Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Risk-Aware Autonomous Driving via
Reinforcement Learning

Bc. Olga Petrova

Supervisor: Mgr. et Mgr. Karel Macek, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Robotics

January 2019

ii

cTu MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
4)
Student's name: Petrova Olga Personal ID number: 420043

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Cybernetics and Robotics

Branch of study: Robotics

Il. Master’s thesis details

e N
Master’s thesis title in English:

Risk-Aware Autonomous Driving via Reinforcement Learning

Master’s thesis title in Czech:

Autonomni Fizeni a modelovani rizik pomoci posilovaného uceni

Guidelines:

1. In present literature find at least 2 risk metrics in the field of autonomous driving via reinforcement learning. Discuss
motivation behind them and their properties.

2. Propose and implement 1-2 environments for simulation of risky situations in autonomous driving, alternatively use
existing environments (eg. MIT or Udacity simulators).

3. Propose and implement 2-3 approaches on the basis of present literature and compare results in simulated environments.

Bibliography / sources:

[1] Javier Garcia, Fernando Fernandez: A Comprehensive Survey on Safe Reinforcement Learning, Universidad Carlos
Il de Madrid, 2015.

[2] Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction, The MIT Press, 2012.

[3] Xin Li, Xin Xu, Lei Zuo: Reinforcement learning based overtaking decision-making for highway autonomous driving,
Sixth international conference on intelligent control and information processing, China, 2015.

[4] Buoniu L, Babuka R, de Schutter B, Ernst D: Reinforcement Learning and Dynamic Programming Using Function
Approximators, CRC Press, USA, 2010.

[5] Justin Fu, Katie Luo, Sergey Levine: Learning robust rewards with adversarial inverse reinforcement learning, USA,
2017.

Name and workplace of master’s thesis supervisor:

Mgr. et Mgr. Karel Macek, Ph.D., DHL Information Services (Europe) s.r.o., Prague

Name and workplace of second master’s thesis supervisor or consultant:

prof. Ing. Vaclav Hlavaé, CSc., Robotic Perception, CIIRC
Date of master’s thesis assignment: 10.01.2018 Deadline for master's thesis submission: 08.01.2019

Assignment valid until: 30.09.2019

Mgr. et Mgr. Karel Macek, Ph.D. doc. Ing. Tomas Svoboda, Ph.D. prof. Ing. Pavel Ripka, CSc.

Supervisor’s signature Head of department’s signature Dean’s signature

\ Y
lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I want to thank my supervisor for the
provided advice and support.

Declaration

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university thesis.

Prague, date
signature

Abstract

This thesis explores methods of risk re-
duction in reinforcement learning applied
to an autonomous driving environment.
Two risk-reducing approaches are stud-
ied closer: policy initialization from ex-
pert demonstrations and risk-aware rein-
forcement learning. For the purpose of
policy initialization, two algorithms are
compared: (1) Behavioral Cloning and (2)
Generative Adversarial Imitation Learn-
ing. Both algorithms show their ability
to learn a sensible policy from expert’s
demonstrations, which perform better
than baseline random policy. Within the
scope of risk-aware reinforcement learning,
two algorithms are described and imple-
mented: (1) Q-learning with risk-directed
exploration and (2) variance constrained
Policy Gradient algorithm. Both algo-
rithms were compared with original risk-
neutral versions. The results of the ex-
periments show that Q-learning with risk-
directed exploration reduces collision rate
and increases return value in comparison
with the original version of the algorithm.
Policy Gradient algorithm with a variance
constraint reduces the variance of the re-
turn during the first part of learning and
converges to the same values of collision
rate and return as ones of the original
version.

Keywords: Reinforcement learning,
Autonomous driving, Risk, Safety

Supervisor:
Ph.D.
DHL IT Services
V Parku 10
Praha 4

14800

Mgr. et Mgr. Karel Macek,

vi

Abstrakt

Tato diplomova prace je zamérena na me-
tody snizovani rizika pri aplikaci posilova-
ného uceni na dlohu autonomniho fizeni.
K feseni problému se pouzivaji dva pri-
stupy: inicializace strategie z expertnich
prikladi a posilované uceni s vnimanim
rizika. V ramci studia inicializace strate-
gie vénujeme vétsi pozornost dvéma meto-
dam: (1) Behavioral Cloning a (2) Genera-
tive Adversarial Imitation Learning. Obé
metody vykazuji schopnost naucit se z ex-
pertnich ptiklada strategii, ktera je lepsi
nez vychozi ndhodnd strategie. V ramci
posilovaného uceni s vnimanim rizika po-
pisujeme dva algoritmy: (1) Q-learning s
rizikem Fizenym prohleddvanim stavového
prostoru a (2) Policy Gradient s omezujici
podminkou pro rozptyl. Oba algoritmy po-
rovnavame s origindlnimi verzemi, které
jsou vici riziku neutralni. Vysledky expe-
rimentt ukazuji, ze popsand varianta al-
goritmu Q-learning snizuje ¢etnost nehod
a zvysuje hodnotu akumulované odmeény
v porovnani s originalni verzi algoritmu.
Zvolena varianta metody Policy Gradient
na zac¢atku uceni snizuje rozptyl akumu-
lované odmény oproti origindlni verzi a
poté konverguje ke stejné c¢etnosti nehod
a hodnoté akumulované odmeény.

Kli¢ova slova:
Autonomni fizeni, Riziko, Bezpec¢nost

Posilované uceni,

Pfeklad nazvu: Autonomni Fzeni a
modelovani rizik pomoci posilovaného
uceni

Contents

1 Introduction 1
2 Problem description 3
2.1 Problem statement............. 3
2.2 Related work
3 Reinforcement learning 7|

3.1 Reinforcement learning algorithms 9|
3.1.1 Model based algorithms. 9
3.1.2 Model free algorithms

3.2 Exploration vs exploitation:

different strategies
3.2.1 e-constrained strategy
3.2.2 Softmax strategy...........

3.2.3 Softmax strategy with varying
temperature

3.2.4 Optimistic initialization.
3.3 Design of the reward function ..

3.3.1 Inverse reinforcement learning

3.4 Reinforcement learning with

function approximation..........
4 Safe reinforcement learning 13
4.1 Risk notion 13
4.2 Safety in reinforcement learning
4.3 Policy initialization
4.3.1 Behavioral Cloning

4.3.2 Inverse reinforcement learning

4.3.3 Generative Adversarial
Imitation Learning.............

4.4 Risk-aware reinforcement learning

4.4.1 Overview of risk-aware

reinforcement learning algorithms
4.4.2 Policy Gradient with variance
constraint 23

vii

4.4.3 Q-learning with risk-directed
exploration

4.4.4 Comment on described safe
reinforcement learning approaches

5 Experiments

5.1 Environment specification.
5.2 Policy initialization algorithms .
5.2.1 Behavioral cloning

5.2.2 Generative adversarial imitation

learning
5.2.3 Experiment results
5.3 Q-learning with risk-directed
exploration
5.3.1 Q-learning with CVaR risk
metric.. L (34

5.3.2 Q-learning with entropy-based

risk metric....... ... 35
5.3.3 Experiment results

5.3.4 Policy Gradient with variance

constraint 137
5.4 Experiment results............
6 Discussion 41
6.1 Experiment results: key findings
6.2 Future work............... ... 42
7 Conclusion 45
Bibliography 47|
A CD contents

Figures

2.1 Stack of tasks for autonomous
driving algorithm
3.1 The agent—environment interaction
in a Markov Decision Process

5.1 Environment used for experiments

5.2 Collision of agent and a non-agent
A

5.3 Safe collision of agent and a
non-agent car

5.4 Distributions of return per step,
return and episode lengths for policy
initialization algorithm

5.5 Visualization of policies generated
by different initialisation algorithms

5.6 Evolution of performance metrics

during learning
5.7 Evolution of performance metrics

during learning
5.8 Evolution of performance metrics

during learning
5.9 Evolution of return variance. ... 39

viii

Tables

4.1 Axioms satisfied by popular risk
metrics.

4.2 Overview of the approaches for safe
reinforcement learning used in this

thesis
5.1 Reward function used for policy
initialization algorithms

5.2 Distribution of action classes in the
training set

5.3 Performance metrics for policy

initialization algorithms
5.4 Reward function used for

Q-learning with CVaR risk metric.
5.5 Average improvement of

performance metrics for Q-learning

with risk-directed exploration
5.6 Reward function used for Policy

Gradient algorithm with variance

constraint...................... 37

Chapter 1

Introduction

The task of autonomous driving incorporates many parts each of which
demands different approach in the sense of Al algorithms. This work addresses
the decision-making process related to driving.

In recent years was made significant progress in understanding and solving
tasks of autonomous driving. An interest of the industry creates competition
and pushes the field toward better solutions. Usually, it is difficult to design
an accurate model of a vehicle and a comprehensive probabilistic model of
the environment which could be used in machine learning. The other problem
is that the parameters of a vehicle change through time and are heavily
dependent on the environment. Reinforcement learning offers a general
approach to solving decision problems with or without knowledge of a model.

The real-world environment, in which autonomous car is acting, is natu-
rally stochastic. It means that decision making is always performed under
uncertainty. Uncertainty about the outcome of an action serves as a source of
risk. The cost of a mistake in autonomous driving may be enormous. That is
why researchers are paying increasing attention towards safety and damage
avoidance.

Safe reinforcement learning aims to integrate a notion of risk into the process
of decision making. It brings possibilities for an agent to make the best
decision considering safety parameters.

The purpose of this thesis is to explore and summarize the advantages
and disadvantages of different approaches to safe reinforcement learning in
autonomous driving and apply chosen algorithms to a particular autonomous
driving problem.

The thesis is structured as follows: Chapter [2] describes the problem state-
ment and provides details of current approaches to safe reinforcement learning
algorithms used for autonomous driving. Chapter [3| defines the general frame-
work of reinforcement learning and related algorithms. Chapter |4/ introduces
safe reinforcement learning, the notion of risk and the ways how to incorporate
safety into learning. It also provides implementation details of the algorithms

1. Introduction

and intuition behind them. Chapter [5| describes experiments and describes
the results. Experiment results are discussed in Chapter |6 together with an
outlook on further steps for the solution of the stated problem.

Chapter 2

Problem description

. 2.1 Problem statement

Autonomous driving can be viewed as a task of Artificial Intelligence to
drive in a natural driving environment without human input. Autonomous
vehicle perceives the environment via various inputs such as LIDAR, GPS,
acceleration sensors, and cameras. Control algorithm processes sensor inputs
and acts correspondingly in real time. Processed input data may be combined
using Sensor Fusion technique [14], which leads to more consistent and filtered
inputs. Apart from sensor inputs, an autonomous driving vehicle takes as an
input a task from human, e.g., to drive to a specified destination or to park
in a parking lot. Input specification, traffic laws, and sensor inputs provide
a driving scope for an autonomous vehicle. In this scope, a vehicle still has
infinite possibilities of achieving a specified goal. Needless to say that an
algorithm must aim for the most optimal way of goal achieving in terms of
time, fuel, and safety along with others.

Nowadays, autonomous driving algorithms are developed and used for a
wide range of tasks from parking in a parking lot [31] to fully autonomous
driving on public roads. Formally, the task can be structured as follows: an
input is represented by sensor data and a human-specified goal. An output
is a control algorithm making decisions at discrete time steps in real time.
Figure [2.1] depicts a stack of tasks which such an algorithm must solve [9].
Modern approaches to autonomous driving include various algorithms for
input processing for each step of a control algorithm. The first part includes
data acquisition via various sensors. It utilizes standard algorithms for data
transfer, storing, and filtering.

The second part of the stack addresses data processing and feature extraction.
For example, the problem of localization on the road is addressed with
Bayesian Simultaneous Localization and Mapping (SLAM) algorithm [7] and
its variations. Computer Vision algorithms are used for object recognition,
semantic understanding, and point cloud annotation. They provide scene

2. Problem description

Effector

Figure 2.1: Stack of tasks for autonomous driving algorithm

segmentation and labeling which is then used in modeling of the environment
and decision making.

The third part of the stack incorporates machine learning and knowledge to
provide decisions. For these purposes, one can use probabilistic models or
reinforcement learning. These approaches allow dealing with uncertainty in
the perception and actuation.

The last part of the pipeline implements decisions made by the previous
part. The rate of cycle repetition lies in milliseconds; therefore it is crucial
that all parts must be performed in real-time.

. 2.2 Related work

Reinforcement learning (RL) algorithms are used to train an agent in a
simulated or real environment. Recent approaches include applications of
model-based and model-free algorithms with function approximators solving
control problems in computer game environments and real life.

Sallab et al. [37] developed a deep reinforcement learning framework which
incorporates Recurrent Neural Network for hidden state inference and recent
work on attention models for focus on relevant information. The framework
was tested in an open source 3D car racing simulator called TORCS. Simula-
tion results demonstrate learning of autonomous maneuvering in a scenario
of complex road curvatures and simple interaction of other vehicles.

2.2. Related work

Manuelli et Florence [25] evaluated the ability of several reinforcement
learning methods to autonomously drive in an environment with obstacles
using input from LIDAR. They have shown, that RL methods work well for
the specified problem, but were unable to outperform controllers designed by
hand.

Vitelli et Nayebi [41] tested the performance of a Deep Q-Network (DQN)
in a 3D VDrift driving simulator environment. They have utilized the
approach of Mnih et al. [29] where a DQN with the underlying convolutional
neural network was trained with a variant of Q-learning to play Atari games.
They have shown that RL algorithms were successful in navigating around
a simulated environment and moreover that their greedy agent outperforms
hand-designed algorithm.

April, Raphael, Rishi [47] were able to train an RL agent to control the
simulated car in JavaScript Racer with the use of Deep Q-Learning. Their
agent successfully learned the turning operation, progressively gaining the
ability to navigate larger sections of the simulated raceway without crashing.
In obstacle avoidance, however, the agent faced challenges which are suspected
to be due to insufficient training time.

Algorithms of safe reinforcement learning are used for solving optimal control
problem with safety constraints. The scope of research in this area include
safe exploration, risk minimization during and after learning, and the design
of a robust reward function along with others.

Xiong et al. [45] combined deep reinforcement learning with safety-based
control implemented by an artificial potential field and path tracking for
autonomous driving. They have used deep deterministic Policy Gradient [23]
algorithm to obtain an initial driving policy and then combined it with safety-
based control to avoid a collision and drive along the track. They have shown
that the resulting algorithm performs well in the TORCS environment.

Fulton and Platzer [11] combined reinforcement learning with formal verifi-
cation to ensure the safety of a learning agent. They have proved that their
approach preserves safety guarantees as well as practical performance benefits
provided by reinforcement learning. As an application of the algorithm, they
have developed a model of an adaptive cruise control model for an autonomous
car.

Pecka and Svoboda [32] described different approaches to safety in (semi)
autonomous robotics with a focus on the exploration of unknown states. They
divide approaches into three categories: algorithms from optimal control the-
ory, reinforcement learning algorithms based on state labeling, and algorithms
utilizing additional prior knowledge. The work also proposes a new way of
state labeling as safe, critical and unsafe states.

Chapter 3

Reinforcement learning

Reinforcement learning (RL) refers to a framework for learning an agent to
interact with an environment to maximize some numerical measure, which
represents a long-term objective. Reinforcement learning is defined not by
characterizing learning methods, but by characterizing a learning problem.
Any method that is well suited to solving that problem, is considered a
reinforcement learning method [40].

RL algorithms aim to solve the optimal control problem formulated as
Markov decision processes (MDP). Markov decision process is a name for a
reinforcement learning task that satisfies the Markov property. If the state
and action spaces are finite, then it is called a finite Markov Decision Process
(finite MDP) [40]. The process of agent—environment interaction in an MDP
is depicted in Figure 3.1

Formally a finite MDP is represented by the tuple (S, A, T, R) where:

S is a finite set of the environment states s,
A is a finite set of actions a,

T is a transition function, T: S x A x S — [0,1], where T (s,a,s’) =
p (s'|a, s) is the probability that action a in state s will lead to state s,

R is the reward function, R: S x A x S — R, where R(s,a,s’) is the reward
obtained by executing action a in state s resulting in a transition to the
next state s'.

The goal of reinforcement learning is to find a policy 7, which defines the
learning agent’s way of behaving at a given time. Formally it is a mapping
from perceived states of the environment to actions to be taken when in those
states. A deterministic policy is a mapping from the state space to the action
space, which returns an action a for a state s:

7S —=A n(s)=a. (3.1)

3. Reinforcement learning

vy

Agent
state reward action

S, R, A,
- Rt+1 (
_S., | Environment]4—

\.

Figure 3.1: The agent—environment interaction in a Markov Decision Process

A stochastic policy is a mapping from the space of state-action pairs to an
interval [0, 1], which assigns a probability of taking action a in a state s:

m: S xA—1[0,1] w(als) = p(als). (3.2)

An optimal policy maximizes the expected value of a future reward and
satisfies the Bellmann optimality equation:

vi(s) = max 3 p(s']s, a) [r(s.a, &) + y0(s")] (3.3)

where 7 (s, a, s") denotes expected immediate reward on a transition from s to
s under the action a, v denotes a discount factor and v, (s) denotes a value
of a state s under a policy 7.

The function v,(s) is referred to as state-value function or simply value
function. Formally, v,(s) is defined as the expected return when starting in s
and following 7 after that:

vr(8) = Ex [Gt]St = s] = Er [Z 'YthJrkJrl
k=0

St = S‘| . (34)

where E; denotes the expected value of a random variable given that the
agent follows policy 7, and ¢ is any time step. The value of the terminal state,
if any, is always zero.

Similarly, the action-value function, is the value of taking action a in a state
s under a policy 7, denoted ¢ (s, a), is defined as the expected return starting
from s, taking action a, and after that following policy :

qr(s,a) =E; [G¢|St = s, At = a] =

o0
E, [Z VPR ki1
k=0

(3.5)

St:s,At:a].

While learning the agent is estimating true values of v(s) or ¢(s,a), which
are denoted as V(s) and Q(s, a) correspondingly. In this work V' (s) is referred
to as value function and Q(s,a) is referred to as Q-function.

8

3.1. Reinforcement learning algorithms

In our setting, the agent is represented by a self-driving car, which interacts
with the environment at discrete time steps t = 0, 1, 2, 3... At each time step t,
the agent receives some representation of the environment state. It can be
represented by an image, a depth map, an inner state of a vehicle, or by other
appropriate features. Taking action a;—1 in state s;_1 results in a transition
to a new state s; and receiving a reward r;.

B 3.1 Reinforcement learning algorithms

Model-based and model-free algorithms represent two main categories of RL
methods. In the literature, model-based algorithms are usually referred to as
Dynamic Programming. Model-free algorithms are referred to as reinforcement
learning or Neuro-dynamic programming [40].

Bl 3.1.1 Model based algorithms

Assuming that we know transition probabilities of MDP p(s’|s, a), expected
immediate rewards r(s, a, s') and some initial policy, we can apply an iterative
algorithm for policy improvement. At every time step, we update our policy
such that it picks the best possible action in a given state with the update
rule:

7'(s) = arg méxXZp(sﬂs, a) [r(s,a,s") +yvr(s)] . (3.6)

Once we have improved our policy, we can estimate its value and adjust it
once again with the same procedure. This algorithm is called policy iteration,
and it falls under the category of model-based algorithms. These algorithms
take advantage of the Markov property and estimate a state’s value from the
value estimates of successor states. This approach is called bootstrapping.

B 3.1.2 Model free algorithms

Monte Carlo methods fall under model-free approaches as they only require
experience to learn from. It is a way of solving an RL problem based on
averaging of sample returns. The algorithm is defined for an episodic task
only, i.e. finite MDP. The value function is estimated upon the completion
of an episode (game). Monte Carlo methods are incremental in an episode-
by-episode sense, but not in a step-by-step sense, as value iteration. And
because values are estimated as from experience, Monte Carlo methods do
not perform bootstrapping.

3. Reinforcement learning

The value estimation can be performed in an on-policy or off-policy manner.
On-policy methods estimate the value of a policy while using it for control,
while in off-policy methods policy for estimation and real policy may differ.

Temporal Difference (TD) learning represent a combination of Dynamic
Programming and Monte Carlo methods. It learns from the experience like
MC, but at the same time performs bootstrapping. An advantage of TD
is the fact that it updates value after each step. TD value estimation can
also be used in an on-policy or off-policy manner. On-policy TD estimation
algorithm is called Sarsa [36]. Off-policy TD is well-known Q-learning [43].

Policy Gradient methods do not require estimation of a value function v (s)
as they rely upon optimizing parametric policies with respect to the expected
return.

B 32 Exploration vs exploitation: different
strategies

One of the challenges that arise in reinforcement learning is the trade-off
between exploration and exploitation. In order to obtain the highest reward
from the environment, the agent must take appropriate actions, which were
discovered previously. To find such actions, the agent has to try actions
it has not taken before. In other words, the agent has to exploit known
actions to obtain a reward, but simultaneously it also has to explore space
to make better selections in the future. It is essential to find the balance
between exploration and exploitation to gain information and simultaneously
improve the policy. There are several ways how to address the issue, which
are presented in Sections [3.2.1| through |3.2.4.

B 3.2.1 c-constrained strategy

The action with the highest ¢(s,a) is selected with probability 1 — € and a
random action is selected with probability e (with uniform distribution). A
typical parameter value might be ¢ = 0.05, but it highly depends on the
environment and specifics of the task.

B 3.2.2 Softmax strategy

In order to chose the next action, we estimate values of potential next
states. Next states represent a set of states to which we arrive by executing
correspondent action. Then we use softmax function to convert values of
state-action pairs directly into corresponding action probabilities.

ed(s,a)

w(ols) = = (37)

10

3.3. Design of the reward function

Softmax function converts values into a discrete probability distribution,
from which we can directly sample the actions.

B 3.2.3 Softmax strategy with varying temperature

In case of strategy with varying temperature, new temperature parameter 7
adjusts the amount of randomness in action picking.
a(s,a)

e T

m(als) = (3.8)

a(b,s)

dbeA€ T

For high temperatures 7 — oo, all actions have nearly the same probability.
The lower the temperature, the more original distribution affect the probability.
For a low temperature 7 — 0T, the probability of the action with the highest
expected reward tends to 1. While learning, it is beneficial to decrease the
temperature gradually to smoothly transit from exploring policy to exploiting
one.

B 3.2.4 Optimistic initialization

The concept of optimistic initialization is connected with the exploration
process. One of the main ideas behind optimistic initialization of value
function is to force the agent to explore unknown states. A fundamental
advantage of optimistic initialization is that it provides extensive exploration,
and as a result of this, it is difficult to miss highly rewarded final states. The
policy, which is learned with the optimistic initialization is either optimal or
leads to effective learning. The disadvantage of this approach is that it may
take much time for the algorithm to get rid of optimism, propagate actual
costs of actions, and converge to a final policy [15].

B 33 Design of the reward function

The reward function determines the goal in a reinforcement learning problem.
It is defined as a mapping from state-action pair to a real number R: S X
A x S — R. Sometimes it is given naturally (i.e., a monetary cost or an
energy efficiency), but in some domains, it is not trivial to choose the right
one suitable for successful learning.

The choice of an appropriate reward function during the design of an MDP
abstraction for a real-life problem is a researched issue in RL. A designer
usually has an idea about how resulting strategy should look like, and he or
she constructs a reward function to emphasize specific goals (i.e., reach the
goal and stay safe). One of the biggest threats of the wrong reward function
is a reward hacking problem, which can compromise the whole learning [2].

11

3. Reinforcement learning

Occasionally the reward function can be easily designed by hand or is given
(i.e., in a computer game or a competition). However, in some cases, it is
hard to find such a function. A reward function, which makes sense for a
human, is not always the best for RL agent training.

The reward function can be sparse in its limit cases, e.g., a single reinforce-
ment signal after completing an episode or dense, as an opposite. The dense
reward function assigns rewards for intermediate results. For example, it can
be positive signals for completion a sub-level in a multi-level game. Both
sparse and dense reward functions are learnable. It means that the agent can
successfully learn value function using given rewards. However, sometimes the
reward function is too sparse, and the agent can arrive at the local maximum
and get stuck there forever. Such a situation occurs when the state with a
big reward is difficult to reach.

B 3.3.1 Inverse reinforcement learning

Sometimes, we want the agent to imitate an expert’s behavior in given MDP.
In this case, we would like to derive an expert’s reward function from a set
of observations. Inverse reinforcement learning (IRL) is an algorithm which
finds one of the possible expert’s reward functions from the demonstrations,
represented by state-action tuples [10]. IRL finds a reward function under
which the expert’s behavior is uniquely optimal. As a result instead of
manually designed reward function, we have the optimal reward function
suitable for the specific task.

B 3.4 Reinforcement learning with function
approximation

In case of a small environment, we can represent the value function explicitly
by a table. Since the number of records in the table growths exponentially
with the number of states and actions in a finite MDP, (and potentially it
can be infinite), it is necessary to use function approximators.

Many researchers discuss the stability of RL performance combined with
function approximators. In principle, RL algorithms are considered to be
unstable under function approximators [4} [19]. The reason is that during
learning, the estimation error of value function is propagated to change in
the policy. The policy change is propagated further to the change in the
estimation of a state value. This process may of course rapidly converge to a
solution, but also it can diverge and therefore bring no results [22].

12

Chapter 4

Safe reinforcement learning

. 4.1 Risk notion

Risk perception and rational behavior were studied since the early beginnings
of the economic theory and still are a matter of research nowadays. With
the rapid developing of machine learning and autonomous robotics, risk
elimination from being a theoretical interest became an essential part of
trajectory design and task planning.

Individual agents trained in real environments are exhibited to a natural
source of risk due to its stochasticity. Safe algorithms are specially designed
to reduce this risk to a reasonable level and to provide a sensibly-behaving
predictable agent. The task is usually formalized by assigning a numerical
value to the amount of risk. This, however, is not always possible, as we
might not have complete or sufficient information about the state.

Economics distinguishes between decisions under risk and decisions under
uncertainty [21]. When an agent has a set of actions, whose outcomes are
known or can be represented by a probability distribution, it is said, that the
agent decides under risk. In decisions under uncertainty, an agent doesn’t
dispose of prior knowledge about the probability distribution of outcomes. In
robotics, these two cases are not studied separately, but we take a look on
different methods and describe their approach towards the risk elimination in
both cases.

When we want to minimize risk, it is necessary to adopt a method of its
quantification. A natural approach is to define a mapping from the set of all
possible distributions over return G (implicitly defined in Equation 3.4) to
a real value. The financial theory developed many examples of risk metrics,
which are used in practice, e.g., standard deviation, value at risk (VaR),
expected shortfall (CVaR). On the contrary, in the field of robotics, this
subject did not draw such attention due to the complexity of its problems.

We denote the finite set of possible outcomes as 2. By P we denote a

13

4. Safe reinforcement learning

probability mass function that assigns probabilities P (w) to outcomes w € Q.
Consider a cost function Z: Q — R that assigns costs Z (w) to outcomes.
The reward Z is then a random variable. Let Z denote the set of all random
variables on §2. A risk metric is a mapping which maps cost random variable
to a real number:

p: Z2—=R. (4.1)

In reinforcement learning problems we usually work with return G instead
of cost Z, but we can show that Z = —G:

[e.9] o
Zy=> —VRipr1 ==Y V" Riper = —Gr. (4.2)
k=0 k=0

Risk metric effectively tells us how much the distribution Z (w) can be
potentially dangerous. By introducing a change to the policy we can shape
the cost distribution, which allows us to suppress the risk (in terms of a
metric). The original maximization task of the expected value of the reward
is transformed to a constrained problem:

7(s) = arg max gr(a,s) st. p<a, (4.3)

where « represents some threshold, below which we want to suppress the
risk.

In principle, there exist infinitely many ways how to define a risk metric. An
only small subset, however, corresponds to a natural concept of risk. In order
to describe the completeness of a metric, the economic theory developed a
number of properties, which describe a coherent metric.

Many attempts to find a comprehensive risk metric were made primarily in
financial theory field [2§]. An attempt to develop a coherent risk metric for
robotics was made by Majumdar and Pavone [26]. They parallel the effort
in the finance community on developing axioms that any rational metric of
risk [3] in a robotics application should satisfy. They state that a sensible
risk metric should fulfill axioms AO-Ab5:

A0 Monetary rewards. The costs Z are expressed in monetary terms
(tangible and interpretable values).

A1 Monotonicity. Let Z, Z' € Z be two cost random variables. Suppose
Z(w) < Z'(w) for all w € Q. Then p(Z) < p(Z'). If a random reward Z’
is greater or equal to Z no matter what random outcome occurs, then
Z' is at least as risky as Z.

A2 Translation invariance. Let Z € Z and ¢ € Z. Then p(Z + ¢) =
p(Z) + c. If costs are increased by a deterministic amount ¢, then the
corresponding risk is increased by the same amount.

14

4.2. Safety in reinforcement learning

A3 Positive homogeneity. Let Z € Z and § € R and 8 > 0. Then
p(BZ) = Bp(Z). If costs are scaled by a deterministic non-negative
amount 3, then the corresponding risk is scaled by the same amount.

A4 Subadditivity. Let Z, Z' € Z. Then p(Z + Z') < p(Z) + p(Z')).
Diversification of actions may decrease risk.

A5 Comonotone additivity. Suppose Z and Z’ are comonotone, i.e.
(Z(w) — Z(W)(Z'(w) — Z' (W) > 0, for all (wx ') € Q x Q. Then
p(Z+Z") = p(Z) + p(Z')). If two costs fall and rise together, there is
no benefit from diversifying.

A6 Law invariance. Suppose Z and Z’ are identically distributed. Then
p(Z) = p(Z'). If two tasks have the same distribution of costs, then their
correspondent risks are identical.

The most commonly used risk metrics in robotics are the expected cost and
worst-case metrics [26]. The expected cost corresponds to risk neutrality while
the worst-case assessment corresponds to extreme risk aversion. Majumdar
and Pavone [26] provide a list of popular risk metrics with correspondent
axioms they satisfy. These risk metrics are listed in Table |4.1.

Risk metric Axioms
Conditional Value at Risk (CVaR) | A1-A6
Expected Cost Al1-A6

Worst case A1-A6
Mean—Variance A6

Entropic risk Al, A2, A6
Value at Risk (VaR) A1-A3, A5, A6
Standard semi-deviation Al -A4, A6

Table 4.1: Axioms satisfied by popular risk metrics.

B a2 Safety in reinforcement learning

Machine learning community researched many issues related to risk in rein-
forcement learning. The range of research includes safe exploration, solution
robustness, and risk-sensitivity, we review these in detail below.

Amodei et al. provided a profound overview of research in the area of Al
safety and suggested directions for further research [2]. Their primary interest
is directed towards a problem of accidents in machine learning systems. They
studied each part of RL-agent design learning process and traced major
safety-related threats.

They distinguish five sources of accidents:

15

4. Safe reinforcement learning

1. Unsafe Exploration: possible permanent damage of agent during
environment exploration.

The unsafe exploration has roots in the necessity of environment exami-
nation versus lack of information about it. There are several ways how
to address this issue, but first, we should divide it into two problems.
The problem of risk connected with initial exploration when an agent
decides under uncertainty can be solved only by providing an agent with
some information about the environment. It can be done by directed
exploration or by expert’s demonstrations. Further exploration can be
secured by a teacher or some metric which assign a risk value for an
action.

2. Reward Hacking: agent gaming its reward function.

The problem of reward hacking is related to the agent’s ability to exploit
reward function in order to obtain high reward with minimum means.
For example, if we have a vacuum cleaning robot and we reward it for
achieving an environment free of messes, it might disable its vision so
that it does not find any messes. It reminds us of the Goodhart’s law:
“When a measure becomes a target, it ceases to be a good measure.”.
As a consequence we should be aware, that reward hacking is a natural
behavior of the agent. Authors propose several methods on how to
address this issue, description of which is out of the scope of this thesis.

3. Unscalable Oversight: an inability of an agent to respect aspects of
the objective that are too expensive to be frequently evaluated during
training.

Unscalable oversight problem arises because of the high computational
complexity of reward. The issue is connected to reward function engi-
neering. When an objective is too complex, the agent should use some
proxy objectives, which together effectively approximate the original one.
Authors mention the most promising algorithm for addressing this issue:
semi-supervised reinforcement learning. According to the paper “..it
resembles ordinary reinforcement learning except that the agent can only
see its reward on a small fraction of the timesteps or episodes”.

4. Negative Side Effects: unwanted damage or alteration of surrounding
during normal agent functioning.

Negative Side Effects represent an unwanted change of environment
which was caused by agent behavior. Reward function usually states a
direct goal, not specifying how to accomplish it. It can happen, that most
efficient trajectory involves unrelated change or partial destruction of the
environment. It is impracticable to penalize all unwanted state-action
pairs manually, therefore proposed approaches are aimed towards impact
regularization in general.

5. Distributional shift: an inability of an agent to behave robustly in a
slightly different environment.

16

4.2. Safety in reinforcement learning

The distributional shift is related to situations when the environment is
different from the one which was used during learning. This problem is
especially relevant when an agent is trained in some simulator and then
is deployed to the real environment. Learned model parameters become
inapplicable and agent cannot function properly. The problem can be
addressed by using more robust models or combinations of them. Poten-
tially related areas include change and anomaly detection, hypothesis
testing and transfer learning.

Worst Case Criterion
Risk Sensitive Criterion

Optimization Criterion ¢ Constrained Criterion

Castro et al. (2012)

Other Optimization Criteria

Safe RL Providing Initial Knowledge

Deriving a Policy from
External knowledge 8 Y
Demonstrations

Exploration Process Teacher Advice

Risk Directed Exploration
Law (2005)

Table 4.2: Overview of the approaches for safe reinforcement learning used in
this thesis

Designing a truly risk-aware policy is not a matter of a single algorithm. The
effort should be directed towards the elimination of all sources by targeting
roots of the problems.

Garcia et Fernandez, in comprehensive survey on safe reinforcement learn-
ing |12] provide an overview of methods to risk approach in robotics appli-
cations. Authors created a clear structure of recently used methods and
provided insights of key features of each approach. The survey serves as a
digest of safe leaning methods, we do not describe each of them, but utilize
the structure to show the methods we are interested in. The structure is
depicted in Table 4.2,

Taking into consideration specific sources of risk in autonomous driving,
we focus on one particular problem: safe exploration. The safe exploration
can be disentangled to two sub-problems: policy initialization and safety

17

4. Safe reinforcement learning

constrained reinforcement learning. The topics are described separately in
Sections |4.3| and 4.4, Section |4.3| describes three algorithms which can be
used for policy initialization, namely behavioral cloning, inverse reinforcement
learning, and Generative Adversarial Imitation Learning.

B a3 Policy initialization

Reinforcement learning is a general framework for solving an MDP problem.
The algorithm in the default setting assumes immortality of agent besides all.
When we deal with tangible agents interacting with the real environment, an
assumption of immortality and thus repeatability of experience is violated.
This fact represents a source of risk for the agent and environment. It is
especially relevant at the beginning of learning when a strategy is practically
random, and state-space is not explored. Simply speaking, an agent does not
know how and where to go. This problem can be mitigated using the proper
policy initialization and safe space exploration.

The policy initialization can be addressed by either Behavioral Cloning or
inverse reinforcement learning. Both algorithms assume the same problem
setup and both produce a strategy as output, but inverse reinforcement
learning also provides a reward function. Problem setup is the following:
given set of training examples from an expert, we have to design a policy
which imitates the expert’s behavior. Training examples consist of state-action
tuples.

Bl 4.3.1 Behavioral Cloning

Behavioral Cloning is a supervised learning technique which teaches an
agent to act in the same way as an expert. It is formulated as a standard
discriminative machine learning problem. Given a set of trajectories and
model structure it seeks optimal parameters for the policy function by solving
an optimization problem (4.4)) with respect to a loss function [49):

T
0" = arg m@inz ZE (at, mg (st)) , (4.4)

Pp t=1

where

¢ is a loss function (e.g. mean squared error or cross-entropy),
as is an expert’s action in time ¢,

Ty is a parametrized policy,

0 are the parameters of the policy.

18

4.3. Policy initialization

Implicitly it infers posterior probability p(a|s) distribution of actions given
states. Examples of an application on real problems can be found here |33,
38].

B 4.3.2 Inverse reinforcement learning

Inverse reinforcement learning (IRL) seeks not only for a valid strategy 7
but also for a reward function under which the behavior of an expert is
optimal. The task is formulated as a saddle-point optimization problem: it
simultaneously optimizes agent’s policy by minimizing the loss in the inner
loop and finds a cost (reward) function by solving a maximization problem
in the outer loop.

As a specific example of the IRL algorithm, we adopt maximum causal
entropy IRL [50], which fits a cost function from a family of functions C with
the optimization problem:

max ((min —H(7m) + Ex [c(s, a)]> —Er, [c(s, a)]) , (4.5)

ceC mell

where

c(s,a) is a cost function ¢: S x A — R,
H(7) is y-discounted causal entropy H(m) £ E,[—log7(a|s)],
7w is the expert’s policy.

Maximum causal entropy IRL seeks a cost function ¢ € C that assigns low
cost to the expert policy and high cost to other policies, thereby allowing the
expert policy to be found via a certain reinforcement learning procedure:

RL(c) = arg 17}16111%1 —H(m) + E; [c(s,a)], (4.6)

which maps a cost function to high-entropy policies that minimize the
expected cumulative cost.

B 4.3.3 Generative Adversarial Imitation Learning

Both BC and IRL have their advantages and downsides. Behavioral Cloning
succeeds only with a large amount of data. IRL learns a policy which priori-
tizes entire trajectories over others [35]. IRL algorithm is very computationally
demanding, requiring to solve RL in the inner loop. It makes this algorithm
hard to scale for large environments. Ho and Ermon [17] came with a solution
to this. They formulated a dual problem to IRL, which finds a proper policy
without explicitly finding a reward function [17]. Their imitation learning

19

4. Safe reinforcement learning

algorithm finds a policy close to an expert’s in terms of occupancy measures
om. The optimization problem is formulated as follows:

H;indlﬂ(om,r,om};) — H(m), (4.7)
where

dy is a regularization function,
om, is an occupancy measure of agent’s policy (4.8)),
omp is an occupancy measure of expert’s policy (4.8]).

omgy: CxA—R om;=mr(als) Z’ytP(st = s|m) (4.8)
t=0

Occupancy measure (4.8)) can be understood as a discounted joint probability
of state-action pair. Regularization function dy smoothly penalizes violations
in the difference between the occupancy measures of agent and expert. Authors
have shown, that there exists a one-to-one correspondence between policy
and occupancy measure, which means the closer agent’s occupancy measure
is to expert’s, the more similar the policies are. The definition of occupancy
measure allows us to write Ex [c(s,a)] = >, , omz(s,a)c(s, a).

The optimization procedure is implemented as a generative adversarial
network. The algorithm simulates a zero-sum game between discriminator
network D and generative model network G. The model generates data, and
its job is to be as much as possible close to actual data distribution. The
job of D is to distinguish between the distribution of data generated by G
and the actual data distribution. When D cannot distinguish generated data
from the real data, then the generator has managed to learn actual data
distribution. In our case, G is generating om, and its job to find a proper
policy 7, such that its occupancy measure resembles the expert’s one well.
Pseudocode describing the algorithm is listed in Algorithm |1l

Empirical mean [, [-] is computed using occupancy measure derived from
sampled trajectories:

B, [f(s,a)] = Z om.(s,a)f(s,a). (4.9)

B 4.4 Risk-aware reinforcement learning

After the initialization step, the policy may serve as a base behavior for
the agent. The agent was learned only from expert demonstrations, which
means that in some regions of state space policy is undefined (or assigned

20

4.4. Risk-aware reinforcement learning

Algorithm 1 Generative Adversarial Imitation Learning

Input Expert trajectories 75 generated by expert’s policy mg
Initial policy and discriminator parameters g, wg
Output optimized policy parameters 6*

1: for:=0,1,2... do

2: Sample trajectories 7; using policy 7
3: Update the discriminator parameters w with the cross entropy loss
gradient

Er, [V log(Du(s, a)] + Ery [V log(1 — Du(s,)]

4: Update the discriminator parameters 6 with cost function
log(Dw(Saa))

.. [Vglogmg(als)Q(s,a)] — AVgH (mp)

where Q(5,a) = ., [Vglog(Dy(s,a))|so = 5, a0 = @]

5. end for
6: return 0

to random). It is clear, that for a successful operating in a high-dimensional
environment as a roadway, the bare policy imitation is insufficient. It is
necessary to continue learning through safe exploration of space.

This section provides an overview of risk-aware reinforcement learning algo-
rithms with a brief comment on their advantages and applicability. Algorithms,
which are used later in work, are described in more details in Sections [4.4.2
and 4.4.3l

B 4.4.1 Overview of risk-aware reinforcement learning
algorithms

Hans et al. [16] came with a notion of safety, which is concerned with states
or transitions that can lead to damage. They introduced the concept of a
safety function for determining a state safety degree and a backup policy that
is able to lead the controlled system from a critical state back to a safe one.
The safety function is learned from collected exploration data. It estimates
the minimal reward ry;, that would be observed when executing an action
and afterward following the backup policy (min-reward estimation). For
this purpose, min-reward samples (s, a, Tmin), which depend on the backup
policy m, are collected during exploration and used to estimate a min-reward
function R". (s,a). The backup policy is activated when the agent reaches
an unknown state during exploration and thus is unable to choose a safe
action. A good choice of such a policy for known problems is a dynamic-based

21

4. Safe reinforcement learning

controller or rule-based control. In case we do not have access to one, it has
to be learned from observation data. The policy is obtained by solving an
altered Bellman optimality equation that does not maximize the expected
sum of rewards, but the minimal reward to come. They successfully evaluated
their approach on a simplified simulation of a gas turbine. The experiments
showed that the exploration using their technique was safe and covered large
parts of the state space.

Moldovan et Abbeel [30] developed an approach based on an idea of a safe
space: an ergodic part of the state space. From any state of ergodic space,
the agent can get to another state, which makes it safe. An opposite to
it is a set of states from where the agent cannot return, e.g. crash. They
improved the R-max algorithm by introducing a safety constraint. According
to the original work [5], in R-max, the agent always maintains a complete, but
possibly inaccurate model of its environment and acts based on the optimal
policy derived from this model. The model is initialized in an optimistic
fashion: all actions in all states return the maximal possible reward. During
execution, it is updated based on the agent’s observations. Moldovan et
Abbeel additionally restricted the space of eligible policies to those that
preserve ergodicity of space with some user-specified probability ¢, called
the safety level. Their experiments in a Martian terrain exploration problem
show that their method is able to explore better than classical exploration
methods.

Garcia et Fernandez [13] developed a Policy Improvement through Safe
Reinforcement Learning (PI-SRL) algorithm for state space exploration which
takes risk into consideration. The risk of an action with respect to policy
7 is defined as the probability that the state sequence generated by the
execution of policy m, terminates in an error state. Agent explores the state
space by executing actions which slightly deviate from the main policy. Their
experiments demonstrate the effectiveness of the algorithm in four different
continuous domains: the car parking problem, pole-balancing, helicopter
hovering, and business management (SIMBA).

Yu et Haskell [48] developed a family of simulation-based algorithms to
solve approximately large-scale risk-aware MDPs. They defined a risk-to-go
function J™ for any given policy 7 as (4.10)).

J™(s0) = c(s0,a0) + p(ye(sy,a1) + p(ye(sz, az) +...)), (4.10)

where each p is a one-step coherent conditional risk measure and c(s,a)
is cost resulting from taking action a in stase s. The risk-to-go function
is estimated through simulation-based approximate value iteration. They
validated their algorithm on an optimal maintaining problem. They showed,
that their algorithm was able to reduce chance of reaching the bad state and
incurring a large cost.

22

4.4. Risk-aware reinforcement learning

B 4.4.2 Policy Gradient with variance constraint

Algorithm 2 Policy Gradient with variance constraint

Input MDP, Variance threshold b
Output Parametric policy mg

1: while 6 not converged do

2: Sample episodes 7; using policy my
3: for each episode 7 {so,ag,70,...s7,ar,rr} do
4: Update estimation of return and variance

G = Gi, + ai(R* — Gy)
~2 ~2 kN2 A2 =2
Ojr1 = 0% + o ((RY)” — G} — 0§)
5: Compute variance penalty, update policy parameters

- Mg (G2 — b)((RF)? —2Gy) ifo? > b
"o if o2 <b

Or1 = Op + Br(R" — ¢)2F

6: end for
7: end while
8: return my

Castro et al. [6] developed a policy-based algorithm with variance related risk
criteria. They’ve introduced a new formula for the variance of the cost-to-go
in episodic tasks. The algorithm is based on a return variance estimation
and subsequent update of policy using an estimated gradient. The problem
is stated as a constrained optimization problem (4.11)).

max V(so) s.t. &2[G(sp)] <b, (4.11)

where sq is a starting state, V(so) is the value of state s, &2 is the variance
of the accumulated reward, and 6 is parameters of policy. Here we consider
G to be an undiscounted reward, equivalently we can say that v = 1.

The simulation based algorithm for the constrained optimization problem
(4.11)) is described by pseudocode in Algorithm (2|

Where G is an estimation of return, R is the cumulative reward along
trajectory k, &2 is an estimation of return variance, z* £ V log P(s¥) is the
trajectory likelihood ratio derivative, oy and [are positive step sizes, and
g(z) = (max(0,))? is the penalty function.

The pseudocode describing the algorithm is stated in Algorithm [2. Castro

23

4. Safe reinforcement learning

Algorithm 3 Q-learning with risk-directed exploration

Input MDP, Empirical model of environment T,: S x A x S — [0, 1]
Risk metric p, Reward-risk mixing proportion A
Learning rate «, Discount rate ~, Number of steps n

Output Q-function Q: S x A - R

. Initialize Q: S x A — R arbitrary
while) not converged do
Initialize episode so ~ p(so)
while s is not terminal do
Estimate the n-step return distribution G(s,a) using empirical
model T,
6: Compute risk-adjusted utility for all action in current state

U(87 a) =)‘p(G(Sa a)) + (1 - A)Q(S,CL)
7 Sample action, obtain a new state and a reward from environment

a ~ U(s,a) 8 =T(s,a) r=R(s,a,s)

8: Update @Q-function
Q(s,0) = (1 = a)Q(s,a) + a(r + ymax Q(s',a'))
9: Update empirical model T,
n(s,a,s’) =n(s,a,s) +1
10: end while

11: end while
12: return Q)

et al. provide a proof that it converges almost surely to a locally optimal
point of the corresponding objective function. They have demonstrated the
applicability of the algorithm in a portfolio planning problem; namely they
showed the ability of the algorithm to reduce the variance of the return
distribution.

B 4.4.3 Q-learning with risk-directed exploration

Yang and Qiu [46] proposed a risk measure based on expected utility and
entropy. Given a state, the measure of risk for a particular action is the
weighted sum of the entropy and normalized expected reward of that action.
Law [24] used this metric for risk-adjusted utility computation as a part of
risk-sensitive Q-learning algorithm.

24

4.4. Risk-aware reinforcement learning

Basic Q-learning is an off-policy reinforcement learning algorithm. While
learning, a Q-function is estimated through interaction with environment.
Q-function is updated after every action execution (step) with an estimation
of a one-step return.

Law’s risk-sensitive algorithm estimates an one-step or two-step return
distribution using empirical (learned) model of the environment. Using the
return distribution, an entropy-based risk metric is applied for risk-adjusted
utility computation. This risk-adjusted utility is then used for action selection.
The actions are selected with the probability proportional to their utility. She
has shown, that the algorithm was able to reduce risk during exploration.

The approach of Law can be extended, to create an improved version of
the algorithm. This work presents such an enhanced version, it incorporates
three improvement over the original version:

1. Q-function approximation by a neural network
2. adjustable number of steps for the estimation of the return distribution

3. ability to work with an arbitrary risk metric

Pseudocode describing this algorithm is stated in Algorithm [3. The user
can specify the number of steps for the return distribution estimation and
a risk metric to work with. The algorithm can run in a model-based mode
(with provided empirical model) of in a model-free mode.

B 4.4.4 Comment on described safe reinforcement learning
approaches

The approach of Hans et al. [16] is general and can be applied to any domain,
but it does not guarantee, that learned backup policy is itself safe and
complete for problems with large state space. Adapted R-max algorithm [5]
is a useful framework for solving model-free MDP, but due to the fact that it
uses linear programming for an exact solution of MDP, it is not scalable for
larger problems. PI-SRL algorithm [13] cannot guarantee complete safety of
the agent because of the randomized policy, but developed risk metric can
reduce risk during exploration. Approaches of Castro et al. [6] and Yu et
Haskell [48] are scalable to environments with big state and action space due
to usage of iterative algorithms and estimation techniques. Further in work,
we perform experiments to validate variance-constrained Policy Gradient
algorithm developed by Castro et al. and an improved version of Law’s
Q-learning with risk-directed exploration.

25

26

Chapter 5

Experiments

This chapter presents the results of experiments conducted for all selected
safe reinforcement learning algorithms. Each experiment section includes
specification of algorithm parameters and description of the reward function.

For all algorithms used in the experiments, an own implementation was
developed based on the results from 6]. The source code of algorithms
is available in GitHub project repository risk-aware-rl'l The project includes
the implementation of an MDP with an autonomous driving environment.

The project was implemented in Python with the usage of third-party
packages, including Tensorflow [1] for optimization procedures and PyGame
for MDP environment. A full list of requirements is stored in the root of
the project repository. The code is compatible with Python version 3.6.

Each experiment described in this chapter can be reproduced with a cor-
responding script located in the project repository. Each script outputs a
trained model and performance metrics for the experiment. The usage exam-
ples are provided in the project’s README file. Additionally, the project
contains a training set for policy initialization algorithms and utility scripts
for data generation.

B 5.1 Environment specification

One of the typical environment for autonomous driving algorithms testing
is a two- or a multi-lane road viewed from above. The objective of an agent
(self-driving car) is, e.g., to switch the lane, to overtake as many cars as
possible or to reach a goal. Such an environment is stochastic due to a limited
field of view and possibly non-deterministic behavior of other drivers. A
two-lane road with cars represented by rectangles as depicted in Figure 5.1}
is an example of such environment. It is used throughout the experiments.

1|https: //github.com/petroolg/ risk-aware—rll

27

https://github.com/petroolg/risk-aware-rl
https://github.com/petroolg/risk-aware-rl

5. Experiments

Figure 5.1: Environment used for experiments

The environment is represented by a two-lane roadway where the first lane
is slower than the second lane. Agent’s car is colored green, non-agent cars
are colored blue. Cars displacement is generated randomly, but agent always
starts at the first lane. Each car is surrounded by a safety margin, colored
red on the Figure. The agent can access the events of the environment, e.g.,
collision with other car or the fact it was overtaken by a faster car from the
second lane. Further in text cars from the first lane are referred to as “slow”
and cars from the second lane are referred to as “fast”. The reward function is
constructed using events from the environment. In total there are 7 possible
events which can occur in the environment. These include:

ey collision of agent’s car with with a non-agent car
e agent overtakes a fast car

es agent is overtaken by a fast car

es agent overtakes a slow car

es5 agent is overtaken by a slow car

eg safe collision of agent’s car with a non-agent car
e7 none of above happened

Figure 5.2: Collision of agent and a non-agent car

Figure 5.3: Safe collision of agent and a non-agent car

Further in the text, the reward function is represented by a vector with
entries corresponding to a specific action. A state is represented by 30 x 6
single channel image and agent’s velocity. Action space is discrete and is
represented by Cartesian product of two spaces: Acc, = {—1,0 + 1} and
Shift, = {—1,0,+1}. Acc, set defines acceleration in y axis (along the road),
Shift, defines shift in = axis (athwart the road).

28

5.2. Policy initialization algorithms

Event e1 es | e3 | es | es | eg er7
Reward | -10 | 2 | -2 |1 |-1]-0050

Table 5.1: Reward function used for policy initialization algorithms

The length of an episode is limited to 50 frames for policy initialization
algorithms and 30 frames for risk-aware reinforcement learning. The goal of
the agent is to overtake as many cars as possible and to avoid an accident. At
each step, agent can turn left or right, speed up or slow down or do nothing.

. 5.2 Policy initialization algorithms

For purposes of policy initialization, two algorithms were used: Behavioral
Cloning and Generative Adversarial Imitation Learning. As a baseline for
these algorithms serves random policy function, which assigns a random
action independently on a state. Experiment specifications and results are to
be found in subsequent Sections [5.2.1| and [5.2.2. The goal was to compare
the performance of two algorithms on the same problem.

Performance of algorithms for policy initialization is evaluated with four
measures:

1. Return distribution

2. Return-per-step distribution

3. Percentage of episodes ended with an accident (Collision rate)

4. Episode length distribution

Table 5.1 describes a reward function used for policy initialization algorithms.
Training set consists of 350 expert’s trajectories generated by manual input in
simulator resulting in approximately 24,000 state-action pairs. Table 5.2/ shows
the numbers of state-action pairs grouped by action, sorted in descending

order. We can see, that training set is not balanced, e.g., “do nothing” action
class is over-represented.

Bl 5.2.1 Behavioral cloning

Input: State-action pairs (sg, ag), (s1,a1),- .. (Sn,an)
Output: Policy function 7: S x A — [0, 1]

The policy function is represented by a 3-layer neural network with sigmoid
activation function. The network takes as an input a state represented by

29

5. Experiments

Action N

do nothing 16068
decelerate 2225
turn left 1575
accelerate 1470
turn left, accelerate 1312
turn right 720
turn right, accelerate | 596
turn left, decelerate 93
turn right, decelerate | 3

Table 5.2: Distribution of action classes in the training set

Training set | Random policy BC | GAIL

Return per step | u 0.116 -1.241 | -0.553 | -0.406
M 0.09 -0.91 0.10 | -0.16

Collision rate 0.0% 98.5% | 22.5% | 51.5%
Return | p 6.29 -11.28 2.35 | -3.36

M 6.00 -11.00 4.95 | -6.05

Episode length | p 68.74 14.42 | 41.89 | 35.38
M 68.00 12.00 | 50.00 | 47.50

Table 5.3: Performance metrics for policy initialization algorithms

flattened game frame and outputs a categorical distribution with probabilities
of specific actions. The loss function is weighted to address an issue of
non-balanced training set.

B 5.2.2 Generative adversarial imitation learning

Input: MDP, State-action pairs (sg, ag), (S1,a1), ... (Sn,an)
Output: Policy function 7: S x A — [0, 1]

The policy function is represented by a 3-layer neural network with sigmoid
activation function. Discriminator function is represented by a 2-layer neural
network with sigmoid activation function. Pseudocode describing the algo-
rithm is listed in Section 4.3.3 Algorithm [Il Policy function takes as an
input a state represented by flattened game frame and outputs a categorical
distribution with probabilities of specific actions. The discriminator function
takes as an input a pair of state and action and outputs a score, which tells
whether it was an expert’s behavior or agent’s.

30

5.2. Policy initialization algorithms

Distribution of return per step

Behavioral Cloning
GAIL

Random policy
Training set

w B v o

Probability density

N

-7 -6 -5 -4 -3
Return per step

Distribution of episode lengths Distribution of return
1501 Behavioral Cloning 0.6 Behavioral Cloning
GAIL GAIL
¢ 1251 Random policy 5. 0.5 Random policy
S £
o n
c
§ 100 g 044
Y >
> 75 £ 0.3
g E
2 a
€ 501 202
= =%
25 0.1
0 0.0
0 10 20 30 40 50 -20 -10 0 10
Episode length Return

Figure 5.4: Distributions of return per step, return and episode lengths for
policy initialization algorithm

B 5.2.3 Experiment results

The policies generated by both algorithms were evaluated on a test set
containing 200 games with random settings. Figures [5.4] and [5.5| depict main
results for policy initialization experiments.

Figure|5.4/shows distributions of return per ster, episode length and return for
the baseline random policy, the training set and policies of both initialization
algorithms. Table |5.3| contains numeric description of these distributions,
where 1 is expected value and M is median. The table also includes collision
rates measured on train sets for all algorithms.

From the graphs in Figure 5.4/ and Table |5.3, we can see that both learned
policies outperform the random one. As is evident from the graph, the
distribution of return per step for BC policy is very similar to the train
set distribution, except for small peaks in negative part of returns. The
distribution of return per step for GAIL policy is more spread, but it does
not have such peaks. However, BC policy is indubitably better than GAIL
policy. It has lower collision rate (22.5% compared to 51.5%) and significantly
higher expected return (2.35 compared to -3.36). Median and expected value
of episode lengths does not differ significantly.

Figure |5.5| depicts visualization of policies for the train set and both ini-
tialization algorithms. States (represented by images) are embedded in a

31

5. Experiments

Training set
do nothing . . velocity: 10, action: decelerate
10 e accelerate - “
decelerate
e turn right < pre -
turn right, accelerate .
5 e turn right, decelerate
o turn left " velocity: 8, action: do nothing
e turn left, accelerate <
e turn left, flece\efie —
- s <l
0 e "
14
N W A voe velocity: 9, action: turn left, accelerate
o .
’ b e -«
. e
-
. - o)
e velocity: 6, action: turn right, accelerate
10 - < -
¥ .
. " . PN ! .
7
-10 -5 o 5 10
Behavioral Cloning Generative Adversarial Imitation Learning
do nothing . - do nothing
1 e accelerate - . 1 e accelerate 3 -
decelerate decelerate
o turn right . » turn right
turn right, accelerate %" turn right, accelerate
5 e turn right, decelerate 5 e turn right, decelerate
e turn left . e turn left
e turn left, accelerate e turn left, accelerate
e turn left, decelerate e turn left, decelerate
'k‘ "
) N k2 o
2
Py ;
~ - - -
*
) - e)
A,
. - ; .
o
-10 - 10
T, i A 0 . i N
. T -
7
-10 -5 o 5 10 -10 -5 0 5 10

Figure 5.5: Visualization of policies generated by different initialisation algo-
rithms

lower dimension using UMAP algorithm and colored by an action which
agent or teacher takes in this state. The embedding places similar states
near each other in low dimension forming clusters of states in which agent
takes the same action. Visualization contains four “zoomed in” states with
correspondent points in low dimension.

From Figure [5.5, we can see that BC policy mimics training policy very well.
It chooses the same actions in most states. This explains a high similarity
between performance metrics of training set and BC policy. We can also see,
that GAIL agent is using only a subset of actions in its strategy, omitting
the rest — namely, it uses a subset of three actions: “do nothing”, “turn
left, accelerate” and “decelerate”. Such behavior can be explained by partial
mode collapse of generator network and training set structure. The generator
learned to output a number of the most frequent actions (as we see from
Table . Indirect approach of imitation expert’s occupancy measure lead to
learning the most essential part of behavior and ignoring less significant parts.

32

5.3. Q-learning with risk-directed exploration

B 53 Q-learning with risk-directed exploration

Q-learning with risk-directed exploration is a variant of well-known model-
based Q-learning algorithm, which was described in Section [4.4.3 Model-
based Q-learning assumes knowing a transition function of MDP. In our case
we do not have underlying dynamic model, therefore the transition function
should be estimated through simulations. There are several ways how a
transition function can be learned through interaction with MDP. In our
experiments, it was represented by experienced transitions in the form of
a dictionary. For each state-action pair, the dictionary holds an empirical
distribution over possible next states. The dictionary was constructed during
100,000 episodes of random policy execution.

Using such empirical model and a reward function we are able to estimate
one-step return distribution for action a in state s. We can extend this
approach to calculate multi-step return distribution for arbitrary number of
steps, since we know the probabilities of taking actions in subsequent states.
In the experiments, a 3-step return distribution was used.

The pseudocode describing the algorithm is listed in Section 4.4.3, Algo-
rithm 3| The algorithm accepts an arbitrary risk metric which makes it very
flexible. Different risk metrics plugged in the algorithm help to emphasize
aspects which may be more important for the specific task.

Two specific risk metrics were used in experiments: Conditional Value at
Risk [34] and Entropy-based metric [46]. Experiments specifications and
results are described in Sections |5.3.1 and [5.3.2. The goal of experiments was
to compare model-free Q-learning, model-based Q-learning and Q-learning
with risk-directed exploration.

The performance of algorithms for risk-directed exploration is evaluated
with two measures:

1. Return distribution

2. Percentage of episodes ended with an accident (Collision rate)

Table [5.4] describes a reward function used for Q-learning with risk-directed
exploration. In both experiments, Q-function is represented by 3-layer neural
network with leaky ReLLU activation function. The network takes as an input
a state-action pair, where state is represented by flattened game frame. It
outputs a real number for given pair. The learning was limited to 10,000
steps.

Event e1 es | e3 es | es e e7
Reward | -10 | 1.0 | -1.0 | 0.5 | -0.5 | -1.0 | O

Table 5.4: Reward function used for Q-learning with CVaR risk metric

33

5. Experiments

Collision rate

1.0
—— Model-free Q-learning
—— Model-based Q-learning
0.8 —— Q-learning with CVaR risk metric
Q
s 0.6
=
o
2
8 04 2
0.2
0.0
0 2000 4000 6000 8000 10000

Learning step

(a) : Evolution of collision rate

Return

Return

—— Model-free Q-learning
—— Model-based Q-learning
—— Q-learning with CVaR risk metric

0 2000 4000 6000 8000 10000
Learning step

(b) : Evolution of return value

Figure 5.6: Evolution of performance metrics during learning

B 5.3.1 Q-learning with CVaR risk metric

Input: MDP, Empirical model of environment T¢.: S x A x S — [0,1], CVaR

risk metric
Output: Q-function Q: S x A - R

Yu et Haskell define CVaR,, as follows:

CVaR,(G) £ inf {n + ﬁf@ (G- n)+]} . (5.1)

CVaR,, is the expected value of return in the worst a% of cases. Conditional
Value at Risk estimates the risk of taking action a in state s and following

34

5.3. Q-learning with risk-directed exploration

Collision rate
1.0
—— Model-free Q-learning
—— Model-based Q-learning
0.8 —— Q-learning with entropy-based risk metric
o
s 0.6
c
2
2
3 04
0.2
0.0

0 2000 4000 6000 8000 10000
Learning step

(a) : Evolution of collision rate

Return

—— Model-free Q-learning
-10 —— Model-based Q-learning
—— Q-learning with entropy-based risk metric

0 2000 4000 6000 8000 10000
Learning step

(b) : Evolution of return value

Figure 5.7: Evolution of performance metrics during learning

exploitative policy after that. It estimates the return in a pessimistic way,
which in theory leads to more conservative actions.

In this experiment « is a hyper-parameter which was tuned using grid-search
technique.

B 5.3.2 Q-learning with entropy-based risk metric

Input: MDP, Empirical model of environment T.: S x A x S — [0,1],

Entropy-based risk metric
Output: Q-function Q: S x A - R

Yang and Qui define their entropy-based metric (in this text referred to
as entropy risk, ER) as follows:

35

5. Experiments

E[G]
maxaea, [E[G] |

ER(G) = BH(G) — (1 -) (5.2)

where H(G) is the entropy of return distribution, E [G] is its expected value,
and 3 is a weighting coefficient. Entropy-based risk metric penalizes return
distributions with high entropy and comparably low expected value. The
high-entropy return indicates high uncertainty about future return, which
helps to avoid risky actions.

In this experiment, 3 is a hyper-parameter which was tuned using grid-search
technique.

B 5.3.3 Experiment results

The evolution of performance metrics during learning is shown in Figures 5.6
and 5.7 The figures contain metric values for model-free, model-based and
risk-sensitive variant of Q-learning. The graphs show the evolution of the
expected value and corresponding 1o and 20 confidence intervals for metric
distributions. The expected value and confidence intervals were computed
from the results of several runs of the algorithms (10 for model-based, 8 for
model-free, and 4 for risk-aware Q-learning).

From the graphs we can clearly see that Q-learning with risk-directed
exploration and plain model-based Q-learning outperform model-free Q-
learning in terms of collision rate and return. This is an unsurprising result,
as model (even incomplete) provides essential information for Q-function
estimation ant thus helps to avoid dangerous states. But most importantly,
Q-learning with risk-directed exploration has lower collision rates and higher
return in comparison with model-based algorithm.

CVaR | ER
Collision rate | -2.4% | -2.9%
Return +3.5% | +5.9%

Table 5.5: Average improvement of performance metrics for Q-learning with
risk-directed exploration

During first 3,000 learning steps, the risk-aware Q-learning shows lower
collision rate and higher return than the model-based and model-free versions.
After 3,000th step, all three algorithms converge to the same values and
continue to improve with the same pace. Table[5.5/shows average improvement
of performance metrics during first 3,000 learning steps for Q-learning with
risk-directed exploration in comparison with model-based Q-learning. From
the table, we can see that usage of entropy-based risk metric lead to slightly
better performance than CVaR. From this, we can conclude, that it is more
suitable for this task.

36

5.3. Q-learning with risk-directed exploration

B 5.3.4 Policy Gradient with variance constraint

Input: MDP, Variance threshold b
Output: Policy function 7: S x A — [0, 1]

To solve a constrained optimization problem stated in Equation 4.3, an
implementation of Policy Gradient algorithm was developed, namely the
technique of simulation-based optimization. The algorithm estimates the
expected value and variance of the return from several episodes. Policy
parameters are updated using an estimated gradient with variance penalty.

The algorithm optimizes policy function directly without estimation of the
value function. This may be considered to be more convenient for the control
algorithm designer, because it eliminates the need of constructing a policy
from the output of the value function.

The pseudocode describing the algorithm is listed in Section 4.4.2) Algo-
rithm 2. The algorithm comprises a modified version of REINFORCE [44]
algorithm with additional estimation of the return variance, which is mini-
mized as a measure of risk.

Performance of Policy Gradient algorithm with variance constraint is evalu-
ated with four measures:

1. Return distribution

2. Percentage of episodes ended with an accident (Collision rate)

3. Variance of the return

Event el es | es es | es e er
Reward | -10 | 1.0 | -1.0 | 0.5 | -0.5 | -1.0 | O

Table 5.6: Reward function used for Policy Gradient algorithm with variance
constraint

Table [5.6| describes the reward function used during experiments. The
reward function has the same structure as the one used in Section 5.3. The
policy function is represented by a 3-layer neural network with leaky ReLLU
activation function. The network takes as an input a state represented by the
flattened game frame and outputs a categorical distribution with probabilities
of specific actions. The learning was limited to 10,000 steps.

In this experiment, the Variance threshold b is a hyper-parameter which was
tuned using grid-search technique.

37

5. Experiments

Collision rate

—— Policy gradient
—— Policy gradient with variance constraint

0.8

o
o

o
IS

Collision rate

|

o
S)
[S)

2000 4000 6000 8000 10000
Learning step

(a) : Evolution of collision rate

Return

-5

—— Policy gradient
—— Policy gradient with variance constraint

0 2000 4000 6000 8000 10000
Learning step

(b) : Evolution of return value

Figure 5.8: Evolution of performance metrics during learning

B 54 Experiment results

Figures 5.8 and show the evolution of performance metrics while learning.
For each learning step the graphs contain the expected value and corresponding
1o and 20 confidence intervals for metric distribution. The expected value
and confidence intervals were computed from the results of several runs of
the algorithms (8 for unconstrained and 4 for constrained versions).

From the graph in Figure [5.9, we can see that policy iteration algorithm
with variance constraint reduces the variance of return during the first part
of learning (up till the ~3,000th step) and converges to the same value after
the 4,000th step.

Graphs in Figures and show the evolution of the collision rate
and return while learning. The collision rate of both algorithms is effectively
identical during the whole learning. The return, on the contrary, is lower by

38

5.4. Experiment results

Variance of the return

—— Policy gradient
20 —— Policy gradient with variance constraint

18

Variance

0 2000 4000 6000 8000 10000
Learning step

Figure 5.9: Evolution of return variance

about 0.88 points in average for the constrained algorithm during the first
part of learning. From these two facts, we can conclude that the constrained
algorithm prefers more passive policies. It overtakes less frequently, which
in theory should lead to a safer policy, but due to the lack of experience, its
policy still has the same collision rate. The results of the experiment point
out that the return variance might not be the best risk metric for this task
since its minimization does not affect the collision rate.

39

40

Chapter 6

Discussion

This chapter discusses key findings emerged from the results of experiments
described in Chapter |5/ and ideas for future work.

B 61 Experiment results: key findings

For the purpose of policy initialization, two algorithms were presented: Behav-
ioral Cloning (BC) and Generative Adversarial Imitation Learning (GAIL).
Both algorithms performed better than the baseline random policy. Policy
generated by BC algorithm performed better and learned faster than the one
generated by GAIL. However, it had a stronger tendency to overfit on the
training set. Figure 5.5/ in Section [4.3| show a high similarity between the
training set policy and the one learned with BC. The loss function for BC
algorithm was weighted to address an unbalanced training dataset.

The issue of overfitting and the unbalanced training set should have been
addressed by GAIL framework. The training, however, resulted in a policy
with a reduced action set (some were omitted by the policy, e.g. “turn right”
action). The reasoning behind this behavior is discussed in Section |5.2.3.
Generally, we can draw a conclusion, that GAIL framework needs a greater
amount of data in comparison to BC, and additionally, for successful learning,
the training set must cover state space densely. GAIL framework suits best
for the environments with a specific starting state (or a finite set) and lower
stochasticity due to the computationally demanding process of occupancy
measure computation.

The risk-aware Q-learning algorithm described in Section [4.4.3| reduces
the risk through modification of the reward function. The results of the
experiments showed that risk-aware version of Q-learning reduced collision
rate and improved the return value during the first part of the learning and
achieved same performance in comparison with the original version of the
algorithm. It proves that risk-aware Q-learning does not suffer from reduced
exploration.

41

6. Discussion

A major downside of Q-learning with risk-directed exploration is that it
demands a model of environment. For larger environments, it is practi-
cally impossible to construct an explicit transition dictionary, even though
dimensionality reduction and approximation techniques can be used.

The Policy Gradient algorithm with variance constraint described in Sec-
tion [5.1] optimizes policy directly minimizing the variance of the return. The
result of the experiment showed that variance minimization does not affect
the collision rate, which indicates that variance is not the best choice of the
risk metric for the autonomous driving problem. The variance minimization
reduces exploration at the beginning of the learning process, which results in
lower return. However, constrained algorithm gradually improves its policy
and achieves the same results at the end of the learning.

. 6.2 Future work

Described algorithms can be used in real problems to make reinforcement
learning safer and potentially reduce costs of learning. Those algorithms which
interact with the environment during learning should be used in combination
with a built-in rule-based safety system to ensure elimination of collisions
and agent destruction during learning. Signals obtained from the internal
safety system may be used as a part of reward function together with other
reinforcements.

The deep reinforcement learning is a very flexible and powerful framework
for automatic control. Presented algorithms reduce risk originating from the
stochasticity of the environment and need to explore previously unvisited
regions. However, the nature of the algorithm brings up a safety vulnerabil-
ity by itself, namely an inability to interpret its actions. The issue can be
addressed with safety cases [42]. In a safety case, we provide a set of environ-
ment’s conditions under which a specific output of the control algorithm is
desired and then test if the learned problem model ensures this output under
all considered environment conditions. Ehlers [8] developed an algorithm
for formal verification of a neural network with piece-wise linear activation
functions. This approach enables to test network decisions against a set of
safety rules.

Another interesting area of research not discussed in this work is the design of
the reward function to prevent reward hacking and avoid negative side effects,
the problems mentioned in Section 4.2l The reward function is strongly related
to safety and reward hacking is an issue the designer should think about.
Amodei, Olah et al. [2] provide an overview of algorithms and approaches
to tackle this problem. One of the most interesting research direction of
reward function design is empowerment. The empowerment is defined as the
maximum possible mutual information between the agent’s potential future
actions and its potential future state (or equivalently, the Shannon capacity

42

6.2. Future work

of the channel between the agent’s actions and the environment) [20]. The
empowerment is often maximized (rather than minimized) as a source of
intrinsic reward. It is possible to combine two sources of reinforcement in the
reward function, or to optimize the policy with respect to the empowerment.

The safe reinforcement learning is impossible without prior knowledge of the
environment or building an internal belief about it. Recent applications of the
actor-learner algorithm to multiplayer games include inference of environment
state by Recurrent Neural Network [1§]. In this setting, reinforcement learning
solves the control problem in the Partially Observable MDP, where states are
not observed directly. This enables to incorporate another source of risk into
the problem.

For truly reliable and safe RL algorithms it is essential to approach all
sources of potential risk on different levels starting from signal acquisition to
decision making under uncertainty. Without a doubt, the field of safe RL has
a significant amount of interesting open problems which are being or will be
addressed by researchers in the future.

43

44

Chapter 7

Conclusion

This work explores methods of risk reduction in reinforcement learning (RL)
applied to an autonomous driving environment. Two risk reduction approaches
were studied closer, namely: policy initialization techniques and risk-aware
reinforcement learning.

For the purpose of policy initialization, two algorithms were implemented and
compared: Behavioral Cloning (BC) and Generative Adversarial Imitation
Learning (GAIL).

The experiment results showed that both policy initialization algorithms
performed better than the baseline random policy. The policy generated
by BC algorithm showed significantly better results in comparison to GAIL
policy: it had a higher expected value of the return and a lower collision
rate. However, the policy learned with GAIL framework had a slightly higher
expected value of the return per step. It implies that GAIL policy performed
slightly better for unseen states at the beginning of an episode but failed to
maintain its performance afterward. The results indicate that both algorithms
can provide a sensible initial policy, which can be used during subsequent
learning.

Within the scope of risk-aware RL, two algorithms were described and
implemented: Q-learning with risk-directed exploration and Policy Gradient
algorithm with variance constraint.

The results of the experiments demonstrated that Q-learning with risk-
directed exploration had a lower collision rate and higher return during the
first part of the learning in comparison with both model-free and model-
based versions of Q-learning. At the end of the learning, it achieved equal
performance with both algorithms. These results prove that risk-aware
Q-learning decreases the risk during exploration.

The policy Gradient algorithm with variance constraint reduced the variance
of return during the first part of the learning process and converged to the same
values of collision rate and achieved return compared to the unconstrained
algorithm. The experiment results implicate that variance might not be the

45

7. Conclusion

best choice of risk metric for the particular autonomous driving problem since
its minimization did not affect the collision rate.

The main contributions of this thesis are: (1) openly available implementation
of selected policy initialization and risk-aware RL algorithms, (2) improvement
of Q-learning with risk-directed exploration by adding a neural network
function approximator and additional modifiable parameters.

Achieved results show that some of described risk-aware reinforcement
learning methods are capable of reducing risk and providing similar or the
same results in terms of return and collision rate after the learning phase.

46

Bibliography

Abadi, Martin et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org. 2015.
URL: https://www.tensorflow.org/|

Amodei, Dario et al. “Concrete Problems in Al Safety”. In: CoRR
abs/1606.06565 (2016).

Artzner, Philippe et al. “Coherent Measures of Risk”. In: Mathematical
Finance 9.3 (1999), pp. 203-228.

Boyan, Justin A. and Moore, Andrew W. “Generalization in Reinforce-
ment Learning: Safely Approximating the Value Function”. In: Advances
in Neural Information Processing Systems 7. Ed. by G. Tesauro, D. S.
Touretzky, and T. K. Leen. MIT Press, 1995, pp. 369-376. URL:
papers.nips.cc/paper/1018-generalization-in-reinforcement+
|[Llearning-safely-approximating-the-value-function.pdf|

Brafman, Ronen I. and Tennenholtz, Moshe. “R-max - a General Poly-
nomial Time Algorithm for Near-optimal Reinforcement Learning”. In:
J. Mach. Learn. Res. 3 (Mar. 2003), pp. 213-231. 1SSN: 1532-4435. DOTI:
10.1162/153244303765208377] URL: https://doi.org/10.1162/
1153244303765208377

Castro, Dotan Di, Tamar, Aviv, and Mannor, Shie. “Policy Gradients

with Variance Related Risk Criteria”. In: (June 2012). eprint: (1206
URL: https://arxiv.org/pdf/1206.6404|

Durrant-Whyte, Hugh and Bailey, Tim. “Simultaneous localization and
mapping: part I”. In: IEEE Robotics Automation Magazine 13.2 (2006),
pp. 99-110. 1SSN: 1070-9932. DoOI: [10. 1109/MRA . 2006 . 1638022,

Ehlers, Ridiger. “Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks”. In: ATVA. 2017.

Fridman, Lex. Deep Learning for Self-Driving Cars Lecture Notes. 2018.
URL: https://selfdrivingcars.mit.edu/|

47

https://www.tensorflow.org/
http://papers.nips.cc/paper/1018-generalization-in-reinforcement-learning-safely-approximating-the-value-function.pdf
http://papers.nips.cc/paper/1018-generalization-in-reinforcement-learning-safely-approximating-the-value-function.pdf
http://papers.nips.cc/paper/1018-generalization-in-reinforcement-learning-safely-approximating-the-value-function.pdf
https://doi.org/10.1162/153244303765208377
https://doi.org/10.1162/153244303765208377
https://doi.org/10.1162/153244303765208377
1206.6404
1206.6404
https://arxiv.org/pdf/1206.6404
https://doi.org/10.1109/MRA.2006.1638022
https://selfdrivingcars.mit.edu/

Bibliography

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[20]

Fu, Justin, Luo, Katie, and Levine, Sergey. “Learning Robust Rewards
with Adversarial Inverse Reinforcement Learning”. In: (Oct. 2017).
eprint: [1710.11248| URL: https://arxiv.org/pdf/1710.11248.

Fulton, Nathan and Platzer, André. Safe Reinforcement Learning via
Formal Methods: Toward Safe Control Through Proof and Learning.
2018. URL: https://aaai.org/ocs/index.php/AAAI/AAAT18/paper/
view/17376|

Garcia, Javier and Ferndndez, Fernando. “A Comprehensive Survey
on Safe Reinforcement Learning”. In: J. Mach. Learn. Res. 16.1 (Jan.
2015), pp. 1437-1480. 1sSN: 1532-4435. URL: http://dl.acm.org/
citation.cfm?7id=2789272.2886795.

Garcia, Javier and Fernandez, Fernando. “Safe Exploration of State and
Action Spaces in Reinforcement Learning”. In: CoRR abs/1402.0560
(2014). arXiv: [1402.0560. URL: http://arxiv.org/abs/1402.0560.

Girardin, Guillaume et al. Sensors and Data Management for Au-
tonomous Vehicles. Tech. rep. Yole Development, 2015.

Grzes, Marek and Kudenko, Daniel. “Improving Optimistic Exploration
in Model-free Reinforcement Learning”. In: Proceedings of the 9th In-
ternational Conference on Adaptive and Natural Computing Algorithms.
ICANNGA’09. Kuopio, Finland: Springer-Verlag, 2009, pp. 360-369.
ISBN: 3-642-04920-6, 978-3-642-04920-0. URL: http://dl.acm. org/
citation.cfm?id=1813739.1813779l

Hans, Alexander et al. “Safe exploration for reinforcement learning.”
In: ESANN. 2008, pp. 143-148.

Ho, Jonathan and Ermon, Stefano. “Generative Adversarial Imitation
Learning”. In: (June 2016). eprint: [1606.03476. URL: https://arxivl
org/pdf/1606.03476!

Jaderberg, Max et al. “Human-level performance in first-person multi-
player games with population-based deep reinforcement learning”. In:
CoRR abs/1807.01281 (2018).

Kakade, Sham and Langford, John. “Approximately Optimal Approxi-
mate Reinforcement Learning”. In: Proceedings of the Nineteenth Inter-
national Conference on Machine Learning. ICML ’02. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2002, pp. 267-274. ISBN:
1-55860-873-7. URL: http://dl.acm.org/citation.cfm?id=645531|
656005

Klyubin, Alexander, Polani, Daniel, and Nehaniv, Chrystopher. “Em-
powerment: a universal agent-centric measure of control”. In: 2005
IEEE Congress on Evolutionary Computation. Vol. 1. 2005, 128-135
Vol.1. DOI: [10.1109/CEC.2005.1554676l

48

1710.11248
https://arxiv.org/pdf/1710.11248
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17376
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17376
http://dl.acm.org/citation.cfm?id=2789272.2886795
http://dl.acm.org/citation.cfm?id=2789272.2886795
https://arxiv.org/abs/1402.0560
http://arxiv.org/abs/1402.0560
http://dl.acm.org/citation.cfm?id=1813739.1813779
http://dl.acm.org/citation.cfm?id=1813739.1813779
1606.03476
https://arxiv.org/pdf/1606.03476
https://arxiv.org/pdf/1606.03476
http://dl.acm.org/citation.cfm?id=645531.656005
http://dl.acm.org/citation.cfm?id=645531.656005
https://doi.org/10.1109/CEC.2005.1554676

22]

28]

[29]

Bibliography

Knight, Frank H. Risk, Uncertainty, and Profit: Chapter 1: The Place of
Profit and Uncertainty in Economic Theory - Scholar’s Choice Edition.
Bibliolife DBA of Bibilio Bazaar II LLC, 2015. 1SBN: 9781296048273.
URL: https://books.google.cz/books?id=qL9ZrgEACAAJ.

Kober, Jens, Bagnell, J. Andrew, and Peters, Jan. “Reinforcement
learning in robotics: A survey”. In: The International Journal of
Robotics Research 32.11 (2013), pp. 1238-1274. 1sSN: 1741-3176. DOT:
10.1177/0278364913495721. URL: http://dx.doi.org/10.1177/
0278364913495721.

Lillicrap, Timothy P. et al. “Continuous control with deep reinforcement
learning”. In: CoRR abs/1509.02971 (2015).

L.M. Law, Edith. “Risk-directed Exploration in Reinforcement Learn-
ing”. MA thesis. Montreal, Quebec: McGill University, Feb. 2005.

Lucas, Manuelli and Pete, Florence. Reinforcement Learning for Au-
tonomous Driving Obstacle Avoidance using LIDAR. Tech. rep. Mas-
sachusetts Institute of Technology, 2015.

Majumdar, Anirudha and Pavone, Marco. “How Should a Robot Assess
Risk? Towards an Axiomatic Theory of Risk in Robotics”. In: CoRR
abs/1710.11040 (2017). arXiv: (1710.11040. URL: http://arxiv.org/
abs/1710.11040.

Mclnnes, Leland and Healy, John. “Umap: Uniform manifold approx-
imation and projection for dimension reduction”. In: arXiv preprint
arXiv:1802.03426 (2018).

McNeil, Alexander J., Embrechts, Paul, and Frey, Rudiger. Quantita-
tive risk management : concepts, techniques and tools. Princeton, NJ:
Princeton University Press, 2015. 1SBN: 978-0691166278.

Mnih, Volodymyr et al. “Playing Atari with Deep Reinforcement Learn-
ing”. In: CoRR abs/1312.5602 (2013). arXiv: [1312.5602. URL: http;:
//arxiv.org/abs/1312.5602,

Moldovan, Teodor Mihai and Abbeel, Pieter. “Safe Exploration in
Markov Decision Processes”. In: CoRR abs/1205.4810 (2012). arXiv:
1205.4810. URL: http://arxiv.org/abs/1205.4810.

Paromtchik, Igor and Laugier, Christian. “Motion generation and con-
trol for parking an autonomous vehicle”. In: Robotics and Automation,
1996. Proceedings., 1996 IEEE International Conference on. Vol. 4.
IEEE. 1996, pp. 3117-3122.

Pecka, Martin and Svoboda, Tomés. “Safe Exploration Techniques for
Reinforcement Learning - An Overview”. In: MESAS. 2014.

Pomerleau, Dean A. “ALVINN: An Autonomous Land Vehicle in a Neu-
ral Network”. In: Advances in Neural Information Processing Systems
1. Ed. by D. S. Touretzky. Morgan-Kaufmann, 1989, pp. 305-313. URL:
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-
vehicle-in-a-neural-network.pdfl

49

https://books.google.cz/books?id=qL9ZrgEACAAJ
https://doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1177/0278364913495721
https://arxiv.org/abs/1710.11040
http://arxiv.org/abs/1710.11040
http://arxiv.org/abs/1710.11040
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1205.4810
http://arxiv.org/abs/1205.4810
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf

Bibliography

[34] Rockafellar, R. Tyrrell and Uryasev, Stanislav. “Optimization of Con-
ditional Value-at-Risk”. In: Journal of Risk 2 (2000), pp. 21-41.

[35] Ross, Stephane and Bagnell, Drew. “Efficient Reductions for Imitation
Learning”. In: Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics. Ed. by Yee Whye Teh and
Mike Titterington. Vol. 9. Proceedings of Machine Learning Research.
Chia Laguna Resort, Sardinia, Italy: PMLR, 2010, pp. 661-668. URL:
http://proceedings.mlr.press/v9/ross10a.htmll

[36] Rummery, Gavin A. and Niranjan, Mahesan. On-Line Q-Learning Using
Connectionist Systems. Tech. rep. Engineering Department, Cambridge
University, 1994.

[37] Sallab, Ahmad El et al. “Deep Reinforcement Learning framework
for Autonomous Driving”. In: (Apr. 2017). eprint: |1704.02532. URL:
https://arxiv.org/pdf/1704.02532.

[38] Sammut, Claude et al. “Learning to Fly”. In: Proceedings of the Ninth
International Conference on Machine Learning. Ed. by Morgan Kauf-
mann. 1992, pp. 385-393.

[39] Shinners, Pete et al. PyGame. http://pygame.org/. 2011.

[40] Sutton, Richard S. and Barto, Andrew G. Reinforcement Learning: An
Introduction. MIT Press, 2018. 1SBN: 9780262039246.

[41] Vitelli, Matt and Nayebi, Aran. CARMA: A Deep Reinforcement Learn-
ing Approach to Autonomous Driving. Tech. rep. Stanford University,
2016.

[42] Wagner, Michael and Koopman, Philip. A Philosophy for Developing
Trust in Self- Driving Cars. 2015.

[43] Watkins, Christopher John Cornish Hellaby. “Learning from Delayed
Rewards”. PhD thesis. Cambridge, UK: King’s College, 1989. URL:
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf|

[44] Williams, Ronald J. “Simple statistical gradient-following algorithms
for connectionist reinforcement learning”. In: Machine Learning 8.3
(1992), pp. 229-256. 1SSN: 1573-0565. DOI: [10.1007/BF00992696. URL:
https://doi.org/10.1007/BF00992696.

[45] Xiong, Xi et al. “Combining Deep Reinforcement Learning and Safety
Based Control for Autonomous Driving”. In: arXiv preprint arXiv:1612.00147
(2016).

[46] Yang, Jiping and Qiu, Wanhua. “A measure of risk and a decision-

making model based on expected utility and entropy”. In: European
Journal of Operational Research 164 (2005), pp. 792-799.

[47] Yu, April, Palefsky-Smith, Raphael, and Bedi, Rishi. “Deep reinforce-
ment learning for simulated autonomous vehicle control”. In: Course
Project Reports: Winter 2016 (CS231n: Convolutional Neural Networks
for Visual Recognition) (2016), pp. 1-7.

50

http://proceedings.mlr.press/v9/ross10a.html
1704.02532
https://arxiv.org/pdf/1704.02532
http://pygame.org/
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696

[48]

[49]

[50]

Bibliography

Yu, Penggian, Haskell, William B., and Xu, Huan. “Approximate
Value Iteration for Risk-aware Markov Decision Processes”. In: CoRR
abs/1701.01290 (2017). arXiv: [1701.01290. URL: http://arxiv.org/
[abs/1701.01290.

Zhan, Eric et al. “Generative Multi-Agent Behavioral Cloning”. In:
(Mar. 2018). eprint: [1803.07612. URL: https://arxiv.org/pdf/1803,
07612

Ziebart, Brian D. et al. “Maximum entropy inverse reinforcement learn-
ing”. English. In: Proceedings of the National Conference on Artificial
Intelligence. Vol. 3. Dec. 2008, pp. 1433—-1438. 1sBN: 9781577353683.

o1

https://arxiv.org/abs/1701.01290
http://arxiv.org/abs/1701.01290
http://arxiv.org/abs/1701.01290
1803.07612
https://arxiv.org/pdf/1803.07612
https://arxiv.org/pdf/1803.07612

52

Appendix A

CD contents

The enclosed CD contains a copy of this thesis and the source code of
implemented algorithms. The scripts are located in the project directory risk-
aware-rl. The project also contains an implementation of an autonomous
driving environment in MDP subfolder.

/

tthesis.pdf
risk-aware-rl Project directory with the source code.
| requirements.txt
| README.txt
| MDP ... Autonomous driving environment.
environment.py
model.py
reward. json
| policy_initialization Policy initialization algorithms.
BC_agent.py
GAIL_agent.py
| _risk_aware_rlciiiiiienn.. Risk-aware RL algorithms.
‘policy_gradient_agent.py
q_learning_agent.py
U e = PP Utility scripts.
record_trajectories.py
replay_trajectory.py
train_model.py

53

	Introduction
	Problem description
	Problem statement
	Related work

	Reinforcement learning
	Reinforcement learning algorithms
	Model based algorithms
	Model free algorithms

	Exploration vs exploitation: different strategies
	-constrained strategy
	Softmax strategy
	Softmax strategy with varying temperature
	Optimistic initialization

	Design of the reward function
	Inverse reinforcement learning

	Reinforcement learning with function approximation

	Safe reinforcement learning
	Risk notion
	Safety in reinforcement learning
	Policy initialization
	Behavioral Cloning
	Inverse reinforcement learning
	Generative Adversarial Imitation Learning

	Risk-aware reinforcement learning
	Overview of risk-aware reinforcement learning algorithms
	Policy Gradient with variance constraint
	Q-learning with risk-directed exploration
	Comment on described safe reinforcement learning approaches

	Experiments
	Environment specification
	Policy initialization algorithms
	Behavioral cloning
	Generative adversarial imitation learning
	Experiment results

	Q-learning with risk-directed exploration
	Q-learning with CVaR risk metric
	Q-learning with entropy-based risk metric
	Experiment results
	Policy Gradient with variance constraint

	Experiment results

	Discussion
	Experiment results: key findings
	Future work

	Conclusion
	Bibliography
	CD contents

