
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 14, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Search and filtering system for HelpStone.org

 Student: Jindřich Pilař

 Supervisor: Ing. Vít Steklý

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2018/19

Instructions

Improve search and filtering non-profit projects on global crowdsourcing web platform HelpStone.org. The
current implementation of the search engine is inadequate. It does not use all existing metadata from our
catalogue of non-profits projects and does not deal properly with linguistics. Also, do not forget to evaluate
the relevance of the results found.

- Review technologies used by HelpStone.org.
- Review current data storage and existing data.
- Review current search and filtering implementation.
- Research existing search and filtering practices and tools in context of HelpStone project.
- Implement search and filtering system and expose it via an API. Leverage existing open source or cloud
solutions when appropriate.
- Test your solution.

References

Will be provided by the supervisor.

Bachelor’s thesis

Search and filtering system for
HelpStone.org

Jindřich Pilař

Department of Software Engineering
Supervisor: Ing. Vít Steklý

2018-05-15

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as school work
under the provisions of Article 60(1) of the Act.

In Prague on 2018-05-15 .

Czech Technical University in Prague
Faculty of Information Technology
© 2018 Jindřich Pilař. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Pilař, Jindřich. Search and filtering system for HelpStone.org. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2018.

Abstrakt

Práce popisuje implementaci vyhledávání neziskových, vícejazyčných projektů
na mezinárodní platformě HelpStone.org. Hlavním tématem je vyhledávání
ve strukturovaných a textových datech, které mají varianty v mnoha, poten-
cionálně všech, jazycích. Vyhledávání zvládá práci s afixy, překlepy, synonymy
a zvládá full-textové vyhledávání v metadatech jako jsou kategorie nebo země.
Jádrem vyhledávání je open source technologie Elasticsearch, distribuovaný
vyhledávací nástroj založený na technologii Lucene. Dalšími použitými tech-
nologiemi jsou PHP, Symfony Framework a Doctrine ORM.

Klíčová slova Elasticsearch, vícejazyčné vyhledávání, full-textové vyhledávání,
PHP

v

Abstract

This thesis describes implementation of search on international crowdfunding
platform HelpStone.org. The main issue being addressed is searching among
structured and text data with translations in many, potentially all, languages.
This search is able to handle different forms of the same word, typos, synonyms
and full-text search in metadata like categories or countries. The core of
the solution is an open source technology Elasticsearch, distributed search
engine based on Lucene. Other technologies used are PHP, Symfony Framework
and Doctrine ORM.

Keywords Elasticsearch, multilingual search, full-text search, PHP

vi

Contents

Introduction 1

1 Goals 3

2 HelpStone 5
2.1 How HelpStone works . 5
2.2 Software . 6

2.2.1 Docker . 6
2.2.2 MySQL . 6
2.2.3 PHP . 7
2.2.4 Symfony . 7
2.2.5 Doctrine 2 ORM . 7
2.2.6 RabbitMQ . 7
2.2.7 Redis . 8

2.3 Data model . 8
2.3.1 Translations . 8
2.3.2 Metadata . 8
2.3.3 Text fields . 10
2.3.4 Timeline . 10
2.3.5 Size . 10

2.4 Current search . 11
2.4.1 Features . 12
2.4.2 Missing features . 12
2.4.3 Implementation . 12

2.5 Requirements . 12
2.5.1 Functional requirements 12

2.5.1.1 User interface 12
2.5.1.2 Stone . 12
2.5.1.3 Code . 13

vii

2.5.1.4 Date . 13
2.5.1.5 GPS coordinates 13
2.5.1.6 Filtering . 13
2.5.1.7 Languages . 13
2.5.1.8 Synonyms . 14
2.5.1.9 Typos . 14
2.5.1.10 Diacritics . 14

2.5.2 Non-functional requirements 14
2.5.2.1 Sensitive data 14
2.5.2.2 Technology compability 14

2.5.3 Data size . 15
2.5.3.1 Maintainability 15

2.6 Conclusion . 15

3 Existing technologies 17
3.1 MySQL . 17
3.2 Lucene Core . 17
3.3 Elasticsearch . 18

3.3.1 Maturity . 19
3.4 Solr . 19

3.4.1 Maturity . 20
3.5 Conclusion . 20

4 Elasticsearch theory 21
4.1 Inverted index . 21
4.2 Relevance . 21

4.2.1 Recall . 21
4.2.2 Precision . 22
4.2.3 Recall and Precision relation 22

4.3 Ranking and Scoring . 22
4.4 Term frequency . 22
4.5 Cluster . 23
4.6 Data types . 23

4.6.1 Text . 23
4.6.2 Keyword . 24
4.6.3 Numeric . 24
4.6.4 Boolean . 24
4.6.5 Date . 24
4.6.6 Geo-point . 24
4.6.7 Object . 24
4.6.8 Array . 24
4.6.9 Nested . 24

4.7 Analysis . 25
4.7.1 Character filters . 25

viii

4.7.1.1 HTML filter 25
4.7.2 Tokenizer . 25
4.7.3 Token filters . 25

4.7.3.1 Lowercase filter 25
4.7.3.2 ASCII folding filter 25
4.7.3.3 Stemmer filter 27
4.7.3.4 Hunspell filter 27
4.7.3.5 Keyword repeat filter 27
4.7.3.6 Unique filter 27
4.7.3.7 Synonym filter 27
4.7.3.8 Stop filter . 28

4.8 Queries . 28
4.8.1 Text queries . 28

4.8.1.1 Match Query 28
4.8.1.2 Phrase Query 28

4.8.2 Term queries . 29
4.8.2.1 Term Query 29
4.8.2.2 Prefix Query 29
4.8.2.3 Range Query 29
4.8.2.4 Function Score Query 29

4.8.3 Compound queries . 29
4.8.3.1 Dis Max Query 29
4.8.3.2 Bool Query . 30

4.8.4 Filter . 30
4.9 Conclusion . 30

5 Design 33
5.1 Mapping . 33

5.1.1 Languages . 33
5.1.2 Data denormalization 33

5.2 Analyzer . 34
5.2.1 English analyzer . 34
5.2.2 Czech . 35
5.2.3 Default analyzer . 35

5.3 Query . 35
5.3.1 Languages . 35
5.3.2 Combining queries . 36
5.3.3 Typos . 36
5.3.4 Common words . 36
5.3.5 Code . 36
5.3.6 Name . 36
5.3.7 Continent, Country and Category 37
5.3.8 Short description . 37
5.3.9 Long description . 37

ix

5.3.10 Leader . 37
5.3.11 Location . 37
5.3.12 Organisation . 37
5.3.13 Results . 37

5.4 Indexing changes . 38
5.5 Security . 39

5.5.1 Network . 39
5.5.2 Search query . 39

5.6 Privacy . 39
5.7 Cluster . 39
5.8 Conclusion . 39

6 Realization 41
6.1 Analyzers . 41

6.1.1 AnalyzerInterface . 41
6.1.2 Mapping generation . 42

6.2 Indexing . 42
6.2.1 Fields . 42
6.2.2 Project Document class 42
6.2.3 Bulk indexing . 43
6.2.4 Project indexer class . 43
6.2.5 Index command . 44

6.3 Query construction . 44
6.3.1 Transformers . 44
6.3.2 Search service . 44
6.3.3 Search facade . 44
6.3.4 Pagination . 45
6.3.5 Tuning relevance . 45

6.4 Tools . 45
6.4.1 Git . 45
6.4.2 Kibana . 46
6.4.3 Xdebug . 46
6.4.4 Blackfire.io . 46

6.5 Conclusion . 47

7 Testing 49
7.1 Manual testing . 49
7.2 Integration tests . 49
7.3 Static analysis . 51

7.3.1 PHP Parallel Lint . 51
7.3.2 PHPStan . 52
7.3.3 PHPMD . 52

7.4 Monitoring . 52
7.4.1 Prometheus . 52

x

7.4.2 Metrics . 53
7.4.3 Grafana . 53

7.5 Conclusion . 53

8 Possibilities 55
8.1 Analytics . 55

8.1.1 AB testing . 56
8.1.2 User signals . 56

8.2 UI . 56
8.2.1 Autocomplete . 56
8.2.2 Autoloading results . 56

8.3 Rerank . 56
8.4 Quality rank . 57
8.5 Preprocess query . 57

8.5.1 Taxonomies . 57
8.5.2 Translation . 57

8.6 Similarity tuning . 58
8.7 In-place update of donations 58
8.8 Pagination without offset . 58
8.9 Cache . 58

Conclusion 59

Bibliography 61

A Glossary 69

B Contents of enclosed CD 71

xi

List of Figures

2.1 Entity-Relationship Diagram (ERD) of HS project 9
2.2 Screenshot of current search . 11

4.1 Custom analyzer - transformations [45] 26

5.1 Denormalized data of HS project 40

7.1 Graph of CPU usage during indexing 54

xiii

List of Listings

1 Example of a bool query . 31
2 Example of an integration test 51

xv

Introduction

HelpStone1 (HS) is crowdfunding platform for non-profit organizations (NGOs).
Its principle resembles Kickstarter2, but instead of new products and services
it helps fund projects which aim to make the world a better place. HS it-
self is a NGO and is funded by voluntary donations just like the projects it hosts.

“HelpStone has made it its mission to help people in need all around the world,
and to support education, the environment, endangered species, science, culture,
sport, the arts, as well as every credible non-profit project.” [1]

Since HS aims to accommodate many projects, it also needs to provide a good
way for people to find a project which they are willing to donate their money to.

To do so, I am going to implement a new search module, which will help
users find a project aimed at a cause they see as worthy of their money. I chose
this as a topic for my bachelor’s thesis because I am interested in search and
I like the idea HS is built on.

Search is important because in contrast to browsing a site link by link, it
is a lot more dynamic interaction which allows the user to find desired content
a lot quicker. Unlike navigating a site link by link or by using Simple Query
Language (SQL), user’s fulltext queries are not an exact filter that simply
matches a set of results. For example, when users search inside YouTube3 for
“cute cats” they are looking for videos that contain cute cats and aren’t really
interested in the video’s title nor description. Video titled “silly kittens” might
contain exactly what they want to see, while not containing any of the words
they searched for.

1https://helpstone.org
2https://kickstarter.com
3https://youtube.com

1

https://helpstone.org
https://kickstarter.com
https://youtube.com

Introduction

In order to serve the users results they will be satisfied with, search con-
nects multiple science disciplines together. For example, natural language
processing to better match words that are related to each other, statistics
to identify which items are better match for a query, distributed systems to be
able to search on large data sets and many others.

When I use pronoun “we”, then I am talking about information or deci-
sion that comes from HS project and it is not subject of this thesis to verify or
prove its correctness. When I use the pronoun “I”, then I am talking about
what I have done while working on this thesis.

Upper indexes are references to footnotes, they contain links to entities men-
tioned in the text. Numeric indexes inside square brackets are citations and
lead to bibliography.

2

Chapter 1
Goals

The ultimate goal is to provide users with the ability to find a project they
will want to donate to. To achieve this goal I first need to summarize existing
system in order to identify requirements. Based on this information I will
compare different search engines, select best fit and implement new search
based on it. This can be broken down into following tasks:

• Analyze requirements provided by HS.

• Summarize technologies HS uses to implement server side system and
identify technological requirements.

• Summarize relational data model used for storing projects.

• Identify shortcomings of current search implementation.

• Compare existing search engines and find one fitting those requirements.

• Design data model and search queries for selected search engine.

• Implement new search module using selected search engine.

• Create a method to index current data to search engine and continuously
index changes.

3

Chapter 2
HelpStone

In introduction I briefly explained HelpStone’s mission. In this chapter I will
describe HS more in depth, summarize it’s technical aspects and identify re-
quirements. Based on this information I will be able to select fitting search
engine and design entire search module.

In this chapter I use certain words to signify requirement level. Those words
are taken from RFC 2119 [2].

• MUST as “an absolute requirement. . . ”

• MUST NOT as “an absolute prohibition. . . ”

• SHOULD as “there may exist valid reasons in particular circumstances
to ignore a particular item. . . ”

• SHOULD NOT as “there may exist valid reasons in particular circum-
stances when the particular behavior is acceptable or even useful. . . ”

• MAY as “an optional item. . . ”

2.1 How HelpStone works

Knowing how HS works is necessary to understand what the users are likely
to search for and what the data they search in look like.

NGOs can create multiple projects for different activities they do. Every project
has its own page with detailed information and a credit card gateway which
people can use to send their donations. All project pages also contain contacts,
which lead directly to the organisation, so anyone can get their questions
answered directly from the organisation. NGOs can also publish their bank
account information on their project page, which allows people to bypass HS

5

2. HelpStone

altogether and send their donations directly to their chosen organisation. How-
ever international bank transfer fees are costly and sending money via HS
using a credit card saves more money for the actual project.

When users send a donation of certain amount via HS, they receive an actual
HelpStone stone on a bracelet, with unique code of the project they donated
to, as a reminder of their good deed. More information about HelpStone can
be found at https://helpstone.org.

An ideal example, of a non-profit organisation HelpStone supports, is green-
books.org. Their mission is promoting eco-literacy by creating libraries and
children’s books.

2.2 Software

In this section I will summarize software, programming languages and frame-
works used by HS and formulate technological requirements based on my
findings.

2.2.1 Docker

Docker4 is software for running applications and services inside containers,
an alternative to visualizing entire machine. All software is run inside multiple
connected docker containers. Docker runs linux and itself runs on linux.

To integrate well into existing technological stack, new search solution MUST
be linux and docker compatible.

2.2.2 MySQL

All data is stored in relational database MySQL5 version 5.7 using InnoDB6

engine.

Search module MUST be able to work with data stored inside MySQL.

4https://www.docker.com/
5https://www.mysql.com/
6https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html

6

https://helpstone.org
green-books.org
green-books.org
https://www.docker.com/
https://www.mysql.com/
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html

2.2. Software

2.2.3 PHP

Language used for server side programming is PHP7 version 7.1. Newer ver-
sions of PHP, specifically 7.08 and 7.19, introduced important features into
PHP.

Search module MUST be built using PHP, and SHOULD use new features
from version 7.0 and 7.1 in order to achieve higher code quality.

2.2.4 Symfony

Application is written using Symfony framework10 version 3.4. Which is an OSS
framework for creating web applications.

Search module MUST use Symfony tools, specifically its dependency injection
container.

2.2.5 Doctrine 2 ORM

Doctrine ORM is Object Relational Mapper11 (ORM) used to map PHP ob-
jects to relational database’s tables. It is an abstraction over Doctrine DBAL12,
which is a language abstraction over SQL.

In order to keep database abstracted just like the rest of the application,
search module SHOULD use Doctrine Query Language13 (DQL) to gather
data from the database.

2.2.6 RabbitMQ

RabbitMQ14 is a message queue implementing the Advanced Message Queuing
Protocol15 (AMQP). HelpStone utilizes RabbitMQ using publisher-subscriber
pattern. When user performs certain actions, new message is published and
subscribers waiting for different messages then asynchronously perform tasks
like sending emails, generating image thumbnails and processing donations.

Search module MAY use it if a need arises.
7https://php.net
8http://php.net/releases/7_0_0.php
9http://php.net/releases/7_1_0.php

10https://symfony.com
11https://www.doctrine-project.org/projects/orm.html
12https://www.doctrine-project.org/projects/dbal.html
13https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/reference/

dql-doctrine-query-language.html
14https://www.rabbitmq.com/
15https://www.amqp.org/

7

https://php.net
http://php.net/releases/7_0_0.php
http://php.net/releases/7_1_0.php
https://symfony.com
https://www.doctrine-project.org/projects/orm.html
https://www.doctrine-project.org/projects/dbal.html
https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/reference/dql-doctrine-query-language.html
https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/reference/dql-doctrine-query-language.html
https://www.rabbitmq.com/
https://www.amqp.org/

2. HelpStone

2.2.7 Redis

HS is using Redis16 as a cache, to store data expensive to compute.

“Redis is an open source (BSD licensed), in-memory data structure store,
used as a database, cache and message broker. It supports data structures
such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps,
hyperloglogs and geospatial indexes with radius queries. Redis has built-in repli-
cation, Lua scripting, LRU eviction, transactions and different levels of on-disk
persistence, and provides high availability via Redis Sentinel and automatic
partitioning with Redis Cluster.” [3]

Search module MAY use it if need arises.

2.3 Data model

In this section I describe data and its relations. Overview can bee seen in
a diagram in fig. 2.1.

2.3.1 Translations

As mentioned earlier, HS is an international project. To allow people from all
over the world to use HS, it is desirable to translate projects into a language they
understand. Each project can be translated into any language, while english
translation is always required. This means that any information described in
this section can always exist in multiple language versions. Excluding things
that are not usually translated like names, addresses and numbers. In further
text “project translation” or “translation” refers to project representation in
specific language, while “project” refers to entire project with all its translations
and metadata.

2.3.2 Metadata

Projects contain metadata like continent, country, location name with address
and category. Although on most of these users can search using a filter, search
SHOULD also try to match them using full-text search. For example, query
“czech education” should also match a project with country “Czech Republic”
and category “education”.

16https://redis.io/

8

https://redis.io/

2.3. Data model

Figure 2.1: Entity-Relationship Diagram (ERD) of HS project

9

2. HelpStone

2.3.3 Text fields

In this subsection I describe text properties of a project. All of which MUST
be searchable using full-text search.

Information about organisation behind the project.

• Name

• Website

• Phone

• Contact person

Information about the project.

• Name

• Short description (displayed in lists)

• Long description

• Direct bank account information (if made public by the NGO)

• Project leader - name and title of person leading the project

2.3.4 Timeline

Timeline entries are short messages comparable to Twitter17 Tweets or Face-
book18 status updates. They can also be translated into other languages. HS
is trying to motivate NGOs to share updates on their project via timeline posts
to keep donors updated on progress their donations helped achieve.

Timeline entries MUST be searchable using full-text search.

2.3.5 Size

HelpStone is multilingual and in theory each project can be translated to
any and all of existing languages. At the moment HS project recognizes 184
languages.

Based on estimation made by HS project, new search module MUST be
able to handle 4000 projects, each having 5 translations on average. Typical
project translation is expected to have about 4000 characters.

17https://twitter.com
18http://facebook.com

10

https://twitter.com
http://facebook.com

2.4. Current search

Figure 2.2: Screenshot of current search

2.4 Current search

Current search allows users to input their query into single text field and
check several checkboxes to further narrow their query results. In fig. 2.2 is
screenshot of current search user interface.

11

2. HelpStone

2.4.1 Features

Current search implementation can:

• Find direct, letter to letter, text matches of entire user query.

• Filter based on category, continent, country and raised money.

2.4.2 Missing features

Current search implementation cannot:

• Sort by relevance, all returned results have the same relevance to user’s
query.

• Find text that is relevant to the query but is not direct, letter to letter,
match to user’s query. For example, query “animals” does not match
text “animal”.

2.4.3 Implementation

Current implementation uses SQL queries to find results. It first concatenates
all searchable columns into one and then searches it using the “like” operator19.
Because it uses concatenation and like clause each search, query scans entire
text which cannot be sped up using index.

2.5 Requirements
In this section I summarize search requirements imposed by HS project.

2.5.1 Functional requirements

In context of this thesis, functional requirements primarily define what data
should the user be able to search in and how should the search behave.

2.5.1.1 User interface

Current user interface UI was designed to fit the website and not be cluttered
with too many options. New implementation MUST NOT change existing
search UI.

2.5.1.2 Stone

Highest quality projects get assigned a stone. User MUST be able to search
projects that do or don’t have it.

19https://dev.mysql.com/doc/refman/5.7/en/string-comparison-functions.html

12

2.5. Requirements

2.5.1.3 Code

Code is Unique identifier (UID) of a project hosted on HS. There are two types
of codes, each project has one five-letter code and if a project has been assigned
a stone, it also has a four-letter code from the stone (described in section 2.1).
This code is physically on HS stones and people need to be able to find a project
based on it. When user’s query matches a code, it MUST be the first result,
or if it is only result user MUST be redirected directly to the project page.

2.5.1.4 Date

Projects are marked with date they were created and date of the last update.
Search module SHOULD allow searching for projects created or updated in
a certain time period.

2.5.1.5 GPS coordinates

Although current search UI does not support searching projects based on GPS
location or a “search near me” function, it is a feature that is considered for
the future. Search module SHOULD be able to work with GPS coordinates.

2.5.1.6 Filtering

Filters generally work as yes/no query, removing all items that do not match.
For example, with filter for categories “education” and “children” only projects
matching both categories will be returned.

These filter queries often filter out results unfairly because it excludes items im-
mediately behind the edge of filter, which the user might still find relevant. In
this case results matching both categories SHOULD be before results matching
only one category. It is only SHOULD because filtering is usually used with
a search text, in which case items matching text and one category SHOULD
be returned before a project matching only categories. Items matching no
category SHOULD NOT be returned.

2.5.1.7 Languages

Since HS is multilingual, the search module MUST support searching in all
different translations of a project. To store multilingual data search module
MUST be able to work with UTF-8 text.

Because users likely don’t speak all languages, search MUST prefer projects
which have a translation in a language the user understands.

13

2. HelpStone

2.5.1.8 Synonyms

Some words have synonyms, search SHOULD be able to match projects using
synonyms. For example, “Czech Republic” and “Czechia” are according to
the United Nations Terminology Database [4] long and short versions of our
country’s name. Other possible synonyms are country ISO codes “CZE” and
“CZ” [4]. Therefore searching for one SHOULD have same results as searching
for the others.

Another case are words that do not represent same thing, but are related
or people often confuse them. An example would be “tornado” and “hurricane”
which differ in size, speed, and several other attributes [5] but are similar in
damage and appearance. Search SHOULD be able to handle synonyms.

2.5.1.9 Typos

Users often mistype a word or make a spelling mistake. Search SHOULD be
able to handle simple typos.

2.5.1.10 Diacritics

Some languages, like czech, make use of diacritics. However it is common for
users, especially on mobile devices, to type words without diacritics. Search
SHOULD be able to match words with diacritics to word without it. For
example, word “český” should match word “cesky”.

2.5.2 Non-functional requirements

2.5.2.1 Sensitive data

NGO’s privacy must be respected. Search module MUST index and search
only in data that are publicly accessible via HS website. Any other data MUST
NOT leave the HS database.

2.5.2.2 Technology compability

Search module MUST use only technologies that are compatible with cur-
rent HS technology stack, specified in section 2.2. HS prefers open source
technologies.

14

2.6. Conclusion

2.5.3 Data size

Search module must be able to handle data of size described in section 2.3.5.

2.5.3.1 Maintainability

Technology used to build the search module MUST be stable.

• MUST have a table release.

• MUST be used by established projects.

• SHOULD be backed by a company that actively develops it.

2.6 Conclusion
I went over current state of search, what is working and isn’t working, explored
used technologies and identified requirements. Now, based on this information,
I must find a search engine which will allow me to create a search module
fulfilling these requirements.

15

Chapter 3
Existing technologies

In this chapter I go over several search engines, describe their main features
and differences to other search engines. And in conclusion (section 3.5) I select
a search engine which I will use to implement new search module.

3.1 MySQL

MySQL has support for full-text search using the fulltext index and the match
function20 while querying.

MySQL splits text into words and indexes them using inverted index. How-
ever it does not perform any language analysis, such as removing affixes or
diacritics [6]. Its search language is fairly simple and I deem it unsatisfactory
for my use case [7].

It is however possible to perform text analysis like stemming or diacritics
removal on application level and then index and query preprocessed text.

3.2 Lucene Core

Apache Lucene Core is “a high-performance, full-featured text search engine
library written entirely in Java. It is a technology suitable for nearly any appli-
cation that requires full-text search, especially cross-platform.” [8]. It is licensed
under the Apache License, Version 2.0 [8].

20https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html#function_match

17

https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html##function_match

3. Existing technologies

According to [8], some of its attributes are:

• “index size roughly 20–30% the size of text indexed”

• “many powerful query types: phrase queries, wildcard queries, proximity
queries, range queries and more”

• “fielded searching (e.g. title, author, contents)”

• “allows simultaneous update and searching”

Lucene itself is only a search library [8] which other tools use to perform search.
It is possible to use Lucene directly inside an application, but it requires
the developer to solve a lot of problems which can be solved using an existing
search engine, which offers a higher level API. Search engines based on Lucene
are, for example, Elasticsearch described in section 3.3 and Solr described
in section 3.4.

3.3 Elasticsearch

Elasticsearch21 is distributed [9] search engine server based on Apache Lucene [10].

“Elasticsearch is a highly scalable open-source full-text search and analytics en-
gine. It allows storing, searching, and analyzing big volumes of data quickly and
in near real time. It is generally used as the underlying engine/technology that
powers applications that have complex search features and requirements.” [11].

It is licensed under the Apache License 2.0 [12]. While being OSS, it is
also backed by a company named Elastic22. Elastic offers additional plugins
and licenses with support [13]. Elastic also maintains documentation23.

Elasticsearch provides language analysis out of the box with prepared language
analyzers [14]. It also provides complex, JSON based, query language [15].

Elasticsearch is linux compatible and can run inside Docker using an offi-
cial image [16]. PHP libraries for Elasticsearch exist, for example Elastica24.
Elasticsearch is compatible with non-functional requirements defined in sec-
tion 2.5.2.

21https://www.elastic.co/products/elasticsearch
22https://elastic.co
23https://www.elastic.co/guide/index.html
24https://github.com/ruflin/Elastica

18

https://www.elastic.co/products/elasticsearch
https://elastic.co
https://www.elastic.co/guide/index.html
https://github.com/ruflin/Elastica

3.4. Solr

3.3.1 Maturity

To asses how mature Elasticsearch is, I looked for companies that use it in
production for years.

ThoughtWorks25 marked Elasticsearch as production ready in their Tech-
nology Radar in 2013 [17].

GitHub26 is using Elasticsearch to index over 8 million code repositories with
over 2 billion documents, serving 300 search requests per minute on average [18].

In 2014 Wikimedia moved to Elasticsearch and uses it for all their sites.
As one of the reasons why they prefer Elasticsearch to other tools they write
“Elasticsearch’s super expressive search API lets us search any way we need to
search and gives us confidence that we can expand on it. Not to mention we
can easily write very expressive ad-hoc queries when we need to.” [19].

“The New York Times put all 15 million of its articles published over the last
160 years into Elasticsearch” [20].

3.4 Solr

Apache Solr27 is a search engine server and is a part of the Lucene project and
uses Lucene Core to perform search.

“Solr is highly reliable, scalable and fault tolerant, providing distributed index-
ing, replication and load-balanced querying, automated failover and recovery,
centralized configuration and more. Solr powers the search and navigation
features of many of the world’s largest internet sites.” [21]

Solr is an Apache Foundation [21], which is a strong argument for project
stability.

Solr offers out of the box language analyzers [22]. It also offers several query
languages Standard, DisMax and, Extended DisMax [23, 24, 25].

Solr is linux compatible and can run inside Docker[26]. PHP libraries for
Solr exist, for example Solarium28. Solr is compatible with non-functional
requirements defined in section 2.5.2.

25https://www.thoughtworks.com
26https://github.com
27http://lucene.apache.org/solr/
28https://github.com/solariumphp/solarium

19

https://www.thoughtworks.com
https://github.com
http://lucene.apache.org/solr/
https://github.com/solariumphp/solarium

3. Existing technologies

3.4.1 Maturity

To asses how mature Elasticsearch is, I looked for companies that use it in
production for years. Solr’s list does not contain information how long each
company uses it. Solr is, for example, used by Nasa, Netflix, Disney and
Apple [27].

3.5 Conclusion
Based on descriptions and users of these search engines, I chose Elasticsearch.
It fulfils all non-functional requirements specified in section 2.5.2 and has all
the necessary features to implement functional requirements specified in sec-
tion 2.5.1.

To be able to design and implement search module using Elasticsearch, I need
to explore it more in depth, which I will do in the next chapter.

20

Chapter 4
Elasticsearch theory

I briefly described Elasticsearch in chapter 3, in this chapter I go more in depth
and into concepts behind it.

4.1 Inverted index

Usual representation of text document is an ordered list of words. To find out
in which documents a word is present, one has to traverse entire text of each
document and try to find the word. An inverted index takes different approach.
Each word has a list of document IDs in which the word occurs [28]. Searching
for documents that contain a set of words means traversing the index for each
word and finding document IDs common for all of the words.

4.2 Relevance

Relevance is used to measure quality of search. A “relevant result” or “relevant
item” to a query is an item that the users would like to see when they search.
An “irrelevant result” is an item that is returned, but the users think it is
irrelevant.

To measure how good a search is, there are several metrics. The most common
being recall and precision. Following measurements expect we have manually
marked what items are relevant for our query.

4.2.1 Recall

Recall indicates how many relevant items are missing from results. A search
engine that would return all items in the database for each search would have
100% recall, because all relevant items would be present for sure.

21

4. Elasticsearch theory

4.2.2 Precision

Precision indicates how many items from results are relevant. A search engine,
that would return only single and relevant item, would have precision 100%.

4.2.3 Recall and Precision relation

Good search tries to maximize both these metrics. Having returned all relevant
results and only relevant results returned is the perfect result.

4.3 Ranking and Scoring

To allow high recall, while not compromising precision, searches usually im-
plement result ordering, also called ranking. Rank of an item inside results is
usually based on a score. This puts more relevant items before the less relevant.
Score is numeric representation of how much an item is relevant to the query.
For example, when searching “endangered animals in Africa”, document which
contains all of these words will have higher score than a document that con-
tains only words “animals” and “Africa”. Score is computed based on term
frequencies.

4.4 Term frequency

Simple inverted index described in previous section can only answer whether
there is a word present inside a document, yes or no question. But in text,
different words have different importance. To measure importance of words,
search typically uses statistics of word frequencies.

The statistics are usually computed for two different cases, for each field
in document and for field across entire index [29]. The more times a word
is present in a field in document, the more it is important to the document.
The more documents in index contain the same word in the field, the less it is
important overall.

For example, words “the”, “and”, “or” are common for most english texts,
therefore it is not that important for each text. The word “tiger” is uncommon,
therefore tiger is important to the document.

Elasticsearch uses BM25, which is an algorithm that computes a score based
on term frequencies [30].

22

4.5. Cluster

4.5 Cluster

Elasticsearch is a distributed system, which allows it to scale horizontally
the number of searches and the amount of data searched.

Running Elasticsearch instances are called nodes, they are connected over
a network and together they form a cluster. Adding more nodes means adding
new servers.

To scale an index in Elasticsearch cluster, data are stored in shards [31].
Shards are distributed inside cluster in order to utilize hardware. A shard
is lucene index and Elasticsearch uses two types of shards, primary and replicas.

Primary shards split all the incoming data between themselves and searching
then searches in all of them and combines the results. Having more primary
shards allows for storing and searching large data.

Replica shards are copies of primary shards [32]. Adding more replica shards
allows for cluster to work after a primary shard fails. Also replicas can handle
search requests, so adding more replicas increases the number of searches
cluster can handle.

Because the amount of data is not expected to outgrow a single primary shard
in near future, clustering is not further looked into in this thesis. More infor-
mation about Elasticsearch scaling can be found at https://www.elastic.co/
guide/en/elasticsearch/guide/current/scale.html.

4.6 Data types

Elasticsearch stores its data as documents, using JSON as a representation [33].
Because JSON type system is simpler than the Elasticsearch type system,
there is also a separate way to specify types for fields. If a mapping is not
specified, Elasticsearch guesses the type and creates mapping automatically.

Once a mapping for a field is set, it is impossible to change it. It is pos-
sible only to add a new field. If changing a field is required then reindexing is
necessary.

In following sections I describe several important data types.

4.6.1 Text

This data type is used to store analyzed text for full-text search [34].

23

https://www.elastic.co/guide/en/elasticsearch/guide/current/scale.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scale.html

4. Elasticsearch theory

4.6.2 Keyword

Keyword type is not analyzed and is not full-text searchable [35]. It is intended
for matching entire field content using term queries29.

4.6.3 Numeric

Numeric data type is used to store numbers, similar to programming languages
it offers types of different length like “long”, a signed 64-bit integer or “double”,
a single-precision 32-bit IEEE 754 floating point number [36].

4.6.4 Boolean

Boolean is used to store true/false values [37].

4.6.5 Date

Used to store date and time with millisecond precision [38].

4.6.6 Geo-point

Storing geographical coordinates is done using geo-point, which is data type
composed of longitude and latitude [39].

4.6.7 Object

Elasticsearch is a document database and because document database doesn’t
follow normalization forms known in relational databases, it keeps all data
inside the document. In case of Elasticsearch documents are represented by
JSON and it can contain inner objects. This data type indicates that a field
itself is an object [40].

4.6.8 Array

In Elasticsearch every field can be used as an array, so it does not have
a dedicated array data type [41].

4.6.9 Nested

“The nested type is a specialised version of the object data type that allows
arrays of objects to be indexed and queried independently of each other.” [42]

29https://www.elastic.co/guide/en/elasticsearch/reference/6.2/term-level-
queries.html

24

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/term-level-queries.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/term-level-queries.html

4.7. Analysis

4.7 Analysis
Analysis is a process of converting text into more searchable form [43]. The most
basic step is splitting text into words. Additional transformations are usually
applied like removing HTML tags, removing diacritics, converting words to their
base form. Analysis is performed both at indexing and searching, the analyzer
is usually same both times [44]. Analysis is performed in steps that take
output from one step as an input to another An example analyzer can be seen
in fig. 4.1.

4.7.1 Character filters

“A character filter receives the original text as a stream of characters and can
transform the stream by adding, removing, or changing characters.” [46]

4.7.1.1 HTML filter

HTML filter is a character filter, which removes non-visible HTML content
such as tags with attributes, leaving only their text content [47]. For example,
“<p class="cls">Some text</p>” will be transformed to “Some
text”.

4.7.2 Tokenizer

Tokenizer’s role is to split text into tokens [48]. Splitting is usually meant to
split text by words, using whitespace or word delimiting characters like comma
or a dot. Splitting is also possible based on a specific pattern, for example IP
address.

4.7.3 Token filters

Token filters process a stream of tokens and try to transform each token in
a way that makes it more suitable for searching [49].

4.7.3.1 Lowercase filter

Lowercase filter is a token filter that normalizes token to lower case [50].
A token “Prague” will be transformed to “prague”

4.7.3.2 ASCII folding filter

ASCII folding filter tries to transform non-ASCII characters to similar ascii
character if one exists [51]. For example, “À”, “Á”, “Â”, “Ã”, “Ä”, “Å” all
would get transformed to “A”. It also have a parameter “preserve_original”
which duplicates the token and transforms only one of them, leaving the original
intact.

25

4. Elasticsearch theory

Figure 4.1: Custom analyzer - transformations [45]

26

4.7. Analysis

4.7.3.3 Stemmer filter

Stemmer token filter tries to reduce a word to its base form [52]. For example
by removing prefix and suffix. Stemming usually implies algorithm based on
a language specific set of rules. These rules are not perfect and sometimes
they stem two different words into one that means something different.

Words “argue”, “argued”, “argues”, “arguing”, and “argus” will get trans-
formed into word “argu”. While the first four words are related, argus is a bird
or giant in Greek mythology.

It also has trouble matching irregular words such as “goose” and its plu-
ral “geese”. Those get stemmed as “goos” and “gees”, which means searching
for one will not match the other. There is also a dictionary based stem-
ming, usually called lemmatization, which has its own downside discussed
in section 4.7.3.4.

4.7.3.4 Hunspell filter

Hunspell token filter provides dictionary stemming, usually referred to as
lemming [53]. Because it is dictionary based, this filter is only as good as its
dictionary. Uncommon, new or slang words will stay unanalyzed.

4.7.3.5 Keyword repeat filter

This filter takes a token stream and outputs each token twice, once as a keyword
and once as a non-keyword [54]. A keyword marked word will not be stemmed
and will be indexed alongside the unstemmed word.

4.7.3.6 Unique filter

Unique filter is a token filter that removes duplicates from analyzed text. It
has an option only_on_same_position which removes duplicates only if they
are on the same position in text [55]. This is useful when different filters create
duplicates, for example, when using a keyword repeat filter with a stemmer
stemmer that doesn’t know how to stem the word.

4.7.3.7 Synonym filter

Synonym filter is a token filter that handles searching for synonyms [56]. There
are two ways it can work, one is by indexing all the synonyms at the same
position in text, the other is converting all the synonyms to the same word.

27

4. Elasticsearch theory

4.7.3.8 Stop filter

Stop token filter removes stop words based on a list of stop words [57]. Stop
words are words that occur so often they loose meaning for search. The top
stop words in english language are the articles “a”, “an” and “the” and short
and common words “to”, “be”, “not”. They occur in all non-trivial texts and
searching for a word “the” will match virtually everything. That is why it is
common for search engines to ignore these words, so searching for “the prize”
is the same as searching for “prize”.

Stop words have downsides, some phrases are made entirely of stop words and
will match nothing, even though they have a meaning. An example of this is
“to be or not to be” which will get filtered to an empty string. Other cases
are phrases or names of organisations, where these words are important. In
different contexts different words are too common. For example, searching
“video about XYZ” is as useful as searching for “XYZ”.

4.8 Queries

In this section I introduce different query types, which are used to con-
struct Elasticsearch query.

4.8.1 Text queries

These queries are designed for full-text search. They utilize analyzers and
compute a score.

4.8.1.1 Match Query

According to [58] match query uses analyzers on text it is given and constructs
term queries from the analysed text. It can be specified how many words must
match minimum, which allows to tune precision. It can handle typos using
fuzziness, which generates words within specified edit distance. It also offers
cutoff frequency, which is an alternative to stop words. It dynamically removes
common words (those with high frequency), which is an advantage over a stop
word filter, which requires predefined list of words, which are language and
domain dependent. It can be set what frequency should be considered too
high.

4.8.1.2 Phrase Query

Similar to match query it first analyzes text, but when searching it looks only
for documents containing all of the searched words and in the same order as
in the query [59, 60].

28

4.8. Queries

4.8.2 Term queries

Term queries operate on the entire field, using it as one value.

4.8.2.1 Term Query

Term query looks for a field with exact match [61]. It is analogous to where
field=’value’ clause in SQL.

4.8.2.2 Prefix Query

Prefix query is similar to term query, but instead of exact match it is looking
for matching prefix [62]. That is if the field contains the searched string as
a prefix.

4.8.2.3 Range Query

Range query is used for searching on fields that can be ordered, like numbers
or dates [63]. It can search with operators less-than “lt”, less-than or equal
“lte”, greater-than “gt” and greater-than or equal “gte”. It can operate on
numbers, dates and lexicographically on strings [64].

4.8.2.4 Function Score Query

Function score query allows modifying the score of returned documents [65].
For example, using script score I can perform mathematical operations on

numeric fields and boost accordingly.
Another one is decay function which I can use to make documents further

from a coordinate or a date less important.

4.8.3 Compound queries

Compound queries are used to combine queries together [66]. They can combine
other compound queries as well.

4.8.3.1 Dis Max Query

“A query that generates the union of documents produced by its subqueries,
and that scores each document with the maximum score for that document as
produced by any sub-query” [67]

This is useful when searching the same text multiple times, using different
analyzers or queries (usually with different boosts) to find only the best match.

29

4. Elasticsearch theory

4.8.3.2 Bool Query

Bool query combines other queries using four different approaches “must”,
“must not”, “should” and “filter” [68]. Queries from “should” do not have to
match, they only add score. Queries from “filter” do not compute score, they
are true/false filter. All queries in “must” must match. All queries from “must
not” must not match. Scores from “must” and “should” are added together.

The following query finds all documents where “firstName” is “John”, lastName
is “Smith” with age between 18 and 30. Additional score will be added to
people which are alive. This query in bool representation in json format can
be seen in listing 1.

4.8.4 Filter

Elasticsearch recognizes two search contexts, query and filter [69].

Query context computes scores and sorts results based on it, returning only
results with non-zero score. Searching for “pink panther” will match items
that contain both words or one of the words, order of the words is not taken
into account. Advantage of query context is its high recall and ability to sort
results. The main disadvantage is speed. It also has lower relevance, but since
the results are sorted, all the non-relevant items are in the back.

Filter context does not compute score, it is evaluated as yes/no query, removing
items from results that do not match. Searching for “pink panther” will match
fields that are exactly “pink panther”. Advantage is its high relevance because
only items containing direct matches are returned. Since it uses direct matches
and no score, it is fast to compute and Elasticsearch is able to use cache.
Disadvantage is it’s low recall, where text “popular panthers are pink and
black” will not be matched.

4.9 Conclusion
Now that I explored how Elasticsearch works, including how it saves data
and the language used to query it, I can use this knowledge to design search
specifically for HS, which I will do in the next chapter.

30

4.9. Conclusion

{
"query": {

"bool": {
"must": [

{
"term": {

"firstName": "John"
}

},
{
"term": {

"lastName": "Smith"
}

}
],
"filter": {

"range": {
"age": {

"gte": 18,
"lte": 30

}
}

},
"should": [

{
"term": {

"deceased": 0
}

}
]

}
}

}

Listing 1: Example of a bool query

31

Chapter 5
Design

In this chapter I take theory about Elasticsearch from chapter 4, combine it
with knowledge about HS from chapter 2 and design a new search module.

5.1 Mapping

In section 4.6 I described several field types Elasticsearch supports. In this
section I am going to design a mapping to store HS projects.

5.1.1 Languages

Most important decision is how to handle languages, that is how to save project
translations. There are two prevalent ways, having separate index for each
language, issuing same query to all of them when searching, or saving it inside
single index and having a special query that is aware of languages.

After researching pros and cons of each way and a discussion with my supervi-
sor I decided to use single index, because we expect it will allow me to spend
more time working on query quality instead of configuring indexes.

Converting the single index solution into the multiple index one is fairly
straight forward. Create an index for each language and in each index only
create fields that are specific to the language or are language agnostic. Elastic-
search handles non-existing fields gracefully, simply anything trying to match
it returns no match. My query is designed to work even in this case.

5.1.2 Data denormalization

As I wrote in section 2.2, all projects are stored inside MySQL, which is
relational database. Project data is stored in normalized form in multiple
tables, connected using foreign keys. To store this data inside a document

33

5. Design

store like Elasticsearch I first must denormalize the data into single document
(JSON). The data was described in section 2.3 and can be best viewed in fig. 2.1.

I denormalized data by adding prefixes and storing them all in a single docu-
ment. Denormalization algorithm is as follows:

• Take field name

• Prefix it with table name

• If it is “to many” relation with different languages, duplicate it and prefix
each duplicate it with a language code

• If it is “to many” relation without language, map it as an array

Denormalized mapping with a translation to English and Czech can be seen
in fig. 5.1.

5.2 Analyzer

In this section I describe analyzers for two currently most common languages
used in HS. Using those analyzers fulfills functional requirements, described
in section 2.5.1, for handling synonyms and diacritics. Using tokenizer fixes
a flaw of current implementation, finding only direct matches, described
in section 2.4.2.

5.2.1 English analyzer

• HTML character filter

• Standard tokenizer

• Lowercase filter

• Czech synonyms filter

• Keyword repeat filter (to keep unstemmed version)

• Czech stemmer filter

• ASCII filter

• Unique filter (only on same position, to remove unstemmed tokens)

34

5.3. Query

5.2.2 Czech

• HTML character filter

• Standard tokenizer

• Lowercase filter

• English synonyms filter

• Keyword repeat filter (to keep unstemmed version)

• English stemmer filter

• ASCII filter

• Unique filter (only on same position, to remove unstemmed tokens)

5.2.3 Default analyzer

To provide search for other languages, I use a default analyzer, that should
provide basic analysis for all languages that use whitespace to delimit words.

• HTML character filter

• Standard tokenizer

• Lowercase filter

• English synonyms filter

• ASCII filter

5.3 Query
I described several different query constructs in section 4.8. In this section
I design a search query based on them.

5.3.1 Languages

Each project can have a translation into many, possibly all, languages. Which
means a translation is different representation of the same project. There-
fore it is not desirable to combine score from different translation, but to
use only the score from best matching translation. This prevents me from
using multi match query, which could result in combining score from different
languages (English title, Czech short description, German long description). To
solve this, the root query contains Dis Max Query (section 4.8.3.1) which has
subqueries for each language and keeps only score from best matching language.

35

5. Design

I used information from HTTP header, about what languages the user prefers,
to boost Dis-Max subqueries for those languages.

Because Elasticsearch performs analysis for each full-text field searched, search-
ing always all languages will be CPU intensive task. Should it become a problem,
it is possible to search only in fields in languages the user understands, based
on HTTP headers.

5.3.2 Combining queries

Because this is completely new implementation using different technologies,
I decided to optimize first for recall, second for ranking and last for precision.
This means I do not use yes/no filters, but instead combine score from all fields,
showing as results all items that match at least one thing. This is achieved
using two nested bool queries (described in section 4.8.3.2). Putting all text
queries into should clause of one bool query, which combines score from all of
them, but doesn’t require them all to match. This bool query is inside must
clause of the other bool query, which requires it to match at least one of its
text queries. Otherwise all items would be returned even if they don’t match
any text.

5.3.3 Typos

I am going to handle typos by using automatic fuzziness in all match queries.

5.3.4 Common words

To remove common words, instead of using stop words filter, I am going to
set cutoff frequency for match queries, so that common words are identified
automatically.

5.3.5 Code

To perform exact match I shall use term query. Code is very short, which
means there could be many false-positives when using non-exact match. Code
is also very important, because it is unique identifier, which means it should
have the highest boost.

5.3.6 Name

It should be analyzed and searched using match and match phrase. Project
name is short and important, it should have the second highest boost.

36

5.3. Query

5.3.7 Continent, Country and Category

I will implement search using match, to allow query like “czech children” match
country “Czech Republic” and category “children”. Because these fields have
limited number of values (are enumerable) and are short, they should have
third highest boost.

5.3.8 Short description

Because it is a free-form text, it will be matched using match query. Short
description is a text displayed in project lists, for example in search results.
Because it is the second text after project name the user sees, it must have
higher boost than the long description.

5.3.9 Long description

Because it is a free-form text, it will be matched using match query. Long
description is a text displayed only on project detail page. Because it is
the longest and free-form text, it should not be boosted.

5.3.10 Leader

Leader has name and position, both will be searched using match query.
Position is less important than name, so it has lower boost.

5.3.11 Location

Location has name and address, both will be searched using match query.

5.3.12 Organisation

Organisation name, address and website will be searched using match query.
Phone number will searched using prefix query.

5.3.13 Results

Elasticsearch allows retrieving entire document and showing it to the user, by-
passing MySQL entirely. Unfortunately Elasticsearch has eventual consistency,
but HS needs the user to always see up-to-date project, mainly because of
amount of donated money, which needs to be always current. To achieve that
I only load project IDs from Elasticsearch and then load current data from
MySQL. This also allows me to completely reuse current template for search
results.

37

5. Design

5.4 Indexing changes

In this section I describe how new projects or changes to existing ones are
saved to Elasticsearch.

When published project is updated or created, corresponding event is dis-
patched using the Symfony Event Dispatcher30. Listener takes this event and
publishes new message with request to (re)index a project into RabbitMQ
queue.

Consumer waiting for messages in queue takes the message, loads project
from database and sends update to Elasticsearch. To speed things up, if there
are multiple messages in the queue, consumer takes more of them and sends
them to Elasticsearch as a bulk request, described in section 6.2.3.

Using event listeners decouples search from project creation/update. Service
creating/updating projects only dispatches event (notification) that something
happened.

The event is dispatched after database commit, which prevents consumer
from trying to index something that was not yet saved in the database. How-
ever this creates eventual consistency, when Elasticsearch has saved an older
version of a project, user can still search for it. This is not big problem,
because Elasticsearch is used only to find IDs of projects and users are always
displayed current version from DB, so in worst case user is displayed an irrele-
vant, but up-to-date, project.

This window of inconsistency can be kept very small by scaling number of
consumers. Advantage of using queue is asynchronicity, if there was no queue,
then indexing the project would slow down the HTTP request. In worst sce-
nario, when search server is unavailable it would not index the changes, when
using queue, messages will get processed once the search server is available
again.

This eventual consistency also allows for multiple consumers to index changes
for the same project at the same time. This can occur when a project is
changed multiple times in short interval.

To make sure the newest change is indexed last (isn’t overridden by an older
version), Elasticsearch provides optimistic locking [70]. It allows documents

30https://symfony.com/doc/3.4/components/event_dispatcher.html

38

https://symfony.com/doc/3.4/components/event_dispatcher.html

5.5. Security

to be marked with a version number and when updating a document, Elas-
ticsearch checks that the changes contain version number higher(newer) than
the one present in the indexed document.

5.5 Security

5.5.1 Network

Elasticsearch servers accessible directly via network are vulnerable to malicious
attacks, because Elasticsearch does not have user authorization built in. It
is possible for attackers to download data, delete it from Elasticsearch and
request a ransom. The recommended way to secure Elasticsearch against these
attacks is to use private IP, accessible only from whitelist of clients [71].

Those whitelisted servers must construct queries themselves and not allow the
users writing their own Elasticsearch queries and only proxying them.

5.5.2 Search query

Sometimes there is user input that is malicious and modifies the query to do
something it should not. To make sure users aren’t able to alter queries in a way
they are not supposed to, all requests, (body, headers, url) are constructed
from predefined parts, user input is only used in predefined places and is
escaped.

5.6 Privacy
One of the requirements (section 2.5.2.1) is that only public data should be
indexed. This makes access control unnecessary.

5.7 Cluster
Because HS needs a search inside user created data that does not grow rapidly
and can reindex it in acceptable time, single primary shard will suffice. To
scale number of queries per second, replica shards can always be added.

5.8 Conclusion
Now that I designed how data should be stored and searched, it needs to be
implemented in accordance with non-functional requirements defined in sec-
tion 2.5.2.

39

5. Design

Figure 5.1: Denormalized data of HS project
40

Chapter 6
Realization

In this chapter I describe how I implemented my design from previous chapter.

6.1 Analyzers
Because HS must search multilingual data, all these localized texts need to be
properly analyzed in order to provide effective search.

6.1.1 AnalyzerInterface

To provide an easy way to add and change custom analyzers, I created a me-
chanic that loads analyzer definitions form PHP classes and creates them in
Elasticsearch. I created AnalyzerInterface, which defines methods for getting
information necessary to create Elasticsearch analyzers and few additional
methods that can answer questions like what fields and languages this analyzer
analyzes. Based on this information, the search module can automatically add
new analyzers to Elasticsearch and dynamically create new analyzed fields.

Method getName is used to identify analyzer, which is saved under this name
inside Elasticsearch.

Method supportsLanguage is used to identify which language this analyzer can
analyze. For example, the default analyzer which is language-unaware returns
always true. Method supportsField answers the question whether this analyzer
can analyze a specific field.

I can add different analyzer for name, description and organization website
by simply creating a new class defining the analyzer. Adding new analyz-
ers requires only creating new class implementing the AnalyzerInterface and
registering the class in Symfony Service Container31 with appropriate tag.

31https://symfony.com/doc/3.4/service_container.html

41

https://symfony.com/doc/3.4/service_container.html

6. Realization

The mapping class then receives all analyzers in an array as its parameter and
defines analyzed fields in the mapping. This allows for adding new analyzers
without changing existing code.

6.1.2 Mapping generation

Elasticsearch mapping is generated automatically from a list of searchable
fields (in MySQL) and a list of analyzers. It first creates mapping for all
un-analyzed fields, this is hardcoded inside the mapping generator. Then it
takes a list of languages, a list of analyzers and a list of fields and creates
mapping for analyzed fields. For analyzed fields it uses following algorithm:

• Iterate over languages

• Iterate over fields

• Find all analyzers that work with current field and language

• Create new field analyzed by this analyzer,
naming it languageName_analyzerName_fieldName

6.2 Indexing

In this section I describe how I implemented loading project data from MySQL
and indexing them in Elasticsearch.

6.2.1 Fields

Instead of duplicating strings containing field names in multiple places, I created
final class Fields which contains constants with field names. Constants are
public and a static method getAll uses reflection to get all constants and
returns them inside an array. I didn’t use enumeration type because PHP does
not have one.

6.2.2 Project Document class

Maps project properties to a document mapping inside Elasticsearch using
field name and information from analyzers.

For example two analyzers A and B, analyzing field name, one for Czech
and the other for English. Project Document then takes value from field name
and indexes it in cs_a_name and en_b_name.

When a Project Document is filled with all the data, it is converted to a JSON
document, which can be indexed inside Elasticsearch.

42

6.2. Indexing

6.2.3 Bulk indexing

Elasticsearch offers a special bulk operations for inserting, updating and delet-
ing documents [72]. Main advantage of bulk operations is speed, which can
speed up indexing throughput significantly compared to sending requests one
by one.

When indexing, the indexer creates a batch of Project Documents with data,
converts them to JSON and indexes them using the Batch API.

6.2.4 Project indexer class

Project indexer is the heart of indexing, where all parts come together. It is
responsible for loading data from MySQL, denormalizes them by adding data
to Project Document and then indexes them in batches into Elasticsearch.

My first version of the indexer used naive approach, using the ORM’s getAll
method, however when indexing large, randomly generated data, it slowly
consumed all memory, including the swap and eventually crashed.

This was because ORMs are meant for transactional operations, loading an en-
tity from database, performing an action and saving the changes. Because it
hydrates objects and keeps copies to perform dirty checking32, using ORM
consumes a lot of CPU and memory. Because loading data to be indexed
in different system is one-way process,I do not need the ORM’s features for
tracking changes. So I loaded the data using the DQL into arrays instead of
objects. Due to the way MySQL handles chained one to many joins, a query
that fetches everything at once duplicates a lot of data, returning lots of rows
for one translation. This uses a lot of memory in the PHP process and makes
putting the data inside Project Document harder. To speed things upI first load
category, country and continent translations, store them inside an associative
array and perform join in the application level. It is more efficient, because
these entities are fixed, their number does not grow during application lifetime,
but the number of projects does.

By doing so, each project translation is a row of SQL results, ordered by
project ID. NowI just go over the rows, combining all that have same project
ID. I can also load rows in batches, which saves memory and is necessary for
working with larger data.

32https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/reference/
change-tracking-policies.html

43

https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/reference/change-tracking-policies.html
https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/reference/change-tracking-policies.html

6. Realization

This implementation made the indexing not crash, use a lot less memory,
approximately the size of a batch multiplied by the size of the largest project
and it consumes less CPU time.

6.2.5 Index command

To execute the process of indexing I created a Command Line Interface (CLI)
application using the Symfony framework Console component33. It is a library
that helps with creating CLI applications, by providing helpers for parsing
input and formatting output.

6.3 Query construction

I created domain specific query builder, searching for a matching value is done
by calling a method searchBy with parameters field name and the searched
value. This method can be called for multiple times for the same field, in which
case it searches for both values, adding their score together. It saves the field
names and values and when converting this object into Elasticsearch query it
calls corresponding transformer for each field.

6.3.1 Transformers

Each field has a transformer, it is a class that knows how a field should be
queried and generates corresponding Elasticsearch query for searched values.
Each transformer knows how its query is important and boosts it accordingly.
In addition, transformers also boost languages the user understands.

6.3.2 Search service

Search service encapsulates Elasticsearch client from the rest of the search
module. It takes HS search query, converts it to Elasticsearch query and
performs search using the Elasticsearch client.

6.3.3 Search facade

Search facade is an intermediary between user input and search service. Con-
troller uses Symfony Forms34 and parses HTTP request into a Data Transfer
Object (DTO), which is then passed to the search facade. Search facade
constructs a query based on data present in DTO. It then calls search service,
passing it the constructed query and returns search results. By using DTO
with facade pattern I decoupled user interface from query construction.

33https://symfony.com/doc/3.4/components/console.html
34https://symfony.com/doc/3.4/forms.html

44

https://symfony.com/doc/3.4/components/console.html
https://symfony.com/doc/3.4/forms.html

6.4. Tools

6.3.4 Pagination

HS uses KnP Components Pager35, which is a library for pagination. Old search
passed a Doctrine query object to the Pager and it, based on currently viewed
page, sets offset, executes the query and offers the results to template to iterate
over.

KnP Pager is designed to be extended. When query should be paginated, it
dispatches an event with a query, limit and offset. Listeners waiting for this
event then check whether they know how to paginate a query of its type and
return items if they can. I implemented new listener which can paginate HS
search query object, using the search service. By extending pagination I was
allowed to keep search results template intact.

Inside the paginator I am catching exception in case Elasticsearch index
does not exist, log it, and return zero results. When no match was found
template shows message no matching projects found and displays random
projects.

6.3.5 Tuning relevance

When I finished a working prototype of search, I tuned the importance of
queried fields. I started by using priority designed in section 4.8. Then I se-
lected few similar projects and selected words from their fields. Then I started
searching using combinations of these words, paying attention to results, mak-
ing sure no field was too important to skew results, adjusting field boosts
accordingly, until I was satisfied with the result ordering for all my test queries.

These boosts, or even entire query, is likely to be further tuned, when real
users start searching and giving feedback.

6.4 Tools

In this section I describe what tools I used during the development to create,
explore, verify or debug parts of my solution.

6.4.1 Git

Git36 is an open source distributed version control system [73]. HS uses it to
version its source code. During the development phase I created a branch for
my new search module, wrote code in iterative fashion, committing37 smaller

35https://github.com/KnpLabs/knp-components
36https://git-scm.com
37https://git-scm.com/docs/git-commit

45

https://github.com/KnpLabs/knp-components
https://git-scm.com
https://git-scm.com/docs/git-commit

6. Realization

units of code. I used rebase38 to reapply my commits on top of newest changes
from upstream. Before merging to upstream, I am going to squash39 my
commits into one logical commit without history of unsuccessful prototypes.

6.4.2 Kibana

Kibana40 is “an open source analytics and visualization platform designed to
work with Elasticsearch. Kibana can be used to search, view, and interact with
data stored in Elasticsearch indices.” [74].

It can display mapping information, which I used to check my generated
mapping was correct. Its discover41 feature allows browsing indexed data and
running queries.

It offers developer console42 which sends requests directly to Elasticsearch and
displays formatted results. This console is useful in combination with several
Elasticsearch API endpoints that help with debugging queries and text analysis.

The _analyze endpoint takes as an input text and analyzer name and re-
turns analyzed tokens [75]. I used this feature to debug my custom analyzers.

The _explain endpoint takes a query and returns information about docu-
ment score for each subquery [76]. I used this feature to debug my search query.

It also has special UI to profile the performance of search queries43.

6.4.3 Xdebug

Xdebug44 is a PHP extension which provides a debugger [77]. I used it to step
through query generation when generated query wasn’t what was intended.

6.4.4 Blackfire.io

To profile my solution and fix some bottlenecks during development I used
Blackfire45. It is Performance Management Solution which can profile time,
memory, and I/O of execution of PHP requests [78]. It can also display
comparisons between two profiles to see changes in performance. Blackfire can
be used as part of continuous integration using performance assertions.

38https://git-scm.com/docs/git-rebase
39https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History#_squashing
40https://www.elastic.co/products/kibana
41https://www.elastic.co/guide/en/kibana/6.2/discover.html
42https://www.elastic.co/guide/en/kibana/6.2/console-kibana.html
43https://www.elastic.co/guide/en/kibana/6.2/xpack-profiler.html
44https://xdebug.org
45https://blackfire.io

46

https://git-scm.com/docs/git-rebase
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History##_squashing
https://www.elastic.co/products/kibana
https://www.elastic.co/guide/en/kibana/6.2/discover.html
https://www.elastic.co/guide/en/kibana/6.2/console-kibana.html
https://www.elastic.co/guide/en/kibana/6.2/xpack-profiler.html
https://xdebug.org
https://blackfire.io

6.5. Conclusion

6.5 Conclusion
In this chapter I explained how I implemented my design. Implemented solution
at the time of writing this chapter contains over 3.5 thousand lines of code.
(not counting configuration, shell and other non-PHP files) In the next chapter
I am going to describe how I ensured this code is in good shape.

47

Chapter 7
Testing

In this chapter I describe what I did to ensure quality and correctness of my
implementation.

7.1 Manual testing

I went through existing projects and searched for different forms of important
words I found in them. I searched with different forms of words, words in
different order, with different ASCII characters, with typos and with synonyms.
I also searched for metadata like countries or categories. By doing so I verified
my implementation was able to search in real-world data and it fulfils all
functional requirements specified in section 2.5.1.

I also my search implementation to a HS representative, who was satisfied with
the search results and accepted my implementation.

7.2 Integration tests

HS uses Codeception46 framework for integration tests. It is Behavior Driven
Development (BDD) framework which allows writing unit, functional, integra-
tion, and acceptance tests in a single style [79].

Integration tests are intended to test several parts of the system together, for
example a feature without UI.

46https://codeception.com

49

https://codeception.com

7. Testing

I used integration tests to verify that following sequence works:

• Creating new query object

• Submitting the query object to search service

• Converting query to valid Elasticsearch request

• Elasticsearch executes search query

• Search service correctly interprets response

• Returned items contain expected results

In BDD tests are written in the form of interactions, “I do X” to perform
an action and “I see Z” to verify the action was successful. An example would
be an action “I navigate to https://google.com” and a check “I see response
code was 200” followed by “I see Google search field”.

To be able to test search in BDD way, I created two methods that are used to
perform a search and check results, seeInResult and dontSeeInResult. The for-
mer is used to verify that query matches certain results. The latter is used
to verify that query does not match certain results. An example Codeception
test (Cest) can be seen in listing 2.

For this to work, there must be corresponding testing data indexed inside
Elasticsearch. I achieved this by loading a sql file with data into MySQL and
then running the index command, if there is a bug in indexing, these tests also
have a chance of finding it.

Elasticsearch provides its own methods to evaluate the quality of search results
via Ranking Evaluation API. It offers API for measuring precision at K (P@k)
which measures the number of relevant results in top K documents, mean
reciprocal rank to measure how high is the first relevant item in the search
results page and discounted cumulative gain which evaluates positions of all
relevant items in top K results [80]. In contrast to my solution, these metrics
evaluate ranking, while my solution only evaluates matching (yes/no).

Although more advanced, basing tests on these metrics would be unstable, be-
cause any change in boosting/scoring might change the results of these methods.

This API is “experimental and may be changed or removed completely in
a future release” [80], because of that and because of potential test instability,
I decided not to use it.

50

7.3. Static analysis

<?php

class FullTextCest
{

// Set things up

public function SummaryTest(search $I): void
{

$this->text->searchBy(Fields::SUMMARY, 'Eco librari at indonezia');

$relevantProjectIds = [
'project_A_id',
'project_B_id',

];

$irrelevantProjectIds = [
'project_C_id',

];

$I->seeInResult($this->query, $relevantProjectIds);
$I->dontSeeInResult($this->query, $irrelevantProjectIds);

}
}

Listing 2: Example of an integration test

7.3 Static analysis

To ensure code quality I used static analysis tools.

7.3.1 PHP Parallel Lint

PHP Parallel Lint47 scans PHP files and validates PHP language syntax. This
is useful because PHP is interpreted language and therefore any mistake in
syntax would otherwise be found during interpretation.

Syntax checking is a very basic static analysis, but because it is very fast
and errors it finds are very severe, it is a good first step before running any
other static analysis tools or tests.

47https://github.com/JakubOnderka/PHP-Parallel-Lint

51

https://github.com/JakubOnderka/PHP-Parallel-Lint

7. Testing

7.3.2 PHPStan

PHP is dynamic, weakly typed language, but it has made possible to type
function and method parameters and return values. Because it is interpreted
language, any type mismatch produces error during interpretation. One
of PHPStan’s48 main features is type checking without running the code.
It combines knowledge from function definitions and phpdoc to infer type of
a variable and then checks whether operations performed with the variable are
possible with its type.

7.3.3 PHPMD

PHP Mess Detector49 is a tool that checks for code smells using predefined
rules. Typical rules are function length, cyclomatic complexity and NPath
complexity. It can also detect dead code, which is a code that will never
be run, for example, after a return statement in a function. Based on its
output,I refactored code that was too long or complicated.

7.4 Monitoring

Monitoring serves as a window inside a running system. For example, it can
tell us how hardware resources are utilized or how often errors occur. This
information is crucial to verifying all parts of system are running, finding
bottlenecks or analyzing issues occurring in production environment.

7.4.1 Prometheus

Prometheus50 is an open source monitoring system and time series database [81].
Prometheus offers query language specialized for time series data.

It can also use linear regression to answer questions like “based on past activity,
how full will the hard drive be in an hour” [82]. Because it is prediction of
state an hour in future, we can assume we have an hour to act.

In comparison, waiting until a disk usage hits certain value does not tell
us how much time we have left, because it doesn’t take into account how fast
is the disk being filled.

48https://github.com/phpstan/phpstan
49https://phpmd.org
50https://prometheus.io

52

https://github.com/phpstan/phpstan
https://phpmd.org
https://prometheus.io

7.5. Conclusion

Prometheus scrapes data from exporters, which are small services that expose
metrics via HTTP. It is the job of an exporter to gather data about a ser-
vice. For example, Elasticsearch exporter calls Elasticsearch API to gather
information about the cluster and then exposes aggregated data to Prometheus.

7.4.2 Metrics

Now that I described Prometheus, it is time for me to describe metrics I monitor.

• CPU

• Disk

• Ram

• JVM memory

• JVM processes states

• JVM garbage collection

7.4.3 Grafana

Grafana51 is tool for querying, visualizing and alerting on metrics [83]. It
supports graphing time series data from various sources like MySQL, Graphite,
Elasticsearch and Prometheus. It is used across many industries, for example,
used by CERN, PayPal or Energy Weather [84].

I used Grafana to visualize metrics about my system to understand what
is going on and identify bottlenecks. In fig. 7.1 can be seen the CPU usage
during indexing. Because PHP Elasticsearch client I use sends request syn-
chronously52, PHP (purple) and Elasticsearch (yellow) take turns. Each yellow
spike means a batch of projects was sent to Elasticsearch be indexed and the
PHP indexer is waiting for HTTP response.

7.5 Conclusion
By testing described in this chapter I verified my solution fulfils functional
requirements and my code is in good condition.

51https://grafana.com
52https://github.com/ruflin/Elastica/issues/1156

53

https://grafana.com
https://github.com/ruflin/Elastica/issues/1156

7. Testing

Figure 7.1: Graph of CPU usage during indexing

54

Chapter 8
Possibilities

While researching search technologies and techniques I learned about features
that were out of scope for this thesis, but could be used to further improve
search in the future.

8.1 Analytics

Websites routinely use different analytical tools, like Google Analytics53 to
measure user interactions with website to identify parts to further improve.
Without measuring first it is very hard to evaluate impact of changes. Similarly
a search module can also measure certain metrics that help improve it.

For example we can measure user interactions:

• What the users search for and how many results we offer - what is
important to them

• Zero result searches - for what searches we have no results for

• Position of items they open - are the results at the top satisfying

• Paging - how deep in result pages the users go

• What projects they found using search they donated to

• Query rewrites - when user searches for something and then dissatisfied
with results rewrites the query

Based on these metrics we can further tune the search module or even shape
content by purposefully onboarding new projects. It is important when imple-
menting analytics to pay attention to user’s privacy and laws like GDPR.

53https://www.google.com/analytics/#?modal_active=none

55

https://www.google.com/analytics/##?modal_active=none

8. Possibilities

8.1.1 AB testing

To measure how much of an improvement are changes to search module, we
need to measure changes in metrics described in section 8.1. For this purpose
there is AB testing, which lets a portion of users use new search and other
portion of users the older version of search. Then we need to compare metrics
and conclude whether our changes are improving search or making it worse.

8.1.2 User signals

Analytics can also be used to directly improve scoring. For example, if majority
of users searching for “tiger” always open result on a third place, it is likely
better result then the preceding two, so we can boost it to first position.

8.2 UI

Quality of search results are dependent on the query. It is desirable for users
to write a good search query in order to find what they are looking for. In
order to achieve that there are several techniques that help users improve their
query.

8.2.1 Autocomplete

Use words or phrases in our index to offer the user autocomplete as he types.
When user uses the autocomplete, it ensures he is searching for things we
already know we have and therefore we have some results for it.

8.2.2 Autoloading results

Loading results asynchronously while the users type. This allows them to see
what the results are in near-realtime, without waiting for the page to reload.

8.3 Rerank

Elasticsearch offers feature called rerank, which takes a window of N top results
and runs different search query only on them. This allows us to run a lot more
time consuming query only on items we already know are relevant, computing
more precise score. When using rerank it is best to design the first query for
recall with only simple scoring and the second solely for scoring.

56

8.4. Quality rank

8.4 Quality rank

We can boost projects that we see as better quality using score function (sec-
tion 4.8.2.4). Score function is custom script that is executed for each matching
document and can access it’s fields, to save time it is a good practice to run
score function in the rerank phase described in section 8.3.

For example, we might want to boost projects that are updated frequently,
publish status updates using timeline often or contain multiple higher resolu-
tion images.

It is necessary however to not overdo this feature in order for the results
to be still be relevant to the user query. It is not a good idea to put perfectly
fitting result to the last place, just because it has low resolution images. To
make sure this does not happen, we can set-up max_boost.

8.5 Preprocess query

We can pre-process user’s query and derive multiple queries matching more
results.

8.5.1 Taxonomies

Human languages have taxonomies, in sense a hierarchy of words. This is
in a sense similar to synonyms, but is more advanced, because taxonomies
can be nested. For example, “natural disasters” include “floods”, “wildfires”,
“tsunamis”, “tornadoes” and “hurricanes”. So when user searches for “natural
disasters”, apart from results containing matching words, items matching any
specific natural disaster are also relevant. Or in reverse scenario searching for
“tsunami” might also return other items matching “natural disasters”.

To keep the user happy it is important to put results for his original query
first and results for derived queries second.

8.5.2 Translation

It might happen that user submits a query in language that has no matching
document. We can use machine translation and search in English language,
which is required for all projects.

57

8. Possibilities

8.6 Similarity tuning
Some fields are shorter and more significant than others, it is possible to tune
scoring by choosing different similarity algorithm and/or tuning its parameters.
For example, BM25 can have adjusted saturation (k1 parameter) [85]. This
can be useful for title where word saturation should be much steeper, possibly
instant, than in a description.

8.7 In-place update of donations
When project receives a donation Elasticsearch needs to index changes. Cur-
rently entire document is fetched from MySQL and indexed again, deleting
the old document with same id. For updates like numeric increments or
addition Elasticsearch offers in place update. In place update does atomic
delete and insert, but the computation and retrying happens on server, which
decreases the amount of data loaded from database and sent over network.

8.8 Pagination without offset
When searching using from and size, each time from is increased (user
navigates to another page of results) a search for from+size items is performed
and kept in memory, but only size items are returned. To save resources
Elasticsearch offers additional paging techniques like “search_after”, which
does not keep results not returned to user in memory [86].

8.9 Cache
To speed search up we can cache search results in Redis. So when another
user searches using same query, we can return cached items. This might be
particularly useful when some project becomes very popular.

58

Conclusion

I successfully implemented new search module which gives better results than
the previous one and makes the stakeholders satisfied.54 My solution fulfils
both functional and non-functional requirements specified in section 2.5.

Search now uses language analyzers and can match non-exact word matches
which improved recall significantly. Enumerable fields like categories, countries
and continents have their names indexed as well as their IDs to allow fulltext
search as well as filtering. For example, searching “czech education” will match
a project that is in country “Czech Republic” and has category “education”
even if the project description does not contain any matching words. Search is
now able to handle synonyms, for example, searching “Czechia” and “Czech
Republic” matches same results, while previously searching “Czechia” returned
zero results.

All changes were done while keeping the user interface untouched. New
search module allows for new fields and analyzers to be easily added without
changing existing code.

I identified several features that can be further implemented to improve search
module and described them in chapter 8.

While working on this thesis I used information gained in various univer-
sity courses. The most relevant ones were BI-BIG55 where I learned about
distributed databases and fulltext search and BI-VWM56.

54New search module is not in production yet, it is waiting to be merged and deployed.
55http://bk.fit.cvut.cz/cz/predmety/00/00/00/00/00/00/03/09/40/p3094006.html
56http://bk.fit.cvut.cz/cz/predmety/00/00/00/00/00/00/01/12/39/p1123906.html

59

http://bk.fit.cvut.cz/cz/predmety/00/00/00/00/00/00/03/09/40/p3094006.html
http://bk.fit.cvut.cz/cz/predmety/00/00/00/00/00/00/01/12/39/p1123906.html

Bibliography

1. HELPSTONE. HelpStone website - How HelpStone works [online] [visited
on 2018-04-23]. Available from: https : / / www . helpstone . org / en /
about/how-helpstone-works.

2. BRADNER, Scott. RFC 2119 [online]. 1997 [visited on 2018-04-23].
Available from: https://www.ietf.org/rfc/rfc2119.txt.

3. Redis website - Introduction [online] [visited on 2018-04-23]. Available
from: https://redis.io/topics/introduction.

4. UNITED NATIONS. The United Nations Terminology Database - Czech
Republic [online] [visited on 2018-04-23]. Available from: https://unterm.
un.org/UNTERM/Display/Record/UNHQ/NA/4275087d- 4018- 4082-
899d-95f37efeda65.

5. NASA. What is the difference between a tornado and a hurricane?
[online] [visited on 2018-04-24]. Available from: https://pmm.nasa.
gov / resources / faq / what - difference - between - tornado - and -
hurricane.

6. CORPORATION, Oracle. MySQL documentation - Natural Language
Full-Text Searches [online] [visited on 2018-05-11]. Available from: https:
//dev.mysql.com/doc/refman/5.7/en/fulltext-natural-language.
html.

7. CORPORATION, Oracle. MySQL documentation - Boolean Full-Text
Searches [online] [visited on 2018-05-11]. Available from: https://dev.
mysql.com/doc/refman/5.7/en/fulltext-boolean.html.

8. THE APACHE SOFTWARE FOUNDATION. Apache Lucene Core [on-
line] [visited on 2018-04-24]. Available from: https://lucene.apache.
org/core/.

9. BRASETVIK, Alex. Elasticsearch from the Bottom Up, Part 1 [online].
2014 [visited on 2018-04-24]. Available from: https://www.elastic.co/
blog/found-elasticsearch-top-down.

61

https://www.helpstone.org/en/about/how-helpstone-works
https://www.helpstone.org/en/about/how-helpstone-works
https://www.ietf.org/rfc/rfc2119.txt
https://redis.io/topics/introduction
https://unterm.un.org/UNTERM/Display/Record/UNHQ/NA/4275087d-4018-4082-899d-95f37efeda65
https://unterm.un.org/UNTERM/Display/Record/UNHQ/NA/4275087d-4018-4082-899d-95f37efeda65
https://unterm.un.org/UNTERM/Display/Record/UNHQ/NA/4275087d-4018-4082-899d-95f37efeda65
https://pmm.nasa.gov/resources/faq/what-difference-between-tornado-and-hurricane
https://pmm.nasa.gov/resources/faq/what-difference-between-tornado-and-hurricane
https://pmm.nasa.gov/resources/faq/what-difference-between-tornado-and-hurricane
https://dev.mysql.com/doc/refman/5.7/en/fulltext-natural-language.html
https://dev.mysql.com/doc/refman/5.7/en/fulltext-natural-language.html
https://dev.mysql.com/doc/refman/5.7/en/fulltext-natural-language.html
https://dev.mysql.com/doc/refman/5.7/en/fulltext-boolean.html
https://dev.mysql.com/doc/refman/5.7/en/fulltext-boolean.html
https://lucene.apache.org/core/
https://lucene.apache.org/core/
https://www.elastic.co/blog/found-elasticsearch-top-down
https://www.elastic.co/blog/found-elasticsearch-top-down

Bibliography

10. BRASETVIK, Alex. Elasticsearch from the Bottom Up, Part 1 [online].
2013 [visited on 2018-04-24]. Available from: https://www.elastic.co/
blog/found-elasticsearch-from-the-bottom-up.

11. ELASTIC. Elasticsearch - Getting Started [online] [visited on 2018-04-23].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/getting-started.html.

12. THE APACHE SOFTWARE FOUNDATION. Elasticsearch licence file
[online] [visited on 2018-04-24]. Available from: https://github.com/
elastic/elasticsearch/blob/v6.2.3/LICENSE.txt.

13. ELASTIC. Elastic - Subscriptions [online] [visited on 2018-04-23]. Avail-
able from: https://www.elastic.co/subscriptions.

14. ELASTIC. Elasticsearch - Language Analyzers [online] [visited on 2018-05-
11]. Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/current/analysis-lang-analyzer.html.

15. ELASTIC. Elasticsearch - Query DSL [online] [visited on 2018-05-11].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/current/query-dsl.html.

16. ELASTIC. Elasticsearch - Install Elasticsearch with Docker [online] [vis-
ited on 2018-05-14]. Available from: https://www.elastic.co/guide/
en/elasticsearch/reference/current/docker.html.

17. THOUGHTWORKS, Inc. ThoughtWorks Technology Radar - Elastic-
search [online] [visited on 2018-04-23]. Available from: https://www.
thoughtworks.com/radar/platforms/elastic-search.

18. Elasticsearch - Use case GitHub [online] [visited on 2018-04-23]. Available
from: https://www.elastic.co/use-cases/github.

19. WIKIMEDIA FOUNDATION, Inc. Wikimedia moving to Elasticsearch
[online]. 2014 [visited on 2018-04-23]. Available from: https://blog.
wikimedia.org/2014/01/06/wikimedia-moving-to-elasticsearch/.

20. SVINGEN, Boerge. All the Data That’s Fit to Find: Search @ The
New York Times [online]. 2016 [visited on 2018-04-23]. Available from:
https://www.elastic.co/elasticon/conf/2016/sf/all-the-data-
thats-fit-to-find-search-at-the-new-york-times.

21. THE APACHE SOFTWARE FOUNDATION. Apache Solr website [on-
line] [visited on 2018-04-23]. Available from: http://lucene.apache.
org/solr/.

22. THE APACHE SOFTWARE FOUNDATION. Apache Solr Reference -
Language Analysis [online] [visited on 2018-05-11]. Available from: https:
//lucene.apache.org/solr/guide/7_3/language-analysis.html.

62

https://www.elastic.co/blog/found-elasticsearch-from-the-bottom-up
https://www.elastic.co/blog/found-elasticsearch-from-the-bottom-up
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/getting-started.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/getting-started.html
https://github.com/elastic/elasticsearch/blob/v6.2.3/LICENSE.txt
https://github.com/elastic/elasticsearch/blob/v6.2.3/LICENSE.txt
https://www.elastic.co/subscriptions
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lang-analyzer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lang-analyzer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html
https://www.thoughtworks.com/radar/platforms/elastic-search
https://www.thoughtworks.com/radar/platforms/elastic-search
https://www.elastic.co/use-cases/github
https://blog.wikimedia.org/2014/01/06/wikimedia-moving-to-elasticsearch/
https://blog.wikimedia.org/2014/01/06/wikimedia-moving-to-elasticsearch/
https://www.elastic.co/elasticon/conf/2016/sf/all-the-data-thats-fit-to-find-search-at-the-new-york-times
https://www.elastic.co/elasticon/conf/2016/sf/all-the-data-thats-fit-to-find-search-at-the-new-york-times
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
https://lucene.apache.org/solr/guide/7_3/language-analysis.html
https://lucene.apache.org/solr/guide/7_3/language-analysis.html

Bibliography

23. THE APACHE SOFTWARE FOUNDATION. Apache Solr Reference -
The Standard Query Parser [online] [visited on 2018-05-11]. Available
from: https://lucene.apache.org/solr/guide/7_3/the-standard-
query-parser.html#the-standard-query-parser.

24. THE APACHE SOFTWARE FOUNDATION. Apache Solr Reference -
The DisMax Query Parser [online] [visited on 2018-05-11]. Available from:
https://lucene.apache.org/solr/guide/7_3/the-dismax-query-
parser.html#the-dismax-query-parser.

25. THE APACHE SOFTWARE FOUNDATION. Apache Solr Reference
- The Extended DisMax Query Parser [online] [visited on 2018-05-11].
Available from: https://lucene.apache.org/solr/guide/7_3/the-
extended-dismax-query-parser.html.

26. Docker Hub - Solr [online] [visited on 2018-05-14]. Available from: https:
//hub.docker.com/_/solr/.

27. THE APACHE SOFTWARE FOUNDATION. Solr powered [online] [vis-
ited on 2018-04-23]. Available from: https://wiki.apache.org/solr/
PublicServers.

28. ELASTIC. Elasticsearch guide - Inverted Index [online] [visited on 2018-05-
03]. Available from: https://www.elastic.co/guide/en/elasticsearch/
guide/2.x/inverted-index.html.

29. ELASTIC. Elasticsearch guide- Pluggable Similarity Algorithms [online]
[visited on 2018-05-10]. Available from: https://www.elastic.co/
guide/en/elasticsearch/guide/current/pluggable-similarites.
html.

30. CONNELLY, Shane. Practical BM25 - Part 2: The BM25 Algorithm and
its Variables [online] [visited on 2018-05-10]. Available from: https://www.
elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-
and-its-variables.

31. ELASTIC. Elasticsearch guide - The Unit of Scale [online] [visited on
2018-05-03]. Available from: https://www.elastic.co/guide/en/
elasticsearch/guide/2.x/shard-scale.html.

32. ELASTIC. Elasticsearch guide - Replica Shards [online] [visited on 2018-05-
03]. Available from: https://www.elastic.co/guide/en/elasticsearch/
guide/2.x/replica-shards.html.

33. ELASTIC. Elasticsearch - Mapping [online] [visited on 2018-05-03]. Avail-
able from: https : / / www . elastic . co / guide / en / elasticsearch /
reference/current/mapping.html.

34. ELASTIC. Elasticsearch - Text datatype [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/text.html.

63

https://lucene.apache.org/solr/guide/7_3/the-standard-query-parser.html#the-standard-query-parser
https://lucene.apache.org/solr/guide/7_3/the-standard-query-parser.html#the-standard-query-parser
https://lucene.apache.org/solr/guide/7_3/the-dismax-query-parser.html#the-dismax-query-parser
https://lucene.apache.org/solr/guide/7_3/the-dismax-query-parser.html#the-dismax-query-parser
https://lucene.apache.org/solr/guide/7_3/the-extended-dismax-query-parser.html
https://lucene.apache.org/solr/guide/7_3/the-extended-dismax-query-parser.html
https://hub.docker.com/_/solr/
https://hub.docker.com/_/solr/
https://wiki.apache.org/solr/PublicServers
https://wiki.apache.org/solr/PublicServers
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/inverted-index.html
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/inverted-index.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/pluggable-similarites.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/pluggable-similarites.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/pluggable-similarites.html
https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables
https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables
https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/shard-scale.html
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/shard-scale.html
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/replica-shards.html
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/replica-shards.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/text.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/text.html

Bibliography

35. ELASTIC. Elasticsearch - Keyword datatype [online] [visited on 2018-05-
03]. Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/keyword.html.

36. ELASTIC. Elasticsearch - Number datatype [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/number.html.

37. ELASTIC. Elasticsearch - Boolean datatype [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/boolean.html.

38. ELASTIC. Elasticsearch - Date datatype [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/date.html.

39. ELASTIC. Elasticsearch - Geo-point datatype [online] [visited on 2018-05-
03]. Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/geo-point.html.

40. ELASTIC. Elasticsearch - Object datatype [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/object.html.

41. ELASTIC. Elasticsearch - Array datatype [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/array.html.

42. ELASTIC. Elasticsearch - Nested datatype [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/nested.html.

43. ELASTIC. Elasticsearch - Analysis [online] [visited on 2018-05-03]. Avail-
able from: https : / / www . elastic . co / guide / en / elasticsearch /
reference/6.2/analysis.html.

44. ELASTIC. Elasticsearch - Anatomy of an analyzer [online] [visited on
2018-05-03]. Available from: https://www.elastic.co/guide/en/
elasticsearch/reference/6.2/analyzer-anatomy.html.

45. CHOLAKIAN, Andrew. All About Analyzers, Part One [online] [visited
on 2018-04-25]. Available from: https://www.elastic.co/blog/found-
text-analysis-part-1.

46. ELASTIC. Elasticsearch - Character Filters [online] [visited on 2018-05-
10]. Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/current/analysis-charfilters.html.

47. ELASTIC. Elastic - HTML filter [online] [visited on 2018-04-26]. Avail-
able from: https : / / www . elastic . co / guide / en / elasticsearch /
reference/6.2/analysis-htmlstrip-charfilter.html.

64

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/keyword.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/keyword.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/number.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/number.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/boolean.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/boolean.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/date.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/date.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/geo-point.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/geo-point.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/object.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/object.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/array.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/array.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/nested.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/nested.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analyzer-anatomy.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analyzer-anatomy.html
https://www.elastic.co/blog/found-text-analysis-part-1
https://www.elastic.co/blog/found-text-analysis-part-1
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-htmlstrip-charfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-htmlstrip-charfilter.html

Bibliography

48. ELASTIC. Elasticsearch - Tokenizers [online] [visited on 2018-05-10].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/analysis-tokenizers.html.

49. ELASTIC. Elasticsearch - Token Filters [online] [visited on 2018-05-10].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/analysis-tokenfilters.html.

50. ELASTIC. Elastic - Lowercase filter [online] [visited on 2018-04-26].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/analysis-lowercase-tokenfilter.html.

51. ELASTIC. Elastic - Asciifolding filter [online] [visited on 2018-04-26].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/analysis-asciifolding-tokenfilter.html.

52. ELASTIC. Elastic - Stemmer filter [online] [visited on 2018-04-26]. Avail-
able from: https : / / www . elastic . co / guide / en / elasticsearch /
reference/6.2/analysis-stemmer-tokenfilter.html.

53. ELASTIC. Elastic - Hunspell filter [online] [visited on 2018-04-26]. Avail-
able from: https : / / www . elastic . co / guide / en / elasticsearch /
reference/6.2/analysis-hunspell-tokenfilter.html.

54. ELASTIC. Elastic - Keword repeat filter [online] [visited on 2018-04-26].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/analysis-keyword-repeat-tokenfilter.html.

55. ELASTIC. Elastic - Unique filter [online] [visited on 2018-04-26]. Avail-
able from: https : / / www . elastic . co / guide / en / elasticsearch /
reference/6.2/analysis-unique-tokenfilter.html.

56. ELASTIC. Elastic - Synonym filter [online] [visited on 2018-04-26]. Avail-
able from: https : / / www . elastic . co / guide / en / elasticsearch /
reference/6.2/analysis-synonym-tokenfilter.html.

57. ELASTIC. Elastic - Stop filter [online] [visited on 2018-05-14]. Avail-
able from: https : / / www . elastic . co / guide / en / elasticsearch /
reference/6.2/analysis-stop-tokenfilter.html.

58. ELASTIC. Elasticsearch - Match Query [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/query-dsl-match-query.html.

59. ELASTIC. Elasticsearch - Match Phrase Query [online] [visited on 2018-
05-03]. Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/query-dsl-match-query-phrase.html.

60. ELASTIC. Elasticsearch - Phrase Matching [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
guide/current/phrase-matching.html.

65

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-lowercase-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-lowercase-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-asciifolding-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-asciifolding-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-stemmer-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-stemmer-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-hunspell-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-hunspell-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-keyword-repeat-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-keyword-repeat-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-unique-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-unique-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-synonym-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-synonym-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-stop-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-stop-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-match-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-match-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-match-query-phrase.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-match-query-phrase.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/phrase-matching.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/phrase-matching.html

Bibliography

61. ELASTIC. Elasticsearch - Term query [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/query-dsl-term-query.html.

62. ELASTIC. Elasticsearch guide - Prefix query [online] [visited on 2018-05-
03]. Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/query-dsl-prefix-query.html.

63. ELASTIC. Elasticsearch - Range query [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/query-dsl-range-query.html.

64. ELASTIC. Elasticsearch - Ranges [online] [visited on 2018-05-03]. Avail-
able from: https : / / www . elastic . co / guide / en / elasticsearch /
guide/current/_ranges.html.

65. ELASTIC. Elastic - Function Score Query [online] [visited on 2018-04-26].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/query-dsl-function-score-query.html.

66. ELASTIC. Elasticsearch - Coumpound queries [online] [visited on 2018-05-
03]. Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/compound-queries.html.

67. ELASTIC. Elasticsearch - Dis Max Query [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/query-dsl-dis-max-query.html.

68. ELASTIC. Elasticsearch - Bool Query [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/query-dsl-bool-query.html.

69. ELASTIC. Elasticsearch - Query and filter context [online] [visited on
2018-05-03]. Available from: https://www.elastic.co/guide/en/
elasticsearch/reference/current/query-filter-context.html.

70. ELASTIC. Elasticsearch - Optimistic Concurrency Control [online] [vis-
ited on 2018-05-03]. Available from: https://www.elastic.co/guide/
en/elasticsearch/guide/current/optimistic-concurrency-control.
html.

71. PAQUETTE, Mike. Elasticsearch - Protecting Against Attacks that Hold
Your Data for Ransom [online] [visited on 2018-05-10]. Available from:
https://www.elastic.co/blog/protecting-against-attacks-that-
hold-your-data-for-ransom.

72. ELASTIC. Elasticsearch - Bulk API [online] [visited on 2018-05-11].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/current/docs-bulk.html.

73. Git [online] [visited on 2018-05-14]. Available from: https://git-scm.
com.

66

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-term-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-term-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-prefix-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-prefix-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-range-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-range-query.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_ranges.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_ranges.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-function-score-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-function-score-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/compound-queries.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/compound-queries.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-dis-max-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-dis-max-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-bool-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl-bool-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-filter-context.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-filter-context.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/optimistic-concurrency-control.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/optimistic-concurrency-control.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/optimistic-concurrency-control.html
https://www.elastic.co/blog/protecting-against-attacks-that-hold-your-data-for-ransom
https://www.elastic.co/blog/protecting-against-attacks-that-hold-your-data-for-ransom
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
https://git-scm.com
https://git-scm.com

Bibliography

74. ELASTIC. Kibana - Introduction [online] [visited on 2018-05-11]. Avail-
able from: https : / / www . elastic . co / guide / en / kibana / 6 . 2 /
introduction.html.

75. ELASTIC. Elasticsearch - Analyze API [online] [visited on 2018-05-11].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/current/indices-analyze.html.

76. ELASTIC. Elasticsearch - Explain API [online] [visited on 2018-05-11].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/current/search-explain.html.

77. RETHANS, Derick. Xdebug website [online] [visited on 2018-05-11]. Avail-
able from: https://xdebug.org.

78. SAS, Blackfire. Blackfire - Features [online] [visited on 2018-05-11]. Avail-
able from: https://blackfire.io/features.

79. CODECEPTION. Codeception - Introduction [online] [visited on 2018-05-
11]. Available from: https://codeception.com/docs/01-Introduction.

80. ELASTIC. Elasticsearch - Ranking Evaluation API [online] [visited on
2018-05-10]. Available from: https://www.elastic.co/guide/en/
elasticsearch/reference/6.2/search-rank-eval.html.

81. PROMETHEUS. Prometheus - Overview [online] [visited on 2018-05-
11]. Available from: https://prometheus.io/docs/introduction/
overview/.

82. PROMETHEUS. Prometheus - Functions [online] [visited on 2018-05-11].
Available from: https://prometheus.io/docs/prometheus/latest/
querying/functions/.

83. LABS, Grafana. Grafana [online] [visited on 2018-05-11]. Available from:
https://grafana.com/grafana.

84. LABS, Grafana. Grafana - Testimonials [online] [visited on 2018-05-11].
Available from: https://grafana.com/grafana/testimonials.

85. ELASTIC. Elastic - Similarity modules [online] [visited on 2018-04-26].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/index-modules-similarity.html.

86. ELASTIC. Elasticsearch - Search After [online] [visited on 2018-05-03].
Available from: https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/search-request-search-after.html.

67

https://www.elastic.co/guide/en/kibana/6.2/introduction.html
https://www.elastic.co/guide/en/kibana/6.2/introduction.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-analyze.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-analyze.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-explain.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-explain.html
https://xdebug.org
https://blackfire.io/features
https://codeception.com/docs/01-Introduction
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-rank-eval.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-rank-eval.html
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/prometheus/latest/querying/functions/
https://prometheus.io/docs/prometheus/latest/querying/functions/
https://grafana.com/grafana
https://grafana.com/grafana/testimonials
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/index-modules-similarity.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/index-modules-similarity.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-request-search-after.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-request-search-after.html

Appendix A
Glossary

AMQP Advanced Message Queuing Protocol

API Application Programmable Interface

BDD Behavior Driven Development

CLI Command Line Interface

Doctrine ORM Object Relation Mapper library

DQL Doctrine Query Language

DTO Data Transfer Object

Elastic The company behind Elasticsearch

Elasticsearch OpenSource software for text search

HS HelpStone https://helpstone.org

MySQL Relational database

NGO Non-profit, non-governmental Organization

ORM Object Relation Mapper

OSS Open Source Software

PHP PHP Hypertext Preprocessor

SQL Simple Query Language

UI User Interface

UID Unique identifier

69

https://helpstone.org

Appendix B
Contents of enclosed CD

/..root directory
thesis.pdf...........................the thesis text in PDF format
thesis_source/.......directory with the thesis text in source format

71

	Introduction
	Goals
	HelpStone
	How HelpStone works
	Software
	Docker
	MySQL
	PHP
	Symfony
	Doctrine 2 ORM
	RabbitMQ
	Redis

	Data model
	Translations
	Metadata
	Text fields
	Timeline
	Size

	Current search
	Features
	Missing features
	Implementation

	Requirements
	Functional requirements
	User interface
	Stone
	Code
	Date
	GPS coordinates
	Filtering
	Languages
	Synonyms
	Typos
	Diacritics

	Non-functional requirements
	Sensitive data
	Technology compability

	Data size
	Maintainability

	Conclusion

	Existing technologies
	MySQL
	Lucene Core
	Elasticsearch
	Maturity

	Solr
	Maturity

	Conclusion

	Elasticsearch theory
	Inverted index
	Relevance
	Recall
	Precision
	Recall and Precision relation

	Ranking and Scoring
	Term frequency
	Cluster
	Data types
	Text
	Keyword
	Numeric
	Boolean
	Date
	Geo-point
	Object
	Array
	Nested

	Analysis
	Character filters
	HTML filter

	Tokenizer
	Token filters
	Lowercase filter
	ASCII folding filter
	Stemmer filter
	Hunspell filter
	Keyword repeat filter
	Unique filter
	Synonym filter
	Stop filter

	Queries
	Text queries
	Match Query
	Phrase Query

	Term queries
	Term Query
	Prefix Query
	Range Query
	Function Score Query

	Compound queries
	Dis Max Query
	Bool Query

	Filter

	Conclusion

	Design
	Mapping
	Languages
	Data denormalization

	Analyzer
	English analyzer
	Czech
	Default analyzer

	Query
	Languages
	Combining queries
	Typos
	Common words
	Code
	Name
	Continent, Country and Category
	Short description
	Long description
	Leader
	Location
	Organisation
	Results

	Indexing changes
	Security
	Network
	Search query

	Privacy
	Cluster
	Conclusion

	Realization
	Analyzers
	AnalyzerInterface
	Mapping generation

	Indexing
	Fields
	Project Document class
	Bulk indexing
	Project indexer class
	Index command

	Query construction
	Transformers
	Search service
	Search facade
	Pagination
	Tuning relevance

	Tools
	Git
	Kibana
	Xdebug
	Blackfire.io

	Conclusion

	Testing
	Manual testing
	Integration tests
	Static analysis
	PHP Parallel Lint
	PHPStan
	PHPMD

	Monitoring
	Prometheus
	Metrics
	Grafana

	Conclusion

	Possibilities
	Analytics
	AB testing
	User signals

	UI
	Autocomplete
	Autoloading results

	Rerank
	Quality rank
	Preprocess query
	Taxonomies
	Translation

	Similarity tuning
	In-place update of donations
	Pagination without offset
	Cache

	Conclusion
	Bibliography
	Glossary
	Contents of enclosed CD

