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ABSTRACT 

The aim of this work is to detect to localize missing edges in road graph and propose                 

changes in the map. 

The map of Prague was chosen for implementation, testing and visualization as an             

example of the city with very basic bicycle infrastructure, but the algorithm can be              

applied to any city or country. 

The given data was GPS trajectory from cyclists, who recorded their routes in             

Prague. This data was preprocessed and filtered to fit the algorithm.  

In order to solve the problem of missing edges algorithmically, it was            

decomposed to some less complexed known ones. First one is map matching, which was              

solved with modified Dijkstra algorithm with minimization the area between track and            

graph path. 

Optimal paths did not always match with original track, which proved existence            

of missing edges in the graph. Thus the points lying too far from track were detected as                 

outliers. For experiments were used many algorithms and attributes, but the most precise             

results were obtained with modified z-score outlier detection technique on interpolated           

graph paths. 

After having the outliers for each path the closest points to outliers were             

recovered with kd-tree, where the missing edge can exist. From obtained nodes some             

edges were added until the area between initial track and new graph path decrease.  
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CHAPTER 1. INTRODUCTION 

1.1 MOTIVATION 
 
According to [24] only 52 out of 1000 inhabitants of Czech Republic own a bicycle and 

use it for everyday transportation. For Prague the reasons of such low usage are simple, 

the city is hilly and there is no infrastructure for bikes. 

However, there are many software applications, which suggest the shortest route           

for bicycles between given locations. These applications usually use Google Maps or            

Open Street Maps for the space representation. But some cyclists report, that some of the               

routes are far from optimal because of possible errors in the maps, caused by incorrect               

labeling of the elements. 

It happens because cyclist behave both as cars and pedestrians at the same time,              

therefore they need special treatment in routing. 
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1.2 AIM 
 
The goals of the thesis are described further. 

1. To match the dataset of recorded GPS routes into road network. 

2. To detect imperfections of the map for cyclists based on the matched tracks.  

3. The errors they should be localized and based on their positions, corrections of the              

map should be proposed. 

  

7 



 

 
 
 
 
 
 
 
 

 

 
 

CHAPTER 2. PROBLEM SPECIFICATION 

2.1 FORMAL DEFINITION 

The problem of missing edges detection in the road graph can be decomposed to several               

less complex ones.  

The given data can be represented as set of tracks Ⲧ and the road graph G. Let the                  

track be the sequence of n GPS points recorded from a user route  T ∈ Ⲧ              

. The map can represented as directed {(lat , lon ), (lat , lon ), .. , (lat , lon )}T =  1  1  2  2 .  n  n        

weighted graph where V is the set of vertices with GPS coordinates   V , E, D),G = (              

latitude and longitude, E is the set of edges between nodes and D is the set corresponding                 

distances between nodes.  

Graph path P is the ‘projection’ of the track on the graph. ​Map matching is the                

problem of how to match recorded geographic coordinates to a logical model of the real               

world and relate them to edges in an existing street graph (network), more details are               

presented in Section 3.1.  

The path P is the optimal sequence of m GPS points obtained after matching the               

track T into graph G, . The distance      {(lat , lon ), (lat , lon ), .. , (lat , lon )}P =  1  1  2  2 .  m  m    
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between track in corresponding path is defined as and its formal definition will        (T , P )F        

be discussed in Section 4.2. 

Based on the distance F it has to be decided, if the path P is optimal path for the                   

given track T.  

Let be the distance between point of track T and path P. Then is a F i      ith         (T , P )F    

list of . After processing of all input tracks Ⲧ and recording the distances of their  F i               

points, there can be applied anomaly or outlier detection techniques. 

Outlier is an observation point that is distant from other observations. Anomaly            

detection (also outlier detection) is the identification of rare items, events or observations             

which raise suspicions by differing significantly from the majority of the data. [] Three              

broad categories of anomaly detection techniques exist [22, 23]. Unsupervised anomaly           

detection techniques detect anomalies in an unlabeled test data set under the assumption             

that the majority of the instances in the data set are normal by looking for instances that                 

seem to fit least to the remainder of the data set. Supervised anomaly detection              

techniques require a data set that has been labeled as "normal" and "abnormal" and              

involves training a classifier (the key difference to many other statistical classification            

problems is the inherent unbalanced nature of outlier detection). Semi-supervised          

anomaly detection techniques construct a model representing normal behavior from a           

given normal training data set, and then test the likelihood of a test instance to be                

generated by the learnt model. [22] 

It is not too convenient to label all processed data based on visual evaluation.              

Thus further in Section 6.2 there will be described unsupervised anomaly detection            

techniques to classify the track-path pair into ‘successful’ or ‘failure’.  

2.2 POSSIBLE SOURCES OF THE PROBLEM 

There might be various sources of these errors. Usually they are missing or excess              

segments of the real world path.  

● Some of the ways are wrongly “oneway” tagged or bikes are were not mentioned. 
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● Other cases can be caused by multimodality of the graph with no connection             

points between pedestrian and car modes (as bicycle might behave like both). 

● Also it is possible to be a wrong tagging of the way or node. 

● The real city is always changing and the map can not always track these changes. 

2.3 OUTLINE OF THE ALGORITHM 

The algorithm for graph refinement requires further steps: 

1. Parsing the street network (Section 5.3) 

2. Creating the transport graph (Section 5.3) 

3. Filtering the tracks (Section 5.2) 

4. Matching tracks with the map (Sections 5.4, 4.2) 

5. Visually detecting the errors 

6. Classification each point as inlier or outlier (Sections 3.1, 5.8) 

7. Localization the problematic graph nodes (Section 5.9) 

8. Refining the transport graph (Sections 5.9, 6.4.4) 
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CHAPTER 3. RELATED WORK 

3.1 MAP MATCHING ALGORITHMS 

There are many different algorithms for matching the GPS-track with the transport graph.             

They can be roughly divided in three groups: geometrical, probabilistic, other.  

3.1.1 ALGORITHMS BASED ON GEOMETRY 

In [2] further algorithm was proposed. Given a series of position samples representing a              

vehicle trajectory, the map-matching algorithm pursues a position-by-position sample and          

edge-by-edge strategy. To match a position to a road network edge, given that its      pi          

previous position has already been matched, the algorithm proceeds as follows p i−1           

(figure 1). First, the candidate edges to be matched to the current position are identified               

as the set of the incident edges “exiting” the last matched edge (including also the               

matched edge itself). In figure 1, these edges are labeled , and , with , being          c1  c2   c3   c3   

the edge matched to .p i−1  
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Figure 1. Incremental map-matching example. [2] 

Two similarity measures are used to evaluate the candidate edges. 

The measure reflecting the distance from the position sample to the various  c d            

edges is computed based on the weighted line segment distance, ​d​, of from each            p i    

candidate,  , using the scaling factors  and  as:c j  μ d  n d  

 

(p , c )  μ  (p , c )sd i  j =  d − a · d i  j
nd (1) 

 

The measure reflects the orientation of the trajectory with respect to the   sα            

candidate edge. It is computed based on the angle difference between the directed          αi,j     

candidate edge and the directed line segment , using the scaling factors c j       li = p , pi−1  i     

 and as: μ α  n α  

 

(p , c ) μ os(α )sα i  j =  α · c i,j
 nα (2) 

 

The scaling factors and represent the maximum score and a power   μ[d|α]   n[d|α]         

parameter, respectively. Choosing a higher compared to means that distance     μd    μα     

weighs more than orientation. The power parameter determines the rate of decrease for             

12 



 

the respective weight with an increasing line segment distance or angle difference. The             

use of the cosine further implies that with an increasing angle difference the score of                 sα  

decreases and with angle differences 90 < α < 270 and the choice of an odd number for                  

the power  and a positive constant ,  even becomes negative. nα  μα   sα   

The combined similarity measure is computed as the sum of the individual scores,             

i.e., 

 

  s  s =  α +  sd (3) 

 

The higher the score of this measure, the better is the match. 

Depending on the type of projection/match of to , i.e., (i) its projection is        pi    cj       

between the endpoints of , or, (ii) it is projected onto the end points of the line    cj              

segment, the algorithm does, or does not advance to the next position sample. Following              

the example of Figure 2, after matching to edge , the algorithm advances to        p1     e1      p2  

(case (i)) and matches it also to . Advancing to , it tries to match this point to        e1     p3          e2  

and since this projection reflects case (ii) it does not advance to the next position sample                

but finally matches to . The edge is recorded as a traversed edge. In Figure 2,    e3    p3     e2           

the mapped position samples are drawn as gray circled crosses. 

 

 

 

Figure 2. Matching example: advancing position samples  
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and edges, and matching result. [2] 

 

[2, 3, 4] 

3.1.2 PROBABILISTIC MAP MATCHING ALGORITHM 

In [1] was introduced probabilistic map matching algorithm Hidden Markov Models           

(HMM). The HMM models processes that involve a path through many possible states,             

where some state transitions are more likely than others and where the state             

measurements are uncertain. the states of the HMM are the individual road segments, and              

the state measurements are the noisy vehicle location measurements. The goal is to match              

each location measurement with the proper road segment. This state representation           

naturally fits the HMM, because transitions between road segments are governed by the             

connectivity of the road network. 

 

Figure 3. For each measurement  , the HMM considers all the road segments as wellzt ri  
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as all the transitions between the road segments. [1] 

More formally, the discrete states of the HMM are the road segments, , ​i =          N r    ri    

1 ... In this representation, distinct road segments run between intersections. For each  .N r            

2D latitude/longitude location measurement , the goal is to find the road segment that    zt            

the vehicle was actually on. Figure 3 shows an illustration of the HMM for the map                

matching problem. Here, each vertical slice represents a point in time corresponding to a              

location measurement for the three times t = 1, 2, 3. At t = 1 there are three roads near  zt                    

, shown as three black dots in the first column. There is a feasible driving path,z1                  

possibly very circuitous, from each of the nearest points on these three roads to points on                

the two roads near at t = 2, and similarly for t = 3. The goal of the algorithm is to find    z2                    

the most probable path through the lattice by picking one road segment for each t. This                

path should be sensitive to both the measurements and the reasonability of the paths              

between the road segments. This tradeoff is made based on the probabilities governing             

the measurements and probabilities governing the transitions between the road choices at            

each time. 

This algorithm utilizes measurement probabilities, the likelihood that a         

measurement resulted from a given state, based on that measurement alone. The            

transition probabilities are the probabilities of a vehicle moving between the candidate            

road matches at moments t and t+1. These two kinds of probabilities are used in Viterbi                

algorithm to compute the best path through the HMM lattice. The Viterbi is essentially              

dynamic programming, and quickly finds the path through the lattice that maximizes the             

product of the measurement probabilities and transition probabilities. In constructs an           

inference of the correct road segment for each location measurement. [1] 

3.1.3 OTHER ALGORITHMS 

In [8] there was vaguely described an idea of algorithm similar to Dijkstra’s shortest path:               

[5] 
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The graph ​G (V, E, F)​, where V, E - vertices and edges of the transport graph, F,                  

unlike D, are distances between given track T and the path P in the transport graph. The                 

algorithm incrementally builds the shortest path P point by point, minimizing the distance             

between current point and the track. The details of this approach and its modifications are               

described in Section 4.2. 

3.2 OUTLIER DETECTION ALGORITHMS 
There were considered some methods of anomaly detection: K-means algorithm and its            

varieties and three statistical methods.  

3.2.1 K-Means 

On 2 dimensional area-distance data was tested K-Means clustering algorithm. The           

definition of the algorithm is: Let be the set of n d-dimensional       {x }, i , ..,X =  i  = 1 . n        

points to be clustered into a set of ​K clusters, . K-means          c , k 1, ..., K}C = { k  =      

algorithm finds a partition such that the squared error between the empirical mean of a               

cluster and the points in the cluster is minimized. Let be the mean of cluster . The          μk      ck   

squared error between  and the points in cluster  is defined as:μk ck  

(c ) ||x ||J k = ∑
 

x ∈ci k

 k − μk
2 (4) 

The goal of K-means is to minimize the sum of the squared error over all K                

clusters: 

(C) ||x ||J = ∑
K

k=1
∑
 

x ∈ci k

 k − μk
2 (5) 

Minimizing this objective function is known to be an NP-hard problem (even for             

K = 2). Thus K-means, which is a greedy algorithm, can only converge to a local                

minimum, even though recent study has shown with a large probability K-means could             

converge to the global optimum when clusters are well separated. K-means starts with an              

initial partition with K clusters and assign patterns to clusters so as to reduce the squared                

error. Since the squared error always decreases with an increase in the number of clusters               
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K (with ​J(C) ​= 0 when ​K = n​), it can be minimized only for a fixed number of clusters.                    

The main steps of K-means algorithm are as follows: 

  

1. Select an initial partition with ​K clusters; repeat steps 2 and 3 until cluster               

membership stabilizes.  

2. Generate a new partition by assigning each pattern to its closest cluster center. 

3. Compute new cluster centers. 

 

The K-means algorithm requires three user-specified parameters: number of         

clusters ​K​, cluster initialization, and distance metric. The most critical choice is ​K​. While              

no perfect mathematical criterion exists, a number of heuristics are available for choosing             

K​. Typically, K-means is run independently for different values of ​K and the partition that               

appears the most meaningful to the domain expert is selected. Different initializations can             

lead to different final clustering because K-means only converges to local minima. One             

way to overcome the local minima is to run the K-means algorithm, for a given ​K​, with                 

multiple different initial partitions and choose the partition with the smallest squared            

error. K-means is typically used with the Euclidean metric for computing the distance             

between points and cluster centers. As a result, K-means finds spherical or ball-shaped             

clusters in data. K-means with Mahalanobis distance metric has been used to detect             

hyperellipsoidal clusters, but this comes at the expense of higher computational cost.  

In K-means the outlier is an element of the group which has few data and is                

located far from other groups and can be considered as new cluster.  

It was tested the basic version of K-means with different cluster number and             

Euclidean distance metric. [9, 10, 11, 12, 13] 

3.2.2 K-Medoids 

K-medoids is very similar to K-means, but represents each cluster using an actual point              

and a radius rather than a prototype (average) point and a radius. K-medoids is robust to                

outliers as it does not use optimisation to solve the vector placement problem but rather               
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uses actual data points to represent cluster centres. K-medoids is less susceptible to local              

minima than standard k-means during training where k-means often converges to poor            

quality clusters. It is also data-order independent unlike standard k-means where the            

order of the input data affects the positioning of the cluster centres and it is shown that                 

k-medoids provides better class separation than k-means and hence is better suited to a              

novelty recognition task due to the improved separation capabilities. However, k-means           

outperforms k-medoids and can handle larger data sets more efficiently as k-medoids can             

require O( ) running time per iteration whereas k-means is O(n). [14]n2  

3.2.3 Z-Score 
 
Let be random samples of some value. The mean is calculated as:, , ..., X  X1 X2   n  

 

 m =  n

∑
n

i
xi

(6) 

 

And the standard deviation: 

 

 s = √ n−1

∑
 

i
(x −m)i

2

 (7) 

 

Z-score expresses a particular score in terms of how many standard deviations (figure 4) 

it is away from the mean and can be computed as: 

 

Z i = s
x −mi  (8) 

 

Outliers are detected based on the value of |Z-score|, if it exceeds 3 or 4. In case 

of distances it makes sense to discard the absolute value, because even values less than 

Z-score are technically outliers, but closer distance is better. [16] 
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3.2.4 Modified (robust) Z-Score 
Although it is common practice to use Z-scores to identify possible outliers, this can be               

misleading (particularly for small sample sizes) due to the fact that the maximum Z-score              

is at most . In [17] there was proposed using the modified Z-score:n )/  ( − 1 √n  

 

 

 Z i = MAD
0.6745(x  − median)i  (9), 

 

where  

AD median(|x edian(x)|)  M =  i − m  (10) 

 

The outliers are those values, modified Z-score of which is greater than 3.5. The              

method is robust to potential outliers because of using median value instead of mean. [17] 
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Figure 4. Normal distribution with mean, standard deviation and Z-scores [21]. 

3.2.5 Interquartile range 

Interquartile range or IQR is a measure of statistical dispersion, being equal to the              

difference between 75th and 25th percentiles, or between upper and lower quartiles, 

 

QR Q  I =  3 − Q1 (11). 

 

Percentile is a number where a certain percentage of scores fall below that             

number. It is calculated as: 

 

/100 (n )  R = P + 1 (12), 
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Figure 5. Normal distribution with Interquartile ranges. [20] 

where P is percent, n - number of measurements in the data. 

These quartiles can be clearly seen on a box plot on the data (Figure 5). It is a                  

trimmed estimator, defined as the 25% trimmed range, and is a commonly used robust              

measure of scale. 

The IQR is a measure of variability, based on dividing a data set into quartiles.               

Quartiles divide a rank-ordered data set into four equal parts. The values that separate              

parts are called the first, second, and third quartiles; and they are denoted by Q1, Q2, and                 

Q3, respectively. 
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Outliers here are defined as observations that fall below Q1 − 1.5 IQR or above               

Q3 + 1.5 IQR . As in Z-scores, for deviating distance detection was used only Q3 + 1.5                  

IQR. [18, 19] 
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CHAPTER 4. SOLUTION 

4.1 SOLUTION ARCHITECTURE 
For map matching there was implemented and refined the Dijkstra shortest path            

algorithm and its functions for optimization. Details are described in this chapter in             

Section 4.2.  

After processing the tracks T and obtaining the paths P on the dataset, all the               

distances F were stored to detect the outliers. For anomaly detection there were             

implemented K-means, K-medoids, Z-scores, modified Z-scores and IQR and then          

compared in Section 6.4.  

After the data classification there were implemented point localization algorithm,          

described in Section 5.9 and 4.4. 

After point localization there were also implemented naive approach to refine the            

graph (Section 4.5). 

The testing, evaluation and results are discussed in Section 6.4. Details and            

justification of algorithmical options are explained as well. 

The final pipeline of the algorithm is presented below: 
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1. Parse the given data, obtain graph G and tracks T. 

2. For each input track perform the graph matching modified Dijkstra shortest 

path algorithm with minimization of the area between track T and path P. 

3. Collect the statistics for each path and for each path point, representing the 

distance to closest track point and store it together. 

4. Perform the modified (robust) Z-score outlier detection on the dataset obtained 

above. 

5. Localize the points, where the distance starts to grow and store them to another 

dataset. 

6. Suggest the improvements in the graph.  

  

4.2 MODIFIED DIJKSTRA SHORTEST PATH ALGORITHM 

These distances can be defined as ​Fréchet distances between two curves. Practical            

definition of ​Fréchet distance is Hausdorff distance. Let A = { , , ... , } and B = {          a1  a2    an     

, , … , } in . The one-sided Hausdorff distance from A to B is defined as [6,b1  b2    bm   E2              

7]:  

 (A, B) max min ||a ||  δH  =  a∈A b∈B − b (13) 

In Dijkstra’s algorithm each node appears incrementally, therefore the aligned          

path changes its length. The Hausdorff distance can be reformulated incrementally: 

 (A, b) ||a ||, for b   δH  = mina∈A − b  ∈ B (14) 

Thus, the problem of fitting the track to the graph can be formulated as              

optimization task of minimization the distance between two discrete set of points. ​[8] 

The last algorithm shows neat results and will be used in further implementation             

with several enhancements. 
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Firstly, there are several approaches to define minimum distance objective          

function.  

1. Minimization of vanilla Hausdorff distances (minimum). 

2. Minimization of the sum of incremental minimum distances. 

3. Minimization of the area between two discrete sets of points. 

Computation of the area between two curves is not trivial task, therefore there was              

suggested further approximation algorithm. 

1. The first point in the matched track (curve B) has the closest first point in original                

track (curve A). Initial area between tracks is equal to zero (figure 6). 

 

Figure 6. First step of area approximation algorithm. 

2. Dijkstra algorithm produces the next point. It’s neighbours’ distances can be           

computed for two situations: 

a. The closest point in A of previous point in B is known and is X. If the                 

closest point of neighbour is also X, the area is computed as a triangle              

△12X (figure 7).  
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Figure 7. The second step of the area approximation algorithm. 

b. The closest point of the previous point is X, of the neighbour is Y.              

Therefore the area is computed as △12X plus △3XY or more additional            

triangles (figure 8): 

 

Figure 8. The third step of the approximation algorithm. 
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Before match starts, the first closest node should be found. This can be done using               

kd-trees, containing all nodes with coordinates from the graph. 

Kd-tree is data structure, proposed in []. It implements search in d-dimensional            

space and each level has a “cutting dimension”. The search performs by cycling through              

the dimensions down the tree. Each node contains a point P = (x,y), to find desired point                 

it is necessary to compare coordinate from the cutting dimension.  

The final matching algorithm pseudocode with all optimizations and         

enhancements is presented on the next. 

function​ modified_dijkstra() 

input:​ Graph G(V, E, D), track T 

output:​ path P 

begin 

target = ​get_closest_node_in_G_to_last_point_in_T 

starts = ​get_closest_3_nodes_in_G_to_first_point_in_T 

for (start in starts) 

pq = ​initialize_priority_queue 

pq.​insert​(start) 

if (start is target) 

break 

endif 

while (pq is not empty) 

node = pq.​poll() 

for (n in node's neighbourhood) 

area1 = node.​get_area_so_far 

area3 = ​compute_area​(node, n) 
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area = area3 + area1 

if (n is visited) and (pq.​contains​(n)) 

area2 = n.​get_area_so_far 

if area > area2 

n.​set_area_so_far​(area) 

n.​set_parent​(node) 

endif 

endif 

else 

n.​set_parent​(node) 

n.​set_area_so_far​(area) 

pq.​insert​(n) 

endelse 

endfor 

endwhile 

Ti = ​backtrack() 

endfor 

T = ​get_track_with_minimal_area_between​(Ts) 

end 

 

4.3 PROBLEMATIC POINTS EXTRACTION 

After extraction of all outliers it is necessary to detect actual nodes in graph, where there                

can be a problem. It is clear, that the outliers themselves are not these points, but first                 

approximations to them, therefore special detection algorithm should be implemented. 

The algorithm is presented below. 
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1. If point is inlier, pass. 

2. If point is first outlier in sequence, remember the point, go backwards to find              

previous inlier. 

3. If point is an outlier after first processed, pass, further outliers in sequence are              

dependent on the first one. 

The result of the algorithm is an approximation of the actual node with missing edge. 

4.4 GRAPH REFINEMENT 

For demonstration of correctness of suggested approach, there was implemented simple           

semi-bruteforce algorithm to refine the road graph. It iterates through the detected points             

and its’ closest neighborhood: 

1. Search n closest nodes to detected one using kd-trees. 

2. If the node is in path, select those neighbours, which do not have edge forward,               

but have the backward. 

3. Recalculate the path, 

4. If it shows significantly smaller area between track and path, this edge should be              

added. 
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CHAPTER 5. IMPLEMENTATION DETAILS 
Java was used for code implementation. It is relatively fast and has many of necessary               

libraries.  

There were implemented the majority of described algorithms, necessary data          

structures and visualizations tools for presentation, evaluation and debugging. 

5.1 GIVEN DATA 

Firstly, the graph based on the map should be created. The data was taken from               

open-source project Open Street Maps. The data is stored in XML-like format. The file              

with the map contains 3 types of entities, Nodes, Ways and Relations. Node represents              

the GPS-location of some entity, Way is an array of Nodes and Relation is a structure of                 

Nodes, Ways or other Relations representing some object. 

Secondly, there are available more than 2000 GPS tracks from real users. Each             

file represents a list of GPS points, recorded during the bike trip. 

Some basic structures for creating a graph, such as GraphBuilder, Node, Edge etc.             

were provided by Umotional company. 
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5.2 DATA INSPECTION 

Before processing the data should be inspected and filtered. Common problems were: 

1. Too long routes. Processing them causes OutOfMemory error and these tracks           

should be divided into several of them. 

2. Routes with “teleportation”. Between some of the points distance is too big to             

cover, it means, that the tracker lost the connection, for example in metro. These              

tracks are too hard to map, therefore they should be broken into smaller once. 

3. Routes or parts of them outside the given map. 

4. Circular routes or those where starting and ending points are too close to each              

other. Unfortunately, proposed algorithm cannot deal with these tracks and they           

be discarded.  

5.3 PARSING THE DATA AND CREATING THE 
TRANSPORTATION GRAPH 

Open Street Maps data is stored in XML-like format. For parsing was chosen SAX XML               

parser. Parsed objects were stored in classes OSMNode and OSMWay. 

Original file contains unnecessary data, so only data related to routes has to be              

extracted.  

Nodes and their attributes are listed in the beginning of the OSM-file. So at first               

the list of them is created without any filtering. Next, there listed all the Ways with                

references to contained nodes. On this step only ways with attribute ‘highway’ have to be               

picked. Highways also include pedestrian routes, paths and any other type of the roads.              

The Way can have the attribute ‘oneway=yes’, which indicates one-way direction, and            

‘oneway=yes:bikes’, which indicates both-ways only for bikes. This data has to be stored             

in boolean  attribute ‘oneway’ of OSMWay class. 

The section of OSM-file containing Relations can be easily skipped. 
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Before the graph creation, OSM-nodes and OSM-ways have to be converted to            

graph nodes and edges. Only nodes mentions in at least one way are added to the graph.                 

Also the single edge is created according to the flag ‘oneway’ is ‘true’ and both-way               

edge, if the flag is ‘false’. 

The last step is creating the graph itself with help of the Graph class from the                

base-structures. 

5.4 MAP MATCHING DETAILS 

For track matching there is GraphProcessor class, implementing dijkstra() function and           

other helping functions.  

Using the kd-tree to find several closest to the first track point, it iterates through               

them, implementing the algorithm, presented in Section 4.2. It also records the statistics,             

discussed in 5.6. 

5.5 GEO VISUALIZATION TOOLS 

For better representation of results and also for debugging purposes there were            

implemented visualization instruments.  

The main application extends PApplet class from Java Processing and Unfolding           

Maps libraries. Depending on the purpose of visualization there can be several modes: 

1. Track mode. Simply represents the GPS-track from the file as a red line on the               

map (figure 9). 
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Figure 9. The “track mode”. 

2. Track + result mode (“fit mode”). Represents the given track as a red line and               

resulting track from the next sections as a blue line (figure 10). 
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Figure 10. The “fit mode”. 

3. Track + result + graph mode (“all mode”). All the same above with part of the                

graph on this area, represented as light green nodes and edges (Figure 11). 
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Figure 11. The “all mode”. 

4. Classified fit mode. After outlier detection it was necessary to show (figure 12)             

the original track (red line) and the path (blue line) with outliers highlighted             

(green dots). 

35 



 

Figure 12. The “classified mode”. 

5. There were also implemented other debugging tools, such as raw nodes/edges           

viewer, graph-only mode and so on. 

To help the user navigate the map with lines there were implemented simple             

zoom and pan tools with possibility to save the picture. 

5.6 STATISTICS CALCULATION 

During the track fitting there were also performed track and graph path statistics             

recording. It is necessary to transform them later into features for clustering and             

classification. 

Important information to keep about the tracks is distances between points. In            

most of the input tracks these distances are more or less homogeneous as the cyclist               
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moves with constant speed. The opposite is for the graph paths, on highways distances              

are usually longer than in crossroads. 

The modified Dijkstra algorithm minimized the area between input track and           

output graph path. So the area increment is next attribute for each path point. The original                

Dijkstra approach minimized the Hausdorff distance between tracks and however it was            

modified, the distances are available to extract for each point and it is the next feature to                 

consider. 

For processing there was chosen the combination of distance and area for each             

point in each path. In the code it was represented as List of StatUnitAreaDistance. 

Another approach utilized average distance between points in track and in path.            

They were used to interpolate the track and the path to approximate the normalization of               

each distance between the curves, which were calculated after interpolation.  

Interpolation was just simply adding points between the nodes, if the distance            

between them was more than minimum of distance averages of path and track. 

 lat  lat ) i / n  latNewi = lat1 + ( 2 −  1  

 lon  lon ) i / n  lonNewi = lon1 + ( 2 −  1  (15), 

where i is point index, n - number of points to insert.  

In the Figure 13 there are interpolated curve (blue) and initial track (red). 
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Figure 13. Input track (blue), interpolated track (red). 

In the code this statistic was represented as List of StatUnitInterpolatedDistance. 

The last statistic named as StatUnitInvDistance was constructed as minimal          

distance from track point, apart from previous approach, where the distance from path to              

track was used, to path. 

In experiments there were tested all three statistics, in further sections there are             

results provided. 

5.7 STATISTICS VISUALIZATION 

Tracks and paths were better to visualize on the map, but for areas and distances different                

type of representation was implemented. 
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JavaFX library provides simple Application to extend and simple scatter, line and            

bar plots.  

Scatter plot was used to visualize 2D points with attributes area and distance             

(Figure 14). Area is function of distance, but experiments showed, that they are not fully               

replaceable and behave differently sometimes. 

 

Figure 14. 2D scatter plot. 

On the plot it is visible, that many points with high distance are do not show the                 

growth in area attribute.  

For visualization of distances through ordered points the line plot was chosen.            

Unlike the 2D scatter plot, this one preserves the order (Figure 15). 
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Figure 15. 1D line plot. 

Together with Geo visualization, this methods suit good for debugging, inspecting           

and presenting the results. 

5.8 OUTLIER DETECTION DETAILS 

With help of JavaML library (implementation from scratch was rejected due to            

performance low speed and being poorly optimized) there was implemented          

KMeansClassifier class with K-means and K-medoids classification. 

For other statistical methods there is a class named Statistic1DClassifier with           

Z-score, modified Z-score, IQR anomaly detection methods implementation. 
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5.9 POINT LOCALIZATION DETAILS 
For localization of the problematic points there was created Detector class, which            

contains the function, accepting the list of classified points as an input, performing the              

algorithm described in Section 4,3 and returning the list of problematic points.  
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CHAPTER 6. EVALUATION 

6.1 GENERAL METRICS 

In the Table 1 there is general statistic about given tracks. There were given 2302 tracks,                

but after filtering (tracks outside the city, tracks with glitches, etc.) there were only 1685               

left to process. 

Table 1. 

Initial 
size of 
dataset 

Processe
d size of 
dataset 

Track 
length 
average, 
km 

Track 
length 
standard 
deviation, 
km 

Distance 
between 
points 
average, m 

Distance 
between 
points 
standard 
deviation, m 

2302 1685  8.4 0.14 21 0.15 

 

Statistics of the graph, representing the Prague road network are presented in            

Table 2. 
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Table 2. 

Area of 
Prague, km2

[26] 

Number of 
nodes in the 
graph 

Number of 
edges in the 
graph 

Number of 
unique 
processed 
nodes by 
algorithm 

Approximated 
area covered, 
% 

496 457744 990734 369202 81 

 

The statistics of graph paths obtained after matching tracks into graph are placed             

in Table 3. 

Table 3. 

Distance between 
interpolated path 
points average, m 

Distance between 
interpolated path 
points standard 
deviation, m 

Path length 
average, m 

Path length 
standard 
deviation, m 

15 0.08 8.4 0.15 
 

6.2 EVALUATION METRICS 
The first and the most precise method to control the correctness of map matching is               

examining it visually. But there are more than 1500 tracks to check and there is numerical                

solution. 

The Modified Dijkstra algorithm for map matching optimizes the area between           

the track and the path, and for control was used maximum distance between curves. This               

distance has lack of precision, but works well for approximation and evaluation. 

In the Table 4 there are statistics for the maximum distances for all datasets and               

initial classification for the paths, if they have/ do not have outliers. Paths were classified               

based on simple Z-score from Section 3.2.3. Paths with maximum distance more than or              

equal Z-score was classified as “negative”, paths with its maximum distances less than             

Z-score were classified as “positive”.  
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Table 4. 

Maximum 
distance average, 
m 

Maximum 
distance standard 
deviation, m 

Paths without 
outliers 
(“positive”) 

Paths with outliers 
(“negative”) 

7.03 3.42 993 692 

 

Paths were also classified by the presence of outliers with all anomaly detection             

methods. Path was assigned with “positive” class, if there were detected no outliers and              

“negative”, if there was at least one. Knowing the approximate “ground truth” from the              

Table 4, there tracks can be divided into “true positive” (TP), “true negative” (TN), “false               

positive” (FP) and “false negative” (FN). 

“True positive” are the “positive” paths in both classifications, “true negative” are            

the “negative” those and “false positive/negative” are misclassified ones [25]. 

The metrics to evaluate the performance of the algorithms are precision, recall            

and F1-score. 

Precision is a metric revealing the ability of the algorithm to identify only the              

positive samples. It can be calculated as: 

recision p =  T P
T P  + F P  (16) 

Recall is the the ability of the algorithm to find all the positive cases within a                

dataset: 

ecall r =  T P
T P  + F N  (17) 

Precision and recall are unified into single metric F1-score: 

1 2F =  · precision·recall
precision + recall (18) 

[25] 

F1-score is the main score used to identify the performance of proposed            

algorithm. 
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6.3 TESTING SCENARIOS 

The suggested algorithm for graph matching was tested on all the 1685 available and              

filtered tracks. Results can be classified as “decent” and “problematic”. Typical “decent”            

result looks like on the figure 16. Tracks are almost identical, the area between the curves                

is minimal. 

 

Figure 16. The illustration of situation, when algorithm finds the perfect path. 

One of the “Problematical” situations is presented below.  
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Figure 17. The illustration of suboptimal result.  

On the figure 17 the black arrow points on extra turn from ​Václavské náměstí              

before it goes back on the track, there is no addition to the graph between 2 curves. 

46 



 

 

Figure 18. The illustration of suboptimal result, another case.  

In the figure 18 the situation is a bit different, there is addition in area, but                

probably caused by the same errors in the graph. 

These three types of scenarios were the input for outlier detection procedure. 
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6.4 RESULTS 

6.4.1 OBJECTIVE FUNCTIONS FOR MODIFIED DIJKSTRA 
ALGORITHM TESTING 

 

Figure 19. On a) is showed minimum Hausdorff distance objective, on b) the sum 

of Hausdorff distances, on c) minimum area objective. 

There were implemented all the approaches and the third one shows the best             

results (figure 19). The first approach (a) does not show feasible result at all, the sum of                 

distances is much better (b), the area approach (the last) calculates the path in the best                

way. 

In further testing there were used only results of area objective function.  

 

6.4.2 RESULTS OF OUTLIER DETECTION 

There could be two approaches for clustering the collected data, the first one to process               

each track-path pair separately and then detect the outlier. But experiments on small             

amount of tracks showed, that there is high false positive rate, because some of tracks do                

not contain visible outliers and algorithms assign them anyway.  

The second approach is to collect all data and detect outliers in all of it and then                 
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match outliers with all tracks. This approach was chosen for further experiments and             

evaluations. 

Each considered combination of statistic and outlier detection approach was          

evaluated according to the metrics from Section 6.2. The results are presented in the              

Table 5 and 6. The approach implementing the interpolated statistic + robust Z-score             

outlier detection has the highest F1 score and it is presented in final pipeline, discussed in                

Section 4.1. 

Table 5. 

 Number of 
“positive” 
paths 

Number of 
“negative” 
paths 

TP TN FP FN 

K-means, 
k = 16 

1413 272 991 270 422 2 

Z-score 1643 42 993 42 650 0 

Robust Z-score 
on interpolated 
statistics 

889 796 883 686 6 110 

Robust Z-score 
on inverse 
statistics 

816 869 816 692 0 177 

IQR on 
interpolated 
statistics 

887 798 880 685 7 113 

IQR on inverse 
statistics 

810 875 796 678 14 197 

 

Table 6. 

 Precision, % Recall, % F1-score, % 

K-means, 
k = 16 

70 99 82 
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Z-score 60 100 75 

Robust Z-score on 
interpolated statistics 

99 88 93 

Robust Z-score on 
inverse statistics 

100 82 90 

IQR on interpolated 
statistics 

99 87 92 

IQR on inverse 
statistics 

98 80 88 

 

The area-distance measurements were clustered with K-means and K-medoids         

(figure 20), there is no need to show two graphs, as they are the same and both algorithms                  

did not manage to handle the outliers, as it was necessary to increase number of clusters                

significantly, which raises processing time and also should be optimized by unknown            

criteria. [15] 
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Figure 20. a. K-means clusters, k=4, computational time 5.7 seconds; b. K-means 

clusters, k=16, computational time 4 minutes; c. K-means clusters, k=32, computational 

time 7 minutes approximately. Yellow dots belong to the biggest class, red dots belong to 
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the other ones. 

For inverse distance and interpolated distance statistics were applied Z-score,          

modified Z-score and IQR. 

For both inverse and interpolated distances Z-score totally failed (figure 21).           

Mean-based methods perform badly with significant amount of outliers and from the            

beginning the fraction of them was unknown. It explains the mean drift towards the              

bigger values. 
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Figure 21. a. Z-score outlier detection distances plot; b. Z-score outlier detection 

classified track on map. 
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Modified Z-score and IQR performed slightly better on inverse distance          

measurements (figures 22 and 23) and significantly better on interpolated distances           

(figures 24 and 25).  

 

Figure 22. Robust Z-score outlier detection on inverted distance statistic: a. classified 
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distances distribution; b. classified track on map. 

 

Figure 23. IQR outlier detection  on inverted distance statistic: a. classified distances 
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distribution; b. classified track on map. 

 

Figure 24. Robust Z-score outlier detection on interpolated distance statistic: a. classified 

distances distribution; b. classified track on map. 
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Figure 25. IQR outlier detection  on interpolated distance statistic: a. classified distances 

distribution; b. classified track on map. 
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By default the threshold for modified Z-score was chosen as 3.5 as recommended             

in [17], but experiments showed, that 3.8 worked better, as it does not produced              

occlusions.  

For further processing only interpolated data with modified Z-score outliers was           

picked. 

6.4.3 PROBLEMATIC POINT LOCALIZATION RESULTS 

This phase gives the second approximation to desired points. Results are presented in             

figure 26. 

 

Figure 26. Result of the 1st phase point detection, red line is an input track, blue line is an 

output track, green dots are detected points. 
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6.4.4 GRAPH REFINEMENT DEMONSTRATION 

In Section 4.4 there was presented the description of naive and slow algorithm to refine 

the graph after localizing the approximation of the point with missing edge. The 

demonstration of the result is presented in Figure 27. 

 

 
Figure 27. Demonstration of map matching on refined graph. 
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CHAPTER 7. CONCLUSION 

7.1 DISCUSSION 
 
Suggested algorithm matches the GPS tracks to the road graph, collects statistics,            

classifies points to inliers and outliers based on them and detects the node, where the               

missing edge can start. 

Described algorithm is a powerful tool to evaluate the road network and            

automatically produce possible places of mislabelling in the map. Due to offline nature of              

the algorithm the speed of its performance is not prior, as the quality of proposed result. 

7.1.1 APPROACH DRAWBACKS 

Presented approach is slow on significant data amount. The modified Dijkstra algorithm 

can be further optimized.  

Point detection procedure performs suboptimally as well. The algorithms has 

limitations on routes with loops-like sections. 
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7.1.2 APPROACH ADVANTAGES 

On pre-classified data (new track for example) algorithms work relatively fast with            

decent precision. Suggested by outlier detection thresholds cover all tracks, additional           

fitting to individual track is not needed. 

7.2 FUTURE WORK 

The pipeline could be further polished and optimized for faster convergence and            

generalization for certain track types with loops. The proof of the algorithm’s accurate             

work will be improved as well. 
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