
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Ontological Model of Issue Tracking

by

Le Anh Viet Linh

Degree study program: Software Engineering and Technology

Prague, January 2019



Supervisor:
Ing. Petr Křemen, Ph.D.
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Abstrakt

Mnoho issue tracking systému jsou od sebe navzájem odděleny, č́ımž je velké množstv́ı in-
formaćı nespojeno. Role ontologie v poč́ıtačové vědě je vytvořit společné schéma, který lze
sd́ılet mezi systémy, anotovat jejich data a spojit je t́ım dohromady ve snaze vytvořit velkou
znalostńı bázi. Tato práce se zabývá budováńım takové ontologie koncepčńım návrhem
a vyhodnot́ı ji na malém datovém sadu. Výsledkem této práce je jednoduchý diagram
navržený v OntoUML, který je schopen zachytit struktury issue tracking systému.

Kĺıčová slova: issue tracking, softwarový vývoj, konceptuálńı model, ontologie, ontolo-
gický model, Unified Foundational Ontology, OntoUML.

Překlad titulu: Ontologický model pro Issue Tracking

Abstract

Many issue tracking systems are disjointed from each other, rendering a great amount of
information unconnected. The role of ontology in computer science is to create a common
schema that can be shared among the systems, annotate their data and linking them all
together in an effort to create a large knowledge base. This work will deal with employing
such an ontology through conceptual design and evaluate it on a small data set of issues.
The result of this work is a simple diagram designed in OntoUML that is able to capture
the structures underlying issue tracking systems.

Keywords: issue tracking, software development, conceptual model, ontology, ontological
model, Unified Foundational Ontology, OntoUML.
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Chapter 1

Introduction

1.1 Background

Projects concerned with software development have become an activity involving a large
group of people, ranging from analysts, developers, testers and possibly more. Analysts cre-
ate specifications extracted through requirements from their clients, developers implement
the features and quality assurance find and report potential defects in the implementa-
tions. All these steps are overseen by a project manager who ensures that the project team
is focused and moving towards reaching the goals of the project. Along the way, issue
tracking systems are used to organize and manage the tasks and defects that arise during
the project.

Traditionally, it has been a tool used primarily by software development teams where
issues involving defects have more than often been labeled and tracked as ‘bugs’. How-
ever, its prevalence has gone outside the bounds of the software community as IT projects
have grown increasingly more complex. As a result, projects have become multi-faceted
activities that include cross-cutting concerns beyond software related tasks. As such, many
different issue tracking systems have been created covering different domains and the gen-
eral understanding of an issue tracking system has evolved beyond than just being a ‘bug
tracker’.

Issue tracking systems have become an integral tool in projects enabling teams to collect
and focus on the tasks leading to the achievement of the project’s goal. The role of issue
tracking systems has mainly been reporting, assigning, tracking, resolving and archiving
issues thereby indirectly creating a knowledge base in the process. From the knowledge
base, teams can query information using filters, keywords or other constraints.

1.2 Problem statement

Nowadays, countless issue tracking systems exist with a focus on software development,
project management, product management and more. As many projects encompass a
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1. Introduction

multitude of these aspects, the use of different issue tracking systems has become common
within project teams.

Eventually, integration problems arise when the different systems need to be integrated
with each other in order to create a common knowledge base. The underlying issue lies in
disjointed model representation across the systems that conflict with each other rendering,
for instance, cross-system querying impossible. Without a common model to rely on, the
task of data integration continues to be an arduous endeavor in resolving this problem.

Take for instance the concept of ’issue’. Across many different systems its fields or
properties will have varying terms: the field ’author’ might not exist in another system
because the same meaning is conveyed through the label ’reporter’, one could make the
comparison for other fields as well: ’dateCreated’ vs. ’dateOfSubmission’, ’label’ vs. ’tag’
and so on. Even the very term of ’issue’ can be found to be called as ’task’ in different
systems. In addition to that, there are also differences in their data type signature for their
fields.

Furthermore, querying upon data in an issue tracking system currently involves a set
of filters for attributes of data fields or through searching through keywords within data
documents. This prevents the user from a richer more complex data retrieval undermining
information and relationships between data.

1.3 Goals

The goal of this work is to create and propose a model that is able to capture common struc-
tures across different types of issue tracking systems. The set of classes within the model
will be enhanced with ontological conceptualization enabling their use across multiple issue
tracking systems. Therefore, the resulting ontology can be reused by the system providers
to decorate their existing models with a common definition, providing nigh seamless cross-
system data integration and enhancing their data with semantics for a more meaningful
and expressive querying.

1.4 Structure of work

The second chapter will familiarize the reader with the concepts which form the core of
the solution proposed by this paper starting with an introduction to the semantic web
followed by ontology. Afterwards, its application in software development will be discussed
showing how it can benefit not only in the individual development process itself but also
through sharing its resulting conceptual model in other software development projects.
Furthermore, we will introduce an ontology called Unified foundational ontology (UFO) and
OntoUML which is a version of UML that is designed to comply with the axioms laid out
in UFO. The final part of this chapter will introduce tools that are used in the environment
of semantic web and ontology, in particular, a CASE tool called Menthor which has been
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developed for creating conceptual models with accordance to OntoUML specifications,
Protege for editing ontologies and GraphDB for querying semantically structured data.

The following chapter, we will describe issue tracking systems and present the concept of
knowledge-based systems. Furthermore, the domains of software development and project
management will be introduced as well as concrete issue tracking systems that specialize
in these two domains.

The subsequent chapter will present related work regarding the problem statement and
discuss their effectiveness in their resolution.

This is then followed by two main chapters of this paper, the first consisting of analysis.
Here, we will draw similarities between the issue tracking systems showing that although
they might have different terms and labels within their respective domains, their underlying
structure is very similar. Taking advantage of this fact we will then propose a model
created with OntoUML where we follow up by justifying our reasoning for the resulting
model. Lastly, we will lay out the evaluation process of the model and discuss its results.

The second main chapter will deal with the evaluation of the model created in the
previous chapter. It will explain the process of evaluating and integrating public data set
with the model and its subsequent upload into a database where through various queries we
will try to determine how well data is integrated across various systems under one model.

This paper will conclude with thoughts on the work conducted, its future prospect and
potential further research for refining the solution.
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Chapter 2

Core concepts and technologies

In this chapter, we introduce the core concepts and technologies used in this work. We will
explore the environment and infrastructure of the semantic web with a particular focus on
ontology since the fundamental part of this work deals with the application of ontological
concepts.

In the end, we discuss how ontology can be incorporated during the process of soft-
ware development through the use of a UML extended language called OntoUML and its
associated CASE tool Menthor with further processing in a software called Protege. The
resulting data set is then uploaded to a special type of database provided by GraphDB.

2.1 Semantic Web

The semantic web describes a vision for structuring and linking data on the web. Prior to
the concept of the semantic web, there were already notions of links that connect different
documents with each other through the use of hyperlinks. Examples of such linkages can
be found on most websites but perhaps the simplest one to understand are Wikipedia
pages, whose articles can contain multiple references not only to its own domain but also
to external documents.

The idea behind the semantic web is to go beyond links between websites/documents
and focus on linking their underlying data. The premise of this undertaking is to create
structured data that can be put into a query-able data set. An example of such data set
can be found in DBpedia, which has data extracted from Wikipedia infoboxes which are
structured based on the labels and their values found inside the individual info boxes. The
result of such structured data set provides a means for machines to process the data and
even create inferences about implicit information within the data.

Another use of the semantic web is to be able to integrate different data sets from
different sources together. For instance, within a company, many applications are used
to manage their resources or information. More often than not are pieces of information
duplicated across the different applications. For instance, an accounting system and a
human resource system will have information about an employee in their respective systems

5



2. Core concepts and technologies

causing duplicity. Therefore should information about the employee be updated, it would
have to be done on two different systems.:

The rest of this section will introduce technologies of the semantic web that are used
for this work: RDF, OWL, and SPARQL.

RDF

RDF, short for ’Resource Description Framework’, is a framework used to describe the
information about a resource [1]. A resource can be anything, ranging from people, things
and even abstract concepts. In RDF, each resource has its own URI (Universal Resource
Identifier) that can be uniquely referenced. URI is similar to URL in structure and re-
trieving a URI can yield additional information about the resource.

Another important notion in RDF are statements that have a structure of <subject>
<predicate> <object>, called a triple. These triples are often visualized as graphs with
both subject and object representing nodes and the predicate representing an edge that
connects these two nodes. Figure 2.1 illustrates such a graph. Example triple statements,
that are described by the graph are:

◦ <Bob> <is a friend> <Alice>

◦ <Bob> <is interested in> <Mona Lisa>

◦ <Mona Lisa> <was created by> < Leonardo da Vinci>

Figure 2.1: Example of triples visualized a graph taken from [1]

The triple structure can be represented in various ways, perhaps the most readable is in
the format of N-Triples which is the exact representation as illustrated above as a sequence
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2.2. Ontology

of subject, predicate and object. Other most common representations are in XML or in
JSON-LD which is an extended version of JSON.

RDF also offers a schema called RDF Schema that provides definitions for the resources
and its relationships between other resources. For instance, it can describe what domain
and range a predicate can have for its subject and object respectively or whether a class
of a resource is a subclass of a different class.

OWL

Similar to RDFS, OWL also contains definitions that can describe the underlying rela-
tionship between two resources but whereas RDFS offers simpler specification about the
properties and relations of the resources, OWL contains further concepts for a richer ex-
pression of the resources. For example, in addition to the definitions offered by RDFS,
OWL can describe data in set operations. Furthermore, OWL places more restrictions
on the way data is modeled. This approach prevents the model from having ontological
inconsistencies. All these benefits allow OWL modeled data to be run through a reasoner
which can potentially uncover new triple statements in the data.

SPARQL

Once a data set is modeled using the aforementioned technologies, the data set can be
queried through a query language called SPARQL. Similar to SQL, it is used to query
data but whereas SQL is concerned with tables, SPARQL’s queries are based on matching
triples thus its syntax is based around the elements that comprise the triples. An example
of a simple SPARQL query could look like

SELECT ?subject {

?subject foaf:knows <http://people.net/alice>

}

which will return records of resources that ’know’ the resource identified by the URI
http://people.net/alice. In this query, ’foaf’ is a namespace for an ontology described
in http://xmlns.com/foaf/0.1/. The concept of ontology will be described in the fol-
lowing section.

2.2 Ontology

The study of ontology is rooted in philosophy and is commonly described as a branch of
metaphysics concerned with the nature and relations of being. This chapter will refrain
from describing ontology from the philosophical standpoint and instead focus on its role
in the domain of computer and information science.

In computer science, ontology is a formal representation of the knowledge through a
set of concepts within a domain, the relationships between these concepts and a set of
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2. Core concepts and technologies

restrictions imposed upon the concepts and their relationships [2]. It is used to reason
about the properties of that domain and may be used to describe the domain. Thus, in
theory, ontology is often described as a ”formal, explicit specification of a shared concep-
tualization”.

A specific ontology provides a shared vocabulary of concepts for other systems, which
can be used to model a domain, specifically the concepts defined within that domain, their
properties and relationships along with a set of restrictions.

Ontologies are typically specified in first-order logic thus allowing them greater ex-
pressive power. For this reason, ontologies are said to be at the ’semantic’ level as opposed
’logical’ or ’physical’ level in databases. Furthermore, their specifications allow for abstrac-
tion away from data models and implement other strategies [3].

Benefits of using ontologies

The main benefits that ontologies provide in computer-related fields are explicit domain
assumption, sharing of common domain understanding among people or software agents
and reusability of domain knowledge [4]:

◦ Explicit domain assumption: Concepts, the relationship between them and the
restrictions imposed are clearly defined. This leaves little room for ambiguous inter-
pretation of the underlying model and enables the sharing and reuse of the ontology.

◦ Sharing of common domain understanding: Sharing the knowledge about a
common domain facilitates integration between systems that use the same ontology.
Computer agents will be able to extract and aggregate data from the different systems
connecting multiple knowledge bases together.

◦ Reusability of domain knowledge: Reusing existing domain knowledge prevents
different systems from ’re-inventing the wheel’ and introduces common standards
that allow for interoperability between systems.

Types of ontologies

Ontologies exist in many forms and can be divided in many ways. Here we will distinguish
between domain ontology and upper ontology.

Domain ontology

A domain ontology represents concepts that belong to a specific part of reality such as
medicine or finance. They represent a particular vocabulary of concepts that apply to
their given domain. An issue with domain ontologies is that often times different people
write ontologies with differing representations of concepts for the same domain. This is
can arise due to different languages, different intended uses of the ontologies, and different
perceptions of the domain. Merging these ontologies requires hand-tuning and/or software
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2.3. Usage of ontology in software development

merging which is a time-consuming and thusly expensive endeavor. On the other hand,
different domain ontologies that share the same upper ontology have can be merged with
less effort.

Upper ontology

Upper ontologies aim to provide conceptualizations of very general terms, such as time,
objects, events etc. that are applicable across multiple domain ontologies. They provide
domain ontologies with a set of basic elements specifying the meanings of their concepts.
As a result, upper ontology provides two main benefits: to bring about semantic interop-
erability and make the ontological commitment of a vocabulary explicit [5].

◦ Semantic interoperability: The ability for software agents to exchange data with
unambiguous, shared meaning.

◦ Ontological commitment: An agreement to use the shared vocabulary in a coher-
ent and consistent manner within a specific context.

2.3 Usage of ontology in software development

The research on ontology in computer and information related fields date back to the late
60s however only in recent years did the topic gain considerable traction in the field of
software development. This is mainly due to systems becoming more data-driven and in-
terconnected thus a greater focus of software development has shifted towards reusability
and integration [6]. As we have shown, ontology promises to enable sharing and reuse of
domain models thereby allowing different applications to define their models under the
same structure. As a result, different applications following the same ontological structure
and relationships have the potential to integrate systems seamlessly. Therefore, the im-
portance of ontology has grown because its application facilitates these tasks by providing
a shared blueprint for developing common systems. Recent software engineering paradigms
such as model-driven development complement the resurgence of ontology since it provides
with a rigid conceptual basis for the creation of domain models.

Stages in software development

Software development projects typically follow a set of connected steps beginning with
requirements gathering and formulation followed by analysis and design. The artifacts cre-
ated by these activities commonly consist of conceptual models designed by UML. These
are transferred to the implementation part of the development process which is then con-
cluded by testing and deployment.
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2. Core concepts and technologies

Conceptual constraints in developing software systems

Building large software application, particularly enterprise-level systems like CRM, PMS
etc., is a complex affair since the knowledge comes from different sources which are further
spread across varying platforms and infrastructures. In many cases, these sources have to
be integrated but that is often hindered by the different terms and labels that are annotated
by the various systems. In addition, designers of software systems have different conceptual
perspectives on how a system should be modeled, further causing segmentation between
the resulting systems. These problems can be overcome during the analysis process of
software development by reusing a shared existing ontological model that can standardize
over the varying systems of similar purpose. Moreover, an additional benefit of reusing
ontological models instead of creating their own during the software development is cutting
down a great amount of time spent on analysis.

Furthermore, the quality of the input artifacts determines the success of the given
development step [7]. In other words, improper or inaccurate artifacts will contribute to a
flawed implementation of the task. In the early eighties, Barry Boehm published statistics
showing that uncovering errors in later stages of the development increases the cost of
resolving it. Therefore, from the standpoint of software project management, having a
reliable conceptual model can prevent potential cost from emerging during the development
process.

Application of ontology during the analysis phase

For these reasons, we focus on the analysis part which deals with creating a conceptual
model capturing concepts used to help people know, understand, or simulate a subject
the model represents. The analysis phase defines the framework and scope of the software
system on the basis of the requirements gathered in the previous development process. The
resulting requirements document includes UML diagrams that describe the objects in the
system, their relationship with each other and actions that can be done on these objects.
In general, the specifications are technology independent, as they essentially describe the
ontology of the underlying system. During the design phase, these objects are mapped onto
software specific items, such as lists, stacks, trees, graphs, algorithms, and data structures.

Drawbacks of using UML

Although UML is the most commonly used language for representing conceptual models,
it lacks certain constructs/stereotypes due to its absence of semantic restrictions. This
problem results in diminishing expressiveness when modeling concepts as many of them
are simply modeled using associative relationships where the origin of the concept remains
either unclear or left in ambiguity. Therefore, the resulting conceptual model described
in UML can cause poor and ambiguous representation of the reality that the system is
supposed to be modeled after. As such, that particular conceptual model neither captures
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2.4. Unified foundational ontology

the reality fully and faithfully nor is it reusable since its lack of semantic restrictions causes
different perspectives on the implementation of the underlying model.

As conceptual models are considered important tools to achieve a common understand-
ing of a domain, the need for a clear and unambiguous representation becomes crucial,
especially for later phases of software development. Beyond the development process it-
self, the resulting conceptual model may also be shared for use in other systems that are
concerned with similar domains facilitating the integration between these. Therefore, it
is necessary to add notions and concepts of ontology when creating conceptual models as
using UML by on its own falls into the risk of undermining its expressiveness.

2.4 Unified foundational ontology

Giancarlo Guizzardi created in his Ph.D. thesis ‘Ontological Foundations for Structural
Conceptual Models’ a structure for unifying several existing foundational ontologies named
Unified Foundational Ontology or UFO for short. The development and creation of UFO
drew from a number of theories such as formal ontology in philosophy, cognitive science,
linguistics, and philosophical logic. UFO is an upper ontology that provides specifications
for domain ontologies. Furthermore, it aims to provide a common foundation for conceptual
modeling based on certain heuristics that follow philosophically well-founded principles as
well as capturing the ontological distinctions underlying human cognition and common
sense. UFO is divided into three main categories:

◦ UFO-A, ontology of endurants

◦ UFO-B, ontology of perdurants

◦ UFO-C, ontology of social concepts

We focus on UFO-A, as its definitions have been completely formally characterized in
the thesis and because it has been applied in various fields. Endurants are entities that
are perceived as a wholly complete concept independent of snapshot or time. In contrast,
perdurants are entities for which only a part of the entity can be observed given a snapshot
or time. In other words, any entities that would we describe as ’processes’ are perdurants.
Thus, UFO-A deals with aspects of structural modeling such as types and taxonomic
structures, roles, part-whole relations, particularized relational properties, and relations.
These are entities that retain their substance throughout snapshots or times.

Universals, individuals and instantiations

UFO builds upon the distinction between the universals and the individuals. Individuals
are described as real entities that we perceive in the world. The perception does not need
to be concrete, as this also includes abstract entities. Thus in this context, ’real’ is meant
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to be understood in the sense that they are the existential representation of an idea, a
universal.

Universals feature patterns and characteristics that can be realized by multiple indi-
viduals. Thus, in contrast to individuals, universals can be thought of as an idea that
individuals manifest. Universals are defined by principle of application and identity which
will be discussed further below. Principle of application is a principle for which we can
judge whether an individual is an instance of that universal [8].

Individuals can instantiate multiple universals. In this sense, they behave like multiple
blueprints for the individuals to instantiate and take on. The relation between an individual
and its universal(s) is called instantiation.

Consider an individual John. John can have multiple instantiations of universals such as
Person, Man, and Husband. In this respect, a universal can also be instantiated by multiple
individuals, for example, a universal city can be instantiated by individuals Prague, Berlin
and London.

Identity

Another important aspect of UFO is the notion of Identity. The property of identity enables
an individual to be exactly the one concrete individual that is different other individuals.
It can be defined as the fact of being who or what an individual is [9].

Through comparing identities, we are able to determine whether two individuals are
the same. For this, we need a principle on which basis we can judge whether two instances
are the same. This principle is unsurprisingly called principle of identity. It is defined as
a method that that compares through an identifier the uniqueness of an individual. An
example of an identifier for a Person could be his name or citizen ID number.

The choice of an identifier is often a subject of debate of whether it really is able to
uniquely identify an individual. Take for instance the above example with name as an
identifier. Here, we run into the problem of multiple individuals having the same name.

Universals that provide an identity principle are called Sortals and Non-Sortals, com-
monly also referred to as Mixins. Examples of sortal universals are Person, City or Student.
In contrast, a non-sortal universal is for example Customer, since it can be instantiated by
instances of universal Person or by instances of universal Company.

Identities are important in determining the existence of an individual given its instan-
tiations and for defining the different types of universals. For instance, John can move in
and out of being an Employee without losing his identity. However, he cannot do the same
with Person, if he ceases his instantiation with Person, he himself also ceases his identity.

2.5 OntoUML

UFO has been used for development and redesigning conceptual models in domain ontolo-
gies from different areas, for instance in Enterprise Modeling, Software Engineering, Service
Science, Petroleum and Gas, Telecommunications, and Bioinformatics. Nonetheless, out
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2.5. OntoUML

of all the applications of UFO, the one that concerns this work the most is the design and
development of an ontology-based modeling language known as OntoUML.

OntoUML is an extension to UML based on the ontology outlined in UFO-A. The
classes offered by OntoUML are representations of UFO-A constructs which are then rep-
resented using UML stereotypes. These constructs carry a set of formal definitions and
restrictions that encompass the given class. Therefore, it includes a system of rules and
constraints capable of describing most concepts. Its language can capture a wide vari-
ety of stereotypes: types and taxonomic structures (including roles), part-whole relations,
events, formal and material relations, dependent (weak) entities, attributes and attribute
value and measurement spaces (roughly datatypes). As such, OntoUML offers greater
expressive power than UML.

The advantage of using OntoUML over UML is that its stereotypes rooted in onto-
logical axioms laid out by UFO. Thus in contrast to UML, OntoUML applies notions of
universals, commonly referred to as types, and individuals. It employs basic notations
found in UML, such as classes, associations, and generalizations with various ontologic-
ally defined stereotypes that in result in richer descriptions and a more defined nature of
the model. Furthermore, it omits UML’s simple part-whole relationships. Instead, On-
toUML provides its own relationships that are able to more precisely describe the nature
of part-whole relations between objects.

There are a total of twelve types that define OntoUML’s class stereotypes. In the
following sections, we will first describe the notion of rigidity and afterwards present the
types, that have been used in this work for building an ontology for issue tracking.

Rigidity

The design of UFO and subsequently OntoUML borrows heavily from the theories of modal
logic. In a metaphysical sense, UFO and OntoUML deal with the notion of worlds with
modal operands necessity and possibility. The idea of rigidity stems from these operands
and thus OntoUML distinguishes between two types of rigidity: rigid and anti-rigid:

◦ Rigid types: These types employ the notion of necessity whose instances are applied
essential characteristics necessarily. Thus, Instances of a rigid type cannot cease to
be its instance without ceasing to exist [11]. For example, we have the type Person
and individual John. Throughout John’s existence, he never ceases to be an instance
of Person.

◦ Anti-rigid types: These types, on the other hand, apply the notion of possibility. If
an individual instantiates an anti-rigid type, that particular instance can cease to
exist without the individual losing existence. An example of this situation is the
type student where an individual can stop being a student once he finishes school.

In essence, rigidity is a property of OntoUML’s types that determines whether a char-
acteristic of an individual can change between time periods.
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Kind and Subkind

Kind is a rigid type that supplies its identity to its instances. Through the rigidity, their
instances receive its identity and keep it for the duration of their existence. As such, they
build the foundation for models created with OntoUML.

Subkind is a specialization of Kind that extends its ancestor by its own features. They
do not define their own identity and thus they must necessarily inherit from ancestors of
rigid type.

Role and Phase

Role and Phase are both anti-rigid types. Similar to Subkind, they do not provide identity
and thus must also necessarily inherit from other types. These types are used to model
their ancestors’ attributes and features at some given time.

Role is used to model certain properties of individuals when it is in relation with other
individuals. These two individuals are necessarily connected through an association, as the
role is dependent on the individual at the other end. Consider the role student, one cannot
become a student without enrolling in a school first. These two individuals are connected
together through the type Relator as illustrated in Figure 2.2.

Phase is used to represent different states of its ancestor. Though the ancestor can
move in and out between phases, unlike with roles, he can be only in one certain phase
from a disjoint and complete generalization set. For instance, an individual cannot be in
phase sick and phase healthy (modeled in 2.2) at the same time, nor in phases young and
old. However, he can be both in phases ill and young if both of these phases are in different
generalization sets.

Figure 2.2: Example of an OntoUML model.
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Relator

A Relator is a type that is used for relating two individuals together, essentially mediating
between these two. Relators can be concrete such as a membership contract between a
studio and a member or it can also be abstract such as a kiss or a call. Relators can connect
multiple individuals. An example of such a relation is a purchase of an item by a person
in a shop where purchase would be of type Relator.

In the section about on Role, it was mentioned that it has to be connected through and
association. Relators are the association that glues the Role with another individual. In
the case of Student and School, the resulting Relator could, for instance, be Enrollment.

2.6 Tools

In conjunction with the development of OntoUML, CASE tools for using the modeling
language have also been developed. The first such tool was called OLED, standing for
OntoUML lightweight editor which was then succeeded by another tool called Menthor
Editor (ME) that added a few new additional features.

The process of designing diagrams is similar to what one would expect from any other
tool dealing with the design of class diagrams. However, ME offers further features that
complement ontology-driven conceptual modeling. At its core, it offers class stereotypes
with OntoUML specifications.

Since the field of ontology deals with multiple specifications for designing ontologies,
ME provides multiple code generation options. The designed diagram with OntoUML
specifications can be generated in other implementations of ontology such as RDF or OWL.
Furthermore, it is also able to convert the diagram to UML.

Crucially for ontology design, ME further provides validation toolkits for validating the
model. Since OntoUML is rooted in the ontology of UFO, it has clearly defined axioms
that are verifiable by a computer. Therefore, ME offers a syntax verification making sure
that the model we are building is correct throughout the process.

Another validation toolkit is the detection of ontological anti-patterns. Though the
model may be syntactically correct, it may be vulnerable to domain-related ontological
misrepresentations [12]. ME is able to detect these anti-patterns and through a step-by-
step process. It is worth noting that, although these anti-patterns emerge, they do not
strictly need to be corrected, rather it is seen as a suggestion to take the mode ’under
microscope’.

Lastly, an important validation toolkit is a visual simulation of the model. The simu-
lation tool is able to generate multiple kinds of worlds on the basis of the created model.
From the simulation, we can check the correctness of the model and identify any anomalies
we have created within the model.

In addition to Menthor, this work also made use of Protege which is an open-source
application for managing and editing ontologies. It was used for inspecting the created
ontology and for applying the ontology to script-processed open data sets. The resulting
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combination was then uploaded to a graph database called GraphDB which stores triples
that can be queried using SPARQL syntax.
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Chapter 3

Issue tracking systems

As mentioned in the first chapter, issue tracking systems are an integral part of software
development projects as they have become an undertaking involving a large group of people
with various activities and sub-activities. An issue tracking system aides in keeping track
of the current activities in one location that is visible to people involved in the development
process. As a result, the information created on an issue tracking system is shared across
the participants and thus provides an overview of the current state of the project.

At its core, an issue tracking system is a software that manages and maintains a list
of issues. An issue can have several aspects to it depending on the type of issue and the
domain it revolves around. In most issue tracking systems, the details of the issue entail
a reporter, the date of submission, the phase the issue is in, a description of the issue, an
assignee and the date of resolution.

By collecting issues throughout the software development process, the issue tracker
system indirectly creates a database containing information on each participant, resolutions
to common problems and other data and information. By applying an ontology upon on an
issue tracking system, it enhances its functionality providing it with benefits and functions
of a knowledge-based system.

3.1 Issue tracking for software development

The most common type of issue tracking system used in software development is a bug
tracking system. A software bug is an error or a flaw found within a software that renders
the program or system to behave in unintended ways or directly produce incorrect or unin-
tended results. Virtually no software is bug-free, it is therefore vital to track the emerging
software bugs during the course of software development in order to manage their resolu-
tion and record the solution for future references. A bug report typically contains a unique
ID, severity, priority, reporter, date of submission, an assignee, date of resolution and its
current status. Creating a database of software bug reports can aid in future development
processes for instance by quickly resolving similar bugs by querying the database of existing
software bugs.
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Beyond bug tracking, issue tracking systems within software development are also used
to track work activities of people involved in the development. Such software task report
contains the creator of the task, date of creation, a task type/label priority, an assignee,
date of completion, component part/parent task that the task is dependent on and the
current status of the task. Similar to storing bug reports, having a database of activity
reports also brings additional benefits, like having an overview on the progress of the
project, by tracking what parts of the project are being worked on.

This work has analyzed three different issue tracking systems that are predominantly
marketed towards software development:

GitLab

GitLab is a web-based Git-repository manager with an issue tracking system. GitLab
boasts a clean and minimalistic UI that avoids cluttering the display with many fields and
information. On the other hand, its issue tracking system is the weakest out of the three
analyzed in the work, lacking customization options beyond adding user-created labels to
issues.

Jira

Jira is a proprietary issue tracking system developed by Atlassian. It is highly ranked in
popularity amongst issue tracking systems. Jira is offered in three different packages. The
one that was analyzed for this work is Jira Software, which concerns itself with planning
and tracking issues in software development. Out of the three analyzed systems, Jira is the
most powerful tool, allowing its users to create virtually unlimited custom fields for their
issues and customize their workflow, which also can be visualized, and other customization
options. However, the powerful features come at a cost of a higher learning curve when
using Jira as it is well-known from being complex.

Redmine

Redmine is an open-source web-based issue tracking system. Despite being an open-sourced
application, it boasts features similar to Jira albeit with fewer customization options. Being
an open-source application, the source code is public, meaning its user can directly modify
the program changing code to fit their needs and requirements. However, the application
needs to be installed and hosted, making the setup in comparison to other issue tracking
systems more cumbersome. Its downsides are the dated user interface design that at some
places can evoke an unintuitive feeling when navigating around the application.

3.2 Issue tracking for project management

Project management software typically have more general structure than issue tracking
systems for the software development domain since within a project, there are multiple

18



3.3. Knowledge-based systems

teams besides software. Therefore, project management systems have to account for this
and provide features that are highly customizable. From large collections such as creating
workspaces to smaller items like customizable and user-defined fields for various issues or
tasks. Due to high degree of customization, project management software is able to track
issues from multiple fields, ranging from budget management, resource allocation to team
communication. However, due to the greater freedom project management system provide,
their issues typically lack a standard structure which can make querying them an unruly
task.

This work has analyzed two different issue tracking systems that are predominantly
marketed towards project management:

Asana

Asana is a software-as-a-service designed to improve team collaboration and work manage-
ment. It helps teams manage projects and tasks in one tool. Teams can create projects,
assign work to teammates, specify deadlines, and communicate about tasks directly in
Asana. It also includes reporting tools, file attachments, calendars, and more.

Wrike

Wrike is a project management system whose main UI consists of features that are divided
into two categories: project management and team collaboration. Project management
interface consists of an interactive Gantt chart, a workload view and a data table that
can be customized to store project data. These features are supposed to help teams track
dates and manage their assignments. Team collaboration interface contains features that
are designed to facilitate and aid team communication and group decision making. As
such, it includes live editor and an assignment detail UI view with discussion threads on
the respective assignment that can be edited.

3.3 Knowledge-based systems

The last topic this chapter will touch on are knowledge-based systems. A knowledge-based
system is a computer program that reasons and uses a knowledge base to either solve
complex problems or query upon the data and information within the knowledge base.
The term is broad and is used to refer to many different kinds of systems. Nevertheless,
a commonality among knowledge-based systems is an attempt to represent knowledge
explicitly through the use of ontologies and its rules rather than implicitly via code the
way a conventional computer program does, like in a relational database. A knowledge-
based system has two main sub-systems: a knowledge base and an inference engine.

◦ Knowledge base: A knowledge base is a technology similar to a database that is
used to store complex structured and unstructured information used by a computer
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system. Such a system was then coined ’knowledge-base’ in order to distinguish its
form of data storage from the more commonly known database.

In contrast to databases, a knowledge base requires structured data as opposed to
tables with numbers and strings. These data would have pointers to other objects
that in turn have additional pointers essentially creating a graph of interconnected
information within the knowledge base.

Thus the ideal representation for a knowledge base is an ontology since it provides
data with well-defined structure and relationships.

◦ Inference engine: An inference engine is a component of the system that applies
logical rules to the knowledge base to deduce new information.

The knowledge base stores facts about the world upon which the inference engine
applies logical rules to the knowledge base and deduces new knowledge. This process
would repeat every time there is a new fact discoveries in the knowledge base, as the
new insight could trigger additional rules in the inference engine.

Inference engines work primarily in one of two modes depending on the input of the
inference: forward chaining and backward chaining. Forward chaining starts with the
known facts and asserts new facts. Backward chaining starts with goals and works
backward to determine what facts must be asserted so that the goals can be achieved.
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Chapter 4

Existing solutions

The main problem that is being discussed in this work is the lack of a shared ontology that
could be used for integrating disjoint and fragmented data from issue tracking systems over
different platforms and infrastructures. However, there are little to no existing solutions
that deal with specifically that problem. Instead, most of the existing solutions on the given
problem deal more with leveraging the advantage of utilizing technologies in ontology for
a single system rather than focus on delivering a shared ontology for common use.

For instance, [13] does describe how an issue tracking system can utilize technologies
of ontology to enhance the system for automating issue tracking. There, they describe
the architecture and implementation details for building such a system. Although they
do present the way they have mapped their model onto the objects, it does not cover a
meaningful amount of the classes that are found within an issue tracking system. Though
this work is a great example of how ontology can benefit the productivity be providing
ontological meaning to data, it does not propose a model whose task is to create a shared
ontology for issue tracking.

Another solution that is slightly related to this problem is [14], where the main goal
is to show how aggregating data from various sources benefit the issue resolving process.
It conducts a mixture of qualitative analysis by conducting interviews with developers, as
well as quantitative research whereby they try to find correlations between various variables
such as the number of comments in a bug report with and without a StackOverflow link in
the bug description. This paper ultimately shows, that using tags and links in a bug report
to other sites leads to improvement of the productivity during development. Ultimately,
while this paper does demonstrate the virtue of a connected knowledge base, it does not
propose any solutions to get closer to that stage.

Lastly, there are have been a great increase in ontologies published online. Unfortu-
nately, only a few target the domain of issue tracking since their scope is either too big or
too small. For instance, in the work [15], an enterprise ontology is proposed and while it
can have a certain use for the domain of issue tracking, the domain of enterprise is much
broader which would be too excessive for employing it on a smaller domain. On the other
hand, this online resource http://oscaf.sourceforge.net/tmo.html offers ontology only
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in the domain of tasks without regarding the broader infrastructure of an issue tracking
system such as the notion of projects and comments that discuss the issues.

Thusly, this work is largely written without relying on possible existing solutions since
there have not been any research that directly deals with employing benefits of ontological
technology with regards to issue tracking systems.

22



Chapter 5

Ontological model for issue tracking
systems

This chapter deals with the approach of creating the ontological model for issue tracking.
The first part describes the process of analyzing various issue tracking systems, collecting
labels and subsequently building a set of terms that will comprise the resulting vocabulary.
The second part will show the mapping between the found terms and their respective
OntoUML stereotypes and the resulting model diagram created in Menthor.

5.1 Analysis of issue tracking systems

Many kinds of issue tracking domains exist, but as it was indicated in the previous chapters
this work will limit itself to analyzing two domains:

◦ Software development

◦ Project management

The above domains cover a large majority of existing issue tracking systems and as such
the limited scope of the domains analyzed offers a compromise between the system’s market
coverage and time for research. In this paper, a total of five issue tracking systems will
be analyzed: three from software development domain and two from project management
domain.

The analysis involves collecting the terms of their respective systems and model rela-
tionships between these. Subsequently, an ontological class diagram will be constructed for
the different domains which will be evaluated using public data from various issue related
data sets. During the evaluation process, data sets will be put through a script that will
extend them with semantic meaning which will then be uploaded to a database for creating
queries the resulting data.

As mentioned during the earlier parts of this work, we have analyzed five issue tracking
systems from two different domains. The first part of the analysis was to research the
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chosen issue tracking systems and enumerate possible important concepts for the ontology
of issue tracking. This was simply done by using the systems for some time, exploring and
navigating through their user interface. During that process, concepts concerning issue
tracking within the system were recorded in a spreadsheet document. These documents
had multiple sheets each representing a concept. These sheets had tables where each
row represented an attribute of the respective class and its columns held data about the
attributes’ label, definition, source, relationship, and notes.

Figure 5.1: Spreadsheet for ’Asana’, with records for the term ’Project’ (label, definition,
source).

Figure 5.2: Spreadsheet for ’Asana’, with records for the term ’Project’ (relationship,
notes).
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◦ Label: The name for the attribute. In the document, it is prefixed by the term
followed by a slash. For instance, if the concept was ’Project’ and the attribute was
’Name’, then the resulting label would be ’Project/Name’.

◦ Definition: The definition of the label that is either defined by a source document
of its respective issue tracking system or by common presumption.

◦ Source: The source from where the definition came from. In most cases during this
analysis, the sources came from user manuals or documentation of its respective issue
tracking system. Nonetheless, there were cases where definitions could not have been
found.

◦ Relationship: If a given attribute offers multiplicity with regards to its concept, by
which is mean that multiple instances of the attribute class can be contained within
the concept, it will be defined under this column.

◦ Notes: Possible notes that were taken when the recording the attribute in the spread-
sheet document.

Storing the records in this structured way helps keeping a reference on the concepts
of the issue tracking systems that were analyzed as well as provide a way to compare
the concepts and their attribute between each other. During the analysis, the following
concepts were extracted from the various issue tracking systems that will form the basis
for creating an ontology for issue tracking:

◦ Asana: Comment, Project, Task, User

◦ Gitlab: Comment, Issue, Participant, Project, Milestone, User

◦ Jira: Comment, Issue, Project, User, Watcher

◦ Redmine: Group, Issue, Parent task, Project, User, Watcher,

◦ Wrike: Comment, Project, Subtask, Task, User

◦ User roles: Assignee, Commentator, Reporter,

As we can see, most of these systems share the same label for their concepts. In fact,
there are even concepts with differing labels that share the same semantic meaning. These
occurrences can be identified by looking for concepts with similar definitions. Take the
concept of ’Issue’ and ’Task’ for instance. If we break down their definitions taken from
the sources of their respective systems, we will uncover that their concepts have a roughly
similar meaning:

◦ Jira, Issue: Pieces of work that must be completed. 1

◦ Wrike, Issue: Action items that need to be completed 2

1https://www.atlassian.com/agile/tutorials/issues
2https://help.wrike.com/hc/en-us/articles/210322705-Building-Blocks-Tasks-Folders-and-Projects
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Another way how to identify concepts with similar semantic meaning is by examining
the functionalities of the concepts and their interaction with other concepts during the use
of their respective issue tracking systems. Sticking with the example of ’Issue’ and ’Task’,
in both cases submitting an issue or a creating a task was about an activity that needed to
be completed. The life cycle of these particular concepts roughly follow the same simple
pattern where it first begins with submitting one to the system, then assigning a person
to handle the issue which eventually gets resolved.

Finally, the terms/concepts that will be used for building the model are:

Concept Definition
Assignee User who has been assigned to resolve an issue.
Commentator User who has commented on an issue.
Parent issue An issue who is reliant on the resolution of other issues.
Sub-issue An issue which is being reliant on by a higher, commonly more general

issue.
Subscriber Stakeholders of the issue that have an active interest in its completion.
Comment Additional remarks or information discussing the issue.
Issue A situation/activity impacting a matter (within a scope) needed to be

addressed.
Scope The extent of the area or subject matter that something deals with or to

which it is relevant.
User User of issue tracking system.

Rationale of the selection

Absence of project class

Throughout the research on the vocabulary and terms used in issue tracking systems, the
concept of a project-like structure appears often across most of these systems. These are
however not included in the modelling process. The reason for it is twofold:

Firstly, the focus of this task was on modeling around the concept of ’Issue’. Creating an
additional class for ’Project’ would introduce unnecessary complexity of the model, such as
creating further relationships with members and owners, groups and subgroups and other
attributes within the project. These details do not contribute to the knowledge base of
issue tracking. The concept of ’Project’ serves as a way to categorize the issues within
a frame of subject matter. However, that description is in conflict with the wide-spread
definition of the term ’project’.

Thus secondly, the very definition of the term ’Project’ has an already deeply embedded
meaning for many a large audience. According to the Cambridge Dictionary, it is described
as:

’A piece of planned work or an activity that is finished over a period of time and intended
to achieve a particular purpose’.
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Nonetheless, the issue tracking systems use the term ’Project’ in a different manner than
through the definition described above. For example, not all projects in the issue tracking
systems deal with a temporal aspect. Furthermore, different issue tracking systems also use
different terms and labels that describe the same usage of the word, for instance, Wrike
additionally uses another term called ’Folder’ that differs from ’Project’ in that it has
additional attributes to work with.

Analyzing the actual semantic meaning of these varying definitions, we suggest the
term ’Scope’ as a common denominator, as according to the Oxford English Dictionary,
’scope’ is defined as:

’The extent of the area or subject matter that something deals with or to which it is
relevant.

Presence of comments

Comments provide the issue with additional information and insight throughout its resol-
ution process that are not described in the issue itself. Therefore it is important to include
these in the modeling process since they can potentially extend the knowledge of the issue.

Sub-issues and sub-tasks

In the analyzed issue tracking systems, there were issues and tasks that were part of a
greater whole. Asana, Jira, and Wrike have explicit sub-issues and subtasks, but in the
other systems, the labels were rather misleading: in GitLab the greater whole was called
’Milestone’, whereas in Redmine they were labeled as ’Parent task’. These labels are not
explicitly suggesting a sub-issue or a subtask. However, by delving into the definition of
these labels, it turns out that these systems do indeed support a hierarchical relation with
issues and tasks.

This suggests that there is a common hierarchical relationship between issues/tasks
among the issue trackers and therefore the relationship between issues/tasks and their
smaller versions was included in the diagram.

5.2 Building relationships between terms

The next step in the modeling process was to map the terms found during the previous
step onto OntoUML class stereotypes. For this part, a table was created with its columns
representing the concept, its corresponding stereotype, and its definition.

Concepts that derive stand on their own, meaning they didn’t derive from other con-
cepts were stereotyped as <<Kind>>, therefore ’Comment’, ’Issue’, ’Scope’ and ’User’ are
<<Kind>>.

On the other hand, concepts that share a common concept could be stereotyped in three
ways: <<Phase>>, <<Role>> or <<Subkind>>. We can rule out <<Subkind>> since it is a
rigid stereotype. Individuals of the remaining concepts can instantiate the other types in a
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particular time and can cease them to exist while the individual can still exist. Therefore,
the remaining concepts have antirigid rigidity. Furthermore, since we established, that a
<<Kind>> can only take one <<Phase>> at a time, that stereotype is also ruled out since
’User’ can be ’Assignee’, ’Commentator’, ’Reporter’ and ’Subscriber’ all at the same time.
The same goes for ’Issue’ as it can both be a ’Parent issue’ and ’Sub issue’ at the same
time. Thus, the only applicable stereotype for the rest is <<Role>>.

◦ Kinds: Comment, Issue, Scope, User

◦ Roles: Assignee, Commentator, Parent issue, Reporter, Sub-issue, Subscriber

Because of the existence of Role stereotypes, OntoUML requires an external entity,
a truthmaker to make them valid. In OntoUML, that entity is defined by the type
<<Relator>>. As mentioned in the introduction to OntoUML, Relator is a type that
mediates between two other types. Thus for the model, additional concepts not found
during the initial analysis process need to be added.

◦ Relators: Assignment, Commenting, Dependency, Discovery, Subscription

Concept Definition
Assignment The process of assigning a user to an issue.
Commenting The act of creating a comment.
Dependency The process that produces an issue.
Discovery An issue which is being reliant on by a higher, commonly more general

issue.
Subscription A process by which a user becomes updated on changes of a given issue.

OntoUML Diagram

From the tables that were filled in the previous sections, we can then construct an ontolo-
gical class diagram using the Menthor CASE tool. Firstly, we create class stereotypes as
listed in the table and afterwards through the guidance of the ontological axioms, we fill
in the relationships between these classes. The result is the model shown in Figure 5.3.

The material relation derives from the Relator to specify the name of the relationship.
The derivation is indicated in the diagram by the dashed lines that go from a <<Relator>>

to the material relation.
In common UML diagrams, the relationship between ’Parent issue’ and ’Sub-issue’

would be described through reflexive associations. However, OntoUML offers tools to ex-
press the distinction between what is a parent issue, sub-issue and the relationship between
them by using the <<Role>> stereotype and describe their relationship with <<Relator>>

stereotype. It is important to put ’Parent issue’ and ’Sub-issue’ under a disjoint general-
ization set, otherwise the same instance of issue can be its own parent issue and sub-issue
at the same time.

28



5.2. Building relationships between terms

Figure 5.3: OntoUML diagram for issue tracking systems.
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Chapter 6

Model evaluation

In the evaluation part of this work, we take our model through a series of validation test
and applying the resulting ontology over a small dataset of issues gathered from some of
the analyzed issue tracking systems. The goal of this part is to uncover what benefits such
a model can bring with it and what possible deficiencies it might still have. This will give
us an insight into further motivations and resolutions for future work of similar scope.

6.1 Correctness and consistency

With the built-in validation toolkit provided by Menthor Editor, the OntoUML model was
analyzed for syntactical correctness and consistency. Throughout the process of designing
the model, the syntax validation was used upon every change such as adding a new class
stereotype are establishing relationships between these. Whenever an OntoUML rule was
broken, it was fixed before we went to the next parts. As such, this proposed model almost
manages to be free of any syntactical or ontological errors. The only errors found concern
the multiplicity of attributes of the kinds since OntoUML doesn’t allow for attributes to
have multiplicity less than one, meaning we cannot have optional attributes under its rules.

Subsequently, when running the model through the anti-pattern validation enabling the
detection for all types of anti-patterns, a total of 22 potential threats have been identified.
When attempting to correct these errors through its step-by-step process, it did not improve
the situation and instead made it conceptually harder to follow the relations in the model.
Therefore for the sake of better comprehension, the anti-patterns were left unchecked.

Lastly, we let the model run through the Alloy visual simulation tool that generates
multiple possible worlds constrained through the rules laid out by the underlying UFO
ontology. With this component, we can detect whether desired instances behave in the
manner we expect them to. In the case of this work, it detected a strange behaviour,
where issues can be their own parent and sub-issues or where the sub-issue of a parent
issue can be its parent issue, illustrated in 6.1. As mentioned previously, it was important
to add a disjoint generalization set for parent and sub-issue to resolve this problem. An
example of a consistent world can be found in Figure A.1 in Appendix A.1.
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Figure 6.1: Forbidden behaviour detected by Alloy

6.2 Integration

Data set sources

For evaluating the level of integration, we fetched issues from three different sources through
REST API. One of them is from Redmine, an issue tracking system for software devel-
opment that was discussed in previous chapters. The two other sources come from issue
tracking systems that were not analyzed for the purpose of creating the model, one of these
comes from GitHub and the other, rather unconventionally, comes from StackOverflow
which is a website concerning with questions and answers relating to software develop-
ment. As such, although not specifically regarded as an issue tracking system, it displays
certain functionalities and characteristics found in issue tracking systems. This approach
of testing the model on several data sources which were not part of the analysis process
shows how generalizable the model can be.

Additionally, these platforms were also chosen because they provided a public REST
API for their data whereas other platforms had private projects and repositories whose
data was not possible to fetch through REST API without running into authentication
and authorization issues.

These are the following URL for calling the source’s respective REST APIs all of which
return data in the JSON format:

GitHub
URL: https://api.github.com/repos/reduxjs/redux/issues
Parameters: state=all&assignee=*
URL: https://api.github.com/repos/reduxjs/redux/issues/2244/comments

Redmine
URL: http://www.redmine.org/issues.json
Parameters: offset=60&limit=15
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StackOverflow
URL: https://api.stackexchange.com/2.2/users/458193/questions
URL: https://api.stackexchange.com/2.2/users/1376441/questions
Parameters: site=stackoverflow&pagesize=7&filter=withbody

GitHub comments had to be fetched separately as they were not part of the returned
data when fetching issues. It is only one set of comments for a specific issue that was
fetched from the above REST API.

For StackOverflow, we collected questions from two specific users that were present in
the issues in GitHub. This way we want to create a connection between the data set from
two different platforms and leverage the benefits of linked data.

Transformation script

The data collected from these sources were then run through a transformation script in
order enhance their JSON structure with special syntax to essentially convert them to
JSON-LD format.

JSON-LD is one of the serialization formats for RDF that provides syntax that offers
annotations for mapping JSON properties and values onto RDF concepts, like URI or triple
statements. It was chosen as it was the easiest way to semantically enhance an existing
JSON. The key annotations that were used in the transformation scripts were ’@context’,
’@id’, and ’@type’.

◦ @context: Used to map the properties of a JSON node to a URI

◦ @id: Used to uniquely describe the data encoded as JSON node, essentially by
providing a URI

◦ @type: Used to define the type of the JSON node

The role of the transformation script was to decorate the existing JSON data with these
annotations and also add further properties and object that were not present in the source
data set. Those were typically object properties that describe a predicate between things
and Relators.

Additionally, the transformation script generated a schema specific to the various plat-
forms that retained their respective labels. The schema is created via the annotation of
’@context’. Appendix A.1 contains a JSON object for a Redmine issue and Appendix A.2
shows the ’@context’ mapping of the object properties to URI.

The way our ontology was integrated into the data sets was to add subclass to the
transformation to be able to tell that a platform specific concept, created through the
schema defined in their respective ’@context’ annotation, is a subclass of a concept in our
model. For instance, a question in StackOverflow corresponds to ’Issue’ in our model, we
would model this relationship as <so:Question> <owl:subClassOf> <ito:Issue>. This
will prove to be useful for querying data where for instance we either want to retrieve all
issues or only issues from a certain platform.
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After the data has been decorated with the annotations as well as added with supple-
mentary objects and properties, it then was converted to an RDF format called N-QUAD
using jsonld library from https://github.com/digitalbazaar/jsonld.js. This step was needed
in order to open the resulting file in Protege since it cannot open JSON-LD formats.

Editing data source in Protege

The resulting transformation was then inspected in Protege for validity and correctness of
the transformation. Initially, the transformation mapped all the properties of the JSON-
LD objects that were not ’@id’ or ’@type’ as owl:AnnotationProperty. This had to be
changed since our ontology differentiates between what is a owl:DatatypeProperty and
what is a owl:ObjectProperty. Thus the transformation script had to be revised based on
these findings.

When all issues regarding the transformation have been resolved, our ontology was then
imported to the active ontology of the transformed data set. This process will unify the
URI of our ontology stated in the transformed data set with our own ontology to provide
it with further information such as the range and domain of the properties as well as
additional information about the hierarchy of the types.

This combined ontology was then subsequently exported into a RDF/XML format in
order to upload to GraphDB. The process from transforming the data set to uploading to
GraphDB was done multiple times for each data set retrieved.

Querying in GraphDB

The last part of the evaluation process was querying upon the data set created through
the previous steps. Here we want to see whether the data sets behave according to our
ontology and how powerful the ontology is in querying data across different platforms. The
result set of the queries can be found in Appendix C.

All reporters and their username

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ito: <http://onto.fel.cvut.cz/ontologies/issue_tracking_ontology#>

SELECT DISTINCT ?reporter ?username {

?reporter rdf:type ito:Reporter.

?reporter ito:username ?username.

}

This query returns user URIs and their associated username who are of type ’Reporter’.
Since the prefix uses our ontology, it is able to retrieve all ’Reporter’ users. If we want to
retrieve ’Reporter’ from specific platforms, we need to specify a different prefix that refers
to the ontology of the specific platform. For instance, if we want retrieve ’Reporter’ from
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6.2. Integration

StackOverflow, we add PREFIX so: <http://onto.fel.cvut.cz/issue_tracking/stack

overflow#> and change the query to ?users rdf:type so:Owner since in StackOverflow,
’Owner’ corresponds to ’Reporter’ in our ontology with so:Owner being its subclass.

All issues reported by a user

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX ito: <http://onto.fel.cvut.cz/ontologies/issue_tracking_ontology#>

SELECT DISTINCT ?issue {

?issue ito:isreportedby ?assignee.

?assignee

(owl:sameAs|^owl:sameAs)*

<http://onto.fel.cvut.cz/issue_tracking/stackoverflow/user/458193>.

}

This query returns URIs of all issues that are reported by a user that is identified by URI
<http://onto.fel.cvut.cz/issue_tracking/stackoverflow/user/458193>. In addi-
tion to that, it also returns all issues that have been made by him but under a different
URI. Therefore if that user had an instance in a different platform that reported an issue,
it will be shown the result set.

RM and SO ’issues’ reported between 01.01.2014 and 28.10.2018 and
their reporter’s username

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ito: <http://onto.fel.cvut.cz/ontologies/issue_tracking_ontology#>

PREFIX rm: <http://onto.fel.cvut.cz/issue_tracking/redmine#>

PREFIX so: <http://onto.fel.cvut.cz/issue_tracking/stackoverflow#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?issue ?dateIssueReported ?username {

?issue rdf:type ?type.

?issue ito:dateIssueReported ?dateIssueReported.

?issue ito:isreportedby ?reporter.

?reporter ito:username ?username.

FILTER(

(?dateIssueReported < "2018-10-28"^^xsd:dateTime) &&

(?dateIssueReported > "2014-01-01"^^xsd:dateTime)

).

VALUES (?type) { (rm:Issue) (so:Question) }.

}
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6. Model evaluation

This query is meant to illustrate the degree of complexity for retrieving specific records
from a triple database. It essentially returns URIs all Redmine issues that have been
reported before November 2018. Through the VALUES keyword from SPARQL, we can
extend the query to return issues from other platforms. Of course, if we desire to query all
the available issues instead of the platform specific one, we specify the object of rdf:type
to be ito:Issue which is the superclass for rm:Issue and so:Question.

6.3 Assessment

The quality of the data set depends on the richness of expression the underlying ontology
can provide. The simplicity of the ontology lends itself to cover many data sets concerning
issues. It succeeds in annotating data in conventional issue tracking systems but beyond
that, through this evaluation process we were also able to partially cover the platform
StackOverflow that although not regarded as an issue tracking system, shares similar data
structure to them.

However, because of its simplicity, compromises had to be done. This ontology lacks a
vocabulary for issue priority and status types, therefore it is not able to gather different
terms for status or priority types under a common, unifying term. For instance, it will
describe an issue status type as ’Fixed’ or ’Done’ differently even if they semantically could
mean the same. This is also an issue for creating a common term for the multitude of tags
that can be put on issues. Nevertheless, the problem with creating all-encompassing term
for status and priority types as well as tags is with issue tracking systems whose adminis-
trators can create custom labels and have their semantic meaning that is not documented
publicly.

Another such compromise was the omission of the notion of comment threads with
replies or sub-comments which can produce less information about discussions regarding
an issue. For common issue tracking systems, this would not be a large problem, at most
impacting the flow of comments. However, the lack of such concepts creates a structural
issue when modeling StackOverflow data since its ’answers’ to a ’Question’ can be inter-
preted as comments. However, these ’answers’ have comments on their own. Therefore
this ontology would encounter difficulties when adding the ’answers’ portion to the Stack-
Overflow data set.

Furthermore, the testing playground was also very limited due to inaccessibility to
more different platforms to test the ontology. During the analysis of issue tracking sys-
tems, some of their data displayed interesting structure that would perhaps challenge the
implementation of the transformation script and thus indirectly the ontology itself.
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Chapter 7

Conclusion

The field of ontology has a promising future in front of it. As the society becomes more
data-driven, the need for structured, machine-readable and machine understood data is
increasing evermore. By creating an ontological model for issue tracking, we are able to
connect the fragmented data all over the net together and construct a knowledge base
whose information and knowledge hidden in the web of data left to be uncovered.

This work examined the current situation status of disjointed systems over various
platforms and described how applying an ontological blueprint could remedy this prob-
lem. We elaborated upon the significance of ontology in software development and how it
can create connections between data spread all over the world. We then proceeded onto
describing the ways with which we can build such a blueprint. The environment used to
create the model provides a great conceptualization framework and toolkits upon which
we can model. With this knowledge at hand, the result of this work is a simple ontological
model for issue tracking that is able to capture a decent amount of information through a
small data set.

Future work on the topic would be refining the OntoUML model to capture more
similarities between different structures whilst trying to avoid eventual sacrifices in gener-
alization. As discussed in the assessment of the model, the drawback of the created model
is its simplicity. Whilst it is able to annotate a data from a wide variety of differing plat-
forms, it is not able to crate more complex and perhaps interesting links and inferences
about the underlying data set. The set of all possible information on issue tracking remains
yet to be fully uncovered. By making this ontology accessible to the public, people from
different backgrounds can collaborate, offer inputs and share their knowledge for refining
the ontology.

Finally, the generated OWL ontology from the model needs to be uploaded onto a
public domain, so that potential domain designers can start annotate their data with the
ontology, a step towards a data-connected infrastructure.
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Appendix A

Alloy visual simulation

A.1 Consistent world generated by Alloy

Figure A.1: Consistent world generated by Alloy.
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Appendix B

Example JSON-LD mapping

B.1 Redmine issue in JSON

{
"id": 29889,

"project": { "id": 1, "name": "Redmine" },
"tracker": { "id": 2, "name": "Feature" },
"status": { "id": 1, "name": "New" },
"priority": { "id": 4, "name": "Normal" },
"author": { "id": 107353, "name": "Marius BALTEANU" },
"assigned_to": { "id": 107353, "name": "Marius BALTEANU" },
"category": { "id": 10, "name": "UI" },
"subject": ...,

"description": ..,,

"created_on": "2018-10-31T21:28:33Z",

"updated_on": "2018-11-05T05:14:22Z"

}

B.2 JSON-LD @context mapping for Redmine issue

{
"@context": {

"id": "<base URI >/ redmine/issue#id",

"subject": "<base URI >/ redmine/issue#subject",

"category": "<base URI >/ redmine/issue#category",

"status": "<base URI >/ redmine/issue#status",

"priority": "<base URI >/ redmine/issue#priority",

"created_on": {
"@id": "<base URI >/ redmine/issue#created_on",
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B. Example JSON-LD mapping

"@type": "<base URI >/ XMLSchema#dateTime"

},
"updated_on": {

"@id": "<base URI >/ redmine/issue#updated_on",

"@type": "http://www.w3.org/2001/XMLSchema#dateTime"

},
"description": "<base URI >/ redmine/issue#description",

"Issue": "<base URI >/ redmine#Issue",

"coveredby": "<base URI >/ redmine/issue#coveredby",

"createdthrough": "<base URI >/ redmine/issue#createdthrough

",

"fallsunder": "<base URI >/ redmine/issue#fallsunder",

"isreportedby": "<base URI >/ redmine/issue#isreportedby",

"producedby": "<base URI >/ redmine/issue#producedby"

}
}

The last six JSON properties had to be added to the original JSON data and since
some of these properties rely on the existence of Relators, these also had to be created to
generate a valid JSON-LD format that reflects the created ontology.

The structure for the URI differ depending on the whether the JSON property encodes
a type of a thing or whether it encodes its properties. Type here means whether the JSON
object is an ’Issue’, ’User’ etc., essentially representing the Kinds and to a certain extent
the Roles of our model.

◦ Types: <base URI>/<platform>#<Type>

◦ Property: <base URI>/<platform>/<type>#<property>

◦ Instances: <base URI>/<platform>/<type>/<ID value>
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Appendix C

Result set of SPARQL queries

These are the results sets of the SPARQL queries shown in chapter 6. The dataset and
further queries can be found in the attached CD.

Namespaces1:

◦ gh_instance: <http://onto.fel.cvut.cz/issue_tracking/github/>

◦ rm_instance: <http://onto.fel.cvut.cz/issue_tracking/redmine/>

◦ so_instance: <http://onto.fel.cvut.cz/issue_tracking/stackoverflow/>

C.1 All reporters and their username

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ito: <http://onto.fel.cvut.cz/ontologies/issue_tracking_ontology#>

SELECT ?reporter ?username {

?reporter rdf:type ito:Reporter.

?reporter ito:username ?username.

}

assignee username
1 gh_instance:user/1128784 markerikson
2 gh_instance:user/810438 gaearon
...
9 rm_instance:user/107353 Marius BALTEANU
10 rm_instance:user/352642 Cuong Nguyen
...
21 so_instance:user/458193 Dan Abramov
22 so_instance:user/1376441 Johannes Lumpe

1the namespacing is not proper PREFIX syntax of SPARQL, as it cannot resolve paths. It is used here for
shortening the URI of the result sets.
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C. Result set of SPARQL queries

C.2 All issues reported by a user

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX ito: <http://onto.fel.cvut.cz/ontologies/issue_tracking_ontology#>

SELECT ?issue {

?issue ito:isreportedby ?reporter.

?reporter (owl:sameAs|^owl:sameAs)* <so_instance:user/458193>.

}

issue
1 gh_instance:issue/208087614

2 gh_instance:issue/84239257

3 gh_instance:issue/85098222

4 gh_instance:issue/88862407

5 gh_instance:issue/89385026

6 gh_instance:issue/95917263

7 so_instance:question/12939321

8 so_instance:question/22501428

9 so_instance:question/24581873

10 so_instance:question/26566317

11 so_instance:question/6331075

12 so_instance:question/7718684

13 so_instance:question/9245030

C.3 RM and SO ’issues’ reported between 01.01.2014 and
28.10.2018 and their reporter’s username

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ito: <http://onto.fel.cvut.cz/ontologies/issue_tracking_ontology#>

PREFIX rm: <http://onto.fel.cvut.cz/issue_tracking/redmine#>

PREFIX so: <http://onto.fel.cvut.cz/issue_tracking/stackoverflow#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?issue ?dateIssueReported ?username {

?issue rdf:type ?type.

?issue ito:dateIssueReported ?dateIssueReported.

?issue ito:isreportedby ?reporter.

?reporter ito:username ?username.

FILTER(

(?dateIssueReported < "2018-10-28"^^xsd:dateTime) &&
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C.3. RM and SO ’issues’ reported between 01.01.2014 and 28.10.2018 and their
reporter’s username

(?dateIssueReported > "2014-01-01"^^xsd:dateTime)

).

VALUES (?type) { (rm:Issue) (so:Question) }.

}

issue dateIssueReported username
1 rm_instance:issue/29855 ”2018-10-27T06:46:28Z” Yutaka Hara
2 rm_instance:issue/29849 ”2018-10-26T02:00:45Z” Cuong Nguyen
3 rm_instance:issue/29853 ”2018-10-26T18:47:11Z” Vitaly Krivenko
4 so_instance:question/22501428 ”2014-03-19T09:32:09.000Z” Dan Abramov
5 so_instance:question/24581873 ”2014-07-05T00:13:56.000Z” Dan Abramov
6 so_instance:question/26566317 ”2014-10-25T19:22:49.000Z” Dan Abramov
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Appendix D

Attachments

D.1 CD

The attached CD contains files that were created and used during this work. The files are
mainly different representations of the ontologies that were generated during the course of
this work. These files can be opened in an ontology editor such as Protege. Additionally
RDF files can be uploaded to a triple store where they can be queried upon using SPARQL.
Sample SPARQL queries can also be found in the CD.
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