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Abstract 

Diploma thesis deals with the design and implementation of a framework for downloading, 

processing and publishing of weather and waves data using open-source technologies. 

Numerical weather forecasts basics and history are outlined in the text of the thesis together 

with the introduction of dominant global models. It describes meteorological data formats, 

used technologies and framework implementation. The practical part of the thesis consists of 

Python scripts for downloading, processing and storing historical weather and waves data into 

Elasticsearch, access API in Node.js, Python scripts for downloading, processing and creating 

appropriate GeoTIFF rasters and complete configuration of GeoServer required to display 

them. Outputs are present in the E-attachments and will be used as add-ons to the 

vesseltracker.com GmbH Cockpit web map application. 

Keywords 

Meteorology data, GRIB, weather, GeoServer, Elasticsearch, Python 

Abstrakt 

Diplomová práce se zabývá návrhem a implementací rámce pro stahování, zpracování a 

publikování meteorologických dat o počasí a vlnách pomocí open-source technologií. V textu 

práce jsou nastíněny souhrnné informace a historie o numerických předpovědích počasí a vln 

společně s uvedením dominantních světových modelů. Dále jsou popsány meteorologické 

datové formáty, použité technologie a implementace. Praktická část práce se skládá z Python 

skriptů pro stahování, zpracování a uložení historických dat o počasí a vlnách do databáze 

Elasticsearch, přístupové API v Node.js, Python skriptů pro stahování, zpracování a tvorbu 

příslušných rastrů ve formátu GeoTIFF a kompletní konfiguraci GeoServeru nutnou pro jejich 

zobrazení. Výstupy jsou uvedeny v přílohách a budou využity jako doplňky webové mapové 

aplikace Cockpit společnosti vesseltracker.com GmbH. 

Klíčová slova 

Meteorologická data, GRIB, počasí, GeoServer, Elasticsearch, Python 
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Introduction  

Shipping is perhaps the most international of all the world's great industries - and one 

of the most dangerous. When a ship embarks on its journey, it is influenced by multiple 

conditions caused by the weather. Waves, wind and currents will have effect on the speed 

and fuel consumption. Marine safety, mainly high wind and wave avoidance is of great interest 

for example to ship routing solution providers. 

This thesis topic was created in cooperation with vesseltracker.com GmbH, where 

author had a part-time internship. Vesseltracker.com is a leading provider of global AIS vessel 

movements and maritime information services with real-time and historical data delivery, 

port events and a database of over a million vessel and port images (About, 2018). It also 

operates a shipDB - comprehensive vessel database of specifications, characteristics, 

equipment, ownership and management information. Vessel positions are regularly updated 

in a web map application Cockpit. 

Weather and wave forecast data systems have already been running at Vesseltracker 

to some extent before diploma thesis topic was chosen. They included weather and wave 

forecast API returning current situation and forecast for given place on earth from freely 

accessible NOAA Global Forecast System data, while using MongoDB as a database. Raster 

overlay serving system has been composed of high wind and wave tiles rendered from 

temporary shapefiles for chosen low zooms, both of which can be seen in Attachment 1 and 

Attachment 2. 

Two main objectives were set out for the diploma thesis. First task was to create a 

history weather and waves downloading, processing, storage and access service and review 

current and forecast weather and wave API system, since several performance issues have 

been spotted over time. The history weather and waves API should allow querying for latitude, 

longitude, timestamp and return closest data point in time and space while listing all 

contained weather and wave characteristics stored. It should also allow querying for a single 

point and timestamp in the form of interval. Second objective was to create a new raster 

overlay serving system presenting several weather and wave variables for history, current and 

forecast. It would be regularly updated to match new weather and wave model releases. 
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Raster overlays should then be attachable to Vesseltracker Cockpit web map application, 

which currently uses Leaflet as a JavaScript web mapping library. 

Although a complete freedom was given to the author on the matter of used programs 

or programming languages, it was expected that both systems will be running on a single 

instance machine running Ubuntu Linux 16.04. Both objectives should utilize open-source data 

and software if possible and be launchable on above mentioned Ubuntu system. 

There have been multiple reasons why a new history weather API and a raster overlay 

system should be included in Vesseltracker support and visualization services. As history ship 

track data are one of main sought-after information data sources, they could be easily 

augmented with weather and wave information along the track. There have been several 

cases, where an explanation for a specific vessel accident on open sea connected to weather 

conditions was needed up to several years in the past. For example, several containers 

contents were damaged by on-board freezing during the journey. It had to be inspected 

afterwards whether there was a sudden extreme decrease of outside temperature on any part 

of the voyage or the crew made errors while controlling the conditions of the goods. The 

interval history API query could be used for providing another source of weather information 

inside ports, offshore facilities or stationary ships. 

Raster overlays on the other hand offer a convenient way, how to compare weather and 

waves on a more global scale. Overlays are also an automatically expected feature by 

customers. The aim of this project on the other side is not to compete with already saturated 

market of full-stack commercial weather data providers, rather offer an independent, self-

reliant and sustainable service based on open-source solutions and datasets. 
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1 Meteorology and data 

Oxford dictionaries propose a definition of meteorology as follows: The branch of 

science concerned with the processes and phenomena of the atmosphere, especially as a 

means of forecasting the weather (Meteorology definition, 2018). Four main weather 

forecasting methods are recognized today: Climatological, Analog method, Numerical 

Weather Prediction and Persistence and Trends Method (Other Forecasting Methods, 2018). 

To delve into a world of a weather forecaster, assume a rotating sphere that is 12,800 

kilometers in diameter, has a bumpy surface, is surrounded by a 40-kilometer-deep mixture 

of different gases whose concentrations vary both spatially and over time, and is warmed, 

along with its surrounding gases, by a nuclear reactor, 150 million kilometers away. Sphere is 

revolving around the nuclear reactor and some locations are warmed more during one part of 

the revolution than the other. The mixture of gases continually receives inputs from the 

surface below, usually calmly but sometimes through violent and highly localized injections. 

After watching the gaseous mixture, you are expected to predict its state at one location on 

the sphere one, two or ten days into the future (Ryan, 1982). 

1.1 History of meteorology 

As far as current history knowledge can tell, the first documented attempts to predict 

weather go far into 7th century B.C. (Graham, Parkinson, & Chanine, 2002). At that time 

Babylonians attempted to predict short-term weather changes based on cloud observations 

and halo. Meteorology (Meteorologica in Latin), a philosophical treatise containing among 

other also theories about the formation of rain, clouds, wind, hail, thunder, lightning and 

tornadoes was written by a Greek Aristotle around 340 B.C. His four-volume text was 

considered by many to be the authority on weather theory for almost 2000 years and it was 

not until 17th century that many of his erroneous ideas were corrected or disproved. 

By the end of Renaissance, it had become evident that to deepen the understanding of 

character and phenomena of the atmosphere, instruments were needed to measure its 

properties, such as moisture, temperature and pressure. A first hygrometer in Europe, an 

instrument to measure humidity of air, was built by Leonardo da Vinci in the 1400s (Bellis, 

2017). Galileo Galilei invented an early thermometer in 1592, Evangelista Torricelli created 



CTU in Prague 

12 
 

the barometer for measuring atmospheric pressure in 1643 (Graham, Parkinson, & Chanine, 

2002).  

Although technological improvements and new device designs were made in decades 

and centuries after, it was by the invention of the telegraph and its network in the middle of 

nineteenth century which allowed transmission of weather observations from observers to 

compilers and therefore enhanced the overall forecasting process (Graham, Parkinson, & 

Chanine, 2002). Observing stations started to appear across the planet, which led to first 

synoptic forecasting, a method based on the compilation and analysis of many observations 

taken at a given time over a larger area. More data were becoming available for observation-

based forecasting in the start of twentieth century from regional and global observation 

networks. From the invention of radiosonde in 1920, measuring of temperature, moisture and 

pressure can also be performed in different altitude levels up to 30 kilometers above the 

surface (Graham, Parkinson, & Chanine, 2002). Small boxes equipped with weather 

instruments and a radio transmitter are carried into higher levels of the atmosphere by a 

hydrogen or helium-filled balloon that ascends naturally. Until the moment of balloon burst, 

the instruments collect measurements and send them back to ground stations.  

The idea of describing state of the atmosphere by a set of mathematical equations was 

formulated by Vilhelm Bjerknes in 1904 and later developed and documented in Weather 

Prediction by Numerical Process by Lewis Fry Richardson in 1922. A result of Richardson’s 

calculations was a six-hour forecast, which however took him several weeks to compute alone. 

It was clear from his report that many computations needed to be solved very quickly to 

produce a timely forecast. The first successful simplified weather prediction was made in 1950 

using one of the earliest computers by a team of meteorologists and mathematicians at the 

Institute for Advanced Study in Princeton, New Jersey. By the year 1955, numerical forecasts 

were already being made on a regular basis in North America.  

Over next years, National Meteorological Center models used more advanced 

equations for atmospheric dynamics and thermodynamics and other input data sources 

ranging from various satellite measurements to increased number of ground weather stations 

(Graham, Parkinson, & Chanine, 2002). In addition to providing visual images, satellites also 
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provide data that allow direct calculation of atmospheric temperature, moisture profiles and 

other environmental variables, throughout the atmosphere column. 

 

Figure 1 ENIAC - computer used to create the first numerical weather forecasts 

 Source: https://upload.wikimedia.org/wikipedia/commons/6/6c/ENIAC_Penn1.jpg 

Increasing of computing power, never-ending desire for better results of weather 

forecasts and expanding knowledge of weather influencing factors led to improvements and 

increasing of complexity of differential equation models in 1970s. Solar radiation effects, 

moisture, latent heat, feedback effects from rain on convection, sea surface temperature and 

sea ice influence were added to model variables (Schuman, 1989). During 1980s 

meteorologists began experimenting with including the interactions of soil and vegetation 

with the behavior of atmosphere, which also meant more realistic forecasts (Yongkang & 

Fennessey, 1996). From 1973 models were computed on global scale too, until then they 

encompassed only Northern Hemisphere (Kalnay, 2003). 

For further understanding of history developments overview, a brief introduction into 

numerical weather forecasting is presented in 1.2. Edward Lorenz made a statement in 1963 

that long-range forecasts prepared for more than two weeks in advance fail to predict the 

state of the atmosphere (or any similar chaotic fluid system). This is caused mainly by the 
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propagation of multiple model errors and their rapidly increasing influence over time. 

Generally, four types of errors dominate (Manousos, 2006): 

- Model equations do not capture atmosphere processes fully. 

- Model resolution (horizontal and vertical) does not suffice to capture all features. 

- Initial observations describing the initial state of the model run are not available at 

every point of the atmosphere. 

- Initial observations also cannot be measured to infinite precision. 

Complex set of equations called the Liouville Equations contains the uncertainty of the initial 

conditions (Manousos, 2006). They produce a set of forecasts (distribution of possible forecast 

states) for an input range of possible initial states of the atmosphere. Both the input and the 

output of mentioned equations are given in the form of a Probability Density Function. This 

process is called ensemble forecasting and is very computationally demanding, which was the 

main reason, why ensemble forecasts started to be produced quite late – in 1992 by the 

European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers 

for Environmental Prediction (NCEP). 

1.2 Models 

The basic idea of weather forecasting through numerical models takes the known state 

of the fluid (atmosphere variables) at a given time and uses equations of fluid dynamics and 

thermodynamics to estimate the state of the fluid at some time in the future (WRF 

Introduction, 2007). The observations are processed by various data assimilation algorithms 

and values at locations usable by the model's mathematical algorithms are obtained (an 

evenly spaced grid for example). Variables are then used in the model as the starting point for 

forecast primitive equations. These equations lead to rates of change predictions for the 

atmosphere state in short time in the future. What usually follows is an iterative process of 

applying these equations to the always new state until a desired forecast date is reached. The 

length of the time step is related to the distance between grid points. Many atmospheric and 

land-soil variables are available within model results datasets. 



CTU in Prague 

15 
 

1.2.1 Global Forecast System 

Global Forecast System (GFS) is the main weather forecast model produced by NCEP 

(Global Forecast System, 2018). Before January 2003 the system was composed of GFS 

Aviation and GFS Medium Range Forecast. GFS is made up of an atmosphere model, an ocean 

model, a land/soil model, and a sea ice model, which together try to provide the most accurate 

picture of the weather. This type of a model is called fully coupled because it tries to solve the 

full equations for mass and energy transfer and radiant exchange. 

Forecasting capabilities of GFS are being improved every now and then, mainly by not so 

frequent upgrades to existing supercomputers and storage capacity used for calculations 

allowing more data inputs and higher spatial resolution. These actions happened in greater 

scale for example after a Superstorm Sandy hit New Jersey in 2012 (Kravets, 2015). While 

ECMWF model predicted the storm to hit the shore seven days in advance, GFS kept predicting 

that it will turn back to the sea until four days before the event. The main reason which was 

afterwards conveyed to the media was the lack of computing resources. In response to that 

NOAA boosted their computing power ten times from 426 teraflops to 4.6 petaflops. In 2018 

a phase three of a multiyear process of improving the GFS was finished (News&Features, 

2018). It added 2.8 petaflops of speed, thus increasing NOAA’s total operational computing 

speed to 8.4 petaflops and added 60% storage capacity. Next generation of GFS should be 

launched during 2019. It should increase the resolution to 9 kilometers and 128 levels out to 

16 days into the future, compared to the current 13 kilometers and 64 levels running 10 days 

into the future. 

GFS is licensed under U.S. Government Works - not subject to copyright restrictions (U.S. 

Government Works, 2018). That would be one of reasons why it is used (with other models) 

by most of weather forecast display websites. There are more ways how to obtain model 

history and forecast data from GFS. Gridded data are available for download either by direct 

HTTPS or FTP access, or through the NOAA National Operational Model Archive and 

Distribution System (NOMADS), Archive Information Request System (AIRS) or Thematic Real-

time Environmental Distributed Data Services (THREDDS) (Global Forecast System, 2018). 

Further information about the model data used for this project is mentioned in chapter 4.1. 
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1.2.2 ECMWF Integrated Forecasting System 

The comprehensive Earth-system model developed at ECMWF in co-operation with 

Météo-France has a name The Integrated Forecasting System (IFS) and forms the basis for all 

data assimilation and forecasting activities. It is composed of a spectral atmospheric model 

with a terrain-following vertical coordinate system together forming a 4D system. (Andersson 

& Thépaut, 2008) ECMWF runs the IFS in several configurations and resolutions while other 

ECMWF member states use ECMWF global forecasts to provide boundary conditions 

(explained in chapter 1.2.4) for their own limited domain forecasts with desirably higher 

resolution. The highest resolution configuration (HRES) is run every twelve hours out to ten 

days, averaged over many forecasts with a 9 km horizontal resolution using 137 vertical layers 

(Documentation and support, 2018). 50-member ensemble system - ENS is run every twelve 

hours out to 15 days with 18 km horizontal resolution and 91 vertical layers. Another member 

of the ensemble CNTL - Control forecast has lower spatial resolution than the HRES but utilizes 

the most accurate estimate of the current conditions and the best description of the model 

physics.  

ECMWF forecasts are provided free to the national weather services of its members. 

Commercial users are obliged to pay a fee. Selected variables from the HRES and ENS are 

available directly to clients under the noncommercial license Creative Commons forbidding 

derivative work (Licences available, 2018). 

1.2.3 Other global models 

Global Environmental Multiscale Model has been running since 1991 (Ritchie & 

Beaudouin, 1994) to serve operational weather-forecasting needs of Canada by the Recherche 

en Prévision Numérique, Canadian Meteorological Centre and the Meteorological Research 

Branch (Introduction GEM, 2018). Operational model is currently used for the global data 

assimilation cycle and medium-range forecasting, outputting forecast for up to ten days. 

Among main differences from above mentioned models are following: 

- Semi-implicit, semi-Lagrangian time discretization scheme, which removes the 

restrictive time step limitation of a conventional Eulerian scheme, 

- Hydrostatic-pressure-type hybrid vertical coordinate system, 
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- Horizontal variable-resolution, cell-integrated, finite-element discretization which 

reduces the usually staggered finite differences discretization at uniform resolution in 

spherical geometry. 

One of further linked projects plans to develop a single highly efficient model that can be 

reconfigured at run time to run globally at uniform resolution, or to run with a variable and 

rotatable resolution over a global domain so that high resolution is focused only over desired 

area. Output from Global Environmental Multiscale Model is under Crown copyright but is 

issued under a free license if properly attributed to Environment Canada and is therefore 

redistributed by many other websites for example by NOMADS (NOMADS, 2011). 

Navy Global Environmental Model - a global numerical weather prediction model is run by 

the United States Navy's Fleet Numerical Meteorology and Oceanography Center in 

Monterey, California (Naval Oceanography Portal, 2018). It became operational in February 

2013, replacing the previous naval global system NOGAPS. It runs four times a day and 

produces the forecast with three-hour intervals 180 hours into the future. While being 

licensed under U.S. Government Works, it is not subject to copyright restrictions but is not 

frequently used by other weather forecast displaying websites. 

Unified Model - a NWP model developed by the United Kingdom Met Office has been 

running since the end of the 1980s (History of the Unified Model, 2007). A single model is used 

for a range of both timescales and spatial scales. The Unified Model is run operationally in 

many configurations for weather forecasting at the Met Office. (Numerical Weather 

Prediction models, 2017) Global deterministic model has a horizontal resolution 10 km, 70 

vertical levels, is produced every 6 hours with forecast up to 6 days into the future. Forecasts 

are available only 72 hours into the future for non-paying users. Unified Model licensing is 

targeted individually to fulfill specific user needs. (Unified Model, 2018) A regional version of 

the model containing the main area of the United Kingdom with 1.5 km spatial resolution runs 

every three hours. The Met Office has the capability to quickly relocate regional models to any 

interested area worldwide. These Crisis Area Models are run in support of allied military 

operations and disaster relief operations. 

GME, a global numerical weather prediction model run by the German national 

meteorological service started operational production in December 1999. It was the first 
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numerical weather prediction model running on an icosahedral grid instead of traditional 

latitude-longitude grid (ICON, 2018). Compared to those, icosahedral grids provide an almost 

homogeneous coverage of the earth. This avoids the pole problem, related to the convergence 

of meridians in traditional grids, which can pose challenges to finding a computationally 

efficient implementation. Later the model was succeeded by the Icosahedral Nonhydrostatic 

model (ICON). The global ICON grid has an effective mesh size of about 13 km. It runs its 

forecast four times per day, 180 hours into the future for the forecasts starting at 00 or 12 

hours UTC and 120 hours for those starting at 06 and 18 UTC. If not specially mentioned 

otherwise, all datetimes in this thesis are using UTC time. To be able to cover small area 

features for example in the Rhine Valley, Deutscher Wetterdienst additionally operates the 

high-resolution regional model COSMO-DE with a mesh size of 2.8 km. Another model which 

provides forecast for the area of whole Europe is a nested area ICON-EU with a mesh size 6.5 

km and a forecast range of 120 hours (ICON-EU, 2018). The GME's approach of non-latitude-

longitude grid is being currently utilized by the NCEP produced experimental Flow-following, 

finite-volume Icosahedral Model. 

1.2.4 Regional models 

Regional models use smaller grid spacing than global models and are focused on a 

smaller area than global models. They can cover meteorological phenomena of smaller 

dimensions that are not possible to be represented on the coarser grid. Regional models 

usually use a global model for determining the initial conditions of the edge of their domain 

space. Uncertainties and errors are introduced by the global model initial conditions values, 

as well as regional model itself. As the focus of this thesis output is global, only a short 

overview of selected regional models is given. 

North American Mesoscale Model is run by NCEP to provide mesoscale forecast to public 

and private sector meteorologists. It is produced four times a day with 12 km horizontal 

resolution, 84 hours into the future with three-hour temporal resolution (NAM, 2018). Four 

fixed local nested domains run to 60 hours at 3 km resolution. 

Aire Limitée, Adaptation Dynamique, Development International (ALADIN) mesoscale 

model for France was proposed in 1990 (About Aladin, 2018), first launched in 1995 and is 
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based on the ECMWF model. It has been used in over 20 European countries to create short-

range weather forecasts. 

Private Numerical weather prediction (NWP) models are also not that uncommon. One 

example of a company producing NWP is meteoblue. Their weather models are based on the 

Nonhydrostatic Meso-Scale Modelling technology (Weather modelling, 2018). Each domain 

(areas covering parts of continents) is divided into grid cells which are rectangularly arranged 

and evenly spaced between each other. The average distance between the grid points varies 

from 1 km to 25 km. Models usually have 55 vertical levels. Currently two types of models are 

offered to public customers by different licensing methods – NEMS operating from 2013 and 

older NMM operating from 2007. 

1.2.5 Ocean models 

Ocean wave modelling tries to predict the evolution of the energy of wind waves using 

numerical methods. These simulations consider atmospheric wind forcing, non-linear wave 

interactions, frictional dissipation, sea ice and iceberg influence and ocean or tidal current 

effects (Wavewatch manual 5.16, 2016). Their outputs are wave heights, wave periods, and 

dominant directions either only summarized into the significant wave height, which is the 

average height of the one-third largest waves or divided into appropriate parts - wind waves 

and up to three swell waves. 

After not so successful (in the terms of accuracy) first attempts in 1960s and 1970s to 

numerically predict ocean waves behavior a second generation of wave models was created 

(Robinson, 2010). Increased activity of satellites monitoring the earth surface due to high 

demand for satellite wind measurements for NWP enabled that the wind effect could be 

weighted more accurately in the wave prediction equations. Second generation models also 

introduced terms which took energy transfer between spectral components in a simplified 

way into consideration. With improvements of NWP, it was revealed that describing of what 

was really happening in the ocean in all possible conditions was still far by optimal state. It led 

to the creation of third generation of wave models which are being run from 1988 onward. 

They are depicting the non-linear wave-wave interaction much more accurately. The spectral 

wave transport equation also describes the change in wave spectrum over ocean topography. 

Even with the ever-increasing importance of data provided by satellites, since it had a great 
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influence on the precision of ocean wave models, weather buoys (before the end of World 

War II also weather ships) have been the largest source of relevant input data for wave 

predictions. 

NCEP operates a third-generation wave model WAVEWATCH III. It is a further 

development of the model WAVEWATCH, as developed at Delft University and WAVEWATCH 

II, developed at NASA, Goddard Space Flight Center (Wavewatch III, 2016). It runs four times 

a day while each run starts with 9, 6 and 3-hour hindcasts (forecast into the past) and produces 

forecasts with 3 hours interval from the initial time out to 180 hours. WAVEWATCH III has a 

global domain of approximately 30 km horizontal resolution, with some nested regional 

domains of interest. WAVEWATCH III has U.S. Government Works license - not subject to 

copyright restrictions and therefore its forecast multigrid data are often used by many 

weather forecast visualization websites. 

ECMWF runs several wave models. High Resolution Wave Model (HRES-WAM) is coupled 

with the global model HRES while High Resolution Stand Alone Wave model (HRES-SAW) runs 

by itself. They offer the same parameters globally, but the resolution and the dissemination 

schedule are different (Datasets Set II, 2018). HRES-WAM has a global reach with a spatial 

resolution 0.125° and is produced four times a day with 1-hour forecast step up to 90 hours, 

3-hour step up to 144 hours and 6-hour step up to 240 hours into future. HRES SAW is 

produced two times a day with coarser time resolution of 3-hour step up to 144 hours and 6-

hour step up to 240 hours. The type of licensing of ECMWF wave products is shared with their 

global weather model counterparts. 

Among models produced by DWD two wave models can be found. Global GWAM model 

with 27 km spatial resolution, 3-hour steps and 180 hours of forecast and regional EWAM with 

5 km resolution for Europe area with 1-hour steps and 78 hours of forecast are produced twice 

per day (Ocean wave models, 2018). Winds that drive these wave models are provided by the 

ICON forecasts. 

1.3 Data formats 

Never-ending technological advancements mainly in collected data precision lead to 

increasing demands on storing, reading and analyzing these data. Multidimensional data are 
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also more common than before. Meteorological data can have up to five dimensions: X, Y, Z 

coordinates, timestamp and temperature. Suitable data formats needed to be developed to 

provide a possibility for real-time data processing and assimilation. Among most notable 

multidimensional data formats used in meteorology are Network Common Data Format 

(netCDF), Hierarchical data format (HDF) and Gridded Binary (GRIB) (Common Climate Data 

Formats: Overview, 2013). They are portable (machine independent), self-describing (the user 

does not have to know file’s internal structural details) but also describable by metadata (for 

example information about units). Each of these file formats has evolved over time to address 

the needs of various users. Unfortunately, the newer versions of the same format are not 

always backward compatible. A small difference between the above mentioned is that netCDF 

and HDF are file formats while GRIB is a record format. 

1.3.1 NetCDF 

NetCDF is an open-source, Open Geospatial Consortium (OGC) standardized set of 

software libraries and self-describing data formats that support writing, reading and sharing 

of array-oriented multidimensional scientific data (Introduction NetCDF, 2018). The project is 

developed and maintained by Unidata – part of the University Corporation for Atmospheric 

Research. The main library is written in C, and provides an API for C, C++, two APIs for Fortran 

and another independent implementation written in Java. Interfaces to netCDF based on the 

core library are also available for other languages including Python, R, Haskell, Perl, Ruby, 

MATLAB and more. The API specification is very similar across different languages. Many 

software packages have been created which make use of netCDF files ranging from command 

line utilities to graphical visualization packages. 

It is highly scalable, allowing access to small subsets of large datasets and shared usage, 

where a single user is writing to a file while other can read it in the same time. Currently four 

versions of the netCDF format exist (File Structure and Performance, 2018). The classic format 

(netCDF 3), which is still the default format for file creation, the 64-bit offset format which 

was introduced in version 3.6.0, and supports larger variable and file sizes, the netCDF-4/HDF5 

format enabled in version 4.0, HDF4 SD format for read-only access and CDF5 format. NetCDF 

files should have the file name extension .nc. 
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NetCDF classic dataset is stored as a single file comprising a header, containing all the 

information about dimensions, attributes, and variables and a data part, containing fixed-size 

data and variable-size data. The header also contains dimension lengths and information 

needed to map multidimensional indices for each variable to their offsets. The fixed-size data 

part following the header contains the data with each variable stored contiguously. The last 

part, if it is present, consists of variable number of fixed-size records where record data for 

each variable is stored contiguously in each record. NetCDF-3 does not support compression, 

string variables or parallel processing, which is a reason why netCDF-4 - a subset of HDF5 with 

netCDF-3 style API interfaces to create and access the data, was developed. 

1.3.2 HDF 

HDF is an open-source data format and a set of libraries used for storing voluminous 

numerical data created by National Center for Supercomputing Applications to address the 

issue of using many different data formats for the Earth Observation System project. Since 

2005 it has been developed and maintained by a non-profit organization HDF Group (History 

HDF Group, 2016). The HDF Group’s public mission is to provide the development of HDF in 

the long term and the ongoing accessibility of HDF-stored data (Our Mission, 2018).  

HDF is self-describing, highly scalable, platform independent, allowing hierarchical 

search and display of the data in their true form (unlike a relational database). Binary data can 

be stored too. It allows to specify complex data relationships and dependencies. 

Multidimensional objects are supported where each element can form a single complex object 

(Tutorial HDF5, 2017). Objects can be merged into a single file and accessed as a group or 

independently. HDF can be easily converted to netCDF and vice versa. HDF files can have 

various file extensions based on the format versions, .hdf, .h4, .hdf4, .he2, .h5, .hdf5, .he5. 

Currently two incompatible and very different versions exist. 

HDF4, being an older but still maintained and used format, has many limitations, which 

led to development of HDF5. While not being allowed to have data files larger than 2GB 

because of the usage of 32-bit signed integers for addressing (HDF4 FAQ, 2017), it is not 

suitable for modern scientific applications. Additionally, with limited parallel input and output 

support, a single dimension data types and other limitations, it needed to be succeeded. 
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HDF5 simplifies the file structure to include only two major object types. Those are 

datasets, multidimensional arrays of a homogeneous type and groups, which are container 

structures holding datasets and other groups. Metadata attached to groups and datasets 

appear in a form of user-defined named attributes. More complex storage API representing 

images and tables can be built. HDF5 performs well for time series data due to the usage of B-

trees to index table objects (HDF5 Tutorial, 2017). Many other data formats have been based 

on HDF5, for example PyTables, which is built on top of the HDF5 library, using the Python 

programming language and NumPy package (PyTables, 2018). 

1.3.3 GRIB 

GRIB is a binary data format designed to store results from most NWP systems in 1985. 

The creation was based on activities of World Meteorological Organization (WMO) and 

Commission for Basic System. It is standardized as GRIB FM 92, described in WMO Manual on 

Codes No.306 (Introduction GRIB1-GRIB2, 2003). The reason for the development was a need 

for a data format allowing fast transfer of large volumes of numerical data and allowing 

effective storage. 

GRIB files are a collection of self-contained records of two-dimensional data. The 

individual records stand alone as data without any reference to other records or to the 

schema. Collections of GRIB records can be appended to each other. Each GRIB record has a 

header (with pointers towards elements in predefined and internationally agreed tables - in 

the official WMO Manual on Codes) and the actual binary data. The parameter characteristics 

like name or unit must already be defined in the tables of the WMO Manual on Codes. There 

are two editions of the GRIB FM 92 currently operational – GRIB 1 and GRIB2. 

GRIB 1 contains a collection of entries where each one contains gridded data of specific 

time and vertical level. A single GRIB 1 message enables the transmission of one single field 

on a single grid at a single level or layer. The number of entries is limited to 256, while half of 

them is only for coordinates, second half is for the record and the last one is for the missing 

parameter (Introduction GRIB1-GRIB2, 2003). 

WMO approved the Edition 2 of FM 92 GRIB for an operational WMO code in November 

2001 to solve weaknesses of transmission and archiving of specific types of data – mainly 
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multidimensional and spectral data (FM 92 GRIB Edition 2, 2003). A freeze on new 

development has been placed on the Edition 1 of FM 92 GRIB on the request of GRIB 1 

continuation by International Civil Aviation Organization to extend the possibility of its 

operational use for their purposes. The Edition 2 can be used in new products, such as the 

output of ensemble prediction systems and ensemble wave forecasts, long-range forecasts or 

transport models. GRIB 1 format is still compatible within GRIB 2 though. 

 GRIB 2 allows coding of multi-grid, multi-product, multi-level or multi-parameter fields 

in a single message with the maximum number of entries increased to 65536. As for the 

compression possibilities, data in GRIB 1 are usually converted to integers using offset and 

scale and then bit-packed, while GRIB 2 has multiple other methods of compression. There is 

no inviolable rule about file extension of GRIB files, all of these: .grb, .grib, .grb2, .grib2, .GRB, 

.GRIB, .GRIB2 can be seen frequently. 
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2 Storage, processing 

Raw weather data collected from various sources do not necessarily have a direct value 

regarding the state of the weather to a human observer. However, results from the NWP in 

the GRIB format usually contain data which are either directly usable or specific weather 

characteristics can be easily computed from them (wind speed and direction from u, v wind 

vector components for example). This chapter introduces two main tools which served the 

purpose of storage and processing of raw weather data on this project. 

2.1 Elasticsearch 

Elasticsearch (ES) is an open-source, enterprise-grade search engine based on Apache 

Lucene, built to handle large volumes of data with high availability and with ability to distribute 

itself across any number of machines with unlimited horizontal scaling in mind. It has a simple 

but powerful API that allows applications written in various programming languages to access 

the database easily (Divya & Goyal, 2013). Elasticsearch is best thought of as an interface to 

Lucene designed for large volumes of data from the beginning. 

It was created by Shay Banon – initially as a search engine for his wife’s list of cooking 

recipes. He open-sources it in the beginning under Apache License 2.0 which allowed a user 

community to emerge quickly. The initial public release happened in February 2010 (History 

of Elasticsearch, 2018). Elasticsearch Inc. was founded in 2012 and it later took two other 

open-source projects under its wings – a pluggable log ingestion tool Logstash and the UI for 

data visualization Kibana, together forming the Elastic Stack. In 2015 the company was 

rebranded to Elastic to represent the growth of the software ecosystem and avoid confusion 

of the company name with the Elasticsearch engine itself. Elasticsearch and Kibana have been 

also available as a service for Amazon Web Services (AWS), together named Elastic Cloud.  

Following the initial Open-source minded attitude, Elastic opened the code of their previously 

commercially provided packages for security and monitoring, X-Pack to the public in 2018. 

Elasticsearch accesses and stores objects through a Representational State Transfer 

(REST) API by PUT, POST, GET, and DELETE methods. As for the storage type, it is a typical 

example of a key value store - every piece of data has a defined index and type. Index as a 

collection of documents or can be thought of as a table in a database. Elasticsearch achieves 

fast text search responses because instead of searching it directly, an index is looked up 
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instead (Novoseltseva, 2017). It is called an inverted index, because it inverts a page-centric 

data structure to a keyword-centric. The documents added to an index have no defined 

structure and field types, which can be advantageous and disadvantageous in the same time.  

From a REST approach, the relative path to the object is /{index}/{type}/{id}. Indices 

and types are created, retrieved and deleted at runtime via a REST API. The sharding (database 

partitioning that separates large databases the into smaller parts called data shards) and data 

replication (copying of index parts) can be chosen differently for each index (Divya & Goyal, 

2013). Elasticsearch performs indexing of stored documents either with a dynamic mapping 

or user provided mapping. The search API is provided by a _search resource at a server level, 

index level or type level. Elasticsearch offers a domain specific JSON based language to specify 

complex queries. The main strength of Elasticsearch as an engine lies in text search allowing 

full-text search, search with spelling errors and with abbreviations considered, while the 

results can then be filtered, sorted and ranked by various scoring techniques (Elasticsearch, 

2018). It is however well suited for storing and searching of other data types like numerical, 

geodata, timestamps etc. 

2.2 ecCodes 

EcCodes is a software package created by ECMWF and licensed under the Apache 

License, Version 2.0 (ecCodes license, 2015). It provides an application programming interface 

and a set of tools for decoding and encoding messages in the following formats of WMO FM-

92 GRIB edition 1 and edition 2, WMO FM-94 BUFR edition 3 and edition 4 and WMO GTS 

abbreviated header (only decoding) (What is ecCodes, 2016). C, Fortran 90 and Python 

interfaces provide access to the main ecCodes functionality. It is designed to provide a simple 

set of functions to access data from several formats with a key/value approach. EcCodes is an 

evolution of ECMWF software package GRIB-API, but starting from version 2.0.0, it has been 

selected as the default GRIB encoding and decoding package used at ECMWF and further 

development of GRIB-API is planned to be discontinued towards the end of year 2018. A low-

level API interface is also being developed by ECMWF – currently available for Python 3. It 

provides almost one to one mappings to the C API functions and uses the NumPy module to 

handle data values. 
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Python High level API cfgrib designed to map GRIB files to the NetCDF Common Data 

Model has been developed jointly by ECMWF and B-Open (cfgrib , 2018). Currently being in 

development status beta, it aims to provide a reading GRIB backend for xarray module and in 

the future with limited write capabilities. It is however still dependent on ecCodes C library. 

Among main features are reading the data lazily and efficiently in terms of both memory usage 

and disk access and mapping a GRIB 1 or 2 file to a set of N-dimensional variables. 

2.3 Alternatives 

Reading, writing, modifying or generally working with GRIB files is not only a domain of 

ecCodes. Wgrib2, a program to manipulate, inventory and decode GRIB 2 files would do the 

same service (wgrib2, 2016). Source code modules for wgrib2 are either in the public domain 

or under the GNU license. Other notable functionalities include creating subsets, export to 

IEEE, text, binary, CSV, NetCDF and MySQL, write of new fields, parallel processing by using 

threads or flow-based programming, Fortran and C interface.  

Database selection is crucial for a design of a weather processing system. There are 

many alternatives to Elasticsearch among SQL and No-SQL databases, either adapted to work 

specifically with temporal data or offering general functionality. Discussion about the choice 

and alternatives is presented in chapter 6. 
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3 Raster overlay serving 

 This chapter provides a brief introduction to relevant OGC Web Services which 

implement the standards for raster data serving, and introduces two main pieces of software, 

which enabled producing and serving of raster overlays as well as GeoTIFF image format, 

which is a first candidate when raster format manipulations come to mind. 

3.1 OGC Web Services 

Open Geospatial Consortium (OGC) is an international industry consortium of 

companies, public agencies and universities working in the joint effort to develop and 

maintain publicly available interface standards and encodings for handling geospatial data and 

systems. OGC Web services include services for data access, data display and data processing 

(About OGC, 2018). OWS requests are defined using the HTTP protocol and encoded using 

key-value-pairs structures or Extensible Markup Language (XML), which is more common. 

3.1.1 WMS 

A Web Map Service (WMS) produces maps of spatially referenced data dynamically from 

geographic information (Implementation specification WMS, 2006). The standard defines 

three operations: service-level metadata return, map return and optional third returns 

information about features shown on a map. WMS operations can be invoked by submitting 

requests in the form of demanding a specific URL. Produced maps are usually rendered in an 

image format such as PNG, GIF, JPEG or vector based SVG. The most recent version of the 

standard is WMS 1.3.0. 

3.1.2 WMTS 

A Web Map Tile Service (WMTS) standard provides a solution to serve digital maps using 

predefined image tiles of known size (Implementation specification WMTS, 2010). The service 

shows the list of tiles that it can provide through a standardized format in a metadata 

document. The document also declares the communication protocols and encodings which 

allow clients to interact with the server. The declaration defines the tiles available in each 

layer, visualization style, output format, scale, coordinate reference system, and geographic 
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fragment of the total area. The WMTS standard complements the WMS. The most recent 

version of the standard is WMTS 1.0.0. 

3.1.3 WCS 

The OGC Web Coverage Service (WCS) supports electronic retrieval of geospatial data as 

coverages, digital geospatial information representing space and time-varying phenomena 

(Service implementation, 2018). WCS allows clients to choose portions of server-provided 

information based on spatial and temporal constraints and other criteria. WCS provides data 

with their detailed descriptions, defines a syntax for requests against these data and returns 

them with original semantics, which may be interpreted, extrapolated and not just portrayed. 

The most recent version of the standard is WCS 2.1. 

3.2 GeoServer 

GeoServer is an open-source (GPL license) server software that allows users to view, 

share, process and edit geospatial data and is built on an open-source Java GIS toolkit 

GeoTools (Documentation, 2018). GeoServer is a OGC compliant implementation of many 

open standards, enabling reading of a vast number of data formats out of the box and many 

other by adding community extensions. It uses the Spring Framework to provide a request 

dispatch architecture for modules. Being a web application, it supports any common servlet 

container. GeoWebCache, a Java-based tile caching component is also bundled with 

GeoServer but can be optionally removed. The application provides a REST API implemented 

using the spring-mvc-framework, which enables for example batch configuration changes thus 

allowing easy configurations of hundreds of data stores with ease. Further information can be 

found on project documentation pages, configuration options used in this thesis are described 

in chapter 5.3. 

3.3 GDAL 

The Geospatial Data Abstraction Library (GDAL) is an open-source software library 

(X/MIT license) that allows to perform geographical analysis on vector and raster data. It is 

usually also built with a variety of command line interface utilities for data translation and 

processing. Traditionally GDAL was forming the raster part of the library, and OGR the vector 
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part for Simple Features data model (GDAL, 2018). Starting with GDAL 2.0 they have been 

more intertwined. It behaves as a swiss knife for raster and vector data and usually forms the 

basis of geodata manipulation pipeline thanks to the huge number of different data formats 

(over 200) and sources it can read and some of them also write. The most recent version of 

GDAL which has been released is 2.3.2. Since version 2.1 GDAL enables a read and write 

operations on geospatial data stored in Elasticsearch. 

3.4 GeoTIFF 

GeoTIFF is a very common file format when dealing with geospatial raster data although 

not really for results of NWP. Due to its versatility, it is as a number one option for storing 

satellite data, an intermediary file format in raster processing chains or even occasionally 

raster overlay serving format (although usually JPEG or PNG are preferred). GeoTIFF behaves 

as a metadata format based on the mature and very versatile TIFF standard and fully 

backwards compatible (complies with TIFF 6.0 specification) (GeoTIFF Specification 1.0, 2000). 

It has additional reserved TIFF special tags to allow the storage of georeferencing of the image 

- projection and coordinate information while not going against the TIFF recommendations or 

limiting the scope of raster data supported by it. 

The popularity of GeoTIFF comes from several reasons: It can store scientific raster data 

with float or larger integer value types. It allows the use of several methods of compression, 

such as LZW, Deflate or JPEG as well as the internal tiling of large raster files, thus greatly 

improving the performance when reading smaller subsets. The different data bands can be 

interleaved or separate (Sazid Mahammad & Ramakrishnan, 2009). 

Due to gradual increase of resolution of provided GeoTIFF imagery from various sources, 

a proposal for a cloud optimized GeoTIFF was also created. It is targeted to be hosted on a 

HTTP file server, where internal organization should allow consumption by web clients sending 

HTTP GET range request for the content like: “bytes: start_offset-end_offset” (cogeotiff/cog-

spec, 2018). It contains metadata of the full resolution imagery, followed by the optional 

overview metadata and the image itself. Therefore, software enabling reading of cloud 

optimized GeoTIFF can stream just a portion of data, thus improving overall processing times 

and creating real-time operations on larger raster images, which were previously not feasible. 

A single file can be also accessed online instead of needing to copy and cache the data. 
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4 Implementation of API 

The following chapter is focused on describing the backend side of an API interface for 

providing fast access to history weather and wave data for a given latitude, longitude and 

timestamp input, which will enhance current Vesseltracker Cockpit supportive visualization 

and auxiliary data tools. API design counts with Elasticsearch as the underlying database and 

a simple Node.js application controlling access and user input. It is expected that a server with 

Ubuntu Linux will be used for running both the API and GeoServer for raster overlay serving 

and all settings were chosen with that in mind. 

4.1 Used data 

After initial discussion and a brief overview and later review of the existing weather 

forecast API project (details in chapter 4.7), GRIB2 GFS files for weather and GRIB2 

WAVEWATCH III multi grid files for waves have been chosen as data sources for the current 

project. There are several reasons for that. They are produced regularly and due to recent 

improvements of the overall NOAA disposed computing power also with denser spatial and 

temporal resolution than few years in the past. It is provided free of charge licensed under 

U.S. Government Works in contrast to ECMWF models. There are many ways how and from 

where to download the data and a user can select which one suits him the best. The unified 

GRIB2 format allows a single way of reading and processing instead of using a different tool 

for each new dataset. 

 History weather data is available as GFS Analysis (GFS-ANL) where on-site 

measurement data are later used to run the model again with them included as additional 

parameters. Currently a user can download history data up from 03/2004 from an online 

storage. For the initial step of the project, only data from 01/2017 onward were selected. 

There are in total three types of history weather data files with 3-hour time resolution 

provided four times a day for 00, 06, 12, 18UTC, but not all of them are available for the whole 

life-span of the releases. 

The first model results were published in GFS-ANL 003 GRIB type with 1° spatial 

resolution where some of the currently desired variables are missing. The filename and URL 

follow the pattern:  
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https://nomads.ncdc.noaa.gov/data/gfsanl/200701/20070101/gfsanl_3_20070101_

1800_003.grb - the _003 part indicates forecast for +3 hours from given time.  

From 1.1.2007 onwards the results from the GFS-ANL are also being published in the optimal 

and for this use-case preferred type GFS-ANL 004 GRIB2 with 0.5° spatial resolution. The 

filename and URL follow the same pattern, where the only difference is domain version 4: 

gfsanl_4 and .grb2 file ending. 

The last data format type GFS-ANL 003 GRIB2 has been released from 6.4.2017 as a successor 

to GFS-ANL 003 GRIB files, which have of that date no longer been produced. It has 1° spatial 

resolution, but all the needed variables are present – as in GFS-ANL 004 GRIB2. GFS-ANL 

results are currently released irregularly with a variable gap from 2 up to more than 10 days 

and are always released in a bulk in different day times. It is important to mention that only 

_003 and _006 forecast run results contain precipitation data (GFS, 2018). For a full history 3-

hour spacing coverage, all three _000, _003 and _006 files need to be downloaded and 

processed. Precipitation data for 0, 6, 12, 18 UTC are taken from the forecast data 6 hours 

earlier, while for 3, 9, 15, 21 UTC all variables are taken from a single file. 

 History waves data are available as multi-grid GRIB2 files with spatial resolution 0.5° 

and appear in two different formats. The first type - WAVEWATCH III Production Hindcast are 

produced since February 2005 and are carried out in monthly installments where a single file 

contains all records for one variable from that specific month. For the processing purposes it 

is important to highlight a minor caveat that wave files from 10/2017 onwards are the result 

of running the model in two separate 2-week intervals with variable number of days 

(depending on the number of days in a month) and then concatenating the two files 

(Production Hindcast Archive, 2018). This change was necessary since NCEP was unable to 

manage a one month hindcast to run in the maximum allotted operation time. In January 2018 

the hindcast production was temporarily discontinued due to lack of resources. After receiving 

high volume of user feedback showing the demand for the monthly hindcast it was restarted 

and the data gap was eventually filled. Currently the hindcast is being released with around a 

month of delay after the end of the previous month, which is a reason why a second type of 

data for near past is used to bypass the delay. The filename and URL of the FTP resources 

follow the pattern:  
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source author 

ftp://polar.ncep.noaa.gov/pub/history/waves/multi_1/201701/gribs/multi_1.gl

o_30m.hs.201701.grb2 -  hs denoted the variable name, which will be further explained in 

chapter 4.2. 

 Second type of wave data used in this project is the WAVEWATCH III forecast data with 

1-hour temporal resolution, even though only every third file is downloaded to match the 

temporal resolution of the hindcast data. WAVEWATCH III Forecast is available on several FTP 

mirror pages as well as through NOMADS Grib Filter tool, which allows to sub-select only 

desired specific variables or height levels on the NOMADS server side and therefore decrease 

the needed storage and bandwidth. For this project the production NCO FTP source was used 

to download the full GRIB2 file with all variables to allow possible further addition of those 

data not located inside monthly hindcast (swell and wind waves). The duration of file presence 

on the production FTP server is around 7 days, so it cannot be downloaded far into the past. 

The filename and URL of the FTP source follow the pattern: 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/wave/prod/multi_1.20170101/mul

ti_1.glo_30m.t06z.f003.grib2 

4.2 Extracted variables 

Provided history weather files have usually around 250-400 variables depending on the 

format (GRIB1 having less than GRIB2) and on the choice if _000 nowcast type of data or 

_003/_006 forecasts are being processed. Always only a subset of data was processed and 

stored in Elasticsearch. The variable selection which would be of any possible interest to the 

end users was chosen. The decision was partly based on the weather forecast API current 

usage and demands. Each variable which is redundant would only increase the needed storage 

size and the Elasticsearch index size and indexing duration. A list of extracted variables for the 

API is shown in Figure 2. 

Figure 2 Extracted variables for history weather 

Variable Short name 

GRIB2 

Short name 

GRIB1 

Unit 

Temperature at 2m 2t 2t K 

U part of wind vector at 10m  10u 10u m/s 

V part of wind vector at 10m  10v 10v m/s 

Surface temperature t t K 

Mean sea level pressure mslet msl Pa 
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source author 

Relative humidity at 2m  2r r - surface % 

Gust speed gust -  m/s 

Precipitation rate prate prate kg/m2s 

Sea-ice coverage fraction ci icec 0 - 1 

Categorical rain crain -  0 or 1 

Categorical snow csnow -  0 or 1 

Categorical freezing rain cfrzr -  0 or 1 

Categorical ice pellets cicep -  0 or 1 

Total cloud coverage tcc tcc % 

Land/sea mask (0 – sea, 1 – land) lsm lsm 0 or 1 

As for the case of history waves, hindcast FTP archive offers a limited number of 

variables compared to the production wave forecast. Until the start of year 2017 only 

significant wave height, dominant wave direction and wave period data were published. Since 

then swell height, direction and period data have been added. In contrast to that, production 

forecast additionally contains wind wave and second swell height, period and direction. To 

enable consistency of production forecast and hindcast for history, swell was left out of the 

extracted variable list, which is shown in Figure 3. 

Figure 3 Extracted variables for history waves 

Variable Short name  Unit 

Significant wave height swh m 

Wave direction dirpw ° 

Wave period perpw s 

Storing information about the motion of wind or water as vectors provides flexibility 

in how to calculate direction, which if often desired. Oceanographic convention describes 

wind in terms of the direction towards which the wind is blowing (Butler, 2013). In the 

oceanographic convention, wind flowing from the south to the north is symbolized by an 

arrow pointing north. Meteorologists use a special symbol called a wind barb to show the 

direction from which the wind is blowing. In the meteorological convention, a wind blowing 

from west to east is symbolized by a barb pointing west. Sea current directions are always 

symbolized using the oceanographic convention. In order to make it more complicated, wave 

direction results from numerical wave models follows the meteorological direction (0 – wave 

coming from north) but the individual wave spectra are archived so that directional 

information follows the oceanographic convention (Direction for wave fields, 2018).  



CTU in Prague 

35 
 

Note that longitude conversion is needed for further applications because used GRIB 

files for both weather and waves have a longitude range (0, 360) with Greenwich as a prime 

meridian, instead of a more common (-180, 180) value range. 

4.3 History weather 

History weather backend service is contained in a single folder resembling a Python 3 

module but not following the recommended module structure, rather being a set of scripts. 

Download folder starts empty and will hold all raw downloaded GRIB files. All data processing 

temporary files are stored in temp folder and then deleted from it. As the name implies, 

eccodes folder contains already compiled version of ecCodes software. 

4.3.1 Download 

During the download part of the procedure, three following scripts are used:  

- timetest.py: contains a single function determinefile(datetime) which based on 

given input datetime object returns the filename and closest datetime for data 

+---download 

+---eccodes 

|   +---bin 

|   +---include 

|   +---lib 

|   +---share 

+---temp 

download.sh 

download.py 

README.md 

.gitignore 

elastic.sh 

process.py 

timetest.py 

weather_mapping.json 

Figure 4 historical-weather folder contents source author 
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extraction for both precipitation data and normal data. It is contained in a separate file 

to avoid code duplication because it is imported in both processing and download part. 

- download.py: contains all download part logic. 

It has two mandatory arguments startdate and enddate in format YYYY-mm-DDTHH:MM 

(2017-01-01T23:45) and a third optional argument filename which can be used to redirect 

list of downloaded datetimes to a different file than default listofdownloaded mainly for 

testing purposes. The example usage of a script with custom datetimes output is:  

python3 download.py 2017-01-01T01:23 2017-01-11T14:57 mylist.txt 

The source code with comments can be examined in E-attachments. The operations 

performed by the script and the motivation are briefly explained further. 

After parsing the input datetimes, the script performs a loop from startdate to enddate 

while internally always using the closest datetime which has an hour equal to 0, 3, 6, 9, 12, 15, 

18 or 21 (times when GRIB files are available either as nowcast or forecast). Inside this loop 

first the positive presence of files on the remote NOAA server is checked and their size is 

validated. There is unfortunately no MD5 sum file to control the integrity of downloaded file. 

The only validity check which is being made is checking the content size in HTTP headers of 

the file which is to be downloaded. The reason for the seemingly redundant control is that 

very rarely files are damaged but correctly named. They lack variable amount of data and have 

variable but usually very small size. The script avoids files, which have their size smaller than 

three quarters of usual average file size. 

Further, in the decreasing order of preference first available of GFSANL4 GRIB2, GFSANL3 

GRIB2 or GFSANL3 GRIB files are downloaded if they are not already located on the disk. 

Always only the highest preference files at disposal are downloaded. It has been quite 

frequent in the recent past that first GFSANL3 GRB2 files are produced and a few hours or 

def determinefile(time): 

    date_time_zero = time.replace(hour=0, minute=0) 

    date_times_to_check = [date_time_zero, date_time_zero + timedelta(hours=3), 

date_time_zero + timedelta(hours=6), date_time_zero + timedelta(hours=9), 

date_time_zero + timedelta(hours=12), date_time_zero + timedelta(hours=15), 

date_time_zero + timedelta(hours=18), date_time_zero + timedelta(hours=21), 

date_time_zero + timedelta(hours=24)] 

    closest_date = min(date_times_to_check, key=lambda d: abs(d - datetime_input)) 

    ... 

Figure 5 Code snippet - finding the closest 3-hour spot to the input time source author 
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days later, GFSANL4 GRB2 files are added. This leads to the effect that both files are 

downloaded and processed but it has no other downside effect than negligible increase in 

storage demands of raw files. Lastly the successfully downloaded file datetime is written to a 

temporary file listofdownloaded for further reading in the processing phase. 

- download.sh: a small boilerplate bash script 

It calls download.py to check and possibly download available data for the last 14 days and 

takes care of redirecting logging output to a separate log file. 

4.3.2 Process 

The processing part of the import process is performed by two scripts: 

- process.py: contains all processing logic 

It has two mandatory arguments date in format YYYY-mm-DDTHH:MM (2017-01-01T23:45) 

and eshost – connection to Elasticsearch host for indexing. The example usage of a script with 

custom datetimes output is:  

python3 process.py 2017-01-01T00:00 elasticexample.com 

The source code with comments can be examined in E-attachments. The operations 

performed by the script are briefly explained further. 

After parsing the input datetime the download folder is being checked for all possible 

files (GFSANL4 GRIB2, GFSANL3 GRIB2 and GFSANL3 GRIB) to find out which types are present 

and if both needed files (normal and precipitation) are there. If only the precipitation file is 

available, all variables will be taken from datetime 6 hours earlier. If precipitation file is 

missing, respective variables will be then set to None. 

EcCodes grib_copy tool is called to action to copy selected weather variables into 

temporary separate GRIB2 files. All ecCodes and other external system tools are called in 

Python using the subprocess module. Temporary files are then merged together into a single 

GRIB file again by grib_copy. GRIB files can be optionally merged simply with a cat command: 

cat file1.grb file2.grb ... fileN.grb > merged.grb 
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To make the compiled ecCodes portable to different Linux machines, processing script locally 

updates the environment variable of ecCodes definition folder path. 

Another step is to load data into memory and insert it to a dictionary data structure to allow 

indexing it to ES. Using ecCodes tool grib_get_data, the whole _merged GRIB file is dumped 

to subprocess standard output row by row, where a single row contains latitude, longitude, 

value and additional outputs (here shortName). One large dictionary, that will be then indexed 

has keys in a format lat_lon_utctimems, and values forming another dictionary containing 

all desired variables. 

Key does not have to be named in a specific way for Elasticsearch to process, as they will not 

be queried for later, but key names must be unique, which the current setup fulfils. As can be 

seen on Figure 7, values are reformatted to have a fixed number of decimal places for each 

variable, derived variables are created (wind direction and wind speed from u, v vector 

components) and other variables are converted (temperature from °K to °C, pressure from 

Pa to hPa, precipitation rate from 
𝑘𝑔

𝑚2𝑠
 to  

𝑚𝑚

ℎ
). 

extract('2t', 'heightAboveGround', 'sfc') 

extract('t', 'surface', 'sfc') 

extract('10u', 'heightAboveGround', 'sfc') 

extract('10v', 'heightAboveGround', 'sfc') 

if fileformat == ".grb2": 

    extract('ci', 'surface', 'sfc') 

    extract('mslet', 'meanSea', 'sfc') 

    extract('2r', 'heightAboveGround', 'sfc') 

    extract('gust', 'surface', 'sfc') 

if mode in ["normal", "forecastonly"]: 

    extractPrecip('prate', 'surface', 'sfc') 

if mode in ["normal", "forecastonly"] and fileformat == ".grb2": 

    extractPrecip('tcc', 'atmosphere', '10') 

    extractPrecip('crain', 'surface', 'sfc') 

    extractPrecip('csnow', 'surface', 'sfc') 

    extractPrecip('cfrzr', 'surface', 'sfc') 

    extractPrecip('cicep', 'surface', 'sfc') 

if fileformat == ".grb": 

    extract('msl', 'meanSea', 'sfc') 

    extract('r', 'heightAboveGround', 'sfc') 

    extract('icec', 'surface', 'sfc') 

if mode in ["normal", "forecastonly"] and fileformat == ".grb": 

    extractPrecip('tcc', 'entireAtmosphere', 'sfc') 

{1.5_6.0_1533135600000:{"wspd":4.5,"2r":79,"gust":4.5,"lsm

":0,"prate":0,"crain":0,"location":{"lat":1.5,"lon":6},"ts

":1533135600000,"mslet":1012.8,"ci":0,"tcc":82,"2t":24.8,"

t":26.8,"cicep":0,"csnow":0,"cfrzr":0,"wdir":197}, ...} 

 

Figure 7 Example of a key and values from weather dictionary 

Figure 6 Code snippet - extracts depending on type of GRIB file and available files, function 
arguments shortName, typeOfLevel and levelType are keys of messages source author 

source author 
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If any GFSANL3 file (1° x 1° spatial resolution) is being processed, to ensure fixed resolution 

of 0.5° x 0.5° for Elasticsearch indices, interpolation is performed using mean of two or four 

nearest points. If the interpolated point is located on either of integer parallel or integer 

meridian (-50°, -175.5°) two points are chosen, if not (-50.5°, -175.5°), four points are chosen. 

Additional emphasis is given to temperature interpolation, as temperature on sea will differ 

greatly from the one on land just 0.5° further. A land-sea mask was extracted from a GFSANL4 

GRIB2 file and saved to a separate .csv file temp/lsm_005.csv. These values are then looked 

up during the interpolation phase. When interpolated position is on land (land-sea-

mask=1), then mean only from lands around is computed, if there is no land around (island 

area), oceans are used. The same rule applies for oceans (land-sea-mask=0) respectively. 

This way, mainly the interpolated sea surface temperature will be closer to reality than by 

using the standard approach. To author’s conscience, interpolating other variables than 

temperature with this method does not have a justified sense. 

Last phase is to index the resulting dictionary to Elasticsearch in bulks using the Python 

elasticsearch module. The number of data entries to be sent in a single bulk operation needs 

to be selected empirically during testing due to different properties (network and disk speed) 

of each individual created Elasticsearch cluster. Assumption is of course made, that the user 

launching process.py has write access to the cluster. 

- elastic.sh: a small boilerplate bash script 

It loops over all lines in the listofdownloaded file from download phase and sends the 

contained datetimes to process.py as an argument. Due to shared usage of downloaded files 

as GeoServer overlays, additionally import_weather_history.py (see chapter 5.2.2) is being 

run with an argument of contained datetime after process.py successfully finishes. 

Therefore, creating raster overlays and indexing data to Elasticsearch happens in nearly same 

time. The script also redirects the logging output to a separate log file. Currently used and 

recommended setup is to create a cron job to launch download.sh and elastic.sh in a 

succession once a day during the off-peak hours by adding a following row to /etc/crontab 

30 2 * * * user cd historical-weather && ./download.sh && ./elastic.sh 



CTU in Prague 

40 
 

4.4 History waves 

As history-waves backend service is in its basics very similar to the ones for history-

weather, descriptions of it in the following chapter are much more concise and highlight only 

differences. As mentioned in chapter 4.1, two different data sources were used for history 

waves. The folder structure is almost identical as in Figure 4, only temp folder is missing and 

an additional script for monthly hindcast data download_process_past.py was added. 

4.4.1 Hourly data 

On the first glance, parts responsible for downloading and processing wave forecast GRIB 

files look just like a lightweight version of history weather. During the download phase two 

following scripts are used:  

- download.py: contains all download part logic 

The only part, where it differs, is a lack of the optional argument listofdownloaded. The 

resulting temporary file containing datetimes has therefore a fixed name. File timetest.py 

containing a function returning the closest run time is missing, because the function is already 

contained in both download.py and process.py separately. The example usage is: 

python3 download.py 2018-11-09T12:34 2018-11-15T17:18 

- download.sh: a small boilerplate bash script.  

It looks only 7 days into the past instead of 14 days as this is the usual duration how long GRIB 

files are stored on the NOAA production FTP and because they are released regularly. 

Processing phase consists of launching two following scripts:  

- process.py: contains all processing logic 

It does not have any part checking whether appropriate files are present in download folder 

and just assumes they are. There can be no such special situation as precipitation file missing 

or forecast only in waves production data. Additional interpolation never happens because 

the desired spatial resolution of 0.5° x 0.5° is always met on the data source level. A tool 

grib_copy does not have to be used because all three desired variables can be easily 

extracted using grib_get_data in one run using the -w "shortName=swh/dirpw/perpw" 
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parameter. This would be theoretically possible even for history weather, but the whole query 

syntax would be very long, cumbersome and fault intolerant, so it was avoided in favour of 

manually copying single variables to temporary files. Data conversion and value formatting is 

unnecessary and therefore omitted. The number of dictionaries to be sent to Elasticsearch in 

a single bulk operation can be increased around five to ten times compared to history weather 

because the dictionaries sent are five to ten times smaller. 

- elastic.sh: a small boilerplate script, no difference from history-weather 

Recommended setup launches download.sh and elastic.sh in a succession four times a day 

after each NOAA run release by adding a following row to /etc/crontab 

40 5,11,17,23 * * * user cd historical-waves && ./download.sh && ./elastic.sh 

4.4.2 Monthly hindcast 

For downloading and specially for processing monthly hindcast data where a single file 

contains messages for one variable for a whole month a new approach needed to be 

developed. 

- download_process_past.py is a single script, which contains both the download and 

processing part. 

It has three mandatory arguments startdate, enddate in format YYYY-mm and eshost – 

connection to Elasticsearch host for indexing. The example usage for January, February and 

March 2017: 

python3 download_process_past.py 2017-01 2017-03 elasticexample.com 

The source code with comments can be examined in E-attachments. The operations 

performed by the script are briefly explained further. 

 After parsing the input datetimes, iterating over each month, it downloads the GRIB2 

files, avoiding the files already present in the download folder and then returns a list of 

datetimes (first day of each successfully downloaded month). Due to the change of data 

structure which happened in 10/2017 one method how to deal with both formats would be 

to list the whole file using ecCodes tool grib_get_data, while displaying additional variables 

stepRange and date in each row of output and saving data accordingly. Different method was 
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in the end chosen. At the start of month import, a check is made directly if there are any 

entries with time equal to middle of month (day, 15-18) and from the knowledge, further 

approach is inferred accordingly. This poses an advantage of reducing the size of each row 

output of grib_get_data, because additional variables (stepRange, date) do not have to 

be outputted. 

 EcCodes tool grib_get_data is used on each of three single variable GRIB file to print 

their output to subprocess standard output row by row, where a single row contains latitude, 

longitude, value and additional outputs (here shortName). One large dictionary, which will be 

then indexed has keys in a format lat_lon_utctimems with values forming another dictionary 

containing data variables. Caution must be taken however, the complete dictionary for full 

one month would probably not fit into system memory, or if it would, all steps would be 

slowing gradually. Therefore, complete dictionary is sent to Elasticsearch after every 

processed day of data. Then the dictionary empties and another day can be processed. 

4.5 Elasticsearch mapping 

Creating an Elasticsearch mapping is a process of defining how a document is stored 

and indexed, for example which fields it will contain, their expected type, which string fields 

should be treated as full text, geolocation, numeric or date field specification, custom rules 

for dynamically added fields and more (Elasticsearch Mapping, 2018). It is not mandatory to 

create a mapping because ES enables dynamic field mapping where data types are 

automatically guessed. Nevertheless, the suggested behavior is to define the mapping before 

data indexing. It is important to say that existing field mappings cannot be updated, and a 

possible change invalidates the index (except for a few rare exceptions). In an event of 

discovering that a different mapping is needed for any reason, a new index with the correct 

mappings needs to be created and data must be reindexed. 

Elasticsearch mapping which was created for history waves can be seen in Attachment 

3. Due to larger number of variables in history weather, mapping for it was not listed in the 

appendix and can be seen in E-attachments along with the rest of the source code. There are 

a few remarks which need to be mentioned about creating the mapping for history weather 

{1.0_6.5_1533135600000:{"swh":1.04,"perpw":12.52,"location":

{"lon":6.5,"lat":1},"dirpw":205.73,"ts":1533135600000}, ...}  

Figure 8 Example of a key and values from waves dictionary source author 
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and waves. Specifying the ”template”:”waves_*” applies the mapping to all indices which 

have a name starting with waves_. To decrease the size of individual indices and improve 

search speed, each month of data forms its own index, named ”waves_YYYYMM”. Settings 

option sets the number of shards and replicas. As weather and waves data persistency is not 

crucial and they can be downloaded and processed again at any time if a failure occurs, 

number of replicas is set to 0 to reduce storage demands. Sharding option is not important in 

this case, as the ES cluster is currently using only a single machine and the value was left as 

default. Mapping describes data fields (their name, type and if it should have index or not) 

along with their metadata (variable description with units in this case). Indexing was enabled 

only for location (geo_point data type) and ts (time data type). These data fields are then 

queried in the API. 

4.6 API in Node.js 

Allowing users to access the Elasticsearch cluster directly would not be wise or rational 

due to many reasons. Therefore, a small single route access API was built in Node.js. The main 

reasons justifying this approach were: optimized querying, authentication, access control, 

input validation and homogenous output. The initial design and implementation of history-

weather-api was performed by Vesseltracker front-end consultant Ioan Madau. Author of 

the thesis later made several optimizations and updates, as well as replication of the same 

design approach for waves history API later. 

In detail description of the API is outside of the scope of this thesis. Emphasis of the 

description is put on what it does, instead of how it behaves internally. The source code can 

be seen in E-attachments. As being a Node.js application, the first step before starting the API 

+---bin 

|     www 

+---routes 

|     index.js 

readme.md 

.gitignore 

app.js 

Dockerfile 

package.json 

elastic-search-client.js 

Figure 9 weather-history-api directory contents source author 
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is ensuring that all needed modules listed in package.json are installed – for example using 

npm with a command npm install and then started using npm start. API answers two 

different types of requests currently: 

- timeFrom, timeTo interval query 

First intended to be used as a data input for possible weather charts app, showing conditions 

on a single place on earth from timeFrom to timeTo. Returns a JSON response with multiple 

weather data for a given latitude, longitude between timeFrom and timeTo. A sample request 

is formatted like: 

localhost:3000/?lat=1.89&lng=155.27&timeFrom=2018-05-

03T03:14:17Z&timeTo=2018-06-18T12:47:47Z 

- ts timestamp query 

Returns data for a given combination of latitude, longitude and timestamp as JSON. The 

response will internally get the data for the interval (ts - 1.5 hours, ts + 1.5 hours), because 

timeFrom and timeEnd are the parameters, which are inserted into the Elasticsearch query. 

A sample request is formatted like: 

localhost:3000/?lat=1.89&lng=-155.27&ts=2017-05-02T23:11:47Z 

Input coordinates are always rounded to the closest 0.5° degree because the spatial 

resolution is ensured in the data processing phase. All of ts, timeFrom and timeTo must 

pass ISO_8601 time validation and the coordinates must pass the usual boundary check (-180, 

180 for longitude and -90, 90 for latitude) to avoid query errors. The successfully parsed input 

is then inserted into the Elasticsearch supported JSON query, where location geo_distance 

filter distance property is set to 10 metres (if indices contained additional data without 

guaranteed 0.5° x 0.5° resolution, for example on-site measurements, the distance value 

would have to be increased to return them). Range must query is applied for ts variable to be 

greater than or equal to timeFrom and lower than timeTo. 



CTU in Prague 

45 
 

The search is not performed on all indices to speed up the query. Only relevant monthly 

indices are chosen based on the input timestamp, as seen on Figure 10. By using JavaScript 

elasticsearch.js module the query is sent to the Elasticsearch cluster and the response 

returns to the user without any additional modifications from the API. Dockerfile for 

creating a Docker image of the API was also created. It enables running constantly inside a 

Docker container and is a recommended way for deploy. It must be ensured that the container 

running the API has read permission to the Elasticsearch cluster. 

4.7 Forecast API modifications 

Forecast weather and waves API with similar functions like the newly created history 

APIs have already been running at Vesseltracker for over 5 years. This thesis project planned 

to review the current state and if possible, remove the visible performance issues and errors, 

improve the functionalities and renew the datasets used, instead of blindly replacing it with a 

new solution from scratch, since it has been running without major maintenance for a long 

time. The current setup uses MongoDB as a No-SQL storage, a set of Python 2 scripts for 

download, process and import, wgrib2 tool for converting GRIB files to CSV and a similar API, 

only containing more endpoints and with several output parsing and formatting functions. As 

the review was performed and the data sources were compared with current development of 

NOAA dataset production, to save resources and effort, it was decided, that the forecast API 

framework does not need a replacement, only improvements. Without going into technical 

detail, the major changes which were made in the scope of the thesis included: 

function queryIndexPrint(_time1, _time2) { 

    var indexes=[]; 

    var type = "weather_"; 

    var time1 = _time1.clone().utc(); 

    var time2 = _time2.clone().utc(); 

    while (!time2.isBefore(time1)){ 

      var text = type + time1.format('YYYYMM'); 

      indexes.push(text); 

      time1.add(1, 'months'); 

    } 

    if (time1.month()==time2.month()){ 

    //catch case when on the edge of month in ts query 

      var text = type + time1.format('YYYYMM'); 

      indexes.push(text); 

    } 

    var printstring = indexes.join(","); 

    return printstring; 

} 

Figure 10 Code snippet - function returning string with joined ES index names 
based on input Moments timeFrom and timeTo source author 
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- changing wave forecast data source from single grid Wave NWW3 model data with 

spatial resolution 1.25° x 1° to 0.5° x 0.5° multi grid forecast data, which are described 

in detail in chapter 4.1 

- adding all wave variables to the output (previously only significant wave height) 

- increasing spatial resolution of weather data from GFS 0.5° x 0.5° to GFS 0.25° x 0.25° 

(further information about forecast API used data in chapter 5.1) 

- adding ice thickness variable from secondary variables dataset to weather API 

- changing time resolution of weather forecast to 1 hour in the first 120 hours, then to 

3 hours up to 240 hours 

- improving time resolution of waves forecast to 1 hour in the first 120 hours, then to 3 

hours up to 180 hours 

- fix recent import hangs caused by NOAA strengthening of anti-DDOS attack policies 

- adding API endpoints for wave forecast query and for timestamp query for both 

weather and waves 

- modifying the API overall to match data changes mentioned above 

- fixing API crash and restart during downtime caused by table renaming in each import 

- upgrading MongoDB version to benefit from the increase of geospatial performance 

over years, for example mentioned in (Zhang & Albertson, 2015) 
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5 Implementation of overlays 

This chapter is focused on describing the second part of the practical task of the thesis - 

automated framework creating and serving raster overlays for forecast and history weather 

and waves. As it was created after making the history weather and waves API, previously 

gained knowledge about NWP model data and their processing could be utilized. The burden 

of serving overlays was put on the shoulders of GeoServer software. Although neither the 

author nor any Vesseltracker staff had any previous experience with orchestrating GeoServer, 

it turned out to be a good decision. The flexibility of used data formats, batch operations using 

REST API and overall maturity of the GeoServer project outweighed somewhat hard-to-grasp 

documentation and initial problems with deciphering error log messages. GeoServer users 

mailing list community is also usually ready to offer clarification and help. 

Initial workflow plans expected direct serving of styled GRIB files without any additional 

preprocessing. GeoServer offers an official plugin for handling GRIB and NetCDF files. 

Extensive effort was made to visualize them directly but probably due to lack of deeper 

knowledge of GeoServer rendering transformations and coordinate system operations, author 

did not manage to visualize any of the GRIB files with longitudes in range (0°, 360°). 

Vesseltracker Cockpit web application runs on Leaflet and operates in a Web Mercator 

projection (EPSG:3857) with appropriate bounding box coordinates corresponding to 

longitudes in range (-180°, 180°). After several attempts, wind arrows, wind barbs and other 

point symbols generated by GeoServer rendering transformations were created only for 

longitudes in range (0°, 180°) or (0°, 360°). Raster band color styling worked without problem 

for all longitudes tested if no rendering transformation was used on them. 

Author restrains from any claims that it would not be possible to do server-side point 

feature rendering transformations for longitude range (-180°, 180°) on GRIB files directly, but 

he did not manage to make it work properly. Therefore, a workaround in a form of an 

additional processing phase including converting the GRIB files to GeoTIFF was performed. 

Using a GDAL software suite, all overlays are being first converted to a multiband GeoTIFF and 

transformed to a Web Mercator projection (EPSG:3857) to avoid further coordinate 

reprojections on GeoServer side, thus speed up rendering, as can be often found in 

recommendations. 
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5.1 Used data 

For serving history weather and waves overlays, data source is identical as for the 

history-weather and history-waves projects and comes from their respective download 

folders. The exactly same files were used and parsed, even though it does not necessarily 

mean, that the GeoServer and API projects need to be located on the same machine, as the 

files can be accessed via network if needed. However, there is no need to download and store 

the same datasets twice. For their thorough description, please see chapter 4.1. Not all 

extracted variables for the API, mentioned in chapter 4.2, were used for overlays though. 

Following weather variables were left out: crain, csnow, cicep, cfrzr and lsm, mainly 

because serving them as layers makes no sense. Waves data sources and extracted variables 

remain the same as for API -  both monthly hindcast and hourly forecast. 

Wave forecast uses identical data source as wave history. The number of extracted variables 

is increased because the storage demands are negligible as time resolution spans only 180 

hours into the future. The filename and URL of the wave FTP source follow the pattern: 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/wave/prod/multi_1.20170101/mul

ti_1.glo_30m.t06z.f003.grib2 

GFS forecast with spatial resolution of 0.25° x 0.25° was used as a data source for the 

reviewed forecast API as mentioned in 4.7 and for forecast overlays too. Forecasts of weather 

and waves are produces by NOAA four times a day (around 4,5 hours after the actual model 

run for both waves and weather). To speed up the import phase and decrease bandwidth 

demands, only a selection of weather variables from the GRIB files was downloaded using the 

NOMADS Grib Filter tool. Ice thickness data for this resolution must be downloaded from 

secondary parameters category file, because they are not present in the standard file, but 

their visualization was desired. The download of other variables ended up being divided into 

two parts, namely variables which will be later converted to another unit and those which will 

not. Sample download URL for weather forecast data without, with conversion and for 

separate ice thickness file can be seen bellow respectively. Variable run times, forecast times 

and data datetimes are written in bold italics to be clearly distinguished. 

https://nomads.ncep.noaa.gov/cgi-

bin/filter_gfs_0p25.pl?file=gfs.t06z.pgrb2.0p25.f003&lev_2_m_above_ground=o

n&lev_entire_atmosphere=on&lev_surface=on&var_ICEC=on&var_RH=on&var_TCDC=on

&var_TMP=on&leftlon=0&rightlon=360&toplat=90&bottomlat=-

90&dir=%2Fgfs.2017011506 
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https://nomads.ncep.noaa.gov/cgi-

bin/filter_gfs_0p25.pl?file=gfs.t06z.pgrb2.0p25.f003&lev_10_m_above_ground=

on&lev_surface=on&var_GUST=on&var_PRATE=on&var_PRMSL=on&var_SUNSD=on&var_UG

RD=on&var_VGRD=on&leftlon=0&rightlon=360&toplat=90&bottomlat=-

90&dir=%2Fgfs.2017011506 

https://nomads.ncep.noaa.gov/cgi-

bin/filter_gfs_0p25.pl?file=gfs.t06z.pgrb2b.0p25b.f003&var_ICETK=on&leftlon

=0&rightlon=360&toplat=90&bottomlat=-90&dir=%2Fgfs.2017011506 

5.2 Download and process 

All download and processing tasks are performed by five Python scripts located in a 

geoserver-scripts folder, structure can be seen on Figure 11. Internally, they partly 

resemble scripts from API project, but usually are more lightweight. 

All source codes from this section with comments can be examined in E-attachments. 

Operations performed by the scripts and the motivation are briefly explained further. Shared 

configuration options are stored as variables in config.py, which differs for local 

development version and production server version. Configuration options are then imported 

in other scripts as needed. Folders download_waves, download_weather and temp are used 

as intermediate forecast results storage during the import phase. All end products are then 

moved to appropriate GeoServer image mosaic folders. Contents of the temporary folders are 

deleted after the end the of the import phase. 

5.2.1 Forecast 

- import_weather_forecast.py: takes care of forecast weather overlay creation 

+---download_waves 

+---download_weather 

+---logs 

+---temp 

import_waves_forecast.py 

import_waves_history.py 

import_waves_grouped.py 

import_weather_forecast.py 

import_weather_history.py 

settings.py 

initial_start.py 

README.md 

.gitignore 

Figure 11 geoserver-scripts folder contents source author 



CTU in Prague 

50 
 

- import_waves_forecast.py: takes care of forecast waves overlay creation 

Both scripts work very similarly, only weather forecast has additional variable converting 

steps, which were not needed in case of wave forecast. Scripts do not accept any system 

arguments. After launch, they determine the current NOAA run time based on current time 

and start to download data. Due to recent strengthening of NOAA anti-DDOS policies, 

irregularly some import runs did not complete, because the connection was cut while 

downloading a random file. An additional check which restarts the download of single 

timestamp files, if the download operation did not complete in a preset duration was 

therefore added. For the case of weather, three separate files are downloaded for a single 

datetime (ice thickness only, then the rest divided into two parts). Not-to-be converted part 

is merged with ice thickness file using ecCodes tool grib_copy. Resulting temporary merged 

GRIB file is transformed to Web Mercator projection, with fixed spatial resolution 35km x 35 

km and internally tiled using gdalwarp. Resolution was chosen as a balance between file size 

and sufficient data accuracy for visualization purposes. 

Several unit conversions take place in the processing step, where every time a temporary 

single band .tif file containing a single variable is generated using a tool gdal_calc.py. These 

temporary files are then merged into a single multi-band file with a tool gdal_merge.py and 

transformed to Web Mercator projection the same way as transforming the GRIB files. Both 

non-converted and converted .tif files are then merged again using gdal_merge.py. Currently 

four variables take part the process of unit conversion. Gust speed from m/s to maritime used 

knots, pressure from Pa to a more common hPa, precipitation rate from kg/m2s to mm/hour 

and sunshine duration homogenized from variable step to seconds/one hour. In addition, two new 

variables are computed – wind speed and wind direction from u and v wind vector components. The 

reason why the variables are not converted on the fly by GeoServer can be found in chapter 6.3. 

gdalwarp -overwrite -tr 35000 35000 -t_srs EPSG:3857 --config CENTER_LONG 

0 -wo SOURCE_EXTRA=80 -r bilinear -multi -wm 1000 -wo NUM_THREADS=2 -q 

-ot Float32 -dstnodata -9999 -co TILED=YES input.grb2 output.tif 

Figure 12 Code snippet for used gdalwarp raster operation source author 
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At first, overviews allowing additional rendering speed up were added for levels: 2, 4, 8. 

The visualization comparison on humidity layer with and without overviews can be seen in 

Attachment 6 and Attachment 7. As the visual side of overview approach rendering was 

horrible, unsurprisingly, the approach was quickly abandoned. Compression is not used in any 

form for forecast data because storage capacity gains were negligible on corresponding data 

volume. It would on the other hand impose increased demands for GeoServer on data loading, 

which would in addition need to take care of decompression. 

All previously mentioned operations are taking place in the respective download folders. 

Another step involves moving all the processed GeoTIFF to the mosaic folder, overwriting 

current content. Leftover GRIB files from previous runs older than a day from current run are 

deleted to avoid folder bloating. Their respective granule (single file of the mosaic) entry in 

the mosaic index is removed by a dispatched DELETE request to the appropriate coverage 

store in the REST API. Last operation involves sending POST requests to the REST API to include 

newly added forecast files to the mosaic index. It means that GeoServer must be running and 

the script needs to have write access to the coverage store in REST API to correctly index the 

files to the mosaic. 

5.2.2 History 

- import_weather_history: creates a history weather overlay for a single datetime 

- import_waves_history: creates a history waves overlay for a single datetime 

As both scripts work very similarly, the description will be shared. They accept a single system 

argument datetime in format YYYY-mm-DDTHH:MM, the same as process.py mentioned in 

chapter 4.3.2. The weather script first performs a sanity check which files are present in the 

historical weather download folder, if no precipitation data are present (GRIB1 version or 

missing precipitation file for GRIB2), the procedure is aborted, and overlay raster is not 

created. The reason for that is that all visualized data variables are needed for import to secure 

gdal_calc.py -A input.tif --A_band=2 -B input.tif --B_band=3  

--calc="(180/3.14159)*arctan2(-A,-B)" --NoDataValue=-9999 

--outfile=temp.tif 

gdal_calc.py -A temp.tif --A_band=1  

--calc="(360+A)*(A<0)+(A>=0)*A" --NoDataValue=-9999 --outfile=output.tif 

Figure 13 Code snippet of wind direction computation (0° = wind comes from 
north, 180° = wind comes from south) using gdal_calc.py source author 
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a fixed number of bands for the resulting GeoTIFF. Following the same procedure of using 

grib_copy as mentioned in chapter 4.3.2, temporary GRIB files are created. First for variables 

which are to be converted, second for those which stay unconverted. Conversion process 

using gdal_calc.py is the same as mentioned in chapter 5.2.1. After translating the 

temporary files to Web Mercator projection GeoTIFF with fixed resolution of 35km x 35km 

and adding a Deflate compression to decrease storage demands, the new granule is created 

by merging converted and non-converted variables with gdal_merge.py, moved from temp 

folder to the mosaic folder and added to the mosaic index by sending a POST request with the 

file path to the REST API. Overviews are also not being created for history data for obvious 

reasons – blurriness of the image and increased storage demands. 

Wave data from historical-waves/download directory for a single timestamp always 

contain a fixed number of variables available, therefore no additional presence check is 

needed. Using a grib_copy tool, desired variables are extracted to a single temporary GRIB 

file. The procedure of creating a GeoTIFF using gdalwarp and adding a granule to a mosaic 

stays the same as with history weather overlays, while no conversion step is performed. 

- import_waves_grouped: creates history waves overlays for each timestamp between 

start month and end month from hindcast monthly data 

After parsing the two system datetime_start and datetime_end arguments in format 

YYYY-mm, because of the change of data format from 10/2017, it needs to be determined 

what type of file it is being dealt with. After figuring that out, the script iterates over the whole 

month with three-hour step and by using grib_copy, it copies all contents for given 

stepRange from all three monthly files (hs, tp, dp) to a temporary GRIB file for a single 

timestamp and containing all three variables. The rest of the procedure of creating a GeoTIFF 

using gdalwarp and adding a single granule to a mosaic stays the same as with history weather 

overlays. 

Emphasis should be given on the characteristics of recommended setup, that to avoid 

process duplication, none of history import scripts perform the actual download. GRIB files 

must at that time already be present in respective download folders of history-weather and 

history-waves projects. As mentioned in chapters 4.3.2 and 4.4.1, both 

import_weather_history.py and import_waves_history.py are being launched always 
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when new history GRIB files are downloaded and processed to Elasticsearch. Naming 

convention for result GeoTIFF files created by both wave data processing scripts is identical to 

enable smooth image mosaic indexing. 

5.3 GeoServer configuration 

All necessary configurations needed for creation and serving of overlays, which were 

organized and used to the authors best knowledge are summed in this chapter. It is obligatory 

to follow the same schema (workspaces, layers) to make scripts from previous chapter work 

well without changing other files than config.py. A folder geoserver-data, which can be 

seen in E-attachments contains all configuration options, which were changed compared to 

the initial GeoServer install. Its simplified content schema, showing mainly workspace, store 

and layer dependencies can be seen in Attachment 4. All configurations were first done 

manually in GeoServer web admin GUI. For migration to a new version of GeoServer or a 

different machine, geoserver-data directory is the main and only content, which should be 

backed up and then migrated. Batch changes on multiple layers can be done using the REST 

API if needed. 

5.3.1 Workspaces, Stores 

Workspace is a container which organizes other items – in GeoServer it often groups 

similar layers and styles together. Four workspaces were created in total: waves, weather, 

history_waves, history_weather. 

A store connects to a data source which contains raster or vector data. A data source can 

be a file, group of files, a table in a database, a single raster file, a directory and more. The 

only type of data store used in this project is ImageMosaic – a recommended structure for 

organizing layers with time or elevation attribute (ImageMosaic time-series, 2018). It is 

already bundled into standard GeoServer install, thus no extension needs to be added to 

provide the functionality on the current stable version (2.14.x). The mosaic operation creates 

a mosaic from two or more source images in a single folder. 

Four coverage stores, one in each workspace, were created to point to the mosaic 

folders: waves_forecast_store, waves_history_store, weather_forecast_store, 
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weather_history_store. All created GeoTIFF files share the same timestamp naming rules 

to use the same timeregex.properties configuration file in each mosaic folder. 

File indexer.properties determines which variables will be inserted into the index and was 

left as default from the manual. Configuration file datastore.properties describes the 

connection to external PostgreSQL database used for storing the mosaic index. There is an 

option to leave GeoServer to automatically create a shapefile for storing the mosaic index with 

the first mosaic update. However, this option is generally not suggested for production use, 

see chapter 6.3. 

5.3.2 Layers 

In GeoServer a layer forms a raster or vector dataset that represents a collection of 

features. Raster layers are occasionally called coverages. A layer associated with a workspace 

in which the layer data source is defined. Layers are then referred to by their workspace name, 

colon, layer name. 

For creating a raster layer from ImageMosaic dataset containing multiband GeoTIFF 

images, like in this project, the most important task is to correctly select which band number, 

corresponds to each variable. As GRIB files are messages appended to each other, their 

respective order as bands in GeoTIFF should stay the same. To determine which band number 

contains which variable a gdalinfo -stats tool was used. Indexing of gdalinfo output starts 

at 1, however indexing of band numbers selection in GeoServer layer coverage creation starts 

at 0, which needs to be kept in mind while registering a new coverage. 

Additionally, gdalwarp should retain contained metadata for each band unless -nomd 

(no metadata) option is added to the command. While metadata help to determine what does 

each GeoTIFF band contain, if GRIB extension would be added to GeoServer, these metadata 

are read and processed as well. The mosaic is later treated internally as containing only GRIB 

files by the ImageMosaic plugin, even though files have .tif extension and are valid GeoTIFF 

files. Header contents are prevalent to file extension and format in decision making and an 

incorrect file accessor (SPI) is then used by GeoTools, which causes the created layer to not be 

displayed at all. Author could not really decide if it should be treated as ImageMosaic plugin 

regex=[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2} 

Figure 14 timeregex.properties file to match Python datetime.isoformat() output source author 
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bug and thus should be reported to GeoServer JIRA error reporting, but it certainly is not 

expected behavior. A mailing list geoserver-users was therefore contacted with the 

information about the situation to document dubious behavior among users. 

All layers were created as multiband Coverage views containing multiple bands together, 

which can be later styled to provide a single output. Obvious examples being both wind vector 

components or precipitation rate together with pressure at mean sea level. One of layer 

creation options, which was modified in layer settings was Adding response cache headers as 

600 seconds. Time dimension also needs to be added for each layer with selecting List as a 

presentation method and smallest domain value as default value. Nearest match option was 

left switched off, because the interval of data production is regular, not random. It also may 

be helpful to fill coverage band details with units, name and NODATA value for further 

reference. Each layer was also selected as opaque and a default style was chosen for it. Cached 

zoom levels were limited in Tile Caching tab and Time parameter had to be added with Regular 

Expression value .* in order to cache it properly in GeoWebCache. Server cache expiration 

time for tiles was set for each layer as one day for forecast tile layers. All other setting options 

stayed default. 

In total 31 layers were created for raster weather and waves overlays. From these, there 

were 5 waves forecast, 2 waves history, 13 weather forecast and 11 weather history layers. 

Their full list can be seen in geoserver-data folder contents in Attachment 4. 

5.3.3 SLD styles 

Styles are used to control the appearance of geospatial data. Styled Layer Descriptor 

(SLD) is an OGC standard for geospatial styling used by default. Even though it is possible to 

create advanced SLD styles in specialized software like sldeditor (robward-scisys/sldeditor, 

2018) or QGIS GeoServer plugin (boundlessgeo/qgis-geoserver-plugin, 2018), as the number 

of layers created in this project was not that large, the inbuild GeoServer SLD style editor was 

used instead. As the foundation of most styles, multiple examples from GeoServer manual, 

together with exploring other online weather and wave model visualization services like 

Tidemap from a company Tidetech, were used. Visual appearance of all styles can be seen 

from Attachment 8 to Attachment 21 and their source codes can be seen in E-attachments. 
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As an example of a simple ColorMap style SLD, CloudCover can be seen on Figure 15.  

An example of a more complicated style is WindArrows with RasterAsPointCollection 

transformation and symbol dimension and rotation modified on the fly based on wind speed 

and wind direction variables and can be seen in Attachment 5. In total 17 styles were created. 

The number is lower than the number of layers because history layers share the styles of their 

forecast counterparts and for example layer weather:Temperature2m has the same style as 

weather:Temperaturesurface. On the fly computed and smoothed contours with fixed 

levels were also used for a few variables, namely wave height, temperature, pressure, 

humidity and ice thickness. Contours allow easy comprehension of the weather and wave 

situation without checking up on the legend and confronting the values from it with the map. 

5.3.4 Other 

To secure smooth production launch of the visualization framework, some additional 

GeoServer configurations needed to be changed as opposed to default values or behavior. As 

the only OGC service, which is utilized for serving the overlays is WMS, all other services have 

been disabled. WMS configuration options were changed for every workspace. A minor 

change was limiting supported reference systems to only EPSG:4326 and EPSG:3857 to 

shorten the GetCapabilities document for each workspace. Originally, all GeoServer provided 

reference systems were listed, which made the document unnecessarily enormously large. 

Another change included setting the Default interpolation option from Nearest neighbor to 

Bilinear and changing the resource consumption limits section, where a maximum rendering 

time of 20 seconds was added. The time value was chosen with respect to the fact that even 

though no user is willing to wait for raster image for more than a few seconds and has probably 

<FeatureTypeStyle> 

 <Rule> 

  <RasterSymbolizer> 

   <Opacity>0.5</Opacity> 

   <ColorMap> 

    <ColorMapEntry color="#fefefe" quantity="0" opacity="0.01" /> 

    <ColorMapEntry color="#f4f4f4" quantity="20" opacity="0.2" /> 

    <ColorMapEntry color="#dbdcdd" quantity="40" opacity="0.5" /> 

    <ColorMapEntry color="#bcbaba" quantity="60" opacity="0.7" /> 

    <ColorMapEntry color="#bbbcbf" quantity="80" opacity="0.8" /> 

    <ColorMapEntry color="#8d8f93" quantity="100" opacity="0.8"/> 

   </ColorMap> 

  </RasterSymbolizer> 

 </Rule> 

</FeatureTypeStyle> 

Figure 15 CloudCover SLD, part of single RasterSymbolizer example source author 
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already given up by then or already zoomed or panned the map a few times, GeoWebCache 

seeding times can be much higher for smaller zooms. 

As both monitor and controlflow plugins were added into GeoServer, their 

configuration was changed to match the incoming load and demands. If a request waits in 

queue for more than a few seconds it's not worth executing, the client has likely given up by 

then, so the timeout was set to 5 seconds. Because raster data are being served, amount of 

memory that GeoServer has at disposal matters and was therefore increased from default one 

quarter of system memory by modifying the javaOPTS variable in a configuration shell script 

setenv.sh. Additionally, a property -Duser.timezone=GMT should be added to correctly 

reference timestamps in UTC for both insert and query. The need of changing the master 

admin password is obvious. 

One of many controlled ways how to run the GeoServer in production environment is a 

Docker container. For this task an already made recipe from a GitHub thinkWhere/GeoServer-

Docker repository was used and slightly modified (thinkWhere/GeoServer-Docker, 2018). 

Both setenv.sh and geoserver-data folders should be attached as volumes while running 

docker run command to preserve configuration and raster overlay files even when updating 

or recreating the Docker container. A suggested method is to use a Docker container for a 

PostgreSQL instance for mosaic index storage too. 

-v $HOME/geoserver-data:/opt/geoserver/data_dir  

-v $HOME/geoserver-data/setenv.sh:/usr/local/tomcat/bin/setenv.sh 

Figure 16 docker run -v options used source author 
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6 Further remarks 

Following chapter aims to point out caveats encountered during the development of 

both API and overlay framework as well as to offer a discussion about possible alternatives to 

approaches for certain parts of the workflow that the author has taken. 

6.1 Storage design 

During the initial historical weather and waves project planning phase, no large 

discussion about the database system was made. Elasticsearch as an example of a quick No-

SQL database was quickly chosen for its scalability, previous good performance and 

experience. The large initial planned data volume (indices having hundreds of GB per year) 

only added to it. While relational databases have many features that NoSQL databases do not 

(robust secondary index support, rich but easily understandable query language, table JOINs), 

SQL databases are in general difficult to scale (Time-series data, 2017). These advanced 

options were not planned to be used as the history weather and wave API was meant to be a 

APPEND and SEARCH only. 

An open-source time-series PostgreSQL extension called TimescaleDB developed by a 

company Timescale is one of aspiring candidates to show that even SQL databases with plugins 

are highly scalable. It was released into a mature version 1.0.0 on 30.10.2018 (timescaledb, 

2018). It is optimized for fast ingest and complex queries. TimescaleDB scales PostgreSQL for 

time-series data via automatic partitioning across time and space. The primary point of 

interaction is a so called hypertable, the abstraction of a single continuous table across all 

space and time intervals, so that it can be queried by SQL (Architecture, 2018). A single 

deployment can store multiple hypertables, each with different schemas. TimescaleDB could 

be a suitable replacement for the current Elasticsearch instance, but no performance testing 

comparing the two options was made. 

Even PostgreSQL has recently started to be suitable as a large volume time series data 

storage as it offers declarative partitioning of data since version 10, which was released in late 

2017 (Table partitioning, 2018). With it, there is dedicated syntax to create range and list 

partitioned tables and their partitions. PostgreSQL 11 removed various limitations that existed 

in partitioned tables, such as inability to create indexes on the partitioned parent table. 

PostgreSQL 11 also added hash partitioning. As a possible follow-up of the current work there 
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could be the in-depth performance comparison of inserts and simple queries between the 

current Elasticsearch setup and test TimescaleDB instance or partitioned PostgreSQL instance. 

During the configuration of used Elasticsearch mappings and initial cluster setup, 

multiple suggestions regarding tuning for the decreased disk usage and increased search 

speed were considered. The type that is picked for numeric data can have a significant impact 

on disk usage. Integers should be stored using an integer type and floating points should either 

be stored in a scaled float if appropriate or in the smallest type that fits the use-case (Tune for 

disk usage, 2018). These hints were used mainly for categorical variables. Another important 

part is to set a custom index only on fields, which will appear to be searched upon.  

Documents should be modeled so that search is the cheapest possible on a given 

hardware. Even though indexing on time and geo_point variables helps to increase the 

search speed, another increase was observed when partitioning data into monthly indexes 

was used instead of having one large index with all historical data. Additionally, searching only 

in relevant monthly index/indices based on the parsed query datetime on the API side relieves 

some pressure from Elasticsearch. Queries on date fields that use now value are typically not 

cacheable as the range that changes all the time (Tune for search speed, 2018). Since historical 

weather and waves API expect very heterogenous time and space queries (no query hotspots), 

the above mentioned does not pose an issue and Elasticsearch internal query caching will not 

help very much anyway. One of the case, where caching would probably help a lot would be 

direct matching of single points of history ship tracks with history weather and wave data. In 

general, SSD drives are known to perform way better than spinning disks for all on-disk 

databases, though they are of course more expensive. Therefore, further improvements on 

search speed can be reached by adding an SSD drive and transfer some parts of the index 

there, if needed. 

Another untested option how to make the API serve weather variables would be to 

completely avoid the underlying database as a storage and use GeoServer and direct access 

to raw downloaded file approach. Technically it would be possible to create weather layers as 

they exist now and using the WFS GetPropertyValue query retrieve the value of a feature 

property or a complex feature property from the data store for a set of features identified 

using a query expression (WFS reference, 2018). However, there was no real testing made on 
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the question of feasibility and more importantly response delivery speed under load of such 

approach. This approach would decrease data duplication significantly. 

6.2 Scripts improvements 

Setting aside the question of usage of Python as a programming language to manage 

the download and processing tasks, multiple problems or improvement suggestions will be 

outlined in this chapter. As work on this project spanned multiple months, author’s knowledge 

of essential Python libraries was very limited at the beginning and work was interrupted a few 

times by other responsibilities, the overall consistency and similarity of both API and overlay 

producing script parts is quite low. That could make it potentially harder for someone else to 

further change and improve parts of it. 

Inconsistent usage of libraries and tools providing download of GRIB files can be 

mentioned as an example. Historical-weather and historical-waves projects use Python 

urllib library for checking the size of file to be downloaded, while the download itself is 

performed by a wget command. The reason for that was originally because urllib was 

hanging in the middle of a download randomly, which was much later discovered probably 

not be an issue of the implementation but an effect of anti-DDOS measure being gradually 

introduced and strengthened by a data provider. Overlay creating scripts use urllib for 

downloading of files and Python Requests package for sending requests to the GeoServer 

REST API. As mentioned in the official urllib package documentation, The Requests package 

is recommended for a higher-level HTTP client interface and should be homogenously used 

for all download operations instead. 

 An alternative way of downloading desired weather GRIB files would be to utilize the 

fact that in every currently used data source, each GRIB file has its own external index file with 

the same name and .inv or .idx file extension. These files usually contain list of all variables, 

their levels and datetimes along with information on which byte the record starts. As GRIB 

files are formed of concatenated messages, only those which are of interest can be 

downloaded using partial HTTP transfer if it is known, which bytes of a file to download (Fast 

Downloading of GRIB Files, 2006). The HTTP protocol allows random access reading with range 

header and a program which can utilize it would be for example curl. During later parts of 

the project, it was discovered that an open-source perl script to download parts of GFS files 
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get_gfs.pl was created by a NOAA meteorologist Dr. Wesley Ebisuzaki and other 

contributors. It could be used instead of NOAA Grib Filter tool in geoserver-scripts project, 

which would pose a friendlier use of NOAA systems resources and should be a preferred way 

instead of using Grib Filter during full earth coverage download. For local data extracts, Grib 

Filter would still be the only option (Grib Filter Help, 2018). Optionally, it could be used for 

extracting history weather variables already in the download part instead of during 

processing. This would of course decrease storage demands for historical-weather GRIB files 

more than tenfold. However, since the historical weather project task was set as: download 

everything and then choose what is needed later and due to fact that a choice of extracted 

variables was also changing over time, the approach with random access download was not 

utilized. A simple utility test was done to examine the feasibility of a script anyway and the 

performance was very good. Surprisingly even though the subset approach should secure fair 

resource usage for NOAA servers, the connection was randomly broken a few times as anti-

DDOS measure anyway, even though a few seconds timeout was added between subsequent 

file downloads. 

Combining bash scripts and Python scripts in the historical-weather and 

historical-waves projects adds unnecessary complexity and reduces readability on what is 

happening. Avoiding the use of additional bash scripts could be achieved by adding other 

system argument options and enhancing current system argument parsing behavior by 

packages, which were designed for it, for example widely used and recommended argparse 

package. Bash scripts redirect log messages from standard output to a separate log file, which 

could be improved by using a logging package instead. The increased usage of cron jobs for 

task scheduling has been recently discouraged in favor of individual Docker containers, which 

would be another possible further improvement of the project. 

6.3 Overlay remarks 

As with most open-source software tools in active development, new features and 

enhancements appear very often. Not being an exception, GeoServer stable version changed 

from 2.13 to 2.14 during the development of overlay serving project. One of most relevant 

changes was adding a support of Jiffle, a map algebra scripting language to create and analyze 

raster images into GeoTools 20 and together with that into GeoServer 2.14.x. Writing of map 
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algebra operations on the fly can be used as a WPS or as a rendering transformation written 

in SLD. The approach of not converting variables in the processing phase was successfully 

tested from speed point of view and readability of SLD point of view. However, during 

visualization over the boundary of used SRS (over dateline in Web Mercator projection for 

example), a problem was spotted that the raster was not colorized outside of the boundary. 

After contacting the mailing list geoserver-users, it became clear that rendering 

transformations generating raster data do not yet benefit from the advanced projection 

handling and dateline wrapping machinery, which GeoServer contains. Although as with any 

open-source project, a helpful change of code or feature addition can be performed usually 

by anyone, the author does not possess any Java knowledge to be able to perform such non-

trivial change himself and has therefore at least created an issue report on GeoServer Jira bug 

reporting system under issue number GEOS-9036. The mentioned condemnation of 

Ras:Jiffle rendering transformation for converting the variables on the fly led to modifying 

the processing phase of overlay creation and converting variables beforehand using 

gdal_calc.py. 

Another issue was spotted and documented on GeoServer Jira bug reporting system 

under issue number GEOS-9059. On the current setup of using GWC to precache tiles, starting 

from zoom 4 and higher, the last metatile or tile before dateline lacked colorization, even 

though the rendering transformations - contours and possibly arrows were rendered 

correctly. While this issue was not critical, the overall visual appearance was very impaired by 

that - mainly for layers, which were styled only by raster colorization (cloud, ice cover and 

other). After testing different methods how to go around the issue, which are documented in 

the bug report, a surprising workaround was found. It was witnessed, that adding an empty 

Ras:Jiffle rendering transformation handles the raster bounds internally correctly and 

therefore allows the colorization and fixes the issue – while the issue mentioned in GEOS-9036 

is of no concern in this case, therefore the mentioned transformation can be used. As reader 

can see, the rendering transformations were juggled around until a working solution was 

found for given data without being necessarily optimal solution. 

While enormous number of optimizations for GeoServer are set by default, some extra 

considerations are to be kept. An important phase of raster overlay serving is determining the 

right input and output format. Initially the thought was that because GeoServer enables direct 



CTU in Prague 

63 
 

visualization of GRIB files by a plugin, it will be possible to serve them directly just with styling 

as this saves storage capacity and avoids double storage of the same dataset in different 

format. As mentioned in chapter 5, the effort was abandoned in favor of converting to 

GeoTIFF, thus optimal balance of used resolution, compression and internal tiling was then 

searched. No extensive testing for production use using Java testing suite JMeter was made.  

Regarding the output file used as a WMS output for a web mapping application, a 

choice was based on Paletted Images GeoServer tutorial (Paletted Images, 2018). As 

transparency option was needed to ensure that the background layer will still be visible under 

the overlay, the best option in the terms of response speed and size – JPEG had to be left out. 

Two real options remained to choose from, either standard PNG file or paletted PNG/8. As the 

latter would be smaller in size due to usage of computed image palette, which is a table of 

256 colors to allow for better compression at the expense of longer processing time, it was 

therefore chosen. The smaller size of paletted images is usually a big gain in both performance 

and costs, because more data can be served with the same internet connection, and clients 

will obtain smaller responses faster. There would be a possibility to remove the opacity 

parameter from SLD styles and serve the images through WMS as JPEG, while opacity would 

be then chosen on per-layer basis in the receiving web mapping application. That would of be 

much faster overall, however at the expense of having semi-transparent white background for 

the whole layer even at places with NODATA, which would impair the overall visual 

performance of some layers significantly and therefore should not be used. 

Deciding on tile caching methods was modified during the work on the project. As the 

forecast layers change quite dynamically - every 6 hours, it was first thought that the weather 

and waves overlay service would be able to serve requests to users through a non-tiled WMS 

facilitating only client-side caching. Tile Caching with GeoWebCache GeoServer Training 

material (Tile Caching with GeoWebCache, 2018) suggests that caching of layers changing 

quickly or containing more dimensions is generally not a good idea, as the tile revisit rate 

would be limited and the introduced overhead of writing to disk, keeping track of the age of 

the files as well as of the size of the cache would be too large. 

After the layers were deployed to the Cockpit web map application, it was clear that 

some sort of server-side caching would be needed, as the performance spikes made it too 
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heavy for GeoServer to handle separate WMS requests in reasonable response time of up to 

one second. Even though controlflow plugin and WMS render time limits prevented 

GeoServer from out of memory error crashes, it started to block new incoming requests under 

heavy load, because it was still processing running tasks, as instructed by controlflow plugin. 

When a user starts to pan the map a lot, the above-mentioned solution of sending a single 

WMS calls was too slow, while cached or on the fly rendered tiles showed better performance. 

That meant, GeoWebCache had to be called to action, which made the throughput 

even without an SSD drive much better overall. Due to the fact, that even though ten days of 

weather overlays are being served via GeoServer, the Cockpit currently utilizes only current 

situation through nearest full hour time query. Pre-seeding (creating new cached tiles in 

advance) only new forecast data six hours into the future was therefore chosen for small 

zooms. GeoWebCache allows rendering of tiles not one by one, but as a metatile with variable 

size, which is afterwards cut into separate tiles, which can be then served. This method only 

helps if enough memory is provided. The advantage of using it can be seen in situations where 

a label, geometry or point marker lies on a boundary of a tile, which might be truncated or 

doubled, while this way, the influence of tile stitching is greatly reduced. By default, GeoServer 

sets a metatile size of 4x4, which should provide a balance between performance, memory 

usage, and rendering accuracy (Caching defaults, 2018). However, as operational memory is 

usually in abundance, while disk speed is a limiting factor in case of HDD, it was increased to 

12x8 as a new default in this project. With default tile size 256x256 and total metatile size of 

3072x2048 pixels it should cover most commonly used monitor resolutions in one or two 

metatile rendering requests. In fact, using larger metatiling factors in general is one of ways 

to reduce the time spent by seeding the cache. Smaller inbuild Guava in-memory cache was 

also enabled for forecast layers. Live traffic in peak hours however also showed that on-

demand rendering of metatiles for specific zooms can behave like an effective throughput 

blocker, due to occasional GeoWebCache blocking behavior. If a single-machine GeoServer 

instance is used, it is therefore suggested, that low zooms should be pre-cached, while high 

zooms should be returned on-demand as standard WMS. 

In first phases of the project, a shapefile was used for storing a mosaic index, even 

though it is not generally suggested for production use by the manual. It was discovered that 

random faults occurred, where one or several single timestamps for a single store were not 
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accessible by the ImageMosaic plugin. The WMS returned an image, which was a styled raster 

with NODATA everywhere. A thorough check of the shapefile timestamps and boundaries did 

not show any differences compared to the timestamps, which were rendered correctly. No 

solution was found other than to use a PostgreSQL Docker container with persistent storage. 
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Conclusion 

 Submitted diploma thesis named History and forecast weather and wave data 

processing and visualization framework presents one of many possible solutions to the task of 

augmenting current data and visualization services of a ship tracking web map application 

Cockpit from vesseltracker.com GmbH.  

The first part of the thesis is dedicated to introducing the background of numerical 

weather forecasting, describing characteristics and history of several widely used global 

weather forecast and wave models with the emphasis on the most prominent - NOAA GFS, 

NOAA Wavewatch III. and ECMWF IFS. It also gives introduction to commonly used 

meteorological data formats GRIB, NetCDF and HDF. Theoretical part introduces used 

technologies, software, data formats and OGC standards, which were at some point utilized 

in the project. 

The second part of the thesis documents the implementation of the project. For fast 

querying of historical weather and wave data for a user-given combination of latitude, 

longitude and timestamp a set of Python scripts was created. Selected history weather and 

wave model data are downloaded, processed using ecCodes GRIB manipulation tools and after 

unit conversion indexed to Elasticsearch, which serves as the underlying database. A simple 

Node.js API was built to provide controlled access to the Elasticsearch cluster. Chapter 4 

provides detailed information about used data, script functionalities, example usage and 

Elasticsearch mapping. 

Second part of the project was focused on utilizing GeoServer as a platform for serving 

semi-transparent overlays with history and forecast weather and wave variables. A set of 

Python scripts was developed to perform downloading and processing, where the last part of 

the pipeline is creating converted, multi-band GeoTIFF rasters for each timestamp and 

communicating with GeoServer using the inbuilt REST API interface. Chapter 5 provides 

detailed information about used data, script functionalities and example usage. Necessary 

GeoServer configurations for example layer and style creation, startup variables and more are 

described in detail in chapter 5.3. 

Last chapter contains an evaluation of used approaches and description of obstacles 

encountered during the development of both API and overlays, as well as workarounds found 
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for some of them. Developed scripts and GeoServer configurations are ready to be used 

without additional configuration steps and all source codes can be seen in E-attachments. 

All proposed project goals were fulfilled and deployed to production before the 

submission of the thesis. History weather and wave APIs are accessible and currently contain 

data from start of year 2017 and newer. The initial cold-start response time for a query with 

an index of mentioned size on an average hardware is a little slower than expected - around 

one second, but the speed of retrieval increases around ten times for subsequent queries even 

if they are not that close to previous queries in time and space. Two cronjobs were set-up to 

regularly download newly released weather and wave model data to the ever-increasing 

history data index. 

 GeoServer overlay system was successfully deployed to production and several layers 

were added to the Cockpit as current weather and wave overlays to test the back-end 

throughput capabilities. More front-end works will be necessary to enable displaying of user-

defined time of forecast or history layers inside the Cockpit, but front-end works were not 

author’s goal. New overlays are scheduled to be regularly created and pre-seeded every six 

hours when a new forecast run results are published by NOAA, while the ones older than a 

day are deleted from the folder and mosaic index. Two JIRA bug reports were also filed to 

document encountered GeoServer errors, as can be seen in chapter 6.3. 

Even though modules were deployed to production successfully, there is always space 

for improvements, mainly in the question of GeoServer optimization, even though a lot of 

effort was given to decreasing the response time. Although GeoServer documentation is quite 

extensive, because some parts are updated more frequently than other, it is not that 

uncommon to encounter invalid or outdated information. Error messages that GeoServer 

produces are showing in detail, where the error occurred, no matter the depth of the problem, 

but to determine correctly, why it happened can often be very difficult to a GeoServer novice. 

Both projects would also benefit from adding global sea current forecasts and history, 

however current speeds and directions are not included in the datasets, which were utilized 

in this thesis. 
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E-attachments 

E-attachments consist of following folders and contains all source codes created during the 

project: 

- historical-weather with scripts and pre-compiled ecCodes tools 

- historical-waves with scripts and pre-compiled ecCodes tools 

- weather-history-api with Node.js API 

- history-waves-api with Node.js API 

- geoserver-data with GeoServer configuration settings 

- geoserver-scripts with all scripts for GeoServer raster overlay creation 
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Attachment 1 Old vesseltracker.com current wind tiles 

 

Attachment 2 Old vesseltracker.com current wave tiles 
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Attachment 3 Used history waves Elasticsearch mapping waves_mapping.json 

{ 

   "order":0, 

   "template":"waves_*", 

   "settings":{ 

      "index":{ 

         "number_of_shards":"5", 

         "number_of_replicas":"0" 

      } 

   }, 

   "mappings":{ 

      "waves":{ 

         "_meta":{ 

            "fields":{ 

               "swh":{ 

                  "description":"Significant wave height" 

               }, 

               "dirpw":{ 

                  "description":"Direction towards which primary wave is coming 

in deg" 

               }, 

               "perpw":{ 

                  "description":"Period of primary wave in s" 

               } 

            } 

         }, 

         "properties":{ 

            "swh":{ 

               "index":"no", 

               "type":"float " 

            }, 

            "perpw":{ 

               "index":"no", 

               "type":"float " 

            }, 

            "dirpw":{ 

               "index":"no", 

               "type":"float" 

            }, 

            "location":{ 

               "type":"geo_point" 

            }, 

            "ts":{ 

               "type":"date" 

            } 

         } 

      } 

   }, 

   "aliases":{ 

   } 

} 
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Attachment 4 Folder geoserver-data showing workspace, store, layer structure 

+---waves_forecast_mosaic 

+---waves_history_mosaic 

+---weather_forecast_mosaic 

+---weather_history_mosaic 

\---workspaces 

    +---history_waves 

    |   \---waves_history_store 

    |       +---History_Wave_primary_height_direction 

    |       \---History_Wave_primary_period_direction 

    +---history_weather 

    |   \---weather_history_store 

    |       +---History_Cloud 

    |       +---History_Gustarrows 

    |       +---History_Gustbarbs 

    |       +---History_Humidity 

    |       +---History_Icecover 

    |       +---History_Pratepressure 

    |       +---History_Pressure 

    |       +---History_Temperature2m 

    |       +---History_Temperaturesurface 

    |       +---History_Windarrows 

    |       \---History_Windbarbs 

    +---waves 

    |   +---styles 

    |   \---waves_forecast_store 

    |       +---Swell_height_direction 

    |       +---Swell_height_direction_2 

    |       +---Wave_primary_height_direction 

    |       +---Wave_primary_period_direction 

    |       \---Windwave_height_direction 

    \---weather 

        +---styles 

        \---weather_forecast_store 

            +---Cloud 

            +---Gustarrows 

            +---Gustbarbs 

            +---Humidity 

            +---Icecover 

            +---Icethickness 

            +---Pratepressure 

            +---Pressure 

            +---Sunshine 

            +---Temperature2m 

            +---Temperaturesurface 

            +---Windarrows 

            \---Windbarbs 
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Attachment 5 Part of WindArrows SLD, RasterAsPointCollection transformation 

 <FeatureTypeStyle> 

  <Transformation> 

    <ogc:Function name="ras:RasterAsPointCollection"> 

      <ogc:Function name="parameter"> 

        <ogc:Literal>data</ogc:Literal> 

      </ogc:Function> 

      <ogc:Function name="parameter"> 

        <ogc:Literal>interpolation</ogc:Literal> 

        <ogc:Literal>InterpolationBilinear</ogc:Literal> 

      </ogc:Function> 

      <ogc:Function name="parameter"> 

        <ogc:Literal>scale</ogc:Literal> 

        <ogc:Function name="Categorize"> 

          <ogc:Function name="env"> 

            <ogc:Literal>wms_scale_denominator</ogc:Literal> 

          </ogc:Function> 

          <!-- First is scale factor, second wms scale denominator --> 

          <ogc:Literal>2.7</ogc:Literal><ogc:Literal>500000</ogc:Literal> 

          <ogc:Literal>1.4</ogc:Literal><ogc:Literal>1000000</ogc:Literal> 

          <ogc:Literal>0.7</ogc:Literal><ogc:Literal>2500000</ogc:Literal> 

          <ogc:Literal>0.4</ogc:Literal><ogc:Literal>5000000</ogc:Literal> 

          <ogc:Literal>0.22</ogc:Literal><ogc:Literal>10000000</ogc:Literal> 

          <ogc:Literal>0.13</ogc:Literal><ogc:Literal>30000000</ogc:Literal> 

          <ogc:Literal>0.07</ogc:Literal><ogc:Literal>60000000</ogc:Literal> 

          <ogc:Literal>0.035</ogc:Literal><ogc:Literal>100000000</ogc:Literal> 

          <ogc:Literal>0.02</ogc:Literal> 

        </ogc:Function> 

      </ogc:Function> 

    </ogc:Function> 

  </Transformation> 

  <Rule> 

    <PointSymbolizer> 

      <Graphic> 

        <Mark> 

          <WellKnownName>extshape://narrow</WellKnownName> 

          <Fill> 

            <CssParameter name="fill"><ogc:Literal>#000000</ogc:Literal></CssParameter> 

            <CssParameter name="fill-opacity">0.6</CssParameter> 

          </Fill> 

        </Mark> 

        <Size> 

          <ogc:Function name="Categorize"> 

            <ogc:PropertyName>wspd</ogc:PropertyName> 

            <!-- First is what (size), second is threshold (speed in knots) --> 

            <ogc:Literal>4</ogc:Literal><ogc:Literal>4</ogc:Literal> 

            <ogc:Literal>8</ogc:Literal><ogc:Literal>8</ogc:Literal> 

            <ogc:Literal>12</ogc:Literal><ogc:Literal>12</ogc:Literal> 

            <ogc:Literal>16</ogc:Literal><ogc:Literal>17</ogc:Literal> 

            <ogc:Literal>20</ogc:Literal><ogc:Literal>23</ogc:Literal> 

            <ogc:Literal>24</ogc:Literal><ogc:Literal>29</ogc:Literal> 

            <ogc:Literal>28</ogc:Literal><ogc:Literal>36</ogc:Literal> 

            <ogc:Literal>32</ogc:Literal><ogc:Literal>42</ogc:Literal> 

            <ogc:Literal>36</ogc:Literal><ogc:Literal>48</ogc:Literal> 

            <ogc:Literal>42</ogc:Literal><ogc:Literal>54</ogc:Literal> 

            <ogc:Literal>46</ogc:Literal> 

          </ogc:Function> 

        </Size> 

        <Rotation> 

          <ogc:Add> 

           <ogc:PropertyName>wdir</ogc:PropertyName> 

           <ogc:Literal>180</ogc:Literal> 

          </ogc:Add> 

        </Rotation> 

      </Graphic> 

    </PointSymbolizer> 

  </Rule> 

</FeatureTypeStyle> 
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Attachment 6 WMS of humidity raster with edgy contours (overview approach) 

 

Attachment 7 WMS of humidity raster with smooth contours (without overviews) 
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Attachment 8 Wave period style 

 

Attachment 9 Significant wave height style 
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Attachment 10 Wind wave height style 

 

Attachment 11 Swell wave height style 
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Attachment 12 Wind arrows style 

 

Attachment 13 Wind barbs style 
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Attachment 14 Cloud style 

 

Attachment 15 Humidity percentage style 
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Attachment 16 Ice thickness style 

 

Attachment 17 Ice cover fraction style 
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Attachment 18 Precipitation rate + pressure style 

 

Attachment 19 Pressure style 

 



CTU in Prague 

88 
 

Attachment 20 Temperature style 

 

Attachment 21 Sunshine style 

 


