
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 6, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Performance of MultiPath TCP on OpenWRT

 Student: Balaji Subramani

 Supervisor: Ing. Viktor Černý

 Study Programme: Informatics

 Study Branch: Computer Systems and Networks

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2018/19

Instructions

This thesis investigates a performance of the Multipath TCP protocol implemented on GNU linux kernel.
1. Make a survey about the Multipath protocol and choose a suitable linux distribution or an operating
system derived from GNU linux kernel for your experiments.
2. Compile a GNU linux kernel with support of MultiPath TCP.
3. Prepare an OS image with support of MultiPath TCP for the network simulator GNS3.
4. After supervisor's agreement suggest an experiments for investigation of performance on load balancing
between two and three interfaces.
5. After supervisor's agreement suggest an experiments for investigation of performance on congestion
control in unstable networks.
6. Prepare your experiments in GNS3 network simulator.
7. Get your results on real hardware routers.

A result of this work will be performance comparison between the classic TCP protocol and MultiPath TCP
protocol.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of systems computer

Master's thesis

Performance of Multipath TCP on

OpenWRT

Bc.Balaji Subramani

Supervisor: Ing. Viktor Cerny

29th June 2018

Acknowledgements

I would like to express my gratitude to my supervisor Ing. Viktor Cerny for
accepting this challenging topic and the useful comments, remarks and en-
gagement through the learning process of this master thesis. I thank him for
motivating me all the time when I faced problems in implementing the project.

Next, I am gratefull to all the Professors in Czech Technical University who
constantly helped me gain knowledge throughout the Masters Degree.

A special thanks to my family. Words cannot express how grateful I am to my
Parents who helped me in pursuing my Masters degree. My mother has been
an inspiration throughout my life. She has always supported my dreams and
aspirations. I would like to thank her for all she is, and all she has done for
me. I would like to thank my Father who supported me �nancially all these
years for my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic �nal thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive autho-
rization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the �Work�), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
pro�t purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 29th June 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Balaji Subramani. All rights reserved.
This thesis is school work as de�ned by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of In-
formation Technology. The thesis is protected by the Copyright Act and its
usage without author's permission is prohibited (with exceptions de�ned by the
Copyright Act).

Citation of this thesis

Subramani, Balaji. Performance of Multipath TCP on OpenWRT. Master's
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2018.

Abstrakt

Multipath TCP (MPTCP) je pokro£ilým roz²í°ením stávajícího TCP pro-
tokolu, které dokáºe nabídnout ví Ãce neº standardní varianta. Transmis-
sion Control Protocol (TCP) je dosud nejroz²í°en¥j²í metodou pro spolehlivou
komunikaci p°es rozsáhlé sít¥. V sou Äasné dob¥ je protokol TCP omezen
na komunikaci pouze jedinou originální cestou mezi zdrojem a cílem, i kdyº
je v dané chvíli k dispozici více alternativních cest. TCP nepodporuje multi
homing. Tato vlastnost omezuje maximální moºný datový tok, protoºe nelze
vyuºívat více linek najednou. MPTCP pomáhá p°ekonat tento nedostatek.
Protokol umoº¬uje rozd¥lit komunikaci do n¥kolika nezávislých TCP spojení
a kaºdé z nich m·ºe vyuºívat jednu alternativní cestu k cíli komunikace. Díky
tomu dokáºe MPTCP zvý²it rychlost p°ipojení, rovnom¥rn¥ rozd¥lovat zát¥º
mezi n¥kolik r·zných p°ipojení k internetu a zárove¬ pomáhá udrºet spojení i v
p°ípadÄ výpadku n¥které z linek. V této práci budou vysv¥tleny rozdíly mezi
MPTCP a TCP protokoly a zárove¬ jak MPTCP funguje. Dále bude podrob-
n¥ji vysv¥tlen zp·sob jak zkompilovat linuxové jádro s podporou MPTCP v
kombinaci se Shadowsocks pro opera£ní systém LEDE. V dal²í £ásti práce bude
navrºena sada experiment·, které otestují vlastnosti MPTCP z hlediska da-
tové propustnosti, p°enosu velkých blok· dat, reakce na zvý²ené komunika£ní
zpoºdéní a reakce na zvý²enou ztrátovost komunika£ní linky. Hlavním cílem
práce je analyzovat a vyhodnotit výkonnost MPTCP oproti TCP v opera£ním
systému OpenWRT.

Klí£ová slova Multipath TCP, TCP, OpenWrt, LEDE, Shadowsocks, vytvá°ení
sítí, ²í°ka pásma, °ízení p°etíºení, vyvaºování zatíºení.

ix

Abstract

Multipath TCP (MPTCP) is an advanced development of TCP/IP net-
work which has better features when compared to TCP. Transmission Control
Protocol (TCP) is the so far widely used method for data transfer and commu-
nication over network. Currently, TCP communication is limited to a single
path which means no matter how many paths are available, data is transmit-
ted only through single path at once from the source to the destination. TCP
does not support multi homing. This feature restricts the use of bandwidth
over the network. MPTCP is an evolution of TCP that supports multi homing
which transmits data over multiple paths. Data transfer over multiple paths is
achieved by distributing data over several TCP sub�ows. Therefore, MPTCP
provides better throughput, load balancing among available paths and bet-
ter handling of network failure. In this thesis, I explain about the di�erence
between TCP and MPTCP, and how MPTCP works. I also explained in de-
tail about MPTCP enabled Kernel patch along with Shadowsocks in LEDE
(OpenWrt). Various experiments are carried out based on bandwidth, delay,
loss and bulk data transfer to analyze the performance of MPTCP over TCP.
The main goal of this thesis is to identify the performance analysis of MPTCP
over normal TCP connection in OpenWRT.

Keywords Multipath TCP, TCP, OpenWrt, LEDE, Shadowsocks, network-
ing, bandwidth, congestion control, load balancing.

x

Contents

Introduction 1
Motivation and objectives . 2
Problem statement . 2

1 Basic concepts and tools 3
1.1 Protocols . 3
1.2 OpenWRT . 7
1.3 Tools used . 10

2 Multipath TCP (MPTCP) 17
2.1 How Multipath TCP works . 17
2.2 MPTCP protocol . 19
2.3 Congestion control algorithms 25
2.4 Unsuccessful MPTCP setup . 27
2.5 MPTCP Kernel con�guration 28

3 Experimental setup 31
3.1 TCP setup . 31
3.2 Multipath TCP setup . 32
3.3 OpenMPTCPRouter Setup . 32

4 Results 37
4.1 TCP vs MPTCP - Basic speed experiments 37
4.2 TCP vs MPTCP - Bandwidth experiments 38
4.3 TCP vs MPTCP - Delay experiments 40
4.4 TCP vs MPTCP - Packet Loss experiments 42
4.5 MPTCP - Congestion control 43
4.6 MPTCP - Bulk Data Transfer 45
4.7 TCP vs MPTCP - Network Failure 47

xi

5 Conclusion 49

Bibliography 51

Acronyms 55

Appendix A 57

Contents of enclosed CD 61

xii

List of Figures

1.1 TCP in protocol stack . 4
1.2 TCP connection establishment . 5
1.3 TCP connection termination . 6
1.4 OpenMPTCPRouter - An OpenWRT with MPTCP support 8
1.5 OpenMPTCPRouter Luci . 9
1.6 Tra�c control without any bandwidht limit, delay or loss 12
1.7 Tra�c control limiting bandwidth 12
1.8 Tra�c control setting Delay . 13
1.9 Tra�c control setting Loss . 14
1.10 MPTCP support in Wireshark . 15

2.1 How MPTCP works . 17
2.2 MPTCP in protocol stack . 18
2.3 Initiating MPTCP connection MP_CAPABLE 20
2.4 Associating with existing MPTCP connection MP_JOIN 21
2.5 Adding other address ADD_ADDR 22
2.6 Removing invalid address REMOVE_ADDR 23
2.7 Data Sequence Signal DSS . 23
2.8 Closing MPTCP connection . 24
2.9 OpenMPTCPRouter with VPS setup 29
2.10 Lede con�guration - Choosing target system 29
2.11 Kernel con�guration - Shadowsocks 30
2.12 Kernel con�guration - Choosing path manager 30

3.1 TCP experimental setup . 31
3.2 MPTCP experimental setup . 32

4.1 Performance of TCP vs MPTCP - Time experiments 38
4.2 Performance of TCP vs MPTCP - Bandwidth experiments 40
4.3 Performance of TCP vs MPTCP - Delay experiments 42
4.4 Performance of TCP vs MPTCP - Loss experiments 44

xiii

4.5 Performance of Congestion control algorithms in MPTCP 45
4.6 Performance of Congestion control algorithms in MPTCP 2 46
4.7 Performance of TCP vs MPTCP - Network failure 48

xiv

List of Tables

2.1 MPTCP di�erent working nodes 18
2.2 MPTCP options . 20

4.1 Performance of TCP vs MPTCP - Basic speed 38
4.2 Performance of TCP vs MPTCP - Bandwidth 1 39
4.3 Performance of TCP vs MPTCP - Bandwidth 2 40
4.4 Performance of TCP vs MPTCP - Delay 1 41
4.5 Performance of TCP vs MPTCP - Delay 2 42
4.6 Performance of TCP vs MPTCP - Packet Loss experiment 43
4.7 Performance of TCP vs MPTCP - Packet Loss 1 44
4.8 Performance of TCP vs MPTCP - Packet Loss 2 45
4.9 Performance of TCP vs MPTCP - Bulk data transfer 47

xv

Introduction

The evolution of portable devices, such as mobile phones, tablets and lap-
tops, made it important to always be reachable and have a high throughput
connection. Having a fast and reliable internet connection is something that
individuals and companies would want. At the same time, many devices de-
veloped the capability of connecting to the Internet with at least two di�erent
interfaces in each type of device, such as WiFi and 3G, or Ethernet and WiFi,
in order to optimize the available communication infrastructures. Nowadays,
there are multiple solutions to this, for example companies can get a �ber optic
connection but it is still very expensive.

For many years the Transmission Control Protocol (TCP) has been a fun-
damental component of the Internet protocol stack and the most reliable com-
munication protocol for data transmission. Although the basic model of TCP
understands the essential mechanisms required to control �ow and congestion,
by itself it does not assure real-time delivery in cases of critical congestion
connections or breaks on a support link. This mismatch between todayâs
multipath networks and TCPâs single-path design creates tangible problems.

In this paper, I describe and analyse another solution which is less ex-
pensive than optic �ber and will make better use of brandwidth and be more
tolerant to failures than Multihoming. This solution implies using a Linux
Kernel with MultiPath TCP enabled and OpenWRT router. Multipath TCP
(MPTCP) is a major modi�cation to TCP that allows multiple paths to be
used simultaneously by a single transport connection. The Multipath TCP
protocol has recently been standardized by the IETF, and an implementation
in the Linux kernel is available today.

Structure of the Thesis
First chapter is about basic concepts and tools used for the experiments

in this thesis. Basic concepts that includes how regular TCP works, protocol
stack of TCP and connection establishment and termination of TCP. This
chapter also consists of di�erent protocols and tools used in this thesis.

1

Introduction

Second chapter describes in brief about Multipath TCP and how it works
theoritically. It includes di�erent MPTCP operations like connection establish-
ment, data transfer and connection termination of MPTCP. Multipath Kernel
con�guration in Lede is also explained in this chapter.

Third chapter consists of the experimental setup of TCP and Multipath
TCP in Openwrt. Implementation of Multipath TCP with detailed descrip-
tion of network, �rewall and routing con�guration is illustrated.

Fourth chapter is about the results obtained from various experiments of
TCP and MPTCP. Experiments includes performance of time comparison,
bandwidth, data transfer delay, packet loss, bulk data transfer and network
failure.

Final chapter is about the conclusion of the result obtained from the dif-
ferent experiments.

Motivation and objectives

The mismatch between today's multipath networks and TCP's single-path
design creates tangible problems. For instance, if a smartphone's WiFi loses
signal, the TCP connections associated with it stalls, there is no way to migrate
them to other working interfaces such as 3G. This makes mobility a frustrating
experience for users. Various techniques have been proposed in the past to
make use of multiple paths to establish a connection between two hosts or to
optimize network resource usage by means of tra�c balancing capabilities. I
believe Multipath TCP is optimal solution which solves the drawbacks of TCP.
The objective of this thesis is to perform a series of experiments to compare
the performance of TCP and MPTCP in OpenWRT.

Problem statement

The motivation for using MPTCP in order to ful�ll the problem description
can be broken into three di�erent parts namely

1. MPTCP can increase e�ciency. The protocol can take advantage of
additional interfaces i.e multiple paths.

2. MPTCP reduces congestion.

3. MPTCP adds redundancy e.g. if one link fails, the connection should
stay active.

2

Chapter1

Basic concepts and tools

1.1 Protocols

A network protocol de�nes rules and conventions for communication between
network devices. Network protocols govern the end-to-end processes of timely,
secure and managed data or network communication. The protocols used in
this thesis is explained below.

1.1.1 TCP (Transmission Control Protocol)

The Transmission Control Protocol (TCP) is one of the main protocols of the
Internet protocol suite. TCP is intended for use as a highly reliable host-to-
host protocol between hosts in packet-switched computer communication net-
works and in interconnected systems of such networks. TCP is a connection-
oriented end-to-end reliable protocol designed to �t into a layered hierarchy
of protocols which support multi-network applications. TCP is encapsulated
within the data �eld of IP datagrams and TCP encapsulates higher level pro-
tocol data such as HTTP (web), SMTP (email) and many other protocols.[1]

1.1.1.1 TCP in protocol stack

Application Layer: The application layer consists of user invoked applica-
tion programs that access services available across a TCP/IP Internet. The
application program passes data in the requires form to the transport layer for
delivery.

Transport Layer: The primary purpose of the transport layer is to provide
communication from one application program to another. The transport soft-
ware divides the stream of data being transmitted into smaller pieces called
packets in the ISO terminology and passes each packet along with the des-
tination information to the next layer for transmission. This layer consists

3

1. Basic concepts and tools

Figure 1.1: TCP in protocol stack

of Transport Control Protocol (TCP) which is a connection-oriented trans-
port service and the User Datagram Protocol (UDP) which is a connectionless
transport service.

Internet Protocol (IP) Layer: The Internet Protocol layer handles com-
munication from one machine to another. It accepts requests to send data
from the transport layer along with an identi�cation of the machine to which
the data is to be sent. It encapsulates the data into an IP datagram, �lls
in the datagram header, uses the routing algorithm to determine how to de-
liver the datagram, and passes the datagram to the appropriate device driver
for transmission. The IP layer corresponds to the network layer in the OSI
reference model. IP provides an unreliable connectionless packet-forwarding
service which routes packets from one system to another.[2]

1.1.1.2 TCP connection establishment

A three-way handshake is a method used in a TCP/IP network to create
a connection between a local host/client and server. The TCP connection
establishment works as follows.

1. The client sends a SYN (synchronize) packet to the server, which has a
random sequence number.

2. The server sends back a SYN-ACK packet, containing a random sequence
number and an ACK (acknowledge) number acknowledging the client's
sequence number. See �gure 1.2

3. The client sends an ACK number to the server, acknowledging the server's
sequence number.

4. The sequence numbers on both ends are synchronized. Both ends can
now send and receive data independently.[3]

4

1.1. Protocols

Figure 1.2: TCP connection establishment

1.1.1.3 TCP connection termination

TCP connection termination is implemented as follows:

1. One computer sends a FIN packet to the other computer including an
ACK for the last data received (X).

2. The other computer sends an ACK number of X+1

3. It also sends a FIN with the sequence number of Y.

4. The originating computer sends a packet with an ACK number of Y+1.
The connection is closed. See �gure 1.3

Another way to close the connection is for one computer to send a packet
with the RST (reset) bit set which will tell the other computer to immediately
terminate the connection.[4]

1.1.2 MPTCP (Multipath TCP)

Multipath TCP (MPTCP) is a set of extensions to regular TCP to provide a
Multipath TCP service which enables a transport connection to operate across
multiple paths simultaneously. The design of Multipath TCP has been in�u-
enced by two main requirements namely application compatibility and net-
work compatibility. Application compatibility implies that applications that
today run over TCP should work without any change over Multipath TCP.
Network compatibility means Multipath TCP must operate over any Internet
path where TCP operates. The detailed explaination of MPTCP is explained
in Chapter 2.

5

1. Basic concepts and tools

Figure 1.3: TCP connection termination

1.1.3 DHCP (Dynamic Host Con�guration Protocol)

DHCP provides an automated way to distribute and update IP addresses and
other con�guration information on a network. A DHCP server provides this
information to a DHCP client through the exchange of a series of messages
known as the DHCP conversation or the DHCP transaction. If the DHCP
server and DHCP clients are located on di�erent subnets, a DHCP relay agent
is used to facilitate the conversation.[5]

1.1.4 DNS (Domain Name System)

DNS syncs up domain names with IP addresses enabling humans to use mem-
orable domain names while computers on the Internet can use IP addresses.
For example, www.cvut.cz is resolved into machine-readable IP addresses like
204.13.248.115. DNS also provides other information about domain names,
such as mail services.

1.1.5 ICMP (Internet Control Message Protocol)

The Internet Control Message Protocol (ICMP) is a supporting protocol in the
Internet protocol suite. It is used by network devices including routers to send
error messages and operational information indicating a requested service is
not available or that a host or router could not be reached. ICMP is layer 4
protocol (it is on top layer 3 IP protocol), therefore it does not use TCP or

6

1.2. OpenWRT

UDP for data delivery. ICMP di�ers from transport protocols such as TCP
and UDP in that it is not typically used to exchange data between systems.

1.1.6 SSH (Secure Shell)

Secure Shell (SSH) is a cryptographic network protocol for operating network
services securely over an unsecured network. The best known example appli-
cation is for remote login to computer systems by users. SSH provides a secure
channel over an unsecured network in a client-server architecture connecting
an SSH client application with an SSH server. Common applications include
remote command-line login and remote command execution also any network
service can be secured with SSH.

1.1.7 HTTP (Hypertext Transfer Protocol)

The Hypertext Transfer Protocol (HTTP) is an application protocol for dis-
tributed, collaborative, and hypermedia information systems. HTTP is the
foundation of data communication for the World Wide Web. Hypertext is
structured text that uses logical links (hyperlinks) between nodes containing
text. HTTPS is the secured version of HTTP.

1.2 OpenWRT

The OpenWrt Project is a Linux operating system targeting embedded devices.
Instead of trying to create a single static �rmware, OpenWrt provides a fully
writable �lesystem with package management. This frees you from the appli-
cation selection and con�guration provided by the vendor and allows you to
customize the device through the use of packages to suit any application. For
developers, OpenWrt is the framework to build an application without having
to build a complete �rmware around it. For users this means the ability for full
customization to use the device in ways never envisioned. OpenWrt is con�g-
ured using a command-line interface (ash shell) or a web interface (LuCI).1.5
There are about 3500 optional software packages available for installation via
the opkg package management system. As we enter 2018, both OpenWrt and
the former LEDE project are happy to announce their uni�cation under the
OpenWrt name. The new, uni�ed OpenWrt project will be governed under the
rules established by the LEDE project. LEDE's fork and subsequent re-merge
into OpenWrt will not alter the overall technical direction taken by the uni�ed
project. OpenWrt can run on various types of devices, including CPE routers,
residential gateways, smartphones, pocket computers (e.g. Ben NanoNote)
and laptops. It is also possible to run OpenWrt on personal computers, which
are most commonly based on the x86 architecture. Moreover, the important
ascpect why OpenWRT is chosen for this thesis is that it supports Multipath
TCP.[6]

7

1. Basic concepts and tools

Figure 1.4: OpenMPTCPRouter - An OpenWRT with MPTCP support

1.2.1 Reasons to Use OpenWrt

The main advantage of OpenWRT is adaptation, simplicity and customizable
under speci�c requirements of a particular project. OpenWRT operation sys-
tem is the right choice for network devices which are not limited by standard
router functions. However, this kind of distribution kit will not match in case
of strict RAM and �ash memory requirements.[7] A wide range of reasons to
use OpenWRT is discussed below.

1.2.1.1 Performance and Stability

OpenWrt is designed by network professionals and others who care about the
performance of their network. OpenWrt incorporates many algorithms from
recent research that perform far better than vendor-supplied �rmware. Open-
Wrt is stable, and operates reliably for long periods of time. OpenWrt re-
duces latency/lag and increased network throughput via bu�erbloat control
algorithms.[8]

1.2.1.2 Extensibility

While vendor �rmware for a router ships with a �xed set of capabilities, Open-
Wrt provides more than 3000 packages ready to be installed. Some of the more
popular packages allows us to:

• Secure access to your home network when away via OpenVPN Server.

8

1.2. OpenWRT

• Prevent your ISP from snooping on your DNS requests via DNSCrypt.

• Control access using the time limits and parental controls.

• Reduce latency/lag (bu�erbloat) even during heavy tra�c with Smart
Queue Management

1.2.1.3 Strong Community Support

OpenWrt team members are regular participants on the LEDE Forum, Open-
Wrt Developer and OpenWrt Admin mailing lists. You can interact directly
with developers, volunteers managing the software modules and with other
long-time OpenWrt users, drastically increasing the chances you will solve the
issue at hand. Frequent updates and enhancement of Luci makes OpenWRT
easy to use. See �gure 1.5

Figure 1.5: OpenMPTCPRouter Luci

1.2.1.4 Security

OpenWrt is an open source software. Many developers from all over the world
review the code before it's released. The security advantages includes the
following aspects.

• No hidden backdoors left by hardware vendors.

• OpenWrt is actively updated so any vulnerabilities are closed shortly
after they are discovered.

• Many of the older devices are supported by OpenWrt and can enjoy secu-
rity OpenWrt brings, long after vendors stop releasing �rmware updates.

9

1. Basic concepts and tools

• OpenWrt is resistant to common vulnerabilities thanks to its Linux OS
which is una�ected by many common attacks.

1.2.1.5 Open Source

OpenWrt is provided for free through its GPL license. There are no subscrip-
tion or licensing fees.

1.3 Tools used

This section is about the tools used in this thesis to make Multipath TCP
work. Also explains about the di�erent tools used to measure the performance
of TCP and MPTCP.

1.3.1 Shadowsocks proxy

Shadowsocks is an open-source encrypted proxy project, widely used in main-
land China to circumvent Internet censorship. It was created in 2012 by a
Chinese programmer named "clowwindy" and multiple implementations of
the protocol have been made available since. Typically, the client software
will open a socks5 proxy on the machine it is run, which internet tra�c can
then be directed towards which is similarly to an SSH tunnel. Unlike an SSH
tunnel, shadowsocks can also proxy UDP tra�c.[9]

Unlike a VPN, Shadowsocks is highly customizable and uses HTTPS to
disguise online movements. This technology doesnât encrypt tra�c like a VPN
nor does it send all your tra�c through a speci�c server. Instead, it works with
a number of di�erent TCP connections, making it much faster than its rivals
and much more di�cult for authorities to detect as a masked connection.
Version: Shadowsocks 3.0.0

1.3.1.1 Server implementations

The original Python implementation can still be installed with Pip (package
manager), but the contents of its GitHub repository have been removed. Other
server implementations include one in Go, C using the libev event loop library,
C++ with a Qt GUI, and Perl. The Go and Perl implementations are not
updated regularly and may be abandoned.

1.3.1.2 Client implementations

All of the server implementations listed above also support operating in client
mode. There are also client-only implementations available for Windows
(shadowsocks-win), macOS (ShadowsocksX-NG), Android (shadowsocks-
android) and iOS (Wingy). Many clients including shadowsocks-win and
shadowsocks-android support redirecting all system tra�c over Shadowsocks,

10

1.3. Tools used

not just applications that have been explicitly con�gured to do so allowing
Shadowsocks to be used similarly to a VPN.

1.3.2 iPerf

Iperf is a widely used tool for network performance measurement and tuning.
It is signi�cant as a cross-platform tool that can produce standardized perfor-
mance measurements for any network. Iperf has client and server functionality,
and can create data streams to measure the throughput between the two ends
in one or both directions. Typical Iperf output contains a time-stamped report
of the amount of data transferred and the throughput measured. Basically,
iPerf operates over TCP optionaly over UDP.[10]
Version: iperf 3.0.11

1.3.2.1 iperf server

i p e r f 3 −s

1.3.2.2 iperf client

i p e r f 3 −c 192 . 168 . 200 . 1 −t 60

1.3.3 Tra�c control tc

Linux o�ers a very rich set of tools for managing and manipulating the trans-
mission of packets. The larger Linux community is very familiar with the tools
available under Linux for packet mangling and �rewalling (net�lter, and be-
fore that, ipchains) as well as hundreds of network services which can run on
the operating system. Few inside the community and fewer outside the Linux
community are aware of the tremendous power of the tra�c control subsystem
which has grown and matured under kernels 2.2 and 2.4.[11]
Version: tc 1.0.2

qdisc: Simply put, a qdisc is a scheduler. Every output interface needs
a scheduler of some kind, and the default scheduler is a FIFO. Other qdiscs
available under Linux will rearrange the packets entering the scheduler's queue
in accordance with that scheduler's rules.

1.3.3.1 Bandwidth limit

In order to limit the egress bandwidth we can use the following options in
tra�c control. See �gure 1.7

• qdisc: modify the scheduler (aka queuing discipline)

11

1. Basic concepts and tools

Figure 1.6: Tra�c control without any bandwidht limit, delay or loss

• add/del/change: add a new rule, delete a rule or modify existing rule.

• dev eth0: rules will be applied on device eth0

• root: modify the outbound tra�c scheduler (aka known as the egress
qdisc)

• tbf: use the token bu�er �lter to manipulate tra�c rates

• rate: sustained maximum rate

• burst: maximum allowed burst

• latency: packets with higher latency get dropped

tc qd i s c add dev eth0 root tb f r a t e 10mbit burst 10kb
l im i t 10mbit
tc qd i s c show

Figure 1.7: Tra�c control limiting bandwidth

12

1.3. Tools used

1.3.3.2 Delay

Delay in networking is the length of time between the intiation of a transaction
by a sender and the �rst response received by the sender. Length of time re-
quired to move a packet from source to destination over a given path. Created
by an application, handed over to the OS, passed to a network card (NIC),
encoded, transmitted over a physical medium and received by an intermediate
device (switch, router). The option for setting delay using tra�c control is
shown below [12]

• qdisc: modify the scheduler (aka queuing discipline)

• add/del/change: add a new rule, delete a rule or modify existing rule.

• dev eth0: rules will be applied on device eth0

• root: modify the outbound tra�c scheduler (aka known as the egress
qdisc)

• netem: use the network emulator to emulate a WAN property

• delay: the network property that is modi�ed

• 64ms: introduce delay of 64 ms 1.8

tc qd i s c add dev eth0 root netem delay 64ms
tc qd i s c show

Figure 1.8: Tra�c control setting Delay

1.3.3.3 Loss

Packet loss is the discarding of packets in a network when a router or other
network device is overloaded and cannot accept additional packets at a given
moment. The losses are usually due to congestion on the network and bu�er

13

1. Basic concepts and tools

over�ows on the end-systems. The command options for setting packet loss
using tc is shown below.

• qdisc: modify the scheduler (aka queuing discipline)

• add/del/change: add a new rule, delete a rule or modify existing rule.

• dev eth0: rules will be applied on device eth0

• root: modify the outbound tra�c scheduler (aka known as the egress
qdisc)

• netem: use the network emulator to emulate a WAN property

• loss: percentage of packet loss 1.9

tc qd i s c add dev eth0 root netem l o s s 5%
tc qd i s c show

Figure 1.9: Tra�c control setting Loss

1.3.4 Netcat

Netcat (nc) is a computer networking utility for reading from and writing to
network connections using TCP or UDP. Netcat is designed to be a dependable
back-end that can be used directly or easily driven by other programs and
scripts. At the same time, it is very useful network debugging and investigation
tool, since it can produce almost any kind of connection its user could need
and has a number of built-in capabilities.[13]

1.3.4.1 Netcat server

nc − l <port_number>
Eg : nc − l 2222

14

1.3. Tools used

1.3.4.2 Netcat client

nc <source_ip_address> <source_port>
Eg : nc 192 . 168 . 200 . 1 1234

1.3.5 Wireshark

Wireshark is a network analysis tool formerly known as Ethereal, captures
packets in real time and display them in human-readable format. Wireshark
includes �lters, color coding and other features that let you dig deep into
network tra�c and inspect individual packets. Wireshark is a free application
that allows you to capture and view the data traveling back and forth on
your network, providing the ability to drill down and read the contents of
each packet �ltered to meet your speci�c needs. It is commonly utilized to
troubleshoot network problems as well as to develop and test software. This
open-source protocol analyzer is widely accepted as the industry standard
winning its fair share of awards over the years.[14]

Figure 1.10: MPTCP support in Wireshark

1.3.6 GNS3

GNS3 is a free graphical network simulator capable of emulating a number
of network devices. This makes it possible for anyone to quickly and easily
spin up network hardware for testing and educational purposes without the

15

1. Basic concepts and tools

heavy expense of physical hardware. Supported devices include Cisco routers
and �rewalls, Juniper routers and frame-relay switches. GNS3 works by using
real Cisco IOS images which are emulated using a program called Dynamips.
GNS3 is really like the GUI part of the overall product. With this GUI, users
get an easy to use interface that allows them to build complex labs consisting
of a variety of supported Cisco routers.[15]

GNS3 allows the same type of emulation using Cisco Internetwork Oper-
ating Systems. It allows you to run a Cisco IOS in a virtual environment on
your computer. GNS3 is a graphical front end to a product called Dynagen.
Dynamips is the core program that allows IOS emulation. Dynagen runs on
top of Dynamips to create a more user friendly, text-based environment. A
user may create network topologies using simple Windows ini-type �les with
Dynagen running on top of Dynamips. GNS3 takes this a step further by
providing a graphical environment.[16]

16

Chapter2

Multipath TCP (MPTCP)

2.1 How Multipath TCP works

Generally a computer device or any communication device is attached to one
single network. However, these days we have our computing devices that is
attached to multiple networks at one time. A good example of multi homing is
a tablet or a multimedia phone that is attached to both mobile networks (either
through GPRS or a 3G connection) and a local WiFi network. The technology
that can be used to achieve this is called MPTCP or MultiPath TCP. Multipath
TCP is a set of extensions to standard TCP that allows connections to use
multiple paths simultaneously. Multiple regular TCP connections also known
as sub�ows are aggregated into a single Multipath TCP connection.[17]

Figure 2.1: How MPTCP works

17

2. Multipath TCP (MPTCP)

2.1.1 Multipath TCP in protocol stack

In regular TCP, an application initiates communication by opening a connec-
tion via an application programming interface (API) provided by the operating
system. The TCP layer communicates in its turn with the IP layer. In Mul-
tipath TCP, the TCP layer has been extended. Upwards, the Multipath TCP
layer exposes an interface that is perceived as regular TCP by the application.
In the protocol stack, there are several TCP sub�ows in the transport layer
rather than one TCP connection.[18]

Figure 2.2: MPTCP in protocol stack

2.1.2 Multipath TCP modes

Multipath TCP can be used with di�erent modes based the number of con-
nection. The modes are listed below.

Table 2.1: MPTCP di�erent working nodes

on No special con�g
master Like "on" but also set the default route for all other

tra�c (use it for one interface)
o� Disable the interface for MPTCP (default option)
backup Use this interface but don't forward tra�c until no

other interface are available. Sub�ows are created on
both interfaces, but data only �ows on one of them.
(faster switch since connection already established.

handover Establish a connection only if no other interface avail-
able (slower switch since connection not established
until all interfacs are down)[19]

18

2.2. MPTCP protocol

2.2 MPTCP protocol

This section provides a high-level summary of normal operation of MPTCP.

• To a non MPTCP aware application, MPTCP will behave the same as
normal TCP. Extended APIs could provide additional control to MPTCP
aware applications. An application begins by opening a TCP socket in
the normal way. MPTCP signaling and operation are handled by the
MPTCP implementation.

• An MPTCP connection begins similarly to a regular TCP connection.
An MPTCP connection is established between addresses A1 and B1 on
Hosts A and B, respectively.

• If extra paths are available, additional TCP sessions (termed MPTCP
"sub�ows") are created on these paths and are combined with the ex-
isting session which continues to appear as a single connection to the
applications at both ends.

• MPTCP identi�es multiple paths by the presence of multiple addresses at
hosts. Combinations of these multiple addresses equate to the additional
paths. In the example, other potential paths that could be set up are
A1<->B2 and A2<->B2. Although this additional session is shown as
being initiated from A2, it could equally have been initiated from B1.

• The discovery and setup of additional sub�ows will be achieved through
a path management method.

• MPTCP adds connection-level sequence numbers to allow the reassembly
of segments arriving on multiple sub�ows with di�ering network delays.

• Sub�ows are terminated as regular TCP connections with a four- way
FIN handshake. The MPTCP connection is terminated by a connection
level FIN.

2.2.1 Multipath TCP options

Multipath TCP uses options that are described in detail in RFC 6824. All
Multipath TCP options are encoded as TCP options with Option Kind is 30,
as reserved by IANA.

The Multipath TCP option has the Kind (30), length (variable) and the
remainder of the content begins with a 4-bit subtype �eld, for which IANA has
created and will maintain a sub-registry entitled "MPTCP Option Subtypes"
under the "Transmission Control Protocol (TCP) Parameters" registry. Those
subtype �elds are de�ned as follows:

19

2. Multipath TCP (MPTCP)

Table 2.2: MPTCP options

Value Symbol Name

0x0 MP_CAPABLE Multipath Capable
0x1 MP_JOIN Join Connection
0x2 DSS Data Sequence Signal (Data ACK and

data sequence mapping)
0x3 ADD_ADDR Add Address
0x4 REMOVE_ADDR Remove Address
0x5 MP_PRIO Change Sub�ow Priority
0x6 MP_FAIL Fallback
0x7 MP_FASTCLOSE Fast Close
0xf (PRIVATE) Private Use within controlled testbeds

2.2.2 Initiating MPTCP connection (MP_CAPABLE)

This is the same signaling as for initiating a normal TCP connection, but the
SYN, SYN/ACK, and ACK packets also carry the MP_CAPABLE option.
See �gure 2.3 This is variable length and serves multiple purposes. Firstly,
it veri�es whether the remote host supports Multipath TCP and secondly,
this option allows the hosts to exchange some information to authenticate the
establishment of additional sub�ows.[20]

Figure 2.3: Initiating MPTCP connection MP_CAPABLE

20

2.2. MPTCP protocol

2.2.3 Associating with an existing MPTCP Connection
(MP_JOIN)

The exchange of keys in the MP_CAPABLE handshake provides material that
can be used to authenticate the endpoints when new sub�ows will be set up.
Additional sub�ows begin in the same way as initiating a normal TCP con-
nection, but the SYN, SYN/ACK, and ACK packets also carry the MP_JOIN
option.

Host A initiates a new sub�ow between one of its addresses and one of
Host B's addresses. The token generated from the key is used to identify which
MPTCP connection it is joining, and the HMAC is used for authentication.
See �gure 2.4 The Hash-based Message Authentication Code (HMAC) uses the
keys exchanged in the MP_CAPABLE handshake, and the random numbers
(nonces) exchanged in these MP_JOIN options. MP_JOIN also contains �ags
and an Address ID that can be used to refer to the source address without the
sender needing to know if it has been changed by a NAT.

Figure 2.4: Associating with existing MPTCP connection MP_JOIN

21

2. Multipath TCP (MPTCP)

2.2.4 Adding other available address (ADD_ADDR)

The set of IP addresses associated to a multihomed host may change during
the lifetime of an MPTCP connection. MPTCP supports the addition and
removal of addresses on a host both implicitly and explicitly. If Host A has
established a sub�ow starting at address IP-A1 and wants to open a second
sub�ow starting at address IP-A2, it simply initiates the establishment of the
sub�ow as explained above. The remote host will then be implicitly informed
about the new address.

In some circumstances, a host may want to advertise to the remote host
the availability of an address without establishing a new sub�ow, for example,
when a NAT prevents setup in one direction. In the example below, Host A
informs Host B about its alternative IP address (IP-A2). See �gure 2.5 Host
B may later send an MP_JOIN to this new address. Due to the presence
of middleboxes that may translate IP addresses, this option uses an address
identi�er to unambiguously identify an address on a host.

Figure 2.5: Adding other address ADD_ADDR

2.2.5 Removing invalid address (REMOVE_ADDR)

If, during the lifetime of an MPTCP connection, a previously announced ad-
dress becomes invalid (e.g., if the interface disappears) the a�ected host should
announce this so that the peer can remove sub�ows related to this address.
For security purposes, if a host receives a REMOVE_ADDR option, it must
ensure the a�ected path are no longer in use before it instigates closure. The re-
ceipt of REMOVE_ADDR should �rst trigger the sending of a TCP keepalive
on the path, and if a response is received the path should not be removed.
Typical TCP validity tests on the sub�ow (e.g., ensuring sequence and ACK
numbers are correct) MUST also be undertaken. An implementation can use
indications of these test failures as part of intrusion detection or error logging.

22

2.2. MPTCP protocol

Figure 2.6: Removing invalid address REMOVE_ADDR

2.2.6 Data Transfer (DSS)

To ensure reliable delivery of data over sub�ows that may appear and disappear
at any time, MPTCP uses a 64-bit data sequence number (DSN) to number
all data sent over the MPTCP connection. Each sub�ow has its own 32bit
sequence number space and an MPTCP option maps the sub�ow sequence
space to the data sequence space. In this way, data can be retransmitted on
di�erent sub�ows (mapped to the same DSN) in the event of failure.

The "Data Sequence Signal" carries the "Data Sequence Mapping".[21]
The data sequence mapping consists of the sub�ow sequence number, data
sequence number, and length for which this mapping is valid. This option
can also carry a connection-level acknowledgment (the "Data ACK") for the
received DSN.

Figure 2.7: Data Sequence Signal DSS

23

2. Multipath TCP (MPTCP)

2.2.7 Change in Path Priority (MP_PRIO)

Hosts can indicate at initial sub�ow setup whether they wish the sub�ow to
be used as a regular or backup path a backup path only being used if there are
no regular paths available. During a connection, Host A can request a change
in the priority of a sub�ow through the MP_PRIO signal to Host B. Within
a local MPTCP implementation, a host may use any local policy it wishes to
decide how to share the tra�c to be sent over the available paths.
The ability to make e�ective choices at the sender requires full knowledge of
the path cost which is unlikely to be the case. It would be desirable for a
receiver to be able to signal their own preferences for paths, since they will
often be the multihomed party and may have to pay for metered incoming
bandwidth.

2.2.8 Closing MPTCP connection

When Host A wants to inform Host B that it has no more data to send, it
signals this "Data FIN" as part of the Data Sequence Signal. It has the same
semantics and behavior as a regular TCP FIN, but at the connection level.
Once all the data on the MPTCP connection has been successfully received,
then this message is acknowledged at the connection level with a DATA_ACK.
See �gure 2.8 Regular TCP has the means of sending a reset (RST) signal
to abruptly close a connection. With MPTCP, the RST only has the scope
of the sub�ow and will only close the concerned sub�ow but not a�ect the
remaining sub�ows. MPTCP± connection will stay alive at the data level, in
order to permit break-before-make handover between sub�ows. It is therefore
necessary to provide an MPTCP-level "reset" to allow the abrupt closure of
the whole MPTCP connection, and this is the MP_FASTCLOSE option.

Figure 2.8: Closing MPTCP connection

24

2.3. Congestion control algorithms

2.3 Congestion control algorithms

2.3.1 Uncoupled Congestion Control

Uncoupled congestion control is the simplest form of congestion control for
MPTCP. Each sub�ow is handled like an independent TCP connection, with
its own instance of a TCP congestion control.[22] However, this solution is
unsatisfactory, as it gives the multi-path �ow an unfair share when the paths
taken by its di�erent sub�ows share a common bottleneck.

2.3.1.1 wVegas

wVegas (Weighted Vegas) is a delay-based congestion control based on TCP
vegas. It is more sensitive to change because it does not have to wait for packet
losses to react and shift between sub�ows to adapt to network congestion. For
each sub�ow it calculate the di�erence between the expected sending rate
and actual sending rate. During slow-start it double the congestion window
every other RTT. If the di�erence is bigger than a threshold, it switches to
congestion-avoidance. During congestion-avoidance it increase the window by
one packet every RTT if the di�erence is small otherwise it reduces it by one
packet. This means that overall the window grow slower than other algorithm
and this avoids losses. However when the BDP is large, it switches too fast to
the congestion avoiding phase and gives bad throughput because the window
is too small.

Compared with loss-based algorithms, wVegas is more sensitive to changes
of network congestion and thus achieves more timely tra�c shifting and quicker
convergence. The Congestion Equality Principle illustrates that a fair and ef-
�cient tra�c shifting implies every �ow strives to equalize the extent of con-
gestion that it perceives on all its available paths.[23]

2.3.1.2 Cubic

Cubic is an implementation of TCP with an optimized congestion control
algorithm for high bandwidth networks with high latency It is a less aggressive
and more systematic derivative of BIC TCP, in which the window size is a
cubic function of time since the last congestion event, with the in�ection point
set to the window size prior to the event. Because it is a cubic function,
there are two components to window growth. The �rst is a concave portion
where the window size quickly ramps up to the size before the last congestion
event. Next is the convex growth where CUBIC probes for more bandwidth,
slowly at �rst then very rapidly. CUBIC spends a lot of time at a plateau
between the concave and convex growth region which allows the network to
stabilize before CUBIC begins looking for more bandwidth. Another major
di�erence between CUBIC and standard TCP �avors is that it does not rely
on the receipt of ACKs to increase the window size. CUBIC's window size

25

2. Multipath TCP (MPTCP)

is dependent only on the last congestion event. The window growth function
of CUBIC is governed by a cubic function in terms of the elapsed time since
the last loss event. Furthermore, the real-time nature of the protocol keeps
the window growth rate independent of RTT, which keeps the protocol TCP
friendly under both short and long RTT paths.[24]

2.3.2 Coupled Congestion Control

The basic idea to solve the unfairness issue of uncoupled congestion control
on shared bottlenecks is to couple the congestion windows of all sub�ows of
an MPTCP connection with the resource pooling principle: detecting shared
bottlenecks reliably is di�cult, but it is just one part of a bigger issue. This
bigger question is how much bandwidth a multi-path user should use in to-
tal, even if there is no shared bottleneck. The main idea is that by using
a coupled congestion control method, the transport protocol can change the
congestion window of each sub�ow and ensure bottleneck fairness and fair-
ness in the broader, network sense. Several approaches to handle this issue
are available, for example LIA (Linked Increases Algorithm), OLIA (Oppor-
tunistic LIA), Balia (Balanced LIA) and wVegas (Weighted Vegas). Coupled
congestion control only applies to the increase phase of the congestion avoid-
ance state, specifying how the congestion window in�ates upon receiving an
acknowledgement. Other phases are the same as in standard TCP.[25]

2.3.2.1 Linked Increase Algorithm (LIA)

The LIA calculation has three principle objectives :

1. Having an aggregate throughput greater than the one TCP can get using
the best path

2. Not being more forceful than TCP, be reasonable for TCP.

3. Balancing the congestion over paths

As it accomplishes the two �rst goal but fails to accomplish the third one,
a new algorithm has been developped, OLIA. In LIA, the slow start, fast
retransmit, and fast recovery algorithms, as well as the multiplicative decrease
of the congestion avoidance state are the same as in standard TCP. What
changes is the increase phase of the congestion avoidance state, the window
is increased by the minimum between the increase that would get normal
TCP and the computed increase for the multipath sub�ow. The value of this
parameter is chosen such that the aggregate throughput of the multipath �ow
is equal to the rate a TCP �ow would get if it ran on the best path. alpha need
to be calculated for each MPTCP �ow. This guarantees the goal number two:
not being more aggressive than TCP. Goal one is accomplished by computing

26

2.4. Unsuccessful MPTCP setup

an increase for the multipath sub�ow equal to the throughput a TCP �ow
would get if it ran on the best path.[26]

2.3.2.2 Opportunistic Linked-Increases Algorithm (OLIA)

OLIA is a window-based congestion-control algorithm that couples the increase
of congestion windows and uses unmodifed TCP behavior in the case of a loss.
Like LIA, the algorithm only modi�es to the increase part of the congestion
avoidance phase. It uses a set of best paths devided in two, a set with max-
imum windows and the rest of the paths. For the paths that have a small
window, OLIA increase the window faster. For the path that have the maxi-
mum window, the increase is slower. The current congestion control algorithm
of MPTCP, LIA, forces a tradeo� between optimal congestion balancing and
responsiveness. OLIA's design departs from this tradeo� and provide these
properties simultaneously. Hence, it solves the identi�ed performance prob-
lems with LIA while retaining non-�appiness and responsiveness behavior of
LIA. [27]

2.3.2.3 Balanced Linked Adaptation Algorithm (BALIA)

Balia is a generalized MPTCP algorithm that strikes a good balance between
friendliness and responsiveness. The algorithm only applies to the AIMD part
of the congestion avoidance phase. The other parts such as slow start, fast
retransmit/recovery algorithms are the same as in TCP [RFC5681]. The min-
imum ssthresh is set to 1 MSS instead of 2 when more than 1 path is available.
Responsiveness characterizes how fast the MPTCP algorithm reacts to changes
in network conditions. the "Balanced linked adaptation", which is a window-
based congestion control algorithm for MPTCP. The main design goal of Balia
is to systematically tradeo� di�erent properties such as TCP friendliness and
responsiveness by developing structural understanding of MPTCP algorithms
in a new design framework.

The window oscillation property characterizes how severely the window
size �uctuates around the equilibrium point. It is an inherent property of
AIMD-like algorithms.[28]

2.4 Unsuccessful MPTCP setup

Multipath is a developing technolgy that is standardized by Internet Engineer-
ing Task Force (IETF) under Request for Comments (RFC) 6824. Multipath
TCP is used in many environment like Linux distributions, OpenWRT, An-
droid, Planetlab, Raspberry Pi, etc. But choosing the right MPTCP kernel
patch is not so easy, since there is not much documentation for designing and
implementing Multipath TCP. I have spent most of my thesis time in trying

27

2. Multipath TCP (MPTCP)

di�erent ways of MPTCP, some setup failed due to some reason and found the
working con�guration of MPTCP.

2.4.1 MPTCP in OpenWRT with VPN

I installed the MPTCP patched kernel on both devices that are involved in a
Multipath TCP connection. Since my Ubuntu Host and Server have an ordi-
nary TCP-connection, the router cannot use the MPTCP-protocol by default.
To make it work, there is two possible solutions:

• Use a proxy on the router

• Use a VPN to an endpoint with faster network. In this way, we can use
all uplinks for all tra�c, even tra�c to a non-MPTCP-server.

Issues arised while installing the MPTCP kernel patch in OpenWRT such
as recipe for target 'world' failed openwrt. One of the main reason that
this setup does not work is because of the uncompatible kernel of MPTCP
and OpenWRT kernel. MPTCP kernel patch v3.14 is unsupported in latest
OpenWRT Kernel Chaos Chalmer 15.05. Also it is unable to test the MPTCP
in Ubuntu, since the MPTCP kernel created several issues while installing in
latest Linux kernel 4.14.

2.4.2 OpenMPTCPRouter with VPS

Another avialable method to implement Multipath TCP in OpenWRT is to
use OpenMPTCPRouter which is basically an OpenWRT router with MPTCP
patched kernel version. This setup also includes usage of Virtual Private
Sserver (VPS) and Shadowsocks proxy. The main reason for this setup failure,
is using only one OpenMPTCPRouter with VPS did not initate the MPTCP.
Also MPTCP cannot be enabled from this OpenMPTCPRouter from the com-
mand line and also the rules set in the ss-server(Shadowsocks server) and ss-
redir(Shadowsocks client) does not start from rc.local.

2.5 MPTCP Kernel con�guration

After several failures in choosing the right setup for MPTCP, �nally I found
a setup which supports MPTCP using Lede. The installation process of Lede
with MPTCP kernel is explained below. The required software environment
and build the LEDE images for the routers are available at [29]

First, select the device (router) where You want to install LEDE as the
target. For testing, use x86 See �gure 2.10 and VirtualBox VDI image as
output. Then navigate to Network �> Web Servers/Proxies and select
shadowsocks-libev-nocrypto-ss-local and shadowsocks-libev-nocrypto-
ss-redir. See �gure 2.11 Of course, you can select the regular versions from

28

2.5. MPTCP Kernel con�guration

Figure 2.9: OpenMPTCPRouter with VPS setup

them without -nocrypto, but I recommend the nocrypto versions because of
the better performance. Save the con�guration!

Figure 2.10: Lede con�guration - Choosing target system

Then navigate into the Networking support > Networking options
and enable MPTCP protocol. After that, go to the MPTCP: advanced path-
manager submenu and select some path manager but at least one! 2.12 It is
very important to select at least one, otherwise the multipath just not work!
Full-mesh path manager should be enough for normal use. Save the con�gu-

29

2. Multipath TCP (MPTCP)

Figure 2.11: Kernel con�guration - Shadowsocks

ration! We are ready with the con�guration so let's build the image!

Figure 2.12: Kernel con�guration - Choosing path manager

30

Chapter3

Experimental setup

3.1 TCP setup

Measuring the performance of connection requires a client and a server. I use
two Ubuntus to make this setup, where Ubuntu 1 acts as a client and Ubuntu
2 acts a server. Three routers are placed in between the Ubuntu 1 and Ubuntu
2, the same number of routers used in measuring the performance of Multipath
TCP. This is becuase to make sure we use the consistent hop counts in both
TCP and MPTCP setup. So, the overall resources are listed below. See �gure
3.1

• 2 Ubuntu PCs as Host

• 3 Routers R1, R2 and R3 for tra�c shapping

Figure 3.1: TCP experimental setup

3.1.1 Resources speci�cation

Ubuntu PC

• Version - Ubuntu 14.04 LTS

31

3. Experimental setup

• Memory - 3.6GB

• Processor - Intel Celeron(R) CPU G450 @ 2.50Ghz * 2

• Graphics - Intel Sandybridge Desktop

• OS type - 64-bit

3.2 Multipath TCP setup

Multipath TCP setup is constructed in such a way that 2 Ubuntus are con-
nected with 2 OpenMPTCPRouter with MPTCP support. And 2 Routers R1
and R2 are kept in between 2 OpenMPTCPRouter to ensure the hop count
consistency of TCP setup. SO, the overall Multipath TCP setup consists of
the following resources. SEe �gure 3.2

• 2 Ubuntu PCs as Host

• 2 OpenMPTCPRouter which is basically OpenWRT with MPTCP sup-
port

• 2 Routers R1 and R2 for tra�c shapping

Figure 3.2: MPTCP experimental setup

3.3 OpenMPTCPRouter Setup

The OpenMPTCPRouter with MPTCP enabled patch in OpenWRT is avail-
able at [30]. I used this router because it has better features when compared
to Lede MPTCP mentioned in Section 2.5. The notable features includes bet-
ter Luci interface to analyze the network, security and using the multipath
command in the terminal which did not work in other routers.

32

3.3. OpenMPTCPRouter Setup

3.3.1 Network

The network con�guration is placed under /etc/con�g. It consists of 1 lan
interface which is connected to Ubuntu 1 and 2 wan interfaces which are con-
nected to 2 Routers R1 and R2. The functionality of MPTCP such as con-
gestion algorithm, mptcp path scheduler, mode of multipath and mptcp path
manager is set under globals.

OpenMPTCPRouter 1

con f i g i n t e r f a c e ' loopback '
opt ion ifname ' lo '
opt ion proto ' s t a t i c '
opt ion ipaddr ' 1 2 7 . 0 . 0 . 1 '
opt ion netmask ' 2 5 5 . 0 . 0 . 0 '
opt ion mult ipath ' o f f '

c on f i g g l oba l s ' g l oba l s '
opt ion u la_pre f ix ' fd66 : bd19 : ca64 : : / 4 8 '
opt ion mult ipath ' enable '
opt ion mptcp_path_manager ' fu l lmesh '
opt ion mptcp_scheduler ' de fau l t '
opt ion conges t i on ' o l i a '
opt ion mptcp_checksum '1 '
opt ion mptcp_syn_retries '4 '

c on f i g i n t e r f a c e ' lan '
opt ion ifname ' eth0 '
opt ion proto ' s t a t i c '
opt ion ipaddr ' 1 92 . 1 68 . 1 00 . 2 '
opt ion netmask ' 2 55 . 2 55 . 2 55 . 0 '
opt ion mult ipath ' o f f '

c on f i g i n t e r f a c e 'wan1 '
opt ion ifname ' eth1 '
opt ion proto ' s t a t i c '
opt ion ipaddr ' 1 0 . 1 . 1 . 1 '
opt ion netmask ' 2 55 . 2 55 . 2 55 . 0 '

c on f i g i n t e r f a c e 'wan2 '
opt ion ifname ' eth2 '
opt ion proto ' s t a t i c '
opt ion ipaddr ' 1 0 . 2 . 2 . 1 '
opt ion netmask ' 2 55 . 2 55 . 2 55 . 0 '

The same network con�guration is applied on OpenMPTCPRouter 2 as
well which is basically a mirror like network of OpenMPTCPRouter 1.

OpenMPTCPRouter 2

con f i g i n t e r f a c e ' loopback '
opt ion ifname ' lo '
opt ion proto ' s t a t i c '
opt ion ipaddr ' 1 2 7 . 0 . 0 . 1 '
opt ion netmask ' 2 5 5 . 0 . 0 . 0 '
opt ion mult ipath ' o f f '

c on f i g g l oba l s ' g l oba l s '
opt ion u la_pre f ix ' fd66 : bd19 : ca64 : : / 4 8 '
opt ion mult ipath ' enable '
opt ion mptcp_path_manager ' fu l lmesh '
opt ion mptcp_scheduler ' de fau l t '
opt ion conges t i on ' o l i a '
opt ion mptcp_checksum '1 '
opt ion mptcp_syn_retries '4 '

c on f i g i n t e r f a c e ' lan '
opt ion ifname ' eth0 '
opt ion proto ' s t a t i c '

33

3. Experimental setup

opt ion ipaddr ' 1 92 . 1 68 . 2 00 . 2 '
opt ion netmask ' 2 55 . 2 55 . 2 55 . 0 '
opt ion i p6a s s i gn '60 '
opt ion mult ipath ' o f f '
opt ion i p4 t ab l e ' lan '

c on f i g i n t e r f a c e 'wan1 '
opt ion ifname ' eth1 '
opt ion proto ' s t a t i c '
opt ion ipaddr ' 1 0 . 3 . 3 . 1 '
opt ion netmask ' 2 55 . 2 55 . 2 55 . 0 '

c on f i g i n t e r f a c e 'wan2 '
opt ion ifname ' eth2 '
opt ion proto ' s t a t i c '
opt ion ipaddr ' 1 0 . 4 . 4 . 1 '
opt ion netmask ' 2 55 . 2 55 . 2 55 . 0 '

3.3.2 Firewall

Some basic �rewall rules needs to be set in both OpenMPTCPRouter1 and
OpenMPTCPRouter 2. The �rewall rules is shown below.

c on f i g zone
opt ion name lan
l i s t network ' lan '
opt ion input ACCEPT
opt ion output ACCEPT
opt ion forward ACCEPT

con f i g zone
opt ion name wan
opt ion network 'wan1 wan2 '
opt ion input ACCEPT
opt ion output ACCEPT
opt ion forward REJECT
opt ion masq 0
opt ion mtu_fix 1

con f i g forwarding
opt ion s r c lan
opt ion dest wan

con f i g forwarding
opt ion s r c wan
opt ion dest lan

3.3.3 Routing

Next step is to add some basic IP rules and routes on both the OpenMPTCPRouters,
so that it connected with the other routers in the middles namely R1 and R2.

OpenMPTCPRouter 1

ip ru l e add from 1 0 . 1 . 1 . 1 t ab l e 1
ip ru l e add from 1 0 . 2 . 2 . 1 t ab l e 2

ip route add 10 . 1 . 1 . 0 / 24 dev eth1 scope l i n k tab l e 1
ip route add de f au l t v ia 1 0 . 1 . 1 . 2 dev eth1 tab l e 1

ip route add 10 . 2 . 2 . 0 / 24 dev eth2 scope l i n k tab l e 2
ip route add de f au l t v ia 1 0 . 2 . 2 . 2 dev eth2 tab l e 2

route add −net 1 0 . 3 . 3 . 0 netmask 255 . 255 . 255 . 0 gw 1 0 . 1 . 1 . 2
route add −net 1 0 . 4 . 4 . 0 netmask 255 . 255 . 255 . 0 gw 1 0 . 2 . 2 . 2

34

3.3. OpenMPTCPRouter Setup

OpenMPTCPRouter 2

ip ru l e add from 1 0 . 3 . 3 . 1 t ab l e 1
ip ru l e add from 1 0 . 4 . 4 . 1 t ab l e 2

ip route add 10 . 3 . 3 . 0 / 24 dev eth1 scope l i n k tab l e 1
ip route add de f au l t v ia 1 0 . 3 . 3 . 2 dev eth1 tab l e 1

ip route add 10 . 4 . 4 . 0 / 24 dev eth2 scope l i n k tab l e 2
ip route add de f au l t v ia 1 0 . 4 . 4 . 2 dev eth2 tab l e 2

route add −net 1 0 . 1 . 1 . 0 netmask 255 . 255 . 255 . 0 gw 1 0 . 3 . 3 . 2
route add −net 1 0 . 2 . 2 . 0 netmask 255 . 255 . 255 . 0 gw 1 0 . 4 . 4 . 2

3.3.4 Shadowsocks

3.3.4.1 Shadowsocks client

Shadowsocks client should be enabled while installing the kernel patch of
MPTCP in OpenWRT. In my case, I use OpenMPTCPRouter 1 as the client
for shadowsocks.

1. create /etc/ss_redir.json

{
" s e r v e r " : [" 1 0 . 3 . 3 . 1 " , " 1 0 . 4 . 4 . 1 "] ,
" server_port " : 8388 ,
" loca l_addres s " : " 0 . 0 . 0 . 0 " ,
" loca l_port " : 1080 ,
"password" : "" ,
" timeout " : 300 ,
"method" : "none " ,
" fast_open" : f a l s e ,

}

2. Add the following in /etc/rc.local

ss−r e d i r −c / e tc / s s_red i r . j son
i p t a b l e s −t nat −N SSREDIR
i p t a b l e s −t nat −A PREROUTING −p tcp −j SSREDIR
i p t a b l e s −t nat −A SSREDIR −d 127 . 0 . 0 . 0 / 8 −j RETURN
ip t ab l e s −t nat −A SSREDIR −d 192 .168 .100 .0/24 −j RETURN
ip t ab l e s −t nat −A SSREDIR −p tcp −j REDIRECT −−to−por t s 1080
e x i t 0

3. Reboot the OpenMPTCPRouter 1

After rebooting the OpenMPTCPRouter 1, the shadowsocks client should start
automatically from the rc.local after the boot. But in some cases it does not
start automatically, so it needs to be started manually using the command ash
rc.local.

3.3.4.2 Shadowsocks server

Shadowsocks server should also be enabled while installing the kernel patch of
MPTCP in OpenWRT. In my case, I use OpenMPTCPRouter 2 as the server

35

3. Experimental setup

for shadowsocks.

1. Create /etc/ss_server.json

{
" s e r v e r " : " 0 . 0 . 0 . 0 " ,
" server_port " : 8388 ,
" loca l_addres s " : " 0 . 0 . 0 . 0 " ,
" loca l_port " : 1080 ,
"password" : "" ,
" timeout " : 300 ,
"method" : "none " ,
" fast_open" : f a l s e ,

}

2. Add the following in /etc/rc.local

ss−s e r v e r −c / e tc / ss_server . j son
e x i t 0

3. Reboot the OpenMPTCPRouter 2

After rebooting the OpenMPTCPRouter 2, the shadowsocks server should
start automatically from the rc.local after the boot. But in some cases it does
not start automatically, so it needs to be started manually using the command
ash rc.local.

3.3.5 Enable Multipath

MPTCP is running without any con�guration. By default MPTCP is not
enabled after the boot of the OpenMPTCPRouter.It needs to be started man-
ually. If you want to use it with multiple interfaces on your device you have
to con�gure these interfaces.

uci set network.<name>.multipath=<option>
Here you can choose one of the following options: Save your changes with:

uci commit /etc/init.d/network restart

uc i s e t network . g l oba l s . mult ipath=enable
mult ipath eth1 on
mult ipath eth2 on

After the multipath TCP is enabled, the status can be seen in the Luci package.
The green tick mark shows that multipath is enabled on both wan1 and wan2.

36

Chapter4

Results
This chapter explains about the results obtained from the various experiments
about the Multipath TCP. Experiments are conducted to analyze the perfor-
mance of both TCP and Multipath TCP. Variety of experiments that includes
data �ow for di�erent time, data �ow with delays, di�erent bandwidth limit,
data losses, di�erent congestion control algorithms, network failure and bulk
data transfer. The results are showed in both tables and graphs for better
understanding. Each experimental result is investigated and the reason which
protocol is better is explained.
The units of the parameters mentioned in the results are seconds(sec) for
time, milliseconds(ms) for delay, megabits/seconds(mbits/sec) for bandwidth
and percentage(%) for data loss. All the experiments are evaluated for data
�ow of 60 seconds from Host 1 to Host 2 except for Time experiments.4.1.
Default bandwidth of 100 mbits/sec on both the lines for TCP and MPTCP
except bandwidth experiments.4.2 Time duration for bulk data transfer in both
TCP and MPTCP is veri�ed using Netcat tool and rest of the experiments are
veri�ed using iPerf.

4.1 TCP vs MPTCP - Basic speed experiments

Time experiments are conducted to investigate the attained bandwidth for
continous data �ow of di�erent time range in both TCP and MPTCP. There is
no restrictions such as delay, data loss and network failure in this experiments.
Bandwidth is calculated for di�erent time ranges from 5sec to 120sec. The
bandwidth becomes stable for TCP after 40sec and the bandwidth is stable for
MPTCP after 20sec. This proves that there is no need to verify for more than
120sec, and so I chose 60sec as default time of data �ow for other experiments
conducted in the later sections. As we can see from the Table 4.1, bandwidth of
MPTCP is almost twice than the bandwidth of TCP. This is achieved because
of the distribution of data in two TCP sub�ows which in turn uses bandwidth
of both the lines in MPTCP. From the graph show in the Figure 4.1, it is clear
that Multipath TCP has better bandwidth performance when compared to
TCP.

37

4. Results

Table 4.1: Performance of TCP vs MPTCP - Basic speed

Time Bandwidth
TCP

Bandwidth
MPTCP

Ratio

(sec) (mbits/sec) (mbits/sec) (TCP/MPTCP)

5 93.40 184.33 0.5067
10 93.67 185.33 0.5054
20 93.97 186.00 0.5052
40 94.07 186.00 0.5057
60 94.10 186.00 0.5059
100 94.10 186.00 0.5059
120 94.10 186.00 0.5059

Note: Performance comparison of uninterrupted data�ow for di�erent time
from 5 to 120(sec) and �xed bandwidth 100 (mbits/sec) on both lines for
MPTCP.

Figure 4.1: Performance of TCP vs MPTCP - Time experiments

4.2 TCP vs MPTCP - Bandwidth experiments

The purpose of these experiments is to identify the how the performance di�ers
if di�erent bandwidth limits are set in both TCP and MPTCP. Data �ow is
tested for bandwidth ranges from 8mbits/sec to 100mbits/sec. Limiting the

38

4.2. TCP vs MPTCP - Bandwidth experiments

bandwidth is attained using special tool named Tra�c control (tc) in linux.1.6
The tc command to add the bandwidth limit on the outgoing tra�c on the
Router 1 is shown below.

tc qdisc add dev eth1 root tbf rate 32mbit burst 10kb limit 32mbit

Initially, same bandwidth limit is set on both lines for MPTCP and the
results are shown in the Table 4.2. More than 95% of bandwidth is utilized
in TCP for all ranges from 8 to 100mbits/sec. This is the same scenario
in MPTCP as well but doubled than bandwidth of TCP. Therefore, we can
conclude that di�erent end devices with similar speed does not a�ect the per-
formance of MPTCP. Multipath TCP uses almost 95% capacity on both end
devices which is obviously better than TCP.

Table 4.2: Performance of TCP vs MPTCP - Bandwidth 1

Bandwidth
Input

Bandwidth
TCP

Bandwidth
MPTCP

Ratio

(mbits/sec) (mbits/sec) (mbits/sec) (TCP/MPTCP)

8 7.34 13.43 0.547
16 15.23 29.00 0.525
32 30.87 60.87 0.507
64 62.07 122.23 0.508
100 94.10 185.00 0.506

Note: Performance comparison of uninterrupted data�ow for di�erent in-
put bandwidth from 8 to 100(mbits/sec) and �xed time 60 (sec). However,
same input bandwidth applied on 2 lines for MPTCP.

Another type of experiment is to observe how Multipath TCP behaves if
both lines have di�erent bandwidth. This main motivation for this experiments
arises becuase of the di�erent speed achieved from di�erent interfaces that
comes from the today± end devices. For example , the lastest mobile phones
supports 5G and ebility to use Wi� which in turn gives di�erent speed. So, line
1 is limited with 32mbits/sec and the line 2 is tested with bandwidth ranges
from 8 to 100mbits/sec. AS usual MPTCP distributes data in two lines and
utilizes the maximum capacity of both lines. Figure 4.2 shows clearly that
two lines with same bandwidth is better than di�erent bandwidth. However,
irrespective of di�erent bandwidth used, MPTCP is always better than TCP.

39

4. Results

Table 4.3: Performance of TCP vs MPTCP - Bandwidth 2

Bandwidth Bandwidth
TCP

Bandwidth
MPTCP

Ratio

(mbits/sec) (mbits/sec) (mbits/sec) (TCP/MPTCP)

32 and 8 7.34 37.37 0.197
32 and 16 15.20 45.13 0.337
32 and 32 30.87 60.37 0.511
32 and 64 62.17 91.30 0.681
32 and 100 94.10 123.53 0.752

Note: Performance comparison of uninterrupted data�ow for di�erent in-
put bandwidth (mbits/sec) and �xed time 60 (sec). However, di�erent input
bandwidth applied on 2 lines with �xed 32 (mbits/sec) on 1 line for MPTCP.

Figure 4.2: Performance of TCP vs MPTCP - Bandwidth experiments

4.3 TCP vs MPTCP - Delay experiments

This section describes about the experiments where data transfer is restricted
to di�erent delay in TCP and Multipath TCP. The delay of a network speci�es
how long it takes for a bit of data to travel across the network from one node
to another. Again, tra�c control is used to restrict the delay on one or both
interfaces. The delay command is shown below.

40

4.3. TCP vs MPTCP - Delay experiments

tc qdisc add dev eth0 root netem delay 64ms

Initially, delay is set on only one line and next same delay is set on both the
lines for MPTCP and various delay ranges from 2ms to 256ms. Bandwidth is
almost identical for 2ms to 64ms in TCP and MPTCP. But when the delay goes
higher, the performance of both TCP and MPTCP is getting poor. Delay on
one line is optimal when compared to delay on two lines. Data �ow with delay is
compared as well in both protocols, and the results shows that Multipath TCP
is optimal if delay is on one network rather than two networks. However, when
compared to TCP, Multipath TCP achieves good performance irrespective of
the delay.

Table 4.4: Performance of TCP vs MPTCP - Delay 1

Delay Bandwidth
TCP

Bandwidth
MPTCP -
Delay on
Only 1 line

Bandwidth
MPTCP -
Same Delay
on 2 lines

Ratio - 1
line

Ratio - 2
lines

(ms) (mbits/sec) (mbits/sec) (mbits/sec) (TCP/
MPTCP)

(TCP/
MPTCP)

2 94.10 185.67 184.33 0.51 0.51
8 94.03 183.97 179.13 0.51 0.52
32 93.83 179.87 161.87 0.52 0.58
64 93.50 166.23 124.53 0.55 0.75
128 56.63 109.43 81.50 0.52 0.72
256 28.23 82.07 36.17 0.34 0.78

Note: Performance comparison of delayed data�ow for di�erent delay from
2 to 256 (ms), �xed bandwidth 100 (mbits/sec) and �xed time 60 (sec). How-
ever, same delay applied on 2 lines for MPTCP.

Next set of experiments is to analyze what happens if there is two di�erent
delays in two lines for MPTCP. Again, this experiment is necessary because
of the distinct interfaces that comes in the end devices like Ethernet, Wi�,etc
which consumes distinct delay. So, line1 is �xed with 64ms and line2 with
ranges from 2ms to 256ms. The performance of MPTCP purely depends on
the delay in both the lines such as 64ms and 256ms is obviously not better
than 64ms and 2ms. MPTCP adds a scheduling layer over existing TCP
connections and routes application packets to one of the sub�ows based on
a decision parameter. E�cient scheduling decisions can improve the delay
performance of MPTCP.

41

4. Results

Table 4.5: Performance of TCP vs MPTCP - Delay 2

Delay Bandwidth
TCP

Bandwidth
MPTCP

Ratio

(ms) (mbits/sec) (mbits/sec) (TCP/MPTCP)

64 and 2 94.10 185.33 0.508
64 and 8 94.03 169.43 0.555
64 and 32 93.83 136.10 0.689
64 and 64 93.50 129.70 0.725
64 and 128 56.63 90.63 0.625
64 and 256 28.23 85.03 0.332

Note: Performance comparison of delayed data�ow for di�erent delay from
2 to 256 (ms), �xed bandwidth 100 (mbits/sec) and �xed time 60 (sec). How-
ever, di�erent delay applied on 2 lines with 64 (ms) �xed on 1 line for MPTCP.

Figure 4.3: Performance of TCP vs MPTCP - Delay experiments

4.4 TCP vs MPTCP - Packet Loss experiments

Next set of experiments is to investigate about the performance of packet loss
in both TCP and MPTCP. Packet loss occurs when one or more packets of data

42

4.5. MPTCP - Congestion control

travelling across a computer network fail to reach their destination. Packet loss
is either caused by errors in data transmissio or due t onetwork congestion and
is closely related to quality of service. Tra�c control is the again the best way
to ensure the packet loss in the interfaces.

tc qdisc add dev eth0 root netem loss 5%

At �rst, on both TCP and MPTCP, packet loss is set on only one line
ranges from 1.00% to 5.00%. Initial set of experiments is conducted with
the basic congestion control algorithm LIA in MPTCP with TCP. Figure 4.4
clearly shows that even after packet loss, MPTCP is considerably optimal when
compared to packet loss in TCP.

Table 4.6: Performance of TCP vs MPTCP - Packet Loss experiment

Loss Bandwidth
TCP

Bandwidth
MPTCP

Ratio

(Percentage
%)

(mbits/sec) (mbits/sec) (TCP/MPTCP)

1.00% 84.4 103.5 0.77
2.00% 66.5 101 0.73
3.00% 48.6 99.7 0.65
4.00% 36.8 97.95 0.55
5.00% 26.1 91.15 0.40

Note: Performance comparison of packet loss for di�erent percentage from
1.00% to 5.00 %, �xed bandwidth 100 (mbits/sec) and �xed time 60 (sec).
However, packet loss is applied on only 1 line for MPTCP.

4.5 MPTCP - Congestion control

Congestion control algorithm plays the fundamental role in MPTCP. Linking
the sub�ows can reduce the tra�c sent on the more congested path, and so
balance load. Their main di�erence with classical TCP congestion control is
that they need to react to congestion on the di�erent paths without being
unfair with single path TCP sources that could compete with them on one of
the paths. Packet loss is tested in di�erent congestion control algorithms like
LIA, BALIA, OLIA and wVegas for MPTCP and Cubic for TCP. Initially,
packet loss on only one line is checked range from 1.00% to 5.00%. From
the Figure 4.5, it is without doubt that BALIA is the best congestion control
algorithm of all. LIA and OLIA, su�er from either unfriendliness to Single
Path TCP (SPTCP) or unresponsiveness to network changes under certain
conditions. The tradeo� between friendliness and responsiveness is inevitable,
but Balia judiciously balances this tradeo�.

43

4. Results

Figure 4.4: Performance of TCP vs MPTCP - Loss experiments

Table 4.7: Performance of TCP vs MPTCP - Packet Loss 1

Loss in 1
line

LIA BALIA OLIA Cubic wVegas

(Percent%) (mbits/sec) (mbits/sec) (mbits/sec) (mbits/sec) (mbits/sec)

1.00% 105.00 103.50 104.50 105.00 104.50
2.00% 96.95 101.00 95.90 96.00 94.95
3.00% 89.60 99.70 90.95 88.25 88.80
4.00% 84.30 97.95 81.85 82.30 84.90
5.00% 79.15 91.15 76.85 75.50 80.40

Note: Performance comparison with data losses for di�erent losses from
1.00 to 5.00 (%), �xed bandwidth 100 (mbits/sec) and �xed time 60 (sec).
However, packet loss is applied on only 1 line.

Packet loss is applied only in one line in the previous experiment, whereas
next experiment is to check the behaviour of packet losses in both the lines.
However, the same amount of loss used in the above experiment ?? is splitted
into two. So, theoritically the quantity of loss on 1 line is implemented in 2
lines now i.e from 1.00% on line1 to 0.5% and 0.5% on line1 and line2. The
result of BALIA from Table 4.7 and BALIA from Table 4.8 shows that packet
loss on both lines is not e�cient when compared to packet loss on one line.
Loss with 2.5% each on two lines of MPTCP is 38.65mbits/sec and loss with

44

4.6. MPTCP - Bulk Data Transfer

Figure 4.5: Performance of Congestion control algorithms in MPTCP

5% on TCP gives 26.1mbits/sec which is similar. Therefore, it is optimal to
use TCP rather than MPTCP if loss is high on both the lines.

Table 4.8: Performance of TCP vs MPTCP - Packet Loss 2

Loss in 2
lines

LIA BALIA OLIA Cubic wVegas

(Percent%) (mbits/sec) (mbits/sec) (mbits/sec) (mbits/sec) (mbits/sec)

0.5%, 0.5% 80.4 89.5 84.1 77.2 80.7
1.0%, 1.0% 64.15 67.4 64.35 60.45 59.05
1.5%, 1.5% 51.75 54.1 52.15 49.85 51.65
2.0%, 2.0% 44.8 47.35 44 45.2 43.25
2.5%, 2.5% 38.65 40.25 38.4 37.6 36.4

Note: Performance comparison with data losses for di�erent losses from 0.5
to 2.5 (%), �xed bandwidth 100 (mbits/sec) and �xed time 60 (sec). However,
same packet loss applied on 2 lines.

4.6 MPTCP - Bulk Data Transfer

The objective of this experiment is to compare how long does it takes to
transfer huge data using TCP and MPTCP. Random data of size 1GB, 2GB

45

4. Results

Figure 4.6: Performance of Congestion control algorithms in MPTCP 2

and 5GB is created using Data Duplicator (dd) and /dev/urandom which is
a pseudo random number generator (PRNG). The huge data �le is sent from
Host 1 to Host 2 without any delay, packet loss and default bandwidth of 100
mbits/sec.

4.6.1 Generate Random �le

One of the easy way to generate a random �le is using Data Duplicator in
Linux. The command to create random �le is shown below where if is the
input �le name which is /dev/random and of is the output �le name and bs
is the block size. Using this feature, three huge random data �les are created.

dd i f=/dev/random of=data_1GB bs=1024 count=$ ((1024∗1024))

4.6.2 Transfer Bulk Data using netcat

Once the huge data �les are ready, it can be transfered using netcat tool which
is e�cient for calculating time of data transfer. On the server side (Ubuntu
2), netcat is started to listen at Port 2222. The �le that is transferred can
be neglected at the server using /dev/null, to avoid storing huge �les which is
unnecessary for this experiment, since we care about only the time. On the
client side (Ubuntu 1), netcat started with IP address of server and same Port
number 2222 along with the input �le name.

46

4.7. TCP vs MPTCP - Network Failure

Server :
nc − l 2222 > /dev/ nu l l

C l i en t :
time nc 192 . 168 . 200 . 1 2222 < data_1GB

The above process is repeated 3 times for each �le size and the average
time is taken to ensure the consistency of the result. Table 4.9 illustrates the
time taken to transfer bulk data using TCP and MPTCP. TCP takes takes 1
min 31 sec to transfer and MPTCP takes just 46 sec to transfer a 1GB �le.
The results proves that MPTCP always transfers huge data �le almost twice
the time faster than regular TCP.

Table 4.9: Performance of TCP vs MPTCP - Bulk data transfer

Data Size TCP MPTCP Ratio
MPTCP/TCP

(GB) (min:sec.ms) (min:sec.ms)

1 01:31.290 00:46.289 0.5071
2 03:01.033 01:31.801 0.5071
5 07:25.665 03:45.996 0.5071

4.7 TCP vs MPTCP - Network Failure

The �nal experiment is related to comparing the performance of network failure
using TCP and MPTCP. To achieve this, bandwidth test is started using iPerf
and line1 is terminated purposely on 30th sec. The line is connected back
again on 60th sec and tested till 180 sec without any interruption. By doing
this, we infer that after termination of line1, TCP goes completely down to
0mbits/sec, whereas in MPTCP only line1 is down but line2 is still active. See
�gure 4.7

This proves that MPTCP is reliable over TCP. Traditional solutions cannot
react quickly to the disappearance and reappearance of access links. Whenever
a link disappears, sessions break and need to be reestablished, which can lead
to data loss and the need for human intervention. Multipath TCP is able to
react more quickly to access links disappearing and reappearing. And as long
as at least one access link is up and running, a Multipath TCP enabled session
will continue without interruption. Likewise, if an access link reappears, the
bitrate goes up.

However, the recovery time of MPTCP is not optimal when compared to
recovery time of TCP. After the line1 is connected back, the recovery time
takes 9second for TCP, unlikely recoverly time takes 27second for MPTCP
which is not optimal time.

47

4. Results

Figure 4.7: Performance of TCP vs MPTCP - Network failure

48

Chapter5

Conclusion

In conclusion, results of the tests show that providing a robust and fast in-
ternet connection to companies and individuals using MPTCP coupled with
Shodowsocks is possible. In this paper, I analyzed various methods to make the
Multipath TCP work in OpenWRT router. I have spent most of the time of my
thesis in choosing the appropriate setup to make Multipath TCP work. Dif-
ferent Multipath TCP setup includes OpenWRT with MPTCP kernel patch
with Virtual Private Server (VPS), LEDE with MPTCP kernel patch and
OpenWRT with MPTCP kernel patch with Shadowsocks proxy. Among the
three setup, only the last one worked i.e OpenWRT with MPTCP kernel patch
with Shadowsocks proxy. I explained in detail how to con�gure the setup of
Multipath TCP in the experimental setup section.

After choosing the working Multipath setup, I carried out wide range of
experiments to investigate the performance of regular TCP with Multipath
TCP. Experiments consists of data �ow for di�erent time ranges, data with
delay, packet losses, bulk data transfer and behaviour of network failure. All
these experiments are conducted for both regular TCP and Multipath TCP.

Access aggregation is a viable option for service providers to boost the
bandwidth. Typical access aggregation scenarios are the combination of DSL
with LTE or the combination of LTE with Wi-Fi. Multipath TCP, as speci�ed
by the IETF, is ideal for access aggregation in the last mile, as it is able to
boost bandwidth signi�cantly, while simultaneously increasing reliability and
ensuring seamless connectivity. Data �ow with delay is compared as well in
both protocols, and the results shows that Multipath TCP is optimal if delay
is on one network rather than two networks.

Packet losses are common in the network due to inconsistent jitter, high la-
tency, network congestion, etc. MPTCP provides improved congestion control
algorithms like LIA, OLIA, BALIA and wVegas which gives optimal results
when compared to regular TCP. Moreover, we made an extensive evaluation
of the MPTCP protocol, and we veri�ed that it can in fact balance network
congestion, o�ering higher throughput and being more resilient to failures over

49

5. Conclusion

the network. In several scenarios, MPTCP showed overall performance better
than conventional TCP. However, the main drawback of MPTCP is that it
is sensitive to packet loss on both the networks. MPTCP packet loss results
shows that packet loss on both networks is almost similar to packet loss con-
ventional TCP. It is better to use TCP rather than Multipath TCP if both
network faces packet loss.

Finally all the tests in this paper were done in a closed lab environment in
T344. An interesting thing to do would be to try that in the real world envi-
ronment over the internet, to determine if additional problems than the ones
represented in these experimental tests are encountered, potentially making
the use of MPTCP a viable solution. Another interesting thing would be to
try additional types of tra�c, for example, performance of tra�c generated by
Voice over IP.

50

Bibliography

[1] Transmission Control Protocol [online]. Available from: https://

tools.ietf.org/html/rfc793

[2] TCP/IP Protocol Stack Description [online]. Available from: https://

docs.oracle.com/cd/E19504-01/802-5886/intro-14/index.html

[3] A Three-Way Handshake for TCP Connection Establishment [online].
Available from: www.mdpi.com/2076-3417/6/11/358/pdf

[4] TCP connection termination [online]. Available from: http:

//www.comptechdoc.org/independent/networking/terms/tcp-
connection-termination.html

[5] How DHCP Technology Works [online]. Available from: https://

technet.microsoft.com/pt-pt/library/cc780760(v=ws.10).aspx

[6] OpenWRT Wireless Freedom [online]. Available from: https://

openwrt.org/

[7] Porting and adaptation of OpenWRT for wireless routers [online]. Avail-
able from: https://promwad.com/services/openwrt-for-wireless-
routers

[8] Reasons to use OpenWRT [online]. Available from: https://

openwrt.org/reasons_to_use_openwrt

[9] Shadowsocks proxy [online]. Available from: https://shadowsocks.org/
en/index.html

[10] iPerf 3 [online]. Available from: https://iperf.fr

[11] Tra�c control tc [online]. Available from: https://netbeez.net/blog/
how-to-use-the-linux-traffic-control

51

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://docs.oracle.com/cd/E19504-01/802-5886/intro-14/index.html
https://docs.oracle.com/cd/E19504-01/802-5886/intro-14/index.html
www.mdpi.com/2076-3417/6/11/358/pdf
http://www.comptechdoc.org/independent/networking/terms/tcp-connection-termination.html
http://www.comptechdoc.org/independent/networking/terms/tcp-connection-termination.html
http://www.comptechdoc.org/independent/networking/terms/tcp-connection-termination.html
https://technet.microsoft.com/pt-pt/library/cc780760(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc780760(v=ws.10).aspx
https://openwrt.org/
https://openwrt.org/
https://promwad.com/services/openwrt-for-wireless-routers
https://promwad.com/services/openwrt-for-wireless-routers
https://openwrt.org/reasons_to_use_openwrt
https://openwrt.org/reasons_to_use_openwrt
https://shadowsocks.org/en/index.html
https://shadowsocks.org/en/index.html
https://iperf.fr
https://netbeez.net/blog/how-to-use-the-linux-traffic-control
https://netbeez.net/blog/how-to-use-the-linux-traffic-control

Bibliography

[12] Network delay [online]. Available from: https://nsrc.org/workshops/
2012/drukren-nsrc/raw-attachment/wiki/Agenda/types-of-

delay.pdf

[13] Netcat nc [online]. Available from: http://netcat.sourceforge.net

[14] Wireshark [online]. Available from: https://www.wireshark.org

[15] GNS3 [online]. Available from: https://www.pluralsight.com/blog/it-
ops/using-gns3-network-simulator

[16] GNS3 [online]. Available from: https://www.csd.uoc.gr/~hy435/
material/GNS3-0.5-tutorial.pdf

[17] What is TCP MULTIPATH and how does MULTIPATH in TCP
work [online]. Available from: https://www.slashroot.in/what-tcp-
multipath-and-how-does-multipath-tcp-work

[18] Bolstering the last mile with Multipath TCP [online]. Available
from: https://www.ericsson.com/en/ericsson-technology-review/
archive/2016/bolstering-the-last-mile-with-multipath-tcp

[19] Multipath TCP modes [online]. Available from: https://

wiki.openwrt.org/doc/uci/mptcp

[20] Initiating MPTCP connection [online]. Available from: https://

tools.ietf.org/html/rfc6824

[21] Multipath TCP Signalling [online]. Available from: https:

//www.ietf.org/mail-archive/web/multipathtcp/current/
pdf45oOxJBRQ9.pdf

[22] Performance Comparison of Congestion Control Strategies for Multi-
Path TCP in the NORNET Testbed [online]. Available from: https:

//tools.ietf.org/html/draft-xu-mptcp-congestion-control-00

[23] Delay-based Congestion Control for MPTCP [online]. Available from:
https://ieeexplore.ieee.org/document/7448667/

[24] CUBIC: A New TCP-Friendly High-Speed TCP Variant [online].
Available from: http://www4.ncsu.edu/~rhee/export/bitcp/cubic-
paper.pdf

[25] Coupled Congestion Control for MPTCP [online]. Available from: https:
//www.ietf.org/proceedings/77/slides/mptcp-9.pdf

[26] Linked Increase Algorithm [online]. Available from: https:

//dial.uclouvain.be/memoire/ucl/en/object/thesis%3A2667/
datastream/PDF_01/view

52

https://nsrc.org/workshops/2012/drukren-nsrc/raw-attachment/wiki/Agenda/types-of-delay.pdf
https://nsrc.org/workshops/2012/drukren-nsrc/raw-attachment/wiki/Agenda/types-of-delay.pdf
https://nsrc.org/workshops/2012/drukren-nsrc/raw-attachment/wiki/Agenda/types-of-delay.pdf
http://netcat.sourceforge.net
https://www.wireshark.org
https://www.pluralsight.com/blog/it-ops/using-gns3-network-simulator
https://www.pluralsight.com/blog/it-ops/using-gns3-network-simulator
https://www.csd.uoc.gr/~hy435/material/GNS3-0.5-tutorial.pdf
https://www.csd.uoc.gr/~hy435/material/GNS3-0.5-tutorial.pdf
https://www.slashroot.in/what-tcp-multipath-and-how-does-multipath-tcp-work
https://www.slashroot.in/what-tcp-multipath-and-how-does-multipath-tcp-work
https://www.ericsson.com/en/ericsson-technology-review/archive/2016/bolstering-the-last-mile-with-multipath-tcp
https://www.ericsson.com/en/ericsson-technology-review/archive/2016/bolstering-the-last-mile-with-multipath-tcp
https://wiki.openwrt.org/doc/uci/mptcp
https://wiki.openwrt.org/doc/uci/mptcp
https://tools.ietf.org/html/rfc6824
https://tools.ietf.org/html/rfc6824
https://www.ietf.org/mail-archive/web/multipathtcp/current/pdf45oOxJBRQ9.pdf
https://www.ietf.org/mail-archive/web/multipathtcp/current/pdf45oOxJBRQ9.pdf
https://www.ietf.org/mail-archive/web/multipathtcp/current/pdf45oOxJBRQ9.pdf
https://tools.ietf.org/html/draft-xu-mptcp-congestion-control-00
https://tools.ietf.org/html/draft-xu-mptcp-congestion-control-00
https://ieeexplore.ieee.org/document/7448667/
http://www4.ncsu.edu/~rhee/export/bitcp/cubic-paper.pdf
http://www4.ncsu.edu/~rhee/export/bitcp/cubic-paper.pdf
https://www.ietf.org/proceedings/77/slides/mptcp-9.pdf
https://www.ietf.org/proceedings/77/slides/mptcp-9.pdf
https://dial.uclouvain.be/memoire/ucl/en/object/thesis%3A2667/datastream/PDF_01/view
https://dial.uclouvain.be/memoire/ucl/en/object/thesis%3A2667/datastream/PDF_01/view
https://dial.uclouvain.be/memoire/ucl/en/object/thesis%3A2667/datastream/PDF_01/view

Bibliography

[27] Opportunistic Linked Increase Algorithm [online]. Available from:
https://tools.ietf.org/html/draft-khalili-mptcp-congestion-
control-00

[28] Balanced Linked Adaptation Congestion Control Algorithm for MPTCP
[online]. Available from: https://tools.ietf.org/html/draft-walid-
mptcp-congestion-control-00

[29] Multipath Wi-Fi bridging with transparent MPTCP proxy on LEDE
[online]. Available from: https://spyff.github.io/mptcp/2017/08/27/
transparent-mptcp-proxy/

[30] OpenMPTCPRouter [online]. Available from: https://

www.openmptcprouter.com/

53

https://tools.ietf.org/html/draft-khalili-mptcp-congestion-control-00
https://tools.ietf.org/html/draft-khalili-mptcp-congestion-control-00
https://tools.ietf.org/html/draft-walid-mptcp-congestion-control-00
https://tools.ietf.org/html/draft-walid-mptcp-congestion-control-00
https://spyff.github.io/mptcp/2017/08/27/transparent-mptcp-proxy/
https://spyff.github.io/mptcp/2017/08/27/transparent-mptcp-proxy/
https://www.openmptcprouter.com/
https://www.openmptcprouter.com/

Acronyms

TCP Transmission Control Protocol

MPTCP Multipath Transmission Control Protocol

IP Internet Protocol

SYN Synchronize

ACK Acknowledge

RST Reset

DHCP Dynamic Host Con�guration Protocol

SSH Secure Shell

ICMP Internet Control Message Protocol

LIA Linked Increase Algorithm

BALIA Balanced Linked Adaptation Algorithm

OLIA Opportunistic Linked-Increases Algorithm

PRNG Pseudo Random Number Generator

55

Appendix A

All the con�guration information about the resources used for setting up TCP
and MPTCP is mentioned below.

TCP Setup

Ubuntu 1:

$ ifconfig eth1 192.168.101.1 netmask 255.255.255.0

$ route add default gw 192.168.101.2

Ubuntu 2:

$ ifconfig eth1 192.168.201.1 netmask 255.255.255.0

$ route add default gw 192.168.201.2

$ route add -net 10.1.1.0 netmask 255.255.255.0 gw 192.168.201.2

$ route add -net 20.1.1.0 netmask 255.255.255.0 gw 192.168.201.2

$ route add -net 192.168.101.0 netmask 255.255.255.0 gw 192.168.201.2

Router R1:

$ echo 1 > /proc/sys/net/ipv4/ip_forward

$ ifconfig eth0 192.168.101.2 netmask 255.255.255.0

$ route add default gw 192.168.101.1

$ ifconfig eth1 10.1.1.1 netmask 255.255.255.0

$ route add default gw 10.1.1.2

Router R2:

57

Appendix A

$ echo 1 > /proc/sys/net/ipv4/ip_forward

$ ifconfig eth0 10.1.1.2 netmask 255.255.255.0

$ route add default gw 10.1.1.1

$ ifconfig eth1 20.1.1.2 netmask 255.255.255.0

$ route add default gw 20.1.1.1

$ route add -net 192.168.101.0 netmask 255.255.255.0 gw 10.1.1.1

Router R3:

$ echo 1 > /proc/sys/net/ipv4/ip_forward

$ ifconfig eth0 20.1.1.1 netmask 255.255.255.0

$ route add default gw 20.1.1.2

$ ifconfig eth1 192.168.201.2 netmask 255.255.255.0

$ route add default gw 192.168.201.1

$ route add -net 10.1.1.0 netmask 255.255.255.0 gw 20.1.1.2

$ route add -net 192.168.101.0 netmask 255.255.255.0 gw 20.1.1.2

MPTCP Setup:

Ubuntu 1:

$ ifconfig eth1 192.168.100.1 netmask 255.255.255.0

$ route add default gw 192.168.100.2

Ubuntu 2:

$ ifconfig eth1 192.168.200.1 netmask 255.255.255.0

$ route add default gw 192.168.200.2

OpenMPTCPRouter 1:
Routing

$ ip rule add from 10.1.1.1 table 1

$ ip rule add from 10.2.2.1 table 2

$ ip route add 10.1.1.0/24 dev eth1 scope link table 1

$ ip route add default via 10.1.1.2 dev eth1 table 1

58

$ ip route add 10.2.2.0/24 dev eth2 scope link table 2

$ ip route add default via 10.2.2.2 dev eth2 table 2

$ route add -net 10.3.3.0 netmask 255.255.255.0 gw 10.1.1.2

$ route add -net 10.4.4.0 netmask 255.255.255.0 gw 10.2.2.2

ss-redir.json

{

"server" : ["10.3.3.1", "10.4.4.1"],

"server_port" : 8388,

"local_address" : "0.0.0.0",

"local_port" : 1080,

"password" : "",

"timeout" : 300,

"method" : "none",

"fast_open" : false,

}

rc.local

ss-redir -c /etc/ss_redir.json

iptables -t nat -N SSREDIR

iptables -t nat -A PREROUTING -p tcp -j SSREDIR

iptables -t nat -A SSREDIR -d 127.0.0.0/8 -j RETURN

iptables -t nat -A SSREDIR -d 192.168.100.0/24 -j RETURN

iptables -t nat -A SSREDIR -p tcp -j REDIRECT --to-ports 1080

exit 0

OpenMPTCPRouter 2:
Routing

$ ip rule add from 10.3.3.1 table 1

$ ip rule add from 10.4.4.1 table 2

$ ip route add 10.3.3.0/24 dev eth1 scope link table 1

$ ip route add default via 10.3.3.2 dev eth1 table 1

$ ip route add 10.4.4.0/24 dev eth2 scope link table 2

$ ip route add default via 10.4.4.2 dev eth2 table 2

$ route add -net 10.1.1.0 netmask 255.255.255.0 gw 10.3.3.2

59

Appendix A

$ route add -net 10.2.2.0 netmask 255.255.255.0 gw 10.4.4.2

ss-server.json

{

"server" : "0.0.0.0",

"server_port" : 8388,

"local_address" : "0.0.0.0",

"local_port" : 1080,

"password" : "",

"timeout" : 300,

"method" : "none",

"fast_open" : false,

}

rc.local

ss-server -c /etc/ss_server.json

exit 0

Router R1:

$ echo 1 > /proc/sys/net/ipv4/ip_forward

$ ifconfig eth0 10.1.1.2 netmask 255.255.255.0

$ ifconfig eth1 10.3.3.2 netmask 255.255.255.0

Router R2:

$ echo 1 > /proc/sys/net/ipv4/ip_forward

$ ifconfig eth0 10.2.2.2 netmask 255.255.255.0

$ ifconfig eth1 10.4.4.2 netmask 255.255.255.0

60

Contents of enclosed CD

readme.txt........................ the �le with CD contents description
src..the directory of source codes

MPTCP setup.............con�guration information for MPTCP setup
TCP setup con�guration information for TCP setup
Results the directory of results obtained from experiments
thesis...............the directory of LATEX source codes of the thesis

Pictures.......................the directory of all thesis pictures
thesis.pdf...............................the thesis text in PDF format

61

	Introduction
	Motivation and objectives
	Problem statement

	Basic concepts and tools
	Protocols
	OpenWRT
	Tools used

	Multipath TCP (MPTCP)
	How Multipath TCP works
	MPTCP protocol
	Congestion control algorithms
	Unsuccessful MPTCP setup
	MPTCP Kernel configuration

	Experimental setup
	TCP setup
	Multipath TCP setup
	OpenMPTCPRouter Setup

	Results
	TCP vs MPTCP - Basic speed experiments
	TCP vs MPTCP - Bandwidth experiments
	TCP vs MPTCP - Delay experiments
	TCP vs MPTCP - Packet Loss experiments
	MPTCP - Congestion control
	MPTCP - Bulk Data Transfer
	TCP vs MPTCP - Network Failure

	Conclusion
	Bibliography
	Acronyms
	Appendix A
	Contents of enclosed CD

