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Abstract
The thesis explores the concept of lo-

cal level routing, where vehicles receive
either travel times or route advice based
on accurate short-term traffic predictions
to reroute themselves through a network.
We focus on developing a system to pro-
vide time-dependent road travel times
considering information of signal timings,
queue lengths, unexpected events and ve-
hicle arrivals, in which traffic controllers
model the movement of vehicles and share
their knowledge about the traffic amongst
themselves as a centralized or distributed
system. Our motivation is to reduce travel
times, avoid congestion and balance the
load of vehicles throughout the network.
In order to achieve this, we first analyse
how similar route guidance systems es-
timate the cost of traversing edges and
select optimal routes. Then, we study pos-
sible solutions for the optimal route prob-
lem, specially shortest-path algorithms,
and we define the necessary inputs for
the chosen algorithm type. After that,
we research methods for estimation of
discrete time-dependent travel times and
decide to propose an event-based traffic
theoretic model that models the driving
behaviour of vehicles and deals with the
restrictions of communication bandwidth
between traffic controllers, the necessity
of prediction, and short running time in
larger networks, while feeding a determin-
istic queueing model that ensures estima-
tions within a planning horizon. We de-
scribe the functionality of our proposed
system and evaluate it through simula-
tions of a real-world scenario for differ-
ent penetration rates of vehicles able to
reroute, comparing it against the possible
best and worst cases as well as the case
of vehicles using only hourly travel times.
Finally, we discuss the performance and
future work of the proposed local level
routing system.

Keywords: local level routing, route
guidance, travel time estimation,
event-based traffic modeling,
deterministic queueing model, automated
vehicles, connected vehicles, urban traffic
networks, SUMO simulation

Supervisor: Prof. Ing. Ondřej Přibyl,
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Abstrakt
Diplomová práce se zabývá konceptem

místního směrování, kdy vozidla dostávají
pokyn buď podle kritéria cestovního času,
nebo podle kritéria trasy na základě přes-
ných krátkodobých dopravních podmínek
tak, aby se přesměrovala skrz síť možných
tras. Soustřeďujeme se na vývoj systému,
který je založen na kritériu cestovního
času při zohlednění časového intervalu do-
pravní signalizace, délky kolon, silničních
uzavírek a času příjezdů, kdy kontrolní
jednotky modelují pohyb vozidel a sdílejí
informace o stavu dopravy mezi sebou
ve formě centralizovaného nebo distribuč-
ního systému. Naším cílem je snížení ces-
tovního času, odstranění dopravního pře-
tížení a optimalizace proudu vozidel skrz
síť možných tras. Abychom toho dosáhli,
nejprve analyzujeme, jak systém vedení
obdobných tras odhaduje náklady na prů-
jezd trasou a jak vybírá optimální trasu.
Následně studujeme možná řešení pro op-
timalizaci trasování, zejména algoritmy
nejkratší cesty a dále definujeme nezbytné
vstupy pro ten který typ algoritmu. Poté
zkoumáme metody pro odhad diskrétního
časového intervalu v závislosti na vybrané
denní době cesty a vybíráme provozní te-
oretický model založený na událostech,
který vytváří chování vozidel a zároveň
zohledňuje omezení v komunikaci mezi
řídícími jednotkami; potřebu predikce a
časově krátkého zprocesování ve větších
sítích. Navržený model je také zdrojem
pro deterministický model kolon, který
zajišťuje odhady v rámci plánovaného ho-
rizontu. Popisujeme funkcionalitu námi
navrženého systému a hodnotíme ho na
základě simulací odrážejících scénáře re-
álného provozu pro různé míry penetrace
vozidel, která jsou schopná přesměrování
a srovnáváme nejlepší a nejhorší možné
případy spolu s případy vozidel používají-
cích pouze jednotlivé hodinové intervaly.
Na závěr diskutujeme dosažený výkon a

očekávanou další práci na vývoji našeho
systému místního směrování.

Klíčová slova: místní směrování, vedení
trasy, odhad jízdního času, modelování
provozu založeného na událostech,
deterministický model čekání,
automatizovaná vozidla, propojená
vozidla, městské dopravní sítě, simulace
SUMO

Překlad názvu: Snížení doby jízdy v
městské dopravní síti pomocí lokálního
směrování
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Chapter 1
Introduction

In the European Union (EU), congestion costs more than 1% of its Gross
Domestic Product (GDP), which is more than the EU budget. The trans-
port sector is growing and one key issue is to increase the efficiency of its
already existing infrastructure [European Commission, 2012]. Intelligent
Transportation Systems (ITS) have already been transforming the transport
sector, integrating information and telecommunication technologies with traf-
fic engineering to alleviate traffic congestion, reduce emissions, improve safety,
and provide reliable traffic management. Recently, Connected Vehicle (CV)
technology and Cooperative Intelligent Transport Systems (C-ITS) represent
an evolution of ITS in which road users and traffic managers share informa-
tion that was previously not available in order to coordinate their actions
[European Commission, 2016]. In the future, Cooperative Automated Vehicles
(CAV) will transfer the driving functions from a human driver to a computer
as well as cooperate with other road users and infrastructure to better plan
and inform its decisions, aiming to improve mobility while increase safety
and reduce negative environmental impacts ([Olia et al., 2016], [European
Commission, 2016]).

In this cooperative environment, vehicles communicate through short-range
and long-range communication channels once they are within certain range
from other vehicles, so called Vehicle-to-Vehicle (V2V), or infrastructure,
known as Vehicle-to-Infrastructure (V2I). Typically, the communication is
between a vehicle’s On-board Unit (OBU) and Roadside Units (RSUs), which
are installed on the infrastructure (i.e. streets), allowing the exchange of
messages in a fast, secure, and reliable way [Olia et al., 2016]. Vehicles
send Cooperative Awareness Message (CAM) messages containing its state
and parameters (actual speed, position, acceleration capability, etc.), while
the infrastructure sends MAP messages with static road topology, Signal
Phase and Timing (SPaT) for dynamic traffic light, (SRM, SSM) related to
priority and preempted access of special vehicles, (PVD, PDM) when probe
vehicle data, and (IVI) for in-vehicle information. Moreover, both may send
Decentralized Environmental Notification Message (DENM) for dissemina-
tion of event-driven safety information [Festag, 2014]. On the top of that,

1 ctuthesis t1606152353



1. Introduction .....................................
Traffic Controllers (TC), which are components of the infrastructure, may
communicate among themselves while vehicles exchange messages between
each other. When it comes to the benefits of such cooperative environment,
authorities are interested, in particular, to the minimisation of the network’s
total travel time and congestion with minimum investment on new infras-
tructure, while vehicles aim to find their optimal route [Watling and van
Vuren, 1993]. Therefore, efficient routing of vehicles from a specific source to
certain destination is a needed aspect of cooperative automated vehicles, and
route guidance may provide the desired congestion and travel time reduction
[Schmitt and Jula, 2006].
Local level routing is a specific type of route planning and its concept is

illustrated in Figure 1.1 considering a network with junctions connected by
edges. The route choice of vehicles may use information of vehicle arrivals,
corresponding to when and which vehicle will be arriving on the edge (includ-
ing the ones already on the edge); unexpected events, e.g. representing edges
not available to be used or with reduced speed; and queue length as well as
signal timings (begin and duration of green phases) for calculating delays,
given the junction’s capacities of discharge. The cost of traversing each edge
is estimated throughout a planning horizon and provided it in a way that
users will either use it as they desire (i.e. the optimal route is responsibility
of the user); or in the form of the optimal route advice for a specific vehicle.

Figure 1.1: Example of inputs and outputs of a local level routing system.

A local level routing system is a type of route guidance system and a
Traveller Information System (TIS). Originally, route guidance systems were
invented to facilitate driving in unfamiliar places and compute the shortest
routes in a static map without real-time traffic information. Nowadays,
drivers also use route guidance systems to get information of real-time traffic
conditions and suggestions on alternative routes to avoid congestion, road
pricing, and parking availability [Liang and Wakahara, 2014]. In addition,
by influencing the driver/vehicle decisions, these systems may affect the
transportation demand [Herbert and Mili, 2008]. Under the new C-ITS
environment, local level routing systems find optimal vehicle routes using
short-term predictions based on local information exchanged between vehicles
and infrastructure. Although it is recommended that the planning horizon
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should be longer than the duration of trips [Krishnamoorthy, 2008], the
focus is on accurate estimations as travel times in urban networks are more
dependent on the signal timings and current traffic conditions.

1.1 Research Objectives

According to [Watling and van Vuren, 1993], dynamic route guidance must
respond to variations of travel demand (e.g. peak and non-peak hours,
incidents, etc.), and model the behaviour of drivers with and without routing
information, in order to simulate the effects of such variations propagated
throughout the network. This is very important since the benefits of route
guidance systems are realised the most at these situations. Additionally, in a
network composed by traffic controllers modelling and (possibly) controlling
the traffic of a set of edges and their respective junctions, the scalability of the
system (linked to the possible covered area, running time and planning horizon
length) is essential [Schmitt and Jula, 2006]. However, the communication
bandwidth between traffic controllers is limited, what requires a flexible system
that can be either centralized or distributed according to the restrictions
of the network. Therefore, the main objective of this thesis is to design,
develop, and evaluate a local level routing system that uses as low as possible
communication bandwidth of traffic controllers and models Cooperative
Automated Vehicles (CAVs) and non-CAVs while use information of signal
timings, queue lengths, vehicle arrivals, and unexpected events to provide
routing information. In order to achieve this, the following list summarizes
the research objectives...1. Optimal route algorithms and edge cost estimation models: the

first objective is to explore optimal route algorithms and choose a suitable
and efficient one while research edge cost estimation models. Then, either
select or develop edge cost estimation models that input the information
available as well as estimate what is not available (e.g. non-CAVs data),
and output in the format needed for the chosen optimal route algorithm...2. Local level routing system: the second objective is to design a local
level routing system using the chosen edge cost estimation models and
optimal route algorithm, while developing efficient algorithms for each
sub-system...3. Evaluation in a real-world scenario: the third objective is to eval-
uate the proposed system’s performance in a real-world scenario and
compare it against suitable cases, besides defining the next research
directions to achieve a system capable of real-world operation.
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1. Introduction .....................................
1.2 Thesis Structure

The thesis is organised as follows. Chapter 2 presents an overview of related
work reviewing the state-of-the-art of route guidance systems that have char-
acteristics of a local level routing system. Chapter 3 explores the algorithms
for the optimal route problem, in which we narrowed the research to the
shortest-path problem, and define the type as well as the input necessary for
the chosen algorithm. Chapter 4 discuss the queueing and traffic theoretic
models found in the literature that use the available information for the esti-
mation of travel times. In Chapter 5, we present and describe the proposed
local level routing system. Chapter 6 presents the simulation experiment we
set to evaluate our proposed system and also the performance results. Finally,
Chapter 7 concludes the thesis with a summary of achievements and outlooks
for future research.
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Chapter 2
Related Work

Throughout this chapter we will review already proposed systems that deal
with route guidance of vehicles offering certain planning horizon considering
real-time and/or estimated information. Most of the literature that focus
on the problem of routing vehicles considering traffic lights aims to propose
an integrated solution for both routing and signal control problems, in other
words, the chosen routes influences the signal control and the signal plans the
suggested routes. Although this control loop is usually desired, the common
and current practice is that those problems are often solved separately without
interaction between each other, specially due technological limitations, e.g.
minimum area of application and penetration rate, needed communication
bandwidth and computational power, what may turn such integrated solutions
infeasible at the moment. Therefore, some authors approach this integration
by developing systems that are able to route vehicles given short-term predic-
tions of traffic signal plans (or using historical plans) without the input of
vehicle routes into the traffic controller, in order to achieve a more realistic
routing under the constraints aforementioned.

The term local level routing (also called micro-routing in [Leistner et al.,
2012]) is not common in the literature. Usually, route guidance leads to the
local level routing concept. However, route guidance represents any system
that guide drivers from its origin to destination through a roadway network
[Schmitt and Jula, 2006], while local level routing focus only on the part of
adjusting (if needed) a previous defined route due to the dynamism of urban
networks. Therefore, a local level routing system is a dynamic guidance, which
can be categorized, according to [Khanjary and Hashemi, 2012], [Schmitt and
Jula, 2006] and [Herbert and Mili, 2008], based on its architecture, information
provision, decision-maker, and planning horizon, as illustrated in Figure 2.1.

The information provision defines which information is provided for
route decision making. When descriptive guidance, vehicles receive infor-
mation about traffic and/or road conditions with no routing advice (what
may not result in network optimal results). On the other hand, prescriptive
guidance aims to give optimal route advice but no information about traffic
network conditions (if route compliance is 100% then it should lead to optimal
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2. Related Work.....................................

Figure 2.1: Classification of dynamic route guidance systems based on four major
categories: architecture, information provision, decision-maker and planning
horizon.

results). The combined guidance suggest routes to vehicles at the same time
it is informed traffic conditions.

The decision-maker defines who is responsible for calculation of the
optimal route. It can be either the vehicle/driver ; Traffic Controller (TC)
that model and controls the traffic on certain edges; or a Traffic Management
Centre (TMC), which monitors and coordinate the traffic for the whole
network.

The architecture describes who is responsible for traffic data collection
and provision. It is either: centralized, a TMC collects all the traffic data,
compute the decision variables (e.g edge travel times), and provide the
information for routing (robust and reliable, but computationally costly,
complex and some individual users may experience longer travel times for
network optimality); or distributed, in which each traffic controller collects
local traffic data, compute its decision variables and share amongst themselves
(when possible), as well as provide routing information for nearby vehicles
(what may cause only local optimality and not a robust system on the network
level).

The planning horizon is the anticipation degree of future conditions.
Reactive, also known as feedback routing, is less complex and based only on
current traffic conditions (few cases also time to green) in the network, but at
the cost of greater vulnerability to congestion and incidents; while predictive,
also called proactive routing, is based upon an iterative model that predicts
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future conditions based on current and historical traffic information, what
can offer high quality guidance if the traffic pattern is repetitive and the
algorithm for such anticipation type (called anticipatory or hybrid) is able to
handle unexpected events.

We should mention that other features of route guidance systems are also
presented in the literature. [Schmitt and Jula, 2006] also differentiate systems
between deterministic and stochastic, stating that while some determinis-
tic approaches deals with uncertainties and use heuristics, the stochastic
approaches use mathematical expectation of time invariant conditions (e.g.
mean and variance of travel time), or the changing nature of the traffic with
respect to time (e.g. mean travel time and variance as a function of the time of
day). Although this distinction is important, we leave this as a characteristic
of the approach used to solve the routing problem. Another example are the
infrastructureless systems in [Khanjary and Hashemi, 2012], we don’t dig
into such systems because we consider local level routing as a cooperation
between road infrastructure and road users.

Most of the approaches we will discuss provide combined guidance with at
least small degree of prediction and the optimal route is decided by junctions
in distributed systems or by a Traffic Management Centre (TMC) in centralized
systems. Therefore, the main difference between each proposed system is how
the authors approach the problem of defining the edge costs (e.g. the cost to
transverse a road) and which algorithm is used to find the optimal route. We
can classify the literature of such systems based on their observed features
pattern (summarized in Table 2.1).
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Classification Author Approach Edge Cost Variables Optimal Route

Centralized
Systems

[Yamashita et al.,
2005]

Greenshield V-K relationship
with multi-agent simulation Density Not specified

[Pan et al., 2012],
[Pan et al., 2013]

Greenshield V-K relationship
with macroscopic simulation
and breadth first search

Density Entropy balanced
k-shortest paths

[Yang et al., 2006],
[Ximin, 2006]

Cellular automata with dynamic
traffic assignment and
(traffic lights) hybrid
genetic algorithm

Flow Simulation-based
IOA

[Liang and Waka-
hara, 2014]

Supply-demand model with /
macroscopic simulation

Flow and detector
occupancy Dijkstra

[Li et al., 2015]
Triangular Q-K relationship with

Lagrangian-relaxation
based optimisation

Flow and traffic
light delay K-least-cost paths

[Ma et al., 2002],
[Chen et al., 2006]

Non-convex control model with
dynamic traffic assignment

and optimal control

Free flow travel
times, green times,

cycle time,
saturation flow

Dynamic traffic
assignment

[Rahman and
Kaiser, 2016] Fuzzy neural network

User preference,
distance, traffic
signal delay, road
type and flow

Fuzzy neural
network

[Chen and Hu,
2012]

Bi-level framework user
equilibrium with dynamic

traffic assignment
Flow Dynamic traffic

assignment

Distributed
Systems

[Khanjary et al.,
2011]

Cellular automata with mesoscopic
simulation and fuzzy logic

Street priority
and density Dijkstra

[Tatomir and
Rothkrantz, 2006]

Virtual "propagation"
delay with ant colony

Average speed by
sampled travel times Ant colony

[Faez and Khan-
jary, 2009]

Open shortest-path first
protocol with Dijkstra and
(traffic lights) finite-state

machine

Average speed and
next junctions
time to green

Dijkstra

[Chai et al., 2017]
Least expected time path
and (traffic lights) modified

max pressure control

Travel time and its
probability, traffic

light delay,
driver’s preference

Non-adaptive
hyperpath

shortest path

[Kampen, 2015],
[Taale et al., 2015]

Back-pressure control
Route saturation

flow, edge capacity,
travel time

Path size logit
choice model

[Leistner et al.,
2012]

Queue model with microscopic
simulation

Flow, traffic light
delay, saturation

flow
Minimum-time path

[Lei and Ozguner,
1999]

Dynamic traffic assignment
and optimal control

Queue length,
flow, free flow
travel time

Dynamic traffic
assignment

[Yang and Miller-
Hooks, 2004]

Adaptive routing considering
signal control with least expected
time path, and (traffic lights)
two-state continuous time

Markov chain

Signal probability,
measured travel
time distribution

Adaptive
hyperpath

shortest path

Table 2.1: Classification and approaches of related work.

2.1 Centralized Systems

A centralized system collects data and centralize it into a server that process
it, monitors and usually forecast the dynamics of the whole network as well
as control (or just predict) the path planning of each vehicle. Although
in well controlled situations these systems may allow network-wide optimal
results, their main issues are the scalability, complexity and effectiveness under
prediction with many stochastic factors (e.g. actuated or adaptive traffic
lights, assumptions or vehicle/driver decision to follow route suggestions).

A proactive route guidance system is proposed in [Liang and Wakahara,
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2014], using the rolling horizon approach (a planning horizon divided into
discrete time intervals), at the beginning of each time interval the following
three phases are conducted repeatedly: (1) detecting and predicting conges-
tion, (2) selecting vehicles for rerouteing and computing alternative routes
and (3) pushing route guidance to drivers. Two models for predicting the
traffic amount on roads edge in urban traffic network are presented. This first
model (spatio-temporal correlation) predicts the traffic amount that enters
and leaves edge considering the split rate of traffic flows at the junctions, the
ratio of green time over the edge travel time and the departure/arrival traffic
amount on each edge, while the travel time is given by the average speed
(based on loop detectors’ occupancy and vehicle counts). The second model
(spare road capacity) first estimates the maximum inflow (average speed over
the sum of average vehicle length and minimum vehicle’s gap) and outflow
(same as the inflow but multiplied by the green time ratio) on each edge at
each time interval, then the traffic flow is predicted using the inflow of the
edge from upstream as well as their average traffic amount during certain
time interval. A vehicle is set to be rerouted if it is before a certain number
of upstream junctions of a congested or "will-be-congested" edge, or if it is
intend to use this edge afterwards. After that, the optimal route is calculated
through the Dijkstra shortest-path algorithm using current travel time on
each edge.

[Li et al., 2015] solves the problem of optimal route guidance for vehicles
with specific origins-destinations and preferred departure/arrival times, where
a set of waiting times at signals in the suggested routes for each vehicle
influences the flows and, therefore, the schedule and signal timings. The
problem is decomposed into two less computationally complex subproblems
(signal control and route guidance) through Lagrangian relaxation, coupled
only by the flow balance constraints used in minimum-cost flow problems
and least-cost path problems. The solution finds a time-dependent least-cost
path for green times within a new time-dependent network, referred as "space-
phase-time hypernetwork" which includes only allowable phase-time arcs, and
maintains the linearity of both subproblems without loss of signal control or
routing flexibility.

A hierarchical coordination system with a traffic signal control sub-system
and route guidance sub-system is proposed in [Ma et al., 2002]. The optimal
problems for every sub-system are firstly solved parallel and independently,
then based on their results a coordinate solution is obtained by solving a
correlative model, in which a road edge is divided into two parts: free-driving,
calculated by the distance and speed; congested, defined by the Webster delay
formula given the cycle time, green splits, and saturation flow. The route
guidance sub-system uses a convex dynamic assignment model that finds
optimal flow rates which will bring the shortest travel time for every vehicle
under the restriction of flow conservation and FIFO (First-In-First-Out). The
signal control sub-system use a optimal control optimization that minimizes
the total delay time in all directions of a junction, giving the flow rate and
green time for all directions. [Chen et al., 2006] later applied this approach
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2. Related Work.....................................
in a multi-agent system with nested hierarchical structure, which included
5 agents: traffic control and route guidance cooperative agent (CPA), TSC
strategy level agent (TSC-SLA), TSC Executing level agent (TSC-ELA),
DRG strategy level agent (DRG-SLA) and DRG Executing level agent (DRG-
ELA). In their system, strategy level agents determines the cooperative
strategies and cooperative coefficients, while the executive level agents must
feed back the information about local road conditions and have capability to
offer decision-making. The TSC-SLA update traffic control strategies and
finds optimal control based on traffic flows, while the DRG-ELA adjusts
routed vehicles routes based on real-time dynamic traffic conditions, and the
DRG-SLA accomplishes dynamic route guidance.

The route guidance problem is also presented in a bi-level framework in
[Chen and Hu, 2012], solving the problem of flow equilibrium for signal
control and route choice (traffic assignment). The upper level computes the
signal setting parameters given flow distributions (including cycle length and
green splits) aiming to minimize total delay; the lower level solves the user
equilibrium dynamic traffic assignment flows under resulting traffic control
policies from the upper level. The flow distribution in the network is a
function of signal control and route control, while the solution procedure
defines the evolution of flow distributions under the interaction of signal and
route control. To model the behaviour of traffic controllers under observed
flows (e.g. if a junction has actuated traffic lights) the authors use uses an
approximate macroscopic method that evaluates if a current green phase
should be extended or not, given its maximum green time and the arrival
times at stop line of vehicles at the end of the simulation time interval. One
of the problems raised by the authors is the computational burden of the
Dynamic Traffic Assignment.

An application in [Yamashita et al., 2005] is able to predict congestion
and reroute vehicles to semi-optimal routes through macroscopic simulation.
The model inputs vehicles current positions, destinations, as well as selected
routes by an information server, while the network is represented by road
edges between junctions that are divided into several blocks, each of them has
length of the free flow speed during one simulation step. A prospective traffic
volume is transmitted to drivers, this information is a product of the expected
travel time (ETT) and total passage weight (TPW). The expected travel
time (ETT) is calculated by the sum of the passage time that a vehicle will
experience on each block; while for the total passage weight is the sum of a
passage weight of each vehicle passing on the edge, which is the representation
of the accuracy a vehicle will pass certain edge, calculate by the division of
the number of next edges to transverse by the total number of edges to the
destination.

Similarly to the passage weight idea, the authors in [Pan et al., 2012] and
[Pan et al., 2013] presented several approaches that also use the Greenshield’s
V-K relationship. However, the common procedure is that the selection
of vehicles to be rerouted is based on the breadth-first search (BFS) on
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the inverted network graph, from the congested segments till the furthest
distance (in number of segments) of vehicle can be away of the congested
segment. In general, they estimate the total number of vehicles that have
their path assigned passing certain segment in a time window; this number
represents a decision variable for each approach: on the entropy-balanced
kSP (EBkSP), the probability of vehicles on the segment and route vehicles
to the lowest popular edges; the flow-balanced kSP (FBkSP) assigns a vehicle
to the path that minimizes the impact of traffic flow; A* shortest path with
repulsion (AR*) that consider both the travel time and the paths of the
other vehicles (as a repulsive force) in the computation of the shortest path.
The authors raised issues related to privacy, scalability, and low overhead for
future research.

[Ximin, 2006] uses a hybrid genetic algorithm with cellular-automata simu-
lation to estimate travel time and optimize signal timings. In their iterative
simulation and assignment procedure, the traffic flow (and consequently travel
time) is given by a Cell Transmission Model that includes a mixed-integer
linear program; the signal settings are optimized by a hybrid genetic algorithm
with delay minimization policy (the delay is the number of vehicles that will
not be able to go to next cell), where it first optimizes globally and then
locally using a pattern search function, while the decision variables are cycle,
phase duration, and offset. The algorithm is based on the IOA-simulation,
which updates alternatively the signal setting for fixed flows and solve the
traffic equilibrium problem for fixed signal settings until the solutions of the
two problems are considered to be mutually consistent.

A Fuzzy Neural Network (FNN) in presented in [Rahman and Kaiser, 2016],
where estimates the path selection probability and the delay of each path
while, for each origin-destination pair, it considers linguistic values from low
to high of user preference, the distance, signal point delay, road type (highway
or not) and traffic flow. The total route delay is calculated by the sum of: 1)
straight path delay, which is the time needed to cover a specific distance at
certain average speed; 2) cross section delay, the time that a vehicle takes
to cross a crossing-point junction; and 3) signal point delay, the average
time a vehicle will experience at each signalized junction. Specifically on
the calculation of the average delays at junctions, the authors first calculate
the delay time for a particular signalized junction as the sum of the average
delays plus its variance; then the variance is estimated using a Taylor Series
equation with the degree of saturation as its random variable, the average is
given by a modified Webster Delay Model that accounts not only the delay
due to uniform and random arrivals, but also an adjustment term empirically
estimated by linear regression of observed traffic data. Based on the input
features the FNN controller outputs the probability of each available routes
between the source-destination pair, this is done via a learning process using
a hybrid of back propagation and least-squares estimation that changes the
input and output membership function parameters. One concern over this
approach is that it uses one fixed reference of signal control parameters (e.g.
cycle length, degree of saturation, etc.), what is not realistic given that each
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junction may have different parameters and even be influenced by nearby
junctions. However, this approach differs from the common research line and
could be explored for improvements.

2.2 Distributed Systems

Distributed systems have independent traffic controllers that collect local in-
formation and process it with usually some degree of prediction. Usually, they
only inform vehicles (and sometimes also other connected traffic controllers)
about local traffic conditions. When route suggestion is addressed, the path is
the outgoing edge from each junction or set of next road edges to reach a very
near destination. Although such systems may avoid congestions to the next
road edge (or within certain coverage area of connected traffic controllers),
network-wide optimal results are likely to not be achieved, and the accuracy
and range of prediction (if exists) influence their overall performance. On
the other hand, due to its distributed nature, complex systems may scale for
local subnetworks (traffic network of connected traffic controllers).

[Faez and Khanjary, 2009] improved their distributed dynamic route guid-
ance system based on wireless sensor networks and the Open Shortest Path
First Protocol (OSPF) introduced in [Faez and Khanjary, 2008]. The authors
estimate each edge travel time based on the local speed measured by sensors,
as well as the waiting time for green time according to the traffic load on
edge and the time a vehicle will arrive at the traffic light and the signal state.
The authors claim the main disadvantage of this system is that it needs many
sensors and access points all over the traffic network to be deployed in order
to detect vehicles and communicate.

Later, the same authors proposed in [Khanjary et al., 2011] a combination
of distributed traffic signal control information and route guidance system,
in which the route guidance estimates travel time for each edge, based on
the average speed and information of green timings from hierarchical fuzzy
signal controllers. Such controllers consider the priority of an edge (based
on its buildings), the density and average speed of vehicles in each edge
using a Unidirectional Selective Cellular Automata (USCA) algorithm, as
well as the queue length of stopped vehicles behind junctions. Each traffic
controller exchange information with others to find the optimal routes to all
other junctions using Dijkstra’s shortest-path algorithm.

A hierarchical routing system is introduced in [Tatomir and Rothkrantz,
2006], where a large network in divided into sectors that have junctions
situated at the border between sectors and which have connection with other
sectors. Each junction has a routing table containing a probability that
expresses the goodness of choosing a junction as next junction for every
possible final destination, and the one with highest probability is suggested to
vehicles. Moreover, each sector has a virtual junction (with its routing table)
for routing between sectors. The system consists of timetable updating system
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(TUS) and route finding system (RFS). For the TUS, regularly, vehicles send
their travel times along their path that is used to estimate the average speed.
This average speed is used for the RFS that uses a Hierarchical Ant Based
Control algorithm (H-ABC). One disadvantage of the proposal is that a
delay due congestion during the route is distributed, and if only one edge is
congested the sampled travel time could not detect it. The authors say this
can be avoided if vehicles would send updated information at every junction,
but the amount of data and communication required can be a problem and a
compromise should be made. On the other hand, the distributed algorithm
is able to route vehicles in complex networks and is highly robust against
failures of distributed parts due to its hierarchical levelling system.

[Yang and Miller-Hooks, 2004] propose an efficient label-correcting algo-
rithm called adaptive routing with signal control (ARSC), which determines
the adaptive least expected time (LET) hyperpaths (acyclic subnetworks)
in signalized stochastic time-varying (STV) networks, where actual signal
timings (i.e. added delays) due signal operations are known deterministically
or probabilistically. When approaching a junction, the driver decides the
next junction given the traffic signal indication and the revealed arrival time
according to hyperpath pointers for each departure time, which contains the
delays due signal operations, from all origins to a given destination. The
durations of edge available and unavailable time (i.e. red and green signals)
for a given movement are assumed to be exponentially distributed, and a
two-state continuous time Markov chain (CTMC) computes the probability of
the availability of an outgoing edge for a given movement through a signalized
junction for all departure times. Their adaptive approach avoids imprecise
computations of the delay at the intermediate junctions because no assump-
tion about the arrival times at intermediate locations is made until travel
has been completed, what computed the correct durations of the expected
hyperpath times. One minor issued related to this approach is that delays
due to deceleration for a red signal or start-up and queue clearance lost times
for a green signal are not explicitly considered, though can be modelled by
extending the delay (or penalty) incurred during a red signal phase.

[Chai et al., 2017] presents a hyperpath-based stochastic shortest path
dynamic routing guidance that can constantly update travellers’ knowledge of
edge travel time considering both current and historical information, as well
as signal timings provided by some proposed adaptive signal control strategies.
Using a Bayesian edge travel time updating scheme, each edge can have the
delay for each signal phase, k possible costs and travel times where each of
these are associated with a probability, while drivers preference is considered
by giving weights to older and new information of travel times. In order to
retrieve the shortest path to each next edge for any time step, every junction
has two different vectors: one with the next junction to take at every time
step; and another with the cost from current junction to destination at every
time step. Their dynamic routing algorithm’s computational complexity is
a challenge, the authors suggest the route guidance per origin-destination
and choosing the update interval as a trade-off between performance and
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complexity.

A variation of the Max Pressure concept, called Back-Pressure, is explored
in [Kampen, 2015] and [Taale et al., 2015]. The principle is used for route
guidance, in which the task is to determine the ratio to direct traffic to
following edges, being the route pressure based on how filled up the route
is. A path size logit choice model calculates this ratio of routes based on
the product of route pressure and route service rate (route saturation flow),
considering also edge capacity and travel time. The system works by traffic
controllers being fed by route guidance information to improve the estimate
turn probabilities, and then those controllers decide their traffic signal phases
that eventually will impact vehicle routes. The principle is not optimal for
route guidance, being the main issues the definition of a representative route
pressure, and the service rate for routes.

[Leistner et al., 2012] proposes an algorithm that gives route advices to
vehicles at junctions where alternative routes begin. The first junction (where
vehicles decide which route to take) estimate route travel times by gathering
information about signal timings and based on a queuing model along each
route. In addition, they also consider the previous advice to add vehicles that
received advice into the proper traffic light queues and improve the queue
prediction. The travel time is estimated by the free flow travel time along
the route, and the estimated time instant the vehicle will be able to cross the
stop line (service time), which is the delay (number of vehicles to be serviced
before the considered vehicle over the saturation flow), the moment the traffic
light gets green and the acceleration loss.

A combination of multi-destination routing and real-time traffic light control
is introduced by [Lei and Ozguner, 1999], where every junction in the network
is assigned a cost-to-go according to the queue length at the junction and
the cost-to-go to all downstream junctions. The cost function to a single
destination is the minimum sum of the delay due congestion and the free flow
travel time. This gives the optimal flow entering every edge and queueing
at junctions, based on the capacity of the edge and the cost on each edge to
the same destination. This latter cost is the free flow travel on the edge plus
the average cost of each junction to the destination, given available capacity
under the optimal flow. One advantage of this approach is that average
costs are associated to the topology of the network to the destination, so it
accounts the cost of a vehicle being assigned to a edge, and the queues in the
downstream junctions that will cause delay to the cars which will arrive at
the junctions whatever their destinations.
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Chapter 3
The Optimal Route Problem

In the previous chapter, Chapter 2, we have reviewed the state-of-the-art of
route guidance systems which are similar to the desired local level system to
be proposed. We also identified that there are two main characteristics that
differentiate each system. One of them is the optimal route problem, which
will be discussed on the remaining of this chapter. Although we have also seen
in Chapter 2 that Dynamic Traffic Assignment (DTA) is a common approach
for the optimal route problem, we will not focus on it as DTA is mainly used
for solving both signal control and routing problems together, and due its
required prescriptive guidance as well as high penetration rates of vehicles
equipped with rerouteing devices. In addition, DTA and simulation-based
approaches have issues related to running time, while route-choice requires
knowledge (or estimation) of each vehicle’s Origin-Destination (O-D) pair,
what might be available. However, we discuss DTA and route choice in
Appendix B.3. Approaches using hyperpaths are usually stochastic and we
will not study them, we will later explain in this chapter the reason of ditching
stochastic algorithms. On the other hand, and in this chapter, we will focus
on the traditional way of finding the optimal route, the so called shortest-path
problem, exploring possible solutions and their algorithms as well as the
required inputs that will have to be provided by the edge cost estimation
models, which will be discussed in Chapter 4.

The problem of finding the "shortest" path from certain source s to a
destination d, (s, d) or O-D pair, on a directed graph G [Herbert and Mili,
2008] is illustrated in Figure 3.1.

A generic version of the labelled directed graph G = (V,E,C) seen in
Figure 3.1 can be interpreted as:

V : {s = v1, v2, ..., vn = d} the set of n junctions (V because it is usually
called vertices or nodes) that represents the path decision points on the
map of interest. These decision points can be intersections, highway
entry and exit, or lane merge and split points.

E : {e1, e2, ..., em} the set of m edges (commonly also arcs or links), where
each edge can be denoted by its pair of junctions (vj , vj+1) representing
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(e1, ce1)

v3

(e2, ce2)

(e3, ce3) (e4, ce4) v4 = d Destination

(e5, ce5)

(e6, ce6)

Figure 3.1: Example of a graph.

its source junction vj and the direction junction vj+1. Usually, an edge
is a segment of road between two adjacent decision points, i.e. one-way
streets and one direction of roads and motorways.

C : {ce1 , ce2 , ..., cem} is the cost (weight) to transverse the edge ek =
(vj , vj+1), being this cost time-varying or static. The cost of a path
is the sum of the respective weight at arrival of each edge belonging to
the path.

P : {(s, vj−1), (vj−1, vj), ..., (vj+1, d)} the set of edges preceding a finite
sequence of junctions that are visited at most once and belongs to the
so called optimum path between the O-D pair (s, d), which represents
the path with minimal sum of costs (weight).

L : {lvj , lvj+1 , ..., ln} is the set of the minimum cost to visit each junction of
the graph.

According to [Fu et al., 2006], most shortest-path algorithms follow a
standard procedure, when it is assumed that the algorithm starts from the
origin junction, seen in Algorithm 2 in the Appendix. Such algorithms label
the minimum cost of visiting a junction and store the preceding edge which
has this minimum accumulated cost. In reality, the shortest-path problem
is a very broad problem, it has different classifications in the literature as
well as applications, each solution for a specific type of shortest-path problem
has its own characteristics. A complete taxonomy that classifies the various
shortest-path problems into multiple high-level branches can be found in
[Madkour et al., 2017], while Figure 3.2 shows the characteristics of shortest-
path algorithms suitable for a local level routing system. There are three
main types of solutions and after choosing one we must define either the data
structure to use (in case of exact or heuristics algorithms), or the procedure
(when meta-heuristics). After that, we narrow the possible algorithms as
in Chapter 2 we have already defined the local level routing as a dynamic
type of routing problem (routing guidance), in which the edge travel time
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is commonly used as the cost (weight), usually one of the four situations
according to [Fu, 2001]:

. constant edge travel time;. time-dependent edge travel time;. stochastic edge travel time; and. stochastic time-dependent edge travel time.

The information of travel times can be obtained real-time, from historical
data during a day, a week or a season, or even be predicted [Dong, 2011].
Based on this different travel times as inputs, and considering that unexpected
events may occur in the network, we would need to look into stochastic, time
dependent and dynamic algorithms.

Figure 3.2: Characteristics of shortest-path algorithms for a local level routing
system.

Exact algorithms search on the graph and find the shortest-path as long
as the path exists, but the algorithm itself has an inherent long running time
when it works [Dong, 2011][Madkour et al., 2017]. Yet, some techniques can
be implemented to aid reducing the computational cost, like hierarchical
maps [Herbert and Mili, 2008]. There are several algorithms belonging to this
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category, the efficient Dijkstra algorithm [Dijkstra, 1959] (finding the shortest
path between two junctions), and the Bellman-Ford algorithm [Bellman, 1955]
(finding the shortest path from a single source to all other junctions) that
is slower but allows negative edge’s costs. When it is desired to find a k
number of shortest paths between an O-D pair, k-shortest path algorithms
are used [Eppstein, 1998]. Heuristics are specific for a particular problem.
The algorithm finds a sub-optimal (approximate) solution within a short
time by reducing the search space or decompose the search problem using
any prior information ([Dong, 2011],[Madkour et al., 2017]). A widely used
algorithm is the A* (goal-directed search) [Peter E. Hart et al., 1968], which
is an extension of the Dijkstra’s algorithm but limiting its search space using
a heuristic function that has the effect of giving priority to junctions that
are (supposedly) closer to the destination junction. The main differences
between each exact or heuristics algorithms is which data structure is used
to scan the eligible junction set and how junctions are identified and selected
for examination. The following list classify exact algorithms into two main
categories, according to [Fu et al., 2006].. Label-Setting (LS) algorithms order the scan eligible junction set based

on the current path costs from the source junction to the junctions in
the junction set, and the junction with smallest label is selected for
examination while concurrently identifying the shortest path to the
junction. The algorithm may finish when the label of the destination
junction is calculated, this is usually referred as one-to-one search mode
(find shortest paths between two specific junctions) or all-pairs (when
run for each O-D). Some variations of such algorithms are related to
which data structure is used for the ordered scan eligible junction set:
LS with sorted list; LS with buckets; and LS with binary heap.. Label-Correcting (LC) algorithms uses a list structure to manage the scan
eligible junction set that needs to be examined. Therefore, they cannot
provide the shortest path between two junctions before the shortest
path to every junction in the network is defined, what characterizes a
one-to-all search mode (find shortest paths between the source and all
other junctions). Some variations of such algorithms are related to the
operation policy of the list structure: LC with queue; LC with double
ended queue; and LC with threshold lists.

These exact and heuristics algorithms are useful only for the shortest-path
problem (or for problems that can be modelled as the shortest path problem).
Another category of algorithms that can also solve the optimal route problem
is the meta-heuristics. Meta-heuristic algorithms have a generic way to
solve the search problem and they are applicable not only for routing, but
also on many different problems. Some examples are o the following list..Genetic Algorithm (GA) is a global optimization and search technique

based on the principles of genetics and natural selection, in which a
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population composed of many individuals (e.g. solutions) evolve under
specified selection rules to a state that maximizes their fitness to the
optimal solution [Mitchell, 1998].. Ant Colony is a probabilistic technique where ants randomly look for food,
and once they find it they return to their colony laying down pheromone
trail that are likely to be followed by other ants and reinforced in case
they find food [Dorigo and Stutzle, 2004].. Neural Networks are inspired by the way biological nervous systems (e.g.
synaptic connections that exist between the brain neurones), where a
large number of highly interconnected neurones first learn examples (for
instance an input pattern and output characteristics) and then adjust its
configurations to predict the output based on the inputs [Gupta et al.,
2003].

Dynamic algorithms allow edge updates (insertion or deletion of edges
from the graph) and perform query operations (compute costs) efficiently
in a real-time manner, being: all-pairs when besides handling insert/delete,
and update operations, algorithms answer the total cost queries between any
O-D pair on the graph; or single-source, in which algorithms compute the
update and query operations for the total costs from the source junction
to a given target junction. Another possibility are stochastic algorithms,
they account the uncertainty of edges cost by modelling them as random
variables and aim to find the shortest paths based on the least expected
costs. Such algorithms can be: adaptive, if they determine only the best next
junction at the each decision point (e.g. junction) of the shortest path, based
on the edge costs at arrival on each edge along the path; or non-adaptive,
when determining the whole shortest path at certain time instant. Time-
dependent algorithms process graphs that have edges associated with a
function that can be: discrete time, if assumes the edge weight functions
defined over a finite discrete time window, what reduces the problem to
computing shortest paths over a static network per time window (usually a
time-expanded network); or continuous time, where the edge cost are defined
by a continuous function (usually piecewise linear) [Madkour et al., 2017].

From this point, when we use the term cost (or weight) of an edge, we will
refer to the travel time on the edge, what leads to the minimum-time path
problem (also known as fastest-path problem or earliest-arrival time problem).
This is because the time-dependent travel costs shortest path problem, even if
travel times are static, is NP-hard [Dean, 2004] due to its similarity in nature
to non-FIFO minimum-time path problems. This is also showed in [Batz and
Sanders, 2012], where a multi-label A* search was applied to combine time-
dependent travel time to time-invariant approximate costs proportional to
driving distance (e.g. energy consumption, tolls, etc.). In addition, although
including stochastic travel times may be desirable, this comes with the price
of increased size of the exchanged messages between traffic controllers, more
computations, and the need of assumptions as well prediction of probabilities
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regarding traffic light states and vehicle travel times. Under adaptive and
actuated signal control, signal timings would depend heavily on the prediction
of vehicle arrivals, what could be complex to accurately forecast when signal
control is not chained to the route of vehicles and when there is no total
overview of traffic flows. Moreover, if As the information about signal timings
and traffic is updated quite regularly as well as reliably predicted for some
short time ahead, we don’t need to include a stochastic element. Therefore,
we will focus only on deterministic time-dependent edge travel times as edges’
cost, but still considering the stochastic route choice into the calculation of
travel times (i.e. turning probabilities or route choice given perceived travel
times). This time-varying travel time applies to drivers at the time they
arrive the edge. On this way we still capture some short-term time-varying
random flows but using only the current expected signal timings provided by
the traffic controllers.

The ability to give the solution within short time is fundamental for a route
guidance application, being discrete time the chosen input for the shortest
path algorithm in order to reduce the complexity [Dean, 2004]. However,
these discrete models can miss the state of the network between any two
discrete-time instants if they are too long, while error can be accumulated if
the departure time from a junction (i.e. query time) is between two intervals
not captured in the model [Demiryurek et al., 2011]. Moreover, the chosen
algorithm must have the FIFO (First-In-First-Out) property, meaning that
waiting at junctions is not allowed and moving objects exit from an edge
in the same order they entered the edge. Vehicles are not expected to wait
voluntarily at junctions as well as the time-dependent problem without this
property is NP-hard in continuous time ([Dean, 2004], [Chen and Tang, 1998]),
while FIFO efficient polynomial-time solution algorithms are available [Dean,
2004]. Exact algorithms are acceptable if a vehicle has already a complete
network-wide route and just need to find the shortest path to the last junction
of its route that is within certain range (i.e. sub-network of on-line data)
from the source junction. However, the myopic approach of using exact
algorithms in a sub-network may discard better alternative routes that have
a different last junction outside the range (from the source junction) with
on-line information. The use of heuristics is recommended only when running
the algorithm in a large network, though it might lead to optimal routes.

3.1 Shortest Path in Discrete FIFO
Time-Dependent Networks

The time-dependent shortest path problem considers that the network char-
acteristics change over time (e.g. due recurrent and predicted non-recurrent
congestion) and such changes are known in advance. It was first introduced
in [Cooke and Halsey, 1966], in which the main assumption is that future
travel time along each edge is a function of the departure time along an edge,
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defined certain time before.
[Dean, 2004] studied theoretical properties and provided a simple framework

of solution algorithms which unifies previous research on time-dependent
shortest path problems. The author identified 16 different variants of this
problem, and model them using arc arrival time functions for finding the
earliest arrival from source junction s to a destination d, instead of arc travel
time functions for least travel time usually seem in the literature. However,
as most of the variants are similar or highly symmetric in time, he reduced
these variants into 2 fundamental problems (using "wildcard notation" *):. EAs,∗(t) : the earliest arrival from source junction s to all other junctions

vj+1 ∈ V \ s in the graph G departing at time (i.e., query time) t; and. EAs,∗(∗) : the earliest arrival from source junction s to all other junctions
vj+1 ∈ V \ s in the graph G for every possible departure time T =
{0, 1, .., tmax} (finite-length window of time from t = 0 until a planning
horizon at t = tmax). Although this latter problem will not be analysed as
our local level routing system will not have control of vehicle’s departure
time, a description of the algorithm can be found in Appendix A.2.

The inputs for the time-dependent shortest path problem are a directed
network G = (V,E), and a non-decreasing arrival time function avj ,vj+1(t) ≥ t
for every edge (vj , vj+1) ∈ E, while n = |V | and m = |E|. The avj ,vj+1(t)
corresponds to the time of arrival at vj+1 if a vehicle departs from vj at time
t (and consequently the travel time along the edge (vj , vj+1) can be found by
avj ,vj+1(t)− t). In addition, due to FIFO property, any vehicle departed from
vj after an arbitrary t0 cannot arrive earlier at vj+1 than the one(s) departed at
t0. As outputs, P (s, d) denote the set of paths between a source junction s and
a destination junction d, and the function EAs,d(t) = min{ap(t) : p ∈ P (s, d)}
gives the earliest arrival time at junction d if one leaves s at time t, where
ap(t) is the path arrival time function of a path p.

3.1.1 Earliest Arrival for Fixed Departure Time

[Dean, 2004] states that the EAs,∗(t) problem is quite similar to the static
shortest path problem. He presents a pseudocode for a modified variant of
label-setting (i.e. Dijkstra), seen in Algorithm 1, and another for a label-
correcting static shortest path, found in the Appendix 3. Regarding the
running times, for the label-setting algorithm, it depends on the implemen-
tation of the priority queue, S, being the best upper bound O(m+ n logn)
achieved when S is a Fibonacci heap; while the label-correcting algorithm
depends on the implementation of the set Q, in which a polynomial running
time of O(mn) is achieved using FIFO queue. These modified shortest path
algorithms have the same performance as the static algorithms, where

pvj+1 : is the preceding edge ek = (vj , vj+1) on the shortest path to junction
vj+1,
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lvj+1 : is the cost, commonly referred as the “distance label”, of visiting the

junction vj+1,

cek : is the cost to transverse edge k, where ek = (vj , vj+1), and

S : is the scan eligible junction set which manages the junctions to be
examined during the search procedure.

Algorithm 1 Pseudocode to solve the earliest arrival from source s to a
destination d using a label setting (Dijkstra) algorithm [Dean, 2004].
Input: t, V, E, avj ,vj+1(t) ∀ ek = (vj , vj+1) ∈ E
Output: EAs,vj+1(t)
EAs,vj (t) =∞ ∀ vj ∈ V \ {s}
EAs,s(t) = t
S = V
while S 6= ∅ do
Select a junction vj ∈ S minimizing EAs,vj (t)
S = S \ {vj}
for each junction vj+1 connected to vj , where ek = (vj , vj+1) ∈ E do
EAs,vj+1(t) = min{EAs,vj+1(t), avj ,vj+1(EAs,vj (t))}

end for
end while

3.1.2 Speed-up Techniques

According to [Dreyfus, 1969], the time-dependent fastest path problem (in
FIFO networks) can be solved by modifying the Dijkstra’s algorithm, in
which we showed in Algorithm 1 a version presented in [Dean, 2004]. While
this simple modified (time-dependent) Dijkstra visits all network junctions
reachable from s in every direction until destination junction d is reached,
a time-dependent A* algorithm (for instance, the one proposed in [Chabini
and Lan, 2002]) can significantly reduce the number of junctions to be visited
compared to Dijkstra. The idea is to use a monotonic (i.e. consistent) heuristic
function h(vj) that directs the search towards the destination junction d.
One important aspect is that h(vj) must be less than or equal to the actual
distance between an intermediate junction vj and d. A good estimation of the
distance to d by the heuristic function efficiently drives the A* search, while
if h(vj) = 0 then the algorithm behaves exactly like Dijkstra’s algorithm. In
time-dependent road networks, a lower-bound estimative of h(vj) (that never
overestimates the travel time) can be the Euclidean distance between vj and
d divided by the maximum speed among the edges in the entire network.
However, this estimative is a very loose bound, what can lead to insignificant
reduction of the search space. Although there are several other speed-up
techniques in the literature (see Appendix A.3), we will not go deeper into
this topic as A* is already a good option of heuristics and similar to the exact
algorithm presented in Algorithm 1.
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Chapter 4
Edge Cost Estimation

In Chapter 2 we reviewed several approaches of systems similar to the local
level routing. Even though most of them share the same characteristics, they
always differ in two aspects: how they solve the optimal route problem, which
we explored in Chapter 3; and how they estimate the costs on each edge.
For this latter problem, it is important to direct our research on possible
solutions based on the available information, we don’t need to forecast flow
from upstream connected junctions, neither predict signal timings as they
will be known. Thus, the main task is to explore ways how to predict edge
travel time (as we defined in Chapter 3 that this will be the edge cost) along
a planning horizon with the knowledge of the signal timings and queue length
at junctions, in addition to traffic arrivals (i.e arrival profile and vehicles
already on the edge). In this chapter we research how the travel time along
an edge is modelled and why we will explore existing queueing models to
support a new traffic theoretic model we will propose for modelling vehicles.

The edge travel time (valid within certain time interval) is the representation
of the time spent by each vehicle travelling along an edge during certain
time interval, and should be the input into the optimal route algorithm (i.e.
shortest-path algorithm). Generally, travel time is a distribution that is often
approximated by the arithmetic mean of the travel time of vehicles that
traverse the edge during a given time interval [Krishnamoorthy, 2008]. On
urban roads, vehicle arrivals at junctions are mainly in platoons, while due
to traffic signals and their coordination vehicle travel time distribution tends
to be gamma, log-normal (normal with positive skewness) ([Dong, 2011],
[Liobaite and Khokhlov, 2016]), multi-modal (two or more distinct peaks)
[Krishnamoorthy, 2008], or, for platoons, normal or binomial [FHWA, 2018].
As seen in Figure 4.1, the first peak of the distribution corresponds to vehicles
that get minimal or no signal delay (no "cycle failure") and they don’t need to
slowdown due a queue in front of them (e.g. vehicles from upstream arriving
after some other vehicles). At the second valley some vehicles can still cross
without having to wait for another cycle but they got some delay due the
dissipation of the queue at the time they arrive (e.g. first vehicles arriving
from upstream), and the last peak the vehicles that will get red signal at the
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time they arrive.

Figure 4.1: Idealised travel time distribution on an urban edge, adapted from
[Krishnamoorthy, 2008].

The relationship between flow and travel times look as the curve in Fig-
ure 4.2, where congestion/queueing not only affects travel time but also traffic
flow. [Srinivas Peeta et al., 2015] presented a dynamical system for a gen-
eral time-dependent edge travel time function (referred as edge performance
function), which can be found in Appendix B.

Figure 4.2: Relationship between edge travel time and edge flow, adapted from
[Srinivas Peeta et al., 2015].

There are three different types of travel time data formats [Chrobok et al.,
2000]:

. historical;
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. current; and. predictive.

Currently, it is common that route recommendations are based on current
travel times. However, using current travel times might be effective due
the fact that traffic conditions may change a lot since the collection of the
informations until the time drivers actually arrive on the edge (though some
stability of travel times are expected in short periods of time). Specially
in urban roads where travel times depend not only of real measurements,
but also the signal timings and the coordination of them between junctions
[Krishnamoorthy, 2008]. Therefore, some anticipation of future events is
necessary to provide predictive travel times, which are dependent on the
capabilities of the system, route recommendation policy, driver response to
the recommendations, and other unknown factors. Usually, at least at certain
point, travel time prediction models combine historical travel times data
with current and/or predicted travel times. As this combination (commonly)
involves a large amount of data, recurring patterns can be predicted with good
precision, but at cost of insensitivity to current traffic conditions [Watling
and van Vuren, 1993]. In practice, future travel times can be estimated a
priori with uncertainty, which is due in part to variations of driver behaviour,
heterogeneous/mixed traffic environment and other random events, e.g. ac-
cidents [Yang and Miller-Hooks, 2004]. Travel time prediction models can
be distinguished into two main approaches (statistical or analytical) accord-
ing to [Wu et al., 2004], or classified by the conceptual foundation of their
parameters [Treiber and Kesting, 2013], as illustrated in Figure 4.3.

Figure 4.3: Classification of travel time prediction models.

Statistical models (inductive approaches in [Hoogendoorn and Bovy,
2001]) are based on the correlation between time-variant historical and current
traffic variables such as travel times, speeds, and volumes as input. The
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main idea of traffic forecasting in statistical models is that they can both
reconstruct deterministic traffic motion and predict the random behaviours
caused due unexpected factors by fitting real data. These methods can be
classified, according to [Chen et al., 2014] into the following list.

. Time series models, in which the main classes are Kalman filter mod-
els [Ojeda et al., 2013] and auto-regressive integrated moving average
(ARIMA) models [Ermagun and David Levinson, 2017].. Data-driven methods, such as neural networks [Anderson and Bell, 1997],
support vector regression (SVR) [Chun-Hsin Wu et al., 2003] and k-
nearest neighbour (k-NN) models [Tak et al., 2014].

Analytical models (deductive approaches in [Hoogendoorn and Bovy,
2001]) predict travel times using physical laws, and usually require either dy-
namic O-D matrices or the junction’s arrival profile and capacity to discharge
as input. [Krishnamoorthy, 2008] categories travel time analytical models
according to the two first items of the following list.

. Traffic theoretic models, where the predicted travel times are calculated
based on the simulation of the chosen traffic flow model..Queuing models estimate delays and hence travel times for signalised
junctions based on queue estimation and signal timings.. [Hoogendoorn and Bovy, 2001] also includes the intermediate approaches,
where mathematical model-structures are first developed which real data
is then fitted.

[Treiber and Kesting, 2013] points out that one important factor related to
the model is about its conceptual foundation of its parameters. Heuristic
models are generally used when the model have no intuitive meaning about
the form of an unknown function, and use simple mathematical statements
(e.g. regression techniques), in which coefficients play the role of the model
parameters by fitting data into it. On the other hand, parameters of first
principles models are reflected by postulates, for instance, driver behaviour
is determined by desired values of speed, acceleration, deceleration, time gap,
and minimum gap.

As we have information of vehicle arrivals (at least statistically from
upstream junctions), the estimated queue length and short-term signal timings,
we don’t need to rely on statistical models that are based on historical data.
However, such models could be useful for the time-dependent travel times
which are beyond our local level routing planning horizon, what is out of
scope of this thesis. Therefore, we apply analytical models to specify the
relationship between the information related to the traffic and signal timings
with the travel time, based on first principles of traffic flow theory.
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4.1 Traffic Theoretic Models

Traffic flow models aim to describe the behaviour of the complex traffic
flow system by modelling the dynamics of vehicles and drivers in terms
of mathematical equations, usually in the form of dynamical systems. As
illustrated in Figure 4.4, mathematical equations and the theory of traffic
flow define the model, by which, once calibrated, best fit with the traffic data
and can be used to predict traffic flow or other applications (e.g. predict
travel time) [Treiber and Kesting, 2013].

Figure 4.4: Traffic flow modelling [Treiber and Kesting, 2013].

The chosen theory of traffic flow needs to have sufficient description of the
traffic depending on its application purpose. The following list presents how
traffic models are classified according to [Hoogendoorn and Bovy, 2001] and
[Treiber and Kesting, 2013].. Scale of the independent variables: it is a natural classification

based on the time-scale, space-scale, and state variables. Discrete state
variable models describe specific traffic patterns to simplify models.
Continuous state variable models describe most of the traffic patterns
(density, flow, speed or occupation).. Discrete space models usually discretize the space into cells, where

occupation and/or state variables, at every time step, of the cells
is not only determined by its values at the previous time step but
also state/occupation of the neighbouring vehicles or cells. The
accuracy of the numerical solution is only restricted by numerical
rounding errors.. Discrete time models creates discrete time steps, ∆t (model param-
eter and sometimes discrete by events, i.e. when a vehicle enters of
leave a cell), while the state variables (e.g. speed) usually remain
continuous.. Continuous space models use space not divided into cells.. Continuous time models describe continuous changes over time
of the traffic system’s state, the mathematically exact solution is
obtained in the limit ∆t → 0. When using Partial Differential
Equations (PDE), both location x and time t are continuous and
serve as the independent variables (e.g. local speed), while Coupled
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Ordinary Differential Equations have continuous state variables (e.g.
speed of a vehicle)..Representation of the processes: models can be deterministic, in

which same equation with same inputs will result on same results defined
by exact relationships; or stochastic, where random elements (also known
as noise terms or stochastic term) describe aspects of the traffic flow
which are unknown, immeasurable, impossible to model..Operationalisation: analytical (also known as traffic stream models)
represent static solutions given sets of equations describing pairwise
relations between state variables (e.g. density, flow, speed or occupation)
when the road conditions and traffic state remains the same on a segment.
Simulation models, represent dynamic solutions when the traffic state
and road conditions change during the time on a segment.. Scale of application: it indicates the area that will be described by
the model, e.g. a single junction, an arterial, an entire traffic network,
etc;. Level of detail: it considers the representation of the traffic flow
characteristics [Ni, 2016].. Picoscopic, where individual drivers and vehicle-units are modelled

considering how a driver operates his/her vehicle in the driving
environment. The system is based on control theory and detailed
representation of the interaction between each object in the model,
consisting in a driver-vehicle-environment closed-loop control sys-
tem..Microscopic, in which the model describes space-time motion of
vehicles as well as their individually interactions (chain of drivers’
decisions). Roads and lanes are simplified into lines while vehicles
behave as particles, and driver’s longitudinal and lateral control are
separate but simpler models..Mesoscopic, where the behaviour of a group of drivers is specified
based on an time evolution equation for the probability distribu-
tion of vehicle’s position and velocity along the road considering
microscopic values (e.g. acceleration, interaction between vehicles,
lane-changing)..Macroscopic, traffic flow is characterized in term of flows and group
of drivers, describing the dynamics of macroscopic variables (e.g.
density, velocity, and flow) using partial differential equations gen-
erating the average state of road stretch.

Regarding the scale of the independent variables, in Chapter 3 we have
defined that we need to estimate discrete time-dependent travel times in
order to reduce the computational burden. Additionally, as these travel times
are valid for edges, we should use both discrete space and time models.
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The representation of the processes may be both deterministic or stochastic,
though deterministic is more desirable to reduce the complexity of the
model and aid to the stability of the system. Considering the fact that we
need to provide some prediction along a planning horizon, and a deterministic
model is the first choice, analytical models enable us to create longer
planning horizon and more predicable results on an event-basis. The scale of
application should support macro-scale (not only junctions or arterials) but
should have quite higher level of detail as aggregated measures may fail to
evaluate microscopic interaction between vehicles.

We need to explore solutions to calculate the edge travel time considering
mainly the information of the inflow profile, queue length and signal timings.
The arrival time of vehicles at a signalized junction plays a big role on
defining the travel times due signal timings, what tell us that microscopic and
picoscopic models are the first choice due the high level of detail. However, we
are not that interested in so much detail provided by picoscopic, as they are
more suitable to model the impacts of driver support system on the vehicle
dynamics and driving behaviour [Hoogendoorn and Bovy, 2001]. The problem
of microscopic models is that they are all simulation models. They need
to be continuously updated, what in a considerable medium size network
with many vehicles could be very slow as we need to provide some prediction
time during the planning horizon, too complex when the goal is only the
estimation of travel times, and require the information about queue length
and vehicles going from one traffic controller area to another to be shared
instantly. The remaining models (mesoscopic and macroscopic) seem also
suitable. However, although macroscopic models are a well-studied topic that
may aid the prediction of flows profiles, and discussed in Appendix B.1.1, their
low level of detail may not provide enough information what we need. For
instance, they fail to estimate delay due queue clearance, as it is a function of
the vechicle’s position in the queue and they focus on the average speed and
density. Additionally, truly mesoscopic models are still under improvement,
and many conventional mesoscopic models in fact share some microscopic and
macroscopic characteristics at the same time [Ni, 2016]. The other option is
the queueing models, which will be discussed in Section 4.2. They can model
queue clearance delay and reduce the calculations per each traffic signal phase
(compared to constant updates of simulation models). Therefore, considering
that the information from Cooperative Automated Vehicles (CAVs), queue
length estimation, and communication between TCs may enable us to have
the knowledge of how many vehicles are at the junction at certain time and
when certain amount will come in the future, we can use such information
for a new traffic theoretic model to be proposed. The goal is to only estimate
vehicle’s position, speed and time at certain important events where it could
produce delays. This would manage to avoid too many calculations and it
would serve as an input for a queueing model to calculate delays due signal
plans and the modelled traffic.
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4.2 Queuing Models

Queuing theory is probably the most straightforward approach to model traffic
dynamics. Due to the simplicity of queueing models, after the first work
by [Webster, 1958], such models have been widely used for junction control
and analysis. In queuing theory, a (virtual) queue of vehicles starts when
the inflow to a bottleneck (e.g. red traffic light or non-protected left-turn) is
larger than the bottleneck capacity. This can be represented in the following
equation, according to ([Hoogendoorn and Knoop, 2012], [FHWA, 2018]):

dqk = Qk(t)dt− Ck(t)dt, (4.1)

where qk is the number of vehicles in the queue (while dqk the change of
the number of vehicles in the queue, Qk(t) the flow (inflow) in vehicles/s
into the bottleneck, Ck(t) the capacity of the bottleneck (and also the outflow
in vehicles/s from it), for edge k at time t. One important aspect of it is
that the capacity Ck(t) is time dependent. While the inflow is given by the
pattern of the arrival of vehicles, the capacity can be defined by the saturation
flow (in vehicles/s) at junction. One disadvantage of the queuing theory is
that the queues have no spatial dimension, and they do not have a proper
length as they are counted in number of vehicles and not by the space they
occupy [Hoogendoorn and Knoop, 2012]. This type of queue is called vertical
queue, while the other type is the horizontal queue specifying certain length
as distance, they are both illustrated in Figure 4.5.

Figure 4.5: Queue types.

Then, the simplest way to define a travel time function TTk using queuing
models is applying the point-queue model, where the second term represents
the time to discharge the entire queue qk = qk(t) at time t [Srinivas Peeta
et al., 2015]:

TTk = TT 0
k + qk(t)

Ck(t)
. (4.2)

However, both the arrival Qk(t) and capacity Ck(t) of the bottleneck have
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some randomness process. For instance, some drivers have a shorter reaction
time than others, leading to a shorter headway [Hoogendoorn and Knoop,
2012]. This leads to how queueing models compute delays at junctions, often
having the first two components [FHWA, 2018], but also a third according
to [Bureau of Public Roads, 1950] and illustrated in Figures 4.6 and 4.7,
resulting in dk = duk + dok + dqk the following list.

. deterministic (or uniform), denoted duk , founded on the fluid theory of
traffic flow (which we describe in section B.1.1), where demand (inflow)
and supply (capacity) flows are continuous variables that vary over time
(periods in Figure 4.6), and its value is due the congestion caused by the
flow to capacity ratio.. stochastic (also random, overflow or incremental), denoted dok, based
on adaptations of the steady-state queuing theory, which accounts the
distributions of the arrival rate and service time to reflect the random
(non-uniform) properties of traffic flow (e.g. temporary cycle failures due
to demand approaching supply).. initial queue, denoted dqk, which considers the delay to all vehicles due
to an initial queue within a period of time in analysis. This is because
usually the calculation of delays accounts the signal plan beyond one
cycle. As we are going to see later (and illustrated in Figure 4.6), the
common practice it to divide the period into intervals of constant inflow
and between such intervals there can be some remaining estimated queue
if the inflow is higher than the capacity of the signal.

Figure 4.6: Delay model components for multiple-period analysis, adapted from
[Bureau of Public Roads, 1950].

From now until the end of this section, we will not denote the subscript k
when defining variables. This is due the fact that queueing models are specific
to a particular junction (suppose junction vj+1 ≡ j+1) and hence the incoming
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Figure 4.7: Functions of delay model, adapted from [Mathew, 2014].

edge to it (assuming k = (j, j + 1) ≡ ek = (vj , vj+1)) is already implicit to
the variables of queueing models. For instance, Figure 4.8 illustrates the
process of queue development given uniform arrival and departure rates at a
signalized junction, where the deterministic component of the cyclic delay duk
(the area under the queue profile diagram) can be easily estimated under the
following assumptions...1. a zero initial queue at the start of the green phase...2. a uniform arrival pattern at the arrival flow rate Q = Qk(t) throughout

the cycle c...3. a uniform departure pattern at the saturation flow rate S = Sk(t) (in
vehicles/s) while a queue is present, and at the arrival rate when the
queue vanishes...4. arrivals do not exceed the signal capacity C = Ck(t).

The effective green time g, seen in Figure 4.8, is the fraction of the green
time during one cycle, c, (given by the green split λ) where outflows achieve
the saturation flow S. Usually, it is defined by the total green time minus an
initial start-up/acceleration lost time (2-3 seconds) plus the clearance interval
(2-4 seconds). The signal capacity,

C = S

(
g

c

)
, (4.3)

represents the amount of vehicles the signal can discharge during the effective
green time (in vehicles/s), where g/c is the effective green to cycle ratio.

In reality, as the arrival and capacity can vary over time, while the arrival
might be uniform, the queue development with some stochastic component
can look like in Figure 4.9. The more the inflow reaches the capacity the
more the likelihood of “cycle failures”, in which vehicles are not able to
discharge in one cycle and create the so called overflow queue of vehicles
(initial queue for next cycle). We should notice that this initial queue is only
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Figure 4.8: Deterministic component of queuing models with uniform arrival
rate, adapted from [FHWA, 2018].

due a random phenomenon, depending on which cycle happens to experience
higher-than-capacity flow rates, which causes an additional delay which must
be considered. The following list presents how the modelling of the queue
development varies with the queue model approach [FHWA, 2018].

. Steady-state queuing models: Delays are calculated based on sta-
tistical distributions of the arrival and departure processes, assuming
that, after sufficient time, the state of the system is independent from
its initial state and the elapsed time (stochastic equilibrium)..Time-dependent queuing models: It is assumed stationary arrival
and departure processes (which are not necessarily under stochastic
equilibrium) that can be approximated by some mathematical function
(step-function, parabolic, or triangular functions), and its average delay
and queues are valid over the period of time in which the arrival are
applicable..Deterministic (oversaturation) models: They model arrival and
departure rates as a deterministic function of time, and calculate the av-
erage delay per arriving vehicle during certain time interval [Rouphail M
and Akcelik, 1992].
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Figure 4.9: Total delay of queuing models with non-uniform arrival rate, adapted
from [Hoogendoorn and Knoop, 2012].

The first issue with steady-state queuing models is that the equations
assume fixed signal control and fixed signal capacity, what is not the situation
in many cases of urban environments. The second issue is that once the average
inflowQ exceeds the average capacity rate C, the stochastic equilibrium cannot
be achieved (called oversaturated conditions, while the opposite situation is
known as undersaturated condition). Actually, such conditions may occur
already when inflow approaches signal capacity. Additionally, steady-state is
valid only for random arrivals (when vehicles don’t interact to each other and
therefore no platooning) at the signal (e.g. Binomial and Poisson headway
distributions). This is important and discussed in Appendix B.2.3, because
such random arrivals do not reflect the influence of upstream traffic signals
and control, being useful only for isolated junctions. The choice between
time-dependent queuing models and deterministic models are based on the
input information we will have for the queueing model. The traffic theoretic
model should be able to model individual vehicles flowing between junctions
and provide queue prediction (based on the arrival and departure of vehicles).
Therefore, relying on models that use step-functions to model the arrival
process is not useful once we have already the arrival process modelled by the
traffic theoretic model. The assumption for deterministic models is that the
fluctuations of the queue length due randomness can be neglected as they
use flow rates for the estimation of the queues. However, if we substitute
the queue prediction from flow rates to the prediction of the traffic theoretic
model, we can overcome this limitation and still determine a reasonable delay
specific for each time window of the planning horizon. In the remaining of this
chapter we will focus on deterministic models, while the discussion related
to other queuing models can be found in Appendix B.2.1 (steady-state) and
in Appendix B.2.2 (time-dependent).
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4.2.1 Deterministic (Oversaturation) Models

A simple deterministic model explicitly considers the delay in two terms, du
representing a uniform delay, while the second, do, corresponding the overflow
delay based on the saturation degree, x, and a period of aggregation, lenrge
([Catling, 1977] apud [FHWA, 2018]):

d = du + lenrge

2 (x− 1), (4.4)

in which x is the degree of saturation given by

x =
Q/S

g/c
. (4.5)

([May Jr and Keller, 1967] apud [FHWA, 2018]) proposed a deterministic
modelling approach to calculate delay and queues, originally for an unsignal-
ized bottleneck. Their approach can be modified for signalized junctions, as
it follows:

A(t) =
∫ t

0
Q(τ)dτ, (4.6)

D(t) =
∫ t

0
C(τ)dτ, (4.7)

q(t) = q(0) +A(t)−D(t), (4.8)

C(τ) =


0 if signal is red

S(τ) if signal is green and q(τ) > 0
Q(τ) if signal is green and q(τ) = 0, and

(4.9)

d = 1
A(lenrge)

∫ lenrge

0
q(t)dt, (4.10)

where

lenrge is the time in which the arrival and departure processes are stationary,

A(t) is the cumulative number of arrivals from beginning of cycle starts
until t,

D(t) is the departures under continuous presence of vehicle queue from
beginning of cycle starts until t, and

d is the average delay of vehicles queuing during the time period [0, lenrge].

Such approach (illustrated in Figure 4.10) is similar to the delay term of
Equation 4.2, but here the average delay is over the time period [0, lenrge]
(e.g. one cycle) at the time the delay on Equation 4.2 is the queue clearance
time at time instant t. While Equation 4.8 is equivalent to Equation 4.1.
Additionally, as Equation 4.4 shows, at low saturation degree, the delay
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is almost the same as the uniform component du of the delay d, while at
very high saturation degree the equation can describe the delay d ≈ do (the
overflow component of delay) because the small participation of the uniform
component of delay. This issue also applies for other deterministic models, i.e.
Equations 4.2 and 4.10. Therefore, deterministic queueing models tend to
underestimate queues and delays, being reasonable only when (x� 1, very
low flow) or (x� 1, highly oversaturated, i.e. > 1.4).

Figure 4.10: Delay on deterministic oversaturated model, adapted from
[Rouphail M and Akcelik, 1992].

The problem of the model proposed by [May Jr and Keller, 1967] is that it
uses the flow and traffic signal capacity to estimate the number of arrivals and
departures, what neglects fluctuations of the queue length due randomness.
However, once we are able to model vehicle arrivals and departures for each
edge using a traffic theoretic model, we only need the delay calculation of
this queueing model (Equation 4.10). On this way we can estimate the delay
at certain time range based on the predicted queue which will have already
considered the random factors.
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Chapter 5
Proposed Local Level Routing System

The idea of local level routing is that the knowledge of traffic light plans in
advance may enable vehicles to get a green wave on one route alternative, or
if a queue is about to grow beyond the capacity of one cycle of the traffic
light, it routes to another alternative. These traffic lights are controlled by
Traffic Controllers (TCs) that may control one or more traffic lights and even
communicate with other controllers in the same Traffic Network (TN), as
seen in Figure 5.1.

Cooperative Automated Vehicles (CAVs) are expected to have embedded
On-board Units (OBUs) that are able to store historical discrete travel times
or compute them for all edges in the network (if they use functions instead of
discrete values), and also get on-line information with better estimation of
travel times (TTs) from TCs through Roadside Units (RSUs) once they are
inside its communication range. Moreover, such vehicles may send information
related to their state (position, speed, etc.), capabilities (e.g. acceleration
and deceleration) and planed route. Therefore, we can define the local level
routing problem as how to:..1. link signal plans and unexpected events information with the information

of current and predicted vehicles on each lane, in order to estimate if a
vehicle may get green light or how long it would delay if it arrives an
edge at a certain time;..2. choose between individual route advices with suitable route or informa-
tion of time dependant edge travel times for all vehicles; and..3. consider the properties of the network, if we have a traffic network
controlled by one traffic controller, or just a group of junctions with their
own traffic controller that communicates (or not) with other TCs.

From this point, we need to understand the behaviour of two groups:
cooperative automated vehicles; and modelled vehicles. Both of them may
have a global destination, let’s say in the other side of the city, but always a
local destination, which is within the area controlled by the traffic controller
they are at certain moment. Once they obtain information of the TN’s travel
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Figure 5.1: Communication among CAVs and TCs in a Traffic Network (TN).

times they may change their local destination, because from their entire route
perspective it is better to change completely its route, instead of finding an
alternative between current junction and local destination. This is important
as an alternative faster route taking more green waves to a local destination
may not improve the route to the global destination, because the lack of
information from areas outside the TN. Another point is that it would be
too demanding for a traffic controller to calculate best routes for each vehicle
within the whole network in a very short period of time, though that could
be possible for a fixed single local destination given O-D flows. Therefore,
to model the route choice of automated vehicles, we need to gather their
intended route that are valid for a short period of time. Meanwhile, modelled
vehicles are vehicles that do not communicate with traffic controllers, or
automated vehicles that didn’t arrive yet at certain future junction, or they
don’t share their intended route.

In this way, the goal is to offer a better alternative of nowadays systems
that use historical travel times and cannot capture small changes of travel
times due to the dynamism of urban networks. Figure 5.2 shows a grid type

ctuthesis t1606152353 38



.......................... 5. Proposed Local Level Routing System

network, where there are 3 coloured areas (which form a traffic network)
representing traffic controllers (TCs) that are responsible for the traffic on
the edges connecting each junctions) belonging to its colour. On the left
side, it represents the route a vehicle would take if it uses only information
from its OBU (off-line), while on the other one real-time information (on-line)
is provided. We can see that the route changes even outside of the traffic
network due the traffic jams. This is because the vehicle chooses the best
route considering information of the whole network, using both updated data
from the TCs of the traffic network it is inside and its own knowledge (i.e.
OBU). The opposite case would be the vehicle receiving an advised route to
its local destination (inside the traffic network), what would lead to a worse
alternative as it would have to pass the congested edges. Therefore, providing
real-time information and leaving vehicles to use it together with what they
already have seems to be a better idea as they aim to a global destination
outside the traffic network.

Figure 5.2: Vehicle changing its route due to on-line information from traffic
controllers (TCs).

We approach the local level routing problem by assuming that vehicles have
the knowledge of average travel times of the whole network, but providing
more accurate edge travel times will help them to reduce travel times. The key
aspect is the estimation of the travel time as precise and reliable as possible
that a vehicle would experience if would enter certain edge at a specific time.
Figure 5.3 briefly defines the information required, during each update of the
system by a TC, to estimate travel times. First, it is needed to detect CAVs
and estimate the number of non-CAVs, including their attributes (e.g initial
position and speed, acceleration, desired speed, etc). Then, according to the
type of junction (e.g. signalized or unsignalized) the TC either get traffic
signal plans or use the junction rules of which vehicle should yield to which,
besides lane status information (e.g. if blocked due to an accident). At the
end, the TC should be able to predict (or get if available) the route of the
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vehicle through its controlled edges, as well as estimate vehicle’s arrival and
departure from each lane in order to calculate the edge travel times.

Figure 5.3: Necessary information and steps to estimate travel times.

Using these requirements of which information to collect or estimate in
Figure 5.3 and applying it into a system-wide view, where we also have
different TCs communicating within the traffic network, we propose a Local
Level Routing (LLR) system with five sub-systems, seen in the component
UML diagram in Figure 5.4.

The Traffic Network sub-system is responsible for defining the Traffic
Controller’s network attributes, from the incoming and outgoing edges as
well as the possible connections between them for each junction it controls,
up to the aggregation of these connections into movement groups. It not only
provides such static information to all sub-systems, but it is also a single point
for other sub-systems retrieve or change dynamic information like maximum
lane speed and status (interface is required), queue length prediction, and
inflow profile. It is composed by three classes:

. Junctions, containing information related to the junctions, like their
type, signal plans, planning horizon length, the data received from CAVs
and link to the other classes;. Edges, considering the information of each edge such as travel times,
lane queue prediction, inflow and outflow profiles, connection critical gap
times, saturation flow and capacity; and.Movement Groups, representing the groups of connections that either
always get green light (when signalized) at the same time or yield to
the same lanes (when unsignalized) for the TC’s controlled junctions,
including information related to the duration of each movement group
green phases as well as its vehicles considered as probe for estimating
the travel times.

Traffic Controllers Knowledge Sharing assumes that Traffic Con-
trollers (TCs) share among themselves (through a required interface) the
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Figure 5.4: Component UML diagram containing the proposed Local Level
Routing sub-systems.

travel times of their incoming edges to the junctions they model/control traf-
fic, the arrival profile on their outgoing edges to the neighbouring junctions
modelled by other TCs, and the queue length prediction of their incoming
edges that are outgoing edges of junctions modelled by other TCs. The inflow
profile is used to generate vehicles by the Vehicle Generation sub-system,
which is the outflow of an upstream junction estimated by the Trip Defini-
tion sub-system that needs the queue length prediction of outgoing edges to
delay vehicle departures when full queue. A TC needs information of which
junctions controlled by other connected TCs (and their respective edges) it
will send or receive data (i.e flow profile and queue prediction), provided by
the Traffic Network sub-system.

The Vehicle Generation sub-system comprises the set of functions that
generate vehicles on the lanes to have their trip defined by the Trip Definition
sub-system. This sub-system defines the future arrival of vehicles based on the
lane inflow profile by estimating the arrival headways; the vehicles starting on
lanes by estimating vehicles beginning their trip on each lane (data from the
Traffic Network sub-system) and current queue length (data from a required
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interface), but also constrained by the current vehicles on lane and queue
prediction from Trip Definition sub-system; as well as the vehicles already on
lane, i.e. CAVs (required interface) and those expected to be on lane from last
time step. The sub-system can also generate artificial probes that interact
with a vehicle in front and traffic light but a vehicle behind does not interact
with it.

The Trip Definition sub-system defines each vehicle’s edge and junction
through the TC’s network until it reaches its local destination, while it models
the movement of vehicles along the lanes (either generated by the Vehicle
Generation sub-system or estimated, by itself at previous time steps, to be
on each lane), considering: the duration of green phases that each movement
group receives: the possible connections to other lanes, which vehicles have
right-of-way at certain time (from the Traffic Network sub-system); and
queue length prediction of outgoing edge which may delay the departure and
change vehicle’s next 1) edge’s lane, 2) movement group. This sub-system
also defines probe vehicles, which are those that their arrival and departure
time on certain lane will be used for estimation of travel times. Moreover,
the sub-system calculate connection delays, given the constrained capacity of
discharge if vehicles must yield to preferential traffic.

The Estimation of Travel Times sub-system accounts each vehicle’s
lane arrival and departure times as well as their movement group (from the
Trip Definition sub-system) to estimate an average travel time of the incoming
edges. When no trip of a probe vehicle is defined within a time window of
the planning horizon for certain lane and movement group, it is possible to
use a queuing model considering all vehicle arrivals and departures as well
as connection delays and signal timings, or use travel times of the artificial
probes. In case the lane status is blocked, it also influences the travel time.
Additionally, the estimated travel times (TTs) of all TCs in the same traffic
network are broadcast to CAVs (requires an interface).

5.1 Traffic Network

This sub-system controls the characteristics of the TC’s network, it is the
database needed by other sub-systems with static and dynamic data. There
are five main network objects (junctions, edges, lanes, connections, and
movement groups) that need information not only related to them, but also
the link/mapping between each of them (e.g. the edges of a junction or the
lanes of an edge). We will start explaining the required static information
and then describe the dynamic information that can be changed by other
sub-systems.
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5.1.1 Static Data

Figure 5.5 exemplifies some information present in this sub-system. We can
see few junctions/edges, some controlled by Traffic Controller 1 (TC1) and
others by TC2. Here, controlled means which TC is responsible to model
the discharge process of each controlled junction, i.e traffic flowing from the
junction’s incoming edges to its outgoing edges. Although we usually have
two main types of junctions (signalized or unsignalized, i.e. junction contains
or not traffic light), we categorize them further into the following list, where
a junction may have characteristics of more than one category.. Cooperative, for cooperative junctions, e.g. an intersection that has

Roadside Unit (RSU) able to communicate with Cooperative Automated
Vehicles (CAVs)..Modelled Non-Connected, for junctions not connected to the TC, i.e.
unsignalized or those that don’t send their queue length and signal plans
to their TC..Modelled Non-Connected, for connected junctions, i.e. signalized and
sharing queue length as well as signal plans.. Connections, junctions that don’t have traffic control, i.e. lane merge or
lane split.

Each junction has incoming and outgoing edges, and each edge have its
own lanes, as well as connections (the arrows in the TC Area 1) that represent
which lanes are connected at the junction, i.e. the possible movements at
junctions. For both lanes and connections, it should be input their driving
length. In the case of connections, it is necessary their maximum capacity
of discharge (saturation flow) in vehicles/s and which connection they yield
to. Lanes also need the expected gap time between vehicles at the speed
limit, maximum speed, and the adjustments of vehicle’s acceleration and
deceleration. Logically, edges may be incoming to certain junction while
outgoing from another, e.g. edge 1 is outgoing from J1 but incoming to
J2, and incoming edges need their turning rates (probability to a possible
outgoing edge) as well as the probability that vehicles will finish and begin
its trip on the edge, in which for the latter it should be given the probability
per distance to stop line and the average number of vehicles per length of the
time window of the planning horizon.

Figure 5.5 also shows that these connections may be aggregated and receive
a number, which represents the group of movements that contains a common
status, there are two possibilities according to the junction’s traffic control:. signalized, the connections that always receive green light at the same

time in all phases of the cycle are in the same movement group (same
idea o signal groups); and
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Figure 5.5: Example of some information required for the Network Representa-
tion sub-system.

. unsignalized, the connections that must yield to the same set of connec-
tions are in the same movement group;

For instance, in Figure 5.5, the unsignalized Junction 1 (J1), is a 3-leg
junction where vehicles running West-East directions have the priority. In
this way, the through and right-turning movements don’t yield to any traffic,
so they are in the Movement Group (MG) 1. Vehicles taking the connection
from West to South must yield to vehicles from East taking any connection,
while vehicles coming South to West also need to yield to East coming
vehicles, defining MG 2. The last, Movement Group (MG) 3, must yield to
all connections which have their incoming lanes from West-East directions.
The signalized junction J4 could have the same configuration of MGs, but as
its MGs depend on the traffic signal plan (which we set only two phases as
example), the set of MGs is different.

Figure 5.5 also illustrates the TC border junctions, which are junctions that
have either incoming or outgoing edges leading to a junction controlled by a
different TC able to communicate with the TC of the junction been taken as
reference. TCs may control just a single junction, or they can model/control
several junctions, e.g. an arterial or controlling a signalized junction but also
modelling surround unsignalized junctions. A configuration with a single TC
for the whole traffic network could provide better control. However, the TC
would need to have real-time information of all queue lengths, CAVs detected
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by Roadside Units (RSUs) and signal timings of all junctions within the
network. On the other hand, in a distributed scheme TCs communicate to
each other by sending already processed dynamic data between neighbouring
TCs (i.e. edge travel time, lane predicted queue lengths and lane inflow
profile). This is important for defining which edges need information to be
sent to or receive from other neighbouring TCs, and will be discussed in
Section 5.5. This means that the system can be either totally centralized or
partially (even fully) distributed, because an underlying common principle in
all architectures. Vehicles flow from one junction to another in a logical order.
Figure 5.6 shows vehicles passing through a simple network. For example,
some vehicles may go from junction 1 (J1) to junction 6 (J6), or J2 to J5,
while others do the opposite way. Moreover, there are two Traffic Controllers
(TCs) on this route. This means that the system needs a logical sequence of
TCs and junctions to have arrivals and departures to be estimated.

TC 1 Area

TC 2 Area

J1 J2 J3

J4 J5 J6

Figure 5.6: Vehicles flowing through Traffic Controller’s network.

Using Figure 5.6 as example, we need to estimate the arrivals and departures
of J1 first, because J2 will have its arrivals based on the departures of J1,
then J3 because it is based on J2 and J4 which is based on J1. One may
notice that vehicles go both ways (from J1 to J6 and from J6 to J1), so it is
necessary two iterations per algorithm update time step (one iteration per
order/sequence - forward or reverse) to estimate the arrivals and departures
of vehicles both ways. The system also interchange the first order every
update of the algorithm. For instance, at an algorithm update time step,
t = 0, which happens at actualt real time, the forward order is on the
first iteration, tcit = 1, then it makes the reverse on the second iteration,
tcit = 2, while on the next algorithm update time step, t1, occurring at
actualt = actualt+ lenrge, it makes the reverse order at tcit = 1 and then
the forward at tcit = 2. Notice that lenrge is also algorithm update interval.

We discussed above that the information about vehicle arrivals at junction
is necessary to estimate their departures, and consequently their travel time.
Therefore, as we will discuss in Section 5.2, lanes also need: a fixed inflow
profile (parameters necessary to generate future arriving vehicles using head-
way distribution functions), i.e. number of vehicles, flow, mean speed, mean
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of headways and standard deviation of headways; and the low, mid, and high
flow thresholds to define which headway distribution function to use.

Although we call static data, the information may be changed in case of
unexpected events, e.g. reduction of maximum speed of a lane, but it is
not considered dynamic data because its value is not assumed to variate
throughout the planning horizon. The static information related to the TC’s
network must be inserted using the following order of functions provided in
the system (i.e. add all junctions, then all edges and so on):..1. addJunction, adding new junctions and their attributes;..2. addEdgeLanes, adding edges, their respective lanes and their attributes;..3. addConnection, adding connections between edges and their attributes;..4. addMovGroup, adding connections’ movement groups and their at-

tributes;..5. addConnYield2Conns, adding which connection yield to and their at-
tributes; and..6. setUnsignalizedJctMovGroupPlans, setting the right-of-way plans (per-
missive or protected) for unsignalized junctions and their attributes.

5.1.2 Dynamic Data

Analysing again the Figure 5.1, but looking at the flow of information in the
illustrated traffic network, we see that the TC has the knowledge of traffic
signal plans, lane future arrivals (dynamic inflow profile), lane queue length
(predicted queue length), edge travel times (TTs) sent to vehicles, while CAVs’
data (state and if possible their planned route). This information is referenced
by the time interval it is valid, which is a subdivision of a prediction horizon
period.

The planning horizon period, denoted tmax, is a sliding prediction time
subdivided into a constant length lenrange intervals called time windows,
denoted as rgei in Figure 5.7. In addition, at each update of the algorithm, tt
that occurs between lenrge time intervals, it is estimated the system dynamic
data. The planning horizon defines the limit where it is desired to make
estimations of the system’s dynamic data. This tmax is an input for each
junction and should be, at least, the time of one cycle when signalized junction
in order to all movement groups be able to discharge. The value of lenrge is
fixed for the whole system and arbitrary chosen, but very short times (e.g.
5-15 seconds) may not lead to better results and can be computationally
costly.

We should notice that this planning horizon divided into time windows of
length lenrge is used only for edge and lane data. Instead of division with
system’s lenrge, the dynamic data of connections and movement groups use
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Sliding tmax

Sliding tmax

Sliding tmax

Time
lenrge

t = 0 · lenrge

t = 1 · lenrge

t = 2 · lenrge

Time Step

rge0 rge1 rge2 rge3 rge4

rge0 rge1 rge2 rge3 rge4

rge0 rge1 rge2 rge3 rge4

Figure 5.7: Division of a sliding prediction horizon time window into shorter
intervals.

the duration of the green phase for the movement group (and consequently
also the connection), which is logical due the fact that such objects don’t
variate within the green phase. The dynamic data related to the signal plan
has to be given for each movement group (MG) separately in respect to each
phase it gets green, as it follows:..1. MG phase number begin time;..2. MG phase number end time;..3. MG phase number state, protected is no need to yield or permissive if

vehicle must yield to preferential traffic;..4. MG phase number red + amber time; and..5. MG phase number amber time.

An additional "green" phase must be added to each MG of signalized
junctions with starting and end time (meaning zero duration) equal to actualt+
tmax, and red + amber as well as amber times set to zero with any of the two
possible state. The reason for this is discussed in Section 5.3. For the case
of unsignalized junctions, there must be only one signal phase and the mov.
groups only one green phase with begin time zero and end time infinity, while
red + amber and amber times should be zero. This setting models vehicles
at once by the junctions priority rules only.

Now, let’s assume we have a traffic signal with 3 phases planned within
tmax, and a movement group, which we will call J1MG1, has green time
in 2 of this phases. Considering Figure 5.8, at the first algorithm update
time step t = 0, the dynamic capacity of discharge of a connection that is
in the movement group J1MG1, has values only for phase number 0, ph0,
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and number 1 ph1, because at phase number 2 ph2 it has red light. At the
next update t = 1, there are values of capacity again only for the same phase
numbers (0 and 1) but at different times.

tmax

tmax

tmax
Time

t = 0 · lenrge

t = 1 · lenrge

t = 2 · lenrge

Time Step

ph0 ph1

ph0 ph1 ph0

ph1 ph0

Figure 5.8: Division of movement group’s, J1MG1, dynamic data by its green
signal plan.

There are some dynamic data which auxiliary for other sub-systems and
not referenced by time. Sub-systems change their values according to the
way they are able to retrieve the information later. For instance, the Vehicles
on Lane edge instance, denoted as vehicleslane, aggregates the list of all
vehicles expected to be on each lane throughout the time (but without the
information of when they will be on lane). It has three components, described
in the following list.

. Already on Lane, alreadylane, represents the vehicles expected to be on
lane due estimations of previous time steps or CAVs detected on the lane
at the time the algorithm is going to update its calculations.. Starting on Lane, startinglane, corresponds to vehicles that should be
generated on the lane because they were not expected to be there given
estimations of previous algorithm time steps.. Arrivals on Lane, arrivalslane, accounting vehicles that will be arriving
within the planning horizon, i.e. [actualt, actualt+ tmax].

The dynamic information related to the TC’s network is controlled by the
other sub-systems and will described in the upcoming sections.

5.1.3 List of Required Data

The following list summarizes the required information related to each TC.
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Figure 5.9: Composition of the Vehicles on Lane edge instance.

.Modelled/controlled junctions and their type in the other to be done the
estimations by the system..Definition of which junctions are TC border junctions as well as their
lanes in common with neighbouring different TCs.. Each junction’s edges, lanes, connections, and movement (signal) groups.. Each edge’s lanes, incoming edges turn rates (probability to a possible
outgoing edge), and probability that a vehicle will finish its trip on the
edge.. Each lane’s length, expected gap time between vehicles at the speed limit,
maximum speed, fixed inflow profile, number and distance probability of
vehicles beginning their trip, acc./decel. adjustments.. Each connection’s length, fixed capacity, average critical gap time and
follow-up time, as well as which connection to yield to.. Junction’s roadside unit (RSU) communication range (when it equipped
with one).. Junction’s planning horizon, tmax.. Junction’s next traffic signal plan within planning horizon (when signal-
ized junction) for each movement group.

Additionally, the following list summarizes the information required regard-
ing the TC border junction controlled by a different connected TC.

. edge’s lanes.. incoming lane’s connections and mov. groups.. connection’s mov. group and outgoing lane..movement groups’s egressing lanes.

At a system-level, the required information is:
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. the planning horizon time window individual length (which is also algo-

rithm update time step interval) lenrge; and

. low, mid, and high flow thresholds (minimum headway for the latter).

5.2 Vehicle Generation

This sub-system represents independent processes (tough one process may
use data provided by another process) that generate new vehicles and define
some of their information that is called attributes and classified into two
types:

. fixed, for vehicle’s parameters such as acc. capability, length and mini-
mum gap; and

. dynamic, for the time a vehicle will begin its movement on the lane and
the vehicle’s state at such moment (speed and distance to stop line).

Cooperative Automated Vehicles (CAVs) are expected to share these at-
tributes to the system and also which lane they are running, though only the
edge is important. However, as seen in the system decomposition (Figure 5.4),
the system requires an interface with the Roadside Unit to collect the data
from vehicles. For non-CAVs (non Cooperative Automated Vehicles), we use
standard values and probabilities of each vehicle type (e.g passenger car or
truck) stored in the Trip Definition sub-system.

The fixed attributes are seen in Table 5.1. The minimum gap represents
the distance a vehicle wish to maintain from the vehicle in front (or from the
stop line if first vehicle) when it fully stops. The acceleration capability and
perceived deceleration correspond to how much the vehicle is able to accelerate
and stop (constant values). The speed factor is a value to change the lane
maximum allowed speed in order to express vehicle i desired speed at edge/lane
j, vdesi,j . For example, if the speed limit on the lane is 14m/s and the speed
factor is 1.1, then the vehicle’s desired speed is vdesi,j = 14 · 1.1 = 15.4. The
last attribute, Route Sharing, is used to flag if the CAV shares its route with
the TC, the value can be True (1) or False (0). The dynamic attributes are
seen in Table 5.2. The distance to stop line and speed correspond to the time
the vehicle will start its movement on the lane.

Although the output of generating vehicles is always the same, the inputs
depends upon the process defined by the component of the Vehicles on Lane
edge instance, i.e. Already On Lane, Starting On Lane and Arrivals on Lane
to be generated. Figure 5.10 illustrates which components of the Vehicles
on Lane are modified by this sub-system, while a summary of all inputs,
processes and outputs of this sub-system is seen in Figure 5.11.
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Fixed Attribute Unit Notation
Type int typei
Length m leni

Minimum Gap m mingapi
Acceleration Capability m/s2 acci
Perceived Deceleration m/s2 deceli

Speed Factor dimensionless vfaci
Route Sharing bool sri

Table 5.1: Fixed attributes of a generate vehicle i.

Dynamic Attribute Unit Notation
Starting distance to stop line m startdi

Starting speed m/s startvi
Starting time s startti

Table 5.2: Dynamic attributes for generating a vehicle i.

Figure 5.10: The part of Vehicles on Lane modified by the Vehicle Generation
sub-system.

5.2.1 Already on Lane

This is the first process that happens and it defines the Cooperative Automated
Vehicles (CAVs) that are in the list alreadylane by either:..1. replacing the closest vehicle expected to be on lane due estimations from

previous time steps and changing attributes to the received ones by the
CAV; or..2. creating a new vehicle in the system with the data from the CAV when
the edge doesn’t have any non-CAV already on lane.

This replacement is done in order to avoid creating excessive newly detected
CAVs when it was already expected a vehicle to be on the lane (very useful
in high penetration rates of CAVs). This process only needs the list of non-
CAVs to be replaced on the edge, as both fixed and (Table 5.1) and dynamic
(Table 5.2) attributes are provided already by the CAV. When a CAVs is to
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Figure 5.11: Inputs and outputs of the Vehicle Generation sub-system.

be generated but there are no vehicles expected to be on lane at the time step,
the cavlanebalance variable (for each edge) is used to balance the number of
CAVs with the vehicles expected to be on lane and beginning their trip on
lane.

5.2.2 Starting on Lane

This process can be split into two parts, the first one is different for the type
of vehicle to be generated and the second is the same for both. It requires
the estimated queue length (in number of vehicles), queuenum, provided by
a sub-system not included in our local level routing system (an interface is
also required, see Figure 5.4), and the vehicles beginning their trip on the
lane begnum. It generates two types of new vehicles:. queuing on lane, which represents the missing queueing vehicles given

queuenum and those stopped vehicles in the alreadylane list; and. beginning trip on lane, when it is assumed that some vehicles may begin
their trip/journey on the lane/edge at the current time step.

The inputs for queuing vehicles are only the estimated queue length number
queuenum and the number of halted vehicles in haltedalready at the current
time step. The needed new queuing on lane vehicles will be queuenum =
max(queuenum − haltedalready, 0). If queuenum < haltedalready, then
delete non-CAVs from alreadylane until queuenum equals haltedalready.
The main input for the vehicles beginning their beginning trip on lane is be
the number of vehicles that may begin, begnum (in one interval of algorithm
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updates lenrge), and the distances they may start as well as the probabilities
of these distance. Table 5.3 shows an example of such input, the system
applies Binomial Distribution (which outputs 0 or 1) for the decimal part in
order to decide if an additional vehicle should be also generate besides the
integer part of the number.

Number of vehicles per lenrge
1.1

Distance Probability
10 meters 0.3
50 meters 0.7

Table 5.3: Input to generate vehicles beginning trip on lane i.

Another possibility is to input the string "random", and the vehicle will
be generated at any distance (within the lane length). The secondary input
is the edge’s cavlanebalance, which is subtracted by the number of vehi-
cles beginning their trip on lane, begnum, i.e. begnum = max(begnum −
cavlanebalance, 0), and updates its cavlanebalance by subtracting begnum.
Once the updated values of queuing (queuenum) and/or beginning trip
(begnum) are bigger than zero, it starts the second part of the process. It is
randomly chosen one vehicle type for the vehicle and consequently its fixed
parameters, as previously explained at the beginning of this section. Then,
the sub-system need to define the vehicle’s distance and speed, while the
starting time, startti, is the current time step time, actualt.

Figure 5.12 illustrates this second part, which defines the distance where
the vehicle will begin its movement by trying to find an space the vehicle
would fit between two vehicles already on lane (now including the already
inserted starting vehicles). It also estimates the speed if the vehicle would
be influenced by the vehicle in front, fronti, or not (for the latter it was
arbitrary chosen 4m/s), but not higher than vehicle’s desired speed, at its jth
junction/edge/lane of its route, vdesi,j . The alreadylanel,loi is the ordered
list with vehicles i already on lane l that have indexes called lane order index,
loi, for each vehicle in the list. The lasti represents the last vehicle i in
the list, while fronti is the vehicle to have its starting distance to stop line,
startd, to be considered. The distance of starting, initdist, for the vehicles
beginning their trip on lane is only the reference to initialize the algorithm,
while for queueing vehicles the reference distance (initdist) is zero. This
is because vehicles cannot share the same space and the order of vehicles
(distance to stop line if already on lane) is important to ensure the FIFO
(First-In-First-Out) condition. Figure 5.12 also shows that vehicles are not
created when the back (rear) distance of the vehicle to be generated reaches
the lane length.
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Figure 5.12: Steps to define starting vehicles’ distance and speed.

5.2.3 Arrivals on Lane

The process to generate the Arrivals on Lane, arrivalslane, happens on
each iteration (i.e. it = 1 and it = 2 at certain time step t) of the system,
different from the Already on Lane and Starting on Lane that happens always
at the first iteration. As discussed in Section 5.1, a real world network
may be subdivided into sub-networks that are controlled by different Traffic
Controllers that may communicate to each other, and there is an order of TCs
and junctions the system estimates arrivals and departures. Another aspect
of it is that a TC controls only the incoming edges/lanes of the junctions it
controls. Based on this the Arrivals on Lane occurs for the lanes when both
conditions in the following list happens...1. the lane follows the order of junctions the system estimated arrivals
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and departures (for instance from J1 to J6 in Figure 5.6), as the order
changes per iteration this process happens either at the first or second
iteration for each lane...2. the lane comes from a junction not modelled by the TC (which controls
only the incoming edges/lanes of the junctions it controls), the arrivals
from junctions controlled by the TC is done by the Trip Definition
sub-system (discussed in Section 5.3).

The generation of arrivals using this process is based oin the future arrival
of vehicles (after the current algorithm time step) within tmax, and it uses
three statistical headway distributions, each for a different range of traffic flow
volume. Therefore, the necessary inputs are system-level flow thresholds, in
vehicles/s, to define which distribution to use (λlow, λmid) and the parameters
of the distributions (the so called inflow profile). The inflow profile is given
in Table 5.4.

Parameter Unit Notation
Number of vehicles vehicles arrnum

Mean speed m/s vmean
Mean of headways s hmean

Standard deviation of headways s hstd

Table 5.4: Inflow profile parameters.

All lanes from junctions not controlled by the TC must have a fixed inflow
profile, and can receive a dynamic inflow profile when the lane comes from a
junction controlled by another TC which communicates to the TC controlling
the lane to have arrivals estimated (this will be discussed in Section 5.5).
Figure 5.13 exemplifies the types of Arrivals on Lane, in which fixed and
dynamic inflow profiles are used by the Vehicles Generation sub-system, while
the discharge from upstream is used by the Trip Definition sub-system.

Although the system always estimates the headways between vehicles for
each arrival range rge of the planning horizon, tmax, the fixed inflow has the
same parameters all ranges, while the dynamic inflow has different parameters
per arrival range as shown in Figure 5.7. An example of the parameter number
of vehicles is seen in Figure 5.14. This is important because when estimating
arrivals, the calculated headways of vehicles are valid only for that range
which has interval length of lenrge.

The range interval is also used to estimate the flow, λarrl , of vehicles during
each arrival range, i.e. λarr = arrnum/lenrge, on each lane l and then define
which headway distribution to use based on the flow thresholds. In all cases,
the system uses the Cumulative Distributive Function (CDF), denoted F (h)
and computed as

F (h) = p(t ≤ h) (5.1)
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TC 1 Area

TC 2 Area

J1

Fixed Inflow

J2

Dynamic Inflow

Discharge Upstream

J3 J4

Figure 5.13: Different types of arrivals on lane. Fixed and dynamic inflow are
responsibility of Vehicle Generation sub-system, while discharged from upstream
is done by the Trip Generation sub-system.
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Figure 5.14: Example of the parameter number of vehicles for a dynamic inflow
profile.

for each headway distribution, and calculate its value for each headway
h that varies between the interval [hmin, hmin + ∆t, ..., lenrge−∆t, lenrge].
Where hmin is the minimum headway (in seconds) and ∆t is the minimum
possible difference of headways, e.g. 1 second, and t is any value of headway.
Then, for each vehicle to arrive the system randomly chooses a number
between [0,1] which corresponds to a value t of the CDF that lies within a
possible headway h and the next one h+ ∆t (i.e. h = [h, h+ t, ..., h+ ∆t− t]).
Figure 5.15 illustrate this idea, notice that it may happen the value can be
higher than the maximum headway lenrge, when this occurs the system uses
lenrge as the headway.

When λarrl < λlow, the flow of the arrival range is considered low and the
headways assumed to follow Negative Exponential Distribution due to almost
or no interaction between the arriving vehicles. According to [Mathew, 2017a],
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t

F(t)

hmin lenrge
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1

Figure 5.15: Example of a CDF and how the headways are defined.

the CDF if given:
F (h) = 1− e−λarrl h. (5.2)

When λarrl < λmid, the flow of the arrival range is considered medium and
the headways assumed to follow Pearson Type III Distribution, as certain
vehicles will have interaction with the other (platoons) or not. The CDF if
given as it follows from [Mathew, 2017a]:

F (h) = p(t ≤ h) = 1−
∫ ∞
h

f(t)dt. (5.3)

Equation 5.3 means that the CDF of headway h is the probability of any
headway time t shorter and equal than h, which is also 1 minus the probability
of any headway time above h given we know its probability density function,
denoted f(t). Although there is no closed form solution for Equation 5.3, if
we assume a linear line between f(h) and f(h+ ∆t), which is acceptable if
∆t is small enough, as seen in Figure 5.16, we can find an estimation of the
probability for h = [h, h+ t, ..., h+ ∆t− t] by doing

p(h ≤ t ≤ h+ ∆t) ≈
[
f(h) + f(h+ ∆t)

2

]
∆t · h. (5.4)

The probability density function of the Pearson Type III Distribution is:

f(t) = λp
Γ(K) [λp(t− hmin)]K−1 e−λp(t−hmin), K, hmin ∈ R, (5.5)

where K is the shape factor greater than 0 calculated as

K = hmean − hmin
hstd

, (5.6)
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Figure 5.16: The expression for probability that the random variable lies in an
interval for Person Type III distribution [Mathew, 2017a].

while λp is the flow rate parameter (and not the flow rate λ itself) estimated
by

λp = K

hmean − hmin
, (5.7)

and Γ(K) is the gamma function, as it follows:

Γ(K) = (K − 1)!. (5.8)

When λarrl >= λmid, the flow of the arrival range is considered high and
the headways assumed to follow Normal Distribution, where vehicles are
expected to arrive close to each other in platoons. The CDF is given as it
follows from [Mathew, 2017a]:

F (h) = p(t ≤ h) =
∫ h

−∞
f(t)dt. (5.9)

Equation 5.9 also doesn’t have a closed form solution, though the probability
of a headway for an interval h = [h, h + t, ..., h + ∆t − t] can be computed
easily by making p(h ≤ t ≤ h+ ∆t), similarly to equation 5.4, and solving it
using numerical integration, as Figure 5.17 shows.

However, considering that the probability for any random variable can be
normalized by its mean and standard deviation, we can use the standard
normal distribution table to find the values for
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Figure 5.17: The expression for probability that the random variable lies in an
interval for Normal distribution [Mathew, 2017a].

F (h) = p(t ≤ h) ≈ ptable

(
t ≤ h− hmean

h∗std

)
, (5.10)

in which h∗std is a correction of the standard deviation of headways when
the random variable t cannot be negative. This correction is given by

h∗std = hmean − hmin
3 , (5.11)

where the 3 comes from the fact that if hmin = hmean− 3hstd, which means
that 99% of the headways will be greater than hmin, as seen in Figure 5.18.

t

f(t)

3hstd 2hstd hstd hmean hstd 2hstd 3hstd

Figure 5.18: Intervals of standard deviation for Normal Distribution.
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5.3 Trip Definition

This sub-system is responsible for modelling the movement of vehicles on the
lanes and through the traffic controller’s network. This is done by defining
vehicle’s dynamic attributes on each edge of its route, as well as choosing the
probe vehicles that will be used to estimate travel times. In addition, given
this modelling process, it also updates the lanes’ queue length prediction and
connections’ capacity and delays. Figure 5.19 illustrates the inputs, processes
and outputs of this sub-system.

Figure 5.19: Inputs and outputs of the Trip Definition sub-system.

As discussed in Section 5.2, vehicles have fixed and dynamic attributes,
in which the fixed ones are defined by the Vehicle Generation sub-system
together with 3 dynamic ones, i.e. startd, startt and startv. The dynamic
attributes are specific for each edge (and consequently lane and junction) the
vehicle will use throughout its route. For example, routei,j is list to stores the
edge ID of vehicle i running on its jth junction/edge/lane of its TC’s network
route. Notice that it is necessary only the route on the edges controlled by
the TC that is modelling the vehicle. The list of all attributes for a vehicle i
on its jth junction/edge/lane of its route are seen in Table 5.5.

The junction ID, jcti,j , is the one that the vehicle i edge j goes to (the
junction’s incoming edge), while the connection ID, conni,j , and mov. group,
movgi,j , are defined by the next edge (j + 1) of the vehicle i route. The lane
ID, lanei,j , correspond to the expected lane the vehicle will depart from stop
line, and such lane may be different from the lane that two type of vehicles
were initially generated:. Cooperative Automated Vehicles (CAVs); and. vehicles generated by inflow profile.
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Dynamic Attribute Unit Notation
Junction ID string jcti,j
Lane ID string lanei,j

Mov. Group ID string movgi,j
Connection ID string conni,j
Arrival Time s arrti,j
Arrival Speed m/s arrvi,j

Phase Start Time s startti,j
Phase Start Speed m/s startvi,j
Phase Start Dist. m startdi,j
Phase End Time s endti,j
Phase End Speed m/s endvi,j
Phase End Dist. m enddi,j

Lane Acc. m/s2 lacci,j
Lane Decel. m/s2 ldeceli,j

Desired Speed m/s vdesi,j
Veh. Len. Crossed Time s lenti,j

Travel Time s vehtti,j
Veh. Crossing bool vehci,j

Veh. Next Updt. Speed m/s nuptvi,j
Veh. Next Updt. Dist. m nuptdi,j

Table 5.5: Dynamic attributes for defining the trip of vehicle i at each edge/lane
j.

This is because the Vehicle Generation sub-system only "says" that certain
vehicle is being generated at an specific lane and it gives vehicle’s fixed
attributes as well as the time, speed and distance to stop line. The Trip
Definition sub-system must define which lane it thinks the vehicle will finish
its movement on the lane, and there are two reasons for this. The first one is
that according to the next edges the vehicle will take, it has to be on other
lane than it was generated (or detected if CAV). The second one tries to
consider that vehicles will not stay in a long queue if they can take another
which is shorter. It is important to say that the system doesn’t model lane
changes, it just put the vehicle on the lane that would be more suitable, i.e.
overtaking is not possible. Meanwhile, other types of vehicles continue on
their lane that they were generated, either because the lane is already the
expected final one (vehicles from last time step and discharged from upstream)
or because they are likely on their intended lane at departure (beginning trip
on lane and queueing on lane).

For other dynamic attributes we have the arrival time and speed, arrti,j
and arrvi,j respectively, of the vehicle on the lane (no needed distance because
it is implicit the lane length llenj). Then the set of attributes phase start and
phase end, representing the distance (startdi,j and enddi,j), time (startti,j
and endti,j), and speed (startvi,j and endvi,j) of a vehicle at the start and
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end of its movement during each analysing phase of its movement group
on the lane. As we are going to see later at this section, the modelling
of vehicle movement along the lane is divided by its movement per green
phase of its movement group until it crosses the stop line, what doesn’t
store values of phase start and end for each phase but updates them per
analysed phase, instead. Other attributes are the lane acceleration, lacci,j ,
and deceleration, ldeceli,j , that represents the acceleration and deceleration of
the vehicle adjusted to a specific edge. The lane desired speed is the expected
maximum speed vehicle i will try to achieve, i.e. vdesi,j = vfaci · lvmaxj , in
which lvmaxj is the maximum allowed speed on edge/lane j. The vehicle
length crossed time, lenti,j , is the time in which the whole vehicle (its length)
crosses the stop line, and it is calculated only when the vehicle will cross the
stop line (given by the vehicle crossing flag variable vehci,j). The vehicle next
update speed and distance, nuptvi,j and nuptdi,j respectively, are used to
store the expected distance and speed the vehicle will have at the next time
the algorithm will update, and use it as the vehicle starting point at next
update. Finally, we have the vehicle travel time on the edge/lane, denoted
vehtti,j .

The main dynamic information for this sub-system is the Vehicles On
Lane, vehicleslane, because it checks which vehicle is or will be on the lane
and estimate their discharge process at the junction in order to add it to a
downstream vehicleslane. Figure 5.20 illustrates which component of the
Vehicles on Lane is modified by this sub-system (but reads all of them). If a
vehicle and its attributes were already in the TC’s Vehicle object before the
generation of new vehicles, then the vehicle was discharged from a upstream
junction controlled by the same TC, or the vehicle is expected to be at certain
place on the lane at the time the algorithm is updating.

Figure 5.20: The part of Vehicles on Lane modified by the Trip Definition
sub-system.

Figure 5.21 illustrates that, differently from the other sub-systems that
have independent processes, the Trip Definition sub-system have processes
that are dependent of each other. Although the description of the flowchart
and processes are in the upcoming subsections, we can point out the cases
when the sub-system is called for different needs, either by:..1. defining the initial trip attributes of newly generated vehicles;
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or..3. calculating the delay that each connection will have for its mov. group’s
green phase.

Figure 5.21: Sequence of the Trip Definition sub-system processes according to
the reason and algorithm update iteration.

5.3.1 Define Vehicle Edges and Junctions

This process happens right after the vehicle is generated by the Vehicle
Generation sub-system (explained in Section 5.2) and during the Estimate
the Departure of Discharging Vehicles process (discussed in Section 5.3.5).
Considering the current junction/edge, j, being modelled, the function of this
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process is to define the next 2 edges (and consequently junctions), i.e. (j + 1)
and (j + 2), to be modelled towards its local destination. This is because the
choice of the lane on edge (j + 1) is based on edge (j + 2), as we will see in
Section 5.3.2 and illustrated in Figure 5.22 for vehicle i.

TC 1 Area

TC 2 Area

i
J1

j − 1

J2

j + 1
j

J3 J4

j + 2

e0
e1

e2 l1 l2

e5
e6

e3
e4

Figure 5.22: The chosen lane on edge (j + 1) depends o the edge (j + 2), what
makes necessary to have always knowledge of the next 2 edges ahead.

One may notice that Cooperative Automated Vehicles (CAVs) may share
their routes, so this process is narrowed to only defining the remaining
junctions to be modelled. The chosen method for defining which outgoing
edge a vehicle will go to once it is running on a certain incoming edge is
through turning rates. Although this method might be the best one, it is the
simplest one to apply and the easiest to get real data compared to others using
route choice models (see Appendix B.3) which may lead to better results. In
addition, the following list presents the rules that either stops or restricts the
possible next edges...1. If vehicle will finish its route at the last chosen edge (due to certain

probability of it)...2. If vehicle is a Starting Vehicle, then the possible first next edges is
constrained by the vehicle’s lane which it was generated at. For instance,
in Figure 5.22, if a vehicle starts on edge e2 at lane l1, then the possible
next edge can only be e3...3. If vehicle would go to an edge already in the route, what would create
an unrealistic loop.

5.3.2 Define Vehicle Lane, Connection and Movement
Group

This process is responsible for choosing a vehicle’s next lane and mov. group
(of this next lane), as well as the current connection from the current lane to
the next one. These choices are based on the already chosen next edge, the
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lanes’ queue length prediction of the next edge and the lanes status (if any
blockage). The process is called at two situations:..1. vehicle is starting on lane (when newly generated CAV or arriving vehicle),

in which the "next" is in fact the first lane and mov. group while no
current connection is given; or..2. vehicle have reached at stop line (when TC is modelling vehicle’s move-
ment along the edge).

The process occurs right after the first definition of the next edges and
junctions (described in Section 5.3.1), i.e. after generating a vehicle, and
during the Estimate the Departure of Discharging Vehicles process (discussed
in Section 5.3.5). Figure 5.23 exemplifies the situation where the movement
of vehicle i is being modelled by TC1 for junction J2 along the edge e1, which
is its jth junction/edge/lane of its route. The next edge of vehicle i, (j + 1),
is e2 and the after next edge, (j + 2), is e7. There are two possible lanes at
e2, l2 and l2, as they both have connections that go through. However, at
the moment vehicle i reaches the stop line (t = 10) there is a predicted queue
on lane l2 of edge e2 because the vehicles are left-turning and waiting due
another predicted queue on edge e6. Therefore, vehicle i will choose lane l1
because it doesn’t have any predicted queue for that moment. The next mov.
group is the one which enables vehicle i to go from the next lane l1 of its next
edge e2 to the after next edge e7. Meanwhile, now it is known that the next
lane is l1 of e2 and the current lane is l1 or e1, so the current connection (and
next mov. group) is the one that connect these two lanes. In fact, the lane
choice also consider the lanes status (which has the highest priority), i.e. if a
lane has shorter predicted queue at certain moment but it is blocked/closed,
the vehicle will not go there, but to an open one with longer queue instead.

5.3.3 Define Probe Vehicles

As the main goal of the system is to estimate travel times per time windows of
the planning horizon corresponding to the arrival range of a vehicle at certain
edge, this process defines which vehicles generated by the Vehicle Generation
sub-system will be used to estimate the travel time for the edges they will
pass according to their arrival time. It is called on the second iteration of the
algorithm, i.e. tcit = 2.

If a vehicle is defined as probe vehicle, then the system may extrapolate
the planning horizon time, tmax, until certain arbitrary limit, to ensure that
such vehicle may cross the stop line even after the end of the planning
horizon actualt + tmax, and manage the travel time to be estimated by
vehtti,j = endti,j − arrti,j . Meanwhile, non-probe vehicles that don’t cross
the stop line within tmax will not have their departure time estimated at a
later point. This is because arrivals way later than tmax will not influence the
estimations of travel time within tmax, and may slow down the system with
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veh. i at t = 10
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Figure 5.23: The lane vehicle i will use on its next edge (j + 1) is the one that
enables it to go to its after next edge (j + 2) and has no blockage and preferably
shorter queue, which is the case of lane l1.

unnecessary calculations. The conditions for a vehicle to be a probe vehicle
for its movement group mg of lane l are in the following ordered list...1. A vehicle i on its jth junction/edge/lane of its route must be generated

using inflow profile, discharged from an upstream junction or one of these
conditions but from last time step, in other words, it needs to have a
value for the attribute arrti,j ...2. Vehicle’s arrival time on lane arrti,j must be after the time of algorithm
update, actualt, and before actualt+ tmax.

If a vehicle fulfil the conditions above mentioned for certain lane, l, and
mov. group, mg, then the next step is to classify it according to its arrival
time and find which range, rge, which is the time window of the division of
the planning horizon, vehicle i will be defined as probe vehicle and added
into the list probesl,mg,rge.

For example, if actual time is actualt = 10, the length of ranges lenrge = 10,
and the planning horizon is tmax = 50, then the end of planning horizon is
actualt+ tmax = 60 and there are 5 ranges (rge0, rge1, rge2, rge3 and rge4).
If we also consider that there will be 6 vehicles on certain lane l1 within tmax
and they are ordered based on their phase start time (startti,j), and three
of them (e.g. i0, i1, and i2) use mov. group mg1 while the others (e.g. i3,
i4 and i5) use mg2. Their arrival times on lane l1 are: i0 = 5, i1 = None,
i2 = 20, i3 = 50, i4 = 59 and i5 = 65. One may notice that the i1 doesn’t
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have arrival time, this is because it is either a starting vehicle on lane l or
a newly generate Cooperative Automated Vehicle (CAV), what means they
don’t start at the begin of the edge/lane. Therefore, it is not possible to
know the time they were at the distance from the stop line equal to the lane
length (but if the CAV was already detected before - generated on previous
time steps on another lane - then they may have values for their arrival on
lane). Additionally, vehicle i5 has arrival after end of the planning horizon,
while i0 had arrived before the actualt and didn’t cross the stop line yet, so
they will not be defined as probe vehicles. Table 5.6 shows the begin and end
times of each range (time window) as well as the assigned probe vehicles for
each mov. group of lane l.

Range Definition Probe Vehicles Lane l1
Range Begin Time End Time mg1 mg2
rge0 10 20 None None
rge1 20 30 i2 None
rge2 30 40 None None
rge3 40 50 None None
rge4 50 60 None i3, i4

Table 5.6: Example of ranges’ begin and end times when dividing the planning
horizon time and probe vehicles assigned based on their arrival time on the lane.

As we can see in Table 5.6 some ranges have no probes. There is an
option in which the system can generate artificial probe vehicles for each mov.
group that didn’t have itself assigned to a modelled vehicle. However, this
considerably increases the number of calculations and slow down the system,
what is still acceptable when the traffic controller doesn’t control too many
junctions and/or model too many vehicles. We will see in Section 5.4 that a
deterministic queuing model is used to estimate the travel time at certain
range (time window) when there is no probe vehicle.

5.3.4 Define Vehicles to Discharge

This is the first process to happen in the Trip Definition sub-system (except
when tcit = 2 and in which it occurs after the definition of probes). First, it
reads the signal plan of the junction that is being estimated the departures
(remember that unsignalized junctions also have a "signal plan" with only
one phase with infinity green time, as seen in Section 5.1). Then, for each
cycle of tmax, denoted as cycletmax (used to extrapolate values when there
are remaining probes to cross the stop line after tmax), it select the vehicles
that will move on the lanes that will get green light during each green phase,
denoted ph, from 0 up to lastph of the signal plan. The meaning of "discharge"
represents vehicles that will move on a lane that will get green, and it doesn’t
necessarily mean that a discharged vehicle is a vehicle that will cross the stop
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line. A discharged vehicle is a vehicle that had its movement during a phase
already modelled, crossing or not the stop line. If it doesn’t cross the stop
line during certain analysing phase, the vehicle will be tried to discharge on
the next phase.

As Figure 5.24 shows, it may happen that a lane may get green because
of one mov. group green phase but another mov. group using the same
lane may not have green. The lane from East have right-of-way for the
right-turn connection while the through connection do not. However, vehicles
will move on the lane because of the right-turn connection until the vehicle
going through will stop and block vehicles behind it to take the right-turn,
what causes them to be discharged only on the next green phase. That’s
why it is necessary to model all vehicles on the lane with green (even if they
will not have right-of-way). It is also the reason for the additional "green"
phase of the mov. group starting at tmax (with zero duration), pointed out
in Section 5.1, because in case the analysing phase is the last one and the
vehicle will not get right-of-way on the lane which will get green. A vehicle i,
on a lane that will get green light, is considered to be discharged during the
analysing phase if its:..1. phase start time, startti,j , is before the end of analysing the phase when

vehicle i didn’t have crossed (i.e. vehci,j = 0); and..2. phase end time, endti,j , is before the end of analysing the phase and after
the previous phase when vehicle i have crossed already (i.e. vehci,j = 1).

1st 3rd 4th

e1 e2

e3
e4

Vehs. to discharge
during ph0

already on lane
vehs. at t = 5

arriving on lane
veh. at t = 7

arriving on lane
veh. at t = 35

2nd

Figure 5.24: Example of selecting vehicles to discharge for green phase ph0.
Vehicles already on lane will be discharged, as well as the earliest one arriving.
The last arriving will not manage to arrive before the end of the green phase at
phendtph = 20.

We should notice that even if a vehicle was discharged (and crossed the stop
line, i.e. vehci,j = 1) in the first algorithm iteration, it will have to be in the
list of vehicles to be discharged again, in order to be considered by its vehicles
behind and others that may yield to it in the second iteration. However,
the modelling is not done twice (this will be discussed in Section 5.3.5).
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Additionally, another important task of this process it to order the vehicles
that will be discharged during the analysing phase. First, already on lane
vehicles are put in the beginning of the order, then arriving vehicles, as it
follows:..1. already on lane (which also includes starting on lane) vehicles, from the

closest distance to stop line; then..2. arriving on lane vehicles, from the earliest arrival time.

We will see on the next process, in Section 5.3.5, the order of vehicles to
be discharged on lane l, denoted dischlanel, is important because a vehicle is
not only influenced by the green phase duration of its mov. group, but also
by the vehicle in front and other preferential traffic the vehicle needs to yield
to.

5.3.5 Estimate the Departure of Discharging Vehicles

This process happens after the Define Vehicles to Discharge process, described
above in Section 5.3.4 and which gives the phase, its duration and the vehicles
to discharge. It models the movement of a vehicle to be discharged that didn’t
have crossed on previous phases, modelling vehicles along the lane during
certain analysing phase, while it also update the queue length prediction of
the lane. There two main principles of this movement modelling, they are
listed in the following list...1. The first principle defines that the modelling of a vehicle depends on

the movement of the vehicle in front (if exists), the signal timings, and
vehicles to yield coming from preferential traffic...2. The second principle states that the three values corresponding to the
starting movement during the phase (startti,j , startdi,j and startvi,j)
should be updated through the process for each vehicle and the end
values (endti,j , enddi,j and endvi,j) reused as start values for the next
green phase in case the vehicle will not cross the stop line during the
analysing green phase.

The first principle gives us the reason why we need to order the discharging
vehicles and estimate the departure one by one, as example of Figure 5.24. It
is also important to notice that lane change and overtaking are not modelled,
though the final lane a vehicle will use at its departure from the edge is
previously estimated given the route, queue prediction and lane status (see
Section 5.3.2). This is due the fact that the system assumes the movement
of vehicles as deterministic, and once the initial conditions of the vehicle
are known as well as its possible actions (decelerate or accelerate with no
lane change), there is no need for continuous and fixed interval update of
position and speed for all vehicles at the same time. Therefore, the modelling
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is event-based in which key events represent what vehicles will do during its
movement within the analysing green phase until it finally crosses the stop
line and go to its next edge.

Figure 5.25 illustrates how the system divide a real-world scenario, con-
taining the events in which it is needed to estimate the state of each vehicle
(time instant, distance to stop line and speed). It also shows 4 main cases of
such modelling described in the following list...1. The 1st case is the vehicle departing earliest at stop line, and it represents

a vehicle already stopped at its event (0) phase start movement, i.e
startvi,j = 0, that waits until it gets right-of-way...2. The 2nd case is the second vehicle to depart at stop line, it is the
movement when a vehicle must brake and completely stops until it gets
green...3. The 3rd case is similar to the second case (last vehicle to arrive at stop
line), but on this one the vehicle slows down but don’t stop completely.
Notice that after short braking time, there is a displacement at constant
speed due the reaction time of vehicles...4. The 4th case is the only vehicle that didn’t crossed the stop line, it
represents vehicles that their phase end values correspond to their final
state at the end of green time, opposite to other cases that have phase
end values assigned at the departure of the stop line.

The vehicle’s key event attributes (1 up to 5) will be denoted as evtdei,j
(distance to stop line in meters), evttei,j (time instant in seconds) and evtvei,j
(speed in m/s), where e stands for the event index, as event (0) correspond to
the phase start attributes (startti,j , startvi,j and startdi,j). One may notice
that phase end attributes (endti,j , endvi,j and enddi,j) represent values for
event (4). In fact, the system only needs the values of phase start and phase
end, while the key events are used only for explaining the functionality of
the system. In addition, at each event time estimation the system checks
if the time at the previous event (evtte−1

i,j ) was before the next algorithm
update time (actualt+ lenrge) and the analysing event (evttei,j) happens after
actualt+ lenrge. If so, the vehicle is flagged as a Vehicle Already on Lane
(from last time step as seen in Figure 5.20) and it is estimated the speed and
distance to stop line the vehicle will be at actualt+ lenrge, in order to have a
"memory" of the vehicle state on the next algorithm update. This "memory"
correspond to the attributes nuptdi,j and nuptvi,j , they will have their values
assigned to startdi,j and startvi,j , respectively, on the next algorithm update
if a vehicle will be in the Vehicles Already on Lane list and were generated
before or at the last time step.

Before describing the steps for estimating the departure of discharging
vehicles, we will introduce three sets of equations that are recursively used
throughout the process (acceleration, deceleration and threshold distance).
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Figure 5.25: Key events to estimate vehicle state in 4 cases.

They are based on the idea that for modelling acceleration or deceleration
between events we need to find out when the vehicle will decide to stop. If
we assume that a vehicle i being modelled on its jth junction/edge/lane of its
route want to stop at its minimum distance gap (mingapi in meters) from
the vehicle in front, it will start slowing down at certain threshold distance
from the stop line, which is event (1) evtd1

i,j in meters. This means, vehicle i
will (if possible) accelerate from evtd0

i,j (which is equal to startdi,j) up to its
desired speed on the lane, vdesi,j , and have constant speed movement until it
starts braking. Based on the simplified Gipps’model presented in [Treiber and
Kesting, 2013] we have the threshold distance from the final speed, finalv,
of the accelerated and/or constant movement before start braking given the
distance of acceleration ∆dacc, as it follows:

decelfinaldi,j =
{
evtdefronti,j + lenfronti +mingapi if ∃ vehcfronti,j = 0
mingapi otherwise,

(5.12)

∆dacc =
vdesi,j − startv2

i,j

2 · lacci,j
, (5.13)

finalv =
√
startv2

i,j + 2 · lacci,j ·∆dacc, (5.14)
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thresdfinalv = finalv · react− finalv2

2 · ldeceli,j
+ decelfinaldi,j , (5.15)

where decelfinaldi,j is the deceleration minimum final distance (given by
the existence of a vehicle in front, fronti, and that didn’t cross the stop
line), and react is the reaction time. However, if this calculation leads to
startdi,j < ∆dacc + thresdfinalv, then vehicle is either braking already, or
it will accelerate only to certain speed below its desired speed before start
braking. For the former case, we have:

thresdinitv = −
startv2

i,j

2 · ldeceli,j
+ decelfinaldi,j . (5.16)

In the latter case, we need to calculate the distance of the acceleration
constant movement (due reaction time) between acceleration and deceleration
events given by:

a = 4 · ldecel2i,j
b = −(2 · lacci,j · ldecel2i,j · react2

+ 4 · ldecel2i,j · startdi,j · 2 · ldeceli,j
+ 4 · ldeceli,j)

c = 4 · startvi,j − 4 · ldecel2i,j · startd2
i,j

+ 4 · ldeceli,j · startdi,j − 1

∆dacconst = max
(
−b+

√
b2 − 4 · a · c
2 · a , 0

)
, (5.17)

thresdpartv = max (startdi,j −∆dacconst, decelfinaldi,j) . (5.18)

The threshold distance, which is the event (1) in Figure 5.25, is calculated
as:

evtd1
i,j =


thresdfinalv if ∆dacc + thresdfinalv <= startdi,j

thresdinitv if thresdinitv >= startdi,j

thresdpartv otherwise.

(5.19)

For the acceleration and deceleration movements we derive two different
sets of equations from the fundamental equations of constant translational
acceleration in a straight line from Physics [Johnson, 2001]. One set when
vehicle i will be accelerating between key events e and (e − 1) given by
Equations 5.23, 5.25 and 5.26), constrained by the maximum displacement,
maxd, and the available time for the accelerate maxtacc:

maxd = evtde−1
i,j − accfinaldi,j , (5.20)

maxtacc = min
{
vdesi,j − evtve−1

i,j

lacci,j
, acctexp

}
, (5.21)
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in which accfinaldi,j is the acceleration minimum final distance and acctexp
is the expected time for the acceleration. Both variates according to the event
number and the context. The distance of accelerated movement, ∆dacc, also
depends on the difference of the speed at the beginning of event e, evtve−1

i,j ,
and the desired speed vdesi,j :

∆dacc = min
{
vdes2

i,j − (evtve−1
i,j )2

2 · lacci,j
,maxd,

evtve−1
i,j ·maxtacc + 1

2 · lacci,j · (maxtacc)
2
}
, (5.22)

what give us the speed at the end of event e, evtvei,j and the time spent
accelerating ∆tacc,

evtvei,j =
√

(evtve−1
i,j )2 + 2 · lacci,j ·∆dacc, (5.23)

∆tacc =
evtvei,j
lacci,j

. (5.24)

Consequently, the maximum time for the constant movement, maxtconst, as
well as the distance and time of the constant movement, ∆dconst and ∆tconst
respectively:

maxtconst = acctexp −∆tacc,
∆dconst = min{maxd−∆dacc,maxtconst · vdesi,j},

∆tconst =


∆dconst
evtvei,j

if evtvei,j > 0

0 otherwise.

Finally, the distance, evtdei,j , and time, evttei,j , of event e is given by:

evttei,j = evtte−1
i,j + ∆tacc + ∆tconst, (5.25)

evtdei,j = maxd−∆dacc −∆dconst. (5.26)

For the set with deceleration, we have Equations 5.28, 5.29 and 5.30. The
deceleration minimum final distance, decelfinaldi,j , is given in 5.12, while
the decelerating time ∆tdecel is constrained by the expected time for the
deceleration, deceltexp, reaction time react and the time needed to stop
completely:

∆tdecel =


min

(
deceltexp − react,−

evtte−1
i,j

ldeceli,j

)
if deceltexp >= react

0 otherwise.

(5.27)

The time of the event after decelerating, evttei,j , is the minimum between
the beginning until the expected time for the deceleration and the end of
decelerating time, while the speed evtvei,j based on this elapsed time:

evttei,j = min
{
evtte−1

i,j + react+ ∆tdecel, evtte−1
i,j + deceltexp

}
, (5.28)
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evtvei,j = evtve−1

i,j + ldeceli,j ·∆tdecel. (5.29)

For the distance of the event evtdei,j , it depends on the expected time for
the deceleration (deceltexp) and it is calculated in three different ways as the
calculations always add the movement during reaction time:

evtdei,j =


deceldfinalt if deceltexp >= react

deceldpartt if 0 < deceltexp < react

evtde−1
i,j otherwise,

(5.30)

deceldfinalt = max
{
evtde−1

i,j −
[
evtve−1

i,j · react

+
(evtvei,j)2 − (evtve−1

i,j )2

2 · ldeceli,j

]
,

decelfinaldi,j

}
, (5.31)

deceldpartt = max
{
evtde−1

i,j −
[
evtve−1

i,j ·
(
evttei,j − evtte−1

i,j

) ]
,

decelfinaldi,j

}
. (5.32)

If we compare the deceleration movement of the 2nd and 3rd cases in
Figure 5.25, we see that the 2nd had longer deceltexp than the necessary
to stopped completely, while the 3rd just slowed down due to braking time
shorter than the needed to fully stop. On the other hand, the 4th vehicle had
an acctexp constrained by the end of green time which made not possible to
continue the movement. The 2nd case vehicle also have its decelfinaldi,j =
evtdefronti,j+lenfronti+mingapi, because it exists a vehicle in front of i, fronti,
and it needs to stop behind it with mingapi. Figures 5.26 and 5.27 show the
steps throughout this process, being Figure 5.26 for key events 0 to 2 (braking
movement) while Figure 5.27 for 3 to 5 (accelerating movement). They are
connected through the connectors on the bottom right side of Figure 5.26
and on the top middle of Figure 5.27. Both figures illustrates the procedure
for estimating the departure of vehicle i on its jth junction/edge/lane that
belongs to the ordered list of vehicles to be discharged on lane l, dischlanel,loi,
which have indexes called lane order index, loi, for each vehicle in the list.
The fronti is the vehicle in front o vehicle i, i.e. i = dischlanel,loi and
fronti = dischlanel,loi−1.

In Figure 5.26, step 1 initialize the lane order index while 2-3 take each
vehicle in the dischlanel,loi and check if it is already known (from previous
discharges) that the vehicle will cross the stop line. If vehicle will cross, then
it is not necessary to estimate the departure again and the next vehicle is
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Figure 5.26: Actions taken during the process of estimate the departure of
discharging vehicles for key events 0 to 2.

selected, otherwise goes to step 4 onwards. Steps 4-8 defines the vehicle in front
of vehicle i (if any), then using Equation 5.19 finds the distance of event (1)
that if it is shorter than event (0) then vehicle will have accelerated/constant
movement towards event (1), otherwise vehicle is already braking, stopped
or crossing. Steps 9-20 check if vehicle is either already stopped (speed at
event 1 is zero), or if it needs to decelerate from event (1) by checking if
time at event 1 is before the vehicle in front starts its movement to cross
starttfronti,j , or the begin time of the green (of vehicle i mov. group, or the
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lane is blocked/closed). This means that if a vehicle reaches the position
where it needs to start braking before vehicle in front start moving or the
green start, it will have to brake. After that, values for event (2) are defined,
but if there is deceleration it is also estimated a constant movement after it
cause by the reaction time, given by tconst and dconst. The estimations for
event (3) time are the maximum between the starting time of fronti or begin
green and the event (2), as vehicle may arrive at event (2) after that, or the
end of the planning horizon time if lane is closed. If the speed at event (2) is
zero, then it accounts the vehicle rear distance to the queue prediction of lane
l between the time of event (2) and event (3). Steps 21-24 occurs only if the
vehicle is not the first one to discharge (i.e. exists a fronti), in which if the
time at event (3) is before a minimum starting time minstartt, then vehicle i
will have to correct its event (3) values and i will be following fronti (i.e. at
least same speed, desired speed and lane acceleration). The minimum values
are based on the fact that stopped vehicles will start accelerating after the
reaction time, react, and moving vehicles will try to maintain a gap time,
lgaptl, between each other at the speed limit, denoted lmaxvl, on lane l with
length llenl:

minstartt =

evtt
3
fronti,j + lgaptl ·

(
evtv3

fronti,j

lmaxvl

)
if evtv3

fronti,j > 0

evtt3fronti,j + react otherwise,
(5.33)

addist =

lgaptl · lmaxvl ·
(
evtv3

fronti,j

lmaxvl

)
if evtv3

fronti,j > 0

mingapi otherwise,
(5.34)

minstartd = min
{
evtd3

fronti,j + lenfronti + addist, llenl
}
. (5.35)

Continuing the flowchart in Figure 5.27, there is one entry point related
to the estimating the departure (C), because (B) is used when vehicle has
crossed already and goes direct to step 62 that increase the lane order index,
and then use connector (A) back to step 2. Steps 25-27 happen when the
mov. group of the vehicle i or front will not get green in the analysing phase
and it will not cross, finishing the modelling. Steps 28-31 will estimate the
acc./const. movement for event (4) and if vehicle cannot reach the stop line
either because the green time will finish before it or fronti will not cross, then
i will not cross and finish modelling; on the contrary it defines i next lane,
mov. group, connection and initializes the next lane queue delay qdt = evt4i,j
and the preferential delay pdt = None. Here lies the importance of how to
input the green phases for a movement group with permissive green followed
by a protected green (e.g. phase extension of certain signal group). We model
both greens as a different phase, in which there is no amber time for the
permissive while no safety time for the protected one. If we consider the case
of the last vehicle in Figure 5.25, the system models the vehicle until the
end of the permissive green and then when modelling the protected green
vehicle would cross without stop. On the other hand, if the next phase is

ctuthesis t1606152353 76



.................................... 5.3. Trip Definition

not protected green, then the vehicle will have only modelled its braking and
stop during the analysing phase.

The loop 31-33 adds queue delay for vehicle i for each queue range time
qrg the next lane is full due queue (the precision of the queue prediction
is every lenrge seconds for junctions not modelled by the TC and one step
length ∆t for modelled ones). Steps 34-35 check if it is needed to reduce the
speed at departure from stop line when vehicle need to wait due the next
lane full queue. The loop 36-40 represents the decision if vehicle i will cross
during amber time, notice that it is allowed only one vehicle per amber time.
Steps 41-44 occurs when vehicle may cross the stop line, and it either doesn’t
need to yield to preferential traffic or it had but even with preferential delay,
pdt, the vehicle could cross. Then vehicle is added to the list of departures
on lane l during phase ph of vehicle mov. group, mg, denoted depsl,mg,ph,
and estimate event (5) as well as arrival time and phase start on the next
lane/edge. Step 46 happens when the modelling is for a probe vehicle and
the modelling is after then planning horizon tmax. Therefore, as it is known
the departures of each phase within tmax (from depsl,mg,ph) and non probes
are not modelled after tmax, the delay for preferential traffic, pdt, is given by
the capacity of dicharge of the connection vehicle i is taking, discussed in
Section 5.3.6. Steps 47-61 calculate the preferential delay within tmax. The
system estimates when vehicle i will be able to cross, bc, by analysing if the
gap between event (5) of vehicles on the preferential traffic is longer than a
reference gap, rg (connection average critical gap avecrconn if i is the first
to discharge or the follow-up time fupconn otherwise), and does it for each
lane to yield, yl, in a list of lanes to yield (yield2lanes and where the last
one is lastyl). In addition, it always stores the highest delay time, spdt, as
well as the last vehicle index to yield to yloiyl on each lane that correspond
to a preferential vehicle prefi and where the last one is lastpiyl, in order to
find a suitable gap again for all lanes to yield if the pdt > spdt.

5.3.6 Update Connections’ Capacity and Delay

This process estimates the delay, pdtconn,ph, that a vehicle will experience when
taking a connection based on the connection’s capacity of discharge during
certain green phase, ph, of its mov. group, mg. The capacity, capconn,ph, is
calculated in three different ways according to the system-level flow thresholds
(λlow and λmid), and the flow of vehicles departing on a lane to yield yl for
its mov. group, ylmg at same phase, denoted λdepsyl,ylmg,ph (in vehicles/s), that
is given by the number of vehicles departing, numdepsyl,ylmg,ph, in the list
depsyl,ylmg,ph, as it follows:

λdepsyl,ylmg,ph = numdepsyl,ylmg,ph
phendtph − phbegtph

. (5.36)

If λdepsyl,ylmg,ph < λlow, then the dynamic capacity on connection conn assumes
Negative Exponential Distribution of the headways on the preferential traffic.
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Equation 5.37 is the same of the capacity for non-signalized junctions with
random arrivals [FHWA, 2001], due the fact that vehicles also yield to others
in order to cross.

capconn,ph =
λdepsyl,ylmg,ph · e

−λdeps
yl,ylmg,ph

·avecrconn

1− e−λ
deps
yl,ylmg,ph

·fupconn
, (5.37)

where avecrconn is the critical gap time and fupconn is the follow-up time.
If λdepsconn,ph < λmid, Equation 5.38 assumes a Dichotomized Distribution

(some vehicles in platoon and some not) of the arrivals on the preferential
traffic, which is also used to estimate the capacity for non-signalized junctions
[FHWA, 2001], what give us:

capconn,ph = (1− λdepsyl,ylmg,ph · hmin) ·
λdepsyl,ylmg,ph · e

−λdeps
yl,ylmg,ph

·(avecrconn−hmin)

1− e−λ
deps
yl,ylmg,ph

·fupconn
.

(5.38)

For the both cases when λdepsconn,ph < λmid, it is important to notice that
this capacity cannot be higher than the fixed capacity of the connection,
capconn,sf, which represents its saturation flow. In case the connection yields
to more than one lane and/or mov. groups, then it is used the lowest capacity
for the calculation of the connection delay for a vehicle i, pdti,conn,ph. This
connection delay is constrained by its capacity capconn,ph and given by:

pdtlowmidi,conn,ph = max{conndt−max{slarri − refhdwy, 0}, 0}, (5.39)

pdtlowmidi,conn,ph = min{pdtlowmidi,conn,ph, phendtph − slarri}, phendtph > slarri,
(5.40)

where conndt is delay without considering the time interval between arrivals
(or begin green time and actual arrival of vehicle), the stop line arrival time
slarr, and the reference time for headway refhdwy. They are calculated as it
follows:

conndt =
{

1/capi,conn,ph if capconn,ph > 0
max {phendtph − slarri, 0} if capconn,ph = 0,

(5.41)

refhdwy =


slarrfronti if ∃ fronti
phbegtph if signalized junction
slarri otherwise,

(5.42)

in which Equation 5.40 is valid only if this process is called by the Estimate the
Departure of Discharging Vehicles process, from where fronti is the vehicle in
front. This is because when called by the Estimation of Travel Times process,
the connection delay must consider the connection delay of discharging even
on the next phases as it is just an estimation of a connection delay and not
modelling, while in the Estimate the Departure of Discharging Vehicles the
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vehicle is modelled again on the next phase. Equation 5.41 shows that if the
capacity is zero, the maximum delay is the end of the green time, phendtph.

If λdepsconn,ph >= λmid, the case is different as there are too much traffic on
the preferential lanes. It is expected then the vehicle may cross only after the
last one on the preferential traffic crosses. However, as it is an extrapolation
of the planning horizon tmax, we need to assume the departure but after the
suitable cycle, cycletmax, that enables the vehicle to depart considering same
future conditions of the planning horizon:

pdthighi,conn,ph = max
{(
evt4lastpi,j + cycletmax · tmax

)
− slarri, 0

}
, (5.43)

where lastpi is the last vehicle on the preferential traffic of all lanes to yield
on its jth junction/edge/lane of its route, and evt4. In case the connection
yields to more than one lane and/or mov. groups, then it is used the last
vehicle to depart from all lanes to yield.
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Figure 5.27: Actions taken during the process of estimate the departure of
discharging vehicles for key events 3 to 5.
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5.4 Estimation of Travel Times

This sub-system estimates the travel time on the controlled edges by the
Traffic Controller (TC) per range (time window), rge, of the division of the
planning horizon tmax. The value for an edge is the average of the travel
times of its lanes and movement groups, as the assumption is that the travel
time is different for each lane of the edge and especially per movement group.
However, sharing between traffic controllers the travel time per mov. group
of each lane of the network and for each range (time window) may require
too much data to be transmitted. In other words, the system calculates
travel times at the precision of each range for each movement group per lane
but only the average for the edge will be shared. The inputs, processes and
outputs of this sub-system are seen in Figure 5.28.

Figure 5.28: Inputs and outputs of the Estimation of Travel Times sub-system.

5.4.1 Travel Times Using Probe Vehicles

The estimation using probe vehicles takes advantage of the fact that vehicles
are modelled from their arrival on the edge until their departure time. There-
fore, the edge, k, travel time for range, rge, denoted as edgettk,rge is given
by:

edgettk,rge =
∑
vehtti,j

numprobesl,mg,rge
∀ i ∈ probesl,mg,rge, (5.44)

∀ l ∈ lanesek and
∀ mg ∈ movgsek ,

where l is the index of the lanes of edge k and mg the mov. group, lanesek is
the list of edge ek lanes andmovgsek its mov. groups, while numprobesl,mg,rge
is the number of probes. The probe vehicle, i, is in probesl,mg,rge, which
correspond to its jth junction/edge/lane of its route and edge k, where:

vehtti,j = endti,j − arrti,j . (5.45)
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5.4.2 Travel Times Using Queueing Model

When probe vehicles are not assigned to a certain range rge of an edge,
then a modified version of the deterministic queueing model presented in
Equation 4.8 is used. The choice of this model is due the fact that as we
model vehicle arrivals and departures, as well as the initial queue is also
modelled by the vehicles already on lane, we use our traffic theoretic model
as input for this queueing model, in which:

q(t) = q(actualt) +A(t)−D(t), (5.46)

adpv(rge) = 1
A(rgendtrge)

∫ rgendtrge

actualt
q(t)dt, (5.47)

where

q(t) is the queue length at time instant t,

rgendtrge is the end time of the range rge being estimated the travel time,

A(t) is the cumulative number of arrivals from the current time of updating
the algorithm actualt until t,

D(t) is the departures under continuous presence of vehicle queue from the
current time of updating the algorithm actualt until t, and

adpv(rge) is the average delay of vehicles queuing during the time period
[actualt, rgendtrge].

The model needs the "arrivals" and "departures" from the stop line what
we don’t really have in some cases if the vehicle is not a probe vehicle and
it couldn’t depart from stop line before the end of the planning horizon. To
solve this, we look into how it models the queue. Vehicles are considered
to stack at the stop line, the so called vertical queue. Therefore, the arrival
time means the time vehicle would arrive at stop line without any influence
of vehicle in front or signal plan, qmodelarri,j , given by:qmodelarri,j = arrti,j + llenl

(lmaxvl·vfaci) if ∃ arrti,j
qmodelarri,j = nupti,j + nupdi,j

(lmaxvl·vfaci) otherwise,
(5.48)

where arrti,j is vehicle’s arrival time on the edge (entering it), nupdi,j is
vehicle’s distance when being generated (as startdi,j is updated with new
values), llenl is the lane length (in metres), lmaxvl the lane maximum speed,
and vfaci vehicle i speed factor. The vehicle i is classified as part of the
initial queue, q(actualt), if qmodelarri,j <= actualt, otherwise it is assigned
to the respective arrival on range, rge, when qmodelarri,j >= rgstarttrge
and qmodelarri,j < rgstarttrge+1, in which rgstarttrge is the begin time of
the range rge. For the departures, the system accounts vehicle departure
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only if the vehicle crosses the stop line, the value used is the phase end time
endti,j = evt4i,j .

Equation 5.47 only estimates the delay due the queue, we still need to
calculate the delay due red light for a vehicle arriving on the edge at the
begin time of the range rge, denoted rgstarttrge, and also the connection
delay when yielding to preferential traffic. As the idea is to estimate the
travel time for each range but there is no probe vehicle, what is possible is to
estimate these delays if a vehicle would enter the edge at begin time of the
range, rgstarttrge. In this way, we need to calculate the travel time without
any delays, llenttl, in order to find the arrival time at the vertical queue,
vtarrl,rge:

llenttl = llenl
lvmaxl

, (5.49)

vtarrl,rge = rgstarttrge + llenttl. (5.50)

For the traffic light delay, tsdtl,mg,sph, we need to find a suitable phase,
sph, which is the first phase the vehicle may cross and it is based on the
arrival time at stop line:

tsdtl,mg,sph = max{begintmg,sph − vtarrl,rge, 0}. (5.51)

For the calculation of the queue delay, it is necessary to know the queue at
the time a vehicle arriving at rgstarttrge would experience. This is given by
a suitable range, rgevtar, that is the first possible range of the arrival time
at stop line. Finally, the travel time for the movement group mg of lane l at
range rge is estimated by:

lanemovttl,mg,rge = llenttl + tsdtl,mg,sph + adq(rge) + pdtconn,sph, (5.52)

where adq(rge) = adpv(rge) ·q(rgevtar) represents the average queue delay
at rge, while pdtconn,sph is the connection delay (discussed in Section 5.3.6)
using slarr = vtarrl,rge + adq(rge), because it considers the arrival time at
the stop line as the time the vehicle may depart after waiting for the queue
delay. The travel time on the edge, edgettk,rge, is the average travel time for
all mov. groups of the lanes belonging to the edge k.

5.5 Traffic Controllers Knowledge Sharing

This sub-system is responsible for the definition of the content and format
of the messages exchanged between traffic controllers as well as getting
information from these messages once it is known their formats. As it is
required an interface for the real exchange of messages, this sub-system only
focus on what should be shared and when, while how to do it is out of scope.
Figure 5.29 shows the inputs, processes and outputs of this sub-system.
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Figure 5.29: Inputs and outputs of the Traffic Controllers Knowledge Sharing
sub-system.

Figure 5.30 illustrates the format of the exchanged messages. The informa-
tion is valid from certain initial time (actualt corresponding to the time the
algorithm updated) and specific for each range (time window), rge, of the
planning horizon tmax. As the length of the ranges, lenrge, is fixed for the
whole system we only need to know from which time the received information
is valid (tmax is not necessary). Notice that the messages are junction-based in
order to reference which TC border junction would need to send information
to which TC border junction:. source junction ID (jctID) which is the identification code of the source

junction within the traffic network that send a message. destination junction ID (jctID) which is the identification code of the
destination junction within the traffic network

The lane inflow profile contains the inputs for the Vehicle Generation
sub-system, and only for the outgoing lanes that follow the order of junctions
to have their arrivals and departures to be estimated (i.e. a junction sends
its outflow on the lanes that go to a junction which still needs to have its
arrivals and departures to be estimated). This means that such messages are
exchanged at each algorithm iteration (twice per update). The information
to be shared is the parameters of headways distribution functions:. lane network identification (laneID);. number of vehicles;. flow (veh/s);.mean speed (m/s);.mean of headways (s); and
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Time
lenrge

Dest. Junction : jctIDSource Junction : jctID ⇒

Queue Pred. :

Inflow Prof. :

Travel Time :

laneID actualt rge0 rge1 rge2 rge3 rge4

rge0laneID actualt rge1 rge2 rge3 rge4

edgeID actualt rge0 rge1 rge2 rge3 rge4

Figure 5.30: Format of exchanged messages.

. standard deviation of headways.

The lane queue length prediction is sent only once at the second
iteration (i.e tcit = 2) as it will be useful only on the next algorithm update.
For the predicted queue length for each lane that is common between two
connected traffic controllers, the needed data is the rear distance of the last
stopped vehicle on each range throughout the planning horizon stored by the
Trip Definition sub-system:. lane network identification (laneID); and. queue length (m).

The edge travel times (TTs) message must be multicast to all traffic
controllers connected on the same Traffic Network (TN) and it is sent only at
the second iteration (i.e tcit = 2). This is due the fact that the broadcast of
travel times to Cooperative Automated Vehicles (CAVs) happen only after
all TCs estimate their edges’ travel times. It can be sent with any origin
junction of the TC as well as destination of each TC to receive, though it
is important to avoid sending to different junctions controlled by the same
TC, what would be redundant. These travel times are the expected ones per
range (time window) if a vehicle arrives on the edge between the interval
times of the range:. edge network identification (edgeID); and. travel time (s).

In general, the main sequence of tasks a Traffic Controller does is receive
messages; generate vehicles; estimate departures; estimate travel time; and
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send messages. Additionally, receiving messages happen at all time steps,
while sending only at algorithm update times. Figures 5.31 and 5.32 show
an example of messages received and sent, respectively, between three traffic
controllers. We can see that TC1 receives queue prediction of edges 1 and 3
while send the inflow of such edges, meanwhile receives the dynamic inflow
from edge 2 but send queue prediction. If we consider J1, this is because for
estimating the queue length on edge 1 it needs to know which vehicles will
be on the lane (which is also generated by the inflow profile) and such queue
prediction is used by J4 to delay or not vehicles if the queue will be full and
choose which lane vehicles will go to J1. For the case of J2, edge 3 has only
one way from J2 to J5, so J2 only needs the queue prediction from J5 and it
only needs to send the dynamic inflow profile.

e1 e2 e3 e3

l1 l2

TC1 Area

TC2 Area

TC2 TTs

TC3 Area

TC3 TTs

J1

Dyn.
Inflow

J2 J3

J4

Queue
Pred.

J5

Queue
Pred.

Queue
Pred.

J6

Figure 5.31: Example of received messages by TC1 in a traffic network with 3
connected traffic controllers.

TC1 Area

TC2 Area

TC1 TTs

TC3 Area

TC1 TTs

e1 e2 e3 e3

l1 l2

J1

Queue
Pred.

J2 J3

J4

Dyn.
Inflow

J5

Dyn.
Inflow

Dyn.
Inflow

J6

Figure 5.32: Example of sent messages by TC1 in a traffic network with 3
connected traffic controllers.
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Chapter 6
Simulation and Results

Although the main focus of this thesis is the development of a local level
routing system, in this chapter we evaluate our proposed system in a realistic
environment, demonstrating that it works for different penetration rates of
Cooperative Automated Vehicles (CAVs). Traffic simulations replicate the
traffic environment and can analyse the characteristics of traffic depending
on the problem that we want to study. Macroscopic traffic simulations are
suitable for traffic flows metrics, as they don’t take into account individual
vehicle interactions. On the other hand, microscopic simulations are able to
accurately model the behaviour of an individual vehicle in its environment
[Martinez et al., 2011], this is the type we are looking for as we need to
simulate CAVs getting the information from our system and feeding it back
with their fixed parameters and state (position and speed) information.

6.1 Simulation Software

We chose the simulation software SUMO [Behrisch et al., 2011] due to its
open source distribution and its TraCI (Traffic Control Interface) which is
used to interact the simulation in SUMO with Python scripts. This enabled
us to write the algorithm of our system in Python language that can exchange
information with the simulation replicating the real environment of CAVs
interacting with non-CAVs and communicating to traffic controllers through
Roadside Units (RSUs). Additionally, SUMO has a embedded rerouteing
mechanism where we can define vehicles to be equipped with a routing device
that changes the route to its destination at run-time at regular intervals. First,
the mechanism checks an optimal-route and then uses the current position of
the vehicle, its destination and either the current status of the network or
defined costs/weights (that can be time-dependent travel times) per edges to
compute a new optimal path. After that, the vehicle changes its route to the
new path if it is has lower cost than the current one [Codeca et al., 2017].
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6.2 Network Simulated

The Luxembourg SUMO Traffic (LuST) presented in [Codeca et al., 2017] is
a general purpose mobility scenario that describes a realistic traffic scenario
(e.g. avoids gridlocks and unrealistic mobility patterns) containing traffic
traces with various traffic densities and mobility patterns. Still according to
[Codeca et al., 2017], the City of Luxembourg has a topology comparable to
that of many of European cities, consisting of a central "city centre" area,
surrounded by different neighbourhoods, which are linked by arterial roads.
Another important aspect is that the area is big enough to simulate the
congestion patterns of cities, but at the same time small to allow simulations
running during a reasonable amount of time.

Figure 6.1 shows the whole LuST scenario topology, the chosen Traffic
Network (TN) for the application of our Local Level Routing (LLR) system,
and the location of the cooperative junctions (i.e. junctions that have a RSU
to communicate with CAVs).

Figure 6.1: LuST scenario topology and chosen area for the application of the
local level routing system.
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6.2.1 Traffic Demand

Figure 6.2 shows the complete traffic demand in red, composed of buses and
the following mobility patterns: a) local (origin or destination, or both inside
the city) in blue; and b) transit (both origin and destination outside the city
through the highways) in green. There is also a distinction between running
vehicles (R) and vehicles that are waiting to be inserted in the simulation
(W) [Codeca et al., 2016].

Figure 6.2: Traffic Demand over a day. (R) represents the running vehicles and
(W) the ones waiting to enter the simulation at each given time [Codeca et al.,
2016].

We will study the influence of our Local Level Routing system during two
hours at the evening after peak from 21:30 to 23:30 hours. However, this
time range correspond to the time we measure the values, as the simulation
(including the function of the proposed system and vehicles routing themselves)
starts 30 minutes before the measurements to act as a warm-up time. We
expect that at this low flows the objective of finding alternative routes
promoting green waves should be achieved, while balancing the load of vehicles
through the network due the knowledge of the predicted queue lengths. The
network speeds (in m/s), as road colour, and relative flow volumes, as road
width, are shown in Figure 6.3 in respect to the traffic demand around 22:30
without vehicles equipped with rerouteing device.
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Figure 6.3: Network speeds (in m/s) and road width as relative flow volumes at
around 22:30 without vehicles equipped with rerouteing device.

6.3 Scenarios

There are two main scenarios in the Luxembourg SUMO Traffic (LuST)
network, each based on the predefined routes (mobility traces) of vehicles
throughout the simulation over 24h. One is the Dynamic User Assignment
(DUA) (all-or-nothing strategy), in which routes were defined by the time-
dependent shortest-path (least time) for each vehicle with static traffic lights
but without consideration of other vehicles (empty network). The second is
the Dynamic User Equilibrium (DUE) (dynamic version of the Wardrop’s user
equilibrium principle, see Appendix B.3) that represents several iterations
of the DUA considering other vehicles. Additionally, as SUMO enables the
control of how many and/or which vehicles can be equipped with rerouteing
device, besides the definition of the time-dependent travel times that act as
edge costs, we can set a penetration rate of vehicles that may reroute using
Hourly Travel Times (HTT), while others continue using their DUA routes.
Therefore, the total of 16 scenarios were planned for a sensitivity analysis that
tried to capture the performance of our Local Level Routing (LLR) system
under seven different Penetration Rates (PRs) of CAVs, against the following
base cases:. same vehicles of the LLR but using only hourly travel times case (HTT);. best case (DUE); and. worst case (DUA).
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6.3.1 Base Cases

The Dynamic User Assignment (DUA) case uses the optimum route
between origin and destination in terms of travel time and length on empty
network. Although this mobility is not realistic (because it does not consider
other vehicles), it is useful for providing a scenario with routes ready to
be optimized by rerouteing algorithms. There is no rerouteing during the
simulation at this case.

The Dynamic User Equilibrium (DUE) case uses the optimum route
where each vehicle cannot reduce its travel cost by using a different path. It
iteratively optimizes each route, running many simulations and recomputing
the DUA over the network. After each iteration, new routes are randomly
selected among the best routes and they are added to the set of those available
for a vehicle, then a new simulation is performed. There is no rerouteing
during the simulation at this case.

The Hourly Travel Time (HTT) case uses the DUA routes for all
vehicles, but if a vehicle is equipped with a rerouteing device, it uses hourly
travel times (i.e discrete values of edge travel times per 1 hour interval) to
reroute itself using the same time-dependent discrete travel times shortest-
path algorithm (that will be defined in Section 6.4) to find the optimum
route at every predefined interval (e.g. 300 seconds). The penetration rates
of vehicles with rerouteing device is the same of the proposed case: 10%, 20%,
30%, 50%, 70%, 85%, 100%.

6.3.2 Proposed Case

The Local Level Routing (LLR) case uses the DUA routes for all vehicles,
but if a vehicle is equipped with a rerouteing device, then it uses the following
priority of time-dependent discrete travel times for the shortest-path algorithm
(that will be defined in Section 6.4) to reroute itself:..1. edge, k, travel time for each range, rge, of the planning horizon time, tmax

provided by the LLR system. In addition, to ensure the FIFO property
and also provide some updated estimation of the travel time further than
tmax, for any time after actualt + tmax we use the maximum between
the average value of the travel times throughout tmax and the travel
time of the last range, lastrge, plus the time interval between algorithm
updates, lenrge. In other words, edgettk,>lastrge = max{edgettk,lastrge +
lenrge,meanedgettk}, where edgett is the edge travel time, numrges
the number of ranges and

meanedgettk =
∑lastrge

0 edgettk,rge
numrges

. (6.1)..2. hourly travel times.
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Notice that this means that vehicles may use for some edges the travel

time provided by our LLR system, while for other edges not controlled by
the LLR system the hourly travel times. Additionally, the updated travel
times are set individually for each vehicle equipped with rerouteing device
within the communication range of the RSUs within the Traffic Network of
the chosen area of our LLR system. In other words, if a rerouteing device
equipped vehicle doesn’t enter the Traffic Network, it will not receive the
updated travel times by our system. Similarly to the HTT case, vehicles find
the optimum route at every predefined interval (the same value as the HTT
case), and the penetration rates of vehicles with rerouteing device are the
same of the HTT case: 10%, 20%, 30%, 50%, 70%, 85%, 100%. Moreover,
for each penetration rate on the LLR and HTT case, the same vehicles are
equipped with rerouteing device, to ensure same environment conditions.

6.3.3 Hourly Travel Times

We used travel times for every hour from the beginning until the end simulation.
The collection of these travel times was done by first running one simulation
for each Penetration Rate (PR) of Cooperative Automated Vehicles (CAVs)
routing themselves every 300 seconds with the current edge travel times. This
simulation outputs the hourly travel times for all edges in the network. Based
on this travel times a new simulation was conducted, where the PR of CAVs
used this travel times of the previous simulation. This second simulation also
output the hourly travel times, which is the values we use for the HTT and
LLR scenarios.

6.3.4 Static Data for Proposed Scenarios

As pointed out in Section 5.1.3, our Local Level Routing (LLR) requires some
data for each TC. Figures 6.4, 6.5, 6.6, and 6.7 show the division of the chosen
Traffic Network into 4 sub-networks, each controlled by a Traffic Controller
(TC).

For the necessary data for each TC, some of them are directly retrieve from
SUMO network files (e.g. lane length, lane connections, connections to yield,
etc.), while for others we ran a simulation for each base case scenario using
SUMO’s instantaneous induction loop detectors on both the begin and end
of each lane of the edges controlled by the TC. Among the outputs of this
induction loop, we use the id, speed and time a vehicle leaves the detector,
and new vehicles are those that are detected on the end detector but not on
the begin one, while finished vehicles are the opposite. The following list of
values are either standard values or collected through the simulation time
but after the warm-up time (1800 s).

. Std. planning horizon time = 180 s (maximum traffic signal plan cycle
time of the chosen area).
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Figure 6.4: Incoming edges controlled by the traffic controller 1.

Figure 6.5: Incoming edges controlled by the traffic controller 2.
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Figure 6.6: Incoming edges controlled by the traffic controller 3.

Figure 6.7: Incoming edges controlled by the traffic controller 4.
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. Std. communication range = 250 m (assumed as it depends on many
factors).. Std. acceleration adjustment = 0.85 (chosen by fitting best values after
many simulations).. Std. deceleration adjustment = 1.2 (chosen by fitting best values after
many simulations).. Std. connection capacity = 0.5 veh/s = 1800 veh/h, from [Bureau of
Public Roads, 1950].. Std. lane gap time = 1 s, from [Bureau of Public Roads, 1950].. Std. average critical gap = 5.7 s, from [Fitzpatrick, 1991].. Std. follow-up time = 60%, from [Fitzpatrick, 1991].. Last edge probability: ratio between finished vehicles and all detected
on the begin detectors of the edge.. Next edge probability: ratio between all detected on begin detector of
each next edge and all detected on the end detectors of the edge.. Num. vehicles beginning their trip: average number of new vehicles
throughout the simulation, but converted into one range (30 s).. Fixed inflow profile: average values from each vehice detected throughout
the simulation, but converted into one range.

For the system-wide data, the following list.. 5 types of passenger cars, from SUMO’s standard vehicles.. Routing interval = 180 s (same value of planning horizon).. Routing pre-period (routing time before insert the simulation) = 60 s
(SUMO standard value).. Length of the ranges (division of the planning horizon) = 30 s (chosen
by fitting best values after many simulations).. Low flow threshold = 0.25 veh/s = 1 veh/4 s = 900 veh/h, from [Bureau
of Public Roads, 1950]..Mid flow threshold = 0.5 veh/s = 1 veh/2 s = 1800 veh/h, from [Bureau
of Public Roads, 1950]..Minimum headway = max flow threshold = 1 veh/s, from [Bureau of
Public Roads, 1950].. Reaction time = 1 s, from [Bureau of Public Roads, 1950].
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.Minimum stop line gap (min. gap for first vehicles in the queue) = 1 m

(SUMO standard value).. CAVs route sharing probability = 100% (assumed).

6.4 Simulated Edge Cost Estimation Algorithm

The development of the algorithm was done in Python programming language
and used TraCI (the interface between SUMO and Python). SUMO has an
option called Context Subscriptions in which TraCI will retrieve a predefined
information when an object, in our case a CAV, is within a certain range of a
reference object (the junction) with the vehicular information retrieval. The
following TraCI domains were used.. Trafficlight: for getting the signal plans within the planning horizon

time.. Vehicle: for retrieval of information from CAVs and updating the travel
time of controlled edges within the Traffic Network for each CAV detected
by one of the RSUs.

For the HTT, DUA and DUE cases the simulation runs only SUMO and no
algorithm is needed. However, an algorithm for the Local Level Routing (LLR)
system is used and adapted to the simulation, as presented in Figure 6.8. The
algorithm runs twice per time step of the simulation, ∆t, representing each
iteration, tcit, which is done for each traffic controller, TC, in a ordered list
of traffic controllers tcorder (with last TC is denoted lasttc) and junctions to
estimate arrivals and departures, jctorder. Until the end time of simulation,
endt, for every time step, t, which corresponds to a real world time of the
time step, actualt, each TC checks if there is a message received from another
TC. If the time to update reaches zero, then all the estimations must be done,
what occurs every lenrge seconds, i.e. the algorithm updates. The tcorder
and jctorder define the order of junctions to have arrivals and departures
to be estimated. Only at the first iteration, the algorithm generates new
Vehicles Already on Lane (or restart the phase start values - startt, startv
and startd - with the next alg. update values - nuptd and nuptv - for the
ones from previous time steps) and Vehicles Starting on Lane. Then, and for
both iterations, we need to define the lanes, lanesorder, following the order
of the junctions order, generate Vehicles Arriving on Lane and estimate the
departures of all vehicles per junction, as well as prepare the outflow profiles
to the next junctions controlled by other TCs. Especially for the second
iteration, we define the probe vehicles in order to be able to predict travel
times (TTs) and queue lengths with the new arrivals from both lane orders
(1st and 2nd iterations). The algorithm also remove vehicles on lanes that will
be in the lanesorder of the next iteration as new arrivals will be generated
using updated information.
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Figure 6.8: Simulated edge cost estimation algorithm.
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6.5 Simulated Optimal Route Algorithm

SUMO offers a range of routing algorithms, they were described already in
Section 3 and Appendix A.3:

. Dijkstra, the simplest and well suited to routing in time-dependent
networks, but slowest one;. A*, similar to Dijkstra, though it uses the euclidean distance divided by
the maximum speed for bounding the travel time to direct the search
and speed up the process;. CH, uses preprocessing and it is very efficient when a large number of
queries is expected, it also considers time-dependent weights; and. CHWrapper, works like CH but to be more efficient it separates prepro-
cessing for every vehicle class that is encountered.

We decided to use the Dijkstra routing algorithm (see Algorithm 1) from
SUMO as it leads to the exact solution and the best alternative for our
discrete time-dependent routing.

6.6 Evaluation Method

Each scenario was analysed based on the traffic performance measures for all
vehicles routed by the Local Level Routing (LLR) system for the LLR and
Hourly Travel Times (HTT) cases, and the edges controlled by the traffic
controllers (see Figures 6.4, 6.5, 6.6 and 6.7) for all cases. Additionally, we
also introduce 5 "probe" vehicles (each with an Origin-Destination pair) inside
the Traffic Network (TN) of the chosen LLR area that are generated every
15 minutes, in order to evaluate the influence of the LLR algorithm against
the HTT individually for each vehicle. The origin and destination of each
vehicle is seen in Figure 6.9.

Since the comparison deals with simulation, which is stochastic, we needed
to develop an experiment that could create different initial conditions at each
replication. Figure 6.10 shows the steps of the replication experiment in which
each step was carried by each replication and the one in the last replication.

For the number of required replications of the simulation to ensure good
confidence of the results, we used the information and formula from [Burghout,
2004],

N(m) =
(
S(m) · tm−1,1−α/2

X(m) · ε

)2

. (6.2)
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Figure 6.9: Origin (O) and destination (D) of each vehicle used to analyse
individual results.

Figure 6.10: Evaluation steps.

Equation 6.2 states that the number of required replications, N(m), is
based on m initial replications. The other inputs include, X(m), which
represents the real mean from the m replications, S(m), which represents
the real standard deviation from the m replications. Moreover, ε represents
the allowable percentage of error, while tm−1,1−α/2 the critical value of the
two-tailed Student’s t-distribution at α level of significance and m− 1 degrees
of freedom. Applying Equation 6.2 for all our measures and accepting 6%
allowable error, we would need to make 12 replications to have accuracy of
(at least and approximately) 95% if we consider only aggregated values. By
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aggregated values we mean the measures from all LLR routed vehicles and
edges, except the 5 additional vehicles for the individual evaluations. This
is because if considering them the number increases to 273 replications. It
would be desired to make all these replications but this would requires some
weeks to get all results and, due time constraints, not possible. Based on
the results of each replication, and using the Student’s t-distribution, we can
calculate the confidence interval as it follows:

X(n)± tn−1,1−α/2 ·

√
S(n)2

n
. (6.3)

Equation 6.3 presents the mean estimate, X(n), based on n initial replica-
tions and the half of confidence interval consisting of tm−1,1−α/2. The critical
value of the two-tailed Student’s is the t-distribution at α level of signifi-
cance and n− 1 degrees of freedom and S(n)2 which represents the standard
deviation from n replications.

6.7 Results

Although we will discuss the results throughout this section, the confidence
intervals, calculated using Equation 6.3, of the evaluated metrics are seen in
Appendix C.1, C.2, C.3, C.4, C.5, C.6, C.7, C.8, C.9, C.10, and C.11. The
first analysis we do is related to the number of vehicles that reach the area
controlled by the Local Level Routing (LLR) system, in order to check if it
remains the same according to the scenario. Table 6.1 shows that around
19% of all Cooperative Automated Vehicles (CAVs) enters the area of the
Traffic Network in all scenarios.

According to Table C.1 the percentage of LLR routed vehicles that have
a different route from the base scenario with same Penetration Rate (PR)
with Hourly Travel Times (HTT) is high in all scenarios, in average 93%.
Surprisingly, the impact of the LLR system on the percentage of different
edges is higher when aggregated all CAVs than only the probes. However,
the proportion of different edges increases much more for the probes than all
CAVs at higher PRs, as Figure 6.11 illustrates. This means that as the probes’
route within the chosen LLR Traffic Network (TN) is quite short, they are
changing only few edges and in average only once (for any PR scenario), as
seen in Table C.10, what is expected as the rerouteing interval is 180 seconds
and the mean route duration is about 250 seconds. Tables C.5 and C.7 shows
little difference of route duration and length (in average), but the confidence
intervals are very broad for the probes, specially probe 3, which is the vehicle
that almost all of its DUA route uses the most congested edges (see Figures 6.3
and 6.9). The differences between LLR and HTT scenarios remains quite the
same (Tables C.5, C.7 and C.9), and although some scenarios have bigger
differences we cannot see a trend. The only pattern of improvement is in the
averages, seen in Figures 6.12, 6.13, and 6.14, which is interesting specially
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Scenario Num. LLR
Routed Vehs. [#]

Num. All
CAVs [#] Proportion

LLR 10PR 323 1685 19%
HTT 10PR 323 1674 19%
LLR 20PR 623 3463 18%
HTT 20PR 621 3443 18%
LLR 30PR 908 5115 18%
HTT 30PR 905 5085 18%
LLR 50PR 1553 8550 18%
HTT 50PR 1550 8499 18%
LLR 70PR 2201 11983 18%
HTT 70PR 2202 11917 18%
LLR 85PR 2739 14476 19%
HTT 85PR 2736 14387 19%
LLR 100PR 3322 17078 19%
HTT 100PR 3319 16978 20%

Table 6.1: Total number of Cooperative Automated Vehicles (CAVs) and their
proportion as well as number that received information from the Local Level
Routing (LLR) system.

for waiting time, as the higher the PR these vehicles get less benefits (except
the route length that remains quite the same). The explanation for this is
that because at lower PRs CAVs have privileged information about traffic
conditions and signal timings, that most of others do not, what enables them
to enjoy less traffic and get green waves easier. Regarding the instability of
the results for probes, we need to make a deeper analysis on why these results
are variating so much, even though the average values are accordingly. As
pointed out in [Krishnamoorthy, 2008], when rerouteing reacts too often and
for every small variation in travel times the results may actually get worse.

Analysing the Table C.2 we see a curious behaviour, the sum of the waited
time on the edges (time that vehicles were considered stopped) had a good
improved but that didn’t come with lower mean travel times and higher mean
speeds. However, if we check the variation of the mean travel times and mean
speeds from the worst case scenario (DUA) and the best one (DUE), the
difference is only 5% for travel times and -3% for speeds, while the waited
time in the DUA case is about 215% higher than the DUE case. What lead
us to the conclusion that, at least for this scenario and traffic demands, the
travel time will hardly improve much, though our LLR algorithm, for mean
travel times, performed even better than the DUE case with penetration
rates of 50% and 70%, shown in Figure 6.15. We can also see a slight poorer
performance of our LLR system above 70% regarding travel times. In fact,
this behaviour is quite common in the literature (for instance [Leistner et al.,
2012], [Pan et al., 2013], [Codeca et al., 2017], [Olia et al., 2016], [Herbert
and Mili, 2008]), and it is due the fact that when receiving travel times
vehicles routing at the same time may go to a certain edge which would
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Figure 6.11: Average percentage of different edges.

Figure 6.12: Mean route duration, in seconds.

not be congested at the time they would pass, but as the travel times are
estimated per time ranges and not per each vehicle (what would demand too
much computation and communication between TCs) the last travel time
estimation don’t consider these vehicles rerouteing to the edge using this last
estimation, what might create a punctual congestion. Nevertheless, on the
next estimation (next algorithm update) they would be considered and the
congestion possibly predicted for that time, but as vehicles have rerouteing
interval they will not reroute again, only vehicles to be routed at and after this
second algorithm update would have such information when rerouteing. We
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Figure 6.13: Mean route length, in meters.

Figure 6.14: Mean waiting time, in seconds.

should notice that, if CAVs share their routes, this rerouteing interval avoids
the problem of vehicles changing their routes so much that the predicted
traffic become invalid and the routing information is not consistent [Herbert
and Mili, 2008]. On the other hand, not only the waited time had a big room
for improvement (which we achieved a great part of it), but also the density
and occupancy, as seen in Table C.3 and Figures 6.16, 6.17 and 6.18. The
mean occupancy gets considerable improvement but it was already low. The
expressive reduction of waiting time and maximum mean occupancy (but not
together with the travel time) as the PR increases, tell us vehicles may be
driving longer or using alternative edges with similar distances to get green
wave and avoid longer queues, what balances the load of vehicles through the
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traffic network and turns it more efficient. This is the big advantage of our
LLR system compared to the HTT, especially on scenarios with PR above
70%. The explanation for this is that when all vehicles use the HTT fastest
travel times, they move traffic jams from one place to another, while in the
LLR the travel times accounts vehicles routes and balance the load.

Figure 6.15: Sum of mean travel time on edges controlled by the LLR system,
in seconds.

Figure 6.16: Sum of waited time on edges controlled by the LLR system, in
seconds.
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Figure 6.17: Mean density on edges controlled by the LLR system, in vehicles/km.

Figure 6.18: Maximum mean occupancy on edges controlled by the LLR system,
in percentage.
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Chapter 7
Conclusions

In this work we investigated the benefits of local level routing to the Coop-
erative Intelligent Transport Systems (C-ITS) environment, focusing on the
opportunities related to the reduction of travel times and congestion as well
as better balancing the load of vehicles throughout a traffic network. Our
contributions were supported by the European Union and will be evaluated
as part of the project MAVEN (Managing Automated Vehicles Enhances Net-
work), funded by the EC Horizon 2020 Research and Innovation Framework
Programme. In the following list we summarise the conclusions of this thesis
according to the research objectives defined in Section 1.1:..1. Optimal route algorithms and edge cost estimation models: in

Chapter 3 we researched algorithms for the optimal route problem (in
particular shortest-path problems) that have short running time and
can handle the dynamic behaviour of travel times in urban networks,
especially due signal timings and variety of route alternatives. This
lead to the choice of discrete FIFO (First-In-First-Out) time-dependent
"shortest" (in fact minimum-time or earliest arrival) path problem. After
that, in Chapter 4 we explored models for edge travel time estimation
that were accurate, able to input the available traffic information, and
output in the format needed for the chosen shortest-path algorithm. As
we require only the arrival and departures times at edges with certain
degree of prediction and quick running time, microscopic models present
unnecessary complexity for only one metric (i.e. travel time), high re-
source usage at larger networks and limited benefits if the implementation
is fully distributed (a traffic controller for almost one junction); while
macroscopic models lack of enough detail; and queueing models use
flows instead of known arrivals. Our main contribution is the proposed
event-based traffic model to predict the movement of vehicles along an
edge coupled with a deterministic queueing model for the prediction of
travel times...2. Local level routing system: after defining the chosen models and algo-
rithm type, in Chapter 5 we developed a route guidance system in which
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Cooperative Automated Vehicles (CAV) reroute themselves through a
network using discrete time-dependent edge travel times (within a pre-
diction time) based on accurate short-term traffic predictions considering
signal timings and vehicle arrivals of each discrete intervals, as well
as queue lengths and unexpected events. On this way, vehicles with
a destination outside the area controlled by the system can find the
optimal route considering the nearby accurate predictions and faraway
stored information, avoiding route advices to an unnecessary local desti-
nation. However, one important issue is that benefits are realised when
there is a time interval between reroutes, i.e. recommended from 180 up
to 300 s [Codeca et al., 2017], and vehicles should reroute at different
timings. The reason is due to unreliable predictions caused by too short
intervals that worsen the performance ([Watling and van Vuren, 1993],
[Herbert and Mili, 2008]) and many vehicles rerouteing at the same time
(specially above 70% penetration rate). We implement the system in
the infrastructure (i.e traffic network) composed by connected Traffic
Controllers (TCs) that exchange 1) edge travel times, 2) queue prediction,
and 3) inflow profile messages between each other to allow the system
to be flexible as a distributed or centralized according to the required
running time and communication restrictions. TCs model the movement
of vehicles per green phase by estimating arrival and departure times at
each edge using the proposed event-based traffic model, which identifies
5 events throughout the movement assuming that vehicles will accelerate
until certain distance they need to start braking and then accelerate
again when possible. TCs also define vehicles trip through the network
flowing between junctions using turning rates, and at lane level using
the predicted queue from the traffic model. This enables modelling
microscopically at edges and statistically between edges, maintaining
short running time while using key data for accurate predictions. The
travel times are specific for each time window/range (a fixed length divi-
sion of the prediction time), and estimated using either: the difference
between departure and arrival time for vehicles that arrived within the
time window; or a deterministic queuing model based on the cumulative
arrivals and departures up to the end of the time window, including the
delay time given departures on the preferential traffic to yield. Such
estimation considers all available information, as well as the waiting due
yielding to preferential traffic, even when there is no vehicle on the lane...3. Evaluation in a real-world scenario: finally, in Chapter 6 we anal-
ysed the performance of our proposed local level routing system and
compared it against the best (Dynamic User Equilibrium - DUE), worst
(Dynamic User Assignment - DUA) and Hourly Travel Times (HTT)
cases. At the Traffic Network performance level and considering the
Local Level Routing (LLR) system proposed case against the HTT case,
the biggest improvement was at reducing the waited time (time a vehicle
is considered stopped on the edge) up to 25%, while 23% lower density
and occupancy (mean and maximum mean) improvement of roughly

ctuthesis t1606152353 108



.....................................7.1. Future Work

20%. If we compare our proposed system against the scenario without
routing (Dynamic User Assignment), we have reduction up to 56% of
waited time, 48% for density and roughly 60% lower maximum mean
occupancy at 100 penetration rate. This let us conclude that CAVs were
avoiding traffic jams they would experience if using only hourly travel
times and/or getting green waves, doing so by taking a longer route or
alternative path with similar length which at the end didn’t bring much
improvement for network travel time. Indeed, the mean speed and sum
of mean travel time show almost no improvements between LLR and
HTT cases, but still up to 6% lower travel time compared to the DUA
case. However, the difference between worst and best cases is only about
5% and we achieve a reduction of travel time better than the best case.
Additionally, CAVs have slight lower travel times of 5% and considerably
less waiting times, 9%, in 10% penetration rate compared to 100%, even
their route length is pretty much the same in all scenarios. This is due
the fact that they get privileged information at low penetration rates
(PR) and as the PR increases the benefits don’t improve at the same
rate for them, though at network level it turns more expressive.

7.1 Future Work

Throughout this work we identified possible directions that could complement
our study, we list then in the following list.

. The proposed messages, in particular the inflow profile, to be exchanged
between traffic controllers contain information that can be useful for other
systems like signal control and network coordination (green wave) and,
if included additional information (i.e. number of priority or emergency
vehicle per range/time window of the planning horizon), it could be used
by priority management and emergency situations. Therefore, the format
of the messages as well as their interval of exchange could be adapted in
order to reduce the communication burden and simplify the integration
of all other systems.. Regarding the travel time broadcasting, in case of an unexpected event,
it would be recommended if Roadside Units also inform that vehicles
should reroute again even if it is not the time of another reroute given
the rerouteing interval. For instance, if an edge is fully closed due an
accident a vehicle would still go there even if it is known the edge is
closed. A strategy should be developed for this situation, due the fact
that if all vehicles route at the same time they may create congestion on
edges predicted to be not congested.. As traffic prediction is affected by vehicle’s reactions to the routing
information, route choice models (discussed in Appendix B.3) would be
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worth to be explored and replace the actual static turning rates that
doesn’t consider perceived travel times.. The predicted travel times are averaged per edge, even though we have
the precision of travel times per movement groups. This can be a big
issue in busy roads where there are non-protected left-turning bay and
left-turning vehicles wait long time while the ones going through have
almost no delay. On this way, the left-turning and through vehicles get
same edge travel times but in reality they would experience very different
delays. The ideal situation would be routing and providing travel times
per connections, but the feasibility of this is a problem.. A model for lane change is recommended (a rule-based should be enough),
the main usage is when a vehicle in front doesn’t have green signal and
there are other lanes available, or when a slow vehicle in front delays the
vehicle behind and even in the case of either different lane speeds or lane
closure.. In the current setting of the system, vehicles already on lane for the next
algorithm update are estimated based on the modelling of last update.
However, these vehicle could use vehicle detectors between the algorithm
updates and generate vehicles at the position and time they were detected
on the next update. Additionally, this time interval between algorithm
updates uses the same time of the time window/range’s length (division
of the planning horizon) but that could be changed to allow more frequent
update while maintain efficient time window intervals, though this would
required a quite major modification of the system..When there is high traffic (around the high threshold), the travel times
are easier to predict due to little variation of headways, and both travel
times as well as modelling of vehicles could use saturation flows and only
the queueing model estimating departures..We also would like to make a deeper analysis on why the results for
probes were more unstable, and test in more scenarios with higher flows
and in cases with lane closures as well as study the performance of the
system relate to vehicle’s emissions.
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Appendix A
The Optimal Route Problem

Algorithm 2 is a standard procedure, when it is assumed that the algorithm
starts from the origin node, for shortest path problems.

Algorithm 2 Standard pseudocode for shortest path algorithms, adapted
from [Fu et al., 2006].
Input: V,E,C
Output: P,L
ls = 0
lvj+1 =∞ ∀ vj+1 ∈ V \ {s}
pvj = NULL
Q = {s}
while Q 6= ∅ do
Select a junction vj ∈ Q
Q = Q \ {vj}
for each edge ek from junction vj , where ek = (vj , vj+1) ∈ E do
if lvj + cek < lvj+1 then
lvj+1 = lvj + cek
pvj+1 = ek
Q = Q ∪ {vj+1}

end if
end for

end while

Where

pvj+1 : is the preceding edge ek = (vj , vj+1) on the shortest path to junction
vj+1,

lvj+1 : is the cost, commonly referred as the “distance label”, of visiting the
junction vj+1,

cek : is the cost to transverse edge k, where ek = (vj , vj+1), and

Q : is the scan eligible junction set which manages the junctions to be
examined during the search procedure.
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A.1 Earliest Arrival for Fixed Departure Time

Algorithm 3 Pseudocode to solve the earliest arrival from source s to a
destination d using a label correcting algorithm [Dean, 2004].
Input: t, V, E, avj ,vj+1(t) ∀ ek = (vj , vj+1) ∈ E
Output: EAs,vj+1(t)
EAs,vj (t) =∞ ∀ vj ∈ V \ {s}
EAs,s(t) = t
Q = {s}
while Q 6= ∅ do
Select a junction vj ∈ Q
Q = Q \ {vj}
for each junction vj+1 connected to vj , where ek = (vj , vj+1) ∈ E do
f(t) = min{EAs,vj+1(t), avj ,vj+1(EAs,vj (t))}
if EAs,vj+1(t) 6= f(t) then
EAs,vj+1(t) = f(t)
Q = Q ∪ {vj+1}

end if
end for

end while

A.2 Earliest Arrival for Every Departure Time

While the computation of EAs,∗(t) gives a single scalar distance label EAs,vj (t),
for every junction vj ∈ V (similar to the static shortest path problem); on
EAs,∗(∗), the distance labels for every vj ∈ V are the functions EAs,vj over
time that, in discrete time, can be represented by vectors with tmax + 1
integer components of a finite window with time duration tmax. This is
better understood by a time-expanded network, GT , presented in [Dean,
2004] and illustrated in Figure A.1; where each column represents a sin-
gle junction in V and the rows the earliest arrival at junction vj . On
this way, the network contains n(tmax + 1) junctions of the form (vj , t),
where vj ∈ V and t ∈ {0, 1, ..., tmax}; while O(mtmax) edges of the form
((vj , t), (vj+1, avj ,vj+1(t))), where (vj , vj+1) ∈ E, t ≥ 0, and aj,j+1(t) ≤ tmax.

For the EAs,∗(∗) problem (in discrete time), besides proposing a decomposi-
tion of EAs,∗(∗) by time into tmax+1 computations of EAs,∗(t) (which would
lead to running time of O(tmax(m+ n logn))), [Dean, 2004] presented three
reference solution algorithms: one using a label correcting algorithm; another
that is analogous to a label setting algorithm; and the last one based on the
parallel computation of two disjoint regions of time and space partitioned
based on the EAs,vj (t), introduced by himself in [Dean, 1999]. However, as
the author stated that label-correcting algorithm is not the most efficient for
this problem, we present on Algorithm 4 only the algorithm similar to the
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Figure A.1: Illustration of shortest path trees on a time-space diagram (time-
expanded network), adapted from [Dean, 2004].

label-setting algorithm. This algorithm finds the shortest path from a set of
source junctions ζ = {(s, τ) : 0 ≥ τ ≥ tmax} to every junction (vj , t) by com-
puting the actual values of the EAs,vj functions. These functions are given by
the inverse of the last departure from s to junction (vj , t), i.e. (t−Ds,vj (t))−1;
where Ds,vj (t) denotes a distance label function from ζ to each junction
(vj , t) in GT , while assuming avj ,vj+1(t) ≥ t ∀ ((vj , t), (vj+1, avj ,vj+1(t))), and
enumerating junctions one “level” at a time in chronological order. It achieves
a running time of O(mtmax), the same as the lower bound for computing
EAs,∗(∗) in discrete time.
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Algorithm 4 Pseudocode to solve the earliest arrival from source s to all
other junctions [Dean, 2004].
Input: T, V, E, avj ,vj+1(t) ∀ vj , vj+1 ∈ E
Output: Ds,vj , EAs,vj
for t← 0 to tmax, where t ∈ T do
Ds,vj (t) =∞ ∀ vj ∈ V \ {s}
Ds,s(t) = 0

end for
for t← 1 to tmax, where t ∈ T do
for each vj ∈ V do
Ds,vj (t) = min{Ds,vj (t), Ds,vj (t− 1)}

end for
for each (vj , vj+1) ∈ E do
if avj ,vj+1(t) ≥ tmax and Ds,vj+1(avj ,vj+1(t)) > Ds,vj (t) +avj ,vj+1(t)− t
then
Ds,vj+1(avj ,vj+1(t)) = Ds,vj (t) + avj ,vj+1(t)− t

end if
end for

end for

A.3 Speed-up Techniques

Speed-up techniques have been developed to avoid unnecessary computation.
Such techniques have an offline phase (called preprocessing), which computes
additional data, that accelerates queries during the online phase. Usually
the offline phase run much longer times by exploit several properties of a
transportation network during, while the online phase obtains the quickest
path within microseconds. There are three common speed-up techniques,
according to [Delling and Wagner, 2009], they are briefly described in the
following list.. Landmark-based ALT (A*, Landmarks, Triangle inequality) algorithm

[Goldberg and Harrelson, 2005], defines a set of junctions, called land-
marks, and precomputes and stores the shortest paths between all the
junctions and all landmarks in the network to answer a query faster than
a normal calculation. Its query is unidirectional and similar to Dijkstra,
but the priority queue is also determined by the lower bound of distance
h(vj) to s given by the landmarks.. Contraction Hierarchies (CH) ([Vetter, 2009], [Batz et al., 2010]), are
based on the idea of removing unimportant junctions from the graph and
adding shortcuts to preserve distances between non-removed junctions,
while restricting the scope of a search from the source by a set of
junctions defined a search from the destination. During preprocessing,
each junction is assigned a priority based on it importance in an n-level
hierarchy, then the graph is split into two: one storing edges directing
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from unimportant to important junctions, and another vice-versa. Its
query is conducted of two Dijkstra searches, a forward search on the
unimportant to important junctions graph, while a backward search on
the graph with the opposite.. SHARC (Shortcut+ArcFlags) routing [Delling, 2011], uses an arc-flag
approach, which first computes a partition of the graph and then attaches
a label to each edge ek (true or false) if a shortest path to at least one
junction in the partition starts with ek. The algorithm extracts the
maximal junction induced subgraph of minimum junction degree 2 and
perform a multi-level partition of the graph. Then, iteratively, it removes
edges and sets their arc-flags as true if their junctions are a core junction
or if a shortest path starts with the edge. Afterwards, it refines the
arc-flags of edges removed and finally reattach the junctions not in the
core removed at the beginning. Its query is similar to Dijkstra, but needs
to compute the common level of the current junction and the destination,
and the arc-flags evaluation.

Some issues brought by [Demiryurek et al., 2011] is that even though
the Contraction Hierarchies (CH) and SHARC methods were modified to
time-dependent road networks, the importance of the junctions can be also
time-varying and extensive preprocessing times. In SHARC, whenever an
edge cost function changes, arc flags should be recomputed even when the
graph partition don’t need to be updated. In CH, the space consumption is
at least 1000 bytes per junction for less varied edge-weights where the storage
cost increases with real-world time-dependent edge weights. However, their
concerns were over application of such techniques in continental size road
networks. For instance, [Delling and Wagner, 2009] states that although a
SHARC variant called Aggressive SHARC (which uses exact flags instead of
approximate flags) has, indeed, high preprocessing times, but also the lowest
query times. On the other hand, [Nejad et al., 2016] points out that ALT-based
methods have a trade off between choosing well-positioned landmarks and
preprocessing time, requiring large memory space, making them ineffective
for large road networks and vehicles without online information. Additionally,
although some speed-up techniques are based on A*, time-dependent A*
algorithms do not require storage of preprocessed shortest paths, short-cuts,
or lower bounds.

The time-dependent shortest path is approached in [Nejad et al., 2016]
by exploiting an efficient agglomerative approach to construct road network
representations through hierarchical community structure detection. The so
called Time-Dependent Goal Directed (TNGD) algorithm reduces the search
space in each level of the hierarchy, determining a spectrum of promising
communities for exploration in each level of the hierarchy. Then, a Hierarchical
Time-Dependent Goal Directed (HTNGD) algorithm searches over the entire
hierarchical representation of the road network, recursively calling the TNGD
for the level below, from the highest level and terminating at the lowest
level with the TNGD identifying the shortest path. Each upper level has

125 ctuthesis t1606152353



A. The Optimal Route Problem..............................
a virtual junction as the centre of a community where communities are
connected through inter-community arcs, while communities are chosen if the
lowest level of the hierarchy structure contains at least one path from source
to destination. The procedure to find the minimum arrival time from the
community with the source to the communities to be relaxed are similar to
A* (including heuristic function for lower bounds), but using also S and N to
store a set of visited communities and a set of communities to visit in the next
iteration, respectively. This avoid removing some promising communities by
extending the search space by adding neighbour communities to the selected
communities in the core set. The proposed algorithm (HTNGD) generates
routes in real time in terms of milliseconds on large-scale networks without
storing a large number of precomputed shortest paths and lower bounds.

[L. Zhao, 2008] presents a novel of a non-trivial generalization framework
of the A* algorithm. It generalizes the heuristic function for each junction vj ,
h(vj), by the time-dependent version of it (using the notation from [Dean,
2004]) h(vj , EAs,vj ). This heuristic function is a lower bound of the shortest
travel time from an intermediate junction vj to a destination d with departure
time (distance label) EAs,vj . They apply this modified A* into the landmark-
based ALT algorithm [Goldberg and Harrelson, 2005], in which they also
employs the triangle inequality to calculate the heuristic function, given by
the difference between the shortest travel time from a landmark junction z to
d and shortest travel time from z to a intermediate junction vj (if positive),
but considering the latest departure time t̂ (found by sampling of time) from
z to vj . Their algorithm is several times faster than the generalized Dijkstra
algorithm for the time-dependent problem.

Based on the same concept ALT algorithm (but using a bidirectional
search), [Nannicini et al., 2008] proposed a novel bidirectional A* Search for
time-dependent fast paths that works in three phases: 1) the forward search
(from s to d) is run on the graph with time-dependent arc cost function c,
while the backward search (from d to s) run on the graph weighted by the
lower bounding function h(vj) including in a set M all finished junctions; 2)
when the two search scopes meet, both search scopes are allowed to proceed,
but until the minimum element of the backward search queue exceeds the time
dependent cost of the path (from s to d through the junctions of the heaps
of the forward and backward search), and including in a set M all finished
junctions by the backward search; 3) only the forward search continues until
d is finished, with the additional constraint that only junctions M can be
explored. The results of their algorithm are several times faster than the
Dijkstra’s algorithm, but only when finding slightly suboptimal solutions,
while the exact version is slower than unidirectional ALT.

Another bidirectional time-dependent A* Search algorithm for fast paths
is presented in [Demiryurek et al., 2011]. Beginning with a offline phase, the
road network is partitioned into non-overlapping areas based on the hierarchy
of roads (though the algorithm don’t depend on this step), and assign at
least one partition to each junction (junctions with more than one partition
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are called border junctions). Then, it is precomputed the lower-bound travel
time (i.e. distance label) border-to-border, junction-to-border, and border-
to-junction of the lower-bound graph to find the heuristic functions, while
updating the distances labels only when the minimum travel time of an edge
changes. On the online phase (similar to the rules used in [Nannicini et al.,
2008]), they run the backward search on the lower-bound graph to filter-in
the set of the junctions that needs to be explored by the forward search.
Meanwhile, the forward search is a best-first search which scans junctions
based on their time-dependent cost label and lower-bound of the distance
h(vj)(maintained in a priority queue). The results of their analysis showed
that their algorithm provides better heuristic function (i.e. lower-bound
estimation) compared to the standard ALT algorithm, and outperform the
other common approaches in storage and response time.
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Appendix B
Edge Cost Estimation

Typically, edge travel time is an increasing function of the edge flow due to
congestion, as shown in Figure B.1, using the Bureau of Public Roads (BPR)
function as edge performance function [Srinivas Peeta et al., 2015]:

TTk = TT 0
k

[
1 + β

(
Qk
Ck

)γ]
, (B.1)

where TTk is the total travel time, TT 0
k the free flow travel time, Qk the

flow, and Ck the capacity of edge k (that comes from edge k, ek). The
parameters, generally β = 0.15 and γ = 4, determine the edge travel time
increase in proportion to the volume-to-capacity ratio.

Figure B.1: Bureau of Public Roads (BPR) function, adapted from [Srinivas
Peeta et al., 2015].

However, the BPR function (Eq. B.1) is not realistic because it does not
consider queue delays, either by interactions, road capacity constraints and
traffic signals. [Srinivas Peeta et al., 2015] presented a dynamical system
for a general time-dependent edge travel time function TTk (referred as
edge performance function) based on the dynamic assignment formulation
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in [Carey, 2001], to describe the flow dynamics when depending only on the
traffic volume:


Q̇k(t) = ink(t)− outk(t)
TTk = f(Qk(t))
outk(t+ TTk) = ink(t)/

[
1 + ˙TT k

]
,

(B.2)

where Q̇k(t) is the variation of the flow of vehicles, ink(t) the inflow, and
outk(t) the outflow on edge k at time t. Moreover, the travel time function
TTk = f(Qk(t)) can be specified by:

. a linear delay function,

f(Qk(t)) = α+ βQk(t), α > 0, β > 0; (B.3)

. a piece-wise linear function,

f(Qk(t)) =
{

α if Qk(t) < α/β

Qk(t)/β otherwise;
(B.4)

. a smooth and convex functions satisfying the conditions,

f(Qk(t2))− f(Qk(t1))
Qk(t2)−Qk(t1) · Qk(t2)−Qk(t1)

t2 − t1
> −1, ∀t2, t1, (B.5)

f ′′(Qk) is continuous, (B.6)

f(0) = α, (B.7)

f ′ > 0, f ′′(Qk) > 0 ∀ Qk > 0, and (B.8)

f ′(Qk)→ β as Qk →∞. (B.9)

A further step is to calculate the travel time function that includes traffic
signal delay, formulated as it follows: [Srinivas Peeta et al., 2015]:

TTk = TT 0
k + dk, (B.10)

where dk = f(Qk,λj , t) is the signal delay function, and λj is the green
split of the traffic signal at junction (vertex) v ≡ vj+1. The estimation of
delay dk and queue length qk is part of the theory of traffic signals, in which
the adoption of a signal control strategy at either individual junctions or
a sequence of them may influence the formation of queues [FHWA, 2018].
This formulation of the modelling travel time problem is generic. To solve
the problem considering either changes of traffic signals or queueing, it is
necessary to use traffic flow models.
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B.1 Traffic Theoretic Models

B.1.1 Macroscopic (Continuum Traffic Flow) Models

Macroscopic flow models (also called hydrodynamic models or continuum
traffic flow models in [Srinivas Peeta et al., 2015]) describe traffic at a high
level of aggregation as a flow without distinguishing its constituent parts,
i.e. the traffic stream characteristics is locally aggregated (they vary over
time and space — which can be a section of a edge k — forming dynamic
fields represented by flow-rate Q(t), density ρ(t), mean speed V (t), and speed
variance σ2

V (t). The traffic flow is analogous to the motion of liquids or gases,
modelling the collective phenomena such as evolution of congested regions or
the propagation velocity of traffic waves between junction or long segment
of a road, while used particularly for traffic state estimation. On this way,
macroscopic models may assume the traffic stream is properly allocated to
the roadway lanes, neglecting individual vehicle manoeuvres, such as a lane
change. Macroscopic models have been developed to describe the speed-
density-flow relationship (the so called fundamental diagram illustrated in
Figure B.2), in which such models can be classified according the number of
partial differential equations and its order on modelling speed or flow ([Treiber
and Kesting, 2013], [Hoogendoorn and Bovy, 2001]).

Figure B.2: Speed-density-flow relationship, example of the fundamental diagram
adapted from [Hoogendoorn and Knoop, 2012].

One underlying principle of macroscopic models is the hydrodynamic flow-
density relation:

Q = ρ · V, (B.11)
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where Q is the flow, ρ the density, and V the speed. The hydrodynamic

flow-density relation can be seen in Figure B.2, in which the macroscopic
vehicle speeds satisfy the hydrodynamic relation (Equation B.11). In addition,
the subscript "cap" represents the variable values at maximum capacity levels,
as a common practice is to divide the road edge k into small segments (also
referred as cells or sections) (s, s+ ds) dependent on time t, e.g. Qk(s, t).

Another one is the continuity equation, which derives the conservation
of vehicles in terms of the traffic density according to the geometry of the
road infrastructure (e.g. on and off ramps and change in number of lanes).
It describes the rate of change of density in terms of differences of the flow,
either from the point of view of a stationary observer (Eulerian representation)
or a vehicle driver (Lagrangian representation). Its simplest form is (without
entrance and leaving of vehicles within the edge and change of lane number)
[Treiber and Kesting, 2013]:

∂ρ

∂t
+ ∂Q

∂s
= 0. (B.12)

Equation B.12 and Figure B.3 show that the number of vehicles in segment
s increases according to the balance of inflow at the boundaries s and s+ ds
of the segment. However, one may notice that the continuity equation would
hold only when the speeds are constant, however if we use the space-mean
speed on segment s of edge k, V (s, t), the continuity equation is still valid
[Hoogendoorn and Knoop, 2012].

Figure B.3: Derivation of continuity equation and travel time on edge segment,
adapted from [Hoogendoorn and Knoop, 2012].

Additionally, we can simply define the travel time as a function of the
speed on the edge given each segment length ds:
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TT (s, t) = ds

V (s, t) . (B.13)

However, as Equations B.11 and B.12 form a system of two independent
equations and three unknown variables, a third independent model equation
is needed, either for traffic flow or for speed [Hoogendoorn and Bovy, 2001].

The Lighthill–Whitham–Richards (LWR) models assume that traffic flow
and local speed change instantaneously accordingly to density at any situations
when the edge is homogeneous. This class of models (also called first-order
models) have only one dynamic equation (the continuity equation). This
means that the relationships seen in Figure B.2 are usually determined by
fitting speed-density or flow-density data, as follows [Treiber and Kesting,
2013]:

Q(s, t) = Qe(ρ(s, t)), (B.14)

or

V (s, t) = Ve(ρ(s, t)). (B.15)

These static relations complement the continuity equation, in which Qe and
Ve correspond to the local flow equilibrium and local speed equilibrium models,
respectively. However, such relations might coincide with field collected data
if there are systematic errors during the measurements process, and the
traffic flow is neither at equilibrium nor homogeneous. One simple model for
Ve(ρ(s, t)) is the modified Greenshield’s model, presented in [Srinivas Peeta
et al., 2015]:

Ve(ρ(s, t)) = V0 + (Vf − V0)
(

1− ρ(s, t)
ρmax

)β
, (B.16)

where for edge k we have the following values for each segment s: V0 as
the minimum speed, Vf the free-flow speed, ρ(s, t) the segment density at
time t, ρmax the maximum density, and β a user-specific parameter. There
are many other models to compute V (s, t); however, as pointed out in [Liang
and Wakahara, 2014], the speed information should be measured rather than
calculated using the conventional speed-density-flow relationship. This is due
the fact that the speed in a urban road edge depends mainly on the type
and the geometry of the edge. For the flow-density relation Qe(ρ(s, t)), the
simplest model is the Triangular Fundamental Diagram (TFD) [Treiber and
Kesting, 2013]:

Qe(ρ(s, t)) =
{
V0 · ρ(s, t) if ρ(s, t) ≤ ρcap(s, t)

1
TG(1− ρ(s, t) · leff ) if ρcap(s, t) < ρ(s, t) ≤ ρmax,

(B.17)
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where the first case represents free flow, the second congested,

TG = mean desired time gap parameter of 1.4s for highways and 1.2s for
city traffic (s/lane),

ρmax = maximum density on the road of 0.12 for highways and city traffic
(veh/(m · lane)),

ρcap = 1/[(V0·TG)+leff ] = density at capacity level of the segment s,

V0 = mean desired speed of the edge which depends on each case but usually
27.8 for highways and 13.9 for city traffic (m/s),

leff = DG+ lave = 1/ρj = mean effective vehicle length (m),

DG = average minimum gap in stopped traffic (m), and

lave = average vehicle length (m).

The solution for such model relies on the application of Eqns. B.14 and B.15
to the continuity equation B.12, what enables us to get simplest LWR model
(without ramps and change of lane number) [Treiber and Kesting, 2013]:

∂ρ

∂t
+ dQe(ρ)

dρ
· ∂ρ
∂s

= 0. (B.18)

This partial differential equation is a non-linear wave equation that de-
scribes the propagation of kinematic waves. This is particular important to
compute the propagation velocity of density variations along the edge because
such velocity is proportional to the gradient of the steady-state flow-density
relation. By applying the continuous version of Eq. B.18 with the triangular
fundamental diagram (TFD), we get the so called section-based model. As
there are only two propagation velocities of density variations (free flow
and congested traffic), it is possible to define each section (segment) end
border at an inhomogeneity or bottleneck (but each road section there is
at most one jam front). Then, Eq. B.18 is solved only for a single integral
for the motion of the jam front, because the inflow at the upstream end of
each section is given either by the outflow of an adjacent section or by the
source boundary conditions of the simulated system. Another possibility
is the discrete version known as Cell-Transmission Model (CTM), where
time and space are discretized into time steps and cells/segments (road is
represented as a collection of equal length cells), and supplemented by a
“supply-demand” update rule (illustrated in Figure B.4) [Treiber and Kesting,
2013]. As CTM is a convergent numerical approximation to the hydrodynamic
model and replicates kinematic waves, queue formation, and dissipation, it
could be suitable for modelling dynamic traffic [Yang et al., 2006]. Usually,
on CTM the length of each segment/cell, ds, is equal to the distance that a
single vehicle traverses in one time step at the free-flow speed [Yang et al.,
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2006]. However, the time step duration ∆t should comply with the following
limitation [Treiber and Kesting, 2013]:

∆t < ds

V0
. (B.19)

Figure B.4: Triangular fundamental diagram used in the cell-transmission model
and the section-based model, adapted from [Treiber and Kesting, 2013].

Equation B.17 requires many average parameters that may lead to sys-
tematic errors. Under our scenario that we have information about signal
timings, queue length estimation and future arrivals, we can estimate the
parameters by local measurements [Treiber and Kesting, 2013]:

ρmax = Qmax

( 1
V0
− 1
ω

)
, (B.20)

TG = 1
Qmax

(
1− ω

V0

) , (B.21)

where Qmax is the dynamic capacity of a lane in road section based on
the outflow of moving traffic waves (propagation of density changes) whose
velocity is ω. This can be very important once we know that discharging
vehicles influenced by upstream traffic light will not drive as in steady-state
with section capacity Qcap. We should notice that this outflow corresponds
to variations of the capacity the homogeneous section Qcap and before the
bottleneck, it is different from the capacity of the bottleneck (e.g a traffic
light), C that could represent the saturation flow. The propagation velocity
ω can be determined by the time interval which is needed by the downstream
front of a moving traffic wave to pass two consecutive stationary detectors.
Nevertheless, they can be both computed as [Treiber and Kesting, 2013]:

Qmax = 1
TG+

(
leff
V0

) = 1
TG

(
1 + |ω|

V0

) , (B.22)

ω = − 1
ρmax · TG

= − leff
TG

= ∆Qe
∆ρ , (B.23)
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where ∆Q and ∆ρ represent the variations of flow and density respectively.

Therefore, the triangular model (in this case, the CTM model) can be also
represented as:

Qe(ρ(s, t)) =

V0 · ρ(s, t) if ρ(s, t) ≤ Qmax
V0

Qmax
[
1− ω

V0

]
+ ω · ρ(s, t) if ρ(s, t) ≤ Qmax

V0
,

(B.24)

in which the first case represents free flow, the second congested. Addition-
ally, to model bottlenecks in LWR models, we need to use reduction of the
section capacity, denoted as ∆Qcap. For this, the idea is to model changing
of drivers’ behaviour, i.e. the mean desired speed V0 and/or the time gap
TG. While the average vehicle length leff and hence ρmax, both remains the
same. However, we should consider this reduction on the lane level ∆Qmax,
computed as:

∆Qmax = V 0
1

V 0
1 · TG1 + leff

− V 0
2

V 0
2 · TG2 + leff

, (B.25)

where the subscripts 1 and 2 represents the fronts (shockwaves) of the
different density areas. On this way differences on desired speeds and time
gaps model bottlenecks. There are other bottleneck situations, but for our
urban edge environment, the most important is the consideration of traffic
light, as follows [Yang et al., 2006]:

∆Qmax =
{
Qmax if effective red
0 if effective green.

(B.26)

We see that traffic lights are modelled by a time-dependent flow-conserving
bottleneck: during the red the bottleneck capacity is equal to zero, otherwise
the bottleneck disappears.

Finally, as we aim to calculate the travel time on a edge, we can obtain
the The Total Travel Time Spent (TTStotal) by the sum of the TTS for each
segment TTSs. It represents the time that all vehicles spent crossing the
segment during the analysed period [0, tmax], calculated as follows [Treiber
and Kesting, 2013]:

TTSs =
∫ tmax

0
ds · ρ(s, t)dt =

∫ tmax

0

ds

V (s, t)Q(s, t)dt. (B.27)

As higher-order models have limited benefit and does not justify their added
complexity [Ni, 2016], we will consider only these first-order models. However,
on one hand, models with dynamic speed (second-order macroscopic models
and most microscopic models) even a local increase of capacity can lead to
congestion, due speed perturbations and traffic instabilities. On the other
hand, first-order models assume congestion only due bottleneck caused by
lowered capacity [Treiber and Kesting, 2013]. Another issue with macroscopic

ctuthesis t1606152353 136



.................................. B.2. Queueing Models

models is that even with perfect information of the signal timings, and time
of arrival of a vehicle at an junction, the delay due to queue clearance is a
function of the vehicle’s location in the queue [Yang and Miller-Hooks, 2004],
and the vehicle position in the queue cannot be known with certainty due to
the high aggregation level of macroscopic models.

B.2 Queueing Models

B.2.1 Steady-State Queuing Models

Steady-state queuing (or delay) models include randomness of arrivals and
(some of them overflows and non-constant departure process), which compute
junction delays based on statistical distributions of the arrival and departure
processes. They assume that, after sufficient time, the state of the system is
independent from its initial state and the elapsed time. In this case, stochastic
equilibrium is achieved and the expected queues and delays are finite and
can be estimated (the so called undersaturated conditions). The condition
of stochastic equilibrium occurs only if the degree of saturation x is below 1
[FHWA, 2018]:

x =
Q/S

g/c
< 1. (B.28)

Otherwise they generate infinite delays at saturation degree (x = 1). Specif-
ically for undersaturated conditions, the first traffic signal delay model was
proposed by [Webster, 1958] combining theoretical and numerical simulation
approaches:

d = c (1− g/c)2

2 [1− (g/c)x] + x2

2Q (1− x) − 0.65
(
c

Q2

)1/3

x2+5(g/c), (B.29)

where

d = average delay per vehicle (sec),

c = cycle length (sec),

g = effective green time (sec),

x = degree of saturation (flow to capacity ratio, 1 - dimensionless), and

Q = arrival rate (veh/sec).

The first term in Eq. B.29 corresponds to the delay when traffic is arriving
at a uniform rate (average values), du. The second term represents the
random nature of the arrivals (i.e. Poisson) and departures (outflow) at
constant rate of the signal capacity, do. The third term is a calibration (based
on simulation experiments) that typically ranges 10 percent of the first two
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terms. However, Eq. B.29 only approximates the expression for delay, and
the higher the saturation degree the more inaccurate it is [Ohno, 1978].

Later work, still assuming undersaturated conditions (but accounting
explicitly some expected overflow queue), provides a more precise calculation
of delay considering a compound Poisson arrival process and general departure
process ([Gazis, 1974] apud [FHWA, 2018], [Miller, 1963]):

d = (c− g)
2c(1−Q/S)

{
(c− g) + 2

Q

[
1 + (1−Q/S)(1−B2)

2S

]
q0+

1
S

(
1 + I +B2Q/S

1−Q/S

)}
,

(B.30)

where

d = average delay per vehicle (sec),

c = cycle length (sec),

g = effective green time (sec),

Q = arrival rate (veh/sec),

S = saturation flow (veh/sec),

I = index of dispersion for the arrival process (dimensionless),

B = index of dispersion for the departure process (dimensionless), and

q0 = (average) overflow queue at beginning of green due randomness (veh).

The indexes of dispersion are defined as:

B = Var(D)
E(D) , and (B.31)

I = Var(A)
E(A) ≈

Var(∆D)
E(D −A) , (B.32)

in which A is the number of arrivals and D the maximum number of
departures in one cycle. The ∆D represents the reserve capacity (veh) in one
cycle, calculated as:

∆D =
{
D − q(0)−A if q(0) +A < D

0 otherwise,
(B.33)

where q(0) is the initial queue at the begin of green. If there is no overflow
(q0 = 0) and no random arrivals (I = 0), Equation B.30 calculates the uniform
component of the delay du seen in Figure 4.8. Additionally, Equation B.30
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requires the (average) overflow queue q0, which can be approximated for any
arrival and departure distributions by [Miller, 1963]:

q0 ≈


(2x−1)I
2(1−x) if x ≥ 0.5

0 otherwise,
(B.34)

where x is degree of saturation (flow to capacity ratio) and I is the index
of dispersion for arrivals. The delay calculations on Equations B.29 and B.30
are average values considering the average number of vehicles in the cycle
(c ·Q), thus an application intended to compute total delay in the cycle for a
specific signal should make dall = d · c ·Q.

Steady-state delay models are applicable at low flow to capacity ratios
(x < 0.8), when equilibrium is reached in a reasonable period of time.

B.2.2 Time-Dependent Queuing Models

A popular approach to derive a time dependent formula for delays more
realistic than those in steady-state queueing theory, specially when the flow
approaches the signal capacity is called coordinate transformation technique.
Originally proposed by Whiting (unpublished) [FHWA, 2018] and further
explored by [Kimber and Hollis, 1979], this technique shifts the original
asymptotic steady-state curve to the deterministic oversaturation delay line
as seen in Figure B.5. However, there are two important restriction of the
coordinate transformation technique, listed in the following list.. Flow (inflow) Q is a constant rate over the interval [0, tmax], what is

possible to deal with step-functions.. No initial queue at the beginning of the interval [0, tmax], though the [Kim-
ber and Hollis, 1979] model (described in the following Equation B.35)
assumes a possible initial queue q(0) and the initial queue component
of delay dq is used to compensate this issue on other time-dependent
models when applied with a correction of the uniform delay du (see
Equation B.42).

[Kimber and Hollis, 1979] proposed a model that accounts how the queue
length evolves over time, by splitting the delay into the steady-state delay
and the average delay per arriving vehicle during time interval [0, tmax] (as
a deterministic model). The idea is that the non-stationary arrival process
is approximated with a step-function, and the total delay calculated by
integrating the queue size over time. The final transformed time dependent
equation is:

d = 1
2
[
(β2 + γ)1/2 − β

]
, (B.35)

β = tmax
2 (1− x)− 1

C
[q(0)−B + 2] , (B.36)
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Figure B.5: Applicability of queueing models, adapted from [Rouphail M and
Akcelik, 1992].

γ = 4
C

[
tmax

2 (1− x) + 1
2(x · tmax ·B)−

(
q(0) + 1

C

)
(1−B)

]
, (B.37)

where

d = average delay per vehicle (sec/veh),

x = degree of saturation (dimensionless),

C = signal capacity (veh/sec),

q(0) = initial queue at time τ = 0 (veh),

B = index of dispersion for departure process,(dimensionless), and

tmax = interval constant demand (sec).

Later, [Akcelik, 1988] introduced a generalized time-dependent expression
for delay, where the first term represents the uniform delay du (the same as
in Webster’s formula B.29) and the second term the overflow delay do:

d = 0.5c(1− g/c)2

1− (g/c)x + 900tmax(xγ)

(x− 1) +
√

(x− 1)2 + β(x− x0)
C · tmax

 ,
(B.38)

where

d = average overall delay (including stop-start delays) per vehicle (sec/veh),
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xo = α+ [(S · g)/δ],

C= signal capacity (veh/sec),

tmax = interval constant demand (sec), and

α, β, γ, δ calibration parameters (dimensionless) available in [Akcelik, 1988].

Even though Equation B.38 is generalized, [Bureau of Public Roads, 1950]
does not recommend to use it for the delay calculation for protected-plus-
left-turn movements (meaning both) This is due the fact that permitted
movements can be based on saturation flow or probability of accepted time
gaps while protected left-turning movements behave exactly as through
movements, what is the case of the equation. Additionally, Equation B.38
(and also other time-dependent models such Equations 4.10 and 4.4) does not
account the delay due an initial queue q(0), considering only the uniform and
overflow components (du and do, respectively) of the delay d. For the initial
queue component dq, [Bureau of Public Roads, 1950] suggests:

dq = 1800 · q(0) · (1 + ε) · tunmet
C · tmax

, (B.39)

where ε is a delay parameter and tunmet the duration of unmet demand
during [0, tmax]. It is given by:

tunmet =

 0 ifq(0) = 0
min

{
tmax,

q(0)
C[1−min(1,x)]

}
otherwise,

(B.40)

ε =

 0 if tunmet < tmax

1− C·tmax
q(0)[1−min(1,x)] otherwise.

(B.41)

We should mention that [Bureau of Public Roads, 1950] also recommends
that when using Equation B.38 with the presence of initial queue q(0) and dq >
0, it is necessary to change the calculation of the first term of Equation B.38
(which corresponds to the uniform component of the delay du) by:

du = ds ·
(
tunmet
tmax

)
+ dus · PF ·

(
tmax − tunmet

tmax

)
, (B.42)

where

ds = saturated delay (du evaluated with x = 1),

dus = undersaturated delay (du evaluated with actual x value), and

PF = progression factor parameter that we will discuss on the next section.
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As q(0) can be defined by the distribution of the overflow q0, [Akcelik,

1980] proposed an estimate to the average overflow queue q0 for oversaturated
conditions:

q0 =


C·tmax

4

[
(x− 1) +

√
(x− 1)2 +

(
12(x−xo)
C·tmax

)]
when x > xo

0 otherwise,
(B.43)

where (xo = α+[(S · g)/δ]) represents the degree of saturation below which
the overflow delay of the delay formula is zero, and α, δ calibration parameters
available in [Akcelik, 1988]. However, Equation B.43 is relevant only for high
degrees of saturation (x > 0.8), being Equation B.34 more suitable when
(0.5 ≤ x < 0.8). Meanwhile in [Bureau of Public Roads, 1950], it is proposed
a calculation for the time instant in which the initial queue q(0) is totally
cleared from the start of the time period tmax:

tclear = max
(
tmax,

q(0)
C

+ tmax · x
)
, (B.44)

where tclear is the time instant q(0) is totally discharged, tmax the time
instant to begin the period time, C the signal capacity, and x the degree of
saturation. One may notice that in case it is desired only the clearance time
of initial queue (suppose tclearance, we need to make:

tclearance = tclear − tmax. (B.45)

B.2.3 The Influence of Arrival Profile

The arrival profile in real urban networks express the following characteristics
[FHWA, 2018]:. vehicles cross the junction in "bunches" with similar headways in which

such groups are separated by the red signal time (platooning effect); and. the number of vehicles discharged from upstream signalized junction is
constrained by its corresponding throughput in one cycle D (filtering
effect).

In order to deal with the influence of upstream traffic control on vehicle
delays but maintaining the assumptions for isolated junctions, the [Bureau
of Public Roads, 1950] uses a Progression Factor (PF) applied to the delay
computed for an isolated junction signal:

d = du(PF ) + do + dq, (B.46)

where

d = average delay per vehicle (sec/veh),
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PF = uniform delay progression adjustment factor that accounts for effects
of signal progression (dimensionless),

du = uniform delay under uniform arrival (sec/veh),

do = overflow delay due random arrivals and oversaturation queues, which is
adjusted for an specific time interval and signal control strategy [0, tmax],
and

dq = initial queue delay (sec/veh).

The PF value is computed based on field measurement and applying the
following formula:

PF = (1− Pg)fPA
1− (g/c) , (B.47)

where

Pg = proportion of vehicles arriving (at stop line or join the moving or
stationary queue) during green time, measured in field or estimated from
arrival type as (Pg = Rp · (g/c)),

Rp = approximate ranges of platoon ratio based on progression quality (level
of coordination between junctions that defines the arrival type), available
in [Bureau of Public Roads, 1950], page 16-20,

fPA = supplemental adjustment factor for platoon arriving during green,
also available in [Bureau of Public Roads, 1950], page 16-20,

g = effective green time, and

c = cycle length.

Alternatives for the PF approach were provided in [Benekohal and El-
Zohairy, 2001], where an arrival-based (AB) approach also considers the
quality of progression but includes it into a specific uniform delay model
for each arrival type. Additionally, [TARKO et al., 1993] confirms that the
progression quality has no effect on the overflow delay.

We have just discussed how random arrivals can be implemented in non-
random arrivals scenarios using the progression factor, as well as how to deal
with inflows that change over time (see section B.2.2). However, we still need
to present a possibility to estimate the arrival flow profile given upstream
outflow. The model proposed in ([Robertson, 1969] apud [Farzaneh, 2005])
(implemented in the TRANSYT simulation and optimization model) is the
most well-known model of platoon dispersion, it uses a histogram of the
outflow coming from the upstream junction to obtain the pattern of arrival
on the downstream junction:

Qk(t) = SF tk ·Qk−1(t− TTmink ) + (1− SF tk) ·Qk(t−∆t), (B.48)
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where

k = downstream edge,

(k − 1) = upstream edge,

t = time step (integer),

∆t = duration of time step t (sec), corresponding to the length of the discrete
interval of the arrival histogram,

Qk−1(t) = outflow from edge (k − 1) at time t (veh/∆t),

Qk(t) = inflow to edge k at time t (veh/∆t),

TTmink = (γt · TT avek )/∆t = minimum travel time on edge k (time step unit,
multiple of ∆t),

TT avek = average travel time on edge k (sec),

SF tk = smoothing factor on edge k at time step t (sec), and

γt = travel time factor at time step t (dimensionless).

The arrival profile at the downstream junction at instant t is as a linear
combination of the downstream flow one time step earlier (Qk(t − ∆t))
with the upstream departure flow TTmink steps earlier (Qk−1(t − TTmink )).
This characteristic means that the arrival flow follows a shifted geometric
distribution, and using its properties the parameters (factors) can be estimated
as [Mathew, 2017b]:

γt = 1
1 + βt

=
2TT avek + ∆t−

√
(∆t)2 + 4(σtTT )2

2TT avek

, (B.49)

SF tk = 1
1 + βt · γt · TT avek

= ∆t


√

(∆t)2 + 4(σtTT )2 −∆t
2(σtTT )2

 , (B.50)

where

σtTT is the standard deviation of edge travel times at time step t on edge k,
and

βt = platoon dispersion factor at time step t (dimensionless), typically from
0.25 (tight platoons of suburban high-speed arterials) to 0.5 (dispersed
platoons typical of central areas) [Geroliminis and Skabardonis, 2005],
but also computed by βt = 1−γt

γt
.
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The model assumes binomial distribution of vehicle travel time as well as
arrivals are not influenced by an initial queue downstream, which implies it
works well only in undersaturated conditions. Another possibility is introduced
in [Pacey, 1956], where the platoon dispersion can be modelled from the
differences in speed between vehicles in the platoon, leading to normally
distributed travel times used to transform upstream flow into the traffic flow
profile ([Farzaneh, 2005],[FHWA, 2018]):

f(TTk) =
(

Lk

(TTk)2 · σv ·
√

2π

)
· exp

−
(
Lk
TTk
− Lk

TTave
k

)2

2(σv)2

 , (B.51)

Qk(τ1∆t) =
∑
τ0∆t

Qk−1(τ0∆t) · f(τ1∆t− τ0∆t), (B.52)

where

Lk = downstream edge k distance (meters),

TTk = individual vehicle travel time along distance Lk (duration flow
observation unit, multiple of ∆t),

TT avek = travel time corresponding to the average speed on edge k (duration
flow observation unit, multiple of ∆t),

σv = standard deviation of speed on edge k,

Qk(τ1∆t) = number of vehicles arriving downstream (edge k) during time
interval τ1∆t (veh/∆t),

Qk−1(τ0∆t) = number of vehicles leaving upstream (edge k− 1) during time
interval τ0∆t (veh/∆t),

∆t = duration of flow observation (between each time interval), and

f(τ1∆t− τ0∆t) = probability of the travel time is (τ1∆t− τ0∆t).

The (discrete) ∆t long intervals of the arrival histogram, τ0 and τ1, represent
the first and second observations, respectively. For instance, the flow in the
τ1-th interval observed downstream is the summation of the flows for all τ0-th
previous intervals observed upstream, and then multiplied by the probability
of the travel time is (tτ1 − tτ0). One issue with this model is that it assumes
vehicles travel at a constant speed and it is necessary to know the speeds of
vehicles without any interference between vehicles. Additionally, these last
two platoon dispersion/diffusion models needs the departure profile, being the
common practice using constant discharge flows based on the saturation flow,
start loss and end gain time ([FHWA, 2018], [Geroliminis and Skabardonis,
2005]). An alternative for constant discharge flow is introduced in [Akçelik
and Besley, 2002], where queue discharge models consider the queue discharge
speed to derive relationships for other traffic parameters.
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B.3 The Influence of Route Choice

When every vehicle with same O-D (Origin-Destination) pair get local travel
times and choose their optimal route without considering others path choice
(and hence congestion due capacity), this is known as all-or-nothing path
choice principle. As congestion effects the travel time, the choices made
by other travellers also trying to choose the least travel time (or disutility),
may impact the travel time [Srinivas Peeta et al., 2015]. The two Wardrop’s
principles introduced in [Wardrop, 1952] states two fundamental path decision
principles in the following list...1. First principle (User Equilibrium), "The journey times of all routes

actually used are equal, and less than those which would be experienced
by a single vehicle on any unused route". This corresponds to the Nash
Equilibrium, in which travellers modify their path choice until they
unilaterally minimize their travel cost. The problem with this principle
is that it assumes that all travellers are homogeneous, fully rational, and
they have perfect knowledge of travel costs [Srinivas Peeta et al., 2015]...2. Second principle (System Optimum): "At equilibrium the average journey
time is minimum". In other words, travellers cooperate with another to
minimize total system travel time. This principle may not be consistent
because the selfish behaviour of travellers seeking to minimize their
individual path travel times [Srinivas Peeta et al., 2015].

Later, [Daganzo, 1977] suggested to modify the first principle as it follows:..1. Modification o First principle (Stochastic User Equilibrium), "no user
believes he can improve his travel time by unilaterally changes". This
assumes that each driver has a different perception of costs on any given
route and that the trips between each O-D pair are divided among the
routes with the most cheapest route attracting most trips.

Cooperative Automated Vehicles (CAVs) are assumed to aim to reduce
their travel time but not achieving User Equilibrium principle. The process
to incorporates the travel demand and supply by assigning trips through the
network, and edge (path) flows with its corresponding edge (path) travel
times is called traffic assignment. In fact, this term mainly used on the
representation of average or steady-state conditions of a time period long
enough to allow all traffic flows to arrive at their destinations, also known
as static traffic assignment models. The issue with these models are that
they don’t account variations of travel times and flows over the analysis
period, such as oversaturated traffic flow, queue spill-back, dynamic routing
[Srinivas Peeta et al., 2015]. In reality, the signal control strategy affects the
travel time on the roads and influences the drivers’ route choice behaviour,
what also contribute to define signal timings, illustrated in Figure B.6 [Chen
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and Hu, 2012]. Another class of traffic assignment models was first first
introduced in [Merchant and Nemhauser, 1978], the so called dynamic traf-
fic assignment (DTA) models. These models try to capture the dynamism
and realism of traffic, in which each DTA has its underlying behavioural
and system assumptions as well as control actions. However, among their
common features are time-dependent O-D matrices, and the time-dependent
flow-density relationship [Ziliaskopoulos, 2001]. Additionally, analytical mod-
els have been developed under the time-dependent flow conservation and
propagation, boundary and non-negativity constraints. The Dynamic User
Equilibrium (DUE) uses edge travel times (edge performance) models, such as
point-queue model, whole edge model, and cell transmission model. Another
type are simulation-based DTA models, which avoid challenges of analytical
models.

Figure B.6: Conceptual structure of combined traffic assignment and control
problem [Meneguzzer, 1997].

Although there are evidences that drivers may make decisions based on
minimum perceived travel time differences (thresholds) [Watling and van
Vuren, 1993], the emulation of driver’s decision of selecting from one of the
available paths can be done with a Route Choice model. These models are
usually based on discrete choice theory, they determine the probability of
choosing an alternative as function of its disutility. The utility function Ura
can be represented in many forms. For instance, average route travel time
on the route ra between the O-D pair (s, d) [Yang et al., 2006], or a function
that includes preference of the driver, and "pressure" on the next edge of
the route and on the route itself [Kampen, 2015]. Under stochastic traffic
assignment and utility maximization, a rational traveller will choose the path
with the minimum perceived generalized cost [Srinivas Peeta et al., 2015]:

Ura = ura + εra , (B.53)

where Ura represents the perceived route travel cost (utility), ura the
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deterministic (or measured) travel time, and εra the random error on the
route ra. There are mainly two distribution for the random error, multinomial
normal distribution (but the final model is not in an analytical closed form)
and Gumbel distribution [Srinivas Peeta et al., 2015]. Using the latter and
assuming travel times as the travel costs, and as we need to use the disutility,
ura = −TTra , we can assume the utility function Ura as [Ben-Akiva and
Bierlaire, 1999]:

Ura = θ · (−TTra) + εra = −θ · TTra + εra , (B.54)

where θ is a positive shape or scale factor parameter, TTra the expected
travel time on route ra, and εra the random term. From the Multinomial
Logit model:

V ar(TTra) = π2

6 · θ2 , (B.55)

that means if (θ < 1) drivers have high perception of the variance of travel
times (notice that is variation between each route and not variation of the
random error), and (θ > 1) drivers may choose an specific set of alternative
routes.

The most common discrete choice models for travel behaviour modelling are
the Multinomial Logit (MNL) and Nested Logit (NL). However, MNL does not
assume similarity (correlation) among alternatives (routes are independent),
while in NL each route alternative belongs exclusively to one nest, but in real
networks routes share many different other paths. Therefore, modifications
of such models are proposed and classified in [Prato, 2009] as it is presented
in the following list.. Logit structures, they are modifications of MNL models but introducing

a correction term within the deterministic part of the utility function
account the correlation among alternative routes..Generalized Extreme Value (GEV) structures, which allow similarities
in the stochastic part of the utility function, and relate the network
topology to the specific coefficients, but do not consider taste variation
or correlation over time of unobserved factors.. Non-GEV structures, where unrestricted substitution patterns, random
taste variation, and correlation in unobserved factors over time are
allowed, closed-form expression for the choice probabilities are not not
present.

As there are many proposed models, we will only explore simple models
that have satisfactory performance and they are suitable for our local level
routing system. The first and simplest model is the proportional decision rule,
in which the frequency of a selected route is used to estimate the probability,
what for us would mean turning rates.
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The C-Logit model [Cascetta et al., 1996] uses a commonality factor, CFra ,
represents the degree of similarity of each route (path) ra with the other
paths rc in the route choice set from source s to destination d, Rs,d, where
subscripts a means the analysing route and c a choice route. The probability
Pra of choosing route ra within the choice set R is the simple Logit structure
of the model [Ben-Akiva and Bierlaire, 1999]:

Pra = exp [θ(ura − CFra)]∑
c∈Rs,d exp [θ(urc − CFrc)]

∀ ra ∈ Rs,d, (B.56)

where Ura and Urc are the perceived utility functions of route ra and rc,
respectively, and CFrc the commonality factor for rc. This commonality
factor has many formulations in the literature. However, as cited in [Prato,
2009], the following expression computed expected and satisfactory results
above the others:

CFra = βCF · ln

1 +
∑

rc∈Rs,d
ra 6=rc

(
Lra,rc√
LraLrc

)(
Lra − Lra,rc
Lrc − Lra,rc

) , (B.57)

in which Lra and Lrc are the length of routes ra and rc, respectively,
Lra,rc the common length between routes ra and rc, and βCF an estimated
parameter.

Generally, the Path-Size Logit model [Ben-Akiva and Bierlaire, 1999]
outperforms the C-Logit model [Prato, 2009]. It models the expression of
the probability of choosing route ra within the alternative routes in a simple
Logit structure [Prato, 2009]:

Pra = exp {θ [ura + βPS · ln(PSra)]}∑
c∈Rs,d exp {θ [urc + βPS · ln(PSrc)]}

∀ ra ∈ Rs,d, (B.58)

where PSra and PSrc are the path sizes of routes ra and rc, respectively.
Here, there are two also alternatives for computation of PSra , the original and
generalized form, and βPS is a parameter to be estimated. We will present
the original because the generalized needs an additional parameter to be
estimated, and even though it can produce better results, it may also produce
counter-intuitive results ([Prato, 2009], [Ben-Akiva and Bierlaire, 1999]). The
original form is:

PSra =
∑
k∈Γra

Lk
Lra
· 1∑

rc∈Rs,d δk,rc
, (B.59)

in which Lk is the length of edge k, Γra is the set of edges belonging to
route ra, and δk,rc is the edge-path incidence matrix (equal to one if route rc
uses edges k and zero otherwise).
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It is important to notice that each of those models gives a different interpre-

tation regarding the correction term (CF or PS) of the utility function. The
commonality factor (CF ) reduces the utility of a path due its similarity with
other routes, while the path size (PS) corresponds to the fraction of the path
that constitutes a “full” alternative [Prato, 2009]. Additionally, those factors
are needed to be calculated only once. The θ parameter adjusts the effect
that small changes in the travel times may have on the driver’s decisions.
This parameter got best-fit value of 10 in [Kampen, 2015], while in [Yang
et al., 2006], the authors defined their values using uniform distribution and
set fixed values of standard deviation of travel time perception. [Prato, 2009]
states that βCF and βPS should be negative to express the reduction of the
utility of paths with common edges with respect to other routes. Finally, the
flow calculation from source junction s to destination d on each route ra is

Qra = Q · Pra ∀ ra ∈ Rs,d, (B.60)

where Q is the inflow at the junction and Qra is the flow through the route
ra. The outflow from the junction to each downstream junction could be
based on the sum of the flows for each ra with same first edge.
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Appendix C
Simulation and Results

C.1 Results

The first table can be found on the next page.
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