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Abstract
This thesis has as a goal to introduce basic
concepts of signal processing and motion
tracking together with construction and
programming of a real working measuring
device. Specifically maximum likelihood
estimation, data acquisition and process-
ing of signals from accelerometer and gy-
roscope. It describes common types of
sensors, explains their inner workings and
in the practical part uses gained informa-
tion to integrate them into a process of
trajectory estimation successfully. It also
lays a basis for possible further research
and sets a direction for possible improve-
ments of implemented estimators.

Keywords: estimation, ML, motion,
accelerometer, gyroscope

Supervisor: Prof. Ing. Jan Sýkora,
CSc.

Abstrakt
Cílem práce je seznámení se základními
pojmy zpracování signálu a sledování po-
hybu společně s konstrukcí a naprogra-
mováním reálného měřícího zařízení. Kon-
krétněji uvádí aplikace maximálního od-
hadu pravděpodobnosti a popisuje zpra-
cování signálů ze senzorů mechanického
pohybu. Představuje běžné typy snímačů,
vysvětluje jejich vnitřní fungování a v
praktické části využívá získané informace
k jejich úspěšnému začlenění do procesu
odhadování trajektorie. Rovněž vytváří zá-
klad pro případný další výzkum a stanoví
směr pro případné zlepšení implemento-
vaných odhadů.

Klíčová slova: estimace, ML, pohyb,
accelerometr, gyroskop

Překlad názvu: Identifikace, detekce a
estimace parametrů fyzického pohybu
měřeného sítí senzorů.
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Chapter 1
Introduction

As our technological capabilities progress and electronic devices getting smaller
and cheaper, personal motion and fitness tracking devices are progressively
more common. The primary motivation of this thesis is to look at what
obstacles we will face when attempting to create one of such devices from the
standpoint of signal processing. We will be focussing primarily on trajectory
estimation. We will use data from three-axis accelerometer and three-axis
gyroscope fixed on an object moving in a testing trajectory. In most cases, the
raw output of motion tracking sensors is not of sufficient quality for immediate
use and have to be revised in various ways according to its applications. It is
common that sensor we are given has imperfections caused by manufacturing
defects of the measuring apparatuses and low quality of electronic components
controlling them. The goal of this thesis is to investigate how these devices
work, how to compensate for their inadequacies and subsequently we will try
to apply basic maximum likelihood estimators to mitigate the inaccuracies in
our signals. However, first, we will get acquainted with internal construction
and workings of used sensors and basic concepts of signal estimation.
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Chapter 2
Theoretical part

2.1 Accelerometers

Accelerometers are mechanical or electromechanical devices, which measures
acceleration experienced by an object due to static or dynamic forces acting
on it. Static forces include gravity, while dynamic forces include vibrations
and movement. There are several types of accelerometers available based on
different physical phenomena.

2.1.1 Strain gauge accelerometer

This type of accelerometer was one of the first commercially used. The
discovery of the strain gauge is independently credited to both A. Ruge,
Massachusetts Institute of Technology (MIT), April 3, 1938, and E. Simmons,
Caltech, September 1936 [1]. This type of sensor is composed of a cantilever
which is mounted onto the casing on one end, a reference mass attached to the
other free end and bounded strain gauges mounted on the cantilever beam.
Usually, the housing is filled with a viscous fluid to provide damping, for
increasing their usable frequency response and, at the same time, decreasing
their fragility. When the sensor is subjected to acceleration, the inertia of the
mass will cause the cantilever to flex, which subsequently causes deformation
in the strain gauges and proportional change of their resistance, which can
be measured as a change of voltage on the output. Figure 2.1 illustrates
the device. Frequency constraints of these sensors limit their application in
measuring high-frequency vibrations and short duration impulses. Also, use
of dumping fluid makes them temperature sensitive.

3



2. Theoretical part ...................................

Figure 2.1: Strain gauge accelerometer design [8]

2.1.2 Piezoelectric accelerometer

Demand for a sensor which can handle high g overload, have flat frequency
response to high values and high-temperature range, satisfies piezoelectric
accelerometer. It has no moving parts. They came into commercial use in
the late 1940s and early 1950s. In 1880 Pierre Curie & Gaybriel Loppmann
discovered that when a force is applied onto a crystal of tourmaline, quartz
or topaz, the electric charge appears on them [10]. The piezoelectric material
consists of atoms with positive and negative charges, called ions. Molecules
containing these ions have non-zero electric dipole moments. Areas, where
the dipoles have same orientations, are called domains. These domains are
non-centrosymmetric, i.e., lacking a center of symmetry[10]. In normal cir-
cumstances, these domains, have random direction, but when force is applied,
the deformation of the crystal structure causes the non-centrosymmetric
domains to move, that leads to net movement of the positive and negative
ions with respect to each other and results in a polarisation of the crystal.
Because of this process, uncompensated opposite bounded charge at the ends
of the crystal, proportional to the force applied, will appear. This charge is
then converted into a usable voltage signal. Piezoelectric sensors are better
suited for dynamic measurements such as vibrations, but with additional
signal conditioners, they can measure static accelerations.

2.1.3 MEMS accelerometers

Micro-ElectroMechanical Systems (MEMS) were first proposed in the 1960s,
but not commercialized until the 1980s. [11] The idea was to make tiny
mechanical systems, which could be connected to other electronics directly on
the same chip. These structures are created using the same photolithography
techniques as an integrated circuit. Because of that MEMS sensors are
smaller, lighter and cheaper. This type of sensor works similarly to those
mentioned before. It includes a moving element with a specified mass,
which, due to force applied, will shift relative to the outer structure. This
displacement is proportional to external acceleration, which can be measured
by several methods. They are based on piezoelectric, capacitive, piezoresistive,
optical, and electromagnetic principles. Capacitance-based accelerometers

4



..................................... 2.2. Gyroscopes

are, however, the most successful and popular mechanism in the MEMS
domain due to the relatively simple design and passive operation. They could
be used as both sensors and actuators. The method of sensing used, change
of capacitance, is insensitive to temperature changes. Also, it is independent
of the base material. A differential capacitance readout circuit is usually used.
The capacitance is counted with respect to both of the sides of the moving
structure, shown on the figure 2.2. The motion increases the capacitance of
capacitor on one side and simultaneously decreases the capacitance of the
other. As a result, it is possible to maintain the output signal linearity and to
ensure noise compensation, which allows tiny displacements (within fractions
of a nanometre) to be detected.

Figure 2.2: Simplified workings of a capacitance accelerometer. [9]

2.2 Gyroscopes

Gyroscopes are devices, which can sense and measure angular velocity. Many
types of gyroscopes exist, depending on physical principle on which they
operate. We have mainly mechanical gyroscopes, optical gyroscopes and
Micro-electromechanical system (MEMS) gyroscopes.

2.2.1 Mechanical gyroscopes

The primary effect on which a gyroscope relies is that an isolated spinning
mass tends to keep its angular position stable with respect to an inertial
reference frame. Rotational movement can then be sensed from a relative
variation of the angle between the rotation axis of the mass and a fixed
direction on the frame of the gyroscope.

2.2.2 Mechanical rate gyroscopes

This type of gyroscopes measures the velocity of angular motion. When is
gyroscope rotating around z-axis and angular velocity in the direction of
x-axis is imposed on it, a proportional torque in y-axis appears. By restricting
the movement of the spinning structure with a spring, with known stiffness,
we can measure the imposed angular speed, by measurement of the angle
assumed by the gyroscope in an xz plane.

5



2. Theoretical part ...................................
2.2.3 Optical gyroscopes

The underlying operating principle of almost all optical gyroscopes is the
Sagnac effect. The Sagnac principle, states that two counter-propagating
optical beams propagating in a ring structure change their relative phase,
if the ring is rotating, thus it is possible to relate the phase change to the
angular speed of the ring. This phenomenon named after French physicist
Georges Sagnac, manifests itself when two light beams are made to follow
the same path, but in opposite directions. This can be achieved by series of
mirrors or fiber optics. If the optical closed loop is rotating, the interference
fringes are displaced compared to those measured in a loop at rest. The
amount of displacement is proportional to the angular velocity of the loop.
The effect is caused by different times it takes each beam to make the distance
needed. The times can be expressed as

t± = 2πr ± rΩt±
v

.

Where t+ time taken by beam propagating in the direction of rotation, t−
time taken by beam propagating against the direction of rotation,Ω is angle
velocity of the rotation and v is speed of light. Hence the times are

t± = 2πr
v ± rΩ .

It follows, that the time difference ∆t will be

∆t = t+ − t−

= 2πr
v − rΩ −

2πr
v + rΩ

= 4πr2Ω
v2 − r2Ω2 .

Because usually v � r2Ω2 then

∆t = 4AΩ
v2 .

Where A is area of the closed loop. Phase difference ∆φ can be obtained as

∆φ = Ω∆t

= 2π∆t
T

= 2π∆t
λ
v

= 2πv
λ

4AΩ
v2

= 8πAΩ
vλ

.

Where λ is wavelength of light.

6



..................................... 2.2. Gyroscopes

2.2.4 MEMS gyroscopes

MEMS gyroscopes generally use a vibrational movement of a mechanical
element for detection of angular velocity. They are doing so, by sensing
Coriolis force given by following formula.

FC = −2mω × v (2.1)
It can be demonstrated on a situation depicted in figure 2.3. On the first

picture where τ = t0, we have a red ball at the center of a disk with a diameter
of r, rotating with an angular velocity of ω and a target at the edge. At time
τ = t0 the ball will start to move with a speed of v in the direction pointed
to the target. On the picture, b) τ = t we see that the ball reached the edge
of the disk at a point where the target used to be. From the point of view of
spectator situated outside the rotating disk, in the time t the ball traveled
in the straight line, and a target moved the distance ∆s which corresponds
with a change in angle ∆ϕ

∆s = r∆ϕ = rωτ = vωτ2. (2.2)

rr rr

v
! !

∆'
∆s

a) b)

Figure 2.3: Illustration of Coriolis force

From the view of a spectator at the center of rotating disk everything
else, apart from the disk and target, is rotating in the opposite direction
with angular velocity ω. The movement of the ball is not in a straight line
anymore. Instead, it is moving along a curve, and the ball leaves the disk
with a deflection from the target ∆s. Newton’s first law of motion states that
every object in a state of uniform motion tends to remain in that state of
motion unless an external force is applied to it. So that means that some
force, perpendicular to the balls motion had to influence its trajectory. Let
us mark it as FC , then following statement holds true.

∆s = 1
2
FC
m
τ2 (2.3)

Because for both spectators the ball has to end up in the same point in space,
both distances from equation 2.2 and 2.3 have to be equal.

vωτ2 = 1
2
FC
m
τ2 (2.4)

FC = 2mωv (2.5)

7



2. Theoretical part ...................................
We derived formulation for a magnitude of Coriolis force when the angle
between vectors v and ω is π

2 . We can establish ω as a vector quantity and
arrive at the expression 2.1. In the case of the gyroscopic sensor, the direction

rr rr

v

!

∆
s

a) b)

!

Figure 2.4: Illustration of Coriolis force

of Coriolis force will be orthogonal to both angular velocity ω and movement
of the vibrating structure v. For known vibrational velocity of the structure,
this force will cause a displacement proportional to the angular velocity of
the gyroscope. Displacement magnitude can be sensed by several methods,
including capacitance change between moving and a stationary part of the
sensing apparatus.

2.3 Trajectory

The subject of this work is to estimate a trajectory of physical movement using
accelerometers and gyroscopes. For that, we will need to be able to convert
3-axis acceleration and rotation data to x, y, z coordinates of individual points
in the space of trajectory travelled. Acceleration is a change of velocity across
a given time.

dv

dt′ = a (2.6)

dv = adt
′ (2.7)∫

dv =
∫ t

t0
adt

′ (2.8)

v
1= a(t− t0) + v0 (2.9)

8



...................................... 2.3. Trajectory
The equality in (2.9) holds true given a = const for ∆t = t− t0. Than with
the same process we obtain s(t).

ds

dt′ = a(t− t0) + v0 (2.10)∫
ds =

∫ t

t0
(a(t− t0) + v0)dt′ (2.11)

s(t) = 1
2a(t− t0)2 + v0(t− t0) + s0 (2.12)

For expression 2.12 same equality condition holds true as in 2.9. This will
be our equation for trajectory calculations. The rotational motion can be
expressed by rotational matrices. For clarity of explanation, let us take just
two-dimensional case. Lets suppose that we have complex number z = a+ ib.
It can be represented in the complex plane as a point with its real and
imaginary part constitutes its coordinates on real and imaginary axes. If we
want to rotate this number by some angle α. We could multiply z by complex
exponential ejα, which can be rewritten as

ejα = cos(α) + i sin(α),

ejα(a+ ib) = cos(α) + i sin(α)(a+ ib) (2.13)
= [a cos(α)− b sin(α)] + i [a sin(α) + b cos(α)] . (2.14)

Now, if we profess the real and imaginary part as x a y coordinates. We can
perceive this as a "yaw" - a rotation around z-axis. Rewritten in a matrix
form [

cos(α) − sin(α)
sin(α) cos(α)

] [
a
b

]
.

Because "yaw" doesn’t affect z-axis, for 3D case the expression can be modifiedcos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


xy
z

 .
Similar process can be applied for the remaining x and y axes. Resulting in
"roll" and "pitch" matrices.

Rx =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 , Ry =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 ,

Rz =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


Rotation of a point A = [Ax, Ay, Az] in 3D space by angles α, β, γ would

then look as follows xy
z

 = RxRyRz

AxAy
Az

 .
9



2. Theoretical part ...................................
2.4 Estimation

2.4.1 Introduction

On paper or in mathematical equations we can control what data or signal
we will work with and creating ideal circuits with which we will manipulate
those entities. But in a real world, we, unfortunately, do not have such a
luxury. Because atoms, from which everything in our world is composed,
including electrical devices, are always in motion, if not cooled to T = 0K,
every signal we send or receive will be corrupted with noise caused by this
motion. Another big source of noise is our sun, which ceaselessly bombards
our planet Earth with charged particles interfering with our signal and devices
working with them. That means that we can no longer count on receiving
the same signal we have sent, we are unable to know and predict all the
influences and contaminants our signal encounters, and therefore, we can no
longer predict how exactly it will look like. We can only try to collect as
much information as we can about the signal and medium through which
it propagated and based on its quantity and quality; we can try to guess
parameters of the received signal.
This is where estimation theory comes into play. One example of estimation
problem can be radar.

2.4.2 Radar

When we need to know the presence and position of an object, we send an
electromagnetic pulse of known length and frequency. The potential object
then reflects this pulse and an echo is detected by our antenna τ0 seconds
later. From the equation τ0 = 2R

c we can then determine probable position
of the object. Because only a small part of our signal will hit the object
and even smaller will make it back to our antenna, the echoed signal can be
significantly decreased in amplitude, the estimation problem can become very
difficult. Very same principles are used with sonar. There are two types of
sonar technology. Passive sonar is just a microphone listening for the noises
in the environment. Active sonar is very similar to radar, by using its own
sound signal often called a "ping." Needed information is then estimated from
the parameters of the echo.

In all these applications we are faced with a need to extract a value of
parameters based on our signals. Because we will work with digital computers
we will model our data set as vector x [n] , n = 0, 1, ..., N − 1 dependent on
an unknown parameter θ.
In the process of building and estimator, one of the first steps is to model our
data mathematically. Because of its random nature, we will do so with prob-
ability density functions (PDFs). We must choose a PDF which is consistent
with the problem and mathematically tractable.

10



.................................... 2.5. Linear Models

2.4.3 Example: DC level

Let us suppose that we measure a constant DC voltage A, with a digital
voltmeter. Its output will be vector x [n] , n = 0, 1, ..., N − 1 of values,
contaminated with noise imposed on them by the voltmeter. This noise
is a random variable we must define by some PDF. We will model it as a
white Gaussian noise (WGN), this assumption is justified by the need of
constructing a tractable model so that that closed-form estimators can be
found. Because of its tractability, WGN is usually chosen whenever it is
possible unless there is strong evidence to the contrary. So our data looks as
follows

x [n] = A+ w[n]. (2.15)

where samples w[n] have a normal distribution N (0, σ2) with zero mean and
variance σ2

p(x[n]|A) = 1√
2πσ2

exp
(
− 1

2σ2 (x[n]−A)2
)
. (2.16)

So our data is defined as deterministic value with stochastic variable modelled
by its PDF. But lets say that the true voltage is variable in time to a minor
extent. We do not know what is the exact development of such signal. We
can incorporate a prior knowledge and model it as a random variable with
its own PDF. Such an approach is termed Bayesian estimation. Then the
estimate of θ is taken as a realization of a random variable. This type of
model would be described with joined PDF.

p(x, θ) = p(x|θ)p(θ) (2.17)

Where p(x|θ) is conditional PDF, which sets the probability of x conditioned
by prior knowledge of θ and p(θ) is the distribution of θ.

2.5 Linear Models

This class of data models greatly simplifies finding an optimal estimators. In
matrix notation the model is written as

x = Hθ +w,

where H is a known matrix called observation matrix and the w vector has
the statistical characterization w ∼ N (0, σ2I).

2.6 Maximum Likelihood estimator

Maximum likelihood (ML) estimator has a goal to find the input value in
stochastic input-output model, that maximizes the probability of observed
output. In another words for a given fixed output, it varies potential inputs
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2. Theoretical part ...................................
p(xjθ̌3)p(xjθ̌1)

p(xjθ̌2)

x x

p(xjθ̌)

Figure 2.5: ML estimator principle.

and chooses the one that maximizes the probability of receiving said output.
As a metric it has a stochastic input-output model.

p(x|θ̌)

Criterion of ML estimator 2.18 is directly related to the observation model.
This type of estimator, is overwhelmingly the most popular approach to
obtaining practical estimators.

θ̂ = arg max
θ̌

p(x|θ̌) (2.18)

2.6.1 Maximum likelihood estimator in Linear AWGN
observation

For linear AWGN observations where x = Hθ +w where H ∈ CN×L, L <
N and w ∼ N (0,Cw). ML estimator has a relatively straightforward
implementation. Lets begin with PDF of Gaussian noise, given by 2.19.

pw(w) = 1
π det(Cw) exp(−wHC−1

w w). (2.19)

Where Cw = E
[
wwH

]
is covariance matrix. As mentioned before, ML

estimator is maximizing likelihood function p(x|θ̌). This will be achieved by
common method of finding the extreme of a function by taking a derivative a
making it equal to zero. The same result will be obtained by maximizing a
log-likelihood function ln p(x|θ̌). Final result wont change because ln(x) is
strictly increasing function.

θ̂ = arg max
θ̌

p(x|θ̌)

= arg max
θ̌

ln p(x|θ̌)

= arg max
θ̌

ln p(x−Hθ) (2.20)

Log-likelihood function will have following form

ln p(x|θ̂) = − ln πN det(Cw)−
[
(x−Hθ)H C−1

w (x−Hθ)
]
. (2.21)
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.............................2.6. Maximum Likelihood estimator

Next we will make derivative, but we have to be careful because we do not
know if our function satisfies Cauchy-Riemann equations and use generalized
derivative.

∂̃

∂̃θ
p(x|θ) = ∂̃

∂̃θ

[
(x−Hθ)H C−1

w (x−Hθ)
]

(2.22)

After the derivation and simplification of 2.22 we get

∂̃

∂̃θ
p(x|θ) = −

(
−
(
xHC−1

w H
)T

+
(
HHC−1

w H
)T
θ∗
)
.

Now for locating the maximum we set ∂̃
∂̃θ
p(x|θ)

∣∣∣
θ=θ̂

= 0,

θ̂ =
(
HHC−1

w H
)−1

HHC−1
w x. (2.23)

As a result we get nice compact implementation of ML estimator 2.23.
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Chapter 3
Practical part

3.1 MPU-9250

Figure 3.1: MPU-9250 on a breakout board

Throughout our experiments, we will be working with an MPU-9250 sensor
from InvenSense shown above on image 3.1. It is a multi-chip module (MCM)
consisting of two dies integrated into a single QFN package. One die houses
the 3-axis gyroscope and the 3-axis accelerometer. The other die houses the
AK8963 3-axis magnetometer from Asahi Kasei Microdevices Corporation.
Hence, the MPU-9250 is a 9-axis MotionTracking device that combines a
3-axis gyroscope, 3-axis accelerometer, 3-axis magnetometer and a Digital
Motion Processor.[3] It has 16-bit analog-to-digital converters for digitizing
the outputs of individual sensors. For precise measuring of both fast and slow
movements, we can choose from several user-programmable ranges.

3.1.1 Accelerometer sensitivity ranges

Range LSB/g
±2g 16384
±4g 8192
±8g 4096
±16g 2048
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3. Practical part.....................................
3.1.2 Gyroscope sensitivity range

Range LSB/(◦/s)
±250 131
±500 65.5
±1000 32.8
±2000 16.4

Where LSB stands for Least significant bit. Note that with the increasing
range the precision of the sensor decreases. For our experiments, we will
mostly use the ±2g range, if not stated otherwise.

3.1.3 Measuring equipment

Measuring device we constructed for this purpose is composed of three main
parts. The primary part of the apparatus is Arduino Uno, a microcontroller
board based on the ATmega328P connected to an MPU-9250 sensor on a
breakout board. Wiring between the boards is displayed in figure 3.2.

Figure 3.2: Wiring between Arduino Uno and MPU-9250 [6]

It communicates with a previously mentioned MPU-9250 sensor via I2C
protocol on its pins A4 and A5 and interrupt pin connected to digital pin
2. The third part of our device is a micro SD card module. The connection
between Arduino and SD module is shown in figure 3.3. Their communication
is carried out by SPI protocol.

Figure 3.3: Wiring between Arduino Uno and SD card module. [7]
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.................................... 3.2. Sensor model

Sd card module will be used for data storage because average time between
read events with SD card module is about 5ms and we encountered troubles
with managing these transfer speeds via USB cable. Real photo of the created
device is shown in figure 3.4.

Figure 3.4: Arduino Uno connected to the sensor at the bottom, and SD card
module at the top.

Program in Arduino checks roughly every 5ms all three accelerometer and
gyroscope axes and stores their data in a text file on the SD card together
with information about time duration between each read event in milliseconds.
Data is stored in 7 columns. First three are accelerometer data for x, y
and z-axis second three for gyroscope data and seventh column is for time
information. This device will be used throughout this study for all experiments
including noise inspection and model construction, mentioned in following
sections, in addition to trajectory data measurement and storage.

3.2 Sensor model

Our goal is to try approximate a trajectory of general movement. But before
we even begin to think about an estimator, model of our working sensor has
to be made. As mentioned in the previous section 2.5 about linear models, it
would be advantageous, if our observation model was linear. For that to be
true, we need to fit our model into a form

x = Hθ +w.

We begin with a reflection on how model of our sensor can be most accurately
modelled. Generally, any sensor can display signs of non-linearity in its full
range of possible values due to manufacturing imperfections. By the same
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3. Practical part.....................................
cause, axes of the individual sensing apparatuses could be misaligned (not
have exactly 90◦ between each other), so the sensors could sense a fraction of a
value measured on one axis on remaining axes. We can model this effect by an
arbitrary function g(). An output of the sensor will most likely be combined
with noise. We will model this noise as additive white Gaussian noise and
hope reality will not deviate much significantly from this assumption. So
from this first contemplation, a preliminary model can be made.

x = g(θ(t)) + w (3.1)

3.2.1 Noise inspection

As a first step in verifying the validity of our presumed model, we will try to
inspect existence and nature of the noise. We will do so with static experiment.
For data acquisition, we use Arduino Uno, open-source microcontroller board
developed by Arduino.cc and all the data post-processing is done in MATLAB
software.
Thinking behind this experiment is that, if the sensor remains stationary
throughout the test, its output should be possible to interpret as constant
value A covered with WGN.

x[n] = A+ w[n]

Based on this assumption, the reasonable estimator of the constant A is

Â = 1
N

N∑
n=0

x[n]. (3.2)

Because for the mean of such estimator following statements holds true.

E
(
Â
)

= E

(
1
N

N∑
n=0

x[n]
)

= E

(
1
N

N∑
n=0

A+ w[n]
)

Then due to linearity properties of the expectation operator

= 1
N

N∑
n=0

E (A) + E (w[n]) .

When assumed Gaussian noise with N (0, σ2) then E (w[n]) = 0 and

E
(
Â
)

= A.

Meaning that on average this estimator will yield the true value. Subsequently,
this value can be subtracted from the data leaving remaining samples of WGN
with N (0, σ2). A sensor will be placed on a stable surface, it is also necessary,
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.................................... 3.2. Sensor model
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Figure 3.5: Noise with its calculated average value

that the sensor will not move throughout the experiment. Then sufficient
amount of data is collected. In our case 100000 samples. Figure 3.5 shows one
chosen signal and its average value. Consequently we can make a histogram
of remaining samples. In figure 3.6 there are histograms for each axis of
accelerometer and gyroscope.

Figure 3.6: Histograms from collected samples for each axis of accelerometer
and gyroscope.

From visual inspection of 3.6 we can indeed assume Gaussian noise. We
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3. Practical part.....................................
can assure ourselves of its whiteness by calculating autocorrelation function
of the data, which should be dirac at the zero shift. It seems reasonable to
assume, from figure 3.7, our measured noise as AWGN.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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-2

0

2

4

6

8

10

12

R
[n
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Figure 3.7: Autocorrelation function of collected noise.

3.2.2 Observation Matrix

The last remaining part of our observation model is the function g(). Note
that in this section we presuppose only translational movement and work
just with accelerometers. When looking at the datasheet for our sensor
(MPU-9250), we see that non-linearity of readings should be around ±0.1%.
It is then reasonable to assume the linear behaviour of the sensor without loss
of significant accuracy. Final part of our model is taking care of parameters
of the sensor like axis scaling, cross-axis talk, and permanent offset. For
determination of axis scaling a simple experiment comes to mind. Just setting
sensor on a flat surface and measuring if a = 1g is measured. But this is by
no means an accurate measurement because we can not know if the surface
on which the sensor is placed is truly level and therefore if the acceleration
we measure is not

a = g cos(α), where α 6= 0.

Even if we somehow ensure a true level of the surface, we still can not ascertain
if the sensor itself is mounted on its printed circuit board properly or how
sensing apparatuses are situated in the casing themselves. The inability of
precise determination of these parameters render any such experiment inac-
curate and calls for a different approach. After a consultation with engineers
from the department of measurements, all attempts for creating measuring
apparatuses such as centrifuges or free fall machines were abandoned for the
same problems of unknown inaccuracies of such constructions. In any given
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.................................... 3.2. Sensor model

time interval we will be given data from all three axes of the accelerometer.
Those can be modeled as

A = S(V−O). (3.3)
Where A is the true value and V is the outputted value. Parameters of our
interest can be modelled as a matrices S and O.

S =

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 ,O =

OxOy
Oz

 (3.4)

Where diagonal elements of S are scale factors along the three axes and the
other are representing cross-axis talks. The matrix O describes constant offsets
of each axis. if we take S matrix as symmetric (Sxy = Syx, Sxz = Szx, ...) we
then have nine unknown variables. If we construct nine or more equations
for those variables, we could try to derive them numerically.

3.2.3 Parameter optimization

In this process, we will use findings and methods found in [4], with slight
alterations. We will use the fact that in ideal state the modulus of the
acceleration, from all three axes, should be equal to gravity acceleration.√

a2
x + a2

y + a2
z = g

For computing the model parameters we, set our sensor in N ≥ 9 different
orientations (we chose N = 20). For each orientation we define an error ek
which is equal to the square difference between the modulus of measured
accelerations and g

ek = ax + ay + az − g2. (3.5)
Equation 3.5 can be rewritten as

ek =
∑

i=x,y,z

 ∑
j=x,y,z

[Si,j (Vj,k −Oj)]2
− g2, (3.6)

Vj,k are accelerometers output for the k-th orientation. All we need to do
next is to combine e2

k into a cumulative error function.

E(Sxx, Syy, Szz, Sxy, Sxz, Syz, Ox, Oy, Oz) =
∑N
n=1 e

2
k

N
(3.7)

Which gives us non-linear function of desired parameters. Be means of
minimizing function 3.7 with respect to S and O we should obtain parameters
which best fit our model in the least squares sense. As initial values we used
datasheet of our sensor displayed below in 3.1.

Sxxo Syyo Szzo Sxyo Sxzo Syzo Oxo Oyo Ozo

1 1 1 0.02 0.02 0.02 0 0 0

Table 3.1: Initial values for optimization.
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3. Practical part.....................................
As a minimazing function in MATLAB we use fminsearch. Results can be
seen in Optimisation.m file present in a list of attached MATLAB files. Graph
of iterative progress is illustrated in figure 3.8. Calculated values are in 3.2

Sxx Syy Szz Sxy Sxz Syz Ox Oy Oz
1.0928 1.0400 1.0893 0.0158 0.0108 0.0185 −158.9248 3.2768 26.2144

Table 3.2: Resulting values of optimization.

where Ox, Oy, Oz are converted to sensor data format (16384 instead of 1g)

0 50 100 150 200 250 300

Iteration

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

F
u
n
c
ti
o
n
 v

a
lu

e

Current Function Value: 0.00393043

Figure 3.8: Graph of iterational improvements of fminsearch function.

So our observation model is as followsaxay
az

 =

1.0928 0.0158 0.0185
0.0158 1.0400 0.0185
0.0185 0.0185 1.0893


−1 θ1

θ2
θ3

+

−158.9248
3.2768
−26.2144

+

w1,n
w2,n
w3,n

 . (3.8)
But this model works only for translational movement because it utilizes only
accelerometers and no gyroscopes so no rotational motion can be detected. If
we want to generalize our model for general motion in other words combination
of translation and rotation, we also need to create a model for our gyroscopes.

3.2.4 Gyroscope Model

Unfortunately, there is no definite natural usable constant or simple experi-
ment, as with accelerometers and gravitational constant, that would allow
us to determine parameters of a gyroscope simply. Nevertheless, from the
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................................. 3.3. Trajectory estimation

previous test described in section 3.2.1, we already know parameters of the
noise present in gyroscope readings. We can approximate constant offsets
of used gyroscopes with equation 3.2, where the constant A will represent
our offset. Because MEMS accelerometers (described in section 2.2.4) use
vibrations in their operation, they will be influenced by gravitational force
as well. To mitigate those shifts we collected 10000 samples for 10 different
random orientations and averaged them into one value. Resulting offset values
are displayed in 3.3.

Gyro X Gyro Y Gyro Z
50.22 −167.16 −155.86

Table 3.3: Calculated offset values of gyroscope.

For lack of means for finding out otherwise, we will assume zero crosstalk and
absolute linearity. So model of gyroscope sensor will have the following formωxωy

ωz

 =

1 0 0
0 1 0
0 0 1


θ4
θ5
θ6

+

 50.22
−167.16
−155.86

+

wxwy
wz

 . (3.9)

where θ4, θ5, θ6 are, in order, representing angle velocity in x, y, and z axis.
Now, when we have models of both sensors we can construct comprehensive
model for of acceleration.

An = RxRyRzθn (3.10)

where Rx,Ry,Rz are rotation matrices, θn vector of accelerations in all three
axes in n-th sample and A is final vector of acceleration.

3.3 Trajectory estimation

A vital part of finding a usable and preferable estimator is choosing a clear
way of accessing one’s performance. Given our goal, to estimate the real
trajectory of a moving object, our choice is obvious. We will compare correct
and estimated trajectory. MATLAB will be used for data processing and
plotting.

To transform accelerometer and gyroscope data to a trajectory, we will
use equation 2.12. For a discrete time and three-dimensional vector, we can
rewrite 2.12 to xnyn

zn

 = 1
2

θ1,n
θ2,n
θ3,n

 t2n +

v1,n
v2,n
v3,n

 tn +

xn−1
yn−1
zn−1

 . (3.11)

On the left side we have coordinates of a new calculated position θ1,n, θ2,n, θ3,n,
represents acceleration in x, y, z in time n, v1,n, v2,n, v3,n are velocities in time

23



3. Practical part.....................................
n and xn−1, yn−1, zn−1 are coordinates of a point of position in space in time
n− 1. Velocities will be calculated from modified equation 2.9v1,n

v2,n
v3,n

 =

θ1,n
θ2,n
θ3,n

 tn +

v1,n−1
v2,n−1
v3,n−1

 . (3.12)

As initial conditions for position and velocity, we will choose

x1,0
y2,0
z3,0

 =

0
0
0

 ,
v1,0
v2,0
v3,0

 =

0
0
0

 .
We will use two trajectories whose parameters are known, as a reference. In
the scope of this work, we will focus solely on a two-dimensional trajectory,
for the sake of available time and resources. Models and equations will be
constructed and stated for a three-dimensional case nonetheless. Square with
side 0.6 m long and a circle with a radius of r = 0.22 m. For reproducibility
of the experiment, we will construct guiding apparatuses for each trajectory.
For a square, we chose a wooden frame and a box into which sensor will be
secured, and guide it through corners. The centrifuge will be constructed
for a circular trajectory, ensuring strictly circular path. Both constructions
are shown on the figure 3.9. Square will test quick changes in acceleration

(a) Square trajectory (b) Circle trajectory

Figure 3.9: Constructed guiding structures

and circle cooperation between the two sensors. These will be our references
for ideal trajectories. Because these are two-dimensional movements, with
the intention of zero movements in the z-axis, we will substitute samples of
z-axis acceleration with zeros. Because our sensor cannot distinguish between
gravitational acceleration, we would have to subtract 1g of acceleration from
the z-axis, and if rotational movement along x or y-axis were present, we
would have to track these changes and dynamically adjust our compensation.
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................................. 3.3. Trajectory estimation

This introduces an excess problem which is beyond the scope of this study.
Let us first plot raw data, outputted from our sensors. Output for a square
is shown in figure 3.10 a, circle in figure 3.10 b. At first glance, we can
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Figure 3.10: Raw data plotted

see that reference and outputted trajectories differ significantly. It is caused
mostly by angle α of a sensor relative to the gravitational force, which will
cause offsets dependent on this angle. An accelerometer cannot distinguish
between acceleration caused by a change of velocity from that caused by
gravity. The situation is illustrated by image 3.11 With square trajectory, we

z
0

x
0

z

x α

g

gx

Figure 3.11: Angle of accelerometer

moved the sensor on a relatively smooth surface, and movement of the sensor
was only translational, so no rotational movement. This means that when
the surface is not level, the sensor will recognize constant offsets on its x and
y-axes throughout the experiment. This problem can be mitigated, by initial
calibration. If we let the sensor sit at rest before we start moving it along
the trajectory, we can estimate those offsets by averaging samples at rest and
subtract calculated values from the signals. On the figure 3.12 is displayed
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3. Practical part.....................................
unprocessed output of accelerometer sensor, and with a dashed rectangle,
there is enclosed the part used for offset estimation. In this case, we use data
after the trajectory have been drawn, but the endpoint is identical with the
starting point so it should not make a difference.

(a) With offsets (b) With offsets subtracted

Figure 3.12: Adjusting for offsets

Calculated values which are stated in the table 3.4 below, were subtracted
from the data and adjusted signals plotted. Resulting trajectory can be seen
on 3.13

axis X Y
offset 1381 1257

Table 3.4: Calculated offsets

We can see that shape of calculated trajectory improved significantly. It is
still inaccurate, but we can make out the overall shape. When we try the
same approach to the circular trajectory, we will find that it has a similar
effect.

3.3.1 ML Point estimator

Lets try to improve our trajectory estimate a bit further with ML estimator
introduced in section 2.6. We will use equation 2.23 and redress it for our
sensor models. For our accelerometer and gyroscope models, corresponding
matrices H and C from equation 3.9 and 3.11 will be substituted in ML
estimator 2.23. Our x will be vectors
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Figure 3.13: Effect of offset adjustment

an =

ax,nay,n
az,n

, gn =

gx,ngy,n
gz,n

 ,
which have one acceleration and angular velocity sample for each axis for

one given moment in time n. We will loop through the whole recorded signals
and replace each recorded sample with its estimation point by point. Created
estimators are provided in appended files ML_point_estimator_circle.m
and ML_point_estimator_square.m. The result can be seen in figure 3.14.
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Figure 3.14: Effects of ML point estimator

We can see that trajectory estimate yielded slightly better result than raw
data with offset adjustment, but we must take into consideration that our
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3. Practical part.....................................
z-axis signal is strict zero. If it were not the case, it would influence our result
significantly through cross-talk.
We will try to improve our estimate further and attempt to smooth out our
data. As we can see in figure 3.15, there are a few unusually significant peak
values which could be caused by error or temporary malfunction. To get rid
of those, we will utilise ML block-wise estimation.
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Figure 3.15: Undesirable peaks in signal

3.3.2 ML estimator for block-wise constant dynamic model

In this section one important assumption, regarding dynamic behaviour of
studied signals, will be made. We will state that signal is for the duration of
n ∈ N samples constant in value. For this objective we have to modify the
model of observation to the following form

ax,1
ax,2
.
.

ax,n
ay,1
ay,2
.
.

ay,n
az,1
az,2
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

. (3.13)

which takes n samples from each axis, ordered in one column. Observation ma-
trix is composed of three sections with n identical rows. We will use simplified
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................................. 3.3. Trajectory estimation

version for two dimensions with consideration to our trajectories. Gyroscopic
data are to be estimated first and then use them for acceleration estimation.
To gain insight into how trajectory is affected by this estimation, we will
iterate through increasingly longer n for one variable, with the other one con-
stant and vice versa. Then we will inspect its influence on trajectory. Created
estimators are provided in appended files ML_constant_estimator_circle.m
and ML_constant_estimator_square.m. Example of comparison between
original and estimated signal is shown in figure 3.16.
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Figure 3.16: Comparison between original and estimated signal with ML con-
stant estimation for n = 5

Results of our iterations are illustrated in figure 3.17.
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(a) Estimating angular velocity
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(b) Estimating acceleration

Figure 3.17: Trying different numbers of samples estimated into one constant.
For n ∈ {2, 7, 12, 17, 22, 27, 32, 37, 42, 47}

As we can see from 3.17 estimating angular velocity does not have a significant
effect on the shape of trajectory, which is understandable given the fact that
this trajectory was achieved strictly with translational movement. On the
other hand estimation of acceleration has a much greater effect. From closer
inspection it becomes apparent that for n > 9 the trajectory becomes too
deformed and the best choice seems to be n = 5 (3.18).
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Figure 3.18: Comparison between raw data with adjusted offset and ML block-
wise constant estimation for n = 5

Our best estimate of square trajectory is then achieved with n = 1 for
angular velocity signals and n = 5 for acceleration. Let’s try the same
process with a circular trajectory from the figure 3.19. We can see the same
tendencies as with the previous case. Again using different values of n for
angular velocity have almost no effect and estimating the acceleration had
some influence, but if it leads to a better approximation of true trajectory is
questionable.
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(a) Estimating angular velocity
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(b) Estimating acceleration

Figure 3.19: Trying different numbers of samples estimated into one constant.
For n ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
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3.3.3 ML estimator for block-wise linear dynamic model

In this section, we will modify our assumption about the dynamic behaviour
of studied signals. We will presume that our signal is made up of lines, given
by an expression

x = At+ B. (3.14)

Let us say we have a set of n samples to be estimated. In our data, we
have time saved as a duration between samples. To position m-th sample
properly in the timeline, we need to accumulate all previous m− 1 sample
durations to obtain the proper time. Then we put these values into variables
t1, t2, .., tn used in the model 3.15 below. Then after the parameters An and
Bn are calculated, we will sample linear function specified by these parameters
at previously calculated moments of time and added as substitutes for the
original samples from the outputted signal. A simplified two-dimensional
model will be used, as with the previous model.
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(3.15)

Example of comparison between original and signal attained via ML line
estimator is shown in figure 3.20. Created estimators are provided in appended
files ML_line_estimator_circle.m and ML_line_estimator_square.m.
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Figure 3.20: Comparison between original and estimated signal with ML line
estimation for n = 5

We will recreate the same experiment as with the previous model. Several
different values of n will be tried first on the signal of angular velocity, with
lowest possible value for acceleration estimate held constant and vice versa.
The lowest value of n for ML line estimator is n = 2 because it needs at least
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two points to determine parameters of a line properly. Results are displayed
on 3.21 and 3.22.
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Square: ML block-wise linear estimator
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(a) Estimating angular velocity
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(b) Estimating acceleration

Figure 3.21: Trying different numbers of samples estimated into one line. For n
∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
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Circle: ML block-wise linear estimator

reference

(a) Estimating angular velocity
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(b) Estimating acceleration

Figure 3.22: Trying different numbers of samples estimated into one line. For n
∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

From a comparison with figure 3.19 from the previous estimator, we can
assume very comparable results. Estimator again leads to minor changes in
trajectory.
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................................. 3.3. Trajectory estimation

3.3.4 ML estimator for block-wise quadratic dynamic model

Our last estimator will attempt to fit through n samples a quadratic function
given by expression.

x = At2 +Bt+ C

We will again shift our samples to zero, calculate their position in time and
insert those values into time variables used in modified observation model
3.16 below.
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(3.16)

Example of comparison between original and signal attained via ML block-
wise quadratic estimator is shown in figure 3.23. Created estimators are
provided in appended files ML_quad_estimator_circle.m and
ML_quad_estimator_square.m.
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Figure 3.23: Comparison between original and estimated signal with ML block-
wise quadratic estimation for n = 5

Again we will test performance of this estimator with same experiment as
in previous sections. Resulting trajectories are displayed in figure 3.24 and
3.25 below.
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(a) Estimating angular velocity
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(b) Estimating acceleration

Figure 3.24: Trying different numbers of samples estimated into one quadratic
function. For n ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
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Circle: ML block-wise quadratic estimator
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(a) Estimating angular velocity

0 0.1 0.2 0.3 0.4 0.5

distance in x [m]

-0.3

-0.2

-0.1

0

0.1

0.2

d
is

ta
n
c
e
 i
n
 y

 [
m

]

Circle: ML block-wise quadratic estimator

reference

(b) Estimating acceleration

Figure 3.25: Trying different numbers of samples estimated into one quadratic
function. For n ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

Once more no major improvement was achieved. This could be perhaps
because of very high Signal-to-noise ratio of our signals, caused by very good
quality of our sensor, which renders any additional smoothing out of our data
ineffective.
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3.4 Notes on further progress

From our experiments is clear, that our ML estimators do not significantly
affect the trajectory. Perhaps it could be beneficial to verify our hypothesis
about the too good quality sensor and try an experiment with lower signal-
to-noise ratio. This can be achieved by moving through the trajectory slower,
thereby lowering the amplitude of the signal, or add some additional noise to
the signal. Vibration from a mobile phone placed close to the sensor could
be a convenient arrangement. Such an experiment could sufficiently test the
capabilities of used estimators. As we can see, for example, on the figure 3.23,
our estimators can work out parameters of a continuous function and sample
it, but these functions are discontinuous between each other, which can lead
to artificial spikes in the signal. Further thought could be put into estimators
which can so to say "respect the history" of the signal and remove mentioned
discontinuities. One of the possibilities can be application of AR/MA or
ARMA models on the data sets. In the ideal case we would use Kalman
filtering which takes into account whole history of the data, tries to correct
itself and changes its own parameters throughout the measurement.
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Chapter 4
Conclusion

The assignment of this thesis was to get acquainted with a chosen motion
sensor, construct and program a real measuring device for data acquisition
with it. Then analyse its properties and create an observation model based
on them along with the design of basic estimators of the exact trajectory of
mechanical movement. We divided this task into several steps. In the first
section, we studied different types of accelerometers and gyroscopes, their
design and principles on which they operate, to understand their behaviour.
Several different types were presented and described including MEMS type
sensors which were later used in practical part of this study. Following section
was devoted to an explanation of basic principles for mechanical movement
such as trajectory calculations, rotational matrices and fundamentals of
estimation theory, its application, linear models and Maximum likelihood
estimators. In the second section, we inspected properties of our actual
chosen sensors, constructed and explained our motion tracking device and
basic workings of its program. Subsequently we hypothesised its observation
model. Then we began with measurements of noise parameters present in
attained signals, which led to confirmation of AWGN channel. Model of our
accelerometer was achieved by modified autocalibration method devised by I.
Frosio, F. Pedersini, N. A. Borghese and published in [4]. A gyroscopic model
was calculated from datasheet information and measured offset values. Two
reference trajectories were chosen, square and circle, each testing different
capabilities of sensors, and guiding apparatuses constructed for corresponding
paths. Trajectory estimations were achieved by preliminary compensation of
gravitational acceleration, which caused offsets in our measurements, realised
by average of values from calibration phase of the outputted signal, followed
by Maximum Likelihood estimators of several different modifications, which
attempted to estimate given signal as a series of constants and linear or
quadratic functions composed of variable number of samples. Introduction of
calibration phase significantly improved the accuracy of attained trajectory.
ML estimators led just to minor changes in trajectory, whose beneficial effect
was questionable. Suboptimal performance o ML estimators regardless their
type or intensity was most likely caused by high signal to noise ratio of
collected signals, produced by exceptional quality and high sensitivity of used
sensors. All points of the assignment have been successfully met.
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Appendix A
List of MATLAB files

A.1 Estimators

.ML_point_estimator_circle.m.ML_point_estimator_square.m.ML_constant_estimator_circle.m.ML_constant_estimator_square.m.ML_line_estimator_circle.m.ML_line_estimator_square.m.ML_quad_estimator_circle.m.ML_quad_estimator_square.m

A.2 Functions

. Accmatdefine.m. Accmatdefine_const.m. Accematdefine_lin.m. Accmatdefine_quad.m.Gyrmatdefine.m.Gyrmatdefine_const.m.Gyrmatdefine_quad.m. lineSampler.m. timeAccum.m. timeAccum_quad.m
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A. List of MATLAB files .................................
. quadSampler.m. rotation.m

A.3 Other files

. optimisation.m. variation.m. DATA_variance.txt. square.txt. circle.txt. autocalibration.txt
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