

output:​ path P

begin

target = ​get_closest_node_in_G_to_last_point_in_T

starts = ​get_closest_3_nodes_in_G_to_first_point_in_T

for (start in starts)

pq = ​initialize_priority_queue

pq.​insert​(start)

if (start is target)

break

endif

while (pq is not empty)

node = pq.​poll()

for (n in node's neighbourhood)

area1 = node.​get_area_so_far

area3 = ​compute_area​(node, n)

27

area = area3 + area1

if (n is visited) and (pq.​contains​(n))

area2 = n.​get_area_so_far

if area > area2

n.​set_area_so_far​(area)

n.​set_parent​(node)

endif

endif

else

n.​set_parent​(node)

n.​set_area_so_far​(area)

pq.​insert​(n)

endelse

endfor

endwhile

Ti = ​backtrack()

endfor

T = ​get_track_with_minimal_area_between​(Ts)

end

4.3 PROBLEMATIC POINTS EXTRACTION

After extraction of all outliers it is necessary to detect actual nodes in graph, where there

can be a problem. It is clear, that the outliers themselves are not these points, but first

approximations to them, therefore special detection algorithm should be implemented.

The algorithm is presented below.

28

1. If point is inlier, pass.

2. If point is first outlier in sequence, remember the point, go backwards to find

previous inlier.

3. If point is an outlier after first processed, pass, further outliers in sequence are

dependent on the first one.

The result of the algorithm is an approximation of the actual node with missing edge.

4.4 GRAPH REFINEMENT

For demonstration of correctness of suggested approach, there was implemented simple

semi-bruteforce algorithm to refine the road graph. It iterates through the detected points

and its’ closest neighborhood:

1. Search n closest nodes to detected one using kd-trees.

2. If the node is in path, select those neighbours, which do not have edge forward,

but have the backward.

3. Recalculate the path,

4. If it shows significantly smaller area between track and path, this edge should be

added.

29

CHAPTER 5. IMPLEMENTATION DETAILS
Java was used for code implementation. It is relatively fast and has many of necessary

libraries.

There were implemented the majority of described algorithms, necessary data

structures and visualizations tools for presentation, evaluation and debugging.

5.1 GIVEN DATA

Firstly, the graph based on the map should be created. The data was taken from

open-source project Open Street Maps. The data is stored in XML-like format. The file

with the map contains 3 types of entities, Nodes, Ways and Relations. Node represents

the GPS-location of some entity, Way is an array of Nodes and Relation is a structure of

Nodes, Ways or other Relations representing some object.

Secondly, there are available more than 2000 GPS tracks from real users. Each

file represents a list of GPS points, recorded during the bike trip.

Some basic structures for creating a graph, such as GraphBuilder, Node, Edge etc.

were provided by Umotional company.

30

5.2 DATA INSPECTION

Before processing the data should be inspected and filtered. Common problems were:

1. Too long routes. Processing them causes OutOfMemory error and these tracks

should be divided into several of them.

2. Routes with “teleportation”. Between some of the points distance is too big to

cover, it means, that the tracker lost the connection, for example in metro. These

tracks are too hard to map, therefore they should be broken into smaller once.

3. Routes or parts of them outside the given map.

4. Circular routes or those where starting and ending points are too close to each

other. Unfortunately, proposed algorithm cannot deal with these tracks and they

be discarded.

5.3 PARSING THE DATA AND CREATING THE
TRANSPORTATION GRAPH

Open Street Maps data is stored in XML-like format. For parsing was chosen SAX XML

parser. Parsed objects were stored in classes OSMNode and OSMWay.

Original file contains unnecessary data, so only data related to routes has to be

extracted.

Nodes and their attributes are listed in the beginning of the OSM-file. So at first

the list of them is created without any filtering. Next, there listed all the Ways with

references to contained nodes. On this step only ways with attribute ‘highway’ have to be

picked. Highways also include pedestrian routes, paths and any other type of the roads.

The Way can have the attribute ‘oneway=yes’, which indicates one-way direction, and

‘oneway=yes:bikes’, which indicates both-ways only for bikes. This data has to be stored

in boolean attribute ‘oneway’ of OSMWay class.

The section of OSM-file containing Relations can be easily skipped.

31

Before the graph creation, OSM-nodes and OSM-ways have to be converted to

graph nodes and edges. Only nodes mentions in at least one way are added to the graph.

Also the single edge is created according to the flag ‘oneway’ is ‘true’ and both-way

edge, if the flag is ‘false’.

The last step is creating the graph itself with help of the Graph class from the

base-structures.

5.4 MAP MATCHING DETAILS

For track matching there is GraphProcessor class, implementing dijkstra() function and

other helping functions.

Using the kd-tree to find several closest to the first track point, it iterates through

them, implementing the algorithm, presented in Section 4.2. It also records the statistics,

discussed in 5.6.

5.5 GEO VISUALIZATION TOOLS

For better representation of results and also for debugging purposes there were

implemented visualization instruments.

The main application extends PApplet class from Java Processing and Unfolding

Maps libraries. Depending on the purpose of visualization there can be several modes:

1. Track mode. Simply represents the GPS-track from the file as a red line on the

map (figure 9).

32

Figure 9. The “track mode”.

2. Track + result mode (“fit mode”). Represents the given track as a red line and

resulting track from the next sections as a blue line (figure 10).

33

Figure 10. The “fit mode”.

3. Track + result + graph mode (“all mode”). All the same above with part of the

graph on this area, represented as light green nodes and edges (Figure 11).

34

Figure 11. The “all mode”.

4. Classified fit mode. After outlier detection it was necessary to show (figure 12)

the original track (red line) and the path (blue line) with outliers highlighted

(green dots).

35

Figure 12. The “classified mode”.

5. There were also implemented other debugging tools, such as raw nodes/edges

viewer, graph-only mode and so on.

To help the user navigate the map with lines there were implemented simple

zoom and pan tools with possibility to save the picture.

5.6 STATISTICS CALCULATION

During the track fitting there were also performed track and graph path statistics

recording. It is necessary to transform them later into features for clustering and

classification.

Important information to keep about the tracks is distances between points. In

most of the input tracks these distances are more or less homogeneous as the cyclist

36

moves with constant speed. The opposite is for the graph paths, on highways distances

are usually longer than in crossroads.

The modified Dijkstra algorithm minimized the area between input track and

output graph path. So the area increment is next attribute for each path point. The original

Dijkstra approach minimized the Hausdorff distance between tracks and however it was

modified, the distances are available to extract for each point and it is the next feature to

consider.

For processing there was chosen the combination of distance and area for each

point in each path. In the code it was represented as List of StatUnitAreaDistance.

Another approach utilized average distance between points in track and in path.

They were used to interpolate the track and the path to approximate the normalization of

each distance between the curves, which were calculated after interpolation.

Interpolation was just simply adding points between the nodes, if the distance

between them was more than minimum of distance averages of path and track.

 lat lat) i / n latNewi = lat1 + (2 − 1

 lon lon) i / n lonNewi = lon1 + (2 − 1 (15),

where i is point index, n - number of points to insert.

In the Figure 13 there are interpolated curve (blue) and initial track (red).

37

Figure 13. Input track (blue), interpolated track (red).

In the code this statistic was represented as List of StatUnitInterpolatedDistance.

The last statistic named as StatUnitInvDistance was constructed as minimal

distance from track point, apart from previous approach, where the distance from path to

track was used, to path.

In experiments there were tested all three statistics, in further sections there are

results provided.

5.7 STATISTICS VISUALIZATION

Tracks and paths were better to visualize on the map, but for areas and distances different

type of representation was implemented.

38

JavaFX library provides simple Application to extend and simple scatter, line and

bar plots.

Scatter plot was used to visualize 2D points with attributes area and distance

(Figure 14). Area is function of distance, but experiments showed, that they are not fully

replaceable and behave differently sometimes.

Figure 14. 2D scatter plot.

On the plot it is visible, that many points with high distance are do not show the

growth in area attribute.

For visualization of distances through ordered points the line plot was chosen.

Unlike the 2D scatter plot, this one preserves the order (Figure 15).

39

Figure 15. 1D line plot.

Together with Geo visualization, this methods suit good for debugging, inspecting

and presenting the results.

5.8 OUTLIER DETECTION DETAILS

With help of JavaML library (implementation from scratch was rejected due to

performance low speed and being poorly optimized) there was implemented

KMeansClassifier class with K-means and K-medoids classification.

For other statistical methods there is a class named Statistic1DClassifier with

Z-score, modified Z-score, IQR anomaly detection methods implementation.

40

5.9 POINT LOCALIZATION DETAILS
For localization of the problematic points there was created Detector class, which

contains the function, accepting the list of classified points as an input, performing the

algorithm described in Section 4,3 and returning the list of problematic points.

41

CHAPTER 6. EVALUATION

6.1 GENERAL METRICS

In the Table 1 there is general statistic about given tracks. There were given 2302 tracks,

but after filtering (tracks outside the city, tracks with glitches, etc.) there were only 1685

left to process.

Table 1.

Initial
size of
dataset

Processe
d size of
dataset

Track
length
average,
km

Track
length
standard
deviation,
km

Distance
between
points
average, m

Distance
between
points
standard
deviation, m

2302 1685 8.4 0.14 21 0.15

Statistics of the graph, representing the Prague road network are presented in

Table 2.

42

Table 2.

Area of
Prague, km2

[26]

Number of
nodes in the
graph

Number of
edges in the
graph

Number of
unique
processed
nodes by
algorithm

Approximated
area covered,
%

496 457744 990734 369202 81

The statistics of graph paths obtained after matching tracks into graph are placed

in Table 3.

Table 3.

Distance between
interpolated path
points average, m

Distance between
interpolated path
points standard
deviation, m

Path length
average, m

Path length
standard
deviation, m

15 0.08 8.4 0.15

6.2 EVALUATION METRICS
The first and the most precise method to control the correctness of map matching is

examining it visually. But there are more than 1500 tracks to check and there is numerical

solution.

The Modified Dijkstra algorithm for map matching optimizes the area between

the track and the path, and for control was used maximum distance between curves. This

distance has lack of precision, but works well for approximation and evaluation.

In the Table 4 there are statistics for the maximum distances for all datasets and

initial classification for the paths, if they have/ do not have outliers. Paths were classified

based on simple Z-score from Section 3.2.3. Paths with maximum distance more than or

equal Z-score was classified as “negative”, paths with its maximum distances less than

Z-score were classified as “positive”.

43

Table 4.

Maximum
distance average,
m

Maximum
distance standard
deviation, m

Paths without
outliers
(“positive”)

Paths with outliers
(“negative”)

7.03 3.42 993 692

Paths were also classified by the presence of outliers with all anomaly detection

methods. Path was assigned with “positive” class, if there were detected no outliers and

“negative”, if there was at least one. Knowing the approximate “ground truth” from the

Table 4, there tracks can be divided into “true positive” (TP), “true negative” (TN), “false

positive” (FP) and “false negative” (FN).

“True positive” are the “positive” paths in both classifications, “true negative” are

the “negative” those and “false positive/negative” are misclassified ones [25].

The metrics to evaluate the performance of the algorithms are precision, recall

and F1-score.

Precision is a metric revealing the ability of the algorithm to identify only the

positive samples. It can be calculated as:

recision p = T P
T P + F P (16)

Recall is the the ability of the algorithm to find all the positive cases within a

dataset:

ecall r = T P
T P + F N (17)

Precision and recall are unified into single metric F1-score:

1 2F = · precision·recall
precision + recall (18)

[25]

F1-score is the main score used to identify the performance of proposed

algorithm.

44

6.3 TESTING SCENARIOS

The suggested algorithm for graph matching was tested on all the 1685 available and

filtered tracks. Results can be classified as “decent” and “problematic”. Typical “decent”

result looks like on the figure 16. Tracks are almost identical, the area between the curves

is minimal.

Figure 16. The illustration of situation, when algorithm finds the perfect path.

One of the “Problematical” situations is presented below.

45

Figure 17. The illustration of suboptimal result.

On the figure 17 the black arrow points on extra turn from ​Václavské náměstí

before it goes back on the track, there is no addition to the graph between 2 curves.

46

Figure 18. The illustration of suboptimal result, another case.

In the figure 18 the situation is a bit different, there is addition in area, but

probably caused by the same errors in the graph.

These three types of scenarios were the input for outlier detection procedure.

47

6.4 RESULTS

6.4.1 OBJECTIVE FUNCTIONS FOR MODIFIED DIJKSTRA
ALGORITHM TESTING

Figure 19. On a) is showed minimum Hausdorff distance objective, on b) the sum

of Hausdorff distances, on c) minimum area objective.

There were implemented all the approaches and the third one shows the best

results (figure 19). The first approach (a) does not show feasible result at all, the sum of

distances is much better (b), the area approach (the last) calculates the path in the best

way.

In further testing there were used only results of area objective function.

6.4.2 RESULTS OF OUTLIER DETECTION

There could be two approaches for clustering the collected data, the first one to process

each track-path pair separately and then detect the outlier. But experiments on small

amount of tracks showed, that there is high false positive rate, because some of tracks do

not contain visible outliers and algorithms assign them anyway.

The second approach is to collect all data and detect outliers in all of it and then

48

match outliers with all tracks. This approach was chosen for further experiments and

evaluations.

Each considered combination of statistic and outlier detection approach was

evaluated according to the metrics from Section 6.2. The results are presented in the

Table 5 and 6. The approach implementing the interpolated statistic + robust Z-score

outlier detection has the highest F1 score and it is presented in final pipeline, discussed in

Section 4.1.

Table 5.

 Number of
“positive”
paths

Number of
“negative”
paths

TP TN FP FN

K-means,
k = 16

1413 272 991 270 422 2

Z-score 1643 42 993 42 650 0

Robust Z-score
on interpolated
statistics

889 796 883 686 6 110

Robust Z-score
on inverse
statistics

816 869 816 692 0 177

IQR on
interpolated
statistics

887 798 880 685 7 113

IQR on inverse
statistics

810 875 796 678 14 197

Table 6.

 Precision, % Recall, % F1-score, %

K-means,
k = 16

70 99 82

49

Z-score 60 100 75

Robust Z-score on
interpolated statistics

99 88 93

Robust Z-score on
inverse statistics

100 82 90

IQR on interpolated
statistics

99 87 92

IQR on inverse
statistics

98 80 88

The area-distance measurements were clustered with K-means and K-medoids

(figure 20), there is no need to show two graphs, as they are the same and both algorithms

did not manage to handle the outliers, as it was necessary to increase number of clusters

significantly, which raises processing time and also should be optimized by unknown

criteria. [15]

50

Figure 20. a. K-means clusters, k=4, computational time 5.7 seconds; b. K-means

clusters, k=16, computational time 4 minutes; c. K-means clusters, k=32, computational

time 7 minutes approximately. Yellow dots belong to the biggest class, red dots belong to

51

the other ones.

For inverse distance and interpolated distance statistics were applied Z-score,

modified Z-score and IQR.

For both inverse and interpolated distances Z-score totally failed (figure 21).

Mean-based methods perform badly with significant amount of outliers and from the

beginning the fraction of them was unknown. It explains the mean drift towards the

bigger values.

52

Figure 21. a. Z-score outlier detection distances plot; b. Z-score outlier detection

classified track on map.

53

Modified Z-score and IQR performed slightly better on inverse distance

measurements (figures 22 and 23) and significantly better on interpolated distances

(figures 24 and 25).

Figure 22. Robust Z-score outlier detection on inverted distance statistic: a. classified

54

distances distribution; b. classified track on map.

Figure 23. IQR outlier detection on inverted distance statistic: a. classified distances

55

distribution; b. classified track on map.

Figure 24. Robust Z-score outlier detection on interpolated distance statistic: a. classified

distances distribution; b. classified track on map.

56

Figure 25. IQR outlier detection on interpolated distance statistic: a. classified distances

distribution; b. classified track on map.

57

By default the threshold for modified Z-score was chosen as 3.5 as recommended

in [17], but experiments showed, that 3.8 worked better, as it does not produced

occlusions.

For further processing only interpolated data with modified Z-score outliers was

picked.

6.4.3 PROBLEMATIC POINT LOCALIZATION RESULTS

This phase gives the second approximation to desired points. Results are presented in

figure 26.

Figure 26. Result of the 1st phase point detection, red line is an input track, blue line is an

output track, green dots are detected points.

58

6.4.4 GRAPH REFINEMENT DEMONSTRATION

In Section 4.4 there was presented the description of naive and slow algorithm to refine

the graph after localizing the approximation of the point with missing edge. The

demonstration of the result is presented in Figure 27.

Figure 27. Demonstration of map matching on refined graph.

59

CHAPTER 7. CONCLUSION

7.1 DISCUSSION

Suggested algorithm matches the GPS tracks to the road graph, collects statistics,

classifies points to inliers and outliers based on them and detects the node, where the

missing edge can start.

Described algorithm is a powerful tool to evaluate the road network and

automatically produce possible places of mislabelling in the map. Due to offline nature of

the algorithm the speed of its performance is not prior, as the quality of proposed result.

7.1.1 APPROACH DRAWBACKS

Presented approach is slow on significant data amount. The modified Dijkstra algorithm

can be further optimized.

Point detection procedure performs suboptimally as well. The algorithms has

limitations on routes with loops-like sections.

60

7.1.2 APPROACH ADVANTAGES

On pre-classified data (new track for example) algorithms work relatively fast with

decent precision. Suggested by outlier detection thresholds cover all tracks, additional

fitting to individual track is not needed.

7.2 FUTURE WORK

The pipeline could be further polished and optimized for faster convergence and

generalization for certain track types with loops. The proof of the algorithm’s accurate

work will be improved as well.

61

REFERENCES

1. Newson, P., Krumm, J.: Hidden Markov map matching through noise and

sparseness. Microsoft Research (2009).

2. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle

tracking data. The 31st VLDB Conference, Trondheim, Norway (2005).

3. Greenfeld, J.: Matching GPS observations to locations on a digital map. I​n 81th

annual meeting of the transportation research board (Vol. 1, No. 3, pp. 164-173).

4. Axhausen, K.W.: Map-matching of large GPS data sets - Tests on a speed

monitoring experiment in Zurich. Researchgate, 2014.

5. Knuth, D.E​.: "A Generalization of Dijkstra's Algorithm". ​Information Processing

Letters​ (1977).

6. Singhal, N.: Shape matching and structural comparison. Handout for CS273:

Algorithms for Structure and Motion in Biology, Stanford University (2004).

7. Wylie, T., Binhai Zhu: Following a curve with the discrete Fréchet distance.

Theoretical Computer Science 556 (2014) 34–44.

8. Huabei Yin, Wolfson O.: A Weight-based Map Matching Method in Moving

Objects Databases. SSDBM '04 Proceedings of the 16th International Conference

on Scientific and Statistical Database Management (2004).

9. Anil K. Jain: Data clustering: 50 years beyond K-means. Pattern Recognition

Letters 31 (2010) 651–666.

10. Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V., 1999. Clustering

large graphs via the singular value decomposition. Machine Learn. 56 (1–3),

62

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Information_Processing_Letters
https://en.wikipedia.org/wiki/Information_Processing_Letters

9–33.

11. Meila, Marina, 2003. Comparing clusterings by the variation of information. In:

COLT, pp. 173–187.

12. Jain, Anil K., Dubes, Richard C., 1988. Algorithms for Clustering Data. Prentice

Hall.

13. Mao, J., Jain, A.K., 1996. A self-organizing network for hyper-ellipsoidal

clustering (HEC). IEEE Trans. Neural Networks 7 (January), 16–29.

14. Kaufman K., Rousseeuw P. J.: Clustering by means of medoids. Faculty of

Mathematics and Informatics, Delft (1987).

15. Kyung-A Yoon, Oh-Sung Kwon, Doo-Hwan Bae: An Approach to Outlier

Detection of Software Measurement Data using the K-means Clustering Method.

First International Symposium on Empirical Software Engineering and

Measurement (2007).

16. Shiffler R.E.: Maximum Z Scores and Outliers. The American Statistician, Vol.

42, No. 1. (Feb., 1988), pp. 79-80.

17. Iglewicz B., Hoaglin D.: (1993), How to Detect and Handle Outliers. The ASQC

Basic References in Quality Control: Statistical Techniques, Volume 16 (1993).

18. Upton G, Cook I.: Understanding Statistics Oxford University Press. ISBN

0-19-914391-9 p. 55 (1996)/

19. Zwillinger, D., Kokoska, S.: CRC Standard Probability and Statistics Tables and

Formulae, CRC Press. ISBN 1-58488-059-7 p. 18 (2000).

20. Interquartile range. In Wikipedia. Retrieved December 20, 2018, from

https://en.wikipedia.org/wiki/Interquartile_range.

21. Standard Score. In Wikipedia. Retrieved December 20, 2018, from

https://en.wikipedia.org/wiki/Standard_score​.

22. Zimek, A., Schubert, E. : "Outlier Detection", Encyclopedia of Database Systems,

Springer New York, pp. 1–5, doi:10.1007/978-1-4899-7993-3_80719-1, ISBN

9781489979933 (2017).

23. Chandola, V., Banerjee, A., Kumar, V. :Anomaly detection: A survey. ACM

63

https://en.wikipedia.org/wiki/Standard_score

Computing Surveys. 41 (3): 1–58. doi:10.1145/1541880.1541882 (2009).

24. ECMT Safety in road traffic for vulnerable users Organisation for Economic

Co-operation and Development OECD, Paris (2000).

25. Powers, David M. W.: Evaluation: From Precision, Recall and F-Measure to

ROC, Informedness, Markedness & Correlation. Journal of Machine Learning

Technologies. 2 (1): 37–63 (2011).

26. Prague. In Wikipedia. Retrieved December 20, 2018, from

https://en.wikipedia.org/wiki/Prague.

64

