
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 18, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Contactless card communication in Android

 Student: Nikola Karlíková

 Supervisor: Ing. Jiří Buček, Ph.D.

 Study Programme: Informatics

 Study Branch: Information Systems and Management

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

Analyze the communication of contactless cards in the Android OS. Perform a search of existing software
for communication tunneling (NFCProxy etc.).

Create your own application that will relay the communication between a contactless reader and card
using two mobile phones. The phones will be connected using TCP/IP.

- Choose a suitable methodology for application development in Android.
- Create a component model of your system and document it using UML.
- Create sequence diagrams of interaction between the contactless card and the reader both in the normal
case (without tunneling) and in the case of tunneling the communication using mobile phones.

The application will record the communication together with corresponding timestamps. Test your work
using two mobile phones with a NFC interface. Evaluate delay added by relaying the communication. Based
on your findings, evaluate costs and the impact of tunneling using mobile phones on contactless payment.

References

Will be provided by the supervisor.

Bachelor’s thesis

Contactless card communication in
Android

Nikola Karlíková

Department of Software Engineering
Supervisor: Ing. Jǐrí Buček, Ph.D

January 9, 2019

Acknowledgements

I want to thank my supervisor, Ing. Jǐrí Buček, for providing me with the
sources necessary to complete this book and for expertise and valuable guid-
ance and encouragement. I also want to thank the Department of Information
Security for providing me with all the needed equipment.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on January 9, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c⃝ 2019 Nikola Karlíková. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Karlíková, Nikola. Contactless card communication in Android. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2019.

Abstrakt

V bakalářské práci jsem se soustředila na prozkoumání a implementaci přepojovacího
útoku na bezkontaktní platby pomocí NFC technologie, internetového připojení
a mobilních telefon̊u používající systém AndroidTM. Úspěšně jsem imple-
mentovala řešení s použitím mobilních telefon̊u umožňujícím NFC připojení a
služeb a rozhraní poskytnutých systémem Android bez použití daľsích jiných
služeb. Během testování jsem dosáhla 100% úspěšných útok̊u. Změřená
zpoždění zp̊usobená přenosem dat nebyla natolik významná, aby ovlivnila
transakce. Na základě těchto výsledk̊u mohu říci, že řešení je i přes jeho
jednoduchost efektivní a může být použito a dále studováno jinými studenty
a osobami se zájmem o téma útok̊u na bezkontaktní platby. CD příloha je
připojena na konci této práce. Příloha obsahuje snímky obrazovek z mobilních
telefon̊u a záznamy a skripty z testování.

Kĺıčová slova mobilní aplikace, Android, přepojovací útok, sí̌tová komu-
nikace, bezpečnost bezkontaktních karet, NFC technologie, emulace bezkon-
taktní platební karty, TCP/IP protokol, NFCProxy

vii

Abstract

In the thesis, I focused on the examination and implementation of the solution
for relay attack on contactless transactions using the NFC technology and
public network with Android mobile devices. I successfully implemented the
solution using the NFC enabled Android devices and services and interfaces
provided by Android without other specific services. During the testing part,
I accomplished 100% of successful attack runs. The measured delay caused by
the data relay was not significant and did not affect the transaction. Based on
this result, I can deduce, that this solution, despite its simplicity, is efficient
and can be used and studied by any user interested in the topic of contactless
payment attacks. Attachments are provided at the end of this thesis. CD
attachment contain screenshots from the mobile devices and testing logs and
scripts.

Keywords mobile application, Android, relay attack, network communica-
tion, security of contactless cards, NFC technology, emulation of contactless
payment card, TCP/IP protocol, NFCProxy

viii

Contents

Introduction 1

1 Analysis 3
1.1 Contactless smart cards . 3
1.2 Smart cards communication . 5
1.3 EMV specification . 9
1.4 Android options . 11
1.5 Attacks on contactless cards . 12
1.6 TCP/IP Protocol . 14
1.7 Pyscard . 14
1.8 Chapter summary . 15

2 Design and implementation 17
2.1 Design of the implementation 17
2.2 Workflow . 18
2.3 Preparing projects . 19
2.4 Leech application . 20
2.5 Ghost application . 22

3 Testing 25
3.1 Simulation . 26
3.2 Real time testing . 27
3.3 Delays . 30

Conclusion 33

Bibliography 35

A Abbreviations 37

ix

B Content of the attached CD 39

x

List of Figures

1.1 Sequence diagram card-terminal communication 5
1.2 Response status bytes example . 7
1.3 Smart cards files structure . 8

2.1 Design of the implementation . 18
2.2 Component digram . 19
2.3 Sequence digram . 21

3.1 Ticket vending machine . 28
3.2 Leech application screenshot . 29

xi

List of Tables

1.1 Command APDU structure . 6
1.2 Command APDU CLA byte coding 7
1.3 Response APDU structure . 7
1.4 SELECT command structure . 9

3.1 APDU commands in simulation . 27
3.2 Python script running results . 27
3.3 Time delays in normal mode . 31
3.4 Time delays in relay mode . 32

xiii

Introduction

In recent decades, smart cards became integral part of our everyday lives.
There are not so many people, who would not carry any smart card either
it is payment or access card. By smart cards, I mean not only physical ones
but also virtual cards uploaded in any mobile device. In these days for every
operation system, there are quite many mobile applications that can simulate
payment cards and allow user to pay without carrying the real card.

Smart cards working on the principle of NFC technology can be prone to
intended abuse. Problem parts need to be captured so that cards are secured
and less dangerous for their users. I will deal with one of the problem parts
and try to implement real relay attack on the payment transactions that allows
me to extend the data exchange distance and eavesdrop the communication
between the card and the terminal. There are already implementations that
deal with the relay attack that I will also discuss and describe.

I will introduce the way, how to relay the communication between card
reader and smart card using two mobile devices, both using NFC technology.
I will focus on the way, how to transfer the data between the mobile devices
and I will also focus on how to track the communication protocol.

The information transfer can be divided into three parts. First is about
communication between a card reader and first mobile device. This device will
simulate the card and it will receive commands from the reader. The second
part is redirecting the collected information to second device using TCP/IP
network protocol. In the third part, the second device will play role of a card
reader and will send the command to the connected smart card. The card will
generate response. The response will be then redirected back to card reader
the same way in reverted order. In this way, I can transfer the information from
the card reader to the card and vice versa without touching the card to the
reader physically. This solution should enable distance communication. The
distance should be as long as area of the used local network. I will implement
basic structure of relay attack for payment smart cards. I will provide the
UML diagram and sequential diagram of the communication. During the

1

Introduction

testing part, I will try the implementation in real payment transactions. I
will also measure the delays caused by extension of the communication and
observe the communication protocol.

I chose the topic because of its interesting impact on society. This topic
and its problems can apply to anyone who uses the NFC technology in common
life including me. The NFC technology is very interesting topic I wanted to
interpenetrate into and discover its options. The other reason why I choose
this topic was working with Android system. I like the Android platform and
I previously developed applications for Android OS.

Result of my thesis can help users who are concerned about NFC tech-
nologies and contactless payment cards and want to resolve its critical parts.
The result can also help students of security to know more about the NFC
technologies and communication protocol between card and reader.

2

Chapter 1
Analysis

In this chapter, I will introduce the basic information about smart cards and
communication protocols for data exchange between card readers and smart
cards. Next, I will describe the NFC technology and Android options for using
the NFC technology in mobile devices. In the end, I will describe already ex-
isting solutions for contactless card communication, data transfer via network
protocol and I will briefly describe the Pyscard Python library that I will use
in the testing part.

1.1 Contactless smart cards

Contactless cards are able to transmit power and data without any required
electrical connection between the card and the card terminal. The method for
this kind of data transfer is known as RFID (radio-frequency identification)
systems. Contactless smart cards are in most of the cases operated passively.
This means that all power comes from the terminal and cards do not have any
source of power. The power transmission is based on the principle of a loosely
coupled transformer working mostly on 135 kHz frequency. If a card appears
in the area of terminal’s electromagnetic field, part of the field goes through
the coil of the card that causes generating of voltage. [1]

The aim of the standardization for the contactless cards was to generate
standards that would enable the integration of several technologies for con-
tactless power and data transmission, so contactless cards may also have other
functional components. Nowadays there are three standards for three different
reading ranges. These are ISO/IEC 10536, 14443 and 15693. Terminals in
order to achieve interoperability should support all of these standards.

Applications of smart cards are very diverse and they are expanding. As
an example, we can see smart cards in form of payment cards, personal IDs,
health insurance cards or cards for public transport.

3

1. Analysis

1.1.1 NFC technology

On September 2002, Sony and Philips announced that they would develop
new near-filed communication technology, shortly NFC technology. NFC is a
wireless connectivity based on RFID (Radio Frequency Identification) tech-
nology that enables two-way communication between electronic devices with
a single tap. The aim for building NFC compliant devices was to connect
smart cards and smartcard reader functions and provide comfortable way of
communication method just by holding devices close to each other. NFC
technology is suitable to Philip’s Mifare and Sony’s FeliCa, already existing
contactless smart cards technologies. All NFC standards are based on RFID
standards including ISO/IEC 14443. The specification for NFC is made by
NFC Forum. [2]

NFC technology operates on 13.56 MHz frequency and data exchange rate
is up to 424 kilobits/s. As it requires short range, typically 4 cm or less, it
can prevent unintentional data leaks. The communication is half-duplex and
any NFC device can be master (initiator) or slave (recipient), but after link
establishment, the roles cannot reverse.

The main NFC unit is NFC tag. The tag is passive device powered by
an NFC field. Simple tags offer just read and write operations. Tags that
are more complex can perform math operations and can have cryptographic
hardware to authenticate the access. Every tag has its own ID. This ID is low-
level serial number and is used for identification and for preventing collisions.
ID can be stable or generated randomly after every discovering. [3]

NFC technology operates in three modes [4]. Every mode implies different
requirements on NFC devices.

• Reader/writer mode allows devices to read and write passive NFC
tags. Smart posters are example of this mode.

• P2P mode allows NFC devices to exchange data with other NFC peers
(Android Beam).

• In card emulation mode the NFC device itself acts as an NFC Card.
The external reader can then access the emulated NFC card. The NFC
device can also act as a reader for other contactless cards.

I am going to use the third option, card emulation. It is going to use it in
both ways as a smart card simulator and as a contactless card reader.

The prerequisite for mobile payment is presence of the security element in
the mobile device. There are three different options used to integrate security
element. First option is to use smart card microcontroller permanently inte-
grated in the mobile equipment. Second option is to use embedded security
chip in external secure memory card. User can easily transfer the payment
application to different device by swapping the memory card. Third option

4

1.2. Smart cards communication

uses the SIM or USIM. Payment application can be then hosted directly in
SIM or USIM or in supplementary secure chip. [5]

It is necessary to have solution for loading and personalization of the tag
providing payment application. This process must be supplied by trustworthy
entity certified for payment systems. Sony and NXP (Phillips) developed
different contactless card systems. While the FeliCa system provided by Sony
is widely used in Japan and Asia, the Phillips’s Mifare is used worldwide. The
Mifare system is compatible with ISO/IEC 14443 Type A.

1.2 Smart cards communication

Interaction between the smart card and the terminal is based on half-duplex
communication. The terminal always initiates communication. The card never
sends data first, but it always sends data as a response to a command received
from terminal. Specific response answers to specific command. This kind of
relationship is called master-slave. After the smart card finishes its part,
it goes to the low-power sleep mode and can be again awaken by another
command from the terminal. [6]

{response APDU}

{command APDU}

CardTerminal

Figure 1.1: Sequence diagram showing communication between the terminal
and the smart card

1.2.1 Logical channels

It is possible to access applications in smart cards via logical channels. When
using logical channel, up to 19 applications in single card can exchange data
with terminal. Two bits in the class byte of the APDU command can be used
to address logical channels. Next, there is a special class byte with bit 8 set
to zero and bit 7 set to one whose bits 1 to 4 address logical channels. More

5

1. Analysis

sessions with associated application can run in parallel so each logical channel
essentially represents a separate smart card.

1.2.2 Message structure: APDUs

APDU stands for application protocol data unit and it is used to exchange data
between the card and the terminal. There are two kinds of APDU that can
be distinguished. These are command APDUs and response APDUs. APDUs
are transferred transparently without any modifications. APDUs based on
ISO/IEC 7816-4 standard are independent of the transmission protocol, so
the content of an APDU remains unchanged even if different transmission
protocol is used.

1.2.3 Command APDU structure

As depicted in table 1.1, a command APDU consists of a header and a body.
The header is mandatory and is composed of four bytes: the class byte CLA,
the instruction byte INS that codes the actual command and the two param-
eters P1 and P2, used to provide more information for the command. The
body is optional and may have variable length. The number of bytes in the
data field is specified in Lc parameter and the expected length of response is
specified in Le parameter. If the value of Le is 00, terminal expects maximum
length of response.

Code Name Lenght Description
CLA Class byte 1 Instruction class
INS Instruction byte 1 Code of instruction
P1 Parameter 1 1 Instruction parameter 1
P2 Parameter 2 1 Instruction parameter 2
Lc Lenght 1 or 3 Number of data bytes
Data field Data =Lc Data bytes
Le Lenght ≤ 3 Maximum of expected response bytes

Table 1.1: Command APDU structure (ISO/IEC 7816-4, 1997)

The class byte CLA is used to indicate if the command and the response
comply with the specific part of ISO/IEC 7816 and when it is applicable, the
format of messaging and the logical channel number. CLA byte according to
ISO/IEC 7816 has 0X structure. For coding X see table 1.2. For the purpose
of this thesis, I will not need any other CLA byte then 0x00.

6

1.2. Smart cards communication

xx - - Secure messaging
0x - -
00 - - No SM
01 - - Individual format of SM
1x - -
10 - - Command header not authenticated
11 - - Command header authenticated
- - xx Logical number channel

Table 1.2: Command APDU CLA byte coding (ISO/IEC 7816-4, 1997)

1.2.4 Response APDU structure

As depicted in table 1.3, APDU response consists of optional body and two
mandatory bytes SW1 and SW2. These ending bytes represents the state
of the receiving entity (card) after finishing its part (receiving the command
and sending the response). For example, if the command is rejected with a
response where SW1 = 6C, the SW2 byte contains the value expected in Le
byte. The return code 9000 means that the command was executed completely
and successfully. Other examples of response APDU are showed in figure 1.2.

Body Return code Return code
Data field SW1 SW2

Table 1.3: Response APDU structure (ISO/IEC 7816-4, 1997)

Return code

Process completed

Normal processing

61XX 9000

Warning processing

62XX 63XX

Process aborted

Execution error

64XX 65XX

Checking error

67XX 6FXX

Figure 1.2: Response status bytes example (ISO/IEC 7816-4, 1997)

1.2.5 Application files

Smart cards are data storages, so the data are grouped in specific file structure.
To select any file, card necessarily needs to receive the ACTIVATE FILE

7

1. Analysis

command first. This command enables file selection. The opposite command
is the DEACTIVATE FILE command that blocks the file. The file is then
activated and can be accessed externally using the READ BINARY command.
File can be deleted by the DELETE FILE command.

ISO standard 7816-4 supports two categories of files. The first one is
called dedicated file (DF) and the second elementary file (EF). DFs act like a
directory holding other DFs and EFs. The DF in the root is called master file
(MF) and it is mandatory. The root directory is selected implicitly after the
smart card is reset. [1] Figure 1.3 illustrates the logical file organization.

MF
DF

DF
EF

DF
EF
EF

EF

Figure 1.3: Smart cards file structure

The UICC specification introduces another special type of DF called ap-
plication dedicated file (ADF) that is not located under MF. By accessing the
ADF it is possible to access specific card application. Every application has
its own identified called Application identifier (AID). ADF can be selected
using the SELECT command with an AID. It is possible to add a new appli-
cation by creating the appropriate DF because files holding data for particular
application are grouped together under one specific DF.

1.2.6 SELECT command

I will introduce the structure of the most used SELECT command. This com-
mand sets the current active file through logical channel so other commands
can refer to this file through this logical channel.

Table 3.1 shows the structure of the SELECT command. In my case, the
parameters P1 and P2 will be set to 04 00. It means that I want to select
DF directly based on its name, in our case AID, and return the first record
of FCI. FCI means the file control information. It is the string of data bytes
in response to the SELECT command. If the Le byte is set to zero, all bytes
corresponding to the command should be returned. [6]

As response to the SELECT command, some specific warning conditions
can occur. In the case the SW1 = 62 with SW2=82 the selected file is invalid.
With SW2=84 the FCI is not supported. Also error status bytes returned can
be returned. For example, if SW1=6A and SW2=82, the file was not found.

8

1.3. EMV specification

CLA As defined in table 1.2 - in our case ’00’
INS ’A4’
P1 Selection controll
P2 Selection controll
Lc Empty or lenght of subsequent data
Data According to P1 and P2:

File identifier
Path from the MF
Path from the current DF
DF name

Le Empty or maximum length of data expected in response

Table 1.4: SELECT command structure (ISO/IEC 7816-4, 1997)

1.3 EMV specification

EMV is a family of multiple complex protocols with many variants. It is an
international standard used by most of the payment smartcards all over the
world. EMV is called after its three initiators: Europay, Mastercard and
Visa. EMV has been success in reducing skimming fraud. Large part of EMV
specification is public, but some parts are proprietary. Proper description of
the whole EMV specification is beyond a scale of this thesis. The issue is
its size. The specifications for EMV contactless cards have over 700 pages
not including many additional options and parameters. It is hard to keep an
overview of the way how it works. In this section, I will introduce the essentials
of this specification and I will mostly focus on contactless smart cards.

EMV specifies commands and data formats designed for financial trans-
actions between smart cards and terminals. It is built on other standards
like ISO/IEC 7816 and ISO/IEC 14443. EMV transactions rely on symmetric
cryptography, typically on 3DES or AES. EMV has many variants working
upon several smart cards applications for example applications for purposes
like withdrawals or internet banking. The backward compatibility between
different protocol variants has been source of problems for example, the com-
patibility of contact cards with magnetic stripe with terminals using contact-
less communication protocol.

Three books in EMV contactless specifications are common for all con-
tactless EMV cards. These are [7, 8, 10]. In the following paragraphs, I will
describe the so-called MasterCard and Visa kernels. I will only describe these
two kernels because they are commonly used in the Europe and I have access
to these cards.

9

1. Analysis

EMV contactless specification describes two modes of operations: EMV
mode and mag-stripe mode. The mag-stripe mode is provided to support
older infrastructures.

Contactless transactions are in many ways similar to contact transactions
but there are two important differences.

• Online contactless transactions typically involve only one cryptogram as
card response instead of two. The check of the cryptogram then takes
place after the card is removed from the range of the terminal. This
practice reduces the risk of the interruptions caused by removing the
card too soon.

• In case the transaction is provided by NFC phones the additional
method for verification of card holder identity was added.

To start the transaction, the reader has to select an application on the card.
Smartcards contain a list of AIDs of all applications. This list is specified in the
file 2PAY.SYS.DDF01 identified as PPSE (Visa Proximity Payment System
Environment). The terminal selects the application with the highest priority
and then it continues with the matching kernel specification.

1.3.1 MasterCard PayPass

PayPass is contactless implementation for MasterCard and is specified in Book
C[9]. It supports two types of transactions: EMV mode and mag-stripe mode.
Terminals are configured to support only one of the mentioned modes. Smart-
cards however can have combination of these supports. Cards labeled as
MasterCard must support Mag-Stripe Mode and may support EMV Mode.
Maestro-labeled cards must support EMV Mode and must not support Mag-
Stripe Mode.

To initialize the transaction, the terminal starts by reading the PPSE and
the card responds with the list of application with matching priorities. Reader
choose the application with highest priority and sends the GET PROCESS-
ING OPTIONS command. As response, the card sends avalible AIDs and the
terminal then can use it to determine the transaction type and AFL (appli-
cation file locator) containing all files the terminal can read. If both the card
and the terminal support EMV mode, this transaction mode is used.

In next part of the transaction, after the initialization, card should be
authenticated and cardholder verified. The terminal risk manager determines
whether the transaction should be performed online or offline. During the
cardholder verification, terminal sends the GENERATE AC command. Card
then knows that the so-called On-Device Cardholder Verification must be
performed and will perform the verification. The verification also contains
PIN entering.

10

1.4. Android options

If the On-Device Cardholder Verification is not supported by the card or
the terminal, either online PIN or signature verification must be performed.
It is also indicated with the GENERATE AC command. When signature
verification is needed, the receipt is printed and it should contain a signature
line. As parameter with the GENERATE AC command at least one of the
following need to be sent: amount, currency, country or date.[9]

The card responds with the cryptogram. There exists three kinds of cryp-
togram.

• Transaction Certificate (TC) represents the proof to the terminal that
the transaction took place and was performed offline. Terminal sends it
later to an issuer.

• Authorization Request Cryptogram (ARQC) is sent to an issuer for an
online approval optionally with the PIN.

• Application Authentication Cryptogram (AAC) is provided instead of
TC and ARQC in case the card or terminal refuse to complete the trans-
action.

1.4 Android options

“It can be expected that NFC devices will partially or fully supplant contactless
cards in some applications. NFC devices such as mobile telephones can also
be regarded as contactless smart cards with a different form factor. This is
possible, because contactless terminals are not dependent on the format of ID-
1 cards, but instead can exchange data with any device that supports ISO/IEC
14443 interface and is located within range of the terminal” (Wolfgang Rankl,
2010)

Android supports NFC with two packages. These are android.nfc and an-
droid.nfc.tech. One of the main classes, which I will use in realization part, is
NfcAdapter. This class uses the helper method getDefaultAdapter(Context)
to get the default NFC adapter. It works as NFC agent to initiate the com-
munication.

Next class is Tag. Tag class is an immutable object that represents the
state of a NFC tag in time of discovery. It can be directly queried for its ID
via getId() method or set of technologies it contains via getTechList() method.
The tag dispatch system in Android device is responsible for reading tags and
their data and for starting the interested application. When the application
wants to handle the scanned tag it must declare a filter for an intent. When
the device discovers the tag, the tag dispatch system sends the intent to the
most appropriate application that filters for it without asking the user. The
tag object can be created and passed to a single activity as extra object in
intent labeled as NfcAdapter.EXTRA TAG.

11

1. Analysis

Another class I use is IsoDep. Every tag supports NFC technologies for
communication. IsoDep class provides access to ISO-DEP (ISO 14443-4)
properties and I/O operations. The primary operation is transceiver(byte[])
method. This method sends raw data to the tag and receives the response.[11]

1.4.1 Host-based card emulation (HCE)

NFC module usually consists of two parts. These are NFC Controller, which
is responsible for communication, and secure element (SE). Secure element is
responsible for encrypting and decrypting data. Secure element is embedded
in SIM cards, SD cards or NFC chips.

When card emulation uses secure element, NFC controller routes the data
directly to the secure element. The secure element performs the communica-
tion with the terminal, so the application is not involved.

Android 4.4 introduced method called Host-based card emulation (HCE)
that does not involve secure elements. This allows applications to talk di-
rectly to the reader. The data is routed to the device CPU on which the
application is running. In Card emulation mode, NFC simulates an RFID
integrated circuit card with security module. Android class for card emu-
lation is HostApduService. It can be extended in order to emulate NFC
card inside Android application. Android 4.4 supports several protocols that
are supported by any NFC devices. HCE provides cards emulation based on
the ISO-DEP protocol and supports processing command APDU defined in
ISO/IEC 7816-4.

ISO/IEC 7816 standard also defines the way, how to select applications
based on the AID. For that reason, HCE needs to register one or several AIDs
that the application wants to work with. AIDs can be split into separated
groups and these groups can be associated with categories. Android 4.4 sup-
ports two categories: payment and other.

It can happen that more HostApduService components are installed on
the Android device with same AID registered. Android has its own policy to
resolve the conflicts depending on the AID group category. For category like
payment the user can select default service in the device settings. Android
4.4 has setting called tap&pay where user set the default app for payment
purposes. For category other, the device may always ask the user what service
may be invoked.[5]

1.5 Attacks on contactless cards

The nature of the contactless smartcards prone to possible attacks. One of that
attacks is the relay attack. During the relay attack, the attacker eavesdrops
on the communication or secretly manipulate with the card. There is the
possibility to use the NFC enabled phones to perform the relay attack.

12

1.5. Attacks on contactless cards

The implementation of relay attack was firstly described and implemented
in [12]. The author used only off-the-shelf NFC mobile phones Nokia 6131
and BlackBerry 9900. Non of the phones is running Android OS.

To use the card without cardholder knowing it, attacker needs to deliver
enough power to the card to power it. For this, attacker is likely to use read-
available hardware such as NFC mobile phones. What can appear as problem
is timing. However, the time-out for terminals are often very long, so the relay
does not need to be that fast to terminal not to time-out. Because there is no
need to insert card directly to the terminal during the contactless payment, it
is easier for attacker to interact with the transaction. There are two different
attack scenarios:

• passive eavesdropping on the interaction between the card and the reader,
and

• active interaction with the card without cardholder realizing.

One of the most notable relay attack implementation is NFCProxy.
NFCProxy software is an open-source Android application. It enables users to
proxy the transaction between the card and the reader. This solution extend
the distance between the card and the card reader on the same principle as I
am going to implement in my solution. In addition, it saves the transactions
and can replay them. This software uses two NFC enabled mobile devices.
One works in proxy mode and the second in relay mode. NFCProxy also uses
same communication initialization. The device that reads the card behaves as
server. It opens a port and it waits for connection from other side.

The drawback of this software is that the device in proxy mode needs have
a special version of CyanogenMod intalled in order to replay credit cards[13].
CyanogenMod is open-source operation system for mobile devices. In these
days, it has been discontinued and mostly replaced be new fork called Lineage
OS[14]. In my implementation, I will not use any other operation system than
official Android OS. If my implementation will be successful, it would mean
that the solution is more prone to abuse because there is no need of knowledge
of how to modify the phone firmware. I will be also able to find out if the
current Android OS does not offer any resistence against relay attacks.

The NFCProxy software is user-friendly application. NFCProxy enables
user to save the transactions, go throw the previous ones and see other details
about cards. In my solution, I will focus mainly on the functionality and I
will just write the communication on the screen.

There are also other solutions to explore the RFID technology. At the
Shmoocon hacker conference, hacker Kristin Paget aimed to prove that RFID
credit cards are easy to clone[16]. One of the efficient solutions, how to explore
the RFID technology from the reader side is for example python solution called
RFIDIOT[15].

13

1. Analysis

There are some ideas how to prevent the relay attacks. The relaying of
the messages takes some time. It would be possible to recognize the relay
by the time. One solution would be to change the timeout for the reader.
Because the first card EMV protocol responses are the same, they can be sent
directly from the mobile phone that simulates the card. The timeout would
not be efficient here. The only commands that need to be sent directly to
the card are the crypto messages where card must send the encrypted data.
Problem is that these steps require cards to do the crypto and can vary in
time consumption. The time gaps caused by relay can differ in hundreds of
milliseconds, same as average time consumption of the relay.

There are some ways, how to protect the card against attacks on contact-
less cards. Firstly, everyone should protect his or her own card. This means
to ensure that the card is not kept in accessible pockets or bags where the
thieves can reach them. Another method involves protecting cards by special
shield. Aluminium foil used as food wrapping foil is enough to block almost
any signal from reaching the card. There are also shields on the market that
contain special metal alloys, which do the same job.

1.6 TCP/IP Protocol

TCP/IP protocol suite allows computers communicate with each other. It
provides variety of networking services. TCP/IP is a combination of different
protocols operating on four different layers.

The link layers includes the device driver and corresponding network inter-
face. The network layer handles the movement of packets around the network
using IP, ICMP and IGMP protocols. The third transport layer is responsible
of the data flow between two hosts. There are two different protocols TCP
and UDP. I will use the TCP protocol, because it is reliable and there is no
need the ensure reliability in any other layer. The last application layer adds
the details for the particular solution.[17]

1.7 Pyscard

For testing purposes, I will use the Python library Pyscard. Pyscard is a free
software under the GNU Lesser General Public License. It is a Python module
adding smart cards support to Python. I am going to use it to make a script
to prepare set of commands for the card reader. In the testing section, I will
show the components of Pyscard library and how I use it in python script to
send commands to smart cards.[18]

14

1.8. Chapter summary

1.8 Chapter summary
In the chapter I introduced the brief summary of all aspects that I will use
further in the thesis. I discussed the basics of the smart cards including
the content of standards and contactless cards communication along with the
EMV standards. In this section, I also discussed the NFC technology and its
use in the field of contactless card operations.

In the other section, I wrote about the similar existing solution called
NFCProxy. I captured its disadvantages and how I will avoid them in my
solution.

In the last sections, I described the Android options for smart cards em-
ulation with all its main items. There was also brief description of TCP/IP
protocol and how I will implement it using Java programming language. I
provided brief introduction to Pyscard Python library, because I will use it in
the testing chapter.

15

Chapter 2
Design and implementation

In this chapter, I will design and propose the way how to implement previ-
ously mentioned solution. I will provide UML diagrams that describes the
component structure of the implementation.

2.1 Design of the implementation
My goal is to implement communication bridge between RFID smart cards
and readers realized with two NFC enabled devices with standard Android
operation system. The solution enables users to extend the length between
the card and the reader. The connection between devices is based on TCP/IP
protocol. Whole communication is captured so the protocols can be later
observed and studied. The aim is to impement the project as simple and
transparent as possible, so other students can understand it and use the parts
of the code in their projects.

The communication starts and ends at the card reader side. The data
from the reader are transferred to the card and back with two mobile devices
through network. After the data from the reader are sent to the card and
processed, the card sends the transferred response back to the reader the
same way in opposite direction.

I split the implementation into two independent Android applications. I
call the first one Ghost and the second one Leech. The so-called ghost-and-
leech attacks are special class of attacks containing the relay attack.[19]

Through the Ghost application, I simulate the contactless card. For this,
I use Android’s Host Card Emulation service (HCE). This application also
represents the client side of TCP/IP protocol. The second, Leech application
waits for data from client. It represents the card reader and it is communi-
cating with the real smart card.

The solution can be described in five steps. In the first one, the first mobile
device acts like a smart card. It uses first application called Ghost. Ghost
reads the data that were sent from the reader. In the second step, Ghost

17

2. Design and implementation

Figure 2.1: Design of the implementation

application acts as a client in network communication. It connects to the
second device that represents server and send the data to it using TCP/IP
protocol. Second device uses other application called Leech and acts like a
card reader. In the third part, the Leech application, receives data from the
Ghost, client application. It forwards the received data to smart card using
NFC connection and waits for the response. Once it receives the card response,
the fourth part begins. The Leech device sends the response back to Ghost
device that is already waiting for the server response. In the last step, the
Ghost device, still acting like the card, sends the data back to card reader.

In the figure 2.2, I show the structure of the components. The diagram
has two main components representing two main applications.

2.2 Workflow

The first step is to prepare both mobile devices so the communication and con-
nection can be initiated properly. Users need to make sure that both phones
are on same Wi-Fi or other LAN. When the Leech application is running, user
can place the smart card close to the NFC chip in device. The card should be
loaded and connected and application should announce it on its screen along
with the IP address and port on which the application is waiting. User needs
to put this IP address to Ghost applications input field so it can later connect
to the Leech application. After all prerequisites are fullfilled, user can start
the transaction by putting the device with the Ghost application to the ter-
minal. The communication should be transferred properly and logged on the
screen of both devices without any other interacting from the user.

18

2.3. Preparing projects

ResponseAPDU

CommandAPDU

smart card reader
 emulation

server port
Leech

«aplication»

smart card emulation

Ghost
«aplication»

Figure 2.2: Component digram

2.3 Preparing projects

Because the Leech and the Ghost applications are using NFC technology, I
need to set up few things. First, I need to manage Android Manifest. The
manifest file describes basic information about the application required by
Android build tools and operation system. In order to use NFC in the device
I need to add NFC permissions and define that the application will use NFC
features such as NFC adapter. Application’s communication is realized by
network, so I also need to add permissions for using internet and Wi-Fi.

<!-- HCE service declaration for Client application-->
<uses-feature android:name="android.hardware.nfc.hce"

android:required="true"/>
<!-- NFC permissions -->
<uses-permission android:name="android.permission.NFC"/>
<uses-feature android:name="android.hardware.nfc"/>
<!-- Internet permissions -->
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission

android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

Both applications use same tools for handling the APDUs and logging. For
handling APDUs, I created tools class called Utils. I am using this class for
converting the APDU byte arrays to strings and vice versa. The commands
from the card reader that need to be displayed on the mobile devices screen are
in form of bytes array so I wanted to have full control over what is displayed
and I wanted guarantee good readability everytime.

19

2. Design and implementation

Methods for logging are same for both applications. The difference is just
in the way how they are called. For writing logs on the screen, I need to edit
the main activity layout so it contains TextView element. This user interface
element displays text on the screen. Both these elements in applications are
the same. I made them scrollable so user can see all data. Every time the
method for logging is invoked with specific message to be logged, it writes the
message both in the Logcat and on the screen. Along with the message, I am
putting also a time to the log for further testing purposes. For screen logging I
call append() method on the existing object representing the TextView element
in the code. If I would try to call previous method from the running thread
or other class then the activity we want to call it from, it would not work.
In this case I need to call MainActivity.this.runOnUiThread() method. As
parameter I pass the Runnable object with overridden abstract run() method.
This practice helps me to do actions on the UI thread of the main class.

MainActivity.this.runOnUiThread(new Runnable() {
@Override
public void run() {

logInfo.append(msg + "\n");
}

});

I split the implementation into two independent applications as I describe
it in design section. Realization follows same labels and names as design.
I called the applications Leech and Ghost. I will describe the applications
and their parts in the following sections. All the workflow and interaction of
the applications is depicted in figure 2.3. All messages are synchronous. It
means that all wait for response. Card and the terminal can be represented
as unknown source in this case because we do not need to know their internal
behavior. In this case, it is enough to use them as invocation source.

2.4 Leech application
The Leech application represents the card reader and the server side of the
communication. The device with Leech application ensures that the data are
transfered to the smart card. Whole implementation is provided in the An-
droid’s main class called MainActivity. I am using only standard Java and
Android services and classes. First thing I need to do is to edit the applica-
tion manifest so it filters for the NFC intents. When I want my application to
filter for the ACTION TECH DISCOVERED intent I must create and XML
resource file to specify the technologies that I want my application to support.
Technologies are listed within a tech-list set. I add the file also in Android-
Manifest file in the metadata element.

In MainActivity, I override the onNewIntent() method. Every time the
device detects the smart card, this method is invoked and the intent and its

20

2.4. Leech application

{socket
 timeout}

optional

asyncMsg
{send endCommand to server}

{connect
to serverSocket}

Ghost:ClientThread

{new
ClientThread(command)}

optional

optional

asyncMsg
{sendResponseApdu()}

{new
ClientThread(command)}

{connect
to serverSocket}

Ghost:ClientThread

Leech:ServerThread

{sendResponseApdu()}

{sendResponse to client}

{tag.transceive()}

{send command to server}

{processCommandApdu()}

{new ServerThread(tag)}

{tag.connect()}

asyncMsg
{onNewIntent()}

Leech:MainActivity
Ghost:HCE

Figure 2.3: Sequence digram

<intent-filter>
<action android:name="android.nfc.action.TECH_DISCOVERED" />

</intent-filter>
<meta-data

android:name="android.nfc.action.TECH_DISCOVERED"
android:resource="@xml/nfc_tech_filter" />

data is passed as an attribute. Intent is a describtion of an operation that is
pass on to the application and that is to be performed. The intent is usually
paired with extra data. I check if the new intent has EXTRA TAG data.
This data is defined in NcfAdapter class. I use this extra data to initialize
the Tag object and start new thread for network communication using this
tag. It can happened that the card is read more times so I declared boolean

21

2. Design and implementation

flag to indicate whether the connection between card and device is already
established or not.

New thread is created using nested class called ServerThread that rep-
resents the runnable object. When I create the new thread and start it, I use
the tag to connect the device with the card using IsoDep technology. After
successful connection, I create the TCP/IP server socket and start the main
client-server communication that is running in a while loop. In this loop, the
server socket is waiting for client socket to be accepted. Next, I initialize the
java objects for reading from input stream and writing to output stream of the
client socket. For reading, I am using BufferedReader java object created
from clients input stream. Writing is provided by PrintWriter object that
prints formatted data to output stream. In this moment, I am ready to read
the client’s message. I need to check if it is not null or if it is not the ending
message. I created the ending message used by both sides to indicate the end
of the communication so the server knows when to close the connection. If
the message equals the end command, I break the loop and close the server
socket. Otherwise I convert the message to a byte array using the custom tools
described in previous section and I send it to the card using IsoDep method
transceive(). The card sends back the response and I can catch it as a return
value of the IsoDep method. I immediately send the response back to client.
In this time, the loop reaches its end and it waits for another client socket to
accept and read its message again.

Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
IsoDep isoDep = IsoDep.get(tag);
isoDep.connect();
byte[] response =

isoDep.transceive(Utils.hexStringToByteArray(clientMsg));

2.5 Ghost application
Ghost application represents the client side of TCP/IP communication. While
the Leech application is waiting on the other side to connect, this side needs
to get the right IP address of the server. For that reason, a created input field
so user must first enter the server IP address in order to successfully connect
and start communication. After IP address is inserted, it is validated before
properly saved. This all happens in the MainActivity class.

For card simulation in Android, I am using the Host-based Card emulation.
I need to declare the HCE supported service that I will use in AndroidMan-
ifest.xml file. Basic service declaration is used as usual and additional pieces
are added. With permission parameter, I set the permission the application
must have in order to launch the service. Along with the exported parameter
set to true, the parameters mean that only external applications that hold the
specific declared permission can bind to my service.

22

2.5. Ghost application

Intent-filter tag specifies the type of intent the component can respond and
declare the component capabilities. In this case, I use the BIND NFC SERVICE
in the mandatory element action to tell the platform that it is this service that
is implementing the HostApduService interface.

<service android:name=".CardEmulationService"
android:exported="true"
android:permission="android.permission.BIND_NFC_SERVICE">
<!-- wher reader is trying to read a card, it fires the

HOST_APDU_SERVICE action -->
<intent-filter>

<action
android:name="android.nfc.cardemulation.action.HOST_APDU_SERVICE"/>

<category android:name="android.intent.category.DEFAULT"/>
</intent-filter>
<!-- to know which service to call based on AID the reader is

trying to communicate with -->
<meta-data

android:name="android.nfc.cardemulation.host_apdu_service"
android:resource="@xml/aid_list"/>

</service>

I used also meta-data tag to register group of requested AIDs. The tag
is pointing to the XML resource file aid list.xml. The requireDeviceUnlock
parameter is set to false, so the device does not need to be unlocked before the
service is invoked. In this file, I introduced only one aid group with category
set to payment. In this group, I declared three AIDs, one belongs to my
testing card and other two for Visa and MasterCard smart cards.

<host-apdu-service
xmlns:android="http://schemas.android.com/apk/res/android"
android:description="@string/service_name"
android:requireDeviceUnlock="false">
<aid-group

android:category="payment"
android:description="@string/aid">
<!-- test card-->
<aid-filter android:name="A000000018434D" />
<!-- visa and mastercard-->
<aid-filter android:name="A0000000031010" />
<aid-filter android:name="A0000000041010" />

</aid-group>
</host-apdu-service>

First thing to do to start using the HostApduService is to extend it.[5]
For this, I introduced the class called CardEmulationService. HostAp-
duService has two abstract method that needs to be overridden. Proccess-

23

2. Design and implementation

CommandApdu() method is invoked every time the reader sends an APDU. I
can send the response by returning the bytes directly from the same method
or I can use the separate sendResponseApdu() method. I use the second op-
tion because I cannot ensure the response will be computed on the same main
thread.

Android will keep sending commands from the reader to my service until
either the NFC reader sends another SELECT command that would resolve in
calling the service again, or the link between reader and my device is broken.
Both cases invoke the second abstract method onDeactivate() with the reason
as parameter.

In the processCommandApdu() method, I am catching the command AP-
DUs sent from the reader as an array of bytes with every invoke. Then I use
my tools to convert the received bytes array to string. I use the string form
of command APDU as user-friendly form to be shown in UI. After the com-
mand is converted, I call the startCommunication() method to initialize the
communication between both applications. Ghosts side represents the client
part of the TCP/IP protocol communication. The connection is implemented
in two nested threads. In the first, I create the socket and connect it to the
server port. I get the server IP address from MainActivity where I got it from
user input. The port is hard-coded at the beginning of the service. When
the client is connected, I create and call the second thread for data exchange.
In this thread, I initialize the java objects for reading and writing same way
as I described it in previous chapter. This means that I am using Buffere-
dReader object for reading and PrintWriter object for writing. I send the
received command with the output object to server and then wait until the
server sends back the response. If the response is valid I convert it to an array
of bytes and send it back to the reader with help of the HostApduService
method called sendResponseApdu(). After response is successfully sent I close
the client socket and I close both threads.

In case the connection between the card and the reader is disconnected,
the second abstract method onDeactivate() is called. I am using this method
to notify the second device about the end so it can end the connection and
close the server socket. To do this, I declared special ending message and send
it to the server. There is no need to make other steps in order to end the
communication because the service methods are invoked by external events
such as receiving the reader command or disconnecting from the reader.

24

Chapter 3
Testing

In this chapter, I will describe how I tested the solution described and imple-
mented in Realization chapter. I used two ways of how to test the applications.
In the first, I simulated the card reader using Python script. In the second, I
used real card terminals and tried paying using the implemented relay attack.
I will show the results from both testing parts and I will measure the delays
coused by the relay. Real time testing enabled me to study the communica-
tion protocol between the card and the terminal and I will describe it in this
section too.

For testing purposes, I used two mobile devices of type Motorola E4 Plus.
Both devices need to be connected on the same LAN. Where it was possible,
I used local Wi-Fi. Otherwise, I used third device to connect on data internet
and created hotspot. On the device with Ghost application, I needed to set this
application as default for payment. This was done in settings of the device
in tap&pay section. Otherwise, the device would keep looking for default
application called Google pay.

Other equipment I needed were a card reader and a smart card. I was
using USB card reader of type SCL 3711 from SCM Microsystems Inc. To use
it I inserted it into USB port of my computer. The programs and scripts for
card reader simulation are automatically connected. For testing, I could use
any smart cards with at least one payment application. During the testing,
I used my own real MasterCard debit card to show the use of the solution in
real payment transactions.

During the whole testing, when it was possible I counted time delays caused
by longest distance the commands and responses must reach. I also counted
the number of successful and unsuccessful attempts so I could later measure
the success rate of my solution.

25

3. Testing

3.1 Simulation

First way how to test the implemented solution is to simulate the card reader.
For this, I created Python script using Pyscard library.

This framework is for building smart card aware applications in Python.
These applications connect with card through the smart card reader and then
interacts with the card by sending set of APDUs. It first selects a smart card
reader and then connects with the card. In the code below, I show the basics
of the testing script.

from smartcard.CardType import AnyCardType
from smartcard.CardRequest import CardRequest

cardrequest = CardRequest(timeout=1, cardType=AnyCardType())
cardservice = cardrequest.waitforcard()
cardservice.connection.connect()
data, sw1, sw2 = cardservice.connection.transmit(SELECT_COMMAND)
cardservice.connection.getReader()

This part of the code creates a request for specific card and then waits until
the card matching the request is inserted. I do not make difference between
cards so I set the card type to AnyCardType. For reading the card, I use
time-out of five seconds. Function waitforcard() returns the card service or it
expires because of the set time out. Once a matching card is introduced, I am
able to send commands to the card with transmit() function. This function
returns the card response that I parse into separate variables to differ the data
bytes and status bytes. In case I want to see the name of the reader, I call
function getReader().

During testing, I used functional MasterCard debit card. First, I run the
script using just the smart card. Then I used the devices to try the imple-
mented relay. Because I know the AID of MasterCard cards, I was able to
build the SELECT command successfully. Using the script, I created also
other APDU commands. I did not expect any concrete responses except re-
sponse to the SELECT command. Because I created the SELECT command
upon real and matching AID, I expected successful transmission so the re-
sponse should have contained OK status 9000. In other cases, I said that
transmission would be successful if the responses would match the responses I
get from the communication with the card without the relay attack. All com-
mands created can be seen in Table 3.1. As result of this testing, I did not
expect any differences between the results. The implemented solution should
not modify the commands and responses. The devices are just forwarding the
data without touching it.

In table 3.2, there are results of the script running first with card without
any other device and then using the relay. Both are the same so we can see that
the implementation do not modify neither the commands nor the responses.

26

3.2. Real time testing

SELECT [0x00, 0xA4, 0x04, 0x00, 0x07, 0xA0,
0x00, 0x00, 0x00, 0x04, 0x10, 0x10]

GET PROCESSSING OPTIONS [0x80, 0xA8, 0x00, 0x00, 0x01, 0x83,
0x00]

INTERNAL AUTENTICATE [0x00, 0x88, 0x00, 0x00, 0x01, 0x01,
0x00]

VELOCITY CHECKING ATC [0x80, 0xCA, 0x9F, 0x36, 0x00]
VELOCITY CHECKING [0x80, 0xCA, 0x9F, 0x13, 0x00]

Table 3.1: APDU commands used in simulation

data: 6F 4A 84 07 A0 00 00 00 04 data: 6F 4A 84 07 A0 00 00 00 04
10 10 A5 3f 50 ... 10 10 A5 3f 50 ...
status bytes: 90 0 status bytes: 90 00
data: 70 75 9F 6C 02 00 01 9F 62 data: 70 75 9F 6C 02 00 01 9F 62
06 00 00 00 00 ... 06 00 00 00 00 ...
status bytes: 90 0 status bytes: 90 00
data: 77 16 82 02 19 80 94 10 08 data: 77 16 82 02 19 80 94 10 08
01 01 00 10 01 ... 01 01 00 10 01 ...
status bytes: 90 0 status bytes: 90 00
data: - status bytes: 6A 81 data: - status bytes: 6A 81
data: - status bytes: 69 85 data: - status bytes: 69 85
data: - status bytes: 6A 88 data: - status bytes: 6A 88
data: - status bytes: 6A 88 data: - status bytes: 6A 88

Table 3.2: Python script simulation results

This testing method has many benefits. First, I am able to run the script
repeatedly and see the results from the reader side. It allows me to run
the script separately with just the card without any other impact on the
communication and then using the devices to extend the communication.

The disadvantage of this method is that I am not able to simulate the real
communication protocol between the card reader and the payment card. It
would require deeper study of the EMV communication protocol and it is not
in the scope of this thesis.

3.2 Real time testing
Because I made the relay attack solution to eavesdrop and extend the payment
transaction, it was necessary to test it in the real-time payment transactions.
Nowadays, it is possible to pay with contactless payment card almost every-
where. For my testing purpose, I chose first embedded payment terminals for

27

3. Testing

example in vending machines and then I tried the implementation on other
places.

Figure 3.1: Ticket vending machine used during the testing

3.2.1 Testing process

As first, I tested the implementation on the vending machines and ticket
vending machines with embedded contactless payment terminals because the
terminal is set up for the payment automatically and I am able to connect
both phones to my computer in order to correct possible errors during the
whole transaction. After that, I tried other payment terminals in shops etc.

From the first attempts, only 20% of approximately ten transactions were
successful. The most common errors were transaction errors or unsupported
card errors and all appeared on the terminal side. The communication was
not even initialized so the Ghost application was not invoked. Because of that,
I did not have any logs and I could not observe the transaction. During one
transaction, the Ghost application was called and terminal sent one command
to the card. Card responded with error status code 6A82 and the transaction
was aborted with same error as in previous cases. Error code 6A82 means
that the file, which terminal wanted to access, was not found.

The bug was in the Ghost application. In the file that specifies the group
of AIDs the application was simulating were just two AIDs for Visa and Mas-
terCard types of cards. The mobile phone is than able to connect to the
terminal as Visa or MasterCard smart card without the terminal knowing it
is not real card. The problem was that the terminal did not know beforehand
what type of card had got into its area so it tried various kinds of AIDs with
the SELECT command and waited for OK response. In my cases, most of the

28

3.2. Real time testing

terminals started with AID that was not specified in the previously mentioned
file and because the implementation did not supported that types of cards, the
terminal aborted the transaction with error message. In the successful case,
terminal started with MasterCard AID, so the card responded with OK status
code (9000) and the transaction then continued normally. In other case, the
terminal sent the SELECT command for Visa. Card could not find file with
Visa identifier, so it returned error code.

The solution was to add PPSE AID (325041592E5359532E4444463031) to
group of AIDs. The vendor of this AID is Visa International. In response to
this command, card sends list of all availible AIDs it has. Terminal then can
choose from this list the most appropriate AID and access it.

After this correction, 100% of seven attempt were successful. No other
problems occurred during further testing transactions.

3.2.2 EMV protocol observation

During the testing, I encountered two very similar protocols. They differ
only in the first command and the way they discover the proper AID. In the
figure 3.2, I show the example of the Leech application screenshot. The figure
shows, how the application reads the card, initializes the server port and how
it forwards the messages to connected card.

Figure 3.2: Example of the Leech application screenshot

The first discovered payment protocol sents as first the SELECT command
with MasterCard AID. Because my card responded with OK status (9000)
the terminal knew it is communicating with MasterCard type of card and
started the transaction. It is possible that if I would use different card than
MasterCard the protocol would continue with another SELECT command
with other supported AIDs until it would find the appropriate one.

The difference in the first command in the second protocol is just in the
AID. The first command is also the SELECT command but it is using PPSE
AID. As response, card sent a list of AIDs of all availible payment applications.

29

3. Testing

In my case, the response contained just MasterCard AID. The terminal then
could choose from the supported AIDs the one with the highest priority.

Other commands in both protocols are the same. As next, the terminal
sent the SELECT command with appropriate AID it choose in previous step.
It means that the first protocol sends the same command twice. First to se-
lect the appropriate AID and then to activate the corresponding file. After
successful SELECT command, the application file is activated and accessible
for the reader. Third command was the GET PROCESSING OPTIONS com-
mand to initiate the transaction process. This command sends the data for
processing the transaction. This data could include the transaction amount,
for example. As a response, the card sent data containing AIP, which de-
scribes the functions supported by the smart card, and AFL, application file
locator.

Next five commands were all READ RECORDS commands. They repre-
sent the authentication process. In my case, they differed only in combination
of the parameters P1 and P2. First parameter (P1) specifies record number
and second parameter (P2) controls the reference. As the last, terminal sent
GENERATE AC command requiring Application Cryptograms (ACs) from
the card.

There are many variants of EMV protocol present on the market. It is
very possible that there are some cases where my solution may fail and the
success rate may be less than 100%.

3.3 Delays

Because the relay is time consuming, it is reasonable to measure the time
delays. My implementation allows to measure the delays because every log
contains time stamp. I am then able to measure the delays by comparing
the time when the message was sent from the first device and time when the
message was received by the second device.

Second way of how to measure the delays is to compare times of single
operation. During the testing with simulated reader, I captured the times of
single operations and I compared these times of transaction between the card
and the terminal with transaction using the relay. Because now I know the
exact communication protocol from previous testing, I am able to reproduce
it using own reader. Despite the fact that time length of the real payment
transaction can differ from the simulated one, the relay logic and delays are
the same because it is not dependent on the used reader and card but just on
the network. Therefore, total delay will not differ and it is a good practice
to capture the time delays. Tables 3.3 and 3.4 below show examples of the
measurment. The table 3.3 shows the transaction without the relay and table
3.4 shows transaction with relay attack using data network. Numbers mean
the seconds of the timestamp of the action.

30

3.3. Delays

First, I measured a few transactions without the relay. The average time
gap between sending a command and receiving a response was 68.776 ms.
Maximum gap was 318.530 ms long. Average length of the whole transaction
was 632.697 ms.

command response
command timestamp (s) timestamp (s) time gap (s)
SELECT 38.5511 38.5941 0.04300
SELECT 38.5961 38.6361 0.0400
GET PROCESSING
OPTIONS 38.6371 38.6991 0.0620
READ RECORDS 38.7001 38.7370 0.0369
READ RECORDS 38.7390 38.7910 0.0520
READ RECORDS 38.7940 38.8090 0.0150
READ RECORDS 38.8090 38.8210 0.0120
READ RECORDS 38.8220 38.8610 0.0381
GENERATE AC 38.8630 39.1798 0.3168

Min gap 0.0120 ms
Max gap 0.3168 ms
Avegare gap 0.0684 ms
Total lenght 0.6287 ms

Table 3.3: Delays captured during simulation of the transaction protocol with-
out using the relay attack

Next, I measured transactions using relay on two different networks. First
network was public Wi-Fi. The average length of the transaction was 6.470 s
with maximum gap of 4.566 s and average gap of 717.692 ms. As second,
I used internet data connection using regular mobile phone and sharing the
network via hotspot. This solution was much faster than the previous one.
The average length of the transaction was 2.629 s. Maximum gap was just
723.138 ms and average gap was 290.933 ms.

As I can see, the amount of the total delay time depends on the network
speed. I am able to reach satisfying results using fast connection. The time
difference between data exchange without the relay is up to 300 ms. This
time can be covered by the fast relay so no one would be able to track it. The
difference between my testing runs are around 2 seconds and using even faster
connection can reduce this difference. Payment terminals have long timeouts
so even these differences should not be problem.

31

3. Testing

command response
command timestamp (s) timestamp (s) time gap (s)
SELECT 18.4960 18.8519 0.3559
SELECT 18.8530 19.1733 0.3203
GET PROCESSING
OPTIONS 19.1743 19.4805 0.3062
READ RECORDS 19.4815 19.7052 0.2237
READ RECORDS 19.7072 20.0424 0.3352
READ RECORDS 20.0440 20.2556 0.2116
READ RECORDS 20.2556 20.3662 0.1106
READ RECORDS 20.3672 20.5605 0.1933
GENERATE AC 20.5635 21.1394 0.5759

Min gap 0.1106 ms
Max gap 0.5759 ms
Avegare gap 0.2925 ms
Total lenght 2.6434 ms

Table 3.4: Delays captured during simulation of the transaction protocol using
the relay attack

32

Conclusion

The aim of the thesis was to study the problem of contactless smart cards in
the contactless payment transactions and to design and implement working
solution for relay attack using two NFC enabled mobile devices.

In the analytic section of the thesis, I studied the main parts of contact-
less smart cards and payment communication protocols and described them
in details. It was difficult to learn all the main parts in the topic of contact-
less payment transactions because all implementations use several standards
and the specification is extensive. I also described all technical details of
the contactless communication. I pointed to problem parts of the contact-
less transactions and I showed how the contactless smart cards are prone to
attacks.

Based on my own design, I implemented functional solution for relaying
the payment transaction. The solution is transparent and can be well read
and it allows users to successfully perform the relay attack and observe the
communication protocol between the terminal and the smart card. I was able
to try the proccess of the application development including analytic part and
design with UML diagrams.

The final solution worked successfully in real time transactions without any
problems. I tried to pay using the implemented relay attack in several places,
including vending machines and regular payment terminals in various kinds of
shops. I performed successful tests and based on the results I measured time
delays caused by the relay. I found out that even though the total time of the
transaction went up in the worst case by few seconds, the transaction was not
interupted and finished successfully.

Af far as I tried the solution, I found some impacts of the relay attack
on real time transactions. Because the implementation and use of the relay
attack is not so difficult, it can be used by thieves who can perform it on
the card of different person without anyone knowing it. It is enough to get
close to the card so it is possible to connect to it with phone and ensure
the communication with the second phone by any transaction channel. The

33

Conclusion

chance of the abuse is reduced by the contactless transaction money amount
limit for entering the PIN. The cardholder can protect his cards with special
shields or just by ensuring the card is not kept in accessible places.

In the future, the implementation can be extended to include more ad-
ditional user-friendly features like saving and repeating the transaction or
automatic delays capturing.

34

Bibliography

[1] RANKL, Wolfgang a Wolfgang EFFING. Smart Card Handbook. 4. Chich-
ester, West Sussex, U.K: Wiley, 2010. ISBN 978-0-470-74367-6.

[2] Sony: Press releases. Sony: Press releases [online]. Netherlands/-
Japan, 2002, 2002 [cit. 2019-01-06]. Avalible at: https://www.sony.net/
SonyInfo/News/Press_Archive/200209/02-0905E/

[3] NFC Forum: What is NFC? About the technology. NFC Forum [online].
2019 [cit. 2019-01-06]. Avalible at: https://nfc-forum.org/

[4] Nick Pelly and Jeff Hamilton. How to NFC Presentation presented at:
Google I/O 2011.; 2011 May 10-11; USA (California) [online]. Avalible at:
https://www.youtube.com/watch?v=49L7z3rxz4Q

[5] Android Developers: Host-based card emulation overview. Android Devel-
opers: Host-based card emulation overview [online]. 2018, 2018 [cit. 2019-
01-06]. Availible at: https://developer.android.com/guide/topics/
connectivity/nfc/hce

[6] SN ISO/IEC 7816-4. Informaní technologie - Identifikaní karty = Karta s
integrovanými obvody a kontakty - ást 4: Mezioborové píkazy pro výmnu.
2. eský normalizaní institut, 1997.

[7] EMVCo. Book A: Architecture and General Requirements v2.6. March

[8] EMVCo. Book B: Entry Point Specifications v2.5. EMV Contactless Spec-
ifications for Payment Systems. March 2015.

[9] EMVCo. Book C-2 Kernel 2 Specification v2.5. EMV Contactless Specifi-
cations for Payment Systems. March 2015.

[10] EMVCo. Book D: Contactless Communication Protocol v2.6. EMV Con-
tactless Specifications for Payment Systems. March 2016.

35

https://www.sony.net/SonyInfo/News/Press_Archive/200209/02-0905E/
https://www.sony.net/SonyInfo/News/Press_Archive/200209/02-0905E/
https://nfc-forum.org/
https://www.youtube.com/watch?v=49L7z3rxz4Q
https://developer.android.com/guide/topics/connectivity/nfc/hce
https://developer.android.com/guide/topics/connectivity/nfc/hce

Bibliography

[11] Android Developers: Near field communication. Android Developers:
Near field communication [online]. 2018, 2018 [cit. 2019-01-06]. Availible at:
https://developer.android.com/guide/topics/connectivity/nfc/

[12] FRANCIS, Lishoy, Gerhard HANCKE, Keith MAYES a Konstanti-
nos MARKANTONAKIS. Practical Relay Attack on Contactless Trans-
actions by Using NFC Mobile Phones [online]. United Kingdom,
2005 [cit. 2019-01-06]. Availible at: https://eprint.iacr.org/2011/
618.pdf.RoyalHollowayUniversityofLondon.

[13] SourceForge: NFCProxy. SourceForge: NFCProxy [online]. 2013, 2013
[cit. 2019-01-06]. Availible at: https://sourceforge.net/projects/
nfcproxy/

[14] LINEAGEOS ROM. LINEAGEOS ROM [online]. [cit. 2019-01-06]. Availi-
ble at: https://www.cyanogenmods.org/

[15] Github: RFIDIOT. Github: RFIDIOT [online]. 2018 [cit. 2019-01-06].
Availible at: https://github.com/AdamLaurie/RFIDIOt

[16] Kristin Paget. Credit Card Fraud: The Contactless Generation Pre-
sentation presented at: Shmoocon; 2011 January 27-29; USA (Wash-
ington D.C.) [online]. Avalible at: https://www.youtube.com/watch?v=
HRXb-FZ6WFM

[17] STEVENS, W. Richard. TCP/IP Illustrated, Vol. 1: The Protocols.
Addison-Wesley Professional, 1994. ISBN 978-0201633467.

[18] AUSSEL, Jean-Daniel and Ludovic ROUSSEAU. Pyscard - Python for
smart cards. Githubpyscard - Python for smart cards [online]. 2014 [cit.
2019-01-06]. Avalible at: https://pyscard.sourceforge.io/index.html

[19] CZEKIS, A., K. KOSCHER, J. SMITH, T. KOHNO. RFIDs and Secret
Handshakes: Defending Against Ghost-and-Leech Attacks and Unautho-
rized Reads with Context-Aware Communications. In: ACM Conference
on Computer and Communications Security (2008)

36

https://developer.android.com/guide/topics/connectivity/nfc/
https://eprint.iacr.org/2011/618.pdf. Royal Holloway University of London.
https://eprint.iacr.org/2011/618.pdf. Royal Holloway University of London.
https://sourceforge.net/projects/nfcproxy/
https://sourceforge.net/projects/nfcproxy/
https://www.cyanogenmods.org/
https://github.com/AdamLaurie/RFIDIOt
https://www.youtube.com/watch?v=HRXb-FZ6WFM
https://www.youtube.com/watch?v=HRXb-FZ6WFM
https://pyscard.sourceforge.io/index.html

Appendix A
Abbreviations

AAC Application Authentication Cryptogram

ADF Application Dedicated File

AFL Application File Locator

AID Application Identifier

APDU Application Protocol Data Unit

ARQC Authorisation Request Cryptogram

CLA Class Byte in command APDU

CPU Central Proccessing Unit

DF Dedicated File

EF Elementary File

EMV Europay Mastercard Visa

FCI File Control Information

HCE Host-based Card Emulation

I/O Input/Output

ICMP Internet Control Message Protocol

IGMP Internet Group Management Protocol

INS Instruction Byte in command APDU

IP Internet Protocol

37

A. Abbreviations

ISO/IEC International Organization for Standardization/International Elec-
trotechnical Commission

LAN Local Area Network

MF Master File

NFC Near Field Communication

NXP Next Experience (formerly Philips Semiconductors)

PPSE Visa Proximity Payment System Environment

RFID Radio Frequency IDentification

TC Transaction Certificate

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interface

38

Appendix B
Content of the attached CD

apks......................directory containing apks of both applications
ghost-debug.apk
leech-debug.apk

diagrams................................directory containing diagrams
pyscard scripts directory containing Python scripts for testing
screens

ghostRealTime.png...............screenshot from Ghost application
ghostRealTimeWrongType.png screenshot from Ghost application
leechRealTime.png...............screenshot from Leech application
readerSimulation.png.................. log from testing simulation

source codes folder containing applications source codes
thesis

thesis.pdf...................................thesis in PDF format
thesis.tex..................................thesis in LATEX format

README.txt...content of the CD describtion and installation instructions

39

	Introduction
	Analysis
	Contactless smart cards
	Smart cards communication
	EMV specification
	Android options
	Attacks on contactless cards
	TCP/IP Protocol
	Pyscard
	Chapter summary

	Design and implementation
	Design of the implementation
	Workflow
	Preparing projects
	Leech application
	Ghost application

	Testing
	Simulation
	Real time testing
	Delays

	Conclusion
	Bibliography
	Abbreviations
	Content of the attached CD

