
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 25, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Web interface for the deployment and monitoring of Nomad jobs

 Student: Bc. Pavel Peroutka

 Supervisor: Ing. Jaroslav Kuchař, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

Nomad (by HashiCorp) is a container orchestrating tool for the deployment and monitoring of applications.
Design and implement an open-source software solution for the self-service deployment and monitoring
of Nomad jobs. The result product will be a web application (both frontend and backend) with a UI focused
on straight-forward usage. UI is meant to be used by users without a deeper technical understanding.
This software is being created to be used internally by Ataccama company. It will be mainly used by the
company's consultants to create new instances of offered software products to be used for proof
of concept purposes.

1. Consult and define requirements with a client (Ataccama company).
2. Design an integration and implementation solution using Nomad. Select appropriate technologies for the
project.
3. Implement the application.
4. Deploy and test the application in the client's existing DevOps process.

References

Will be provided by the supervisor.

Master’s thesis

Web interface for the deployment and
monitoring of Nomad jobs

Bc. Pavel Peroutka

Department of Software Engineering
Supervisor: Ing. Jaroslav Kuchař, Ph.D.

January 10, 2019

Acknowledgements

I would like to thank my supervisor Jaroslav Kuchař for leading me through
the writing process of this thesis. My gratitude also goes to the Ataccama
company and its employees, for giving me an opportunity to work on this
project. Furthermore, I want to thank my great friend Tomáš for helping
me with the English language. And finally, I would like to thank all of my
numerous friends, my awesome roommates Kryštof and Prokop, my gorgeous
fiancee Anežka and to my parents, for keeping me the best company I can
imagine. Thank you!

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on January 10, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Pavel Peroutka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Peroutka, Pavel. Web interface for the deployment and monitoring of No-
mad jobs. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2019.

Abstrakt

Tato diplomová práce popisuje návrh a vývoj alternativńıho uživatelskÃľho
prostřed́ı pro HashiCorp Nomad. Toto uživatelské prostřed́ı je zaměřeno na
uživetele, kteř́ı nemaj́ı nutně zkušenosti s IT operacemi. Výsledný softwarový
produkt, nazvaný Bedouin, je webová aplikace (obsahuj́ıćı server a klient),
která je publikována jako open-source vydaný pod MIT licenćı.

Kĺıčová slova HashiCorp, Nomad, Node.js, TypeScript, React, Fullstack,
Webová Aplikace

Abstract

This master thesis deals with the design and development process of an alter-
native user interface (UI) for HashiCorp Nomad. This UI is meant to be used
by users without deeper understanding of IT operations. The resulting prod-
uct called Bedouin is a fullstack web application, published as an open-source
under the MIT license.

Keywords HashiCorp, Nomad, Node.js, TypeScript, React, Fullstack, Web
Application.

vii

Contents

Introduction 1
DevOps . 1
HashiCorp Nomad . 1
Aim of the thesis . 2

1 Nomad introduction 3
1.1 HashiCorp’s suite of tools . 3
1.2 How Nomad works . 4
1.3 Nomad architecture . 9
1.4 Scheduling . 10
1.5 Consul integration . 10

2 Project domain 13
2.1 Use of Nomad at the Ataccama company 13
2.2 Product requirements . 15
2.3 Prior art . 15

3 Analysis and design 21
3.1 Functional requirements . 21
3.2 Non-functional requirements . 23
3.3 Stakeholders . 24
3.4 Domain model . 24
3.5 Architecture . 26
3.6 Summary . 29

4 Development technologies and tools 31
4.1 Development technologies . 31
4.2 OpenID Connect authentication 35
4.3 Build and containerization . 37

ix

5 Implementation 39
5.1 Backend . 40
5.2 Frontend . 45
5.3 Shared code . 46

6 Testing and production 49
6.1 Testing . 49
6.2 Ataccama use case . 51
6.3 Publishing as open-source . 53

Conclusion 55

Bibliography 57

A Contents of enclosed CD 61

x

List of Figures

1.1 Nomad region architecture . 9

3.1 Bedouin domain model . 25
3.2 High-level Bedouin architecture . 27
3.3 Template files structure . 27

4.1 Popularity of frameworks, libraries, and tools 32

5.1 Internal implementation structure 39
5.2 Nomad blocking queries . 43
5.3 Bedouin OpenID Connect flow . 46

6.1 Bedouin Newman testing schema 50
6.2 The Ataccama ONE Nomad job illustration 52

xi

List of Tables

1.1 HashiCorp suite of tools dimensions 5

3.1 Bedouin requirements summary . 29

xiii

Introduction

Software development approaches are constantly evolving. The traditional
waterfall model, which is still relevant for many cases, is moving away in favor
of agile methods. Many companies are adopting cloud-based providing of their
services, allowing them to quickly react to changing demands and increase the
delivery rate of their products.

DevOps

From the high-level point of view, the software development life cycle consists
of the development itself and the information technology operations (IT oper-
ations). The purpose of IT operations is to enable and support the functioning
of infrastructure and the software running on it.

With the advent of agile approaches in software development comes the
effort to highly automate IT operations. Agile development enables fast and
flexible responding to requirement changes and empowers developers to re-
lease software more frequently. To be able to deliver releases in such a rapid
manner, IT operations departments need to be well prepared for it, preferably
by automating most of the routine processes. As a consequence of this need,
a new field combining software development and IT operations for the sake of
automatization was established. It is called DevOps.

HashiCorp Nomad

DevOps processes take various shapes depending on the specific requirements
of a business. Common steps can be identified as: development, testing, pack-
age, provision, securing, deployment, and monitoring. HashiCorp company is
one of many vendors offering tools for automating these steps.

1

Introduction

Nomad by HashiCorp is a cluster manager and workload scheduling tool. It
abstracts computing resources from the operator and thus decouples machines
from the jobs to be done. [1]

Aim of the thesis

Nomad is controlled via the command-line interface. It allows the operator
to submit a job that is described by a script written in Hashicorp’s DSL 1.
Nomad also offers a graphical UI for monitoring the deployment of jobs.

Ataccama company is a supplier of various products focused on data man-
agement. One of Ataccama’s Nomad use cases is a deployment of offered
products for consultants, to be used for proof of concept purposes. The ob-
ject of this paper is to create a self-service application with a user-friendly UI,
both for submitting and monitoring the workload using Nomad. This applica-
tion would allow the consultants to avoid coordination with the IT operations
department, in order to provision the new instances of products they need.

This document will be publicly available as an open-source to be used by
any other company or individual.

1Domain specific language

2

Chapter 1
Nomad introduction

In order a software application to run, it needs to be placed on a machine.
The machine needs to have sufficient computing resources available. The
application might have a specific requirements on the environment to be able
to run properly, for example: specific version of the operating system, network
access, Java Virtual Machine running, etc. In the case of a failure, it might be
needed to run the application on another machine available, to provide high
availability of the system.

The deployment of software applications to target machines can be handled
manually, but in case of a bigger number of applications, deployment targets,
or more frequent deployment interval, it can become a very time-consuming
and tedious routine task. Nomad targets at automating such tasks.

Nomad is a cluster manager and scheduling tool. Scheduling, in context of
Nomad, means a process of assigning workload to machines. Nomad scheduler
makes placement decisions while satisfying specified constraints and optimiz-
ing resource usage of managed machines. It is designed to be able to handle
thousands of scheduling events per second and tens of thousands of cores under
management [2].

Nomad is an open-source member of HashiCorp’s suite of tools for man-
aging DevOps processes. The suite provides tools for setting up a develop-
ment environment, packing applications, provisioning infrastructure, securing,
scheduling deployments, and monitoring.

1.1 HashiCorp’s suite of tools

Vagrant
Vagrant helps developers to set up a development environment using
virtualization. It allows developers to isolate their configuration and de-
pendencies and share the same environment across all machines that are
involved in the development process. For example, it allows members
of a development team to use various operating systems for develop-

3

1. Nomad introduction

ment without encountering problems caused by running on a different
platform. [3]

Packer
Packer is a tool for building images for various target platforms.

Terraform
Terraform allows treating a computer infrastructure as a code, using its
high-level configuration language. It enables operators to keep track of
different versions of an infrastructure, migrating the infrastructure to a
new environment or moving back and forth between different versions.
It is used to provision infrastructure both on in-house solutions or on
IaaS2 platform of many cloud providers. [4]

Vault
Vault is an authentication and secrets management tool. It allows to
centrally store, access and distribute secrets in a dynamic and scalable
manner. It can be integrated with the scheduling process of Nomad. [5]

Nomad
Cluster management and job scheduling are done with Nomad. Nomad
decouples computing resources from workloads that are to be executed.
This way developers are abstracted from the machines allowing them to
avoid cooperation with IT operators.

Consul
The last piece of the suite is Consul. Consul is responsible for service
discovery and health checking of the running services. It can be used
together with Nomad to register the scheduled tasks and run health
checks on them. Then it can inform Nomad of failed processes and
trigger restarting or reassigning of tasks. [6]

HashiCorp’s products tackle DevOps delivery process on three distinct
levels: the provisioning, security and run level. Where provisioning is managed
by operations team, security by the security team and the run level is handled
by developers (Table 1.1). These levels are loosely coupled, allowing the teams
to work in parallel and abstract them from the rest of the process.

1.2 How Nomad works

Nomad forms an infrastructure by running Nomad agents on target machines.
The agents are of two types: server and client. To submit a workload to
Nomad, the workload needs to be declared by a script using a Hashicorp’s

2Infrastructure as a service

4

1.2. How Nomad works

Software delivery lifecycle Responsible team HashiCorp tools
Run Applications Developers Nomad, Consul
Secure infrastructure Security Vault
Provision infrastructure Operators Vagrant, Packer, Terraform

Table 1.1: HashiCorp suite of tools dimensions

DSL3. In Nomad terms, the workload is called ”job” and the script declaration
is ”job specification”. Nomad then performs an evaluation and decides an
optimal placement on one of the client machines.

1.2.1 Nomad job

Nomad job consists of a set of tasks, that can be placed together in task
groups. A task represents elementary unit of work, for instance: starting a
Docker container, executing a binary, running a Java Jar file, etc. Tasks that
need to run together are placed in the same task group. Nomad then ensures
to run them on the same machine.

Nomad job is specified by structured, both human and computer readable
language, defined by the HashiCorp company, called HashiCorp configuration
language (HCL). The general structure of a job is: job → task group → task.

Nomad identifies a job by its name. A job specification having a name
that already exists in a different job is treated as another version of that job.
A job can be updated this way, on the fly, without the need to kill the old
one and recreate it all over. Nomad comes with rich functionality to handle
updates, such as blue/green upgrade or canary upgrade.

Job can be of three types: service, batch and system. The type instructs
Nomad what kind of scheduler to use. [7]

Service
The service type is meant to be used by long-running jobs, such as a web
application. In such case, Nomad takes extra time to find the best-fit
target machine to run the job.

Batch
The batch type denotes short-lived jobs. Example of a short-lived job
can be periodic database backup. This type of job is not that sensitive
to occasional performance bumps. This is, again, taken into account by
Nomad in order to find the target node.

System
System job should be running on all the clients managed by Nomad

3Domain specific language

5

1. Nomad introduction

that meets the job’s constraints. So when a new node joins the Nomad
cluster, the job gets rescheduled, so it is allocated on the new member
as well. This type of job can be used for example for logging services.

Job specification

HashiCorp configuration language defines short building blocks called job stan-
zas, of which the job specification is composed. HCL defines more than 20
stanzas. Each stanza has a focus on a distinct part of the configuration, for
example setting resource parameters required by task or restart strategy of a
task group. There is a job specification example shown in Listing 1.1, that
describes deployment of Redis (a lightweight in-memory database).

job ” r e d i s ” {
datacente r s = [” dc1 ”]
type = ” s e r v i c e ”
update {

a u t o r e v e r t : t rue
max para l l e l = 1

}
meta {

g r e e t i n g = ” He l lo CVUT! ”
}

group ” cache ” {
count = 2
r e s t a r t {

attempts = 2
i n t e r v a l = ”1m”
mode = ” f a i l ”

}
task ” r e d i s ” {

d r i v e r = ” docker ”
c o n f i g {

image = ” r e d i s : l a t e s t ”
port map {

db = 6379
}

}
r e s o u r c e s {

cpu = 500 # 500 MHz
memory = 256 # 256MB
network {

mbits = 10
port ”db” {
}

}
}

}
}

}

Listing 1.1: Nomad job specification example

6

1.2. How Nomad works

Stanzas used in Listing 1.1

job
The job stanza is a top-level stanza. The stanza itself describes the
overall behavior of a job, job name, type, priority, target datacenter,
etc. It is a container for task groups.

update
The update stanza defines the update strategy and its parameters, such
as minimum healthy time to consider update as stable.

meta
The job, task group and task stanza can contain arbitrary user-defined
data in a key-value shape.

group
Tasks are arranged in the task group stanza. The task group can define
a number of task group instances that are to be scheduled, constraints
that need to be satisfied on a target machine, etc.

restart
The restart stanza tells Nomad how to behave in case of a task group
failure. How many restarts are allowed and in what interval should they
take place.

task
Task is the core stanza describing what should be executed. There are
a few kinds of drivers that a client uses to execute the task.

resources
The resources stanza declares resource requirements of a task. The
stanza involves CPU, iops4, memory and network resources.

1.2.2 Job update

When a specification of an existing job gets changed and submitted to Nomad,
few scenarios can happen depending on a specified update policy (by the
update stanza).

When an update policy applied, Nomad scheduler plans a so-called ”de-
ployment”. Deployment can be thought of as a single transaction for all the
planned changes. Very much like a transaction in RDBMS5 can be rollbacked
or committed, Nomad deployment can be reverted back in case of failure. Re-
spectively, when a canary update applied, the deployment can be manually
promoted after it is made sure, that everything is working as expected.

4Input/output operations per second
5Relational database management system

7

1. Nomad introduction

When no update policy is applied, the update happens without using a
deployment. Then there is no control of ongoing update and the job cannot
be reverted to the previous version.

Rolling upgrade

The rolling upgrade strategy is a straightforward way to perform an upgrade.
When this strategy used, Nomad upgrades a specified number of task group
allocations at the time. That means it creates a specified number of new
allocations and takes the same number of old allocations down. The number
of parallel upgrades is max_parallel parameter of the update stanza. The
update stanza also defines the following parameters:

min_healthy_time This parameter specifies minimal time interval that the
allocations has to be successfully running, before proceeding to upgrad-
ing other allocations.

healthy_deadline Maximum time to mark allocation as healthy. When the
deadline is not met, the deployment is pronounced as failed.

auto_revert Specifies whether the deployment should be auto-reverted in
case of failure, or should be handled manually.

In case of failure of any of the new allocations, the error is propagated,
allocation of new instances is stopped and the deployment is stopped. If
auto_revert parameter is on, then the system automatically ends up in the
previous state as it was before beginning the upgrade. [8]

Canary upgrade

The rolling upgrade and the canary upgrade strategies are very much alike,
except the canary upgrade takes one extra step, to ensure that the changes are
working properly. In this case, the update stanza specifies parameter canary,
telling Nomad the number of allocation of the new version to be deployed,
while persisting all the old allocations. After it is made sure, that the canary
allocations are good to go, the deployment has to be manually promoted.
When promoted, the deployment continues in the same manner as the rolling
upgrade. [9]

Blue/green upgrade

Blue/green upgrade uses the canary concept from the previous strategy with
a little modification. When a canary deployment is considered safe, all the
rest of allocations is upgraded at once. As opposed to the rolling upgrade,
which upgrades the given number of allocations at once. [9]

8

1.3. Nomad architecture

Figure 1.1: Nomad region architecture

Source: https://www.nomadproject.io/

1.3 Nomad architecture

Nomad infrastructure consists of Nomad agents that runs either in the server
or client mode. These agents are located on machines forming datacenters and
eventually regions. An example of a region structure is shown on Figure 1.1

A datacenter is made of a server and clients. The clients registers them-
selves to a server and provide all the information necessary for allocation
decisions to the server. The information includes available resources, installed
drivers, installed operation system, and other attributes. A client also pro-
vides the server with information about the status of its allocations. The
server of a datacenter processes requests coming from the leader server of a
region and takes case of the allocation decision process within the datacenter.

By default, Nomad creates a single global region, that contains all the
datacenters. Servers of a region forms a cluster and replicates data between
each other, in order to ensure high availability. Within the cluster there is
one server elected as a leader, that is responsible of handling all requests and
queries.

Regions are independent from each other, each running its own clients and
its own jobs. Nomad, however, supports federating regions together, forming
them into a single cluster.

A client is a target machine where the tasks are executed.

A server manages communication within a cluster of servers, runs data repli-
cation and does the placement decisions of tasks.

Regions and datacenters forms an overall structure of Nomad environment.
Regions are sets of datacenters and can be federated together. Nodes in
a datacenter are expected to share local network.

9

1. Nomad introduction

1.4 Scheduling

Scheduling is a decision process of assigning tasks to client nodes. Result of
the process is an evaluation. Evaluation describes mapping of task groups to
clients, and the actions needed to reach the desired state. Scheduling process
is handled by server nodes and must respect task requirements specified by
job specification.

Entry point to scheduling process is submitting a job specification to a
Nomad server. Scheduling also happens in other situations when the current
state does not match the desired state, such as updating the job specification,
stopping the job, or failure of allocated resources.

Allocation decision takes two steps: feasibility checking and ranking. The
first step picks nodes having the necessary capabilities to run specified tasks,
such as the right set of drivers or enough of computing resources. Subse-
quently, the scheduler ranks the resulted node in order to select the best fit.
[10]

Dictionary

Allocation
An allocation is a mapping of a task group instance to a client node,
which resulted from scheduling.

Evaluation
An evaluation is an entity representing Nomad’s scheduling decision. It
is a plan of placing allocations to reach desired state.

Deployment
A deployment is a transactional step of allocating new resources.

1.5 Consul integration

Consul is a tool for discovering, configuring and monitoring services in a given
infrastructure. It helps to keep dynamic infrastructure organized and well
performing. Consul is a tool of the HashiCorp’s collection and is closely related
to Nomad functionality, even though is not required to use it.

Service discovery

Consul has a service registry that allows it to collect and store information
about running services and providing the information to its clients. An exam-
ple of such service could be a PostgeSQL server or a web application.

Nomad provides a way to integrate with Consul services by introducing
service stanza of the Nomad job specification. The service stanza specifies
service attributes, such as name, port, tags, etc.; and health check parameters,

10

1.5. Consul integration

describing a way how to check whether the service is alive. Running a Nomad
job with the service specification will automatically registers the services to
Consul.

Health checking

Consul supports running health checks using HTTP, TPC and gRPC proto-
cols, or using a bash script. There can be multiple heath checks running on a
single service. All these parameters can be specified using service.

Consul’s health checking capabilities are very useful for Nomad’s alloca-
tion and deployment management. Nomad itself checks for healthiness of its
allocations, but without specific health checks set up in place, it can check
only for system-level errors, such as running out system resources or network
failure. It would not be able to detect for example a problem, when an allo-
cation is placed and running properly, but the process inside the allocation is
not able to start, due to some specific error, and is constantly restarting.

Nomad benefits from Consul integration by using the health checks to
mark allocations as failed, when its service has failed. This feature is utilized
both for allocation failure management when the job is already running, as
well as for managing job updates.

Key-value store

Next Consul’s feature is a hierarchical key-value storage. It is a general pur-
pose storage, typical usage is for including dynamic configuration, feature
flagging, coordination, leader election, etc. [6] The Consul clients can easy
retrieve and use this data.

Consul introduces a utility tool called Consul Template. This tool takes an
template file with template variables defined and interpolates6 the variables
with values, using a Consul key-value store, Consul’s environment variables,
or Vault7 variables.

Nomad job can take advantage of Consult Template for configuring its
tasks. The job specification defines template stanza, which is used to declare
a template for Consult Template to use. The then stanza says where should
the interpolated template be places in the allocation’s environment and how
should the process be informed in case of template change.

6Interpolation (in computer programming) is a process of evaluating literals in order to
7Vault is HashiCorp’s secret management tool

11

Chapter 2
Project domain

The output of the practical part of the thesis is an alternative user interface
for Nomad. This software is being created at the initiative of the Ataccama
company. There is a particular use case the company wants to tackle —
to allow Ataccama’s consultants to be able to provision new installations of
offered products without the need of coordination with the IT department
(further described in subsection 2.1.2). This new user interface will be realized
as a web application. It will be tailored for the consultants as the target
users, providing them with straightforward, uncomplicated self-service Nomad
interface. While this is true, the application will be available for general use
by everyone for similar use cases. The application will be called Bedouin and
it will be further referenced by this name within this document.

2.1 Use of Nomad at the Ataccama company

2.1.1 Continuous delivery

While developing a big software product, especially using the agile method-
ology, the source code is often being written by several teams at the same
time. In such case, the source code is often branched into multiple branches,
potentially at different stages of the development. If the product is composed
of multiple parts, such as frontend and backend part of a web application, it
adds another level of complexity to the development process. For example,
when a specific backend branch of code needs to be running on a development
server in order to develop the frontend part accordingly, there needs to be a
well-organized process in place. Another case would be running a develop-
ment version of a product with a significant amount of changes, in order to
be tested before merging it to the main branch of the source code.

A common solution for this situation is setting up a continuous delivery
process. Continuous delivery is an automated series of steps that are applied
to a software source code. It is triggered by the submission of a new version

13

2. Project domain

of a code into a versioning system. This series of steps is called a ”pipeline”.
There is a number of tools to provide a framework for building the pipeline.
[11]

The Ataccama company uses Jenkins for its continuous delivery processes
and Nomad takes part in some of them. During the process, after the source
code is grabbed by Jenkins, built, tested and packed, the last step of the
pipeline is up to Nomad and Levant8. Jenkins invokes the Levant using its
command line interface, passing the template file (that is prepared in advance)
along with all the template parameters to it. The template parameters usually
involve version numbers of the software used, datacenter that should be used
for the deployment, or the name of the Nomad job. After Levant renders the
job specification with given parameters and passes it to Nomad, Jenkins then
reports the result status of the deployment.

The logs of the deployed applications can then be observed in multiple
ways: using the Hashi UI application (running in the company’s network); via
the Nomad command-line interface; or browsing Ataccama’s Kibana 9.

Ataccama also runs Sensu — a scalable monitoring framework. In this
case it is used to monitor resources of machines that are running the deployed
Nomad job allocations.

2.1.2 Production

The second Nomad use case at the Ataccama company takes place during
presale of Ataccama products. As a part of a product offering to a potential
customer, so-called ”proof of concept” (PoC) phase happens. During this
phase, An Ataccama’s consultant demonstrates the capabilities of the product
to a customer, in order to present features that a customer can benefit from,
so that the customer would purchase the product. Before the proof of concept
happens, a consultant needs to have a fresh new installation of the presented
products. The installation is usually deployed in a cloud environment, so it is
easily accessible over the internet.

In the current situation, when the consultant needs to be provided with
the new installations, he/she assigns a task to the IT department to deploy
the new instances of the products needed. At that point, the IT department
has already set up the cloud infrastructure with the Nomad in place. It also
disposes of all the Nomad jobs specifications of desired products and its depen-
dencies, such as databases, proxies, load balancers, etc. The IT department
needs to submit the prepared templates with the desired parameters to Lev-
ant and ensure that the deployment is successful. Once it is deployed, the
consultant sets all the necessary customer-specific configurations of the prod-
uct. To do so, the consultant needs to be able to browse the applications logs.
When the configuration causes an error, the logs provide the consultant with

8Templating and deployment tool for Nomad, further described in section 2.3
9Kibana is a framework used to build centralized logging database

14

2.2. Product requirements

an explanation of what went wrong. Currently, in order to observe the logs,
they need to use an SSH connection to the target servers.

2.2 Product requirements

There are three major product requirements. First, the consultants should be
abstracted from the Nomad job specification and at the same time they need
to be able to modify specific parameters of the job. For example, a version
number of the offered product that is about to be deployed. Second, they
need to be able to monitor the status of the deployment, to see whether it
was successfully deployed or if there was a problem they need to consult with
the IT department. And lastly, they have to have access to logs produced by
deployed applications.

2.2.1 Templating

To achieve the first requirement mentioned, the Nomad job specification needs
to be parameterized. Nomad implements a feature to parameterize job spec-
ification by dispatching variable values along with the job specification when
submitting the job. These variables get then interpolated by Nomad, but it
only applies to some of the stanzas of a job specification. To provide greater
flexibility of the specification, additional templating functionality needs to be
used.

At Ataccama, templating capabilities of the Levant tool is being currently
used for parameterizing Nomad job specification. Thus, compatibility between
templating mechanism of Bedouin and Levant is desired.

2.2.2 Ease of use

Besides the command-line interface, Nomad provides a simple web application
for monitoring the submitted jobs. It displays detailed information about the
job itself and about the scheduling process and all the entities involved in the
process. That is useful for DevOps operators, but it is not very user-friendly
for the consultants.

2.3 Prior art

There are quite a number of Nomad tools available, either enhancing the
functionality of Nomad or providing integration of Nomad with other DevOps
tools. Tools implementing at least some of the requirements imposed on this
project are: Nomad web UI, Hashi UI, Levant, and Cluster Broccoli.

15

2. Project domain

2.3.1 Nomad web UI

Nomad is equipped with a web user interface. It is mainly designed for job
monitoring, as it has very limited capabilities of controlling the jobs. The
web UI provides advanced information about the running jobs, as well as
information about Nomad servers and clients in the cluster. Using the web
UI, it is possible to view all the job evaluations; job versions and diffs between
each one; or task group allocations, down to the level of the client logs of a
particular task. The UI also handles displaying deployments and its status,
such as running canaries, etc.

2.3.2 Hashi UI

Hashi UI is a third party web application offering more sophisticated UI over
Nomad web UI. It displays Nomad state information in greater detail and
comes with more advanced features, such as real-time resource utilization
monitoring dashboard and previewing and downloading files placed on a client
within an allocation. Hashi UI also gives user greater control over the job.

• The user is able to edit the job specification of the running job and
re-submit it.

• It is possible to increase or decrease the count of task group allocations
on the fly, just by clicking a button in a job view.

• Canary deployment can be easily promoted when the canary or the
blue/green upgrade strategy is used.

2.3.3 Levant

Levant is a command-line tool adding an extra layer to Nomad. Levant adds
templating capabilities to Nomad by introducing extra parameters to the job
specification. Levant provides real-time feedback of job scheduling and de-
ployment, as well as detailed description of errors. It also provides extra
functionality to the Nomad deployment by supporting auto-promoted canary
deployments and tracking of failed deployments that resulted in a rollback to
the previous job version.

Templating

Levant provides Nomad job specification files with a free-form templating ca-
pability. By virtue of this a special parameter placeholder syntax is defined,
which can be used throughout the job specification. Levant template syn-
tax involves specifying parameters that are resolved by user-provided data;
parameters that are resolved by Consul’s key-value store; and even logical
expressions and functions.

16

2.3. Prior art

This templating mechanism has no limits in the sense of what portion of a
template can be parameterized and by what value it can be replaced. It thus
gives much more flexibility than the templating feature of Nomad.

User-provided template parameters
This is a simple kind of parameters that get interpolated by values provided
by the user. Parameter syntax uses a dot notation10 to address the value,
it can therefore be resolved by a hierarchical object (described by JSON or
YML). An example of a parameterized resources stanza and the correspond-
ing parameter values object is shown below (Listing 2.1 and Listing 2.2).

r e s o u r c e s {
cpu = [[. r e s . cpu]]
memory = [[. r e s . memory]]
network {

mbits = [[. r e s . network . mbits
]]

}
}

Listing 2.1: Parameterized stanza
example [12]

{
” r e s ” : {

”cpu ” : 250 ,
”memory ” : 512 ,
” network ” : {

” mbits ” : 10
}

}
}

Listing 2.2: Parameter values
example [12]

Template functions
Levant implements a number of build-in functions that can be used to resolve
the template parameters.

One of the functions — consulKey is able to retrieve data from Consul’s
key-value store. It takes an argument specifying the key of the Consul store
record, in order to use its value to resolve the parameter (Listing 2.3). [13]

[[consulKey ” s e r v i c e / c o n f i g /cpu”]]

Listing 2.3: ConsulKey template parameter [12]

Finally, Levant template parameter can also be an expression. Example
code is shown at Listing 2.4.

{{ i f consulKeyExists ” s e r v i c e / c o n f i g / a l e r t i n g ” }}
<c o n f i g u r e a l e r t s >

{{ e l s e }}
<sk ip c o n f i g u r e a l e r t s >

{{ end }}

Listing 2.4: Expression template parameter [12]

10Dot notation describes a path to an object property by using dots for separating the
property name from its parent object name.

17

2. Project domain

Parameter declaration file
In order to specify template parameter properties, such as name or default
value, it is possible to declare it in an additional file. Levant accepts pa-
rameter declaration specified in the Terraform11 variable configuration format
(Listing 2.5). Even though it is not the optimal way to specify the template
parameters, Levant uses it for the sake of consistency with the HashiCorp’s
suite of tools. [12] Terraform’s variable configuration allows to specify a pa-
rameter type, human-readable description, and a default value.

v a r i a b l e ” r e s ou r c e s cpu ” {
d e s c r i p t i o n = ” the CPU in MHz to a l l o c a t e to the task group ”
type = ” s t r i n g ”
d e f a u l t = 250

}

v a r i a b l e ” resources memory ” {
d e s c r i p t i o n = ” the memory in MB to a l l o c a t e to the task group ”
type = ” s t r i n g ”
d e f a u l t = 512

}

Listing 2.5: Example of Terraform variables [12]

2.3.4 Cluster Broccoli

Cluster Broccoli is a minimalist Nomad web interface. Its goal is very similar
to what the Bedouin project is targeting — a self-service Nomad interface to
be used by users without deeper technical knowledge. According to its docu-
mentation: ”Cluster Broccoli is meant to be setup by your IT. Some technical
knowledge is required to setup the infrastructure and define the templates.
End users can be internal (QA, data scientists) or external (customers, poten-
tial customers).” [14]

Cluster Broccoli templating feature is very much the likes of Levant’s pa-
rameter substitution with user-provided data, except that it comes with its
own template parameter syntax. It can work only with the JSON job speci-
fication, so it cannot benefit from good human-readability of HashiCorp con-
figuration language. Cluster Broccoli comes with its own proprietary format
to declare template parameters, which is much more suited for its purpose
than the Terraform language (the case of Levant). Cluster Broccoli supports
a wider variety of parameter data types. It also lets the operator specify a
description of the purpose of the job template as a whole and human-readable
parameter labels.

11HashiCorp’s infrastructure provisioning tool.

18

2.3. Prior art

The user interface of Cluster Broccoli allows a user to input the template
parameters via a form when submitting a job. It provides the user with real-
time feedback of allocation statuses and allows them to browse logs of the
running tasks.

19

Chapter 3
Analysis and design

Software requirements analysis and designing the application is an essential
part of the software engineering discipline. It is a phase that precedes the
actual development of the application. Its main purpose is to refine and for-
mulate the requirements that came up during the requirements gathering.
The resulted documentation should be agreed on with the client and used for
the design process that follows. In the case of agile development, the pro-
cess of requirement gathering and refinements occurs periodically as the new
requirements rise in time.

In the case of Bedouin, the software process follows the waterfall model
to the point of the complete first version, as described further in this chapter.
Once the initial phase is completed and published under open-source license,
further development will be available for anyone to join. Either by requesting
new features, reporting found bugs, developing, evaluating, or reviewing the
code changes. The project will be free to be forked by any party interested,
who can subsequently implement their own specific functionality.

Bedouin’s requirements were gathered during several meetings with the
lead DevOps engineer of Ataccama. The members of the Ataccama DevOps
department are currently the ones handling the process of provisioning the
software for the consultants. Bedouin should eliminate most of the manual
coordination between the consultants and the DevOps department.

3.1 Functional requirements

Functional requirements define what the demands placed on the software prod-
uct concerning its performative capabilities are, how the software should be-
have and what it should be able to execute. It is a result of the requirement
gathering process. Functional requirements define the scope of the project, it
can be viewed as a checklist to be used while developing.

21

3. Analysis and design

3.1.1 Read template and template parameters files

The application will be able to read template-related files from a file system.
The location of template files will be defined in the application configuration.
Both the template files and the template parameters files will be compatible
with the Levant templating syntax.

3.1.2 Render templates

Next feature required is template rendering. The final product is expected to
implement at least the functionality of the template parameter substitution
with provided values. The rest of the Levant templating features is optional.

3.1.3 Submit job to Nomad

Bedouin is required to provide the user with an interface for inputting the
template variables. Subsequently, Bedouin has to be able to submit the job
to Nomad and continuously inform the user of the status of the deployment
process.

3.1.4 Update job by its template

The user needs to be able to update the job that is already running by edit-
ing the template parameters of the template the job originated from. If the
template files are no longer by available, this option will not be shown.

3.1.5 Stop the job

The user interface has to enable the user to stop the job execution.

3.1.6 Audit information about a user

The system has to keep track of the users who submitted a job.

3.1.7 Monitor ongoing job

After the job submission, or update, Bedouin’s user interface must provide
information about the job progress status; allocations state; and information
about the Nomad clients on which the allocations are running.

3.1.8 Read task logs

The user has to have access to the system log that is produced by the process
of a task within an allocation. Both the standard output and the standard
error output (stdout, stderr) are needed.

22

3.2. Non-functional requirements

3.2 Non-functional requirements

Non-functional requirements, also called general requirements, represent a set
of constraints regarding the qualities that the system has to satisfy. In simple
terms, it is not a description of what the system should do, but rather how
the system works and how it is implemented (as opposed to the functional
requirements).

3.2.1 TypeScript and React

Part of the Ataccama’s development department is focused on web application
development using the TypeScript language and the React framework. Both
TypeScript and React are widely used and popular technologies with large
developer community [15]. Since the application will be open-sourced, it is
desired to pick popular, well-known technologies. It is supposed that Atac-
cama employees will be able to participate in maintaining the project. The
use of TypeScript and React is hence declared as a requirement.

3.2.2 OpenID Connect authentication

Authentication via the OAuth 2.0 standard and the OpenID Connect pro-
tocol is used across most of the systems in Ataccama. The application is
expected to provide a way to integrate it with an OpenID Connect authenti-
cation provider. Only the authenticated users shall be able to deploy jobs and
also the authentication would be used for identifying the user for audit. This
feature will be flagged12, allowing to use Bedouin with no OpenID provider.

3.2.3 Dockerized

The application will be dockerized for the sake of portability and easy deploy-
ment.

3.2.4 Stateless as possible

The application should hold as little state due to simplicity. All the job-related
state should be left to be handled by Nomad and the job templates shall be
stored in a file system. Nomad provides a way to store key-value shaped data
at the job, task group, and task specification. Bedouin should take advantage
of this feature in order to keep the state at the minimum.

12Feature flagging is a mechanism allowing to change application’s behavior by disabling
and enabling its features.

23

3. Analysis and design

3.2.5 Provide logs

The application should provide logs to be integrated with the Ataccama’s
central logging system — Kibana.

3.3 Stakeholders

The Bedouin application will serve the purpose of separating concerns of IT
operators and ”ordinary” users (in the sense of users without deeper technical
understanding).

IT operators will most likely interact with the application only at the
beginning while it is being installed and configured to work with a Nomad
instance. Their job is to prepare and maintain template files to be used by
the end users. In case of a failure of any kind, IT operators can use Bedouin
as one of the tool for troubleshooting, either through its UI or by inspecting
the output logs.

The users of Bedouin will interact with the application after it is fully
set up. They will be able to schedule a workload as easily as filling out the
template parameters and hitting the submit button. Since Nomad scheduling
is a complex process, during which various kinds of problems may occur, it is
assumed that there will always be an IT support to help with troubleshooting.
An error may occur even when the user has done everything correctly. The
user is not expected to deal with Nomad-related errors, rather, they are ex-
pected to hand over the problem to the IT support. As a result, it is possible
to use Bedouin even as an inexperienced user.

3.4 Domain model

Bedouin’s domain model is based on the model of Nomad. It can be considered
as an extension of it. Nomad’s domain model is not a part of the Nomad
documentation that is publicly available. The shape of the Nomad entities
and relationships between them, as illustrated in figure 3.1 are reconstructed
from the shape of the objects that are being served by the Nomad API. The
model is not meant to be considered an official domain model of Nomad.

The part of the model describing Nomad entities is viewed from Bedouin’s
perspective and is intentionally simplified. It displays only the entities that
are relevant to Bedouin’s functionality and also relationship cardinalities are
reduced in some cases. For example, the relationship between JobVersion and
Evaluation entities is in fact one-to-many, but Bedouin is interested only in
one particular Evaluation per JobVersion, resulting the relationship to be
reduced to one-to-one.

The model shows description of the Bedouin template-related entities and
how these entities relate to the Nomad model.

24

3.4. Domain model

Figure 3.1: Bedouin domain model

Description

Job, JobVersion
One instance of a Nomad job specification that defines a job name corre-
sponds to one version of a Nomad job of that name. So, when there are
two job specifications with the same job name submitted to Nomad, they
are considered to be two distinct versions of one single Nomad job13. To
model this concept, there is a Job entity defined that is a parent entity
of all its specifications.

TaskGroup
The TaskGroup entity represents the group stanza of the job specifica-
tion. This stanza is materialized and explicitly described as a domain
model entity in order to form a relationship with the Allocation entity.

13Even if one job specifications gets submitted to Nomad multiple times, without any
change, each submission creates new job version.

25

3. Analysis and design

Deployment, Evaluation, Allocation, ClientNode
These entities are direct representation of concepts described in sec-
tion 1.2.

Template
This entity stands for a template version, which is defined by the tem-
plate specification and the template parameter specification files. A
versions of a templates are distinguished by a checksum (hash value14)
of its template files.

TemplateRun
The TemplateRun entity represents an act of a template render and the
following submission to Nomad. This entity carries the parameter values
that have been used for the rendering and information about the user
that had run the template.
A relationship with Template is made by the checksum property. If
the template gets changed or deleted, TemplateRun is not be able to
reach it. That is the reason for the optional cardinality on the side of
Template, which may seem confusing at first. Bedouin has no control
over template files since they reside on a file system.
A relationship with JobVersion is optional as well. Bedouin is display-
ing all Nomad jobs no matter if they were scheduled via Bedouin or
not.

3.5 Architecture

The Bedouin application consists of two essential parts — a server (backend)
and a client (frontend). The server part does the heavy lifting: handling
template files; template management; executing the flow of submitting a job
to Nomad; and all the communication with Nomad. Whereas the client part’s
purpose is to provide the user with a graphical interface in order to control
the server part.

3.5.1 Backend

The Bedouin server can be viewed as an addition layer to Nomad, using a
specific part of its API and enhancing it by extra functionality.

Template files There are two kinds of template-related files: the template
specification files (parameterized Nomad job specification) and the parame-
ters declaration files. Template files will be organized in the following struc-
ture: each pair of the template specification and parameter declaration will be

14Hash value is a fixed-size image of arbitrary data, it is a result of a hash function.

26

3.5. Architecture

Figure 3.2: High-level Bedouin architecture

templates
dev

parameters.tf
dev.nomad

nginx
parameters.tf
job.nomad

...

Figure 3.3: Template files structure

placed in its own folder and these folders will reside together in a single root
folder. An example of this structure is shown in Figure 3.3. It will be within
the competence of the Bedouin server to handle and manage the template
files.

Running the templates The server is responsible for handling the process
of running the templates, which involves rendering the template and submit-
ting it to Nomad.

The job-related state is handled by Nomad, the only Bedouin-related data
is an audit of the user actions. Due to the minimal state requirement, is
it agreed that it is sufficient to store only the user information of the job
submission. It is thus possible to omit usage of persistent storage and use the
job’s meta stanza allowing to store arbitrary key-value shaped data.

Proxying and transformation of Nomad API Nomad can be fully con-
trolled by its RESTful HTTP API. Due to the fact that Nomad is a long-
running service with dynamic environment, it is often needed to observe the
API resource over time to inform the operator of change as soon as it happens.

27

3. Analysis and design

Nomad allows to continuously query its resources by using the long-polling
technique. The Nomad long-polling is further described in subsection 5.1.3.

The Bedouin server will be handling all the Nomad API communication
and the data concerning job monitoring will be forwarded to the Bedouin
client. The API will be reshaped to match the requirements of the Bedouin
application. In order not to have to replicate the long-polling technique and
at the same time leveraging the benefits of persistent connection using Web-
Sockets, the resources that need to be observed over time will be forwarded
to the client using the WebSockets technology.

/ jobs
/ job / : j o b i d
/ job / : j o b i d / e v a l u a t i o n s
/ job / : j o b i d / deployments
/ job / : j o b i d / a l l o c a t i o n s
/deployment / : d e p l i d / a l l o c a t i o n s
/ eva lua t i on / : e v a l i d / a l l o c a t i o n s
/ a l l o c a t i o n / : a l l o c i d
/ c l i e n t / a l l o c a t i o n / : a l l o c i d / s t a t e
/ c l i e n t / f s / l o g s / : a l l o c i d ? task=<task name>

Listing 3.1: Part of Nomad API

/ jobs
/ jobs / : j o b i d
/ jobs / : j o b i d / spec
/ a l l o c a t i o n s ?(job=<j ob id > | deployment=<dep l id >

| eva lua t i on=<e v a l i d >)
/ a l l o c a t i o n s / : a l l o c i d
/ a l l o c a t i o n s / : a l l o c i d / s t a t s
/ a l l o c a t i o n s / : a l l o c i d / l o g s / : task name

Listing 3.2: Bedouin API

Authentication Bedouin has to provide a way to integrate it with the
OpenID Connect authentication provider that is used in the Ataccama com-
pany. Ataccama uses solution based on Keycloak15. Though OpenID Connect
is a widely known protocol, it should not be assumed that every party using
Bedouin in the future will use this feature. In order to keep the application
generic, the authentication feature will be feature flagged. If needed, this fea-
ture will be implemented separately in a distinct feature branch of the code.

3.5.2 Frontend

Frontend part will implement an API client to communicate with the Bedouin
backend and the user interface based on the React framework. It also needs

15An open source identity and access management framework

28

3.6. Summary

to implement the corresponding part of the OpenID Connect protocol com-
munication flow.

3.6 Summary

The product name will be Bedouin. Bedouin will be an alternative No-
mad interface implemented as an additional layer on top of Nomad API. It
is designed to be used by users without deeper technical knowledge (non-
developers, non-IT-operators), allowing them to operate Nomad jobs. It is
not meant to replace Nomad tools currently used by IT operators, providing
them with an interface with greater control over the system.

Bedouin will be a web application composed of the server and the client
part. The server part will be responsible for handling Nomad job templates
and communicating with the Nomad API. The client part will implement
the user interface and the OpenID Connect authentication. List of both the
functional and non-functional Bedouin requirements are listed in Table 3.1.

1. Functional requirements

1.1. Read template and template parameters files
1.2. Render templates
1.3. Submit job to Nomad
1.4. Update job by its template
1.5. Stop the job
1.6. Audit information about a user
1.7. Monitor ongoing job
1.8. Read task logs
2. Non-functional requirements

2.1. TypeScript and React
2.2. OpenID Connect authentication
2.3. Dockerized
2.4. Stateless as possible
2.5. Provide logs

Table 3.1: Bedouin requirements summary

29

Chapter 4
Development technologies

and tools

4.1 Development technologies

4.1.1 Frontend

Currently there is no commonly adopted alternative to JavaScript when run-
ning a dynamic web application in a web browser. At the same time, when
developing a web application, vast number of languages, frameworks or build
systems can be used. [16]

4.1.1.1 TypeScript

Even though JavaScript language is evolving fast, the developer community is
moving even faster. [17] Today, there is a number JavaScript-based languages,
JavaScript supersets or syntax extensions. A possible way to run a code
written in non-standard JavaScript in a browser is to transpile it to naked
JavaScript.

TypeScript is a superset of JavaScript that primarily focuses on enhanc-
ing JavaScript by static typing of code. Static typing leads to less error-prone
code and enables intellisense 16 features to be used in IDEs. Moreover, Type-
Script provides language features of the future JavaScript by implementing
the proposals for the JavaScript language development.

TypeScript allows developers to gradually create the code typings of the
existing JavaScript code, without touching it, in a separate module. Type-
Script is gaining popularity as well as the number of typed libraries is growing.

16Intellisense is a code completion functionality of IDE (integrated development environ-
ment).

31

4. Development technologies and tools

Figure 4.1: Popularity of frameworks, libraries, and tools

Source: StackOverflow survey [15]

4.1.1.2 React

React framework is nowadays one of the most popular JavaScript frontend
frameworks. It is even one the most popular framework in general, accord-
ing to StackOverflow survey 4.1. React is maintained by Facebook and its
development is also driven by the developer community.

React is a frontend framework concerned with the user interface. In order
to create more complex web applications, using external libraries for state
management or API calls is almost inevitable. React itself does not provide
as much functionality as the competing frameworks, such as Angular or Vue.
But React, dealing only with the UI, gives the developers opportunity to
create a project based specifically on the project needs using the dependency
libraries of their choice.

React components React component is an elementary building stone of
React applications. One React component represents one part of the UI and
can be composed of other components. The component can work with the
data that are either passed to the component as a props 17 or the data that
component holds as its state. The essential part of a React component is
a render function. The render function describes how the component and
its data should be presented using other components. For rendering React
components to the HTML markup to be interpreted by the browser, React
comes with ReactDOM library implementing base components conceptually

17React props are arguments of a React component

32

4.1. Development technologies

representing the HTML DOM elements. Render function is of the component’s
lifecycle methods. Other methods are, for example:

• componentDidMount (This method gets called when the component in-
stance was inserted in a DOM for the first time. It is a good place to
set up subscriptions or initiate API call to an endpoint. Also, this is the
place to trigger initialization the needs access to the DOM.),

• shouldComponentUpdate (React triggers component’s rendering when-
ever its props or state changes. If it is known when the change won’t
affect the result of the render function, React can be informed by this
method. This approach optimizes application performance.),

• componentDidUpdate (If an interaction with the updated DOM after it
was re-rendered is necessary, this method is place to do so.)

and others.

Virtual DOM The HTML markup is a declaration of a web page structure
that the web browser reads in order to paint the actual page contents for the
user. Document Object Model (DOM) is an API used to access and control
the HTML. Purpose of the ReactDOM library is to manipulate the DOM, in
order to visualize the React components. Operations involving changing the
DOM and thus repainting the page are expensive. But every time that React
component runs the render function, all of its child components gets returned,
not only those that has changed. To abstract the programmer from dealing
with the optimal DOM rendering using only the components that has changed,
ReactDOM implements a concept known as virtual DOM. Virtual DOM is an
in-memory tree of the JavaScript objects, conceptually representing the DOM
elements. Virtual DOM handles the redundant renders of the elements that
have not changed and performs only the DOM changes of the elements that
have changed.

Functional programming React plays well with the idea of functional
programming. Developers are encouraged to think of the components as pre-
sentational components and container components (or ”dumb components”
and ”smart components”).

Presentational components serve the purpose of rendering the actual UI
elements. These components do not hold any state. Instead, they only work
with the data that has been passed to them from parent components. Pre-
sentational component is basically a pure function that receives a state and
returns UI.

Container components on the other hand should not render any of the
UI elements, they should only render other implemented components. Their
purpose is to provide the state to the presentational components and handle

33

4. Development technologies and tools

callbacks coming from user actions. The container components are called
”high order components”, which refers to the high order function paradigm of
the functional programming.

The presentational and container component pattern enables components
to be more generic and thus reusable. Container components can be com-
posed together, so each of the components can focus on distinct part of the
functionality[18].

React context The usual way to pass data through a component tree is by
using props, but for some kinds of data this approach can be very inconvenient.
Typically, it is the kind of data that needs to be shared across the application.
An example can be the data about the user preferences. There may be a
case when there are just few components affected by the user preferences.
Assuming that the user preferences data is stored at the root of the component
tree, then all the components that are part of the component tree to the
affected components need to pass the data through.

A solution to this a React context. React context provides a place for
storing data allowing the developers to subscribe for it anywhere within the
component tree from the point where the context has been declared. There
are two kinds of the React high order components to interact with the con-
text. First, the context provider, can be inserted anywhere in a component
tree exposing the context to be subscribed anywhere in its descendants. The
second component is the context consumer. When it is inserted in the context
provider’s component subtree, it gets access to the context data.

JSX React comes with a support for a special HTML-like syntax for describ-
ing the React components called JSX. JSX expressions makes the code of the
component render function look like an ordinary HTML markup, but behind
the scenes the actual React components are being created. The following two
expressions are equivalent.

<div>Hel lo CVUT!</div>

React . createElement (’ div ’ , nu l l , ‘ He l l o CVUT! ‘)

4.1.2 Backend

The backend part will be written using TypeScript, as well as the frontend
part. This approach is beneficial for as it enables code reuse and requires the
maintainers to master single programming language. The server will take care
both of serving the frontend code and assets to run in a browser, as well as
providing an API for the frontend calls.

34

4.2. OpenID Connect authentication

4.1.2.1 Node.js

JavaScript was initially created to run in the web browsers as part of a dy-
namic webpage. Eventaully, as the language got more evolved, Node.js was
introduced to enable JavaScript code to run on a server as well. Node.js uses
V8 JavaScript engine that is used in Google’s Chrome browser and is open-
sourced. The JavaScript environment is also provided with access to system
functionality such as networking and controlling the file system.

Part of the Node.js ecosystem is Npm (Node Package Manager). It is a
command-line tool managing third-party packages used in a JavaScript appli-
cation. It also provides a way to run scripts, for example to build or to test
the application. Part of the Npm project is a public package registry, which
is currently by far the biggest one in terms of number of registered packages.
[19]

4.1.2.2 Express.js

Express.js is a JavaScript framework for building HTTP APIs. It is a very
lightweight framework that handles HTTP requests by pushing it down the
chain of Express middlewares.

A middleware is a plain function that takes from 3 to 4 arguments. First,
it takes an object representing a request that was received by a server. Next
argument is an object representing a response that is being created and even-
tually is sent to the client. Third argument is a ’next’ function that invokes
next middleware of the chain. Optionally, the middleware used to handle er-
rors arised while processing the requests. In such case, the middleware func-
tion takes a forth argument — an error. A middleware can perform whatever
actions with the request and the response, edit or add properties to it and
finally can either invoke execution of the next middleware, or end the middle-
ware chain by dispatching the response to the client.

4.2 OpenID Connect authentication

OpenID Connect is an authentication protocol used for user identification us-
ing an authentication authority. This protocol allows service providers to use
existing authentication functionality of a third-party authority. This approach
is very commonly seen in many web services, allowing a user to sign up to
the service by their account of another service. For example signing up to
Spotify using user’s Google account. OpenID Connect is based on the OAuth
2.0 protocol.

35

4. Development technologies and tools

4.2.1 OAuth 2.0

OAuth 2.0 is the industry-standard protocol for authentication. It is based on
access tokens granting a client access to resources of a given system. OAuth
2.0 defines several grant types, describing different ways of how the access
token is obtained. [20]

Authorization code The authorization code grant type is the most com-
monly used grant type. Its main benefit is that a client is able to get access
to resources placed on a resource server. User only needs to interact with the
authentication provider, without exposing their credentials to the resource
server. The user sends their credentials directly to the authentication author-
ity and they get an authorization code in exchange. This access token is then
used to proof the user identity to the resource server. As a last step, the re-
source server issues the user an access token, which is used in all the following
communication from that point. [21]

Token formats The OAuth 2.0 framework can be used with different for-
mats of an access token. There are 2 common ways to implement access
tokens: string of hexadecimal characters; or structured tokens, such as JSON
web tokens (JWT). [22] The token of the first case is a string without any
special meaning, its only purpose is to carry a value that represents a secret.
Its authenticity has to proved by the authentication authority. JSON web
tokens are on the other hand self-contained, meaning their authenticity can
be proved just with knowledge of the public signing key of the issuer. No
communication with the authentication server is needed. Furthermore, JWT
can contain payload, typically information about the user and its authenticity
is granted as well.

4.2.2 OpenID Connect

OpenID Connect exploits the OAuth 2.0 authorization code grant type in
order the client to obtain an access token. In the following step, the client
sends an additional request to the authentication server, getting an ID token
in response. An ID token is JWT formatted token enclosing information about
the user in its payload.

The communication flow between interested parties of the OpenID Connect
protocol is explained in subsection 5.2.1.

36

4.3. Build and containerization

4.3 Build and containerization

4.3.1 Webpack

As mentioned in 4.1.1.1, writing the application in non-standard JavaScript
requires transpiling the code. Moreover, is it a good practice for the frontend
code to bundle and to minify it, in order to decrease the load time of the page.

Webpack is a modular bundling tool. First, Webpack builds a dependency
graph using the entry file(s) to the code. Then, using transformation middle-
wares (called ”loaders”), it loads up all the dependency files. This is where the
transpilation to JavaScript happens. Loaders does not have to be used just
for transpiling the code, they also can be used for loading and parsing other
file contents, such as JSONs, CSS files, images, etc.; for code linting18; and
for many other uses. Loaders are an arbitrary code, so there is no limitation
in what they are able to do. They can also by chained together or enhanced
by additional plugins.

For the frontend development, Webpack can be used with a development
server, to serve the bundled application code at the time as it is being written.
When running Webpack in a ”watch mode”, it runs the bundling process on
every file change and automatically reloads the page in the browser that is
running the app.

While automatic building and running the app is very useful and time-
saving feature, realoading the whole application and thus losing the applica-
tion state slows down the development process. In order to avoid full reloading,
Webpack comes with a feature called Hot Module Replacement (HMR). On
the serer side, when the source code is changed, the HRM plugin sends the
changed code, along with a manifest, to the browser via WebSockets. The
frontend application runs on top of the HMR runtime, which gets called by
the WebSockets to update the chunk of code that has changed. If the update
is not possible then a full page reload is required.

One other Webpack feature worth mentioning is ”tree shaking”. Webpack
detects unused parts of code (so-called ”dead code”) using static code analysis
and removes it. While this is useful for eliminating application’s own unused
code, it is especially useful for shaking off the unused parts of the external
libraries.

4.3.2 Docker

Docker containerization is a trending method used to pack and deploy appli-
cations. The main advantage of this approach is portability and encapsulation
of the application itself, its configuration, and all of its dependencies. Docker
is nowadays widely adopted by companies and service providers. [23]

18Code linting is a process of analyzing code for potential errors.

37

4. Development technologies and tools

Docker introduces isolated environments called containers. Among other
things, containers allows developers to pack the application along with the
needed resources and to run it inside container’s operating system. Docker
shares the kernel of the hosting operating system to by used by running con-
tainers, allowing the containers to be very small in contrast with virtual ma-
chine images.

38

Chapter 5
Implementation

All the project code is placed in a single repository: the backend, the frontend,
and the shared code. Both the frontend and the backend code has it’s own
build process set up, each pointing at the entry file of each part of the solution.

Bedouin code structure is conceptually broken down into distinct modules
(Figure 5.1). These modules forms a specific functionality of a program, but
they are tightly coupled, in a way that they do not provide or implement
predefined interfaces. Concerning the size of this project, such approach would
not be effective.

Figure 5.1: Internal implementation structure

39

5. Implementation

src.....................................base folder for application code
client...frontend code
server...backend code
shared code used both in frontend and backend

public...................................... frontend HTML resources
build...webpack build output
tests... testing assets
webpack.config.client.js....webpack build configuration for frontend
webpack.config.server.js....webpack build configuration for backend

5.1 Backend

5.1.1 Template file manager

The storage of template files, both template specification and template pa-
rameters specification, is on a file system. This is one of non-functional re-
quirements of this application. Each template file and template parameters
file need to be placed in its own folder. All these folders are then placed in a
single root folder. The application is aware of the folder location by specifying
it in a configuration file.

The Bedouin app implements a template file manager module for inter-
acting with template related files on a file system. Once the app starts, it
reads through the root template folder and identifies all the template related
files based on a file extension. It then loads up the file contents and calculates
checksums of all the template files using the md5 hash algorithm. Finally,
it saves the template folders structure, along with the checksums, in the in-
memory cache. The cache saves the system resources, so it needn’t access the
file system on every request. When the cached data expires due to set TTL
(time to live) expiration parameter, files get loaded again. So it handles file
change automatically, after the specified time limit. When it is needed to load
the changed files immediately, the user can force the cache to be deleted and
the files get loaded from the file system again, when they are requested.

5.1.2 Template renderer

The Bedouin templating syntax follows the Levant templating syntax in order
to provide compatibility between the two applications. Levant is written in
the Go programming language, so is Nomad. Levant can thus leverage some of
the Nomad features by importing its packages, since Nomad is open-sourced.

Levant uses Nomad features on many places, mainly exploits its API client
to communicate with the Nomad server. It also takes advantage of Hashicorp’s
Terraform library, where the HCL19 is defined. Levant uses HCL parser to
read its template variables specification files that follow HCL syntax.

19Hashicorp Configuration Language

40

5.1. Backend

The Levant’s templating functionality is implemented on top of the tem-
plate package of the Go language. Levant template variables are of two kinds.
The first kind are variables that are interpolated by values provided by the
user. The other kind are keyword variables that are interpolated by functions
passed into the Go renderer. Levant implements these functions and passes
them to Go template renderer.

It would be of great benefit to reuse the Levant’s template functionality
as well as the HCL utility functions. Not only would it save time to develop
Bedouin, but it would be ensured that the functionality behaves exactly the
same way. Also, in case of an update of these features in the source projects,
it would effect Bedouin’s functionality automatically.

Unfortunately, there is no direct way to use code written in Go in a
JavaScript application. However, there are two possible solutions to make
Go and JavaScript work together: Go to JavaScript compilation and Go to
WebAssembly compilation. In the first case, there are two existing compil-
ers possible to use, GopherJS and Joy. In the latter case, Go language from
version 1.11 ships with an experimental port to WebAssembly.

5.1.2.1 WebAssembly

WebAssembly addresses the problem of JavaScript being the only supported
programming language of web browsers. WebAssembly defines a binary format
that has a potential of running on the web at near native speed. On side of
that, WebAssembly defines corresponding language with syntax and structure.
The language is very similar to assembler and it is not mainly intended to be
written by hand. Is it designed to be a performant compilation target for
other languages, preferably low-level languages, such as C or C++. [24]

WebAssembly is capable of running and communicating with the JavaScript
code. It brings great new possibilities for the web applications to run a piece
of software written in other language with very good performance. It allows
to deliver complex and computational intensive applications such as games
or 3D visualizations to web browsers. WebAssembly aims to be language-,
hardware-, and platform-independent. [25]

WebAssembly became a web standard within World Wide Web Consor-
tium (W3C) and is currently supported by all20 major web browsers. From
the Node.js version 8.0.0, WebAssembly is supported as well.

Go compilation to JavaScript

The Levant code compilation to JavaScript was not possible using Joy. The
Joy compiler from Go to JavaScript is unable to compile most of existing
standard Go libraries [26]. Its development is currently on hold in favour of
WebAssembly.

20Edge, Firefox, Chrome, Safari, Opera

41

5. Implementation

WebAssembly seemed to be a very promising option, since there is an
official support of the Go language project, but the Go to WebAssembly com-
pilation is still an experimental feature and in the case of Levant, it failed due
to system-level calls in the Go code.

The compilation using GopherJS was the only successful one. Steps taken
to make that happen were:

1. The desired render to function to compile would take arguments tem-
plate and parameter values; and would return template with interpolated
parameters. Unfortunately, Levant render function is actually a method
of Levant-specific template class, thus cannot be directly compiled as
a standalone function. It was needed to write a new Go function that
follows the desired function signature and exploits the internal Levant
code. Since it is not possible to access the internal code of a library from
outside, a tiny portion of the Levant code had to be modified to allow
it.

2. Create a new Go file that imports GopherJS package and the package
containing targeted function to be compiled to JavaScript. Then use
GopherJS utility function to point the targeted function to be exported
as part of JavaScript module export.

3. Use a GopherJS command line tool to compile the Go file from the
previous step. The resulted JavaScript file is ready to use.

Since GopherJS does not support tree shaking of a dead code, the re-
sulted JavaScript code was approximately 20 MB. Compiled file contained all
the Levant’s dependency libraries, both Go libraries as well as third-party li-
braries. Webpack tree shaking does not help in this case, because it does not
handle files that big and errors with a memory overflow. This is an issue that
comes with a bit of performance slowdown, but fortunately, since this code is
running on a server, the file size is not crucial.

The issue can be solved by distilling the source code to the minimal func-
tionality needed and then compiling it again. This does not fit into the current
time scope of this project, but it is an issue to focus on in the further devel-
opment. It is also possible that some time in the future GopherJS or the Go
to WebAssembly compiler will support the tree shaking of code. If this was
the case, the source code could stay as it is.

5.1.3 Nomad API client

Nomad provides RESTful HTTP API both for interacting with jobs as well as
for monitoring the jobs, allocations, etc. For a one-time request of a Nomad
state, ordinary HTTP request can be used. When it is needed to continuously
monitor the Nomad state, the API handles that using long-polling technique.
And for observing task’s stdout and stderr logs Nomad uses HTTP streaming.

42

5.1. Backend

Figure 5.2: Nomad blocking queries

Nomad long-polling

For endpoints that supports long-polling requests Nomad introduces the index
parameter that represents Nomad state at a given time. The index holds an
integer value and the higher the value is the newer state it represents. This
index value is used by a Nomad to distinguish whether the client needs to be
updated with newest state. This feature is called ”blocking queries”. [27]

Blocking queries schema

1. The client sends an ordinary request to a Nomad endpoint.

2. Nomad sends a response with a header field containing the index.

3. The client sends another request, this time with the index value as a
query parameter. Optionally also with a timeout parameter.

4. If the state of the endpoint already changed from the time of the pre-
vious response, Nomad responds right away with a new index value. If
not, Nomad puts the request on hold until the state changes and then
responds. In case nothing changes within a timeout interval (either pro-
vided by the client or a default value), Nomad sends a response with an
index unchanged.

5. Each subsequent request follows the flow from step 3.

Bedouin’s Nomad API client module implements a function that follows
the blocking queries flow of a provided endpoint. This function uses the Ob-
servable pattern for notifying the application whenever the state of the end-
point (the index value) changes.

43

5. Implementation

Currently the API client is part of the Bedouin repository. Once it is
fully developed and mature, it will be separated to a standalone library and
published to the Npm public registry. In this way, it will be possible to reuse
the code in any JavaScript project.

5.1.4 Server

The server part consists of the HTTP server and the API built on top of
it using ExpressJS framework. Apart from the API, HTTP server is used
to provide the Bedouin frontend application code and other resources to the
browser. But this is just the case when Bedouin is used in production. While
developing, frontend resources are served by webpack-serve which comes with
powerful features such as Hot Module Replacement. Also, it comes with a
proxy that redirects all the API requests to the actual backend.

5.1.4.1 API using Express.js

Express.js sends every incoming request through a series of middlewares, as
described in subsubsection 4.1.2.2. The Express library provides router mid-
dleware interface. Router middlewares can be nested and each one can be used
to implement a specific part of the API. This way the code of API endpoints
can nicely be broken down into modules and then put together along with
routing setup in a single place.

Each API endpoint is broken down to two parts: an API route handler
and a controller. The route handler is a part of an endpoint that takes care of
interacting with the request and the response objects: checks validity of a re-
quest, parses request parameters, writes data to response, handles errors, etc.
The second part, the controller, is a set of functions that provides interaction
with the rest of the application. This provides a little bit of abstraction for
the API route handlers.

Authentication The server part of the Bedouin authentication mechanism
is very simple. The server takes part in the last phase of the authentication
flow described in subsection 5.2.1.

After the frontend obtains the JWT access token, it sends the token in ev-
ery subsequent request to the server. The server handles the verification of the
token authenticity in one of top-level Express.js middlewares. If the authenti-
cation feature of Bedouin is enabled, the authentication-handling middleware
makes the following steps:

1. It looks for the corresponding request header containing the JWT access
token.

2. It Verifies the JWT signature using the OAuth 2.0 provider’s public key.
The key is specified in the Bedouin configuration.

44

5.2. Frontend

3. If the token is genuine, then it parses the user information from the
JWT payload and attaches it to the request object, in order to be used
by the following middlewares. If the token verification fails, then the
middleware ends the execution of the middleware chain and sends the
appropriate response to the frontend.

The user information contained in the JWT payload is then used to label
the Nomad job with the name of the user who submitted it.

Error handling Bedouin’s API code takes advantage of error handling mid-
dlewares of the Express framework. When an error occures somewhere in ap-
plication’s code and eventually hits the API route handler, the handler can
simply cancel execution of the rest of the handler by calling the error middle-
ware, or chain or error middlewares, and pass the error to it.

The application declares an APIError class, that contains properties such
as HTTP error code, reason of an error and optional additional parameters.
An API controller’s job is handle errors that possibly happen at some point of
request execution. If an error is known, then it is translated into an APIEr-
ror with appropriate parameters, otherwise it is rethrown as it is. The next
thing that happens is that an API router handler calls the error middleware.
Lastly, the error middleware checks for the error type and if the error is of
type APIError, then the error middleware composes a response by the error’s
properties. If the error is of other type, then the middleware responds with
unknown server error status code.

5.2 Frontend

5.2.1 OpenID Connect client

The frontend part of Bedouin handles the part of the authentication flow
(Figure 5.3) as it is defined by the OAuth 2.0 and OpenID Connect protocols.

The authorization code grant flow

1. The Bedouin frontend initiates the flow with (a) redirecting the web
browser to the (b) OpenID provider login page (Keycloak).

2. After the browser displays the login page, the user inputs their creden-
tials and submits them back to the OpenID provider endpoint.

3. Assuming the credentials are valid, (a) OpenID provider redirects the
web browser to (b) the Bedouin frontend using a URL with the autho-
rization code included.

45

5. Implementation

Figure 5.3: Bedouin OpenID Connect flow

4. The Bedouin frontend then sends one more request to the OpenID
provider in order to exchange the authorization code for ID token (con-
taining the information about user).

5. Finally, the frontend stores the ID token as a cookie and includes it
in all the subsequent requests to the backend. The backend validates
the token signature and retrieves the user information from the token’s
payload.

5.2.2 React UI

Being a good practice to split the React components to so-called ”smart” and
”dumb” components, the Bedouin app follows this pattern by introducing
”API components”. ”API components” are used to manage the state of a
given API resource. They use Bedouin API client functions to retrieve the
state of the resources and then save it to component’s state. All of this state
is then passed down to child components. ”API components” are the ”smart”
components in this case, so the child components do not have to be aware of
the API functions. They just need to deal with rendering the UI content for
the user.

5.3 Shared code

5.3.1 Typings

Both frontend and backend is implemented using TypeScript — a statically
typed superset of JavaScript. Big advantage of a fullstack TypeScript web
application is a possibility to share the typings of objects, that are used to
transfer the data between frontend and backend.

46

5.3. Shared code

TypeScript object interfaces declared in Bedouin’s Nomad API client are
reused within the whole application.

5.3.2 Error codes

Shared code also includes enumeration of error codes of the Bedouin backend.
When the backend encounters an error and needs to inform the frontend of the
problem, it sends a response to the frontend with an error code. The frontend
then picks up the code and takes any actions needed, according to the error
code. To ensure consistency of the error code throughout both the backend
and the frontend, it is placed in a shared code.

47

Chapter 6
Testing and production

6.1 Testing

Software testing is an important part of the software development lifecycle. Its
purpose is to ensure that the software product or its components satisfy given
requirements and properties. Software testing is a wide subject comprising
many different testing levels and strategies, focusing on a certain dimension
or certain quality of the software product. Creating a testing suite for a
certain software product is highly dependent on circumstances: project size,
development team size, software complexity, criticalness, etc.

While developing software, it is good practice to have a set of tests in place
to run whenever there is new code pushed into the source code repository. This
is very important when working in a team of more people and especially in
case of a loosely tied team such as the open-source community. Testing the
changes made in code should prevent programmers from breaking the existing
functionality by accident. This is called regression testing.

Creating a testing suite covering every possible failure scenario in complex
software applications, such as web application, can result in very complex
and time-consuming testing solutions. In a real-world application, it is often
a trade-off between complexity and maintainability of tests and a risk of an
error.

The Bedouin application implements tests of the Bedouin backend API.
The tests servers the purpose of regression testing.

6.1.1 Bedouin testing tools

Postman Postman is an API development framework suitable both for de-
signing an API using API mocks and for testing the API.

Postman comes with a powerful user interface allowing developers to very
quickly and easily query API endpoints. It is built on top of Node.js runtime
allowing to use JavaScript for creating scripts to be used in the Postman

49

6. Testing and production

Figure 6.1: Bedouin Newman testing schema

environment. For example to run complex validation logic on a response that
came from a server, or to pass data around between multiple requests.

Newman Postman can be integrated with a command-line tool called New-
man, which is able to run test collections using created using Postman. New-
man maintains the feature parity with Postman. [28]

Postman serves very well the purpose of ad-hoc requesting the API while
development. This approach allows developers to create API tests by reusing
these requests, make them more generic using parameters, enrich them by
pre-request and test scripts, wrap them in workflows and finally export them
to be run by Newman.

6.1.2 Bedouin tests

Bedouin tests are created using the Postman-Newman tandem described above,
and they are being controlled by a shell script. The testing assets include tem-
plate files that are used by the Bedouin backend while testing it. The testing
process assumes there is a local Nomad instance running on a machine.

Testing script Before the Newman tests are executed, it is needed to con-
figure and start the Bedouin backend. That is the purpose of the shell script.
The script steps includes:

1. Build the Bedouin backend

2. Set the environment variable, that specifies the template files location,
to point at the testing template files.

3. Run the Bedouin backend

4. Wait for the first backend health-check indicating it is up and running

50

6.2. Ataccama use case

5. Execute Newman tests

6. Stop the backend

6.2 Ataccama use case

The first use case to try the Bedouin application in Ataccama is deploying an
instance of Ataccama ONE. Ataccama ONE is a platform for data manage-
ment including for example: data discovery, data profiling, business glossary,
data quality management, and other features.

The Ataccama ONE platform consists of several modules, that can also
perform as standalone applications, having its own APIs. These modules are
connected and bundled together, with a web application as a gateway for
users. As a result, Ataccama ONE is built as one large monolithic backend
with two side modules and a web application frontend.

6.2.1 The job template of Ataccama ONE

The Nomad job used for Ataccama ONE deployment consists of six tasks
grouped into two task groups. One for the frontend part and one for the
backend.

6.2.1.1 Backend task group

The backend task group holds three tasks. First is the monolithic backend
described above. The other two are external modules connected to the backend
local network within the allocation.

6.2.1.2 Frontend task group

The frontend task group contains three tasks: the application, a maintenance
page, and Nginx21. Each one is running in a Docker container.

Application First is the frontend application itself. All the assets of the
frontend application that a web browser has to provided are mapped to a
file system of the allocated node, using the Docker mounting mechanism.

Maintenance page This is a very lightweight task and is deployed much faster
than the rest of Ataccama ONE solution. It provides the web server with
a simple webpage informing the user that the system is being prepared.
The webpage contents are also mapped to the file system.

Nginx Nginx is a web server proxying the monolithic backend API and serving
the assets of either the maintenance page or the frontend application,
when is ready.

21Nginx is a web server, load balancer and reverse proxy.

51

6. Testing and production

Figure 6.2: The Ataccama ONE Nomad job illustration

6.2.1.3 Template parameters

The template specifies over 10 parameters, including for example:

FE_APP_IMAGE ONE frontend docker image identifier

BE_APP_IMAGE ONE backend docker image identifier

NGINX_IMAGE Nginx docker image identifier

APP_DEBUG ONE backend debug settings

HOST Host address of the application (for loadbalancer settings)

6.2.2 Running the job

Ataccama ONE has many different configuration files that can modify its
appearance and behavior. The consultants are the ones responsible for setting
them up, they have a good knowledge of the configuration and are welcomed to

52

6.3. Publishing as open-source

discuss it with the developers, when they run into trouble. The configuration
process usually takes some time as the consultants need to continuously test
if the changes they have made are effective.

Bedouin was able to successfully handle the template files and submit the
rendered job to Nomad. At the time of writing this document, the Bedouin
user interface is very simple and it is not fully resistant to user errors, but the
core functionality is in place.

6.3 Publishing as open-source

In order to publish an open-source project, it is needed to provide it with
a license specifying the terms of usage. A code repository with no license
specified is treated as under exclusive copyright, meaning no one can copy or
modify the code.

Bedouin is intended to be published without any restrictions, free for both
private and commercial use, distribution and modification in any way. Because
all of Bedouin’s dependency packages are published under ”permissive” license,
it is possible to use any license. Most common permissive licenses are: MIT,
Apache 2.0, ISC, and BSD. [29]

Bedouin is published under MIT license. It is a brief and clear license,
satisfying the desired properties described above. This license is most common
in Npm packages.

53

Conclusion

The goal of this work was to design and implement an open-source web ap-
plication as an alternative user interface on top of HashiCorp Nomad. This
application was created at the initiative of the Ataccama company, to be used
by its consultants. The application should serve the purpose of reducing man-
ual cooperation of the consultants and IT operators. Requirements for the
application was declared by the lead DevOps engineer of Ataccama.

The application was successfully developed and proved by running an ex-
isting Nomad job that is used in Ataccama. The application goes by name
Bedouin. The Bedouin design is described in this document and the source
code is publicly shared on GitHub22 under the MIT license.

The application implements all the core functionality in order to deploy
and monitor Nomad jobs using templates. On the other hand, the source code
contains many solutions that are not generic enough and many known bugs.
At this moment, the source code is not mature enough, making it very hard
to other developers of the open-source community to join the project easily. If
the Ataccama company participates in further development of Bedouin, then
hopefully the project will reach the point of stable release.

As a side product, this paper contains a basic introductory explanation of
HashiCorp Nomad, that can be useful to understand Nomad without having
a DevOps background knowledge. For me personally, such explanation would
be helpful at the time when I started working on this project.

As an author, I would also like to emphasize the importance of the soft-
ware requirements gathering and continual discussion over the design of the
software. While developing this product there was one misconception that led
to implementing a functionality was not needed and eventually was removed.

22https://github.com/Peracek/Bedouin

55

Bibliography

[1] HashiCorp. DevOps defined [online]. [Cited 12.11.2018]. Available from:
https://www.hashicorp.com/devops-defined

[2] Dadgar, A. Keynote: Nomad use cases [YouTube]. [Cited 1.11.2018].
Available from: https://www.youtube.com/watch?v=D5IVQvbPzcA

[3] HashiCorp. Introduction to Vagrant [online]. [Cited 12.11.2018]. Available
from: https://www.vagrantup.com/intro/index.html

[4] HashiCorp. Introduction to Terraform [online]. [Cited 12.11.2018]. Avail-
able from: https://www.terraform.io/intro/index.html

[5] HashiCorp. Vault landing page [online]. [Cited 12.11.2018]. Available
from: https://www.hashicorp.com/products/vault/

[6] HashiCorp. Consul introduction [online]. [Cited 12.11.2018]. Available
from: https://www.consul.io/intro/index.html

[7] HashiCorp. Nomad Schedulers documentation [online]. [Cited 1.11.2018].
Available from: https://www.nomadproject.io/docs/schedulers.html

[8] HashiCorp. Rolling Upgrades documentation [online]. [Cited 12.11.2018].
Available from: https://www.nomadproject.io/guides/operating-a-
job/update-strategies/rolling-upgrades.html

[9] HashiCorp. Easy and Flexible Application Deployment with HashiCorp
Nomad [YouTube]. [Cited 1.11.2018]. Available from: https://
www.youtube.com/watch?v=A6CuZUoINX0

[10] HashiCorp. Scheduling documentation [online]. [Cited 12.11.2018].
Available from: https://www.nomadproject.io/docs/internals/
scheduling.html

57

https://www.hashicorp.com/devops-defined
https://www.youtube.com/watch?v=D5IVQvbPzcA
https://www.vagrantup.com/intro/index.html
https://www.terraform.io/intro/index.html
https://www.hashicorp.com/products/vault/
https://www.consul.io/intro/index.html
https://www.nomadproject.io/docs/schedulers.html
https://www.nomadproject.io/guides/operating-a-job/update-strategies/rolling-upgrades.html
https://www.nomadproject.io/guides/operating-a-job/update-strategies/rolling-upgrades.html
https://www.youtube.com/watch?v=A6CuZUoINX0
https://www.youtube.com/watch?v=A6CuZUoINX0
https://www.nomadproject.io/docs/internals/scheduling.html
https://www.nomadproject.io/docs/internals/scheduling.html

Bibliography

[11] Phillips, A. The Continuous Delivery Pipeline — What it is
and Why itâĂŹs so Important in Developing Software [online].
[Cited 1.11.2018]. Available from: https://devops.com/continuous-
delivery-pipeline/

[12] James Rasell, A. H. Levant Templates [GitHub]. [commit 622d734]. Avail-
able from: https://github.com/jrasell/levant/blob/master/docs/
templates.md

[13] Rasell, J. Levant [GitHub]. [commit 3e65564]. Available from: https:
//github.com/jrasell/levant

[14] Rosner, F. Cluster Broccoli [GitHub]. [commit d0067e7]. Available from:
https://github.com/FRosner/cluster-broccoli

[15] StackOverflow. Developer Survey Results 2018 [online]. [Cited 5.1.2019].
Available from: https://insights.stackoverflow.com/survey/2018/

[16] Kharchenko, N. 8 JavaScript Alternatives for Web Developers
to Consider [online]. 2018, [Cited 12.11.2018]. Available from:
https://codeburst.io/8-javascript-alternatives-for-web-
developers-to-consider-22f8d38bdfa9

[17] Harter, M. Making the most of JavaScriptâĂŹs ”future” today with
Babel [online]. 2015, [Cited 12.11.2018]. Available from: https://
strongloop.com/strongblog/javascript-babel-future/

[18] Banks, A.; Porcello, E. Learning React: functional web development with
React and Redux. OReilly, 2017.

[19] Module counts [online]. [Cited 5.1.2019]. Available from: http://
www.modulecounts.com/

[20] OAuth 2.0 [online]. [Cited 5.12.2018]. Available from: https://
oauth.net/2/

[21] Bilbie, A. A Guide To OAuth 2.0 Grants [online]. [Cited 5.12.2018]. Avail-
able from: https://alexbilbie.com/guide-to-oauth-2-grants/

[22] Bearer tokens [online]. [Cited 5.12.2018]. Available from: https://
oauth.net/2/bearer-tokens/

[23] Datadog. 8 Surprising Facts About Real Docker [online]. 2018,
[Cited 9.12.2018]. Available from: https://www.datadoghq.com/docker-
adoption/

[24] Mozilla. WebAssembly [online]. [Cited 1.1.2019]. Available from: https:
//developer.mozilla.org/en-US/docs/WebAssembly

58

https://devops.com/continuous-delivery-pipeline/
https://devops.com/continuous-delivery-pipeline/
https://github.com/jrasell/levant/blob/master/docs/templates.md
https://github.com/jrasell/levant/blob/master/docs/templates.md
https://github.com/jrasell/levant
https://github.com/jrasell/levant
https://github.com/FRosner/cluster-broccoli
https://insights.stackoverflow.com/survey/2018/
https://codeburst.io/8-javascript-alternatives-for-web-developers-to-consider-22f8d38bdfa9
https://codeburst.io/8-javascript-alternatives-for-web-developers-to-consider-22f8d38bdfa9
https://strongloop.com/strongblog/javascript-babel-future/
https://strongloop.com/strongblog/javascript-babel-future/
http://www.modulecounts.com/
http://www.modulecounts.com/
https://oauth.net/2/
https://oauth.net/2/
https://alexbilbie.com/guide-to-oauth-2-grants/
https://oauth.net/2/bearer-tokens/
https://oauth.net/2/bearer-tokens/
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly

Bibliography

[25] Haas, A.; Rossberg, A.; et al. Bringing the web up to speed with We-
bAssembly. In ACM SIGPLAN Notices, volume 52, ACM, 2017, pp. 185–
200.

[26] Mueller, M. Introducing Joy [online]. [Cited 30.12.2018]. Available from:
https://mat.tm/joy

[27] HashiCorp. Nomad HTTP API documentation [online]. [Cited
15.12.2018]. Available from: https://www.nomadproject.io/api/
index.html

[28] Postman. Command line integration with Newman. [Cited 8.1.2019].
Available from: https://learning.getpostman.com/docs/postman/
collection_runs/command_line_integration_with_newman/

[29] Guides, O. S. The Legal Side of Open Source. [Cited 8.1.2019]. Available
from: https://opensource.guide/legal/

59

https://mat.tm/joy
https://www.nomadproject.io/api/index.html
https://www.nomadproject.io/api/index.html
https://learning.getpostman.com/docs/postman/collection_runs/command_line_integration_with_newman/
https://learning.getpostman.com/docs/postman/collection_runs/command_line_integration_with_newman/
https://opensource.guide/legal/

Appendix A
Contents of enclosed CD

readme.txt the file with CD contents description
src.............................the directory of the thesis source codes

bedouin............................Bedouin implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

61

	Introduction
	DevOps
	HashiCorp Nomad
	Aim of the thesis

	Nomad introduction
	HashiCorp's suite of tools
	How Nomad works
	Nomad architecture
	Scheduling
	Consul integration

	Project domain
	Use of Nomad at the Ataccama company
	Product requirements
	Prior art

	Analysis and design
	Functional requirements
	Non-functional requirements
	Stakeholders
	Domain model
	Architecture
	Summary

	Development technologies and tools
	Development technologies
	OpenID Connect authentication
	Build and containerization

	Implementation
	Backend
	Frontend
	Shared code

	Testing and production
	Testing
	Ataccama use case
	Publishing as open-source

	Conclusion
	Bibliography
	Contents of enclosed CD

