
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 20, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: GNU-R Debugger Bytecode Support

 Student: Bc. Aleš Saska

 Supervisor: Ing. Petr Máj

 Study Programme: Informatics

 Study Branch: System Programming

 Department: Department of Theoretical Computer Science

 Validity: Until the end of winter semester 2018/19

Instructions

Familiarize with the GNU-R language, specifically its bytecode design and debugging facilities. Examine
the current bytecode compilation techniques and the interpretation. Suggest enhancements to the debugger
that will expose the underlying bytecode of the debugged programs in a user friendly manner, analyze
minimal updates necessary to the existing R toolchain to support the proposed functionality. Implement
these modifications to enable bytecode debugging.

References

Will be provided by the supervisor.

Master’s thesis

GNU-R Debugger Bytecode Support

Bc. Aleš Saska

Department of System Programming
Supervisor: Ing. Petr Máj

June 26, 2018

Acknowledgements

Thanks to my adviser Petr Máj for help with reviewing thesis, Tomáš Kalibera
for useful help with the GNU-R code and functionality, my father for assisting
with the submission of this work, and big thanks to my girlfriend Leslie Ronish
for psychological support and all the tea required to make this work happen.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on June 26, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Aleš Saska. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Saska, Aleš. GNU-R Debugger Bytecode Support. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2018.

Abstrakt

Úvodńı část této práce se zabývá analýzou a implementaćı disassembleru pro
jazyk GNU-R. Druhá část práce se zabývá vylepšeńı debugováńı bytecode
subsystému GNU-R jazyka během ńıž byl implementován nativńı bytecode
debugger bez žádného negativńıho dopadu na rychlost běhu interpreteru. Byl
zde také realizován nástroj pro výpis obsahu bytecode stacku. V posledńı části
byla implementovaná podpora pro simulováńı podmı́nečného breakpointu.

Kĺıčová slova R,GNU-R,disassembler,debugger,podmı́nečný breakpoint

Abstract

First part of this thesis is about analysis and implementation of the bytecode
disassembler tool for GNU-R language. The second part of the work is improv-
ing a debugging of the GNU-R bytecode subsystem by implementation of the
native bytecode debugger without any negative side-effects on the language
performance. During this work there was also designed and implemented the
bytecode stack printer. At the last phase there was implemented a feature
supporting a simulation of conditional breakpoints in the GNU-R language.

Keywords R,GNU-R,bytecode,disassembler,debugger,conditional breakpoint

vii

Contents

Citation of this thesis . vi

Introduction 1
Motivation and objectives . 1

1 Analysis and design 3
1.1 GNU-R from user perspective 3

1.1.1 Basis usage (main commands and REPL loop) 3
1.1.2 GNU-R package system 3
1.1.3 GNU-R class system . 3

1.2 GNU-R Virtual Machine internal structure 4
1.2.1 Source code of the GNU-R 4
1.2.2 Implementation of the core features of the language in

R itself . 4
1.2.3 Calling internal C functions from R 5
1.2.4 GNU-R memory types and memory management 5
1.2.5 GNU-R garbage collector 6
1.2.6 Computed GOTO . 7

1.2.6.1 Computed GOTO not used - Switch dispatch . 7
1.2.6.2 Computed GOTO used - threaded code 8

1.2.7 Abstract Syntax Tree 10
1.2.8 Bytecode . 10
1.2.9 Just in Time compilation 11
1.2.10 Promises . 11

1.3 GNU-R Bytecode . 13
1.3.1 GNU-R internal representation of bytecode 13
1.3.2 Expression and source references 13

1.4 Current implementation of AST debugger 14
1.5 Current implementation of Bytecode disassembler 16
1.6 Analysis of disassembler improvements 16

ix

1.6.1 Java bytecode disassembler 16
1.6.2 Python bytecode disassembler 16
1.6.3 Summary . 17

1.7 Analysis of Bytecode debugger implementation 17
1.7.1 Inspiration with current AST implementation 18
1.7.2 Implementation inside Python VM 18
1.7.3 Implementation inside V8 VM 19
1.7.4 User interface and state of the BC evaluator 21

1.8 Summary . 22

2 Realization 23
2.1 Implementation of the disassembler 23

2.1.1 User interface . 23
2.1.2 Instruction arguments 27
2.1.3 Annotation of instructions 27
2.1.4 Instruction arguments and labels 29
2.1.5 Computing of labels . 29
2.1.6 Verbosity and formatting 31
2.1.7 Function types in the constant pool 34
2.1.8 Printing functions . 35
2.1.9 Printing of different types 35
2.1.10 Documenting of code . 36

2.2 Implementation of the bytecode stack printer 37
2.2.1 Stack definition . 37
2.2.2 Printing of the stack values 38
2.2.3 RAWMEM stack type tag 38
2.2.4 Persisting stack pointers 40

2.3 Implementation of the debugger 40
2.3.1 Main idea . 40
2.3.2 Global design . 41
2.3.3 Instruction for debugging 41
2.3.4 Storing of the original instruction when the breakpoint

is set . 42
2.3.5 Setting and removing debug instruction 42
2.3.6 Listing breakpoints . 43
2.3.7 Setting the next breakpoint 43
2.3.8 Support in the disassembly tool 45
2.3.9 Temporary and regular breakpoints 46
2.3.10 Implementation of the breakpoint instructions 46
2.3.11 Bytecode interpreter internal status 47

2.3.11.1 The short compact way of status printing . . . 48
2.3.11.2 The long verbose way of showing all information 48

2.3.12 Debugger jumping granularity 48
2.3.13 Handling of the recursive character of the bytecode . . . 49

x

2.3.14 Threaded and non-threaded design of the application . . 50
2.3.14.1 THREADED CODE defined 50
2.3.14.2 THREADED CODE not defined 51

2.3.15 Handling of the debugger user input 52
2.3.16 Entry points to the bcEval function 53

2.4 Simulated conditional breakpoints 54

3 Testing 57
3.1 Bytecode disassembler . 57
3.2 Performance testing . 57

4 Future work 59
4.1 Push into working repository 59
4.2 Merging the bctools package into the compilers 59
4.3 Ability to print out values from the different environment . . . 59

Conclusion 61

Bibliography 63

A Acronyms 65

B Contents of enclosed DVD 67

xi

List of Figures

1.1 Example of the VM with switch dispatch architecture. 8
1.2 Example of the VM with computed goto architecture through dis-

patch table. 9
1.3 While loop example - taken from [1] 10
1.4 GNU-R - reading an data from csv table 11
1.5 GNU-R - reading an data from csv table wrapped in promise . . . 12
1.6 GNU-R - example of promise based arguments evaluation 12
1.7 Example output of the python dis command 17
1.8 GNU-R AST implementation of the debugger 18
1.9 V8 BC definition for the breakpoint instructions 20
1.10 V8 current source code implementation of the breakpoint instruction 21
1.11 V8 internal architecture . 22

2.1 Old disassembly user interface . 25
2.2 Old disassembly user interface . 26
2.3 Bytecode instruction argument types 27
2.4 Example of instruction annotation 28
2.5 Computation of argument count in the compiler package 29
2.6 Code for generating labels . 30
2.7 Disassembly output with verbose lvl 0 32
2.8 Disassembly output with verbose lvl 1 33
2.9 Disassembly output with verbose lvl 2 34
2.10 Definition of stack elements and generated auxiliary array showing

the pritable elements . 39
2.11 Example of debugged function with bytecode debugger enabled . . 41
2.12 Source code of bcSetBreakpoint function 43
2.13 Example usage of bcListBreakpoints function 44
2.14 Example of showing an instruction with breakpoint in the disas-

sembly tool - (notice GETVAR instruction on position 12) 45
2.15 printBCStatus function for printing the whole BC status information 48

xiii

2.16 Modifying the bytecode array in the beginning of bcEval to erase
breakpoints from the code . 50

2.17 Changes made for instruction handling macros in case THREADED CODE
defined . 51

2.18 Changes made for instruction handling macros in case THREADED CODE
not defined . 52

2.19 Implemenation of bcstack and bc commands in the debugger in-
terface . 53

2.20 Implementation of simulated conditional breakpoints through break-
point() function . 55

2.21 Example usage of simulated conditional breakpoints through break-
point() function . 56

3.1 Performance testing . 58

xiv

Introduction

Motivation and objectives

Almost everyone who has written computer programs has made some logical
mistakes while writing them. To help solve these issues, programmers usually
run program step-by-step with debugging tools. The GNU-R, which is one
of the most widely used scientific languages, also has the implementation for
debugging code.

GNU-R language is a dynamically typed interpreted language, which usu-
ally means that it needs Virtual Machine to interpret. There are more ways
to represent and implement its evaluation. The first one Abstract Syntax
Tree (see 1.2.7) evaluation is the simplest one. To speed up its internal eval-
uation, the Bytecode (see 1.2.8) compiler and interpreter has previously been
introduced into GNU-R language [2].

While the abstract syntax tree evaluator is the slower of the two GNU-R in-
terpreters, it already contains the debugging features implemented. However,
it was previously difficult to analyze and debug the other analyzer, bytecode.
The only method provided to analyze the bytecode is a very basic disassembler
that shows the data in a unformatted view. It also means that there is cur-
rently no support for debugging the GNU-R bytecode evaluation. When the
user requests the debugging feature, the GNU-R core currently has to switch
into the AST interpreter instead of performing debugging the bytecode. The
slight differences in representation of code between the bytecode and AST
can potentially cause an issue when debugging because the debugged code is
always only being performed on the AST regardless of whether the user is
aware. Eventually, this can also cause an issue when there is an error inside
the AST or the BC interpreter core. This can result in a confusing and tough
to solve issue. There is also no way for the user to see the internal variables
and state of the BC interpreter.

Therefore, the work done in this thesis aims to solve the insufficient byte-
code disassembler by replacing it with a new easy-to-use and human-friendly

1

Introduction

one. Another implemented feature is the user-friendly bytecode debugger,
which is significantly improving the options for analysis and debugging. On
top of this, the breakpoint() instruction which is used for the simulation of
the conditional breakpoints was implemented.

The focus of the implementation was to maintain the performance of the
language (the bytecode engine). The performance testing at the end of this
work confirmed this (see 3.2). The disassembler bctools package has auto-
mated tests that improve its maintenance in the future.

This thesis is organized as follows: Section is the introduction to problems
in the current GNU-R debugging features. Section 1.6 contains the analysis of
possible solutions of how to implement the bytecode disassembler and the de-
bugger. Section 2 is describing the design of current implementation. Section 3
describes what type of testing has been performed on the work. Section 4 pro-
poses the future improvements possible due to this thesis and is followed by
thesis summarization in conclusion 4.3.

2

Chapter 1
Analysis and design

1.1 GNU-R from user perspective

1.1.1 Basis usage (main commands and REPL loop)

The main GNU-R language is written as the console application evaluating
the infinite REPL - Read Eval Print Loop. As the abbreviation says, it is
evaluating the expressions right as is entered by the user (of the R program)
to the program standard input (stdin). Alongside of this, there is also the
Rscript command in the package which supports running the program from
the input file. However, it is internally implemented just as wrapper piping
the file content into the R command.

1.1.2 GNU-R package system

The bytecode disassembler in this thesis is written as the separate package
named bctools. It allows the disassembly tool to be implemented as a plugin
into the language. This design is helping to keep the language core minimal.

Because of this we need to be able to manipulate the packages and work
with them. These are few basic commands used for this purpose:

• R CMD INSTALL <pkgs> - install specified packages

• R CMD build <pkgname> - build the package

• R CMD check <pkgname> - check package (check requirements, run tests,
etc.)

1.1.3 GNU-R class system

According to the Hadley Wickham’s article [3], the GNU-R has 4 possible
class systems - S3, S4, Reference classes and Base classes (internally used).
It means that the R class system is not strictly defined as in languages like

3

1. Analysis and design

Java, C++, Python, etc. The whole system provides the end user to more
flexibility, but on the other hand, it can be a little bit more confusing for the
programmers who are used to conventional programming languages.

1.2 GNU-R Virtual Machine internal structure

Static languages compilers usually use directly the computer operating sys-
tem as the running environment. However, the GNU-R is the dynamically
typed computer language with the internal Virtual Machine (VM) provid-
ing the running environment. It is simulating the environment by executing
code, managing memory, and providing communication layer with the under-
lying computer and its external devices (accessing the filesystem, network
communication, etc.). The nature of all being simulated usually results in
performance slowdown, but on the other hand, there is s significant safety
advantage of isolation which results of the code being much safer.

The GNU-R stack-based Virtual Machine. They are the simpler ones
because every instruction arguments lie on the top of the stack in the speci-
fied order (for example ADD instruction removes two topmost arguments from
the stack, make the addition, and push back the result to the stack). The
simplicity of instruction coding implies easier instructions and also easier im-
plementation of both compiler and evaluation code.

1.2.1 Source code of the GNU-R

The core GNU-R VM core is written in C language with the broad number
of supported platforms (Windows/MAC/Linux...) and computer architec-
tures (ARM/x86/x64...). The multi-compiler support also means that there
could be the difference in supported features which would need conditional
checks for supporting this feature in the compiler code. One of the examples
is support for the Computed GOTO 1.2.6.

1.2.2 Implementation of the core features of the language in
R itself

The GNU-R has internally written the loading mechanism in the way that
the base package is loaded first and then all of the packages contained in
list getOption("defaultPackages") are loaded into the global environment.
This mechanism allows that just the core features and language constructs
are written in performance-optimized C, and the rest can be written inside R
language itself. It means that these packages there is substantial amount of
functionality for the whole language. The compiler package is different than
the other packages because its code is used inside the language core interpreter.
It means that the compiler package needs to be loaded before any of the
other packages. It causes the the loading mechanism to be hardcoded in the

4

1.2. GNU-R Virtual Machine internal structure

language evaluator code (which makes it different to the other packages). Its
loading is inside loadCompilerNamespace function (in the src/main/eval.c
file). The same concept about loading to the language intepreter core has
to be used for our bytecode disassembler bctools 2.1 package (because the
disassembler functionality is used inside bytecode evaluator engine).

1.2.3 Calling internal C functions from R

According to the GNU-R documentation [4] the C code compiled into R at
build time can be called directly in what are termed primitives or via the
.Internal interface. More precisely, R keeps a table of function names and
corresponding C functions to call, which by convention all start with do
and return the result value. This table (R FunTab sitting in file src/main/-
names.c) also specifies how many arguments to a function are required or
allowed, whether or not the arguments are to be evaluated before calling, and
whether the function is internal in the sense that it must be accessed via the
.Internal interface, or directly accessible in which case it is printed in R as
.Primitive. The function table was used in this thesis for defining the native
calls for the functions mostly used for manipulating the bytecode (2.3.5) and
for handling of the status variables for the debugger (2.1.6).

1.2.4 GNU-R memory types and memory management

Each memory node is represented as SEXP type. It contains internal represen-
tations such as code definition (LANGSXP, BCOSESXP, WEAKREFSXP, promises,
etc.) and also regular memory types (such as logical vectors, integer vectors,
strings vectors, etc.). GNU-R is a vector language, so every value is internally
represented as a vector (e.g., integer 3 is represented and boxed as INTSXP
vector of size 1 containing value 3).

Types of memory nodes are

• NILSXP nil = NULL

• SYMSXP symbols

• LISTSXP lists of dotted pairs

• CLOSXP closures

• ENVSXP environments

• PROMSXP promises: [un]evaluated closure arguments

• LANGSXP language constructs (special lists)

• SPECIALSXP special forms

5

1. Analysis and design

• BUILTINSXP builtin non-special forms

• CHARSXP ”scalar” string type (internal only)

• LGLSXP logical vectors

• INTSXP integer vectors

• REALSXP real variables

• CPLXSXP complex variables

• STRSXP string vectors

• DOTSXP dot-dot-dot object

• ANYSXP make ”any” args work.

• VECSXP generic vectors

• EXPRSXP expressions vectors

• BCODESXP byte code

• EXTPTRSXP external pointer

• WEAKREFSXP weak reference

• RAWSXP raw bytes

• S4SXP S4, non-vector

• NEWSXP fresh node created in new page

• FREESXP node released by GC

• FUNSXP Closure or Builtin or Special

These types are holding values which can be printed in the disassembler
function 2.1 and also inside the stack printer 2.2.2 in this thesis.

1.2.5 GNU-R garbage collector

The memory management in dynamic languages is maintained by Garbage
Collector. It releases allocated memory once it is no longer used by program.
GNU-R implementation of memory management lies inside src/main/mem-
ory.c. It implements a non-moving generational garbage collector with two
or three generations. Memory is allocated by R alloc and is maintained in a
stack. There is also protection stack managed by PROTECT (and UNPROTECT)
functions which is used inside C code for internal purposes (widely used in 2.3).
It allows to push locally allocated variables into it so they are reachable by
the garbage collector and would not get removed during a garbage collection
run (memory cleanup).

6

1.2. GNU-R Virtual Machine internal structure

1.2.6 Computed GOTO

The Computed GOTO technique is used in the VM for code evaluation speedup.
Also, the GNU-R VM has its internal support for this feature (managed by
macro THREADED CODE). Because the DEBUG instruction is internally dis-
patching an old previous instruction after execution of debug features there
was a need to understand the whole bytecode instruction jumping.

GNU-R has the support of threaded code (implemented by the computed
GOTO technique) although there is still support for non-GCC compilers (and
compilers which does not support this feature) - see 1.2.1. Enabling or dis-
abling of this feature is managed by (THREADED CODE define preprocessor
command.

The all of the while loop and switch cases are in the GNU-R code defined
with macros (INITIALIZE MACHINE, BEGIN MACHINE, OP, NEXT and LASTOP).
They are conditionally defined to either be compiled for supporting Computed
GOTO 1.2.6.2 or not 1.2.6.2 (according to the THREADED CODE flag).

This feature has impact on the implementation of the bytecode breakpoint
instruction jumping to the specified instruction (see 2.3.14). It means that
this jumping feature has to be implemented and tested for both dispatch
systems (both THREADED CODE enabled and disabled).

1.2.6.1 Computed GOTO not used - Switch dispatch

The internal representation of the traditional implementation of the BC eval-
uator acts like big loop going through all function instructions. This design
causes that in each loop step there has to be branching of program flow ac-
cording to instruction (if command). In the traditional way, this is done as
the switch-case where case values are the instruction codes. Example of this
approach:

7

1. Analysis and design

whi le (1){
switch (∗ opcode++){

case POP: //POP=1
. . . do i n s t r u c t i o n POP
break ;

case GETVAR: //GETVAR=2
. . . do i n s t r u c t i o n GETVAR
break ;

case ADD: //GETVAR=3
. . . do i n s t r u c t i o n ADD
break ;

}
}

Figure 1.1: Example of the VM with switch dispatch architecture.

1.2.6.2 Computed GOTO used - threaded code

The switch statement should be implemented very efficiently by C compilers
- the condition serves as an offset into a lookup table that says where to jump
next which means that it is evaluated for every bytecode instruction ([5]).
However, it turns out that there’s a popular GCC extension that allows the
compiler to generate even faster code. The main idea behind this is to store
the address of the label into the value of a variable which allows the dynamic
lookup of the next value.

8

1.2. GNU-R Virtual Machine internal structure

/∗ The i n d i c e s o f l a b e l s in the d i s p a t c h t a b l e
∗ are the r e l e v a n t opcodes
∗/

s t a t i c void ∗ d i s p a t c h t a b l e [] = {
&&do halt , &&do inc , &&do dec , &&do mul2 ,
&&do div2 , &&do add7 , &&do neg } ;

#d e f i n e DISPATCH() goto ∗ d i s p a t c h t a b l e [code [pc++]]

i n t pc = 0 ;
i n t va l = i n i t v a l ;

DISPATCH() ;
whi l e (1) {

do ha l t :
r e turn va l ;

do inc :
va l++;
DISPATCH() ;

do dec :
val−−;
DISPATCH() ;

do mul2 :
va l ∗= 2 ;
DISPATCH() ;

}

Figure 1.2: Example of the VM with computed goto architecture through
dispatch table.

In the GNU-R implementation of bytecode interpreter, there is perfor-
mance optimization called direct threaded code associated with dispatch table
and the computed GOTO. In process of loading bytecode into the VM internal
structure (done by R bcDecode and R bcEncode functions inside src/main/e-
val.c) there is translation between instruction codes (integer codes) and the
current location of jump labels inside bcEval - see computed goto 1.2.7(void*
type). The nature of the operating system loader would cause that this posi-
tion can (and usually is) changed every time the program is started (R VM
is loaded into memory by a operating system) - so value has to be computed
every time again. This allows BC interpreter to jump directly at the position
which is stored inside the code array. It would cause saving one array lookup
every step of BC interpreter compared to the classic interpreter (implemented
for example inside CPython VM).

9

1. Analysis and design

1.2.7 Abstract Syntax Tree

To be able to internally interpret the syntax of every language the code is first
parsed into abstract syntax tree (AST, see the example in fig. 1.3). Tree in
the GNU-R contains nodes of LANGSXP type with references to the symbol
table (pointers to the function). These references are represented as an point-
ers to functions which have implemented the evaluation of the code. This tree
is then traversed and evaluated inside eval function (which lies in file src/-
main/eval.c). The evaluator also has built-in support for debugging which is
done internally by the checking of the RDEBUG flag of the current executed en-
vironment. The flag is checked every evaluator step which creates performance
overhead even though the debug mode is not active. However this checking
overhead is usually minimized by branch prediction feature of current CPUs.

The current AST evaluator debugging implementation was in this thesis
used as an inspiration for the functionality of the newly implemented fea-
tures 2.3. The other thing inspired by the this debugger is the user-output
in case the bytecode debugger is in the non-verbose mode. In that case the
bytecode debugger is simulating the command-line behavior of the AST - see
section 2.3.11.1.

Figure 1.3: While loop example - taken from [1]

1.2.8 Bytecode

Another option how to represent the source code to evaluate is the bytecode.
It has an array of transferable instruction codes and constants designed for
easy evaluation. The name bytecode stems from the the instruction set that
have one byte operation code. Structure contains the instruction code which
follows parameters (depending on how many / if parameter given instruction
have). This thesis content is about an implementation of support for the
bytecode evaluator of an GNU-R language.

10

1.2. GNU-R Virtual Machine internal structure

1.2.9 Just in Time compilation

In order to speed-up evaluation of inside VM, there have been developed
various techniques of the performance optimization. One of them is Just in
Time (JIT) compilation of code [6]. The underlying idea is to internally trans-
late code into some more efficient representation (from AST to either Bytecode
or to the native machine code). However, this transformation (compilation) is
usually pretty expensive so it is called once the execution of a specified piece
of code reached some limit. GNU-R has the basic internal support of JIT.
Implementation lies inside src/main/eval.c mainly in functions R CheckJIT
and R cmpfun). It is executing the Compiler::tryCmpfun to compile function
AST into bytecode. According to the posts from running code with ByteCode,
the JIT enables speedup up to 10 times (theoretically up to 25 times but these
cases are very rare). This means that the bytecode engine of GNU-R code can
be used even without a user knowing it (explicitly calling compilation) which
would make work for the bytecode debugger in our thesis very important.
The second important thing is that both interpreters (AST and BC one) can
be run together therefore there has to be a need to clearly decide which is
currently in use (this feature is implemented in chapter 2.3.11).

1.2.10 Promises

GNU-R computer language is heavily dependent on the promise pattern which
implementation has to be handled in the stack printer tool 2.2. This promise
pattern represents a encapsulation of executable code which can be at some
time in the future evaluated (instead of running it immediately). For example
instead direct call (see figure 1.4) you can manually force GNU-R to wrap the
function evaluation in the promise via the future function (see figure 1.5).

#f i r e s immediate l ly the read func t i on
value <− read . csv (. . . some d a t a f i l e . . .)

#j u s t p r i n t s the value
p r i n t (va lue)

Figure 1.4: GNU-R - reading an data from csv table

11

1. Analysis and design

#c r e a t e j u s t an promise conta in ing the read func t i on c a l l
va lue <− f u tu r e (read . csv (. . . some d a t a f i l e . . .))

#eva lua t e s the promise (do the read . csv func t i on)
on the background
and f i n a l l y p r i n t i n g out the r e s u l t
p r i n t (va lue)

Figure 1.5: GNU-R - reading an data from csv table wrapped in promise

getB <− f unc t i on (){
p r in t (” getB ”)
5

}

c a l c <− f unc t i on (a , b){
p r in t (” c a l c ente r ”)
r e t <− a∗2
p r in t (” accessB ”)
r e t <− b∗10
p r in t (” c a l c e x i t ”)

}
c a l c (2 , getB ())

#w i l l produce output :
[1] ” c a l c ente r ”
[1] ” accessB ”
[1] ”getB”
[1] ” c a l c e x i t ”

Figure 1.6: GNU-R - example of promise based arguments evaluation

This shown approach is manual and pretty straightforward for the user
to understand. However, the GNU-R has promise based lazy evaluation of
arguments [7]. Every argument in the function is the promise and instead
of evaluating it before the function call (like in other old-fashioned languages
like C or Java), the argument is evaluated inside the function code once it is
accessed (see the figure 1.6). It causes that the GNU-R is internally heavy
dependent on the promises even it is not obvious for the normal user at the
first sight. The promises and printing of their content was done in this thesis
in the stack printer 2.2.

12

1.3. GNU-R Bytecode

1.3 GNU-R Bytecode

GNU-R has the internal support of the BC which consists of compiler pack-
age for compiling to the bytecode. The language bytecode is interpreter by
function bcEval (inside src/main/eval.c). The BC compiler can be used ex-
plicitly by calling certain functions to carry out compilations or implicitly by
enabling compilation to occur automatically at certain points.

• Explicit compilation - primary functions are: compile, cmpfun, cmpfile

• Implicit compilation - can be used to compile packages as they are
installed or for JIT compilation of functions or expressions.

For now, the compilation of packages is enabled by calling compilePKGS
with argument TRUE or by starting R with the environment variable
R COMPILE PKGS set to the positive integer value.

1.3.1 GNU-R internal representation of bytecode

The internal representation of bytecode is SEXP node of BCODESXP type. It is
internally represented as a linked list (CONS of cells) of two variables:

• Bytecode code (body) array which contains set bytecode instructions
following its’ parameters

internally represented as first element (CAR) of the list

accessed in the code through the BCODE CODE macro

The array contains the representation of version number followed
by the bytecode instructions

• Constant pool array

internally represented as second element (CDR) of the linked list

accessed in the code through the BCODE CONSTS macro

contains the of the constant expressions (which are referenced in the
bytecode array)

1.3.2 Expression and source references

At the end of the constant pool array, there can be (are optional) some ad-
ditional information about the bytecode (citing the Source References article
[8]). This information is not used for the evaluation but are provided for
specifying the original location of the compiled code. They are used in the
disassembler tool 2.1 and are used in the implemented feature which is doing
jumping granularity restriction 2.3.12. They can be of 2 types:

13

1. Analysis and design

• Expression reference

describing the expression representation of bytecode (for example b+a+4)

• Source reference

describing the location in the source file (for example main.R#4)

The data structures in the end of the constant array can contain these
class types:

• srcref

Source reference representing the whole function (it’s beginning)

• srcrefsIndex

Array corresponding source references to code for each instruction (length
of the array is length of BC code array - see 1.3.1)

• expressionsIndex

Array corresponding expression references (expressions) to code for each
instruction (length of the array is the length of BC code array - see 1.3.1)

1.4 Current implementation of AST debugger

The current implementation of debugger inside GNU-R language is made on
top of the AST interpreter and it uses the RDEBUG flag of current evaluated
to check if enable the debugging features. For user, there are written func-
tions (user interface) managing this functionality. They are:

• debug(fun, text = "", condition = NULL, signature = NULL)

enables debug features on the function fun

• debugonce(fun, text = "", condition = NULL, signature = NULL)

run debug features on the function fun next time it is called

• undebug(fun, signature = NULL)

disable debug features on the function fun

• isdebugged(fun, signature = NULL)

check whether the debugging features on the function fun are en-
abled

14

1.4. Current implementation of AST debugger

• debuggingState(on = NULL)

manages the debugging features by turning them off / on by man-
aging R internal state

returns boolean representing whether debugging is globally turned
on. In the case that the on parameter is not NULL, the internal state
is modified according to that parameter.

To keep the same debug functionality for functions running on top of the
bytecode there is a fallback for switching back to the AST implementation. It
implicates that for users the code behaves in the same way (both BC and AST
representation are producing equivalent output), but can cause issues when
there are bugs in the internal engine (either AST or BC evaluator). In that
case, the code while debugging would be using the different code than while
not-debugging. This can potentially cause confusing and hard to solve issues.

There is currently also no way to debug BC internals (stack content and
showing the current evaluating instruction in the code) while running. This
would be changed in this work by implementing an stack printer 2.2 and
disassembler 2.1.

The GNU-R debugger internal implementation of interacting with the user
is made by calling the browse() function which is running the environment
browser. Its purpose is to wait for user input. Once the user types expression,
it evaluates the typed expression. Its internal representation is reusing the
function shared with main REPL loop (mainly functions Rf ReplIteration
and ParseBrowser inside src/main/main.c) for support user input (parsing
and evaluating).

The browse() function also has support for the commands managing the
debug mode. They are:

• c - exit the browser and continue execution at the next statement.

• cont - a synonym for c.

• f - finish execution of the current loop or function

• help - print this list of commands

• n - evaluate the next statement, stepping over function calls. For byte-
compiled functions interrupted by browser calls, n is equivalent to c.

• s - evaluate the next statement, stepping into function calls. Again,
byte-compiled functions make s equivalent to c.

• where - print a stack trace of all active function calls.

• r - invoke a ”resume” restart if one is available; interpreted as an R
expression otherwise. Typically ”resume” restarts are established for
continuing from user interrupts.

15

1. Analysis and design

• Q - exit the browser and the current evaluation and return to the top-
level prompt.

1.5 Current implementation of Bytecode
disassembler

There is already implemented the way how to see bytecode representation -
the bytecode disassembler function disassemble in compile package. Even
though its current functionality is very minimal and insufficient. It works the
way that it converts the code instructions and constant buffer to array which
can be after then printed to the console by user (by default in the REPL loop
or manually with print function). It means that the user would see (the
function would return) two arrays which is user unfriendly.

1.6 Analysis of disassembler improvements

In the following paragraphs, there is a detailed analysis of other implemen-
tations of disassemblers and the possibility of implementation user-friendly
one inside GNU-R. The user-interface and output of the disassembler tool 2.1
implemented in this thesis was inspired by these implementations.

1.6.1 Java bytecode disassembler

The nice example of the disassembler is in Java language (javap command
of Java package). However, it works with the Java bytecode which is very
specific because each file contains the one class (the file is named classfile).
Although the GNU-R implementation is different - there can be mixed up the
non-compiled (AST) and compiled (BC) code. It means that the bytecode
printer is showing just the one function at once.

1.6.2 Python bytecode disassembler

Python has inbuilt support of disassembler [9] for it’s internal BC 1.7. It is
provided inside package dis which is part of the package (no need to manually
installing). Source code location is in the Lib/dis.py. As you can see the code
is showing just one function at once. It is also showing the combined output of
constant array at one line (not printing separately code and constant array).
See the figure 1.7 for example.

16

1.7. Analysis of Bytecode debugger implementation

import d i s

de f myfunc (a l i s t) :
r e turn l en (a l i s t)

d i s . d i s (myfunc)
Generating output
2 0 LOAD GLOBAL 0 (l en)
2 LOAD FAST 0 (a l i s t)
4 CALL FUNCTION 1
6 RETURN VALUE

Figure 1.7: Example output of the python dis command

1.6.3 Summary

The difference between the Java javap and the Python dis command is that
javap works on the whole file instead of the Python dis which is printing
just one function. They both dump the BC in the human-readable form with
instructions line-by-line. The Python one is showing the parameters from the
constant pool altogether with the instruction. The javap tool, on the other
hand, supports more levels of verbosity.

The R can internally combine AST and BC representation of the code. It
means that the architecture of the disassembler output cannot be the same
as in the javap command which shows the whole file. Instead of it we can
print out to the user the information provided by the old disassemble function
which works over the whole functions (instead of files as the javap command).
The printed out information also have lot of information which are additional
information for the user (not necessary needed to interpret the code). To
show these it would be nice if the GNU-R bytecode would have the ability
to show these information conditionally according to the verbosity level. The
inline showing values from the constant pool (inspiration by the Python dis
function) would be also useful because it would enable the result to be printed
in compact and shorter way.

1.7 Analysis of Bytecode debugger
implementation

Currently, there is no support for debugging the bytecode evaluation (just the
fallback to the AST evaluator is present) so there is no current implementation
of the BC debugger to go through. To improve this it should be done the full
native implementation of bytecode debugger. User interface of that native

17

1. Analysis and design

debugger implementation can be inspired with the current AST implemen-
tation - which is described part 1.7.1. The following parts (1.7.2 and 1.7.3)
are analyzing the implementation of the BC debugger in other VMs (Python
VM 1.7.2 and V8 javascript VM refbcdebug-implementation-in-v8).

1.7.1 Inspiration with current AST implementation

The general idea how to implement the debugger features is taken from the cur-
rent implementation of the AST debugger 1.8. Its implementation of the debug
code check if there is RDEBUG flag on the current executed function. It yes,
then it prints information about the current evaluated code (source reference
if available + evaluated expression). After that the do browser() command
is called which is internally showing the environment browser. The browser
has in-build support for evaluating user-entered expressions altogether with
support for handling the debugger commands (next step, step into, continue
etc.). It also has support for showing backtrace (where command). The envi-
ronment browser is internally reusing the REPL 1.1.1 functionality of whole
language (implemented by the function Rf ReplIteration or ParseBuffer
inside src/main/main.c).

i f (RDEBUG(rho) && ! R GlobalContext−>b r o w s e r f i n i s h) {
SrcrefPrompt (” debug ” , R Src re f) ;

// Pr int ”debug” fo l l owed by
// source r e f e r e n c e o f the cur rent eva luated code

PrintValue (CAR(args)) ;
// p r i n t cur rent eva luated exp r e s s i on

do browser (c a l l , op , R NilValue , rho) ;
// run the environment browser

}

Figure 1.8: GNU-R AST implementation of the debugger

1.7.2 Implementation inside Python VM

One of the good examples of the similar VM is the CPython one which is
the most popular Python VM. It is internally supporting just the BC inter-
preter (not even having AST evaluator) with the instruction set similar to the
GNU-R.

The BC implementation of the its debugger is straightforward. There is im-
plemented runtime checking of the debug flag in the label fast next opcode.
To speed up the language evaluation there is a shortcut for dispatching com-
puted goto (see 1.2.6) through dispatch table inside FAST DISPATCH macro. In-
side this macro is check for the Py TracingPossible &&PyDTrace LINE ENABLED() (even-

18

1.7. Analysis of Bytecode debugger implementation

tually also combined with the !lltrace flag). This design of the implementa-
tion implicates that debugger implementation is causing performance overhead
even while function not being debugged (for every evaluated BC instruction
there is at least one value comparison and conditional jump needed for a pro-
cessor to compute). However, this implementation is easy to implement, does
not require any specific debug instruction and does not cause any changes to
the memory subsystem (potential GC issues). Also, the overhead would in the
real-world usage not be huge due to branch prediction feature in the modern
CPUs.

1.7.3 Implementation inside V8 VM

V8 is Javascript VM developed by the Google. It was initially used by the
Chrome browser. By the time it has been also used for desktop (for example
Electron framework) / server applications using the Node.js which is the V8
engine with written filesystem access, networking etc.

The V8 internal implementation is consisting of the BC interpreter (Igni-
tion) and JIT x86 compiler (TurboFan) -see the figure 1.11.

The bytecode interpreter is single stack registed based VM (similarly to the
GNU-R and CPython VM). Its core functionality of the debugger works on the
BC instruction level. The VM defines separate Debug instruction for every
number of the arguments (e.g. DebugBreak0, DebugBreak1, DebugBreak2
etc.) 1.9.

If the breakpoint is set on some specific instruction (for example ShiftRight
instruction with the 2 parameters) it causes its the replacement of the original
instruction by the corresponding breakpoint one according to the number of
the parameters of original one (DebugBreak2 for ShiftRight because it has 2
parameters). These BC instructions work like special instructions 1.10 which
internally calls the handler for the debugger and also dispatch the original
instruction to maintain the same behavior (consistency) of the original code.

19

1. Analysis and design

/∗ Debug Breakpoints − one f o r each p o s s i b l e
s i z e o f unsca led bytecodes ∗/

/∗ and one f o r each operand widening p r e f i x
bytecode ∗/

V(DebugBreak0 , AccumulatorUse : : kReadWrite)
V(DebugBreak1 , AccumulatorUse : : kReadWrite ,

OperandType : : kReg)
V(DebugBreak2 , AccumulatorUse : : kReadWrite ,

OperandType : : kReg ,
OperandType : : kReg)

V(DebugBreak3 , AccumulatorUse : : kReadWrite ,
OperandType : : kReg ,

OperandType : : kReg , OperandType : : kReg)
V(DebugBreak4 , AccumulatorUse : : kReadWrite ,

OperandType : : kReg , OperandType : : kReg ,
OperandType : : kReg , OperandType : : kReg)

V(DebugBreak5 , AccumulatorUse : : kReadWrite ,
OperandType : : kRuntimeId , OperandType : : kReg ,
OperandType : : kReg)

V(DebugBreak6 , AccumulatorUse : : kReadWrite ,
OperandType : : kRuntimeId , OperandType : : kReg ,
OperandType : : kReg , OperandType : : kReg)

V(DebugBreakWide , AccumulatorUse : : kReadWrite)
V(DebugBreakExtraWide , AccumulatorUse : : kReadWrite)

Figure 1.9: V8 BC definition for the breakpoint instructions

20

1.7. Analysis of Bytecode debugger implementation

// DebugBreak
//
// Cal l runtime to handle a debug break .
#d e f i n e DEBUG BREAK(Name, . . .)

IGNITION HANDLER(Name, In te rp re t e rAssemble r) {
Node∗ context = GetContext () ;
Node∗ accumulator = GetAccumulator () ;
Node∗ r e s u l t p a i r =

CallRuntime (Runtime : : kDebugBreakOnBytecode ,
context , accumulator) ;

Node∗ r e t u r n v a l u e = Pro j e c t i on (0 , r e s u l t p a i r) ;
Node∗ o r i g i n a l b y t e c o d e =

SmiUntag (Pro j e c t i on (1 , r e s u l t p a i r)) ;
MaybeDropFrames (context) ;
SetAccumulator (r e t u r n v a l u e) ;
DispatchToBytecode (o r i g i n a l b y t e c o d e , BytecodeOf f set ()) ;

}
DEBUG BREAK BYTECODE LIST(DEBUG BREAK) ;
#undef DEBUG BREAK

Figure 1.10: V8 current source code implementation of the breakpoint instruc-
tion

1.7.4 User interface and state of the BC evaluator

To keep the implementation consistent from the user perspective BC debugger
should use the same user-interface as the AST. There can also be visible distin-
guishing between the internal state of the language (if the language is currently
inside the AST or BC evaluation mode). In the current AST implementation,
there is used "debug" as prefix printed while showing the environment browser
in the debugger. This could be modified to the "debugBC" to signalize the
user that the BC debugger is active.

The internal state of the GNU-R BC stack machine should be printed out
to the output while the debugging. This state consists of:

• Current position inside the code

• Stack content

Alongside the showing the current position, there would also be need to
show the function bytecode. For this feature we can use the disassembler
feature 2.1 proposed in the first part of the analysis 1.6. Showing current
position inside code can be implemented as a feature inside the disassembler
but for the stack content, there has to be implemented a separate tool.

21

1. Analysis and design

Figure 1.11: V8 internal architecture

1.8 Summary

In order to improve bytecode debugging, there is a need for improving (imple-
menting the human-readable) disassembler. There was decided that the disas-
sembler would be implemented as the separate print.disassembly function
inside the new bctools package.

Another part of the thesis is about implementing the native bytecode de-
bugger support into the GNU-R. The solution proposed in this thesis was
inspired by the JS V8 VM 1.7.3 and Python VM 1.7.2. It consists of the im-
plementing set of bytecode instructions (BREAKPOINT0 through BREAKPOINT4)
alongside with storing of the original instructions in the separate array. This
proposed solution is performance oriented because the bytecode debugger ar-
chitecture should not have any negative effect on overall language performance.

Finally in the debugger, there has to be done some showing of the evaluator
internal status to the user. The status consists of the bytecode of the function,
current evaluated instruction, and the stack content. For showing the function
bytecode and printing the current evaluator position in the code there can be
reused the disassembler tool (see 1.6) but for the dumping of the stack content,
there has to be implemented completely new and separate tool.

22

Chapter 2
Realization

There are three different things which have to be implemented - disassembler,
stack printer and finally the BC debugger itself.

2.1 Implementation of the disassembler

The whole project was structured the way that disassembler can be easily
released to the CRAN repository without the debugger. As much as possible
code is written in the R language (most of it in separate package bctools,
but some also to the compiler one) and just necessary minimum in C for
keeping the changes into the GNU-R core code simple.

In the GNU-R language, there is the compiler package written in R.
Inside it there is lying the current BC compiler and BC disassembler (very
minimal - see 1.5). The changes made in order to realize the implementa-
tion of the user-friendly disassembler involved also modifying the compiler
package. This package lies inside the GNU-R core code so the general idea
about implementation was to put the just the bare minimum inside it (the
annotation of instructions 2.1.3 and putting a class into the disassembly code
2.1.1). The most of the functionality was implemented then in the bctools
package.

2.1.1 User interface

For better user-friendliness of the BC disassembler there has been made a
decision to use the advantage of the S3 class system (see 1.1.3). The old
disassemble function inside the compiler package was kept intact except
the putting class into the disassembly code. The name of the class has
been decided to be the "disassembly". Having this class then allows us
to have print.disassembly function (print method of disassembly class) inside
our bctools package. That function would be then automatically dispatched

23

2. Realization

once the user calls the print function on the object (if the bctools package
would be loaded inside user library).

The usage then changed from simple list (see figure 2.1) to the user-friendly
disassembly code (see figure 2.2).

24

2.1. Implementation of the disassembler

#i n i t i a l i z a t i o n
l i b r a r y (compi le r)
f<−f unc t i on (x) {

y <− x∗2
whi l e (x < y)

x <− x+1

i f (x %% 2 == 0)
x

e l s e
−x

}
compiled <− cmpfun (f)

#disassembly
same output due i n t e r n a l to behavior o f REPL as the
pr in t (d i sa s s emble (compiled))
d i sa s semble (compiled)

#generated output :
l i s t (. Code , l i s t (8L , GETVAR.OP, 1L , LDCONST.OP,
2L , MUL.OP, 3L , SETVAR.OP, 4L , POP.OP, GETVAR.OP,
1L , GETVAR.OP, 4L , LT.OP, 5L , BRIFNOT.OP, 6L , 30L ,
GETVAR.OP, 1L , LDCONST.OP, 7L , ADD.OP, 8L ,
SETVAR.OP, 1L , POP.OP, GOTO.OP, 10L , LDNULL.OP,
POP.OP, GETBUILTIN.OP, 9L , GETVAR.OP, 1L , PUSHARG.OP,
PUSHCONSTARG.OP, 2L , CALLBUILTIN.OP, 10L , LDCONST.OP,
11L , EQ.OP, 12L , BRIFNOT.OP, 13L , 51L , GETVAR.OP,
1L , RETURN.OP, GETVAR.OP, 1L , UMINUS.OP, 14L ,
RETURN.OP) , l i s t ({
y <− x ∗ 2
whi le (x < y) x <− x + 1
i f (x%%2 == 0)
x
e l s e −x
#}, x , 2 , x ∗ 2 , y , x < y , whi l e (x < y) x <− x + 1 , 1 , x + 1 ,
‘%%‘, x%%2, 0 , x%%2 == 0 , i f (x%%2 == 0) x e l s e −x , −x))

Figure 2.1: Old disassembly user interface

25

2. Realization

#i n i t i a l i z a t i o n
l i b r a r y (compi le r)
l i b r a r y (b c t o o l s) #new package
f<−f unc t i on (x) {

whi le (x < y) x <− x+1

x
}
compiled <− cmpfun (f)

#disassembly
same output due i n t e r n a l to behavior o f REPL as the
pr in t (d i sa s semble (compiled))
d i sa s semble (compiled)

#generated output :
#
1 :

@ x
GETVAR x
@ 10
LDCONST 10
@ x < 10
LT
@ whi le (x < 10) x <− x + 2
BRIFNOT whi le (x < 10) x <− x + 2 | $2
@ x
GETVAR x
@ 2
LDCONST 2
@ x + 2
ADD
@ x <− x + 2
SETVAR x
@ whi le (x < 10) x <− x + 2
POP
GOTO $1

2 :
LDNULL
POP
@ x%%2
GETBUILTIN ‘%%‘
GETVAR x
PUSHARG
PUSHCONSTARG 2
CALLBUILTIN x%%2
@ 0
LDCONST 0
@ x%%2 == 0
EQ
@ i f (x%%2 == 0) x e l s e −x
BRIFNOT i f (x%%2 == 0) x e l s e −x | $3
@ x
GETVAR x
RETURN

3 :
GETVAR x
@ −x
UMINUS
RETURN

#

Figure 2.2: Old disassembly user interface

26

2.1. Implementation of the disassembler

2.1.2 Instruction arguments

The BC instruction contains an integer code identifying it followed by a vari-
able number of arguments. These arguments can be of different 5 basic types -
see2.3 (BOOL, INT, LABEL, CONSTANT LABEL and CONSTANT).

The CONSTANT parameter can have two different meanings in the code.
Some of the arguments could be a whole expression (e.g. a+b+c) kept due
to usage in some corner cases during evaluation (e.g., ADD instruction is in
the most cases taking the two topmost variables from the stack. Just in some
corner cases, it is calling the internal functions which were initially designed to
work on the AST evaluator, so they expect the expression as an input). These
additional arguments are then stored only because the internal implementation
of the bytecode evaluator and they contain the duplicate information. The
optional parameter kept due to internal purposes of evaluator was named a
CONSTANT DBG.

These arguments are printed by the different functions in the disassem-
bler (see 2.1.9).

• BOOL boolean value

• INT integer value

• LABEL - jump target / reference (integer index) to the code array itself

• CONSTANT LABEL variation (extension) of the LABEL which allow more
than one referenced index
represented as reference (integer index) to the constant pool where is
located an array containing the references (integer indexes) to the code
array itself

• CONSTANT representing reference (integer index) to the constant pool
where is located constant expression (can be either number or function)
used for most of common cases

• CONSTANT DBG - constant expression inside the argument used internally
just for the corner cases (technically containing duplicitous information)

Figure 2.3: Bytecode instruction argument types

2.1.3 Annotation of instructions

These 6 types (see figure 2.3) should be printed in different way according
to the annotation. There has been created a definition for each instruction
argument (annotation of the instructions - see figure 2.4). The pretty printing

27

2. Realization

disassembly function (print.disassembly method in the bctools package)
can then take instruction definition and print out the arguments accordingly.

In the compiler package, there is already basic annotation specifying the
number of arguments for each instruction (Opcodes.argc list). This list was
replaced by the Opcodes.descr list containing the fully annotated instruc-
tion (see the figure ??). To keep the old behavior the old Opcodes.argc list
was computed from Opcodes.argdescr by applying the length function to
each element (see figure 2.5). This solution was chosen due to the fact that
the definition is made just at one place and there is no need to maintain the
two lists.

The compiler package is made with the noweb tool which is the tool
used for writing documentation alongside with the code. Its source is writ-
ten in the src/library/compiler/noweb/compiler.nw file. Because the build
command (make) is not written to re-generate the source code from noweb
each time the compiling is provided, we have to rerun the make from-noweb
command inside the compiler to regenerate the R sources for the compiler
package.

<<opcode argument d e s c r i p t i o n >>=

SKIP .ARGTYPE<−−1L
LABEL.ARGTYPE<−0L
CONSTANTS.ARGTYPE<−3L
CONSTANTS DBG.ARGTYPE<−4L
CONSTANTS LABEL.ARGTYPE<−5L
BOOL.ARGTYPE<−6L
INT .ARGTYPE<−7L

Opcodes . a rgde sc r <− l i s t (

BCMISMATCH.OP = c () ,
RETURN.OP = c () ,
GOTO.OP = c (LABEL.ARGTYPE) ,
BRIFNOT.OP = c (CONSTANTS.ARGTYPE,LABEL.ARGTYPE) ,
POP.OP = c () ,
DUP.OP = c () ,
PRINTVALUE.OP = c () ,
STARTLOOPCNTXT.OP = c (BOOL.ARGTYPE, LABEL.ARGTYPE) ,

bool i s f o r l o o p , pc f o r break
. . . . a l l remaining i n s t r u c t i o n s
)

Figure 2.4: Example of instruction annotation

28

2.1. Implementation of the disassembler

Opcodes . argc <− l app ly (Opcodes . argdescr , l ength)

Figure 2.5: Computation of argument count in the compiler package

2.1.4 Instruction arguments and labels

A label is a form of representation of the reference to the code which is used
in the jumps through the code.

2.1.5 Computing of labels

Labels are shown in the code in specific styling (usually incrementally num-
bered from the 1, e.g., 2:). Arguments are then referencing to these loca-
tions (e.g., $2).

There is no direct list containing locations of the labels, but this list can be
computed from the code. Its generating was done in the two-pass linear lookup
through code (see figure 2.6). The result is an auxiliary array containing the
number of the label.

Steps to generate labels are then:

1. Initialize the auxiliary array with the size of code buffer. Each
element has the default value representing the fact, that there is no
instruction which argument is pointing to that position.

2. Go through all instruction in a forward direction. For each argu-
ment, if it contains any label (see labels inside arguments 2.1.4) mark
the position (which it is pointing to) with information that there is label
pointing to that position.

3. Go through the auxiliary array. If the instruction is marked then
replace the mark with the unique number of the label. This number
is calculated incrementally (at the beginning set a counter to 1, and
on each marked position set the value of the counter to the array and
increment the counter).

The result of this algorithm is an array containing the information whether
there is no label at the instruction (-2) or the label (number >=0).

29

2. Realization

#f i r s t pass to mark i n s t r u c t i o n with l a b e l s
#l a b e l s i s array that d e s c r i b e s i f each Aq
i n s t r u c t i o n has l a b e l
n <− l ength (code)
#l a b e l s now conta in s −2=not used , −1=used
l a b e l s <− rep (−2 , n)
i <− 2
instrCnt <−0 # count number o f i n s t r u c t i o n s
whi l e (i <= n) {

v <− code [[i]]
a rgde sc r <− Opcodes . a rgde sc r [[paste0 (v)]]
j <− 1
whi l e (j <= length (a rgde sc r)){

i<−i+1
i f (a rgdesc r [[j]] == argtypes$LABEL){

l a b e l s [[code [[i]] + 1]] <− −1
} e l s e i f (a rgde sc r [[j]] == argtypes$CONSTANT LABEL){

v <− cons tant s [[code [[i]] + 1]]
i f (! i s . n u l l (v)){

f o r (k in 1 : l ength (v)){
l a b e l s [[v [[k]] + 1]] <− −1

}
}

}
j<−j+1

}
instrCnt<−i n s t rCnt+1
i<−i+1

}

#second pass to count l a b e l s
#loop through l a b e l s array and i f
that i n s t r u c t i o n has l a b e l marked on i t
#l a b e l s array now conta in s va lue s :
−2=not used , −1=used , >0=index o f l a b e l
i <− 2
l a s t l a b e l n o <− 0 ;
whi l e (i <= n) {

i f (l a b e l s [[i]] == −1){
l a s t l a b e l n o <− l a s t l a b e l n o+1
l a b e l s [[i]] <− l a s t l a b e l n o

}
i<−i+1

}

Figure 2.6: Code for generating labels30

2.1. Implementation of the disassembler

2.1.6 Verbosity and formatting

Bytecode compiled function can contain the information about a location of
the source code (they are optional). These data are not necessary for the eval-
uation of the code but are good for human-readability (see 1.3.2). Alongside
with this, there are also some of the instruction arguments which are used just
for the reason of the internal implementation and have duplicate value (see
the previous chapter 2.1.2). All of this information is not necessary to be
displayed to the user by default, but it would be nice for them to provide an
ability to display even these information. To provide this optional ability to
show more basic or more advanced information there has been put a decision
to implement more levels of the verbosity in the disassembly tool.

The levels are:

• 0 - display only source references (In case they are available. When not
they aren’t print expression references instead)

see figure 2.7

• 1 - the same as 0 + display bytecode version and display expression
references (if they are available)

see figure 2.8

• 2 - the same as 1 + display every operand’s argument (including ones
used only for internal uses - see ??)

see figure 2.9

The default value can be pre-set by bcverbose function (provided in the
bctools package).

31

2. Realization

1 :
− #1: func t i on (a) whi l e (a) a <− a−1

GETVAR a
BRIFNOT whi le (a) a <− a − 1 | $2
GETVAR a
LDCONST 1
SUB
SETVAR a
POP
GOTO $1

2 :
LDNULL
INVISIBLE
RETURN

Figure 2.7: Disassembly output with verbose lvl 0

32

2.1. Implementation of the disassembler

Bytecode ver . 10

1 :
− s i m p l e b c v e r b o s i t y 1 .R#4: func t i on (a) whi l e (a) a <− a−1

@ a
1 : GETVAR a

@ whi le (a) a <− a − 1
3 : BRIFNOT whi le (a) a <− a − 1 | $2

@ a
6 : GETVAR a

@ 1
8 : LDCONST 1

@ a − 1
10 : SUB
@ a <− a − 1
12 : SETVAR a
@ whi le (a) a <− a − 1
14 : POP
15 : GOTO $1

2 :
17 : LDNULL
18 : INVISIBLE
19 : RETURN

Figure 2.8: Disassembly output with verbose lvl 1

33

2. Realization

Bytecode ver . 10

1 :
− s i m p l e b c v e r b o s i t y 2 .R#3: func t i on (a) whi l e (a) a<−a+1

@ a
1 : GETVAR a

@ whi le (a) a <− a + 1
3 : BRIFNOT whi le (a) a <− a + 1 | $2

@ a
6 : GETVAR a

@ 1
8 : LDCONST 1

@ a + 1
10 : ADD a + 1
@ a <− a + 1
12 : SETVAR a
@ whi le (a) a <− a + 1
14 : POP
15 : GOTO $1

2 :
17 : LDNULL
18 : INVISIBLE
19 : RETURN

Figure 2.9: Disassembly output with verbose lvl 2

2.1.7 Function types in the constant pool

The constant expressions in the constant pool can be of more 3 types:

• regular (ordinary) constant expressions (e.g. numbers, an array of num-
bers etc.)

• native functions (calls to the inside of the GNU-R C implementation)

• BC compiler function code

There is no way how to print out the native functions because its structure
is written inside the GNU-R runtime core in C language (the R interpreter
knows just the location/function pointer/ to call). These native functions are
printed in the bytecode disassembly as an <INTERNAL FUNCTION>.

There are also stored the BC compiled functions in the constant bool.
This means that there is recursion of the bytecode functions which we need
to solve in the disassembler. The first approach is to print out flag like

34

2.1. Implementation of the disassembler

<BYTECODE FUNCTION>. The second approach is to be able to print it out
nested with some indentation. The second one was chosen due to the ability
to print out more information. In order to implement this feature there were
introduced these 3 parameters in the disassembly tool:

• prefix - the string prefix which is put before each line printed in the
whole function

• depth - current depth of the recursion.

• maxdepth - maximal depth for the recursion (once the depth reaches this
level, the <FUNCTION> instead of calling the disassembly print would be
shown in the output)

This condiguration allows us to have one feature. If the maxdepth would be
set to the 0, the disassembly tool would print out just the <BYTECODE FUNCTION>
for every nested bytecode (the nested BC printing would be disabled).

2.1.8 Printing functions

One type of the constant expressions in the constant array are the functions
written as an expression references (non-byte-compiled and being able to eval-
uate with eval function). They have to be printed in a user-friendly way
which however would not break the consistency of disassembly output. One
way how to achieves that behavior is to call the dput function. However, it
would format the functions line by line which is not the desired output. For
making the arguments look as dense as possible (and not break consistency
and compactness of the disassemble function), there has been put decision to
write the function in a single line. There are 2 ways how to solve this:

• Write a specific call into the print.c (src/main/print.c) - deparse1 func-
tion

• Call a dput to print out line-by-line into the buffer by capture.output
and after that make string modifications over this output.

The first approach is cleaner that the other in sense of the code. However,
it was previously decided to make only a minimal amount of the changes into
the C core of the language (for being able to release the disassembler in the
separate package bctools) so the second way was chosen.

2.1.9 Printing of different types

In the application, there are different types of the actions to print (e.g. Con-
stants, Operators etc.). The corresponding implementation of printing func-
tions in the disassembler is named by the dumpNAME convention (e.g. dumpConstant
). The complete list of types to print is:

35

2. Realization

• Constant
used for printing any constant value
description of the functionality of the whole operator is described in the
following chapter subsection (see ??)

• Operator
used for printing the operator name
The operator names are received by the bcinfo function from the com-
piler package with the .OP suffix (e.g., ADD.OP). It means that after
extracting the suffix these names can be printed.

• Value
used for printing the INT and the BOOL argument types
printing the expression by calling the cat function directly
formatting notation - directly the NUMBER (e.g., 1)

• Label
formatting notation - $LABEL NO (e.g., $1)

• SrcRef a.k.a. source reference
formatting notation - SRCREF (e.g., simple bc verbosity1.R#4)

• ExprRef a.k.a. expression reference
formatting notation - @EXPRESSION (e.g., @a + 1)
The expressions are stored in the constant pool, so technically they are a
special type of the constant expressions. For printing them, we can reuse
the print function for the constant expressions-dumpConstants. The
only difference we need to print the @ as prefix. So final implementation
of the dump function is printing the @ to the output and after that
calling the dumpConstants.

2.1.10 Documenting of code

The compiler package has documentation written altogether with the code.
It is managed through noweb tool (see 2.1.3).

The bctools package user-documentation was created with the roxygen
tool (the GNU-R inbuilt documenting system). There are several ways for a
developer to rebuild the documentation (run the roxygen):

• roxygen2::roxygenise(), or

• devtools::document(), if the devtools are used, or

36

2.2. Implementation of the bytecode stack printer

• rCtrl + Shift + D, if the RStudio is used

The second listed (calling devtools::document()) was used during an
development of this package.

2.2 Implementation of the bytecode stack printer

To implement the BC debugger we need to be able to print the BC stack
content (see 1.7.4). The way how the implementation was designed is that it
was written in the C language (GNU-R language core). This tool was designed
to be called with two parameters:

• pointer to the beginning of the stack frame

• pointer to the end of the stack frame

This design allows to print out any of the stack frame (or eventually stack
frame chunk).

2.2.1 Stack definition

Stack definition depends on the TYPED STACK typedef conditional (see fig-
ure 2.10). Once it is defined, the ability to save the unboxed values on the
stack is enabled. It causes that instead of the SEXP stored in the stack ev-
ery time (which is more expensive to handle), there could also be stored raw
values (int or double). There is also RAWMEM memory which is used in the
BC evaluator to store any data chunk - for example evaluation context frame.
Once the stack is enabled, the stack values could be then out of these types:

• int

• double

• RAWMEM - a piece of raw memory

its size is defined in a number of sizeof(SEXP) sized chunks

• SEXP - internal representation of the boxed object storing any value

To be able not to have to write a specific code for each stack type there is
used a macro GETSTACK PTR returning a boxed SEXP type equivalent of stack
position (no matter if the value in stack is boxed or not). Ability to get the
boxed value of the stack means that we can handle every place on the stack
the same (except the RAWMEM).

37

2. Realization

2.2.2 Printing of the stack values

The printing of stack values is done through a direct call of deparse1 function
in the C core. It is inspired by the dput function which is used for writing an
ASCII representation of the R object to the text output or file. The dput func-
tion cannot be reused without any changes because it is internally evaluating
the promises while dumping the output (see 1.2.10). However the evaluat-
ing of the promises can potentially introduce some unwanted side-effects. To
disable the evaluating the promises, the deparse1 function was then called
with the DELAYPROMISES argument (instead of evaluating the promises it is
showing <promise> text).

2.2.3 RAWMEM stack type tag

In case the TYPED STACK is defined (see 2.2.1) then the stack values can contain
raw memory chunks which cannot be printed (see figure 2.10). Information
about the size of these chunks is directed to the top of the stack (from bottom
to the top). However we want to print the values in the direction from the
top to the down. It results in the question whether the cell is printable or not.
To be able to answer this question there has been created an auxiliary array
containing the values if the cell is printable (see figure 2.10). It is causing some
additional complexity by running one more linear pass through the stack (to
fill out this array). This pass is in the forward order (from bottom to top of
the stack), so we can tell whether the memory is the raw or not. The added
additional complexity is not our biggest concern because this feature would
be used just in case the debugger is turned on and in this case we are strict
about the performance, because the program would be waiting for the user
input anyways.

38

2.2. Implementation of the bytecode stack printer

Figure 2.10: Definition of stack elements and generated auxiliary array show-
ing the pritable elements

The whole algorithm to dump the stack then has two passes:

• The first pass from bottom to top to fill out the auxiliary array.

Sets the TRUE value on the visited value. If the visited value is the
RAWMEM type, then mark the n following (size parameter of the RAWMEM
cell) cells FALSE.

• The second pass from top to bottom to print out the values on the
stack.

Works in the way that skip values for every place where there are set
auxiliary value to FALSE. If it is set to TRUE then look at the tag (if
TYPED STACK available) whether is RAWMEM. In case it is RAWMEM then
print the <rawmem of size %d>, otherwise call the print function for
the SEXP value (see 2.2.2) to print out the value laying on the position.

The TYPED STACK, however, could also be disabled. It means that there
cannot be RAWMEM stored on the stack. Even though we decided to keep the
whole algorithm intact which would result in the auxiliary array having just
the TRUE values (every item is printable). This decision would cause better
maintainability of the code because there are less IFDEF preprocessor condi-
tions.

39

2. Realization

2.2.4 Persisting stack pointers

In regards to the BC stack information, there are currently these (global)
variables representing the current state.

• R BCNodeStackBase - the bottom of the stack

• R BCNodeStackTop - current top of the stack

• R BCNodeStackEnd - the end of allocated space for the stack (stack
is represented internally as an array)

all of these satisfying an equation:
R BCNodeStackBase <= R BCNodeStackTop <= R BCNodeStackEnd

To be able to print values on the bytecode frame stack we need to know
when function stack frame starts and ends (R BCNodeStackBase points to
the bottom of the whole stack and not function). There is currently not
any enough information from which easily we can get a start of the function
stack frame. To achieve this, there has been added the R BCNodeStackFnBase
variable representing a begin of function stack frame. It is global variable but
kept and managed through context handling (in the src/main/context.c) to
simulate the CPU function register stack frame.

2.3 Implementation of the debugger

The primary purpose of this work is to enable the bytecode debugging in a
user-friendly way. To do debugging we need to visualize the current byte-
code internal state of the evaluating function (debugger work in each function
separately) which consists of:

• Bytecode

• Position inside bytecode

• Bytecode stack content

The position inside bytecode can be printed alongside with the byte-
code (we can re-use already implemented bytecode disassembler 2.1). For
the second part, we already implemented the stack printer function.

2.3.1 Main idea

The main idea behind the debugger implementation is to maintain the same
functionality and user interface as the current AST implementation.

40

2.3. Implementation of the debugger

2.3.2 Global design

The idea used behind the debugger implementation is inspired by the JS
V8 VM (see 1.7.3). It is to replace the original instruction with the special
breakpoint instruction together with saving the original instruction alongside
the bytecode. The whole idea to make separate instruction and not the run-
time check for debug flag would enable the dispatching of bytecode debug
features with evaluating the same code while not causing any performance
overhead in case the code is not debugged.

The bytecode debugger feature is by default disabled. Managing the state
for enabling it is done by enableBCDebug function (written in src/main/de-
bug.c). This function is is internally handling a R is bc debug enabled vari-
able. See the figure 2.11 for example.

opt ions (keep . source=TRUE)
l i b r a r y (compi le r)
enableBCDebug (TRUE)

f<−f unc t i on (a){
c<−a+1
d<−c+a
c−d

}
compiled <− cmpfun (f)
debug (compiled)
compiled (2)

Figure 2.11: Example of debugged function with bytecode debugger enabled

2.3.3 Instruction for debugging

To be able to dispatch breakpoints there has been created a specific set of
debug instructions. For dispatching breakpoint on the instruction, the orig-
inal instruction is replaced with its equivalent (according to the number of
arguments) breakpoint one. The debugging instructions are:

• BREAKPOINT0

• BREAKPOINT1

• BREAKPOINT2

• BREAKPOINT3

• BREAKPOINT4

41

2. Realization

The decision to make a separate instruction for each argument count was
made because of simplicity and forward compatibility. Because the normal
instruction is replaced with the debug one but as long as the debug instructions
are for each number of the arguments we know the number of the arguments
of the previous instruction. This knowledge would allow us to keep all of the
functions iterating over the argument count intact.

2.3.4 Storing of the original instruction when the breakpoint
is set

In case the breakpoint is set (the breakpoint instruction overwrites the corre-
sponding original one) we need to store the original instruction (to keep the
functionality of the evaluated function intact).

The idea begin implemented solution is to make a deep copy of unchanged
code array to preserve the original instruction list. This copy is made the first
change of the breakpoint (first replacing with the breakpoint instruction) and
attached to the BCODESXP by making new CONS cell. Once this is done, we can
set or unset the breakpoint on any instruction without worrying about losing
any information. The placing / removing of the breakpoint instruction is done
in the modifybcbreakpoint function (written in the src/main/main.c file).

The internal representation of the BCODESXP memory object holding the
GNU-R bytecode is the same as the LISTSXP (the BCODESXP is internally
wrapper over LISTSXP). The changes made by making an cons cell means
that there is added one more nested layer. All of these functionality (go-
ing through BCODESXP and LISTSXP) is already implemented in the Garbage
Collector (see 1.2.5), so there is no need to update it to support this change.

2.3.5 Setting and removing debug instruction

To be able to set (and unset) the debug instruction on the bytecode there
has been created a bcSetBreakpoint function inside compiler package (see
fig. 2.12 for source code). It has support for both setting and removing the
breakpoint on instruction (parameter is). It is returning the position of newly
set instruction which is used in the setting next breakpoint 2.3.7. This re-
turned position can be different than the position passed through the param-
eter. The reason behind this is that this function needs to be fail-proof. It
means that it cannot break the code by modifying the argument instead of
the instruction (the function is exposed to the end-user). The way to solve
is to implement finding of the first instruction which position (index) is the
first after the position given through code argument (satisfies the >= code
condition). Then the bcSetBreakpoint function can place the breakpoint to
the founded position and return that position.

42

2.3. Implementation of the debugger

bcSetBreakpoint <− f unc t i on (code , pos , i s=TRUE) {
i f (typeo f (code)==” c l o s u r e ”)

bc <− . I n t e r n a l (bodyCode (code))
e l s e

bc <− code
i f (typeo f (bc)!=” bytecode ”)

stop (” I n t e r n a l e r r o r − code i s not bytecode ”)

bc <− . I n t e r n a l (d i sa s s emble (bc))
bcode <− bc [[2]]
newbcode <− rep (bcode) #r e p l i c a t e o r i g i n a l bytecode

#loop through bytecode over i n s t r u c t i o n s and f i n d
matching i n s t r u c t i o n
se tpos <− 2
repeat {

i f (! (s e tpos < l ength (bcode) && setpos <= pos)) break
se tpos <− s e tpos + 1 + Opcodes . argc [[bcode [s e tpos] + 1]]

}

. I n t e r n a l (modi fybcbreakpoint (code , setpos −1, i s)) ;

setpos−1
}

Figure 2.12: Source code of bcSetBreakpoint function

2.3.6 Listing breakpoints

To manage the breakpoint status, there has been implemented a bcListBreakpoints
function (implemented inside the compiler package). It is returning the ar-
ray of the instruction positions which contains breakpoint (see figure 2.13 for
usage example).

2.3.7 Setting the next breakpoint

The consequential instruction does not necessarily mean the following instruc-
tion right next to each other in the bytecode array (due to labels - see 2.1.4).
The breakpoint for the next instruction can be either one of these:

• following in the bytecode array

• at the position where are the instruction labels pointing to (see types of
labels 2.1.4)

43

2. Realization

opt ions (keep . source=TRUE)
l i b r a r y (compi le r)
l i b r a r y (b c t o o l s)

f<−f unc t i on (a){
c<−a+1
d<−c+ac
c−d

}

compiled <− cmpfun (f)

#s e t breakpo int s

#t h i s breakpoint would be s e t i n to p o s i t i o n 12 ,
because at 11 i s argument and
the implemented f u n c t i o n a l i t y i s s e t t i n g
the breakpoint in that ca s e s
to the f i r s t f o l l o w i n g i n s t r u c t i o n

bcSetBreakpoint (compiled , 1 1) ;
#14 i s r e g u l a r i n s t r u c t i o n

bcSetBreakpoint (compiled , 1 4) ;

#pr in t the cur rent func t i on
− n o t i c e the (BR) in the i n s t r u c t i o n
p r in t (d i sa s s emble (compiled) , verbose =2)

#pr in t the bytecode i n s t r u c t i o n s
− s ee the 12 and 14
− r e tu rn ing an c (12 ,14) equ iva l en t
p r i n t (bcL i s tBreakpo int s (compiled))

Figure 2.13: Example usage of bcListBreakpoints function

The handling of this fact was implemented inside thebcSetNextBreakpoint
function (inside the compiler package). This function is also used inside
the C code in the debugger. To support easier dispatching it has been also
written a Rf breakOnNextBCInst function which is internally dispatching a
bcSetNextBreakpoint function by a call to the R code through eval.

The implementation of the bcSetNextBreakpoint function is checking all
possible locations for the jump locations. It is also checking if there is already
set a breakpoint in that position. If no, then it is setting there breakpoint

44

2.3. Implementation of the debugger

instruction. For placing the breakpoint instruction it is using the internal call
to the C function modifybcbreakpoint (see 2.3.5).

It is also returning an array of newly added breakpoint locations. This fea-
ture is used in the implementation of the BREAKPOINT instruction (see 2.3.10)
in the C core - this returned array is used to keep tracking of the added break-
points.

2.3.8 Support in the disassembly tool

Bytecode ver . 10

− #2: c<−a+1
@ a

1 : GETVAR a
@ 1

3 : LDCONST 1
@ a + 1

5 : ADD a + 1
@ c <− a + 1

7 : SETVAR c
9 : POP

− #3: d<−c+a
@ c
10 : GETVAR c
@ a
12 : (BR) GETVAR a
@ c + a
14 : ADD c + a
@ d <− c + a
16 : SETVAR d
18 : POP
− #4: c−d

@ c
19 : GETVAR c
@ d
21 : GETVAR d
@ c − d
23 : SUB c − d
25 : RETURN

Figure 2.14: Example of showing an instruction with breakpoint in the disas-
sembly tool - (notice GETVAR instruction on position 12)

45

2. Realization

There has been added support for visualizing the breakpoints set on the
instruction into the disassembly tool. The R disassembly script was modified
to get 3 arrays as a input (added field with the original code array - see 2.3.4).
The original array is returned every time no matter if the BCODESXP code array
is modified or not (in case not modified there is returned the same code array
twice).

This means that we can just simply modify the disassembler to go always
through the original array. Then for every instruction we would be checking
in the code array (which possibly contains breakpoints) if there is breakpoint
or not. In case there is we would just simply print an mark (BR) as prefix for
the instruction name to signalize that this instruction contains breakpoint (see
the figure 2.14 for example).

2.3.9 Temporary and regular breakpoints

Currently there are two types of the breakpoint inside the bytecode:

• temporary breakpoint

• regular breakpoint

The regular ones are used for user-defined breakpoint, these ones are set
by calling bcSetBreakpoint function (from compiler package). Once the
bytecode interpreter reaches them the breakpoint functionality is called and
the R shows the debugger interface.

The temporary ones are used on the other hand for handling debugger
commands. They are implemented with the same instruction except there are
also held their locations on the bytecode local stack (variable in which points
global R BCtmpBreakpoints). This value contains an array in which each ele-
ments is representing the location of the currently set temporary breakpoint.
These temporary breakpoints always point to the instruction succeeding cur-
rent the evaluated one (see 2.3.7).

In order to keep the garbage collector satisfied and because it is not possible
to store the variable in the local protection stack (through PROTECT/UNPROTECT
function - see 1.2.5) during bcEval, there has been dedicated one field on the
bytecode stack for storing this array. The R BCtmpBreakpoints variable is
then pointer (SEXP* type) to this location. This design allows changing of
this variable while modifying the bytecode body from the different evaluated
context. Changing this array and not keeping an new one also reflects the fact
that the modifications inside the bytecode code array are also made in-place
by modifying this array.

2.3.10 Implementation of the breakpoint instructions

The reason why there are implemented separate breakpoint instructions for
each number of instruction arguments is its annotation. It allows us that

46

2.3. Implementation of the debugger

breakpoint instruction would have the information of number of its arguments
with itself. It would prevent from the breaking the bytecode code array struc-
ture. However the evaluated code inside all of the breakpoint instructions
would be the same. This means that it can be simply generalized by writing
single macro for all breakpoint instructions. This macro was decided to be
named DO BREAKPOINT and it is containing this algorithm with the function-
ality for showing the debugger feature:

• Remove all temporary breakpoints from the bytecode

• Print bytecode interpreter internal status (see 2.3.11)

• Call debug browser

• Set RDEBUG debug flag (see 2.3.15)

• Call the original instruction (see 2.3.14)

As you can see in the time of calling the browser there are all tempo-
rary breakpoints removed from the bytecode code array. It means that just
the regular user-defined breakpoints (see 2.3.9) would the printed to the out-
put (see 2.3.8). It is desired behavior because we do not want to print the
user breakpoints which are used just for internal purposes of a step-by-step
feature of the debugger (see 2.3.15).

2.3.11 Bytecode interpreter internal status

Users need to know whether the interpreter is in the BC or in the AST mode.
In order to achieve this, the "debugBC" string was put as a prefix in the each
debugger step (instead of "debug" in the AST evaluator).

Thing of importance while debugging the bytecode is the ability to locate
the currently evaluated code (position inside the code). For achieving this
there has to be printed the internal status of the BC interpreter. This was
implemented in two possible ways:

• Short compact way inspired by AST status printing

• Long verbose way showing the all information available in the BC
interpreter - used by default

To control whether to print out the short compact way or the long way
the R DebugVerbose boolean variable is used. This flag is accessible for the
user through the debugVerbose() function which acts as getter and setter
altogether. It is returning the value of the variable as return value while
having an optional parameter used for the modifying of the flag.

47

2. Realization

2.3.11.1 The short compact way of status printing

It is used to simulate the AST printing behavior. It is printing the data in the
same way as AST to remain the backward compatibility support (for example
for the debuggers in IDEs). This way is used by default.

2.3.11.2 The long verbose way of showing all information

It is used for the printing of the whole internal state bytecode interpreter. To
support this feature there has been implemented function printBCStatus() (see
the figure 2.15).

void printBCStatus (){
Rpr int f (” −−− Evaluat ing bytecode −−− \n ”) ;
R printCurrentBCbody (R BCbody , R BCpc , TRUE, 1) ;
Rpr int f (” −−−−−−−− Stack dump −−−−−−− \n ”) ;
R printCurrentBCstack (

R BCNodeStackFnBase ,
R BCNodeStackTop) ;

}

Figure 2.15: printBCStatus function for printing the whole BC status infor-
mation

As you can see the code is reusing the bytecode disassembler (see 2.1) and
stack printer (see 2.2).

The bytecode disassembler function is printing the current bytecode in-
struction with the surrounding instructions (R printCurrentBCbody. It is
calling the bytecode with the select parameter set to the selected instruc-
tion position (to print out the >>> string) and the peephole argument set
to TRUE to show just the surrounding instructions instead of the whole func-
tion (current instruction and the 5 following ones).

2.3.12 Debugger jumping granularity

The AST debugger is making one jump for every AST expression. The byte-
code debugger, on the other hand, can jump in the much more granular
way (not according to the changes of expression references but one step for
each bytecode instruction). Because the short compact way should be a sim-
ulation of the AST debugger it means that the debugger should also jump in
similar way as the AST (according to changes of expressions and not just by
the bytecode instructions). This can be implemented in two ways:

• calculate the next breakpoint location in the bcSetNextBreakpoint

48

2.3. Implementation of the debugger

• runtime checking by skipping the debug functionality in case the expres-
sion reference has not changed

The first way has better performance - the breakpoint would be placed
on the right instruction where should be debugger functionality dispatched
and there would be no runtime checking. The second one would work by
placing the breakpoint instruction to the very next one while skipping the de-
bugger functionality unless the change in expression reference occur (runtime
checking).

The runtime-checking was chosen due to implementation simplicity. The
performance overhead would be only when the debugger is enabled which we
are not worried in the first place.

2.3.13 Handling of the recursive character of the bytecode

The debugger implementation is modifying the breakpoint code by adding
temporary breakpoint instructions (see 2.3.7). This means that while calling
recursive call there can be already set breakpoint instruction in the evaluated
code. However, we do not want to have any of them executed in the recursive
call of the function. To solve this there was done checking (at the beginning of
the bcEval function) whether the code is modified. If yes then we are creating
a shallow copy of the current code without a modified bytecode code array by
making new BCODESXP object created from an original code array and constant
array (see figure 2.16).

Because of this implementation is allocating a new element we have to
satisfy the language GC by putting its reference to the bytecode stack. It was
decided to push the current evaluated body even when this change is not done.
It is creating tiny memory overhead by having one unnecessary element on the
stack but it is resulting in better code readability because of less conditions
in the code.

49

2. Realization

/∗ d u p l i c a t e body in case t h i s
func t i on has modi f i ed ∗/

i f (BCODE HAS TMPBREAKPOINTS(body)){
SEXP expr = TAG(body) ;
body = CONS(

BCODE CODE UNBREAKPOINT(body) ,
BCODE CONSTS(body)) ;

SET TAG(body , expr) ;
SET TYPEOF(body , BCODESXP) ;

}

/∗ s a t i s f y GC ∗/
BCNPUSH(body) ; /∗ pushing body i s neccesary

j u s t in case o f dupl i cated , but pushing
even unchanged one i s e a s i e r f o r code

r e a d a b i l i t y ∗/

Figure 2.16: Modifying the bytecode array in the beginning of bcEval to erase
breakpoints from the code

2.3.14 Threaded and non-threaded design of the application

Because of the speedup of the GNU-R evaluating there is support for the
THREADED code (see 1.2.6).

This means there were two different dispatch systems which had to be
analyzed and modified to support the jumping to the different direction (jump
for calling the original instruction - inside the DO BREAKPOINT macro).

2.3.14.1 THREADED CODE defined

In this case, the needed changes were minimal (see figure 2.17). It required
adding a macro BREAKPOINT GOTO ORIGIN OP for a switching to the different
instruction. In this case, the original bytecode instruction is represented with
the location inside the code (see 1.2.6) so the jump is being executed directly
to that location.

50

2.3. Implementation of the debugger

#d e f i n e NEXT() (e x t e n s i o n ({ \
currentpc = pc ; goto ∗(∗ pc++).v ; \
}))

#d e f i n e BEGIN MACHINE NEXT() ;
i n i t : { loop : switch (which++)

#d e f i n e BREAKPOINT GOTO ORIGIN OP(i n s t) do{ \
e x t e n s i o n ({ goto ∗ (∗ (i n s t)) . v ; }) ; \

} whi le (0)

Figure 2.17: Changes made for instruction handling macros in case
THREADED CODE defined

2.3.14.2 THREADED CODE not defined

In this situation, things are more complicated because the whole evaluator
design is one big loop. The changes in this code were described in the fig-
ure 2.18. The loop originally had one big switch (its beginning is defined in
BEGIN MACHINE macro) which was deciding which instruction to execute ac-
cording to the value of operand (*op). We changed this behavior so that it is
loading operand (*op) into a variable (jmp opcode), then placed another jump
label (do instruction) and after that finally decided which instruction has to
be evaluated according to the value of that variable (by switch command). In
the case of executing breakpoint instruction and evaluating original instruc-
tion (jumping to another instruction through BREAKPOINT GOTO ORIGIN OP)
we are setting the auxiliary variable jmp opcode to the desired instruction
code and evaluating the switch statement for instruction (jumping to the
jmp opcode label).

51

2. Realization

#d e f i n e NEXT() goto loop

#d e f i n e BEGIN MACHINE loop : \
currentpc = pc ; \
jmp opcode = ∗pc++; \
d o i n s t r u c t i o n : switch (jmp opcode)

#d e f i n e BREAKPOINT GOTO ORIGIN OP(i n s t) do{ \
jmp opcode = ∗(i n s t) ; \
goto d o i n s t r u c t i o n ; \

} whi le (0)

Figure 2.18: Changes made for instruction handling macros in case
THREADED CODE not defined

2.3.15 Handling of the debugger user input

The original environment browser has inbuilt support for handling the de-
bugging (step into, next step, continue etc.) via the user input (see 2.3.15).
It is managed by setting up the RDEBUG flag and the R BrowserLastCommand
variable on the evaluated environment. The intent of implementing bytecode
debugger interface was to reuse as much of this feature. It resulted in the fact
that the bytecode debugger control is also managed through these variables.

Bytecode interpreter also provides the more status information (see 2.3.11.2).
It has been decided to extend the user interface to support showing these pieces
of information by those commands (see implementation in the figure 2.19):

• bc - print the current bytecode with marked the current evaluated po-
sition (see 2.1)

• bcstack - print current bytecode stack (see 2.2)

52

2.3. Implementation of the debugger

. . .
o ther commands
. . .

} e l s e i f (! strcmp (expr , ” bcstack ”)){
r v a l = 2 ;
RCNTXT∗ cntxt = GetBCDebugContext () ;
i f (R BCIntActive)

R printCurrentBCstack (
R BCNodeStackFnBase ,
R BCNodeStackTop) ;

e l s e
Rpr int f (” Debugged context i s not bytecode \n ”) ;

} e l s e i f (! strcmp (expr , ”bc ”)) {
r v a l = 2 ;
RCNTXT∗ cntxt = GetBCDebugContext () ;
i f (R BCIntActive)

R printCurrentBCbody (R BCbody , R BCpc , FALSE, 1) ;
e l s e

Rpr int f (” Debugged context i s not bytecode \n ”) ;
} e l s e i f () {
. . .
o ther commands
. . .

Figure 2.19: Implemenation of bcstack and bc commands in the debugger
interface

2.3.16 Entry points to the bcEval function

While debugging bytecode, there are no runtime checks inside the bcEval
function for the RDEBUG flag (due to performance reasons - see 2.3.3). Be-
cause of this and the nature of dispatching breakpoint functionality through
the special BREAKPOINT instructions (see 2.3.3) there is need for setting the
bytecode instruction 2.3.7 to dispatch bytecode functionality. The modifying
of the flag of the debugger functionality (RDEBUG) means that we have to check
and potentially apply the breakpoint instruction to the code every time the
RDEBUG flag can be modified.

Currently, there are two places where this change can happen (entry places
into the bcEval function):

• At the beginning of bcEval - the bytecode function was just called

• Inside bcEval at the positions of the return from the function calls

53

2. Realization

The first case is handled at the beginning of the bytecode evaluation func-
tion (bcEval function). In this case, there is a call to the Rf breakOnNextBCInst
which is setting the breakpoint to the first instruction.

The other entry point (after the return from the function calls) would be
used just because of the conditional breakpoints implementation 2.4. If the
debugger modified the state of the evaluated bytecode function (the func-
tion was not in debug mode and now is due to calling breakpoint), add the
debugging instruction to the next following instruction (see 2.4).

2.4 Simulated conditional breakpoints

Due to lack of the ability of the simple and user-friendly conditional break-
points, there has been put a decision to add support for simulating them. This
feature was implemented via breakpoint() function which fires the debugger
functionality on the spot. It allows the user to simulate conditional break-
point behavior by calling the environment browser. This breakpoint() (see
fig. 2.21) function is inspired by the JS debugger; command, but instead
of being a separate command (which would be big change in the language
parser) it is a callable function.

As you can see in the figure 2.20, this function is modifying the RDEBUG flag
of the currently evaluating environment and resetting the temporary bytecode
variables (R BrowserLastCommand and browserfinish member of function
context).

54

2.4. Simulated conditional breakpoints

SEXP a t t r i b u t e h i d d e n do breakpo int
(SEXP c a l l , SEXP op , SEXP args , SEXP rho)

{
Rboolean oldrdebug ;
oldrdebug = RDEBUG(rho) ;
SET RDEBUG(rho , 1) ;
R GlobalContext−>b r o w s e r f i n i s h = 0 ;
R BrowserLastCommand = ’n ’ ;

i f (! R i s bc debug enab led () && R BCIntActive)
warning ((” Ca l l i ng breakpoint in the BC

whi le bytecode debugger d i s ab l ed ”)) ;

/∗ Support f o r bytecode debugger ∗/
i f (R BCIntActive && ! oldrdebug){

R RemoveBCtmpBreakpoints (
R BCbody , ∗R BCtmpBreakpoints) ;

Rf breakOnNextBCInst (
R BCbody , R BCpc , R BCtmpBreakpoints) ;

}

re turn R NilValue ;
}

Figure 2.20: Implementation of simulated conditional breakpoints through
breakpoint() function

55

2. Realization

#s e t t i n g up the bytecode
opt ions (keep . source=TRUE)
debugVerbose (TRUE)
enableBCDebug (TRUE)
l i b r a r y (compi le r)

#eva luated func t i on with breakpo int f i r e d
once the x v a r i a b l e equa l s to 3
f<−f unc t i on (){

f o r (x in 1 : 5){
i f (x == 3){

breakpoint () ;
}

}
}
compiled <− cmpfun (f)
compiled ()

Figure 2.21: Example usage of simulated conditional breakpoints through
breakpoint() function

56

Chapter 3
Testing

There was done unit testing of the Bytecode disassembler 3.1 alongside with
the performance testing of the debugger implementation on the bytecode en-
gine 3.2.

3.1 Bytecode disassembler

The main part of the work was done as the separate GNU-R package bctools.
The R package system has its test subsystem which runs every file in the tests
directory and checks if it returns an error or not.

The test files of the bctools package include:

• basics.R - basic functionality (printing the different cases - for loop,
switch command, while loop etc.)

• advanced.R - advanced functionality

• closure.R - printing function closure

• switch.R - switch command

• peephole.R - peephole parameter

• bcverbose.R - verbose parameter

• bcversion.R - check if the current GNU-R BC version is the supported
one in this package (see 1.3.1)

3.2 Performance testing

There was done performance a performance testing to prove that the changes
done in the GNU-R language bytecode evaluator did not caused any slowdown.

57

3. Testing

The testing was done through the set of the micro-benchmarks executing the
computationally expensive bytecode functions.

Running times were measured on the computer with these specifications (the
system was running just the test scripts one at the time):

• Windows 10 Home - Ubuntu 16.04.4 Xenial subsystem

• Intel Core i7 8550u - 1.8GHz, 4 cores, 8 threads

• 512GB PCIe NVMe SSD

• 16GB RAM

The result (see the fig. 3.1) showed just minimal fluctuations which are
caused by inacurracy during the measuring. This means that there is no
performance difference caused by implementation of the BC debugger.

Figure 3.1: Performance testing

58

Chapter 4
Future work

4.1 Push into working repository

The big part of the planned future part of the work is to collaborate with the
GNU-R core team to push this thesis code into their development and poten-
tially even the production code. After this would be done, and considering the
number of people using GNU-R language (the estimation in 2013 was approx
2 million), the work done in this thesis would have a significant worldwide
effect to a lot of the people.

4.2 Merging the bctools package into the
compilers

The bctools package was developed independently as add separate disassem-
ble feature with the minimal changes to the GNU-R VM core. This tool was
also used in the debugger which is part of the VM core. When the debug-
ger would be deployed it is suggested to merge the bctools package into the
compiler because the source code of the bctools package is short (approx.
600 lines). The reason why this was not already done, but just proposed as a
future work, is that it would allow to deploy the disassembler into the work-
ing branch faster and eventually give a user-feedback for improvements before
merging inside the compiler package and deploying the debugger.

4.3 Ability to print out values from the different
environment

The current implementation of bytecode function print / stack print inside
debugger is reflecting the nature of evaluation browser which is evaluating
expressions on the currently evaluated environment. This is restricting user
to show the bytecode content of the parent calls.

59

4. Future work

It can be solved either as:

• Adding the additional argument specifying the stack frame

• Adding the ability to switch the stack frames (like fr command of the
gdb debugger)

The easiest solution to implement is the first one. On the other side even
the parent environments could have expressions which can be shadowed. The
second fr feature would enable user to show not just bytecode but also the
expressions from any environment in the stack trace.

60

Conclusion

The GNU-R language is one of the most popular scientific languages used
worldwide. For better evaluation performance its VM internally supports
the bytecode alongside the slow AST interpreter. Since currently there is
a limited option for debugging the bytecode, the old disassembler showed
only the raw array of instructions with the constant buffer, and there was
no implementation of bytecode debugging. Instead of bytecode debugging,
the evaluator was internally dispatching the AST debugger, which technically
resulted in the fact that the interpreter was going over the different code while
debugging. The purpose of this thesis was to analyze these issues, propose a
change, and write the implementation of these features.

This thesis has proposed an implementation of changes to solve the issues
outlined above. They contain the user-friendly bytecode disassembler which
produces formatted output 2.1, native debugger support for bytecode eval-
uator 2.3, and as an additional feature has been added the breakpoint()
function that enables simulation of the conditional breakpoint 2.20. The per-
formance testing showed that these implemented features have no negative
performance effects on the language speed.

The implemented bytecode debugger can currently show details from the
evaluated environment which reflects the design of the environment browser.
Thorough this thesis there have been proposed a two possible solutions to
extend this debugging ability to any environment in the stack trace (see 4.3).

All the features were developed and tested and are included on the enclosed
DVD. The work has also been published on the GitHub ([10] and [11]). It was
an excellent experience to work on the real language VM while implementing
features which millions of people would use. The work performed in this thesis
can be considered a success.

61

Bibliography

[1] Figure 1. Abstract syntax tree of the while loop. [cit. 2018-06-16]. Avail-
able from: https://www.researchgate.net/figure/Abstract-syntax-
tree-of-the-while-loop_fig1_228792639

[2] Eddelbuettel, D. The new R compiler package in R 2.13.0: Some
first experiments [online]. [cit. 2018-03-03]. Available from: http://
dirk.eddelbuettel.com/blog/2011/04/12/

[3] Wickham, H. OO field guide [online]. [cit. 2018-03-08]. Available from:
http://adv-r.had.co.nz/OO-essentials.html

[4] .Internal vs .Primitive. [cit. 2018-06-16]. Available from: https:
//cran.r-project.org/doc/manuals/r-devel/R-ints.html#g_t_
002eInternal-vs-_002ePrimitive

[5] Eli Bendersky’s website. Computed goto for efficient dis-
patch tables [online]. [cit. 2018-02-27]. Available from: https:
//eli.thegreenplace.net/2012/07/12/computed-goto-for-
efficient-dispatch-tables

[6] R-statistics blog. Speed up your R code using a just-in-
time (JIT) compiler [online]. [cit. 2018-03-02]. Available from:
https://www.r-statistics.com/2012/04/speed-up-your-r-code-
using-a-just-in-time-jit-compiler/

[7] Wickham, H. Advanced R - Performance [online]. [cit. 2018-02-27]. Avail-
able from: http://adv-r.had.co.nz/Performance.html

[8] Murdoch, D. Source References [online]. [cit. 2018-18-03]. Available
from: https://journal.r-project.org/archive/2010-2/RJournal_
2010-2_Murdoch.pdf

63

https://www.researchgate.net/figure/Abstract-syntax-tree-of-the-while-loop_fig1_228792639
https://www.researchgate.net/figure/Abstract-syntax-tree-of-the-while-loop_fig1_228792639
http://dirk.eddelbuettel.com/blog/2011/04/12/
http://dirk.eddelbuettel.com/blog/2011/04/12/
http://adv-r.had.co.nz/OO-essentials.html
https://cran.r-project.org/doc/manuals/r-devel/R-ints.html##g_t_002eInternal-vs-_002ePrimitive
https://cran.r-project.org/doc/manuals/r-devel/R-ints.html##g_t_002eInternal-vs-_002ePrimitive
https://cran.r-project.org/doc/manuals/r-devel/R-ints.html##g_t_002eInternal-vs-_002ePrimitive
https://eli.thegreenplace.net/2012/07/12/computed-goto-for-efficient-dispatch-tables
https://eli.thegreenplace.net/2012/07/12/computed-goto-for-efficient-dispatch-tables
https://eli.thegreenplace.net/2012/07/12/computed-goto-for-efficient-dispatch-tables
https://www.r-statistics.com/2012/04/speed-up-your-r-code-using-a-just-in-time-jit-compiler/
https://www.r-statistics.com/2012/04/speed-up-your-r-code-using-a-just-in-time-jit-compiler/
http://adv-r.had.co.nz/Performance.html
https://journal.r-project.org/archive/2010-2/RJournal_2010-2_Murdoch.pdf
https://journal.r-project.org/archive/2010-2/RJournal_2010-2_Murdoch.pdf

Bibliography

[9] Disassembler for Python bytecode. [cit. 2018-02-27]. Available from:
https://docs.python.89io8/3/library/dis.html

[10] Saska, A. r-with-bytecode-debugger. [cit. 2018-06-24]. Available from:
https://github.com/saskaale/r-with-bytecode-debugger

[11] Saska, A. R-bytecode-disassembler. [cit. 2018-06-24]. Available from:
https://github.com/saskaale/R-bytecode-disassembler

[12] Kernighan, D. M., Brian W.; Ritchie. The C Programming Language (1st
ed.). Englewood Cliffs, NJ: Prentice Hall., ISBN 0-13-110163-3, regarded
by many to be the authoritative reference on C.

[13] Ostrovsky, I. Gallery of Processor Cache Effects. [cit. 2018-04-15].
Available from: http://igoro.com/archive/gallery-of-processor-
cache-effects/

[14] Wickham, H. R packages - testing. [cit. 2018-02-24]. Available from:
http://r-pkgs.had.co.nz/tests.html

[15] INWT-Blog-RBloggers. Promises and Closures in R. [cit. 2018-08-
05]. Available from: https://www.r-bloggers.com/promises-and-
closures-in-r/

[16] Positive Research. Byte Code Compiler - Recent Work on R Runtime
[online]. [cit. 2018-02-24]. Available from: https://www.r-project.org/
dsc/2017/slides/tomas_bc.pdf

[17] Czech Technical University in Prague. Tree structures pro-
cessing and unified AST [online]. [cit. 2018-02-27]. Available
from: http://blog.ptsecurity.com/2016/07/tree-structures-
processing-and-unified.html

[18] The S3 OOP system. [cit. 2018-06-15].

[19] Jones, J. Abstract Syntax Tree Implementation Idioms [online]. [cit. 2018-
02-27]. Available from: http://www.hillside.net/plop/plop2003/
Papers/Jones-ImplementingASTs.pdf

[20] core team, R. Environment browser. GNU R, [cit. 2018-03-10]. Avail-
able from: https://stat.ethz.ch/R-manual/R-devel/library/base/
html/browser.html

64

https://docs.python.89io8/3/library/dis.html
https://github.com/saskaale/r-with-bytecode-debugger
https://github.com/saskaale/R-bytecode-disassembler
http://igoro.com/archive/gallery-of-processor-cache-effects/
http://igoro.com/archive/gallery-of-processor-cache-effects/
http://r-pkgs.had.co.nz/tests.html
https://www.r-bloggers.com/promises-and-closures-in-r/
https://www.r-bloggers.com/promises-and-closures-in-r/
https://www.r-project.org/dsc/2017/slides/tomas_bc.pdf
https://www.r-project.org/dsc/2017/slides/tomas_bc.pdf
http://blog.ptsecurity.com/2016/07/tree-structures-processing-and-unified.html
http://blog.ptsecurity.com/2016/07/tree-structures-processing-and-unified.html
http://www.hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
http://www.hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
https://stat.ethz.ch/R-manual/R-devel/library/base/html/browser.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/browser.html

Appendix A
Acronyms

VM Virtual Machine

BC Bytecode

GC Garbage collector

AST Abstract syntax tree

IR Intermediate representation

JS JavaScript

OO Object oriented

OOP Object oriented programming

JIT Just in time

REPL Read-Eval-Print-Loop

UI User interface

ARM Advanced RISC Machine, originally Acorn RISC Machine

CRAN The Comprehensive R Archive Network

GCC GNU Compiler Collection

TDD Test driven development

65

Appendix B
Contents of enclosed DVD

readme.txt......................................instruction for the file
analysis analysis of other implementations
examples........................... implementation examples directory

cond breakpoint simulated conditional breakpoint examples directory
r breakpoints................bytecode debugger examples directory
r disassembly.............bytecode disassembler examples directory

noncomplete functions..............analysis of other implementations
bctools..................................the bctools package directory
r src ... modified GNU-R source
thesis.................................the thesis source code directory

DP Saska Ales 2018.pdf..............the thesis text in PDF format
DP Saska Ales .tex..................the thesis text in LATEX format

67

	Citation of this thesis
	Introduction
	Motivation and objectives

	Analysis and design
	GNU-R from user perspective
	Basis usage (main commands and REPL loop)
	GNU-R package system
	GNU-R class system

	GNU-R Virtual Machine internal structure
	Source code of the GNU-R
	Implementation of the core features of the language in R itself
	Calling internal C functions from R
	GNU-R memory types and memory management
	GNU-R garbage collector
	Computed GOTO
	Computed GOTO not used - Switch dispatch
	Computed GOTO used - threaded code

	Abstract Syntax Tree
	Bytecode
	Just in Time compilation
	Promises

	GNU-R Bytecode
	GNU-R internal representation of bytecode
	Expression and source references

	Current implementation of AST debugger
	Current implementation of Bytecode disassembler
	Analysis of disassembler improvements
	Java bytecode disassembler
	Python bytecode disassembler
	Summary

	Analysis of Bytecode debugger implementation
	Inspiration with current AST implementation
	Implementation inside Python VM
	Implementation inside V8 VM
	User interface and state of the BC evaluator

	Summary

	Realization
	Implementation of the disassembler
	User interface
	Instruction arguments
	Annotation of instructions
	Instruction arguments and labels
	Computing of labels
	Verbosity and formatting
	Function types in the constant pool
	Printing functions
	Printing of different types
	Documenting of code

	Implementation of the bytecode stack printer
	Stack definition
	Printing of the stack values
	RAWMEM stack type tag
	Persisting stack pointers

	Implementation of the debugger
	Main idea
	Global design
	Instruction for debugging
	Storing of the original instruction when the breakpoint is set
	Setting and removing debug instruction
	Listing breakpoints
	Setting the next breakpoint
	Support in the disassembly tool
	Temporary and regular breakpoints
	Implementation of the breakpoint instructions
	Bytecode interpreter internal status
	The short compact way of status printing
	The long verbose way of showing all information

	Debugger jumping granularity
	Handling of the recursive character of the bytecode
	Threaded and non-threaded design of the application
	THREADED_CODE defined
	THREADED_CODE not defined

	Handling of the debugger user input
	Entry points to the bcEval function

	Simulated conditional breakpoints

	Testing
	Bytecode disassembler
	Performance testing

	Future work
	Push into working repository
	Merging the bctools package into the compilers
	Ability to print out values from the different environment

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed DVD

