
CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Civil Engineering

Ph.D. Programme: Civil Engineering
Branch of study: Physical and Material Engineering

Ing. Jan Vorel

Multi-scale Modeling of Composite Materials
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Abstract

Multi-scale Modeling of Composite Materials

Jan Vorel

Many industrial and engineering materials as well as the majority of natural materials are

inhomogeneous, i.e. they consist of dissimilar constituents (phases) that are distinguishable

at some (small) length scale. Each constituent shows different material properties or material

orientations and may itself be inhomogeneous at some even smaller length scale. Typical ex-

amples of inhomogeneous materials are composites, concrete, porous and cellular materials,

functionally graded materials, wood, bone, and others.

The main interest of theoretical studies of multi-phase materials is targeted on the ho-

mogenization of material overall behavior (stiffness, thermal conduction, transport proper-

ties, . . . ) from the corresponding phase properties and geometrical arrangement. There are

many variations of homogenization procedures which differ in their accuracy and computa-

tional effort.

The main focus of this thesis is the determination of effective thermomechanical proper-

ties of carbon-carbon (C/C) plain weave fabric composites, particularly the effective thermal

coefficients and the effective stiffness matrices. The selection of mechanical and heat con-

duction problems is promoted not only by available experimental measurements but also by

their formal similarity, considerably simplifying the theoretical treatment as seen hereinafter.

The C/C plain weave composites belong to an important class of high-temperature mate-

rial systems. An exceptional thermal stability together with high resistance to thermal shocks

or fracture following rapid and strong changes in temperature have made these materials al-

most indispensable in a variety of engineering spheres. While their appealing properties

such as high strength, low coefficients of thermal expansion and high thermal conductivities

are known, their prediction from the properties supplied by the manufacturer for individual

constituents is far from being trivial since these systems are generally highly complicated.

Apart from the characteristic three-dimensional structure of textile composites the ge-

ometrical complexity is further enhanced by the presence of various imperfections in the
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woven path developed during the manufacturing process. A number of models properly

accounting for the three-dimensional effects have been developed in the past. However, a

major shortcoming of many of these models is the omission of the porous phase, which in

real systems may exceed 30% of the overall volume.

During recent years, significant research effort has been put into providing a simple

yet accurate scheme for predicting the overall properties of fabric composites. With an in-

creasing level of sophistication, these models are mostly based on the fully detailed three-

dimensional finite element method (FEM) simulations. The disadvantage of the FEM-based

approach is, however, a high cost associated with the analysis, not only in terms of compu-

tational time, but especially when accounting for the generation of three-dimensional finite

element meshes. Moreover, incorporation of inevitable microstructural imperfections into

the FEM model is far from being straightforward and requires a special treatment based on

appropriate statistical characterization. On the other hand, if these obstacles are overcome,

the FE simulations typically deliver more accurate results.

In the last decade, effective media theories, widely used in classical continuum microme-

chanics, have been recognized as an attractive alternative to FEM-based methods. Therefore,

the Mori-Tanaka (MT) procedure introduced by Hatta and Taya (1986) for thermal conduc-

tivity and by Jeong et al. (1998) for electrical conductivity is utilized to determinate the ef-

fective thermal conductivity coefficients for C/C composites on the micro- and meso-scale.

A similar approach is used to determined effective stiffness matrices. On both scales a two

step homogenization approach is adopted. It combines the evaluation of effective properties

in the absence of pores with a subsequent homogenization step in which the porous phase is

introduced into a new homogenized matrix.

To take into account an inherent layered characteristic of C/C composites the laminate

theory introduced by Milton (2002) is employed for elastic properties on the macro-scale

and the simple rules of mixture are used to obtain the demanded thermal conductivities.

A numerical application of effective properties of composite materials is briefly demon-

strated at the end of this thesis. Experimental data of Strain Hardening Cement-based Com-

posites (SHCC) are utilized to define the numerical model based on rotating cracks. The

suitability of a designed model is proved by confrontation of the numerical results with the

experimental data.
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Abstrakt

Vı́ceúrovňové modelovánı́ kompozitnı́ch materiálů

Jan Vorel

Mnoho materiálů, které se využı́vajı́ ve stavebnictvı́ a průmyslové výrobě, stejně tak jako

většina přı́rodnı́ch materiálů, jsou nehomogennı́, tj. skládajı́ se z rozdı́lných složek (fázı́).

Složky vykazujı́ různé materiálové vlastnosti nebo orientace a mohou být sami o sobě ne-

homogennı́ na nižšı́ rozlišovacı́ úrovni. Typické přı́klady nehomogennı́ch materiálů jsou

kompozity, beton, poréznı́ a buněčné materiály, dřevo, atd.

Teoretické studie vı́cefázových materiálů jsou často zaměřeny na komplexnı́ chovánı́

materiálu (tuhost, tepelná vodivost, transportnı́ vlastnosti, dots), vyjadřujı́cı́ odpovı́dajı́cı́

vlastnosti a geometrické uspořádánı́. Existuje vı́ce homogenizačnı́ch postupů, které se lišı́ v

přesnosti a výpočetnı́m úsilı́.

Předložená práce je zaměřena předevšı́m na určovánı́ efektivnı́ch termomechanických

vlastnostı́ tkaných kompozitů uhlı́k-uhlı́k, zvláště pak na určenı́ koeficientů tepelné vodivosti

a elastických vlastnostı́. Tato volba je provedena s ohledem jak na dostupná laboratornı́

měřenı́, tak na formálnı́ podobnost mechaniky a vedenı́.

Tkané kompozity uhlı́k-uhlı́k se řadı́ do významné třı́dy materiálů využı́vaných v prostředı́

s vysokými teplotami. Mimořádná tepelná stabilita spolu s vysokou odolnostı́ proti porušenı́

v důsledku rychlé změny teploty řadı́ tyto materiály mezi nepostradatelné v různých tech-

nických oblastech. Přestože jejich atraktivnı́ materiálové vlastnosti (vysoké pevnosti, nı́zké

koeficienty tepelné roztažnosti a vysoké tepelné vodivosti) jsou známy, jejich odhad z vlast-

nostı́ jednotlivých složek nenı́ zdaleka triviálnı́. Toto je způsobeno předevšı́m složitou struk-

turou těchto materiálů. Kromě charakteristické třı́dimenzionálnı́ (3D) geometrické struk-

tury textilnı́ch kompozitů hraje významnou roli také přı́tomnost různých vad, které vznikajı́

během výrobnı́ho procesu. Mnoho modelů bere v úvahu 3D strukturu, ale často stále trpı́ ab-

sencı́ poréznı́ fáze, která v reálných systémech může přesáhnout 30% z celkového objemu.

Značné úsilı́ bylo věnováno výzkumu jednoduchého a přesného schématu pro odhad

celkových vlastnostı́ materiálu. Vytvořené modely jsou většinou založeny na zcela detailnı́
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třı́dimenzionálnı́ simulaci pomocı́ metody konečných prvků (MKP). Nevýhodou přı́stupu

založeného na MKP je však vysoká časová náročnost spojená s analýzou. Nejedná se pouze

o výpočetnı́ čas potřebný k analýze, ale také o čas nezbytný na přı́pravu 3D sı́tě konečných

prvků. Dalšı́m neméně komplikovaným problémem je zahrnutı́ nedokonalosti mikrostruk-

tury do modelu MKP a zasloužı́ si zvláštnı́ zacházenı́ na základě vhodné statistické charak-

terizace. Je však nutné poznamenat, že po překonánı́ch těchto úskalı́, simulace pomocı́ MKP

nám poskytujı́ cenné výsledky včetně detailnı́ho rozloženı́ lokálnı́ch polı́.

V poslednı́ch letech se jako výhodná alternativa ke zdlouhavé konečně prvkové analýze

jevı́ zjišt’ovánı́ efektivnı́ch vlastnostı́ materiálů na základě průměrných polı́, které jsou hojně

užı́vané v mikromechanice kontinua. A proto metoda Mori-Tanaka (MT), popsaná v (Hatta

and Taya, 1986) pro tepelnou vodivost a v (Jeong et al., 1998) pro elektrickou vodivost,

je využita v této práci k určenı́ koeficientů tepelné vodivosti na mikro-a mezoúrovni C/C

kompozitů. Podobný přı́stup je použit k určenı́ efektivnı́ matice tuhosti. Na obou úrovnı́ch

je homogenizace provedena ve dvou krocı́ch. V prvnı́m kroku je určena efektivnı́ vlastnost

pro materiál bez vzduchových pórů. Toto je následováno zavedenı́m poréznı́ fáze do nově

určené efektivnı́ matrice.

Při použitı́ zjednodušených metod k určenı́ efektivnı́ch vlastnostı́ je nezbytné při určenı́

elastických vlastnostı́ na makroúrovni využı́t teorie pro lamináty (Milton, 2002). Efektivnı́

tepelné vlastnosti jsou zı́skány na základě jednoduchých průměrovacı́ch vztahů.

Aplikace efektivnı́ch vlastnostı́ kompozitnı́ch materiálů pro numerický model je popsána

v poslednı́ části této práce. Zde jsou využita experimentálnı́ data zı́skaná pro vláknocementové

kompozity s řı́zenými vlastnostmi. Navržený model je založen na rotujı́cı́ch trhlinách pro

zachycenı́ typických vlastnostı́ vláknokompozitů, tj. zpevněnı́, změkčenı́, lokalizace. Vhod-

nost modelu je prokázána porovnánı́m numerických výsledků s experimenty.



NOTATION

General notation

a Vector

a Second-order tensor

A Fourth-order tensor

A Function

{a} Column vector or vectorial representation of symmetric second-order tensor

[A] Matrix or matrix representation of symmetric fourth-order tensor

Σ Sum

∇ Nabla operator

| · | Absolute value

‖ · ‖ Weighted arithmetic mean

〈·〉 Volumetric average

〈〈·〉〉 Orientational average

·−1 Inverse of number or matrix

·T Transpose of vector or matrix

Specific notation

a Half-period of tow undulation

A Concentration factor for temperature gradient

APL Projected contact area at peak load

b Tow thickness

B Concentration factor for heat flux

c Volume fraction

[C] Stiffness matrix

C Fourth-order stiffness tensor



Notation xiii

d Length of PUC

E Elastic modulus

f Probability density function

g Width of intra-tow gap

G Shear modulus

h Hight of the ply

h Temperature gradient

H Macroscopic temperature gradient

I Identity matrix

l Lower bound

L Linear path function

M Number of laminas

N Number of phases

OD Objective function related to statistical descriptor D

P Transformation matrix

PD Exponential exterior penalty function related to statistical descriptor D

q Heat flux

Q Macroscopic heat flux

R Thermal resistivity matrix

s Centreline of the warp/weft tow

S Eshelby tensor

S Two-point probability function

T Temperature

u Upper bound

v height of PUC

x Local coordinate system

X Global coordinate system

y Independent parameters describing SEPUC



Notation xiv

Γ Boundary

∆1,∆2,∆3 Shift of plies in direction of corresponding coordinate axes

φ, θ, β Euler angles

ν Poisson ration

ξ1,2,3 Semi-axes

χ Thermal conductivity matrix

Ω Volume

·dil Dilute approximation

·f Fluctuation

·f Fiber

·FEM Finite Element Method

·H Homogenized effective property

·MT Mori-Tanaka method

·SC Self-consistent method

·trans Transversal direction

·v Void

·warp Warp tow

·weft Weft tow

Numerical model (Appendix C)

a Parameter governing the unloading trajectory

b Parameter governing the inelastic strains

d Localization band in real material
˜[D] Tangent material stiffness matrix

e Principal strain vector

ê Effective principal strain

ė Strain increment



Notation xv

E Young’s modulus

h Element size

s Principal stress vector

ŝ Equivalent stress

[T]ε Transformation matrix for strains

[T]σ Transformation matrix for stresses

wt Crack opening for the complete force transfer loss

wc Displacement for the complete force transfer loss in compression

α Rotation angle

∆ε Strain increment vector

ε Strain vector

εcmin Minimum strain experienced in previous steps

εtmax Maximum strain experienced in previous steps

ν Poisson’s ratio

σ Stress vector

σcmin Stress associated with εcmin

σtmax Stress associated with εtmax

ω Damage parameter

·0 Undamaged material

·c Compression

·c0 Compression state

·cl Cyclic loading

·cp Compression state

·cu Compression state

·el Elastic part

·t Tension



Notation xvi

·t0 Tension state

·tp Tension state

·tu Tension state



Chapter 1

INTRODUCTION

Everything should be made as

simple as possible, but not simpler.

Albert Einstein

The above mentioned statement simplifies the Occam’s razor principle which declares

that the explanation of any phenomenon should make as few assumptions as possible, elimi-

nating those that make no difference in the observable predictions of the explanatory hypoth-

esis or theory (Ockham, 14th-century). If we take this theorem into consideration the mean

field theory is seen as a suitable and efficient tool, in comparison to finite element based

methods (FEM), for the evaluation of effective material properties of composites. Note that

this approach is valuable for a restricted area of interest. In other cases the FEM has a

non-substitutable position.

1.1 Motivation

Well known engineering materials like brick, stone, concrete, etc. have their irreplaceable

position, but the modern age is demanding new technologies and materials for use in engi-

neering constructions which are built faster, bigger, higher, slighter, . . . As somebody said:

“We have had a stone age, iron age and many other ages so far. Maybe once our epoch will

be called composite age.” And it is true. The new invented materials are mainly composites

which take an advantage of cooperation of individual constituents and diminish their weaker

properties. The building industry benefits from different modern materials, even though they

were not primarily created for this branch of engineering, for instance carbon-carbon com-

posites and different types of hydrocarbons.

The correct prediction of material behavior and properties is arising in association with

their applications. Many experimental tests are carried out to learn more about their charac-
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teristics. Nevertheless, the computational approach is an irresistible and indestructible tool

which is based on the experimentally measured data and is for that reason more than helpful,

see Chapter 5. Numerical modeling allows us to design a remarkable construction as well as

to reduce acquisition costs.

As mentioned above, many industrial and engineering materials as well as the majority

of natural materials are inhomogeneous, i.e. they consist of dissimilar constituents (phases)

that are distinguishable at some (small) length scale. Each constituent shows different ma-

terial properties or material orientations and may itself be inhomogeneous at some even

smaller length scales. Typical examples of inhomogeneous materials are composites, con-

crete, porous and cellular materials, functionally graded materials, wood, bone, and others.

The main interest of theoretical studies of multi-phase materials is targeted to the ho-

mogenization of material overall behavior (stiffness, thermal conduction, transport proper-

ties, . . . ) from the corresponding phase properties and geometrical arrangement. There are

many variations of homogenization procedures which differ in their accuracy and computa-

tional effort (see Chapter 2).

The main focus of this thesis is the determination of effective thermomechanical proper-

ties of carbon-carbon (C/C) plain weave fabric composites, particularly the effective thermal

coefficients and the effective stiffness matrices. This selection of mechanical and heat con-

duction problems is promoted not only by available experimental measurements but also by

their formal similarity, considerably simplifying the theoretical treatment as seen hereinafter.

The C/C plain weave composites belong to an important class of high-temperature ma-

terial systems (Section 1.2). An exceptional thermal stability together with high resistance

to thermal shocks or fracture following rapid and strong changes in temperature have made

these materials almost indispensable in a variety of engineering spheres. While their appeal-

ing properties such as high strength, low coefficients of thermal expansion and high ther-

mal conductivities are known, their prediction from the properties supplied by the manufac-

turer for individual constituents is far from being trivial, because these systems are generally

highly complicated.

Apart from the characteristic three-dimensional (3D) structure of textile composites the

geometrical complexity is further enhanced by the presence of various imperfections in the

woven path developed during the manufacturing process, Fig. 1.1. A route for incorpo-
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(a)

(b)

(c)

(d)

Figure 1.1: Real composite system

rating at least the most severe imperfections in predictions of the mechanical properties of

these systems has been outlined in (Zeman and Šejnoha, 2004a) in the context of statisti-

cally equivalent periodic unit cell. Although properly accounting for three-dimensional ef-

fects the resulting representative volume element still suffers from the absence of the porous

phase, which in real systems, Fig. 1.2, may exceed 30% of the overall volume. As suggested

in (Palán, 2002) neglecting the material porosity may severely overestimate the resulting

thermal properties of textile composites.

During recent years, significant research effort has been put into providing a simple

yet accurate scheme for predicting the overall properties of fabric composites. With an in-

creasing level of sophistication, these models are mostly based on the fully detailed three-

dimensional finite element method (FEM) simulations, see (Tomková et al., 2007). It is

generally accepted that this class of models is the most accurate one when supplied with

reliable geometrical data based on, e.g., micrographs of a composite structure (Fig. 1.2(b)).

The disadvantage of the FEM-based approach is, however, a high cost associated with the

analysis, not only in terms of computational time but especially when accounting for the gen-

eration of three-dimensional finite element meshes. Moreover, incorporation of inevitable

microstructural imperfections into the FEM model is far from being straightforward and re-

quires a special treatment based on appropriate statistical characterization, see Section 4.1.
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On the other hand, if these obstacles are overcome, the FE simulations typically deliver more

accurate results (Section 5.2).

(a) (b)

Figure 1.2: Example of complex structure of C/C composites: (a) Plain view of C/P com-

posite, (b) cross section of ten-layer C/C composite

In the last decade, effective media theories, widely used in classical continuum microme-

chanics, have been recognized as an attractive alternative to FEM-based methods. This ap-

proach was pioneered by Gommers et al. (1998) and Huysmans et al. (1998), who modeled

knitted composites as assembly of circular fibers in an isotropic matrix and used the Mori-

Tanaka method (MT) (Mori and Tanaka, 1973) to evaluate the overall mechanical response,

and recently generalized by Barbero et al. (2005) in the framework of the theory of peri-

odic eigenstrains employing an idealized three-dimensional geometrical model. All these

studies report good correspondence with experimental data with an error comparable to an

experimental scatter. Moreover, the MT-based approaches presented in (Gommers et al.,

1998; Huysmans et al., 1998) allow us to easily incorporate imperfections in the tow path,

typically introduced in terms of histograms of the distribution of inclination angles (Skoček

et al., 2008; Vopička, 2004), as they rely on the orientation averaging techniques. This is

a definite advantage of an approximate MT model when compared to a rigorous approach

of Barbero et al. (2005), which relies on a well-defined geometry.

In this regard, the MT procedure introduced by Hatta and Taya (1986) for thermal con-

ductivity and by Jeong et al. (1998) for electrical conductivity is utilized to determine the

effective thermal coefficients for C/C composites on the micro- and meso-scale. A similar

approach is used to determine effective stiffness matrices. On both scales a two step homog-

enization approach is adopted. It combines evaluation of effective properties in the absence

of pores with a subsequent homogenization step in which the porous phase is introduced into
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a new homogenized matrix.

To taken into account an inherent layered characteristic of C/C composites the laminate

theory introduced by Milton (2002) is employed for elastic properties on the macro-scale

and the simple rules of mixture are used to obtain the demanded thermal conductivities (Sec-

tion 4.4).

A numerical application of effective properties of composite materials is briefly demon-

strated at the end of this thesis. Experimental data of Strain Hardening Cement-based Com-

posites (SHCC) are utilized to define the numerical model based on rotating cracks. The

suitability of a designed model is proved by confrontation of the numerical results with the

experimental data, see Appendix C.

1.2 Carbon-Carbon composites

Carbon-Carbon (C/C) composites (also denoted as a carbon fiber reinforced carbon (CRFC))

present a well-established and attractive material variant used in numerous branches of engi-

neering design with applications ranging from rehabilitation and repair of concrete and ma-

sonry structures to design of biocompatible medical implants. In comparison with traditional

materials, composites offer higher strength, light weight, non-corrosive properties, dimen-

sional stability, good conformability and possibility of performance-based design. Nowa-

days, an increasing number of fiber reinforced composite components are being fabricated

with load-carrying fibers, which are woven to form a fabric. This reinforcement system

has advantages with respect to fabrication as well as mechanical properties. The weaving

and interlacing of the fiber tows produces a self-supporting system that can be manipulated

to form complex shapes. In terms of mechanical performance, the geometry of a fabric

provides bi-directional stiffness for in-plane of loading, increased interlaminar stiffness for

out-of-plane loading and superior impact tolerance and wear resistance. A lucid discussion

of these aspects can be found, e.g., in (Cox and Flanagan, 1997). From these material sys-

tems, Carbon-Carbon woven composites present the most progressive and versatile material

combination allowing their use in structural, mechanical and aerospace engineering as well

as biomedical applications thanks to their biocompatibility with a soft tissue.

Although woven composites are frequently used in practice, an accurate and reliable
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thermomechanical analysis of these material systems still presents a non-trivial challenge

due to their complex geometry displayed at several length scales. This is especially true

for C/C composites, where such a feature directly follows from the manufacturing process

which includes transition from Carbon-Polymer (C/P) composite to C/C through pyrolysis

of polymeric precursor (Chow and Ko, 1989). This is documented in Fig. 1.2, showing an

example of a balanced plain weave composite displaying various geometrical imperfections

on several length scales. With this case in mind, we can conclude that in order to provide a

reliable and accurate description of the material, the following aspects need to be taken into

account:

• yarn waviness and misalignment of individual tows,

• high porosity of C/C woven composite,

• non-linear behavior of matrix and tows including their interface,

• realistic geometry description based on image analysis of in-situ observed microstruc-

tures.

Each of these topics is briefly covered below.

1.2.1 Tow path imperfections

Although a majority of approaches to the modeling of overall behavior of woven composites

rely on a well-defined regular geometry (Cox and Flanagan, 1997; Chung and Tamma, 1999),

a careful examination of morphology of real materials reveals substantial departure from

such an idealization. To keep the discussion on a concrete level, consider an example of

the plane view of a C/P composite shown in Fig. 1.2(a), clearly demonstrating a (quasi-)

periodic character of the geometrical arrangement of fiber tows. Apart from that the figure

also suggests various geometrical imperfections attributed to the manufacturing processes.

These are mainly influenced by two technologies (Pastore, 1993):

• textile (woven fabric preparation),
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• composite (impregnation of fabric reinforcement by matrix precursor, pressing and

heat treatment).

Although it is generally accepted that such a class of imperfections to a large extent in-

fluences the overall behavior of the composite, this problem has been mainly addressed in

the literature in the form of numerical parametric studies trying to asses the influence of typ-

ical imperfections observed in experiments (Whitcomb and Tang, 2001; Lomov et al., 2003).

An alternative approach to this problem, employing basic principles of quantification of ge-

ometry of random media, has been proposed in (Zeman, 2003; Zeman and Šejnoha, 2004a;

Skoček et al., 2006). Here, the actual complicated microstructure is optimally fitted by a

simplified geometrical model of (Kuhn and Charalambides, 1999) in terms of the two-point

probability function and/or the lineal path function. This allows a substantial reduction in the

problem complexity while capturing the most important characteristics of in-situ observed

microstructures.

Even though the characterization of the disordered microstructure of a woven composite

based on a statistically optimized model presents a flexible tool of incorporating tow path

imperfections, it may prove to be rather expensive, especially in the cases when a quick es-

timation of the linear behavior is on demand. In this connection, well-established effective

media theories (Torquato, 2002), when supplied with a proper microstructural characteriza-

tion, provide an interesting alternative to FEM-based simulations.

Procedures for acquisition of relevant data can be found, e.g. in the work of Vopička

(2004), where an image analysis of composite micrographs was used to get the frequency

spectrum of the Fourier series to describe the yarn shape in both woven and braided fabrics.

In particular, it has been demonstrated that the crimp waveform is subjected to deformation

when pressed during the manufacturing process and the frequency spectrum is therefore dis-

torted compared to that of the unprocessed (free) fabric. Deformation of reinforcements can

be described by histograms of yarn angles with respect to the textile fabric plane. These

data can be utilized, e.g., as an input into the Mori-Tanaka method to determine the effec-

tive behavior of a composite. This approach has been pioneered by Gommers et al. (1998)

for modeling of knitted composites, see also (Skoček et al., 2006) for the generalization to

imperfect woven composites.
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1.2.2 Porosity

Although the tow path imperfections present one of important sources of uncertainties to

the analysis, it is by no means the only one. This is again nicely illustrated in Fig. 1.2(b),

showing a very high intrinsic porosity of the composite as a result of curing and/or pyrolysis

of polymeric precursor. Note that porosity of this class of materials could actually be a

desirable feature as it contributes to a compatibility between the bulk material and a soft

tissue in biomedical applications (Pešáková et al., 2003).

The structure of voids is complex and difficult to describe. Voids may be characterized in

various ways, e.g. according to their size (macro-, meso-, micro- or nanopores), their position

in composite structure (transverse cracks, delamination cracks, crimp voids, matrix pores

etc.) or their shape (rod-like shape, thin plates, rough branch structures) (Yurgartis et al.,

1992). In any case the proper knowledge of voids’ shape, size and distribution is important

for both controlling the porosity due to manufacturing as well as formulation of the structural

models for prediction of final composite properties. This was clearly demonstrated in the

thesis of (Palán, 2002), which compares results of detailed finite element studies of overall

thermal properties of C/C composite and experimental data. In this case, the theoretical

predictions, based on ideal pore-free structure, differ from measured data almost by an order

of magnitude.

Quite surprisingly, assessment of the impact of high porosity on the overall behavior

of textile composites has acquired relatively little attention in the literature and has been

mainly focused on experimental characterization. Examples of studies of this phenomena

include, e.g., quantification of influence of pressure on pore characteristics (Oh et al., 1999),

assessment of interlaminar strength (Casal et al., 2001) and oxidation resistance (Liao et al.,

2002). In the field of numerical modeling, the only study we are aware of is due to (Kuhn

and Charalambides, 1998), who nevertheless considered a highly idealized geometry of the

porous space. Therefore, this research topic offers a great potential, both in the framework

of detailed numerical models as well as for simplified models based on continuum microme-

chanics.
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1.2.3 Material models

In addition to detailed characterization of geometry of a composite, material properties of in-

dividual components are an equally important input to the analysis. However, this step is far

from being trivial for C/C composites, where each phase undergoes a very complex thermal

treatment influencing its intrinsic behavior. Therefore, similar to previously discussed top-

ics, the material parameters should be obtained on the basis of in-situ measurements rather

than from an independent tests. Recognizing that the typical size of fibers is of the order of

micrometers, this requirement rules out most traditional experimental procedures.

The depth-sensing nanoindentation, based on indenting the surface of a material by a

very small diamond tip, is a modern experimental technique ideally suited to examination

of intrinsic material properties (such as Young’s modulus, hardness, fracture energy) on the

pertinent lengthscale (Fischer-Cripps, 2004). Initially developed for analysis of metals, it

has been later intensively used for analysis of heterogeneous materials; see, e.g. (Nowicki

and Susla, 2003) for a more detailed discussion. This technique is also readily applicable

to experimental treatment of C/C material systems as demonstrated by a number of studies

available in open literature (Marx and Riester, 1999; Diss et al., 2002a; Ozcan and Filip,

2005, and references therein) dealing mainly with materials for high-temperature applica-

tions.

Although the previously mentioned works present an impressive amount of experimental

effort, the interpretation of results is typically based on load-displacement curves and on the

assumptions of material’s isotropy and elasticity. However, this methodology is rather ques-

tionable for the present material system, mainly due to anisotropy of individual phases and

their mutual interaction (Gregory and Spearing, 2005). A more realistic approach requires a

mixed numerical-experimental approach, consisting of a detailed numerical model (based on,

e.g., the finite element method (Mackerle, 2004)) and an appropriate inverse identification

procedure that enables us to asses parameters of the model (Sol et al., 1997). A more re-

fined inelastic simulation also allows us to incorporate additional data to force-displacement

curve, such as the tip imprint on a surface, into the identification procedure. This substan-

tially increases the reliability of identification procedure and representativeness of material

parameters (Fischer-Cripps, 2004).
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1.2.4 Image analysis

As indirectly discussed in all previous topics, image processing and comprehensive geometry

description provides a stepping stone for a reliable numerical analysis and vice-versa. In this

regard, automated image analysis procedures based on a high-resolution microstructural im-

ages become a necessity for a successful completion of the proposed study. A more detailed

description of methods employed in image analysis can be found in the theses by Vopička

(2004) and Tomková (2006). For the sake of illustration we present a representative result

in Fig. 1.3.

Figure 1.3: Basic structural components of woven C/C composite. (1-parallel cuts of car-

bon tows, 2-cross-section cuts of carbon tows, 3-carbon matrix, 4-voids. Resolution is

1.7 µm/pixel)

Finally note that, in a broader sense, the ultimate goal of any composite-based research is

a formulation of a multi-scale based model incorporating non-linear behavior. Note that this

topic is not explicitly covered in the proposed study. Moreover, as demonstrated in detail in

the work of Wierer (2005), numerical homogenization of non-linear behavior is extremely

ill-conditioned problem due to complex geometry of the composite. This deserves a special

treatment, which is out of the scope of the presented research.

1.2.5 Length scales

In micromechanical approaches the heat flux (stress) and temperature gradient (strain) in

an inhomogeneous material are splitted into contributions corresponding to different length

scales. It is assume that these length scales are sufficiently different (Böhm, 2007). There-

fore, for each pair of them the following statements have to be validated:

• fluctuation of the heat flux and temperature gradient fields at the lower level influence
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the macroscopic behavior at the higher level only in the sense of the volume averages,

• gradients of the heat flux field and laplace operator of temperature field at the larger

length scale are not significant at the smaller one, where the fields appear to be locally

constant and can be described in the forms of uniform “applied” or “far field” loading.

The splitting form for temperature gradient

h (x) = ∇T (x) =

{
∂T

∂x1

;
∂T

∂x2

;
∂T

∂x3

}T

, (1.1)

q (x) = −χ (x) h (x) (1.2)

and heat flux, respectively, into the described contributions is written as

h (x) = 〈h〉+ hf (x) and q (x) = 〈q〉+ qf (x) , (1.3)

where 〈h〉 and 〈q〉 stand for the macroscopic fields (the volumetric averages) while the hf and

qf denote the microscopic fluctuations, χ (x) refers to the corresponding local conductivity

matrix
[
Wm−1K−1

]
. Similar relation can be written for the elasticity problem by substituting

corresponding variables.

(a) (b) (c)

Figure 1.4: Multi-scale: (a) Macro-scale, (b) meso-scale, (c) micro-scale

In C/C plain weave composites at least three length scales that can be described by con-

tinuum mechanics are recognized:

• macro-scale (sample, component, etc.), Fig. 1.4(a),

• meso-scale (individual plies), Fig. 1.4(b),

• micro-scale (tow = fiber-matrix-void interaction), Fig. 1.4(c).
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Figure 1.5: Grayscale images of a real composite system identifying individual scales

In the presented work, all the computational approaches are referred to these scales. The

comparison of individual scales and a terminology use are represented in Fig. 1.5.



Chapter 2

CONCEPTUAL AND METHODICAL APPROACHES

Recall that in this study, the emphasis is put on a reliable modeling and characteriza-

tion of multi-phase C/C composite materials. Basic homogenization procedures are listed

below. Some of them can be used for micromechanically based constitutive material models

at higher length scales. The overall thermomechanical response of homogenized materials

is ordinarily based on the interaction of the constituents. Therefore, in some cases a simple

description of material parameters change is not sufficient enough to give true picture of the

material behavior and the functional relationships in the constitutive law have to be adapted

as well (Böhm, 2007).

Due to the variations of the microfields caused by phase distribution in adequate volume

elements the computational effort is enormous for most of the material structures. Therefore,

some approximations are needed. For convenience, the majority of the modeling approaches

can be sorted into two groups:

• Methods based on statistical information (Mean field approaches, Variational bounding

methods).

• Methods studying discrete microstructure (Periodic microfield approaches, Embedded

cell or Embedding approaches, Window Approaches, etc.).

Some of the commonly used methods are mentioned and described in the following text.

Owing to the proposed research of the C/C composites, the main emphasis is put on the

mean field and the periodic microfield approaches.

For the sake of simplicity the description of homogenization techniques is provided for

the heat conduction problem. Extension to the elasticity problem can be obtained by an

adequate substitution of inherent variables.
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2.1 Methods based on statistical information

2.1.1 Mean field approaches (MFAs)

The microfields inside each constituent are approximated by their volume averages (〈hr〉 , 〈qr〉).

These methods usually use information about the microscopic topology, the inclusion shape

and a orientation. The localization relations then take the forms

〈hr〉 = Ar 〈h〉 ,

〈qr〉 = Br 〈q〉 , (2.1)

and the homogenization relations become

〈hr〉 =
1

Ωr

∫
Ωr

h (x) dΩ with 〈h〉 =
N∑
r=1

cr 〈hr〉 , (2.2)

〈qr〉 =
1

Ωr

∫
Ωr

q (x) dΩ with 〈q〉 =
N∑
r=1

cr 〈qr〉 , (2.3)

where index r = 1, . . . , N refers to individual constituents (in the following text index 1

is reserved for the matrix phase), Ωr stands for the phase volumes and cr = Ωr/
∑

i Ωi is

the corresponding volume fraction. The matrices Ar and Br are termed the concentration

factors (Benveniste et al., 1990; Jeong et al., 1998) for the heterogeneity. The concentration

tensors relevant for thermal conduction problems are the gradient concentration tensors and

the flux concentration tensors.

Here we address the problem for the evaluation of overall thermal conduction tensor

χ (Eq. (2.4)) of a C/C composites where many inhomogeneities are embedded in a matrix

material. Three approximate methods are now available in literature, which are worthwhile

mentioning:

• the dilute approximation (Fig. 2.1(a)),

• the self-consistent method (Fig. 2.1(b)),

• the Mori-Tanaka method (Fig. 2.1(c)).

Before contemplation with individual methods we mention some general relations for the

following treatment. The overall flux-gradient relation has the form

〈q〉 = χ 〈h〉 . (2.4)
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(a) (b) (c)

Figure 2.1: Mean field approaches: (a) The dilute approximation, (b) the self-consistent

method, (c) the Mori-Tanaka method

Similarly, for each phase we write

〈qr〉 = χr 〈hr〉 , (2.5)

where χr is the phase conductivity tensor.

From the definition of volume averaging (Eq. (2.2)) the following relations are obtained

〈h〉 =
N∑
r=1

cr 〈hr〉 = H,

〈q〉 =
N∑
r=1

cr 〈qr〉 = Q, (2.6)

where vectors H and Q are prescribed macroscopically uniform temperature gradient and

flux, respectively. In the isothermal case volume averages are equal to the corresponding

homogenous boundary conditions. Combining Eqs. (2.1) and (2.6) further gives

N∑
r=1

crAr = I, (2.7)

where I expresses the identity matrix. By introducing homogenization relations for the

whole volume (Ωs)

〈h〉 =
1

Ωs

∫
Ωs

h (x) dΩ,

〈q〉 =
1

Ωs

∫
Ωs

q (x) dΩ, (2.8)

and employing Eq. (2.4) gives the effective conductivity tensor in the form

χ =
N∑
r=1

crχrAr. (2.9)
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Note that Eqs. (1.3) and (2.8) imply that the fluctuations vanish for sufficiently large integra-

tion volume
1

Ωs

∫
Ωs

hf (x) dΩ = 0. (2.10)

2.1.1.1 Eshelby and ellipsoidal inclusion problems

Most of the useful theories of composite materials depend one way or the other on the so-

lution of the ellipsoidal inclusion problem. The problem was addressed by Eshelby (1957).

He proved that the local stress and strain fields in a ellipsoidal inhomogeneity embedded into

a different infinite homogenous elastic material that is loaded by remotely applied uniform

stress or strain fields, respectively, are also uniform. This result has then provided a stepping

stone for the evaluation of effective properties in a variety of composites systems.

Solution of the Eshelby problem for thermal conductivity relies on a certain transfor-

mation problem. In particular, consider a homogenous infinite anisotropic material, which

contains an ellipsoidal inclusion of the same material. The surrounding material is neither

constrained nor loaded. Suppose that the inclusion is now loaded by a certain transforma-

tion uniform temperature gradient (h∗). If free, it would undergo homogenous temperature

change, but due to constraint of the matrix it attains in situ temperature gradient

hr = Sh∗, (2.11)

where the second-order tensor S is analogous to the Eshelby tensor for elasticity, see Ap-

pendix A. Note that the Eshelby tensor for generic anisotropic material is not known in an

explicit form. Therefore, the numerical integration (e.g. Gauss quadrature) has to be em-

ployed in such a case (Gavazzi and Lagoudas, 1990).

When the Eshelby tensor is known and the heat flux and temperature gradient fields in

inhomogeneous inclusions embedded in a matrix are of interest (for the mean field theories),

the concept of equivalent homogeneous inclusions have to be employed. This strategy in-

volves replacing an actual perfectly bonded inhomogeneous inclusion, which has different

material properties than the matrix and which is subjected to a given unconstrained trans-

formation temperature gradient, with an equivalent homogenous inclusion loaded by an ap-

propriate equivalent transformation temperature gradient h∗. This equivalent transformation

gradient has to be chosen in such a way that the same flux and gradient fields are obtained in
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the constrained state for the actual inhomogeneous inclusion and the equivalent homogenous

inclusion.

2.1.1.2 Dilute approximation

Consider a matrix-based (index 1) composite consisting of N phases. When using the dilute

approximation we assume that there is no interaction between inclusions r = 2, . . . , N . This

means that the concentration factor of each phase can be evaluated as if a single inclusion of

each phase was embedded in a infinite volume of matrix.

Let this composite be subjected on its outside boundary Γs to a homogeneous temperature

boundary condition defined in global coordinate system X as (Benveniste et al., 1990; Hatta

and Taya, 1986)

T (X) = HTX on Γs. (2.12)

The local temperature gradient of a single inclusion in a large volume of matrix loaded by H

assumes according Eq. (2.1) that

〈hr〉 = Adil
r H. (2.13)

The local temperature gradient in the inclusion can be decomposed as

〈hr〉 = H + Sh∗. (2.14)

The local heat flux (Eq. (2.5)) for the heterogeneity and equivalent inclusion is given by

〈qr〉 = −χr 〈hr〉 = −χ1 (〈hr〉 − h∗) , (2.15)

so that

h∗ = (χ1)−1 (χ1 − χr) 〈hr〉 . (2.16)

Next, substitute Eq. (2.16) into Eq. (2.14) to get

〈hr〉 = H + S(χ1)−1 (χ1 − χr) 〈hr〉 , (2.17)

and finally

〈hr〉 =
[
I − S(χ1)−1 (χ1 − χr)

]−1
H. (2.18)

Comparing Eqs. (2.13) and (2.18) yields the concentration factor as

Adil
r =

[
I − S(χ1)−1 (χ1 − χr)

]−1
. (2.19)
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Finally, the desired effective thermal conductivity matrix is derived from Eqs. (2.3) and

(2.19)

χdil = χ1 +
N∑
r=2

cr (χr − χ1)Adil
r . (2.20)

2.1.1.3 Self-consistent method

Another group of estimates for the overall thermomechanical behavior of inhomogeneous

materials are self-consistent schemes, in which an inclusion or some phase arrangement is

embedded in the effective material (the properties of which are not known a priori). Actually,

it assumes that interactions of phases is accounted for by this assumption.

A similar procedure as for the dilute method is used herein and so the self-consistent

scheme can be formally described by the relation

χSC = χ1 +
N∑
r=2

cr (χr − χ1)Adil,∗
r , (2.21)

where Adil,∗
r is the concentration factor for a inclusion embedded in the effective medium in

analogy to Eq. (2.19) and is a function of χSC. Therefore, Eq. (2.21) represents an implicit

solution and an iterative scheme has to be used

χSC
n+1 = χ1 +

N∑
r=2

cr (χr − χ1)
[
I − Sn(χSC

n )−1
(
χSC
n − χr

)]−1
. (2.22)

The mentioned tensor Sn pertains to a given inclusion enclosed in the n-th iteration by the

resulting effective conductivity and has to be computed for each iteration.

2.1.1.4 Mori-Tanaka method

The last method, mentioned in this section is the procedure proposed by Mori and Tanaka

(1973). There an interaction between the inclusions is accounted for by assuming that the

flux in each phase is equal to that of a single inclusion embedded into an unbounded matrix

subjected to as yet unknown average temperature gradient (〈h1〉) or flux (〈q1〉) in the matrix,

see e.g. (Benveniste, 1987; Benveniste et al., 1990, for further details) .

Let us consider an N-phase composite medium with the heterogeneities (reinforcements

or voids). This composite is subjected on its outside boundary to a homogeneous temperature

boundary condition defined as (Benveniste et al., 1990; Tomková et al., 2008), Eq. (2.12).
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Next, in the context of the Mori-Tanaka method, consider a certain auxiliary transformation

problem where a single heterogeneity in an infinite matrix is replaced by an equivalent inclu-

sion of the same shape and orientation but having the material properties of the matrix phase.

The local temperature gradient in the inclusion is then associated with the gradient in matrix

phase through the concentration factorAdil
r (sometimes called as partial concentration factor

for these procedure), see derivation of Eq. (2.19)

〈hr〉 = Adil
r 〈h1〉 . (2.23)

In the Mori-Tanaka mean field theory the mutual interaction of individual heterogeneities is

taken into account as mentioned above. Therefore, assume that the local temperature gradient

hr is expressed in terms of the prescribed macroscopically uniform temperature gradient H

as

〈hr〉 = AMT
r H, (2.24)

where the matrix AMT
r is again termed the concentration factor (Benveniste et al., 1990;

Jeong et al., 1998) for the heterogeneity.

Substitution of Eq. (2.23) into Eq. (2.2) and then into Eq. (2.24) leads to the relation for

the concentration factor

AMT
r = Adil

r

[
c1I +

N∑
i=2

ciA
dil
i

]−1

. (2.25)

which, together with Eq. (2.3) gives

χMT = χ1 +
N∑
r=2

cr (χr − χ1)AMT
r . (2.26)

Keep in mind that above mentioned list of mean field approaches do not cover all of the

known methods, see (Böhm, 2007) for more details.

2.1.2 Variational bounding methods (VBMs)

A brief description of this metod is mentioned hereafter, a more interested reader is referred

to the work of Böhm (2007). Variational principles are used to obtain upper and lower

bounds on the overall thermal conductivity as well as other physical properties of inhomo-

geneous materials. Many analytical bounds are obtained on the basis of phase-wise constant
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flux (polarization) fields. Bounds can be used for assessing other models of inhomogeneous

materials. Furthermore, in many cases one of the bounds provides good estimates for the

physical property under consideration, even if the bounds are rather slack. Many bounding

methods are closely related to MFAs. It is noteworthy that VBMs are limited to homoge-

nization and can not be used for localization task.

To get the variational bounds on effective properties, one must first express the effec-

tive parameter in terms of some functional (e.g. energy functional) and then formulate an

appropriate variational principle for the functional. Once the variational principle is estab-

lished then specific bounds on the property of interest are obtained by constructing trial or

admissible fields that conform with the variational principle (Torquato, 2002).

The bounds are useful because:

• they rigorously incorporate nontrivial information about the microstructure via statis-

tical correlation functions and consequently serve as a guide in identifying appropriate

statistical descriptors,

• as successively more microstructural information is included, the bounds become pro-

gressively narrowed,

• one of the bounds can provide a relatively sharp estimate of the property for a wide

range of conditions, even when the reciprocal bound diverges from it,

• they are usually exact under certain conditions,

• they can be utilized to test the merits of a theory or computer experiment,

• they provide a unified framework to study a variety of different effective properties.

Many definitions of the bounds can be found in literature . They can be sorted in accor-

dance with Böhm (2007) into these groups:

• classical bounds - Hill bounds, Hashin-Strinkman-type bounds,. . . , see (Cherkaev,

2000, and references therein)

• improved bounds, see (Torquato, 2002),
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• bounds for nonlinear behavior, see (Castañeda, 1992).

2.2 Methods studying discrete microstructure

Micromechanical approaches based on the discrete microstructure are used for the capability

of studying general microstructure of materials and describing the diversity of temperature

field at the scale of inhomogeneities. This can be a goal of treatment when the understanding

of a material behavior is desired or the fluctuations in the local temperature are considerable

and can not be grasp by average fields.

For the simply periodic materials, in which the microstructure exhibits strong periodic-

ity, the generation of microgeometry can be reached for instance by a hexagonal or cubic

arrangement of the inhomogeneities (Fig. 2.2(a,b)). If more complex (quasi-periodic) mi-

crostructure of material is investigated (Fig. 2.2(c)), more sophisticated arrangement of the

inhomogeneities has to be involved. In this case the generation of the unit cell is proposed

on the basis of real structure or with the help of computational algorithm. The former ap-

proach stands on the analysis of digital images of the real material structure and the selection

of appropriate representative volume. The second group of structure’s reconstruction comes

out of the computer generated microgeometries - based on generic random arrangements of a

small to a fair number of inhomogeneities or approximation of some given phase distribution

statistics, see (Zeman, 2003).

(a) (b) (c)

Figure 2.2: Microstructure: (a) Cubic arrangement, (b) hexagonal arrangement, (c) real

(quasi-periodic) structure

For both the computer generated phase arrangements and real structure models there is a

need of a geometrical complexity which is required for adequately representing the physical
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behavior of the inhomogeneous material to be studied. Therefore, the suitable representa-

tive volume element (RVE) has to be chosen. The size can be determined in accordance

with (Zeman and Šejnoha, 2001) where the size is governed by a requirement of two statis-

tically independent inhomogeneities or utilizing the correlation length (Zeman and Šejnoha,

2007). On the other hand, the element size is possible to determine by employing the error

between some physical properties (Gajdošı́k, 2005).

2.2.1 Periodic microfield approaches (PMAs)

Periodic microfield approaches (unit cell models) simulate the behavior of a real inhomo-

geneous material through the modeling of a unit cell which presents a periodic phase ar-

rangement. The response of this system can be obtained by the analysis of such a unit

cell with periodic boundary conditions. It is convenient for engineering problems involving

two or more length scales where the higher scales is made up of repeating periodic unit cells

(PUCs). They have become very popular in recent years to compute the linear and non-linear

responses of composite materials as the unit cell behavior is easily determined through the

finite element analysis (Sýkora et al., 2009; Vorel et al., 2006).

The key step of the definition of the optimal periodic unit cell is a choice of proper de-

scription of heterogeneous materials with random structure. The useable statistical descrip-

tors can be found in (Torquato, 2002), e.g. the application of one- and two-point probability

functions is presented in the work by Skoček et al. (2006) and Zeman (2003), see Section 4.1

as well.

In typical periodic microfield approaches the temperature gradient and heat flux are split

into constant macroscopic contributions and periodically varying microscopic fluctuations,

compare with Eq. (1.3). One can consider the linear variation of the local temperature T (X)

written in terms of the uniform macroscopic quantity H as

T (X) = HX + T f(X), (2.27)

where T f is periodic temperature fluctuation and •(X) is introduced to represent a given

quantity in the global coordinate system X. The local microscopic constitutive equation

written in the local coordinate system x takes the form presented in Eq. (1.2). To complete

the set of equations needed in the derivation of effective properties we recall the Fourier
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inequality (Malvern, 1969) (the Hill lemma for mechanical problem) for an equivalent rep-

resentation of steady state heat conduction problem together with Eq. (1.2) and write the

global-local variational principles, see e.g. (Tomková et al., 2008; Šejnoha and Zeman, 2008,

for further details) in the forms

〈
δh(x)Tχ(x)h(x)

〉
= 0. (2.28)

(If the PUCs are arranged into the large structure element, each of them contributes with

the same temperature change along the same direction.) In the framework of finite element

approximation the discrete form of local gradients derived from Eq. (2.27) reads

h(X) = H +B(X)Tf
d , (2.29)

whereB stores the derivatives of the element shape functions with respect to X and Tf
d is the

vector of the fluctuation parts of nodal temperatures. Substituting Eq. (2.29) into Eq. (2.28)

gives (
δTf

d

)
T
〈
B(X)Tχ(X)B(X)

〉
Tf
d = −

(
δTf

d

)
T
〈
B(X)Tχ(X)

〉
H, (2.30)

to be solved for nodal temperatures Tf
d . Combining Eqs. (2.29) and Eqs. (1.2) now allows us

to write the volume averages of local heat fluxes as

Q =
〈
P (X)Tq(x)

〉
= − 1

|Ω|

∫
Ω

P (X)Tχ(x)P (X)h(X) dΩ, (2.31)

also showing the relationship between material matrices in the local and global coordinate

systems in terms of certain transformation matrix P , see e.g. (Bittnar and Šejnoha, 1996;

Zeman, 2003; Tomková et al., 2008; Vorel and Šejnoha, 2009),

χ(X) = P (X)Tχ(x)P (X). (2.32)

The result of Eq. (2.31) now allows for writing the macroscopic constitutive laws as

Q = −χHH, (2.33)

where χH is the searched homogenized effective thermal conductivity. In particular, for a

three-dimensional PUC the components of the 3× 3 conductivity matrix χH follow directly

from the solution of three successive steady state heat conduction problems. To that end, the
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periodic unit cell is loaded, in turn, by each of the three components of H, while the other

two vanish. The volume flux averages, Eq. (2.31), normalized with respect to H then furnish

individual columns of χH. The components of the 6 × 6 elastic stiffness matrix
[
LH
]

could

be found analogously from the solution of six independent elasticity problems.

The effective thermal conductivities can been obtained assuming the solution derived in

terms of the fluctuation part T f of the local temperature T when loading an RVE directly by

the prescribed macroscopic temperature gradient (H) or by the macroscopic uniform heat

flux (Q) as mentioned above. The designer, however, must often rely on the use of standard

finite element codes, either academic or commercial, where the loading is represented in

terms of the prescribed boundary temperatures or fluxes and the solution is searched directly

in terms of the local temperatures T (X),X ∈ Ωs.

For illustration, consider now the most simple case illustrated in Fig. 2.3, when the PUC

is loaded by the uniform heat flux (Q1) along the two vertical boundaries at x1 = 0, x1 = d

while no flow boundary conditions are specified (Q2 = 0) along the two horizontal bound-

aries at x2 = 0, x2 = v. Eq. (2.8) is then immediately satisfied and the horizontal component

of the effective heat conductivity is, in view of Eq. (2.4), provided by

χ1 = − Q1

〈h1〉
. (2.34)

If no action is taken this result corresponds to the assumption of T f = 0 on boundary Γs. If,

on the other hand, the periodic boundary conditions are on demand it is necessary to proceed

as follows.

Consider again a two-dimensional rectangular RVE with dimensions u and v (see Fig.

2.3).

Observe that for a pair of points (e.g. A - master and a - slave) located on the opposite

sides of the PUC the following relations hold

TA = 〈h2〉x2,A + T f
A + T (x0), Ta = 〈h1〉u+ 〈h2〉x2,a + T f

a + T (x0), (2.35)

Taking into account the fact that the fluctuation field of temperatures T f satisfies the period-

icity condition

T f
a = T f

A, (2.36)

and subtracting corresponding terms on the opposite edges, we finally obtain (compare with
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Figure 2.3: Conditions of periodicity

the work of Oezdemir et al. (2008))

〈h1〉u = Ta − TA = T2 − T1,

〈h2〉 v = Tb − TB = T3 − T1, (2.37)

where T1, T2 and T3 are the temperatures at the control points 1,2 and 3 seen in Fig. 2.3.

These conditions can be introduced into most commercial software products using the multi-

point constraint equations.

Note that neither the assumption of T f = 0 on Γs nor the periodic conditions (2.36)

(or constraints (2.37)) are sufficient to specify the local temperature field uniquely. This

condition is established by introducing a reference temperature T (x0) at an arbitrary point

x0 ∈ Γs as indicated in Eq. (2.35).

In a linear case, when the effective thermal conductivities are independent of the actual

temperature, this value is arbitrary and can be set equal to zero in the selected node of the

finite element mesh. In the temperature dependent problem the instantaneous effective prop-

erties might, however, be strongly influenced by the current temperature. This term then

plays an important role.

2.2.2 Embedded cell approaches (ECAs)

A developing area of computational micromechanics involves the analyzing of the mechan-

ical behavior by means of embedded cell models. In this approximation, full details of the



Conceptual and methodical approaches 26

composite microstructure (including the matrix, reinforcements and interfaces) are resolved

in the desired region, while simple constitutive equations (based on any suitable homoge-

nization approximation) and coarser discretizations are used in the rest of the model to save

computer time (Fig. 2.4(a)), for more see (González and Lorca, 2007; Böhm, 2007, and

references therein).

The embedded region serves mostly as a transition zone for transmitting the applied

loads into the core. In comparison with periodic microfield approaches these methods do

not require strictly periodic microfields. Therefore, they can be used to study temperature

dependent conductivities in thermal analysis.

2.2.3 Window approaches (WAs)

These approaches are possibly the simplest one of the methods studying discrete microstruc-

ture at least from the effort consuming cell’s preparation point of view. To study the discrete

microstructure the simply shaped windows (cells) are extracted from the image of the real

material arrangement and subjected to the non-periodic conditions guarantying the macro-

homogeneity conditions. For that reason, the phase distribution statistics are also employed,

see (Cluni and Gusella, 2004).

Figure 2.4: Schematic depiction: (a) Embedded cell approach, (b) window approaches (pos-

sible windows are scatched by the dashed line)



Chapter 3

EXPERIMENTAL PROGRAM

As already stated in the introductory part much of the considered here is primarily com-

putational. However, no numerical predictions can be certified if not supported by proper

experimental data (Knauss, 2000). The objective of the experimental program in the context

of the present study is twofold. First, reliable geometrical data for the construction of the unit

cell and material parameters of both the carbon fibers and carbon matrix for the prediction of

effective properties are needed. Since still derived on the basis of various assumptions these

results must be next confirmed experimentally to acquire real predictive power. Hereinafter,

only the former perception of computation-theory interaction is discussed while the latter

one will be mentioned in due course.

Considering the mesoscopic complexity of C/C composites the supportive role of exper-

iments is assumed to have the following three components:

• Two-dimensional image analysis providing binary sections of the composite further

exploited in the derivation of one- or two-layer statistically equivalent periodic unit

cell (SEPUC)

• X-ray tomography yielding a three-dimensional map of distribution, shape and volume

fraction of major pores to be introduced into, yet void-free, SEPUC.

• Nanoindentation tests supplying the local material parameters which either depend on

the manufacturing process or are not disclosed by the producer.

For the above purposes a carbon-polymer (C/P) laminated plate was first manufactured

by molding together eight layers of carbon fabric Hexcel G 1169 composed of carbon multi-

filament Torayca T 800 HB and impregnated by phenolic resin Umaform LE. A set of twenty

specimens having dimensions 25× 2.5× 2.5 mm were then cut out of the laminate and sub-

jected to further treatment (carbonization C at 1000◦C, reimpregnation I , recarbonization,
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second reimpregnation and final graphitization G at 2200◦C (CICICG)) to create the C/C

composite, see Fig. 3.1 for an illustration and (Tomková, 2006) for more details. The re-

ported specimens were then fixed into the epoxy resin and subject to curing procedure. In

the last step, the specimen was subjected to final surface grounding and polishing using

standard metallographic techniques. This part of the specimen preparation should deserve a

special attention as it has a detrimental influence on the quality of digitized images.

(a) (b) (c)

Figure 3.1: Examples of scanned microstructures: (a) Woven fabric, (b) carbonized com-

posite, (c) graphitized composite

3.1 Two-dimensional image analysis

The actual image analysis device used for structural image acquisition and analysis con-

sists of NIKON ECLIPSE E 600 microscope, Märzhauser motorized scanning stage, digital

monochrome camera VDC 1300C and image analysis software LUCIA G1 (LIM, 2008).

Note that high reflectance of the woven fabric allows relatively good visual resolution of

individual parts of a composite structure as demonstrated in Fig. 3.1. Using the method of

gradual abrasion of the surface of transverse sections of the composite laminate allowed us to

generate a voluminous database of micro-images intended for further processing. Unfortu-

nately, a low color contrast of the reinforcement (carbon fabric) and matrix is a major imped-

iment to an automatic separation of individual objects. Therefore, a manual preprocessing

of images by marking the borders of selected objects becomes often necessary, cf. Fig. 3.2.

Further image analysis and object measurement was, however, fully automatic providing a

sufficient insight into the space arrangement of the reinforcements and pores including an
1 www.lim.cz

www.lim.cz
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average thickness of carbon tows, shape and essential dimensions of fiber tow cross-section,

size and shape of major voids, distribution of transverse and delamination cracks, etc.

(a) (b)

Figure 3.2: Image processing steps: (a) Manual marking of object borders, (b) automatic

marking of objects

Although, as demonstrated in Section 5.2.1, statistical consideration of the acquired re-

sults proved useful, the essential input for the preparation of physical models for computa-

tional analysis (SEPUC) is given by binary images of the composite. A particularly perspic-

uous illustration of the result of two-dimensional image processing is available in Fig. 3.3

implicating that material porosity is paid no attention to when treating only the geometrical

imperfections of the fabric reinforcements. At this point, a direct comparison of the resulting

mesoscopic predictions with experimental measurements would therefore be meaningless.

(a)

(b)

Figure 3.3: Examples of image analysis: (a) Woven fabric, (b) multi-layered C/C composite
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3.2 Three-dimensional X-ray microtomography

There is no dispute that porosity of C/C composites plays an important role in the deriva-

tion of effective material properties. Most common approach to characterizing this property

employs sectioning, recall Section 3.1. The influence of shape of pores, estimated from 2D

images or real C/C composites (Tomková and Košková, 2004), on the mechanical response

has been addressed e.g. in (Košek et al., 2008; Tsukrov et al., 2005). However, as suggested

in (Vorel and Šejnoha, 2009), two-dimensional estimates of the porosity may significantly

pollute the final predictions of the material response when compared to three-dimensional

simulations. In this regard, the X-Ray microtomography (Dobiášová et al., 2002; Djukic

et al., 2008; Pahr and Zysset, 2006) becomes a valuable tool rendering three-dimensional

phase information. In the present study, high resolution computer tomography images pro-

vided by the Interfacultary Laboratory for Micro- and Nanomechanics of Biological and

Biomimetical Materials of the Institute of Lightweight Design and Structural Biomechanics

were used to obtain the shape, size, location and volume fraction of inter-layer (crimp) voids.

A particular example of the distribution of major porosity in C/C multi-layered plane-weave

composite is presented in Fig. 3.4. While the basic characteristics of the porosity can be

extracted from these images with no particular difficulty, a direct introduction of pores in

their full complexity as seen in Fig. 3.4(a) is impossible. Instead, a discrete set of oblate

spheroids approximating the shape and volume of actual pores is accommodated in between

the two layers of the SEPUC fitting their true location as close as possible. Further details to-

gether with the way of handling the minor porosity observed in individual tows are presented

in Section 4.3.2.

3.3 Phase elastic moduli from nanoindentation

Prediction of complex macroscopic response of highly heterogeneous materials from local

phase constitutive theories is a formidable aspect of micromechanical modeling. The relia-

bility of these predictions, however, is considerably influenced by available information on

material data of individual constituents. Even though supplied by the producer, these infor-

mation are often insufficient for three-dimensional analysis. It is also known that material

properties of the matrix much depend on the fabrication of composite and may considerably
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(a) (b)

Figure 3.4: X-ray microtomography: (a) Interior distribution and shape of large vacuoles,

(b) three-dimensional view of the porous composite structure

deviate from those found experimentally for large unconstrained material samples (Dvorak,

2000).

Carbon matrix developed in the composite through a repeated process of impregnation,

curing and carbonization of the phenolic resin is a solid example. This resin falls into the cat-

egory of non-graphitizing resins so that the final carbon matrix essentially complies, at least

in terms of its structure, with the original cross-linked polymeric precursor. Therefore, the

resulting material symmetry is more or less isotropic with material parameters correspond-

ing to those of glassy carbon. Nevertheless, when constrained the assumed matrix isotropy

may evolve into the one of the fibers particularly in their vicinity. Although the carbon fibers

are known to have a relatively low orderliness of graphen planes on nano-scale, they still

posses a transverse isotropy with the value of longitudinal tensile modulus (usually avail-

able) considerably exceeding the one in the transverse direction (often lacking). Additional

experiments, preferably performed directly on the composite, are therefore often needed to

either validate the available local data or to derive the missing ones.

At present, nanoindentation is the only experimental technique that can be used for direct

measurement of mechanical properties at material micro-level. A successful application

of nanoindentation to C/C composites has been reported in (Kanari et al., 1997; Marx and

Riester, 1999; Diss et al., 2002b). In the present study, our only attention was limited to

the evaluation of the matrix elastic modulus and the transverse elastic modulus of the fiber.

The remaining data were estimated from those available in the literature for similar material
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systems.

(a) (b)

Figure 3.5: Nanoindentation - location of indents: (a) Transverse direction, (b) longitudinal

direction (compression)

Three locations, distinctly separated in optic microscope, were tested - matrix, paral-

lel fibers Fig. 3.5(a), perpendicular fibers Fig. 3.5(b). The matrix was therefore assumed

isotropic and possible anisotrophy, which may arise inside the fiber tow, was not considered.

As seen in Fig. 3.5 several measurements were recorded for each of the three locations. The

measurements were performed using CSM Nanohardness tester equipped with a Berkovich

tip allowing for 0.1-500 mN loading range. To ensure elastic response relatively low in-

dentation forces up to 10 mN were considered. The elastic moduli were extracted from an

unloading part of the indentation curve using the well known method proposed by Oliver

and Pharr (1992). The analysis is based on the analytical solution known for rotational bod-

ies punched into the elastic isotropic half-space. The indentation elastic modulus is then

provided by

Er =
K
√
π

2
√
APL

, (3.1)

where APL is the projected contact area at the peak load and K is the contact stiffness

evaluated as the initial slope of the unloading curve. The following equation is then adopted

to account for a finite elastic stiffness of the indenter

1

Er
=

1− ν2

E
+

1− ν2
i

Ei
,

where E and ν are the elastic modulus and Poisson ratio of the tested material and Ei and νi

are parameters of the indenter (for diamond: Ei=1141 GPa and νi =0.07). In this study, the
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matrix Poisson ratio was assumed equal to 0.2 while the fiber Poisson ration was set equal to

0.4. The complete set of parameters, both measured averages labeled by ·∗ and those adopted

from literature, is available in Tab. 3.1. Note that the matrix modulus agrees relatively well

with the one found for the glassy carbon in (Diss et al., 2002b).

Table 3.1: Material parameters of individual phases

Material Young modulus Shear modulus Poisson ratio

[GPa] [GPa] [-]

fiber longitudinal 294 11.8 0.24

transverse 12.8∗ 4.6 0.4

matrix 23.6∗ 9.8 0.2

The final note is concerned with heat treatment of the C/C composite during fabrication.

It has been observed experimentally (Černý et al., 2000) that even for T800 based com-

posites the tensile Young’s modulus increases for graphitized specimens (CICICG) when

compared to only carbonized ones (CICIC). It is suggested that this phenomenon may be

caused by further stiffening of carbon fibers. This, however, is difficult to address in the

present study as the tensile modulus cannot be measured via nanoindentation. On the con-

trary, neither the matrix properties nor the porosity profile is expected to change considerably

with graphitization. Therefore, the experimental data reported in (Černý et al., 2000) for the

CICIC system rather than those for CICICG system will be fostered for comparison with

numerical predictions.

3.4 Laboratory evaluation of effective properties

Corroboration of a mechanics model by experimental data is still thought vital for the model

to be accepted, inasmuch as there is simply nothing better, even though an experiment often

comprises laboratory measurements and a theory for calculating not directly measurable

parameters.

With regard to thermophysical parameters the pulse transient method (Kubičár et al.,

2002) combined with a heat loss model for the calculation of temperature response, when
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lower currents are used for pulse generation, is often adopted. The searched thermal con-

ductivities are found subsequently using a general relation between thermal conductivity,

specific heat and thermal diffusivity, the latter two given in terms of the maximum attained

temperature, the elapsed time to reach this temperature, total amount of generated heat and

a set of correction factors characterizing deviations of calculated thermal diffusivity and

specific heat from those derived for an ideal system (ideal heat source placed in boundless

isotropic body). It is not the objective of this section to provide all details of this method, as

these can be found, e.g. in (Kubičár et al., 2002; Boháč, 2005), but rather to suggest the com-

plexity of deriving the effective thermal conductivities from an experiment, which in turn are

to be used to question the quality of numerical predictions presented later in Chapter 5. In

particular, in support of the proposed approach to the numerical computation of effective

thermal conductivities of C/C composites we borrow the results presented by Boháč (2005).

Averages of the measurements from six samples of a C/C laminate are available in Tab. 3.2.

Table 3.2: Phase (Tomková, 2006), unidirectional (UD) C/C composite (porous fiber tow)

and laminate effective thermal conductivities (Boháč, 2005)

Material Thermal conductivities [Wm−1K−1]

χ11 χ22 χ33

air 0.02 0.02 0.02

fiber 35 0.35 0.35

matrix 6.3 6.3 6.3

C/C laminate 10 (warp) 10 (weft) 1.6

Similar difficulties arise when deriving the dynamic tensile and shear moduli from a

resonant frequency method. While the basic longitudinal resonant frequency of a beam with

free ends is used to extract the tensile Young’s modulusE11, the complete frequency equation

for flexural vibration of a beam with free ends is solved to obtain the longitudinal shear

modulus G12 (Vozková, 2008).

Among other material system this technique was employed in (Černý et al., 2000) to

derive the homogenized tensile and shear moduli of a four layer T800 fiber fabric based

plain weave C/C composite. As part of their study a unidirectional (UD) carbonized CICIC
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composite was examined. The resulting moduli stored in Tab. 3.3 were utilized here to

validate the Mori-Tanaka estimates of the homogenized properties of the porous fiber tow,

see Section 5.1. Contemplation of the MT micromechanics model on the level of fiber tow

has two reasons. First, it provides the homogenized fiber tow conductivity and stiffness

matrices needed in the mesoscopic study (Chapter 5) relatively easily. Second, the acquired

predictions are sufficiently “reliable” when no microstructure information other than volume

fractions of individual constituents are at hand. In the present study a relatively high volume

fractions of fibers equal to 68% and open porosity by water penetration of 6.6% were taken

from Černý et al. (2000). Comparison of the predicted and measured longitudinal moduli

presented in Section 5.1 verifies both the local phase properties given in Tab. 3.1 and justifies

the use of the MT method (Section 2.1.1.4).

Table 3.3: Effective elastic properties of UD C/C composite (porous fiber tow) and C/C

laminate (Černý et al., 2000)

Material E11 G12

[GPa] [GPa]

porous tow ≈ 200 ≈ 11.5

C/C laminate ≈ 65 ≈ 6



Chapter 4

MODELING STRATEGY OF C/C PLAIN WEAVE COMPOSITES

As mentioned in Section 1.2.5 one can recognize three different scales in plain weave

composites. It has been demonstrated in previous works, see e.g. (Šejnoha et al., 2008;

Zeman and Šejnoha, 2001) that image analysis of real, rather then artificial, material systems

plays an essential role in the derivation of a reliable and accurate computational model. This

issue is revisited here for the case of a woven fabric C/C laminate with particular relation to

the adopted uncoupled multi-scale solution strategy (first order homogenization procedure).

For illustration, let us now consider an eight-layer carbon-carbon composite laminate.

Individual plies are made of plain weave carbon fabric embedded in a carbon matrix. Each

filament (fiber tow) contains about 6000 carbon fibers, see Chapter 3. A typical segment of

the composite laminate appears in Fig. 1.2(b) showing characteristic porosity which may ex-

ceed at the structural level (macro-scale) 30% and is often considered as an intrinsic property

of this type of composite. Several such micrographs were processed by Tomková et al. (2007)

to acquire information regarding the basic structural units like an average thickness of carbon

tows, size of voids, shape and essential dimensions of fiber tow cross-section, distribution of

transverse and delamination cracks etc. These parameters were exploited in (Tomková et al.,

2007) to construct statistically equivalent periodic unit cells (SEPUC) subsequently used in

the FEM simulations.

4.1 Statistically equivalent period unit cell

The concept of statistically equivalent periodic unit cell for random or imperfect microstruc-

tures is now well established. A lucid presentation of individual steps enabling the substi-

tution of real microstructures by their simplified artificial representatives - the SEPUCs - is

available, e.g. in (Zeman and Šejnoha, 2001, 2004a, 2007) and additional references given

below. Herein, these steps are briefly reviewed concentrating on the specifics of SEPUC for
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two-layer woven composites.

4.1.1 Quantification of random microstructure

Assuming a statistically homogeneous and ergodic binary material system, two basic two-

point statistical functions are available to capture the essential characteristics of the analyzed

tow-matrix material system. In particular, the first descriptor is a two-point probability func-

tion S(x) (Torquato and Stell, 1982), which quantifies the probability that two points, sep-

arated by vector x, will be both found in the domain occupied by warp and weft tows (i.e.

the white region in Fig. 3.3). Additional statistics, proposed by Lu and Torquato (1992) to

better describe long-large effects, is the linear path function L(x) giving the probability of

locating a randomly placed segment x fully in the tow region. Both descriptors can be eas-

ily computed for digitized microstructures: in particular, the Fast Fourier transform library

FFTW (Frigo and Johnson, 2005) is used for the S function, while the sampling template

procedure is introduced for the determination of the linear path function; see also (Torquato,

2002) for an in-depth discussion of this topic.

4.1.2 Calibration of SEPUC parameters

In overall, the adopted model of the unit cell involves seven independent parameters

y = [a, b, g, h,∆1,∆2,∆3] , (4.1)

to be determined form available microstructural data, see Fig. 4.6. For the sake of gener-

ality, we assume that the microstructure configuration is characterized by microstructural

function associated with (at most) warp and weft directions; i.e. functions Swarp and Lwarp

for the warp and descriptors Sweft and Lweft for the weft directions, recall Fig. 4.6(b). Fol-

lowing (Yeong and Torquato, 1998a), the following quantities are introduced to measure the

similarity between the SEPUC and the original microstructure:

O2
S(y) =

∑
p∈{warp,weft}

imax∑
i=imin

jmax∑
j=jmin

(
Sp(y, i, j)− Sp

)2
, (4.2)

O2
L(y) =

∑
p∈{warp,weft}

imax∑
i=imin

jmax∑
j=jmin

(
Lp(y, i, j)− Lp

)2
, (4.3)

OS+L(y) = αSOS(y) + αLOL(y), (4.4)
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where e.g. Swarp(y, i, j) denotes the two-point probability function determined for the warp

direction of a SEPUC described by parameters y and the value of argument x = [i, j].

The α• symbol in Eq. (4.4) denotes a scale factor used to normalize the influence of both

descriptors.1

An additional term is introduced into the objective function to eliminate the intersection

of the upper-layer and lower-layer tows. To that end, we compute the overlap δ as the signed

distance between the upper and lower tow surfaces and introduce the constraint δ ≥ 0 via an

exponential exterior penalty function:

PD(y) =

(
1 +

δ−(y)

h

)λ
OD(y), (4.5)

where δ− denotes the negative part of δ, D can take values [S,L,S + L] and the value of

exponent λ = 3 was used in all the reported calculations. Note that a similar procedure was

adopted by Kumar et al. (2007) in the formulation of SEPUC for high-density polydisperse

particulate composites.

Now, the optimal values of the SEPUC parameters can be determined from the solution

of a box-constrained global optimization problem

y ∈ Argmin
l≤z≤u

OD(z), (4.6)

where the lower and upper bounds l and u can be, e.g. determined on the basis of image

analysis.2 A closer inspection reveals that all objective functions (4.5) are multi-modal and

discontinuous due to the effect of limited bitmap resolution (Zeman, 2003). According to

our previous experience with evolutionary optimization algorithms, a stochastic optimization

algorithm RASA (Matouš et al., 2000; Hrstka et al., 2003), based on a combination of real-

valued genetic algorithm and simulated annealing method, is used to solve the problem (4.6).

4.1.3 Verification of optimization procedure

To examine the robustness and performance of the proposed optimization process based

on the two-point probability function S(x), the artificial 512 × 224 pixels bitmap of a two-
1 In all reported computations, values of the weights were determined to normalize the average value of each

summed to one and were estimated from 20 independent simulations.
2 Note that when the same statistics is assumed for both warp and weft directions, cf. Section 4.1.3, we set

∆1 = ∆2 and consider only one set of descriptors.
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layer composite with parameters a = 10, h = 4.5, b = 1.5, g = 2, ∆1 = ∆2 = 5 and

∆3 = −1 was generated as a reference microstructure. For each component of the vector

x, the lower and upper bounds were set to 50% and 200% of the target value, respectively.

Finally, the algorithm was terminated once the solution with the value PS smaller then 10−6

was found. The setting of all parameters of the RASA algorithm are specified in detail

in (Zeman, 2003, Appendix C). In order to take into account the stochastic character of the

algorithm, the optimization method was run 20 times and the minimum and maximum values

of the searched geometric parameters and the number of the objective function evaluations

until convergence were recorded. Results of this numerical experiment are stored in Tabs. 4.1

and 4.2.

Table 4.1: Results of the verification procedure

Success rate Number of function calls

Minimum Average Maximum

20/20 4,316 8,866 21,456

Table 4.2: Accuracy of identified parameters

a b g h ∆1 = ∆2 ∆3

10.01± 0.05 1.5± 0.00 2.00± 0.08 4.50± 0.02 5.02± 0.08 1.00± 0.04

Notice that the optimization algorithm was able to find a solution corresponding to a

given value of the objective function for every run in a moderate number of iterations, which

justifies the choice of the global stochastic optimization algorithm. Furthermore, it is clearly

evident that the precision of identified parameters stays roughly on the same level, the “hor-

izontal” parameters g, ∆1 and a are associated with the highest error. Nevertheless, the

maximum scatter of identified parameters is less than 4% for all coefficients, which is more

than sufficient for the required accuracy in practical problems, dealing with systems with

substantially more irregular geometry. Moreover, it should be emphasized that the scatter

in geometrical parameters can be solely attributed to the problem discretization and to the



Modeling strategy of C/C plain weave composites 40

nature of genetic algorithms. From the material statistics point of view, all the unit cells

resulting from the optimization procedure are identical.

4.1.4 Multi-layered C/C composites

For the procedure of the two-layer SEPUC determination, all the internal parameters of

the optimization method were the same as in the case of the verification experiment. The

maximum number of function evaluation was set to 50, 000. The lower and upper bounds

correspond to the scaled 5 and 95% probability quantiles of parameters measured directly

from several bitmaps (Fig. 3.3(b)) and appear in Tab. 4.3, see (Tomková and Košková, 2004;

Skoček et al., 2008; Zeman and Šejnoha, 2004b) and Tab. 5.11 for unscaled values. The opti-

mum found from 20 independent executions of the RASA algorithm is stored in the last row

of the same table. In addition, statistics of the optimal values appears in Tab. 4.4, confirming

robustness of the found global minimum.

Table 4.3: Bounds and optimal parameters on the two-layer SEPUC. Dimensions of SEPUC

are scaled such that the mean value of a parameter equals to 10

SEPUC parameters

a b g h ∆1 = ∆2 ∆3

Lower bound 8.87 0.51 1.01 0.93 -4.93 -0.80

Upper bound 11.13 0.81 2.55 1.74 4.93 0.80

SEPUC 9.83 0.53 1.90 1.13 1.30 -0.21

Table 4.4: Statistics of local minima

Value of objective function PS
Minimum Average Maximum

6.770× 10−3 6.852× 10−3 7.256× 10−3

The resulting three-dimensional scheme of the statistically optimal unit cell appears

in Fig. 4.1s. From the qualitative point of view, it is evident that the SEPUC tries to re-
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Figure 4.1: The resulting three-dimensional scheme of the statistically optimal unit cell

produce the matrix rich regions together with the strong nesting of individual layers, of

course within the constraints of the selected geometrical model and the impenetrability con-

dition. It is worth noting that the “two-dimensional” tow volume fraction in Fig. 3.3(b) is

approximately 65%, which corresponds to ≈ 51% volume of tows reported for pore-free

composite in (Skoček et al., 2008). This provides additional argument for representative-

ness of the three-dimensional model, as this information was not included in the objective

function Eq. (4.5).

4.2 Micro-scale

Starting with the fiber tow composite as the basic structural element we call Fig. 4.2 show-

ing a typical shape of the fiber tow cross-section and significant amount of transverse cracks

and voids resulting in a non-negligible porosity. To evaluate the effective conductivity ten-

(a) (b)

Figure 4.2: Homogenization on micro-scale: (a) Fiber tow composite, (b) fiber-matrix com-

posite
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sor a two-step homogenization approach is adopted together with formulations discussed

in Chapter 2, see also (Tomková et al., 2008). It combines evaluation of effective properties

in the absence of pores with a subsequent homogenization step in which the porous phase is

introduced into a new homogenized matrix.

In the first step of the proposed multi-scale homogenization scheme a single filament

(fiber tow) of a plain weave carbon fabric Hexcel 1/1 bonded to a carbon matrix is con-

sidered, Fig. 4.2(a). As mentioned, each filament contains significant amount of transverse

cracks and voids resulting in a porosity of more than 10% (Tomková and Košková, 2004;

Tomková et al., 2008). While the matrix phase, which essentially corresponds to a glassy

carbon, is assumed isotropic the carbon fiber possess a transverse isotropy with the values

of material properties in longitudinal direction considerably exceeding the one in the trans-

verse direction. For illustration the phase thermal conductivities are listed in Tabs. 3.1,3.2.

Considerable difference in the size of the two types heterogeneities (fibers and pores) readily

suggests a two step homogenization procedure to predict the effective properties of the fiber

tow.

4.3 Meso-scale

The micromechanical analysis of composite materials is primarily concerned with the ther-

momechanical behavior of a single ply composite, Figs. 1.1(a-c). On this level of sophisti-

cation the main stream of research has been directed to prediction of effective behavior of

composite aggregate (single lamina), as well as to find estimates of local fields, while ac-

counting for actual behavior of individual material constituents and their interaction. Due

to poor transverse properties of the unidirectional lamina in particular it is not usually used

as a separate structural unit, but rather as an element of more complex composite structures,

such as laminated plates. Appropriate selection of material properties of individual plies,

orientation and stacking sequence can considerably enhanced the mechanical behavior of

composite structures, e.g. the plain weave composites are utilized to improve the material

properties (Fig. 1.2(a)). At the structural level, each layer is usually modeled as an equiva-

lent homogeneous material with effective properties derived from various micromechanical

models listed in Chapter 2.
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Note, however, that the real composite shows a number of imperfections which certainly

should not be completely disregarded. It will be seen later in following chapters that the

nonuniform waviness and to some extent also the mutual shift of individual layers clearly

visible in Fig. 1.2 can be accounted for by utilizing histograms of inclination angles derived

from centerlines of individual fiber tows (Fig. 4.3(a), (Vopička, 2004)).

(a) (b)

Figure 4.3: Inclination angles: (a) Example of a real histogram, (b) approximate distribution

(PUC)

Having derived the effective material parameters for the fiber tow composite the assumed

homogenization procedure continues along the same lines on the meso-scale as on the micro-

scale. However, for the finite element based approaches the influence of both the tow paths

and pores is mostly accounted for at once (one-step homogenization approach). To motivate

the application of the theory summarized in the Chapter 2 to textile composites, consider an

idealized geometrical model of a plain weave composite shown in Fig. 4.4.

4.3.1 Mori-Tanaka analysis

The basic building block of the adopted SEPUC is provided by a single-ply model of plain

weave composite geometry proposed in (Kuhn and Charalambides, 1999). The model con-

sists of two orthogonal warp and weft tows embedded in the matrix phase and it is param-

eterized by four basic quantities: the tow wavelength 2a, the tow height b, tow spacing g

and the layer thickness h. For this particular case (as well as for almost all geometrical

models available in the literature), the centreline of the warp tow is described using a simple
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(a) (b)

Figure 4.4: Idealized geometrical model for plane weaved composite: (a) Geometrical pa-

rameters, (b) three-dimensional view

trigonometrical function

s (x) =
b

2
sin
(πx
a

)
. (4.7)

To characterize the distribution of inclination angles for idealized model the Euler angles

(φ, θ, β) are introduced (Fig. 4.5). Recall that the relation between the local coordinate

Figure 4.5: Local coordinate system and definition of the Euler angles

system x and the global coordinate system X is provided in terms of transformation matrix

P as

X = Px. (4.8)
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The specific transformation matrix consistent with Fig. 4.5 then reads 3

P =


cosφ cos θ cosβ − sinφ sinβ sinφ cos θ cosβ + cosφ sinβ − sin θ cosβ

− cosφ cos θ sinβ − sinφ cosβ − sinφ cos θ sinβ + cosφ cosβ sin θ sinβ

cosφ sin θ sinφ sin θ cos θ

 .
(4.9)

If we consider directly the simplified geometrical model in Fig. 4.4(b), the joint probabil-

ity density function f(φ, θ, β) results from the harmonic shape of the centerline as described

by Eq. (4.7). Applying the change of variable formula (Rektorys, 1994, Section 33.9), we

obtain after some algebra the expression of the probability density in the form

f(φ, θ, β) =


2a

π

1 + tan2(θ)√
b2π2 − 4a2 tan2(θ)

if φ = 0, β = 0 and − α ≤ θ ≤ α,

0 otherwise,

where

α = arctan

(
bπ

2a

)
.

Assuming simply a uniform distribution of inclination angles the joint probability density

function attains the form

f(φ, θ, β) =


1

2α
if φ = 0, β = 0 and − α ≤ θ ≤ α,

0 otherwise.

Both functions are plotted in Fig. 4.3(b) for comparison. In this study, the latter function is

adopted for simplicity.

4.3.2 Finite element analysis - computational model

In this section the formulation of a computational model intended for the finite element based

homogenization is presented. As a stepping stone the SEPUC presented in the previous

section is utilized. The three-dimensional woven composite SEPUC, shown in Fig. 4.6, is

formed by two identical one-layer blocks, relatively shifted by distances ∆1, ∆2 and ∆3 in

the direction of the corresponding coordinate axes. Finally, cutting a SEPUC by the plane
3 Note that so-called ”x2 convention” is used; i.e. a conversion into a new coordinates system follows three

consecutive steps. First, the rotation of angle φ around the original X3 axis is done. Then, the rotation of

angle θ around the new x2 axis is followed by the rotation of angle β around the new x3 axis to finish the

conversion.
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X1 = X2 = ±a yields the warp and weft two-dimensional sections, used as the basis for the

determination of the unit cell parameters.

Figure 4.6: Geometrical model of two-layer SEPUC (two-dimensional cut)

The FEM homogenization technique implies the use of conforming finite element meshes

easily enabling the implementation of periodic boundary conditions already mentioned in Sec-

tion 2.2.1. This might seem daunting in that it requires not only incorporation of an arbitrary

shift of the two layers of fabric reinforcement, but also an independent introduction of voids

in a way broadly similar to that outlined already in Section 3.2. An illustrative example of

the geometry of such a model is presented in Fig. 4.7.

(a) (b)

Figure 4.7: Computational model: (a) Two-dimensional cut of a two-layer model with voids

(b) 3D view of the geometry of a two-layer UC model with voids

In the present study this step is accomplished by combining the principles of CAD mod-

eling (Hivet and Boisse, 2005) with the volumetric modeling capacities of the ANSYS R©
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package4 (ANSYS, 2005).

In order to ensure the symmetry of the resulting FEM mesh, a primitive block of the

tow is modeled first, see Fig. 4.8(a). Subsequently, using mirroring, copying and merging

operations, the whole volume of one reinforcement layer is generated, Fig. 4.8(b). The sec-

ond layer is derived analogously and then placed according to parameters ∆1,∆2 and ∆3

as shown in Fig. 4.8(c). The porous phase is introduced next being represented by four

identical oblate spheroids, the volume of which is derived from X-ray microimages shown

in Fig. 3.4. These are then periodically extended over the entire model, Fig. 4.8(d). Their

location is assumed to mimic the distribution of large vacuoles that typically appear, as also

seen in Fig. 1.3, in the location of tow crossing. However, this is difficult to achieve in gen-

eral, and thereby the porous phase was excluded from the minimization problem presented

in Section 4.1. Finally, the volume corresponding to matrix is generated using the subtrac-

tion of the body of reinforcements and the 2a× 2a× (2h+ ∆3) parallelepiped defining the

SEPUC. The resulting geometrical model appears in Fig. 4.7(b).

Now, the mapped meshing technique (Wentorf et al., 1999; Matouš et al., 2007) can be

employed to ensure periodicity of the resulting finite element mesh. First, half of the external

surfaces of the SEPUC are discretized and the mesh is then copied to the homologous sur-

faces. Next, the tetrahedral elements corresponding to tows, voids and matrix are generated

based on the data created in the previous steps. The corresponding finite element mesh is

shown for illustration in Figs. 4.8(e)–(f).

4.4 Macro-scale

The macromechanical analysis of multilayer structure is employed to predict gross mechan-

ical behavior of composite structures regardless of the constituent materials or their inter-

action. Extensive use of composite laminates in structural engineering has been essentially

the driving force in developing sufficiently accurate laminated plate theories during last few

decades. A methodology based on shell elements, to study the electromagnetic and thermal

behavior of multilayered anisotropic conductive composite materials was presented by Ben-

said et al. (2006). The anisotropic behavior and orientation of each layer of the composite

4 www.ansys.com

www.ansys.com
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Finite element mesh generation: (a) Primitive volume, (b) one layer of reinforce-

ments,(c) two layers of reinforcements, (d) two layers of reinforcements with voids, (e) FEM

mesh of tows and voids, (f) FEM mesh of SEPUC

material has been taken into account.

If the effective properties of the single plies are derived then the elementary thermome-

chanics can be also applied to get the homogenized parameters of the laminate (Fig. 4.9)

created from the given amount (M) of laminas. For convenience, the orthotropic properties

of each layer are considered with the principal axes of orthotropy coinciding with the global

coordinate system. For the longitudinal directions (X1, X2) the prescribed macroscopic heat

flux Ql have to fulfil for each considered orientation the equilibrium condition

Ql =
M∑
m=1

cm 〈qm,l〉 with 〈gm,l〉 = χm,l 〈hm,l〉 . (4.10)

Assuming that average temperature gradients in all layers of the composite are equal provides
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the equation for homogenized thermal conductivity (the rule of mixture)

χl =
M∑
m=1

cmχm,l. (4.11)

Next, suppose that the macroscopic transverse normal heat fluxQt is prescribed. The thermo-

mechanics law requires that the total resistivity Rt must be equal to the sum of the transverse

resistivity of each layer (Rm,t)

Rt =
M∑
m=1

Rm,t. (4.12)

Using the elementary definition of thermal resistivity

Rt =

M∑
m=1

Bm

χt
and Rm,t =

Bm

χm,t
, (4.13)

we get (the inverse rule of mixture) after some algebra

1

χt
=

M∑
m=1

cm
χm,t

. (4.14)

Figure 4.9: Micromechanics and macromechanics

To determine the effective mechanical properties of laminates the more sophisticated ap-

proach has to be employed. Such approach can be found in (Milton, 2002) where the solution

to the field equation is used. Note that the fields vary only in the direction of lamination. The
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effective stiffness tensor L is then evaluated by means of the separated blocks comprised in

matrices (Eq. (4.15)) for the stacking sequence of layers in the direction of a global axis X1.

Km
11 =


Lm1111

√
2Lm1113

√
2Lm1112

√
2Lm1113 2Lm1313 2Lm1312
√

2Lm1112 2Lm1312 2Lm1212

 ,

Km
12 =


Lm1122 Lm1133

√
2Lm1123

√
2Lm2213

√
2Lm3313 2Lm2313

√
2Lm2212

√
2Lm3312 2Lm2312

 ,

Km
22 =


Lm2222 Lm2233

√
2Lm2223

Lm2233 Lm3333

√
2Lm3323

√
2Lm2223

√
2Lm3323 Lm2323

 , (4.15)

where Lm• stands for elements of a stiffness tensor Lm belonging to individual layers. The

associated block of effective tensor are given by the expressions

KL
11 = ‖ (Km

11)−1 ‖−1,

KL
12 = ‖ (Km

11)−1 ‖−1‖ (Km
11)−1Km

12‖,

KL
22 = ‖Km

22 −Km
21 (Km

11)−1Km
12‖+

‖Km
21 (Km

11)−1 ‖‖ (Km
11)−1 ‖−1‖ (Km

11)−1Km
12‖, (4.16)

where ‖ · ‖ stands for the weighted arithmetic mean over the thickness of layers and Km
21 =

(Km
12) T.

Assume that the Voight notation is used and the layers are characterized by orthotropic

stiffness matrices [Lm]. After some algebra non-zero elements of the effective stiffness matrix

[L] are then provided for the laminate in the stacking sequence aligned with the global axis

X3 (Fig. 4.9) as

L11 = ‖Lm11 − (Lm13)2 /Lm33‖+ ‖Lm13/L
m
33‖2‖1/Lm33‖−1

L22 = ‖Lm11 − (Lm23)2 /Lm33‖+ ‖Lm23/L
m
33‖2‖1/Lm33‖−1

L12 = ‖Lm12 − Lm13L
m
23/L

m
33‖+ ‖Lm13/L

m
33‖‖Lm23/L

m
33‖‖1/Lm33‖−1

L13 = ‖1/Lm33‖−1‖Lm13/L
m
33‖, L23 = ‖1/Lm33‖−1‖Lm23/L

m
33‖

L33 = ‖1/Lm33‖−1, L44 = ‖1/Lm44‖−1, L55 = ‖1/Lm55‖−1

L66 = ‖Lm66‖ (4.17)



Chapter 5

EVALUATION OF EFFECTIVE MATERIAL PROPERTIES

Despite a significant progress in theoretical and computational homogenization meth-

ods, material characterization techniques and computational resources, the determination of

overall response of structural textile composites still remains an active research topic in en-

gineering materials science (Cox and Yang, 2006). From a myriad of modeling techniques

developed in the last decades (see e.g. review papers (Cox and Flanagan, 1997; Chung and

Tamma, 1999; Lomov et al., 2007)), it is generally accepted that detailed discretization tech-

niques, and the Finite Element Method (FEM) in particular, remain the most powerful and

flexible tools available. The major weakness of these methods, however, is the fact that

their accuracy crucially depends on a detailed specification of the complex microstructure of

a three-dimensional composite, usually based on two-dimensional micrographs of material

samples, e.g. (Wentorf et al., 1999; Hivet and Boisse, 2005; Barbero et al., 2006; Lomov

et al., 2007, and reference therein). Clearly, such a step is to a great extent complicated

by random imperfections resulting from technological operations (Pastore, 1993; Yurgartis

et al., 1993), which are difficult to be incorporated to a computational model in a well-

defined way. If only the overall, or macroscopic, response is the important physical variable,

it is sufficient to introduce structural imperfections in a cumulative sense using one of the

prominent averaging schemes such as Voight/Reuss bounds (Yushanov and Bogdanovich,

1998) or the Mori-Tanaka methods (Skoček et al., 2008). When, on the other hands, details

of local stress and strain fields are required, it is convenient to characterize the mesoscopic

material heterogeneity by introducing the concept of SEPUC.

While application of PUCs in problems of strictly periodic media has a rich history, their

introduction in the field of random or imperfect microstructures is still very much on the

frontier, despite the fact that the roots for incorporating basic features of random microstruc-

tures into the formulation of a PUC were planted already in mid 1990s by Povirk (1995).

More rigorous extension presented in (Zeman and Šejnoha, 2001), see also recent work (Ze-
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man and Šejnoha, 2007) for an overview, gave then rise to what we now call the concept of

Statistically Equivalent Periodic Unit Cell (SEPUC). In contrast with traditional approaches,

where parameters of the unit cell model are directly measured from available material sam-

ples, the SEPUC approach is based on their statistical characterization. In particular, the

procedure involves three basic steps (Zeman and Šejnoha, 2007):

• To capture the essential features of the heterogeneity pattern, the microstructure is

characterized using appropriate statistical descriptors. Such data is essentially the only

input needed for the determination of a unit cell.

• A geometrical model of a unit cell is formulated and its key parameters are identified.

Definition of a suitable unit cell model is a modeling assumption made by a user, which

sets the predictive capacities of SEPUC for an analyzed material system.

• Parameters of the unit cell model are determined by matching the statistics of the

complex microstructure and an idealized model, respectively. Due to multi-modal

character of the objective function, soft-computing global optimization algorithms are

usually employed to solve the associated problem.

It should be emphasized that the introduced concept is strictly based on the geometrical

description of random media and as such it is closely related to previous works on random

media reconstruction, in particular to the Yeong-Torquato algorithm outlined in (Yeong and

Torquato, 1998a,b). Such an approach is fully generic, i.e. independent of a physical theory

used to model the material response. If needed, additional details related to the simulation

goals can be incorporated into the procedure without major difficulties, e.g. (Bochenek and

Pyrz, 2004; Kumar et al., 2006), but of course at the expense of computational complexity

and the loss of its generality.

In the work of Zeman and Šejnoha (2004a), the authors studied the applicability of the

SEPUC concept for the construction of a single-layer unit cell reflecting selected imperfec-

tions typical of textile composites. A detailed numerical studies, based on both microstruc-

tural criteria and homogenized properties, revealed that while a single-ply unit cell can take

into account non-uniform layer widths and tow undulation, it fails to characterize inter-layer

shift and nesting. Therefore, we propose an extension of the original model allowing us to
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address such imperfections, which have a strong influence on the overall response of textile

composites (Woo and Whitcomb, 1997; Jekabsons and Byström, 2002; Lomov et al., 2003).

A brief summary of the procedure for the determination of the two-ply SEPUC for woven

composites was given in Section 4.1.

Such extensions, however, are hardly sufficient particularly in view of a relatively high

intrinsic porosity of C/C composites, which are in the center of our current research ef-

forts. It has been demonstrated (Tomková et al., 2008) that unless this subject is properly

addressed highly inadequate results are obtained, regardless of how “exact” the geometrical

details of the mesostructure are represented by the computational model. Unfortunately, the

perceptible complexity of the porous phase seen also in Fig. 1.5(Macro-scale) requires some

approximations. While densely packed transverse cracks affect the homogenized properties

of the fiber tow through a hierarchical application of the Mori-Tanaka averaging scheme

(Section 5.1), large inter-tow vacuoles (crimp voids) attributed to both insufficient impreg-

nation and thermal treatment are introduced directly into the originally void-free SEPUC in

a discrete manner.

Not only microstructural details but also properties of individual composite constituents

have a direct impact on the quality of numerical predictions. Information supplied by the

manufacturer are, however, often insufficient. Moreover, the carbon matrix of the compos-

ite has properties dependent on particular manufacturing parameters such as the magnitude

and durations of the applied temperature and pressure. Experimental derivation of some of

the parameters is therefore needed. In connection with the elastic properties of the fiber

and matrix, the nanoindentation tests performed directly on the composite were discussed

in Chapter 3 together with the determination of the necessary microstructural parameters

mentioned already in the previous paragraphs.

Still, most of the work presented in this thesis is computational. Recall, a brief sum-

mary of the procedure for the determination of the two-ply SEPUC for woven composites

given in Section 4.1. Numerical evaluation of effective elastic moduli and thermal conduc-

tivities, the most classical subject in micromechanics, is described in the following sections

in support of the proposed concept of SEPUC in the light of multi-layered C/C composites.

Section 5.2.1 is reserved for the verification of the optimization algorithm, validation of the

extraction of geometrical and material parameters. To that end, the heat conduction and
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classical elasticity homogenization problems are examined with the results corroborated by

available experimental measurements.

Similarities between heat conduction and elasticity allow us to adapt equations presented

in Section 2.1.1.4 for the determination of the effective stiffness matrices. For clear notation,

matrix representations of symmetric fourth-order tensors [L] , [Aε] are replaced by L,Aε in

the effective property evaluation process described as follows.

5.1 Mori-Tanaka analysis

A general awareness of the need for incorporating the porous phase in the predictions of

overall response of C/C composites has been manifested in several recent works. While

all microstructural details were properly identified, the actual analysis was limited to ei-

ther unidirectional fiber composites represented here by individual yarns (Tsukrov et al.,

2005; Piat et al., 2007b,a) or finite element simulations of entire laminate performed in two-

dimensional (2D) environment only (Tomková et al., 2008). An extension of this topic taking

into the characteristic three-dimensional (3D) structure of C/C textile composites is presented

in this work. The formulation given here is in the spirit of multi-scale analysis discussed

in (Tomková et al., 2008) combined with the application of the MT method to the prediction

of effective elastic properties of C/C composite presented in (Skoček et al., 2008).

The ordering of this section follows the concept of the assumed uncoupled multi-scale ho-

mogenization approach in which the results derived from the homogenization step on a lower

scale are used as an input to the same analysis performed on the upper scale, see Chapter 4.

Following Tomková et al. (2008) and Böhm (2007) three particular scales are examined. The

level of fiber tow evident from Fig. 4.2 is treated first. The next section examines various

geometrical scenarios encountered at the level of textile ply, see Fig. 1.1. Next section then

provides the estimates of the effective thermal conductivities of the laminate and compares

those with the available experimental measurements. Last section is focused on discussion

and conclusions.

All calculations presented in this section are performed by means of HELP program,

see Appendix B for more details.
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5.1.1 Micro-scale

The proposed multi-scale homogenization scheme starts on the micro-scale. The material

parameters of individual phases are stored in Tabs. 3.1 and 3.2.

5.1.1.1 Effective conductivities of fiber matrix composites

Fig. 4.2(b) shows a representative section of the fiber matrix composite taken from the fiber

tow in Fig. 4.2(a). Based on the previous studies (Zeman and Šejnoha, 2001; Šejnoha and

Zeman, 2002; Šejnoha et al., 2004, to cite a few) such a composite can be quantified as

ergodic, statistically homogeneous with a random distribution of fibers having the volume

fraction of approximately 68%. In the MT scheme the effective properties follow from the

solution of an auxiliary problem where an infinite cylinder of a circular cross-section with

semi-axes ξ1 → ∞, ξ2 = ξ3 (the x1 axis assumed in the fiber direction) is embedded into

an infinite isotropic matrix. In this particular case the effective thermal conductivity matrix

given by Eq. (2.26) simplifies for two phase composite (index 1 is reserved for matrix and

index 2 for inhomogeneity) as

χMT = χ1 + c2 (χ2 − χ1)AMT
2 , (5.1)

where (see Section 2.1.1.4)

AMT
2 = Adil

2

[
c1I + c2A

dil
2

]−1
and Adil

2 =
[
I − Sχ−1

1 (χ1 − χ2)
]−1

. (5.2)

An explicit form of S for this particular case of aligned circular fibers in an isotropic matrix

is available in (Hatta and Taya, 1986).

Formal similarity between heat conduction and elasticity problems then readily provides

LMT = L1 + c2 (L2 −L1)AMT,ε
2 , (5.3)

where AMT,ε
2 denotes the concentration factor for elasticity. The needed Eshelby tensor can

be found in (Mura, 1987). The resulting homogenized properties then appear in Tabs. 5.2

and 5.3.
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5.1.1.2 Effective conductivities of homogenized porous tow

Having derived the effective properties of the fiber matrix composite we proceed with the

second homogenization step to account for the porous phase. As evident in Fig. 4.2(a),

several distinct shapes of voids can be identified. It is certainly out of the question to treat

each void separately. Therefore, in the present study, they are all combined into a single

equivalent inclusion resembling an elliptic cylinder. Here, the cylinder is embedded into a

transversely isotropic matrix.

However, since the S11 component of S is equal to zero, the solution of an elliptic cylin-

der in an isotropic matrix summarized in (Hatta and Taya, 1986) is again applicable. This

results in the same form of estimate of the effective conductivity matrix χMT as given by

Eq. (5.1).

Nevertheless, there is still one open problem associated with the shape of the elliptical

cross-section. Clearly, since the equivalent inclusion represents all possible shapes of voids,

it can hardly be determined directly from the images of real composites such as the one in

Fig. 4.2(a). Instead, to solve this particular problem, we exploited the results of effective

conductivities available from the finite element (FE) simulations carried out in (Tomková

et al., 2008). In particular, the optimal aspect ratio ξ2/ξ3 (ξ1 → ∞) of the elliptical cross-

section was found by matching the effective material properties derived from both the MT

method and FE solutions. Because axial direction is not affected by the change of ξ2/ξ3 ratio,

only in-plane thermal conductivities were considered in the formulation of the objective

function

O(ξ2, ξ3) = max
i=2,3
|χFEM
ii − χMT

ii | (5.4)

plotted in Fig. 5.1 for illustration.

Note that volume fractions of fibers and air voids used in (Tomková et al., 2008) dif-

fers from the fractions presented by Černý et al. (2000) which are utilized in present study.

Therefore, the volume ratio of fibers cf = 0.55 and voids cv = 0.12 (Tomková et al., 2008)

are employed only for optimization process (Tab. 5.1). Furthermore, both direct compar-

ison with FE element predictions and the values of relative error O(ξ2, ξ3), also stored in

Tab. 5.1, clearly show a significance in properly choosing the shape of the cross-section of

the equivalent elliptic cylinder. Thereby, to make the analysis more robust, an empirical re-
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(a) (b)

Figure 5.1: Evolution of the objective function as a function of the aspect ratio

lation between the observed porosity and representative equivalent inclusion is needed. This

particular topic enjoys our current research interest. The present approach is verified by the

comparison of the predicted and measured longitudinal moduli shown in Tab. 5.3. The re-

sulting effective thermal conductivities provided by the proposed two-step homogenization

scheme are stored in Tab. 5.2. (Note that the fiber volume fraction cf is estimated from

Fig. 4.2(b), i.e. the tow without the pore phase, while the volume fraction of voids cv stands

for the total volume of voids in the fiber tow in Fig. 4.2(a)).

Table 5.1: Effective thermal conductivities [Wm−1K−1] of the fiber tow for optimization

Material Equivalent inclusion Thermal conductivity E(ξ2, ξ3)

fiber (cf = 0.55) void (cv = 0.12) χ11, χ22, χ33

Fiber-matrix ∞, 1, 1 — 22.09, 2.14, 2.14 —

∞, 1, 1 19.44, 1.54, 1.54 0.42

Porous tow ∞, 1, 10 19.44, 1.02, 1.63 0.14

(optimal) → ∞, 1.6, 10 19.44, 1.12, 1.85 0.08

3D FEM — 19.01, 1.12, 1.77 —
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Table 5.2: Effective thermal conductivities [Wm−1K−1] of the fiber tow

Material Equivalent inclusion Thermal conductivity

fiber (cf = 0.68) void (cv = 0.066) χ11, χ22, χ33

fiber-matrix ∞, 1, 1 — 25.82, 1.53, 1.53

porous tow (optimal) ∞, 1.6, 10 24.12, 1.05, 1.42

5.1.2 Meso-scale

While unidirectional fiber matrix composites reviewed in the previous section have been of

a general interest since some fifty years ago, composite systems with a formidable textile

texture have received more attention from both academic and industrial communities only

recently.

This section examines, at least from the geometrical point of view, the most simple

representative - a plain weave textile composite. One of the earliest known computational

models focusing on actual geometry of the textile ply is developed by Kuhn and Charalam-

bides (1999). A three-dimensional idealized model and a typical cross-section are plotted

in Fig. 4.4.

Although tempting, a direct application of this model is precluded by a number of im-

perfections and irregularities present in real systems as illustrated in Figs. 1.1 and 1.2(b).

These include a non-uniform waviness, mutual shift of individual yarns from layer to layer

and most importantly a non-negligible porosity. Unlike finite element simulations which en-

able incorporating most of these imperfections directly through the formulation of a certain

statistically equivalent periodic unit cell (Zeman and Šejnoha, 2004a; Šejnoha and Zeman,

2008), the MT method has only limited means which are, nevertheless, still sufficient when

quick estimates of the effective “bulk” response is needed. These will be discussed next in

the framework of the two-step homogenization procedure examined already in the previous

section.
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Table 5.3: Effective elastic properties. Comparison of MT and measured (EXP) re-

sults (Černý et al., 2000). Young’s and shear moduli are given in [GPa]

Parameter Fiber-matrix (MT) Porous tow (MT) Porous tow (EXP)

(optimal)

E11 207.5 193.8 ≈ 200

G12 11.1 10.3 ≈ 11.5

E22 15.7 8.0 —

E33 15.7 14.3 —

G13 11.1 7.4 —

G23 5.8 4.0 —

ν12 0.23 0.23 —

ν13 0.23 0.23 —

ν23 0.35 0.38 —

Equivalent inclusion fiber (cf = 0.68) void (cv = 0.066) —

∞, 1, 1 ∞, 1.6, 10

5.1.2.1 Effective properties of plain weave textile composite ply

Consider a simple plain weave fabric ply in the absence of porous phase (Fig. 4.4). At this

level, the carbon fiber tow is treated as a homogeneous phase with known material properties

bonded again to an isotropic carbon matrix. In order to address the influence of various

geometrical flaws, the approach proposed in (Skoček et al., 2008) is adopted. This involves:

1. Determination of an ideal geometrical model to asses the volume fraction of the fiber

tow.

2. Determination of the optimal shape of an equivalent ellipsoidal inclusion substituting

the fiber tow in the solution of the Eshelby problem.

3. Proper evaluation of orientation dependent quantities from Eq. (5.16) to account for a

non-uniform waviness along the fiber tow path.
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Ideal geometrical model

The model described in Section 4.3 is utilized. To formulate one particular “ideal” repre-

sentative, a tedious image analysis of a number of sections of a real textile ply such as the one

in Fig. 1.1(a) was carried out. The averages of the basic geometrical parameters presented

in Tab. 5.4 are used to construct the required geometrical model. Note that this geometry

provides the volume fraction of tows equal to 0.51.

Table 5.4: Quantification of PUC1 parameters (Tomková and Košková, 2004; Skoček et al.,

2008)

Statistics [µm] a h b g

Average (avg) 2250 300 150 400

Standard deviation (std) 155 50 20 105

Optimal shape of the equivalent ellipsoidal inclusion

Bearing in mind certain randomness in the geometry of a single ply unit cell, Fig. 4.3(a),

it is possible to derive a certain statistically equivalent ellipsoidal inclusion, for which the

macroscopic estimates are reasonably close to FE simulations for a certain range of parame-

ters a, b, g, h.

An extensive numerical study was performed in (Skoček et al., 2008) to conceive how

the Mori-Tanaka predictions are influenced by a “random” deviation of basic geometrical

parameters of real systems from their ideal representative. The results revealed a certain

correlation between the model parameters and “optimal” shape of an equivalent ellipsoidal

inclusion characterized by three semi-axes (ξ1, ξ2, ξ3). When setting ξ1 = 1 (recall that

the Eshelby solution depends only on the mutual ratio of the ellipsoid semi-axes), it was

concluded that the ξ2 parameter is strongly correlated with g/a ratio, while it is almost inde-

pendent of b/a value. An analogous trend could be observed between ξ3 and b/a parameter.

For the present material system the three semi-axis ξ1 = 1, ξ2 = 0.1, ξ3 = 0.01, charac-

terizing the shape of the ellipsoidal inclusion, were found optimal regardless of the type

of the homogenization problem, see Fig. 5.2. Note that the objective functions are defined



Evaluation of effective material properties 61

according to Skoček et al. (2008) as

O(ξ2, ξ3) = max
i,j=1,...,6

|LFEM
ij − LMT

ij | (5.5)

for elasticity and

O(ξ2, ξ3) = max
i,j=1,2,3

|χFEM
ij − χMT

ij | (5.6)

for conduction problem.

Further to this matter, searching for an optimal shape of the equivalent inclusion for

various geometries permitted us to relate the values of ξ2, ξ3 axes, given ξ1 = 1, to g/a and

b/a ratios, respectively, see also discussions in (Skoček et al., 2008) and (Vorel and Šejnoha,

2009). Therefore, knowing at least the averages of parameters a, b and g allows us to define

the shape of the ellipsoid with a relative ease as

ξ2 ≈
1

7
(1− g

a
), ξ3 ≈

1

60
(1− 4

b

a
). (5.7)

Remind, however, that these relations were originally derived to match effective elastic

properties. As shown in Fig. 5.2 the minimums of the error functions for elasticity and heat

transfer are defined for the similar mutual ratios of the ellipsoid semi-axes. To support the

validity of Eq. (5.7) by numerical results we further assumed an equivalent inclusion in the

form of an infinite elliptic cylinder with elliptical cross-section estimated directly from actual

cross-section of tows in the representative model giving

ξ1 =∞, ξ2 = 12.3, ξ3 = 1. (5.8)

Orientation averaging

Suppose that the heterogeneity possess a certain orientation described by the orienta-

tion distribution function g(φ, θ, β). A particular form of g for plain weaved composites

is given in Section 4.3. In general, following (Jeong et al., 1998; Benveniste et al., 1990)

and Eq. (2.2), the overall average temperature gradient for a two-phase composite with an

orientation-dependent inclusion given in the global X-coordinate system then attains the

form

〈h〉 = c1 〈h1〉+ c2 〈〈h2〉〉 . (5.9)
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(a) (b)

Figure 5.2: Evolution of the objective function as a function of the aspect ratio: (a) Heat

conduction problem, (b) elasticity

Recall that cr is the volume fraction of the phase r, 〈 〉 stands for the volumetric averaging and

the double brackets 〈〈 〉〉 denote averaging over all possible orientations (Mayerhöfer, 2005).

The vector h2 in Eq. (5.9) follows from standard transformation of coordinates (Eq. (4.8))

and definitions in Chapter 2 so that

〈h2〉 = Q 〈hx2〉 = QAdil,x
2 QT 〈h1〉 = Adil

2 〈h1〉 , (5.10)

where the upper index x denotes the quantity in the local coordinate system.

Next, suppose that the local temperature gradient h2 is expressed in terms of the pre-

scribed macroscopically uniform temperature gradient as written in Eq. (2.24). Clearly, the

orientation average of h2 then follows from

〈〈h2〉〉 =
〈〈
Adil

2

〉〉
〈h1〉 =

〈〈
AMT

2

〉〉
H, (5.11)

which, recall Section 2.1.1.4, gives

〈〈
AMT

2

〉〉
=
〈〈
Adil

2

〉〉 [
c1I + c2

〈〈
Adil

2

〉〉]−1
. (5.12)

Combining Eqs. (5.9) and (5.11) further provides

c1 〈h1〉 =
[
I − c2

〈〈
AMT

2

〉〉]
H. (5.13)
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In analogy to Eq. (5.9), the volume average of the overall heat flux is provided by

〈q〉 = c1 〈q1〉+ c2 〈〈q2〉〉 . (5.14)

Then, define an overall conductivity matrix χ in the fixed coordinate system X and write

Eq. (5.14) as

χMTH = c1χ1 〈h1〉+ c2 〈〈χ2h2〉〉 . (5.15)

Introducing Eqs. (2.24) and (5.13) into Eq. (5.15) finally yields

χMT = χ1 + c2

[〈〈
χ2A

MT
2

〉〉
− χ1

〈〈
AMT

2

〉〉]
. (5.16)

Next, letD represents an orientation dependent quantity in Eq. (5.16)

〈〈D〉〉 =
〈〈
χ2A

MT
2

〉〉
− χ1

〈〈
AMT

2

〉〉
, (5.17)

written, for the warp system, as

〈〈Dwarp〉〉 =

∫ α

−α
g(φ, θ, β)D(0, θ, 0) dθ, (5.18)

and similarly for the weft system we get

〈〈Dweft〉〉 =

∫ α

−α
g(φ, θ, β)D(

π

2
, θ, 0) dθ. (5.19)

Finally, following the work by (Skoček et al., 2008), the resulting homogenized conductivity

matrix given by Eq. (5.16) then becomes

χMT = χ1 +
c2

2
[〈〈Dwarp〉〉+ 〈〈Dweft〉〉] . (5.20)

The homogenized stiffness matrix can be written in the same manner as

LMT = L1 +
c2

2

[〈〈
Dε

warp

〉〉
+ 〈〈Dε

weft〉〉
]
. (5.21)

One may also suggest to model the plain weave fabric as a three-phase composite with

warp and weft systems of yarns being considered as two distinct phases. The homogenized

matrices then attain a slightly different forms

χMT = χ1 +
c2

2

{[〈〈
χwarpT warp

〉〉
− χ1 〈〈T warp〉〉

]
+ [〈〈χweftT weft〉〉 − χ1 〈〈T weft〉〉]

}
{
c1I +

c2

2
[〈〈T warp〉〉+ 〈〈T weft〉〉]

}−1

, (5.22)
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and

LMT = L1 +
c2

2

{[〈〈
LwarpT

ε
warp

〉〉
−L1

〈〈
T ε

warp

〉〉]
+ [〈〈LweftT

ε
weft〉〉 −L1 〈〈T ε

weft〉〉]
}

{
c1I +

c2

2

[〈〈
T ε

warp

〉〉
+ 〈〈T ε

weft〉〉
]}−1

, (5.23)

However, the differences in predictions provided by Eqs. (5.20) and (5.22) are, as seen in

Tabs. 5.5 and 5.6, negligible.

Improvements when compared to the assumed ideal geometry are contained in the third

route which allows us to introduce the non-uniform waviness and to some extent also the

mutual shift of individual layers by utilizing histograms of inclination angles shown in

Fig. 4.3(a). These are derived from centerlines of individual fiber tows described in detail

in (Vopička, 2004). Representing the joint probability density function by these histograms,

the orientation average of a certain quantityD(0, ψi, 0) , e.i. for the warp direction (φ = 0),

reads

〈〈Dwarp〉〉 =
SV∑
i=1

piD(0, θi, 0), (5.24)

where SV denotes the number of sampling values. The discrete angles θi and probabili-

ties pi follow directly from the image analysis data. Ten such histograms associated with

several sections measured along individual plies were considered. The resulting averages

together with the estimates provided by the simplified distribution functions are summarized

in Tabs. 5.5 and 5.6. The 3D finite element solutions of the PUC (with the material properties

obtained from the MT solution on a micro-scale) are provided for a comparison. The solu-

tion of the Eshelby problem of an ellipsoidal inclusion in an isotropic matrix can be found

in (Hatta and Taya, 1986; Jeong et al., 1998; Mura, 1987) or Appendix A.

5.1.2.2 Effective properties of homogenized porous matrix

When carefully observing Fig. 1.1(d) we identify three more or less periodically repeating

geometries further displayed in Fig. 5.3. These segments readily confirm the need for the pro-

posed two step homogenization procedure as the ideal representative plotted in Figs. 5.3(a,b)

(already analyzed in the previous section) cannot be used to represent the entire compos-

ite. Instead, the second homogenization step is required to account for the presence of large

vacuoles evident from Figs. 5.3(c-f).
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Table 5.5: Effective thermal conductivities of a plain weave fabric without porosity

in [Wm−1K−1] (volume fraction of tows = 0.51)

Method Fiber tow Thermal conductivity

shape Eq. (5.20) Eq (5.22) Eqs. (5.22)&(5.24)

warp/weft trans. warp/weft trans. warp/weft trans.

MT ∞, 12.3, 1 9.44 2.51 9.32 2.49 9.24 2.53

1, 0.1, 0.01 9.42 2.55 9.29 2.52 9.19 2.57

3D FEM — 9.24 2.71 —

Owing to the orthogonal arrangement of tows in the ideal (representative) model the new

homogenized matrix employed in the second homogenization step is no longer isotropic.

Thereby, the Eshelby solutions used so far are not directly applicable. Instead, the S tensor is

found by imagining an equivalent ellipsoidal inclusion in an infinite matrix being orthotropic,

see Appendix A and the numerical solution of the Eshelby tensor for elasticity in (Gavazzi

and Lagoudas, 1990).

With the encouraging results presented in Appendix A at hand we proceeded with the

analysis of real systems. Unlike the micro-scale, the method of observation and measuring

tools provided by the LUCIA G software (LIM, 2008) is utilized here to approximate the

shape of individual vacuoles in Figs. 5.3(c-f). Since only two-dimensional (2D) images were

supplied, the voids were assumed to be well approximated by an oblate spheroid defined in

Tabs. 5.7,5.8 for both types of representative periodic unit cells in Figs. 5.3(d,f). To estimate

the mesoscopic effective properties the voids were introduced into the homogenized matrix

derived in the 1st homogenization step by combining Eqs. (5.22) and (5.24).

A word of caution, however, is appropriate when dealing with 2D images only. While

the shape of the inclusion acquired from 2D images may play a minor role in final predic-

tions of the effective properties, the volume fraction of a relevant heterogeneity also esti-

mated from 2D images may prove much more important. This is documented in (Vorel and

Šejnoha, 2009) listing the predicted effective properties of a plain weave fabric free of pores

for two different volume fractions of the homogenized fiber tow. Recall that the assumed vol-

ume fraction of tows 0.51 corresponds to a representative 3D mesostructure in Fig. 4.4(b),
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Table 5.6: Effective elastic properties of a plain weave fabric without porosity. Young’s

and shear moduli are given in [GPa] (volume fraction of tows = 0.51; 2P = Eq. (5.20);

3P = Eq. (5.22); 3PH = Eqs. (5.22)&(5.24))

Parameter Inclusion 3D FEM

∞, 12.3, 1 1, 0.1, 0.01

2P 3P 3PH 2P 3P 3PH

Ewarp,weft 62.9 61.8 61.0 62.0 60.3 60.8 60.4

Gwarp,weft 8.6 8.5 8.5 8.5 8.5 8.5 8.6

νwarp,weft 0.05 0.05 0.05 0.05 0.05 0.05 0.06

Etrans 18.9 18.9 18.9 18.9 18.9 18.9 19.2

Gtrans 8.1 7.5 7.8 8.1 7.6 7.8 7.4

νtrans 0.07 0.08 0.08 0.07 0.08 0.08 0.07

whereas the value of 0.78 would follow from the corresponding 2D image in Fig. 5.3(b).

This objective will become even more important when the porous phase is introduced into

the new homogenized mesoscopic matrix.

The mesoscopic effective conductivities and elastic properties derived for individual ge-

ometries in Fig. 5.3 are summarized in Tabs. 5.7 and 5.8 for both shapes of the fiber tow.

Note that the results corresponding to a representative model denoted as PUC1 are essen-

tially those stored in Tabs. 5.5 and 5.6. Similar cells to PUC1 with the adjusted volumes of

tows serve as a point of departure for the second homogenization step performed for models

PUC2 and PUC3. This adjustment follows from the assumption that in all cells the volumes

of tows are equal, i.e. the voids replace the phase of matrix. (The tow volume fraction (0.51)

is estimated for the cell without the pore phase, while the volume fraction of voids cv stands

for the total volume of voids in the cell). For better representation of the tow paths the results

derived by means of histograms are used hereafter.

5.1.3 Macro-scale

The final, clearly the most simple, step requires construction of the homogeneous laminated

plate. The stacking sequence of individual periodic unit cells complies with that observed for
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Homogenization on meso-scale: (a)-(b) PUC1 representing carbon tow-carbon

matrix composite, (c)-(d) PUC2 with vacuoles aligned with delamination cracks due to slip

of textile plies, (e)-(f) PUC3 with extensive vacuoles representing the parts with textile rein-

forcement reduction due to bridging effect in the middle ply

the actual composite sample (Tomková et al., 2008, Fig. 2), see also Fig. 1.1(d) identifying

the PUC1/PUC2/PUC3/PUC1 stacking sequence. The dimensions of each ply are assumed

to be the same as the size of unit cell without pores (PUC1), see Tab. 5.4.

While in-plane conductivities (warp/weft or longitudinal directions) were found from a

simple arithmetic rule of mixture, the out-of-plane (transverse) conductivity followed from

the inverse (geometric) rule of mixture, Section 4.4. The resulting effective thermal conduc-

tivities are available in Tab. 5.9 comparing the MT predictions and experimental measure-

ments presented in (Boháč, 2005), see Section 3.4 for more informations. For the elastic

properties the laminate theory presented by Milton (2002) is utilized (Section 4.4) and the

results are stored in Tab. 5.10.

Note that the highlighted (bolt font) values of thermal conductivities stored in Tabs. 5.2–

5.10 follow from what we would call an optimal or the most appropriate approach.

5.2 Finite element analysis

The effective properties of multilayered C/C plain weave composite with pores represented

by the PUC (Fig. 4.7) are determined in this section. As already mentioned, the FE analysis

is time consuming, but it provides us more accurate results and allows to incorporate various
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Table 5.7: Effective thermal conductivities of the porous textile plies and laminates

in [Wm−1K−1]

Fiber tow shape Void Thermal conductivity

in 1st step PUC shape vol. frac. warp/weft transverse

∞, 12.3, 1 PUC2 3, 3, 1 0.07 8.60 2.14

PUC3 1.6, 1.6, 1 0.15 7.63 1.83

1, 0.1, 0.01 PUC2 3, 3, 1 0.07 8.55 2.17

PUC3 1.6, 1.6, 1 0.15 7.59 1.87

intrinsic imperfections of composites (Chapters 3,4).

Suppose that the homogenized effective conductivities of the yarn are already known

from an independent micromechanical analysis performed on the level of individual fibers,

see previous section. The objective now is to find effective parameters on the mesoscopic

level for multilayered composite.

So far, the FEM studies have been mostly focused on a treatment of shifted layers (Ze-

man, 2003). In this thesis an accuracy of the two-layered model of C/C composite with

air voids is presented. Two approaches are utilized to validate this technique. The first is

based on the treatment of a statistically equivalent periodic unit cell defined in Section 4.1.

The other uses sets of input parameters generated by the SPERM program (Novák and

Kalousková, 2008) to define representative PUCs of the composite. All the computations

are performed by means of the university finite element code FEln where the homogeniza-

tion scheme described in Section 2.2.1 is implemented.

5.2.1 SEPUC

The technique briefly described in Section 4.1 is employed to define a SEPUC. Using the

image processing operations we obtain the desired parameters describing the cell. A strong

nesting of individual layers as well as relative shifts in all directions are clearly visible in

Fig. 3.3. Therefore, a one-layer unit cell is not a concise geometrical model of the ana-

lyzed material so that a two-layered cell is used. Owing to a numerical complexity of such

a model, the SEPUC is constructed in two steps. First, the cell without air voids is con-
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Table 5.8: Effective elastic properties of the porous textile plies and laminates. Young’s and

shear moduli are given in [GPa]

Parameter Fiber tow shape in 1st step

∞, 12.3, 1 1, 0.1, 0.01

PUC2 PUC3 PUC2 PUC3

Ewarp,weft 55.7 46.9 55.5 46.8

Gwarp,weft 7.6 6.6 7.6 6.6

νwarp,weft 0.04 0.06 0.04 0.06

Etrans 15.9 13.1 15.9 13.1

Gtrans 6.1 5.4 6.1 5.4

νtrans 0.07 0.07 0.07 0.07

Equivalent inclusion cv = 0.07 cv = 0.15 cv = 0.07 cv = 0.15

(air void) 3, 3, 1 1.6, 1.6, 1 3, 3, 1 1.6, 1.6, 1

structed by means of the optimization procedure (Fig. 4.6), see Section 4.1. The air voids

are subsequently introduced into the created cells. The volume of pores equal to 5.5% is

assumed. Note that this value corresponds to both the percentage determined by the image

analysis and the volume used in the previous section for the laminated plate. This volume

is divided between four oblate spheroids (ξ1 = ξ2 > ξ3) accommodated between two layers

(Fig. 4.7). The relative ratio of spheroid axes is chosen as high as possible to fill the space

between the tows. The contemplative reader can remark that a rotation of inclusions and

a general ellipsoid would depict better the real structure of the composite. However, these

added parameters would complicate an automatized generation and construction of cells.

This simplification is also supported by the X-ray microimages shown in Fig. 3.4 where the

pores have a shape similar to an oblate spheroid and are aligned with layers of carbon tows.

The optimization algorithm was executed twenty times to verify, whether the global op-

timum of the problem was found. The unscaled input parameters for the optimization proce-

dure are stored in Tab. 5.11, see Section C.3. The upper and lower bounds of each parameter

are set up at 5 and 95% probability quantiles assuming the Gauss distribution function. The

unscaled resulting values of the SEPUC parameters are shown in the last column of Tab. 5.11
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Table 5.9: Effective thermal conductivities of the laminate [Wm−1K−1]

Method Fiber tow Thermal conductivity

shape warp/weft transverse

MT ∞, 12.3, 1 8.68 2.22

(histograms) 1, 0.1, 0.01 8.63 2.25

EXP (Boháč, 2005) — 10 1.6

Table 5.10: Effective elastic properties of the laminate. Young’s and shear moduli are given

in [GPa]

Parameter MT (histograms) EXP

Fiber tow shape (Černý et al., 2000)

∞, 12.3, 1 1, 0.1, 0.01

Ewarp,weft 55.9 55.7 ≈ 65

Gwarp,weft 7.8 7.8 ≈ 6

νwarp,weft 0.05 0.05 —

Etrans 16.5 16.3 —

Gtrans 6.5 6.5 —

νtrans 0.07 0.07 —

where symbol ∗ denotes parameters which were not involved in the optimization, compare

with Tab. 4.3.

With this at hand, we proceed to the evaluation of effective properties. The SEPUC are

constructed as described in Section 4.3.2. To demonstrate the porous phase influence the

effective conductivity coefficients and elastic properties are evaluated for the unit cell both

without and with pores. The determined homogenized properties are presented in Tabs. 5.12

and 5.13.
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Table 5.11: Parameters of the periodic unit cell (Tomková and Košková, 2004; Skoček et al.,

2008; Zeman and Šejnoha, 2004b)

Parameter Avg Std SEPUC

a [µm] 2250 150 2181

b [µm] 150 20 118

g [µm] 400 105 422

h [µm] 300 50 251

∆1,2 [µm] 0 675 288

∆3 [µm] 0 110 -47

pore’s volume [%] 8 3.5 5.5∗

ξ3/ξ1 [-] 0.4 0.2 0.13∗

Table 5.12: Effective thermal conductivities of the SEPUC [Wm−1K−1]

Method Pores Thermal conductivity

warp/weft transverse

FEM excluded 9.30 2.50

(SEPUC) included 9.03 1.89

EXP (Boháč, 2005) — 10 1.6

5.2.2 Representative PUCs

The principal objective of this section is to confirm the hypothesis of a two-layered SEPUC

with pores and to obtain rough dispersion of the effective properties. The SPERM program is

utilized to produce ten different PUCs. The latin hypercube sampling (LHS) method imple-

mented in this code is utilized to generate realizations of random variables from prescribed

distributions. The normal distribution function is assumed for all parameters defined by their

means and standard deviations, see Tab. 5.11. The correlations between the variables are

considered and set up using the engineering judgement of the authors, see Tab. 5.14. Note

that parameter ξ3/ξ1 is not generated and is determined as the highest possible value to fit the

pores between the layers. The PUCs are subsequently subjected to a finite element analysis
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Table 5.13: Effective elastic properties of the SEPUC. Young’s and shear moduli are given

in [GPa]

Parameter FEM EXP

(Černý et al., 2000)

Ewarp,weft 61.5 60.3 ≈ 65

Gwarp,weft 8.5 8.1 ≈ 6

νwarp,weft 0.05 0.05 —

Etrans 15.7 11.9 —

Gtrans 6.3 5.3 —

νtrans 0.06 0.05 —

Pores excluded included —

with the prescribed periodic boundary conditions (Novák et al., 2004) to obtain the searched

effective thermal conductivities and stiffness matrices of the laminates (Tab. 5.15).

Table 5.14: Correlation matrix

a b g h ∆1 = ∆2 ∆3 pore’s vol.

a 1.0 0.3 0.7 0.3 0.0 0.0 0.5

b 1.0 0.3 0.9 0.0 0.3 -0.3

g 1.0 0.3 0.0 0.0 0.0

h 1.0 0.0 -0.3 0.3

∆1 = ∆2 sym. 1.0 0.0 0.0

∆3 1.0 0.7

pore’s vol. 1.0

5.3 Conclusions

In order to realistically model complex plain weave textile laminates with three-dimensional,

generally non-uniform texture of the reinforcements and significant amount of porosity we
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Table 5.15: Effective thermal conductivities [Wm−1K−1] and elastic properties for different

PUCs. Young’s and shear moduli are given in [GPa]

PUC Thermal conductivity Elastic properties

χwarp,weft χtrans Ewarp,weft Gwarp,weft νwarp,weft Etrans Gtrans νtrans

1 7.8 2.4 47.9 7.9 0.07 15.4 6.5 0.08

2 8.9 2.0 58.6 8.0 0.05 15.1 6.2 0.06

3 8.5 2.0 54.9 7.8 0.06 14.4 5.9 0.06

4 8.6 2.1 55.4 7.9 0.06 14.7 6.1 0.06

5 8.1 1.5 52.8 7.5 0.06 9.6 4.3 0.04

6 8.3 2.1 52.5 8.0 0.06 13.7 5.7 0.06

7 9.1 2.1 60.0 8.2 0.05 14.2 6.1 0.06

8 8.8 2.1 57.4 8.2 0.06 14.6 6.2 0.06

9 7.9 2.0 49.4 7.7 0.06 12.1 5.4 0.06

10 8.7 2.0 56.7 8.0 0.05 13.2 5.8 0.05

avg 8.46 2.04 54.5 7.9 0.06 13.7 5.8 0.06

std 0.42 0.22 3.9 0.2 0.01 1.7 0.6 0.01

advocate to consider at least three levels of hierarchy for the Mori-Tanaka solution - the level

of fiber tow, the level of yarns and the level of laminate, and two levels for the FE analysis -

the level of fiber tow, the level comprising both yarns and the laminate (a two-layered PUC

with pores). On each level different resolutions of microstructural details are considered

for the formulation of an adequate representative model. The desired macroscopic effective

properties of the laminate are then estimated with regard to two basic objectives:

• to reflect the three-dimensional character of the composite at all scales,

• to predict the effective conductivities as efficiently as possible.

Unlike computationally tedious and extensive 3D finite element simulations, the Mori-Tanaka

averaging scheme appears as a reasonable candidate to comply with both objectives. Not

only the fully explicit format of this method but a simple extension of the Eshelby prob-

lem, at least in the case of the solution of heat conduction problem, to generally orthotropic
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reference medium (homogenized composite free of pores in this particular case) favors this

technique.

In this study, the hierarchical character of the analysis is presented in a totally uncou-

pled format. Therefore, each level is treated entirely independently purely upscaling the

results from a lower to a higher scale for subsequent calculations. An “optimal” procedure,

which attempts to accommodate various sources of imperfections observed in real systems

is accompanied by several modifications involving mainly the meso-scale.

Based on the previous study of effective elastic properties (Zeman and Šejnoha, 2004a;

Skoček et al., 2008) it was expected that at this level the “best” estimates of the effective prop-

erties using the MT method would follow from the application of Eq. (5.7) to determined the

shape of an equivalent inclusion for the fiber tow representation and histograms of fiber in-

clination angle to proceed with the orientation averaging step. As seen in Tabs. 5.5-5.10 the

shape of the fiber tow determined from the real dimensions provides also reasonable results,

thus can be used for the MT analysis as well. Comparing various modifications (different

types of inclusions, ideal path of the fiber tow) suggests, perhaps even intuitively, almost

negligible sensitivity of the solution of the heat conduction problem to mutual interlacing

of individual tows in comparison with the solution of the elasticity problem. This is mainly

attributed to a relative flatness of the reinforcing yarns in individual plies of the laminate. In

view of this, one may even offer the possibility of estimating the effective mesoscopic con-

ductivities by simply assuming two systems of perpendicular fiber tows with no interlacing,

thereby completely avoiding the orientation averaging step. But bear in mind that such a

“drastic” simplification can hardly be generalized and is certainly not acceptable in the case

of elasticity. To discriminate between various approaches is therefore difficult.

The three-dimensional two-layered PUC used for FE analysis was constructed in order

to:

• reflect the three-dimensional character of the composite,

• grasp the shift of layers,

• account for significant volume of air voids,

• use restricted number of parameters by an accuracy protection of the suggested model.
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As shown in this chapter, the FEM provides more accurate results compare to the MT so-

lution. It is worthwhile mentioning that PUCs estimated on the basis of random variables

(Section 5.2.2) provide less precise results (Fig. 5.4) than the SEPUC (Section 5.2.1) which

gives a better picture of a real system. The slight divergence is also caused by the restricted

set of the PUCs in Section 5.2.2 and the considered probability distribution of the parameter

∆3.

Comparison with experimental measurements is in principle twofold but also inconclu-

sive, see Fig.5.4. On the one hand, it clearly supports the use of the proposed uncoupled

multi-scale approach to arrive at the predictions of the effective macroscopic thermal conduc-

tivities and elastic properties. Furthermore, at least quantitatively, the Mori-Tanaka method

proved its applicability in the solution of complicated textile composites. These remarks

have already been put forward in (Skoček et al., 2008) with regard to the problem of effec-

tive elastic properties.

(a) (b)

Figure 5.4: Comparison of the numerical and experimental results: (a) Coefficients of ther-

mal conductivity, (b) elastic properties

To judge, on the other hand, the pertinence and reliability of the MT method solely by

comparing the predicted and measured values, which may deny it, is certainly insufficient.

While all deficiencies of the presented homogenization strategy were openly discussed, er-

rors associated with experimental measurements were not mentioned and are not available.

We should also mentioned that changes occurring in the fiber tows during the manufacturing

are not clearly known and so they are not involved in this study.
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In summary, focusing only on the quantitative perspective, the Mori-Tanaka method com-

bined with popular multi-scale homogenization approach is viable and presents a suitable

and efficient alternative to more precise periodic homogenization based on the finite element

analysis.



Chapter 6

CONCLUSIONS AND FUTURE PERSPECTIVES

In the presented work, Benveniste’s approach of the Mori-Tanaka method (Benveniste,

1987) is used as our point of departure due to its successful application to diverse heteroge-

neous material systems. A two-step homogenization scheme is incorporated to capture the

interaction among heterogeneities.

Application of the method to the analysis of porous woven C/C composite systems in-

volves three steps. In the first step, the parameters on micro-scale are derived. In the next

step, imperfections along the fiber tow paths are taken into account by incorporating both

an experimentally observed distribution of tow path angles and the joint probability density

function of the simplified geometrical model. The porosity is introduced on both scales.

Finally, to capture the stacking sequence of individual plies the arithmetic and inverse rules

of mixture are applied for thermal conductivity problem on macro-scale and the laminate

theory presented by Milton (2002) for elastic properties.

It is often desirable to derive detailed representation of the local fields rather than the

volume phase averages only as provided by the Mori-Tanaka predictions. Attention is then

usually given to a periodic unit cell analysis by means of the finite element method. To

exploit the benefit of periodic fields, while at the same time account for uncertainties asso-

ciated with real microstructure, see Fig. 1.2(b) and (Zeman and Šejnoha, 2004a; Tomková

et al., 2008), the concept of statistically equivalent periodic unit cell can be used (Zeman and

Šejnoha, 2007, 2004a).

As presented, reasonably accurate predictions of the overall response of a multilayered

system is found from the analysis of a two-layered periodic unit cell with pores. The de-

termination of the statistically equivalent geometrical model is based on a general method-

ology proposed in (Zeman and Šejnoha, 2001). In this context, the original microstructure

is quantified by an appropriate (statistical) descriptor, which characterizes the most impor-

tant features of the disordered microstructure. This information is subsequently used for
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the definition of a simplified periodic unit cell, which optimally approximates the original

microstructure in the sense of the selected statistical descriptors. Although geometrical im-

perfections present a distinct source of uncertainties they may prove, in comparison to a very

high intrinsic porosity typical of C/C textile composites, far less important particularly from

the overall response point of view.

It is also noteworthy that this approach needs much more computational effort compare

with the Mori-Tanaka method, particularly when preparing the finite element model and

mesh.

Finally, the comparison of numerical results with the experimental data reveals the slight

discrepancy. According to the authors, this can be connected with the property changes of

the individual constituents during the manufacturing process. This topic deserves another

experimental treatment and should be involved into a numerical solution.
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Kubičár, L., Boháč, V., and Vretenár, V. (2002). Transient methods for the measurement

of thermophysical properties: The pulse transient method. High Temperatures - High

Pressures, 34:505–514.

Kuhn, J. and Charalambides, P. (1998). Elastic response of porous matrix plain weave fab-

ric composites: Part I - Modeling, Part II - Results. Journal of Composite Materials,

32(16):1426–1471, 1472–1507.

Kuhn, J. and Charalambides, P. (1999). Modeling of plain weave fabric composite geometry.

Journal of Composite Materials, 33(3):188–220.
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Janda, T., Vorel, J., and Šejnoha, M. (2008). Documentation for ParamSeeker program.

Available at http://www.inzenyr.com/download.html.
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Appendix A

ESHELBY’S TENSOR FOR AN ELLIPSOIDAL INCLUSION

The Eshelby tensor for thermal conductivity problem was introduced by Hatta and Taya

(1986). For an ellipsoidal inclusion with semi-axis ξ1, ξ2, ξ3 in an isotropic matrix it receives

the form

S =
ξ1ξ2ξ3

4

∂

∂x2

∫ ∞
0

(
x2

1

ξ2
1 + s

+
x2

2

ξ2
2 + s

+
x2

3

ξ2
3 + s

)
1

∆s
ds,

∆s =
√

(ξ2
1 + s) (ξ2

2 + s) (ξ2
3 + s). (A.1)

The evaluation of this integral can be found for special ellipsoidal cases in (Hatta and Taya,

1986). For the general ellipsoid the solution was introduced by Jeong et al. (1998) and as

well by Chen and Yang (1995).

Sometimes the evaluation of S tensor calls for the solution of the problem of an ellip-

soidal inclusion in an orthotropic matrix. To summarize the notation of the thermal conduc-

tivity tensor the anisotropic medium is represented by

χ =


χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

 , (A.2)

or when referring to its principal axes

χ =


χ1 0 0

0 χ2 0

0 0 χ3

 . (A.3)

To proceed we start from a general orthotropic form of the Laplace equation

χ1
∂2T

∂x2
1

+ χ2
∂2T

∂x2
2

+ χ3
∂2T

∂x2
3

= 0. (A.4)

Introducing the following substitutions

x1 =
√
χ1x̃1; x2 =

√
χ2x̃2; x3 =

√
χ3x̃3, (A.5)
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allows us to convert Eq. (A.4) into

∂2T

∂x̃2
1

+
∂2T

∂x̃2
2

+
∂2T

∂x̃2
3

= 0, (A.6)

which essentially reassembles the form of Laplace equation for an isotropic medium. With

similar mathematical substitution we can transform Eq. (A.1) into

Sii =
ξ1ξ2ξ3

2
√
χ1χ2χ3

∫ ∞
0

1

(ξ2
i /χi + s) ∆s

ds, (A.7)

where

∆s =
√

(ξ2
1/χ1 + s) (ξ2

2/χ2 + s) (ξ2
3/χ3 + s). (A.8)

A simple example of an isotropic void (ellipsoidal inclusion with ξ = (1, 1.5, 2), χv =

0.2) surrounded by an orthotropic matrix (χm11 = 20, χm22 = 1, χm33 = 2) was considered to

acknowledge correctness of Eq. (A.7). Fig. A.1 shows the comparison of the MT predictions

with the finite element results found for a hexagonal arrangement of voids under periodic

boundary conditions (Tomková et al., 2008).

(a) (b) (c)

Figure A.1: Case study: Effective conductivities in [Wm−1K−1] as a function of the volume

fraction of the porous phase



Appendix B

HELP PROGRAM

B.1 Basic specifications and method

Program HELP (Heat and Elasticity Properties) is a simple software for the determination

of effective elastic properties and effective thermal conductivities using the Mori-Tanaka ho-

mogenization method. This program can be used for ellipsoidal inhomogeneities embedded

in a generally anisotropic medium. HELP was originally designed for evaluation of effec-

tive material properties of carbon-carbon plain weave textile composites on the micro- and

meso-scale, see Chapter 4 and Section 5.1. Therefore, the homogenization with the orienta-

tional averaging is also implemented.

B.2 User guide

Program HELP
1 offers a user friendly environment. It allows us to address three major

topics:

• Evaluation of the effective elastic properties of multi-phase composites with aligned

inclusions of the ellipsoidal shape

• Evaluation of the effective thermal conductivities of multi-phase composites with aligned

inclusions of the ellipsoidal shape

• Evaluation of the effective elastic properties and effective thermal conductivities of

textile composites

All sheets are designed in a similar way. The program window has common tool bar

buttons on the top of the window and is divided into four parts, (Fig. B.1)

1 www.inzenyr.com/download.html

www.inzenyr.com/download.html
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Figure B.1: HELP window structure: (a) Common tool strip buttons, (b) general informa-

tions, (c) matrix properties, (d) inclusions (tows) properties, (e) result viewer

B.2.1 Effective elastic properties and thermal conductivities

These program sheets serve to determine the effective (homogenized) stiffness and conduc-

tivity matrices, respectively. As shown in Fig. B.1, the top part of the main window (group

box “Matrix”) is reserved for the material parameters of the matrix phase whereas the ma-

terial parameters of the inclusion (group box “Incusion”) are assigned in the middle part of

the main window. The results (group box “Results”) are displayed at the bottom of the main

window.

The number of required parameters to input depends on the degree of material anisotropy

of a given phase. The inclusion section is designed as to add or remove an arbitrary number



HELP program 100

of inclusions. Apart from the material parameters this section requires specifying shape of

the inclusion, Euler angles and volume fraction, see Fig. B.2 for the example of evaluation

of effective thermal conductivities.

Figure B.2: Heat conduction: (a) Thermal conduction matrix, (b) matrix volume fraction,

(c) inclusion list, (d) semi-axes, (e) Euler angles, (f) material properties for an inclusion,

(g) name and volume fraction, (h) output window

B.2.2 Weave composite

There are only minor changes in the input when compared to more simple composite aggre-

gates discussed in the previous section. First, the problem (elasticity or thermal conduction)

must be selected (Fig. B.3a). Then the dimensions of the periodic unit cell (PUC) are required

(Fig. B.3b). The quantities signs are the same as in Fig. 4.4a. The matrix material properties

are assigned in the same way as above. The “Tow” box serves to specify the effective prop-

erties of perpendicular bundles. The common volume fraction for the weft and warp system

of tows is assumed, see Fig. B.3d. The shape of the bundle is defined through its semi-axes
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(Fig. B.3e) and orientation with respect to the global coordinate system using again the Euler

angles (Fig. B.3f). The required material parameters are introduced next (again depending

on the selected type of the material symmetry) in the bundle local coordinate system. Note

that the local x1 axis is aligned with the fiber direction. As discussed in Section 5.1, it is also

required to choose the type of analysis (Fig. B.3h).

Figure B.3: Weave composite: (a) Problem type, (b) PUC dimensions, (c) matrix properties,

(d) tows volume fraction, (e) semi-axes, (f) Euler angles, (g) material properties for bundles,

(h) homogenization type, (i) output window
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B.2.3 Input/Output file

The input/output project files includingthe matrix and inclusions (tows) parameters are stored

in the “XML” format and are assigned the file name extension “.XMLH”. Note that only

the active sheets are saved when pressing the save bottom on the top tool bar of the main

window. The same applies when loading the project. The structure of these files can be seen

by generating an output file from the HELP program.

There are two possibilities to save the results displayed in the output window when press-

ing the save bottom on the right bottom part of the main window. The first possibility is to

save the whole text in the specified text file. The other option is based on standard copy and

paste operations.



Appendix C

NUMERICAL MODELING OF STRAIN HARDENING

FIBER-REINFORCED COMPOSITES

C.1 Introduction

Strain Hardening Cement-based Composite (SHCC) is a type of High Performance Concrete

(HPC) that was developed to overcome the brittleness of conventional concrete. Even though

there is no significant compressive strength increase compared to conventional concrete, it

exhibits superior behavior in tension. It has been shown to reach a tensile strain capacity

of more than 4% during a pseudo strain hardening phase (Li and Wang, 2001; Boshoff and

van Zijl, 2007). This pseudo strain hardening is achieved by the formation of fine, closely

spaced multiple cracks with crack widths normally not exceeding 100µm (Li and Wang,

2001). These fine cracks, compared to large (larger than 100µm) localized cracks found in

conventional concrete, have the advantage of increased durability. For a further discussion

of the mechanical properties of SHCC, the reader is referred to (Boshoff et al., 2009a,b).

Several scholars have simulated SHCC mechanical behavior with the Finite Element

Method (FEM). Kabele (2000) formulated a model to simulate the mechanical behavior of

SHCC using a smeared cracking approach. Despite acknowledging that a discrete cracking

model would be best for the final localizing crack, Kabele decided to use a smeared crack-

ing approach for the localization. This is due to the uncertainty of the position of the final

localizing crack. Another model was proposed by Han et al. (2003). This model was created

to simulate the behavior of SHCC under cyclic loading to test the improvement of struc-

tural response if SHCC elements are used to dissipate energy during earth-quake loadings.

Computational modeling of SHCC was also performed by Simone et al. (2003) who used an

embedded discontinuity approach for the final material softening. This method would have

the same kinematic characterization as one obtained with interface elements for discrete

cracking, but does not require remeshing procedures. Their conclusion was that it did not
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Figure C.1: Coordinates and transformation angle

simulate the experimental results of SHCC satisfactorily due to the simplicity of the model.

Boshoff (2007) created a simple damage mechanics based model for the tensile behavior

of SHCC. This was implemented numerically using the FEM. Even though numerous short-

comings still exist, the model showed relatively good results. Remaining issues include an

unresolved mesh dependence and the under prediction of the deformation when analyzing a

structure with a strain gradient.

The primary objective of the presented research is to develop a constitutive model that

can be used to simulate structural components with SHCC under different types of loading

conditions. In particular, the constitutive model must be efficient and robust for large-scale

simulations while restricted number of material parameters is needed. The proposed model

for plane stress is outlined and the results of the preliminary implementation are shown.

C.2 Model definition

For the modeling of specific behavior of SHCC in tension, the application of classical consti-

tutive material models used for quasi-brittle materials is not straightforward. The proposed

numerical model is based on a rotating crack assumption to capture specific characteristics

of SHCC, i.e. the strain hardening and softening, the multiple cracking and the crack lo-

calization. Multiple orthogonal crack patterns are allowed which is in accordance with the

observations presented by Suryanto et al. (2008). A schematic representation of orthogonal

cracking using the rotating crack model is shown using global and local axes in Fig. C.1. A

complete description of the rotating crack model can be found in (Rots, 1998).
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The presented model is implemented in a commercially available software package, DI-

ANA (BV., 2008), for a plane stress elements using a coaxial rotating crack model (RCM)

with two orthogonal cracks as described in (Han et al., 2003). This numerical approach is

classified as the smeared cracking approach. When implementing the model into a non-

linear fine element code, the incremental-iterative procedure based on a strain increment is

assumed. Therefore, the strain vector ε = {ε11, ε22, γ12} T reads

ε(i) = ε(i−1) + ∆ε, (C.1)

where i stands for an increment number and ∆ε is a strain increment vector. The rotating

crack model evaluates a given strain state and generates the inelastic strain in the principal

directions of the strain. Therefore, it is inevitably required to introduce a transformation

tensor ([T]ε , [T]σ) interconnecting global and a principal strain e = {e1, e2, 0} T or stress

s = {s1, s2, 0} T, respectively

e = [T]ε ε, s = [T]σ σ. (C.2)

Using the standard transformation rule the tensors are

[T]ε =


n2

11 n2
12 n11n12

n2
21 n2

22 n21n22

2n11n21 2n12n22 n11n22 + n12n21

 ,

n =

 cosα sinα

− sinα cosα

 ,

(C.3)

(C.4)

with the relations between [Tε] and [Tσ]

[T]σ
T = [T]ε

−1 and [T]ε
T = [T]σ

−1. (C.5)

The rotation angle α can be obtained by means of a standard relation

α = 1/2 arctan [γ12/ (ε11 − ε22)] . (C.6)

The incremental stress-strain law (in the crack orientation) reads

∆s = ˜[D]∆e,

˜[D] =


ds1
de1

ds1
de2

0

ds2
de1

ds2
de2

0

0 0 s1−s2
2(e1−e2)

 ,
(C.7)

(C.8)



Numerical Modeling of Strain Hardening Fiber-Reinforced Composites 106

where ˜[D] is the tangent material stiffness matrix. The derivation can be found in (Jirásek

and Zimmermann, 1998). The stiffness matrix is transformed to the global coordinates using

the standard transformation rule

[D] = [Tε]
T ˜[D] [Tε] (C.9)

C.2.1 Poisson’s ratio effect and equivalent principal stresses

It has to be mentioned that the rotating crack approach does not automatically include the

effect of Poisson’s ratio as the stress is evaluated on the basis of individual principal strains.

In (Han et al., 2003) the definition of equivalent strain is used to take this effect into account.

This approach is reliable when a model formulation does not permit residual deformations by

cyclic loading, i.e. by changing state (tension to compression and vice versa). However, in

the model presented in this study permanent (residual) deformations are allowed. Therefore,

a new approach was employed to treat the effect of Poisson’s ratio. The effective principal

strain (ê) is used to determine the equivalent stress (ŝ) from the simplified uniaxial stress-

strain diagram (see Secs. C.2.2.1, C.2.2.2). The effective principal strain is based on the

principal strain (e) which is free of inelastic deformations caused during the stress state

change. The final stresses are consequently evaluated ass1

s2

 =
1

1− ν12ν21

 1 ν12

ν21 1

ŝ1

ŝ2

 ,

ν12 = ν0E1/E0, ν21 = ν0E2/E0,

(C.10)

(C.11)

where E0 and ν0 stand for Young’s modulus and Poisson’s ratio of the undamaged material

respectively. The parameters E1, E2, ν12 and ν21 represent the characteristics of the damaged

material in a given direction and are defined in Sec. C.2.2. The isotropic elastic material is

represented in the state without cracks (E1 = E2 = E0 , ν12 = ν21 = ν0) and the orthotropic

when the crushing or cracking starts.

{ŝ1, ŝ2} T =
{
E1e

el
1 , E2e

el
2

}
T. (C.12)

Stiffness matrix introduced with this approach satisfies the condition of symmetry for

orthotropic materials. Combining Eqs. (C.10,C.12) further givess1

s2

 =
1

1− ν12ν21

 E1 ν12E2

ν21E1 E2

eel1

eel2

 , (C.13)
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where ν12E2 = ν21E1 and superscript ·el represents the elastic part.

C.2.2 Equivalent stress

The equivalent stress state in principal direction is determined by the stress function ŝt(c) as

a function of the current principal strain and associated history parameters.

The stress function is based on the uniaxial strain-stress diagrams in compression and

tension. The experimental data are idealized to obtain a suitable mathematical representation

of this constitutive model.

C.2.2.1 Tension

The material response for virgin loading in tension (Fig. C.2(a)) is described for each indi-

vidual part by

ŝt (ê ≥ εtmax) =



E0ê 0 ≤ ê ≤ εt0

σt0 + (σtp − σt0)

[
−2
(

ê−εt0
εtp−εt0

)3

+ 3
(

ê−εt0
εtp−εt0

)2
]

εt0 < ê ≤ εtp

σtp

[
2
(

ê−εtp
εtu−εtp

)3

− 3
(

ê−εtp
εtu−εtp

)2

+ 1

]
εtp < ê < εtu

0 εtu ≤ ê.

(C.14)

The model parameters are depicted in Fig. C.2(a). The elastic part is assumed to be linear

whereas the hardening and the softening sections are defined by means of Hermit functions.

(a) (b)

Figure C.2: Tensile response: (a) Virgin loading, (b) loading/unloading
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The unloading and reloading scheme shown in Fig. C.2(b) is based on the experiments

presented by Mechtcherine and Jůn (2007).

ŝt (ê < εtmax) =



E0ê 0 ≤ εtmax ≤ εt0

σ∗tmax

(
ê−εtul

ε∗tmax−εtul

)at
εt0 < εtmax < εtu, ė < 0

σ∗tul + (σtmax − σ∗tul)
ê−ε∗tul

εtmax−ε∗tul
εt0 < εtmax < εtu, ė ≥ 0

0 εtu ≤ εtmax.

(C.15)

The unloading curve is based on the polynomial function and the reloading is assumed to be

linear. The partial unloading and reloading is incorporated using

ε∗tmax = min (εtmax, εtprl) ,

ε∗tul = max (εtul, εtpul) , (C.16)

where σ∗tmax, σ
∗
tul are associated stresses and εtmax is the maximum strain experienced in

previous steps with stress σtmax. The evolution of inelastic strain εtul is assumed to be

linearly dependent on εtmax for the elastic and hardening part and linearly dependent on the

crack opening for the softening branch (Eq. (C.17)). This simplification correlates well with

recent, unpublished cyclic tensile results done at Stellenbosch University, see Fig. C.3(a).

εtul =



0 0 ≤ εtmax ≤ εt0

bt (εtmax − εt0) εt0 < εtmax ≤ εtp

min {bt (εtp − εt0) + bt [εtmax − bt (εtp − εt0)− σtmax/Etp] ,

bt (εtp − εt0 + wt/h)} εtp < εtmax,

(C.17)

where Etp = σtp/ [εtp − bt(εtp − εt0)]. The parameter at governs the unloading trajectory

and must be determined from the experimental tests as well as the material characteristic bt.

To ensure proper energy dissipation during localizing, the crack band approach is used

which relates the strain εtu to the crack opening for the complete force transfer loss (wt)

and element size (h), see Eq. (C.18). The crack opening can be considered as a half of

the fiber length (Boshoff, 2007). In the present study the equivalent crack band width is

evaluated by projecting the element into the direction normal to the crack at its initiation (h).

This is done for each cracking direction separately. The last term in Eq. (C.18) describes

the influence of the unloading where more energy is dissipated when the non-linear law is
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employed (Fig. C.3(b)).

εtu = εtp +
wt
h
− 2

εtp − bt (εtp − εt0)

at + 1
. (C.18)

(a) (b)

Figure C.3: Tension: (a) Evolution of inelastic strain, (b) comparison of softening branches

As seen in Eq. (C.17), the damage and cracking strains are mainly driven by a single

material parameter, namely bt. By considering the standard definition of the damage param-

eter ω

Et = (1− ωt)E0, (C.19)

where Et denotes actual elastic modulus, the damage variable can be determined by intro-

ducing Eq. (C.17) into Eq. (C.19) as

ωt = 1− Et
E0

= 1− σtmax
(εtmax − εtul)E0

. (C.20)

The transverse strain ratio in Eq. (C.11) can be then evaluated as

νij = −ν0 (1− ωt) . (C.21)

This definition assures the decreasing influence of Poisson’s ratio while the material cracks.
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C.2.2.2 Compression

The virgin compression loading response is shown in Fig. C.4(a) and is defined mathemati-

cally as

ŝc (ê ≤ εmin) =



E0ê 0 > ê ≥ εc0

σcp − (σcp − σc0)
(

εcp−ê
εcp−εc0

)E0
εcp−εc0
σcp−σc0 εc0 > ê ≥ εcp

σcp

[
2
(

ê−εcp
εcu−εcp

)3

− 3
(

ê−εcp
εcu−εcp

)2

+ 1

]
εcp > ê > εcu

0 εcu ≥ ê.

(C.22)

The unloading and reloading scheme is depicted in Fig. C.4(b) and is based on a similar

assumptions as for tension

ŝc (ê > εcmin) =



E0ê 0 > εcmin ≥ εt0

σ∗cmin

(
ê−εcul

ε∗cmin−εcul

)ac
εc0 > εcmin > εcu, ė > 0

σ∗cul + (σcmin − σ∗cul)
ê−ε∗cul

εcmin−ε∗cul
εc0 > εcmin > εcu, ė ≤ 0

0 εcu ≥ εcmin,

(C.23)

where

ε∗cmin = max (εcmin, εcprl) ,

ε∗cul = min (εcul, εcpul) . (C.24)

where σ∗cmin, σ
∗
cul are associated stresses and εcmin is the minimum strain reached in previ-

(a) (b)

Figure C.4: Compressive response: (a) Virgin loading, (b) loading/unloading

ous steps with stress σcmin. The evolution of inelastic strain is again assumed to be linearly
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dependent on εcmin and crushing (Eq. (C.25)). Suppose that the strain (εtestcu ) for which the

force is totally released is determined from the experimental test and the corresponding lo-

calisation band in real material is denoted dc. Next, with the knowledge of the remaining

material parameters, we can define the displacement needed for releasing correct energy

during material softening as wc = [εtestcu − bc (εcp − εc0)] dc. The inelastic strain then takes

the form

εcul =



0 0 > εcmin ≥ εc0

bc (εcmin − εc0) εc0 > εcmin ≥ εcp

min {bc (εcp − εc0) + bc [εcmin − bc (εcp − εc0)− σcmin/Ecp] ,

bc (εcp − εc0 + wc/h)} εcp > εcmin.

(C.25)

The material parameters ac and bc have to be determined from experimental test results.

The dissipated energy during the crushing should also be mesh-independent as for tensile

cracking. Therefore, the strain εcu is defined with respect to the mesh size as

εcu = εcp +
wc
h
− 2

εcp − bc (εcp − εc0)

ac + 1
, (C.26)

where h represents the equivalent band (element size) where the crushing occurs and is

determined at its initiation. The damage parameter is determined, in a similar fashion as for

tensile (Eq. (C.20)) as

ωc = 1− Ec
E0

= 1− σcmin
(εcmin − εcul)E0

. (C.27)

C.2.3 Biaxial behavior

To demonstrate the complex behavior of the pro-posed approach the failure envelope in space

of principal stresses is shown in Fig. C.5. The boundaries are influenced by the transverse

strain ratio of cracked and crushed material which is expected when the failure criterion

is based on principal strains. This disadvantage of the presented model can be solved by

defining the dependence between tensile and compressive strength. Nevertheless, the real

shape of failure envelope for SHCC will only be included at a later stage as the bi-axial

behavior is currently under investigation at Stellenbosch University.
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Figure C.5: Failure envelope in the principal stress space

C.2.4 Cyclic loading

The above described model is adjusted for cyclic loading when the orientation of principle

stresses changes. The residual deformations are assumed to be dependant on the inelastic

strain. Therefore, a simple linear definition is employed and the permissible closing (open-

ing) strain is evaluated as

εclt(c) = bclt(c)εtul(cul), (C.28)

where bclt and bclc are material parameters and can therefore be calculated from reverse cyclic

loading tests. The trajectories of reloading after the stress state change are in a good agree-

ment with experimental results presented in (Billington, 2004).

For the space limitation only tension behavior after stress state change is introduced

(Eqs. (C.29,C.30)). The stress evolution for compression can be obtain by substitution of

tensile driving parameters for compressive variables and replacement of the maximum (max)

with the minimum (min) value and vice versa. Note that during the loading after stress state

change the old cracks are reopened and the tangent modulus increase to reach the value of

the previously experienced modulus Et.

σ (ė ≥ 0) = σ∗tul + (σ∗∗tmax − σ∗tul)
(

ê− ε∗tul
ε∗∗tmax − ε∗tul

)Et ε∗∗tmax−ε∗tulσ∗∗tmax−σ
∗
tul

,

σ (ė < 0) = σ∗tmax

[
ê− ε∗∗tul
σ∗tmax/Et

]at
,

(C.29)

(C.30)

where the driving parameter ê is again shifted to correspond with the diagram for a virgin

loading and ε∗∗tmax = max (εt0, εtmax) with associated stress σ∗∗tmax. The experienced modulus
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is determined as

Et =


E0 εtmax ≤ εt0

σtmax
εtmax − bt (εtmax − εt0)

εtmax > εt0,

(C.31)

(C.32)

and inelastic strain ε∗∗tul is assumed to be

ε∗∗tul = min [ε∗tmax − σ∗tmax/Et, bt (εtmax − εt0)] . (C.33)

To demonstrate the model response, a loading change from tension to compression to

tension (A-G) is shown in Fig. C.6(a):

• A-B: initial virgin loading (Eq. (C.14)),

• B-C: unloading, Equation (Eq. (C.15)),

• C-D: cracks closing and compressive loading,

• D-E: virgin loading (Eq. (C.22)),

• E-F: unloading (Eq. (C.23)),

• F-G: cracks reopening and tensile loading (Eq. (C.29)),

• G-H: virgin loading (Eq. (C.14)).

Note that if the loading follows the stress state change, the loading path has the tangent equal

to the actual modulus (Eq. (C.29)), intervals F-K and L-G in Fig. C.6(b). The unloading from

this stage is defined in Eq. (C.30), see interval K-L in Fig. C.6(b).

C.3 Implementation and application

As mentioned in the previous section, the constitutive model is implemented in the commer-

cial available finite element code DIANA version 9.3 using the ”User supplied subroutine”

option to demonstrate its suitability for SHCC. Newton-Raphson iterative procedure is used

for the solution of nonlinear equations.
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(a) (b)

Figure C.6: Schematic cyclic behavior

Finite element analyses of the flexural tests reported in (Boshoff, 2007) are performed

to verify the constitutive model analyses. The three-point bending test is introduced using

parameters presented in (Boshoff, 2007), see Tab. C.1. The obtained results are compared

with experimental data as well as a smeared crack model based on a damage mechanics

formulation done by Boshoff (2007).

C.3.0.1 Three-point bending test

The experimental setup is depicted in Figure 9. It is noteworthy that the beam is relatively

thin which complicated the numerical modelling. As mentioned in (Boshoff, 2007), this

beam demonstrates strong alignment of fibers close to the surface which results in a stronger,

more ductile response. Therefore the results of the model are expected to underpredict the

flexural behavior. This issue is however not addressed in this section.

C.3.0.2 Model description

The numerical model is based on experimental data obtained over the past 5 years by the

Institute of Structural Engineering based at the Department of Civil Engineering, Stellen-

bosch University. Due to the lack of a reverse cyclic loading some parameters are set up

using the engineering judgement of the authors as this will not have a significant influence

on the presented results. All the parameters used are listed in Tab. C.1. To examine the fea-

sibility of the proposed numerical approach, two different meshes are used. The flexural test
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is modelled using linearly interpolated, four node plane stress elements. The finite element

mesh is refined towards the middle of the beam with the size of the elements in the expected

softening and localization zone 1.3 mm x 1.33 mm and 4.0 x 4.0 mm. The former dimension

of elements in the middle of the beam is chosen in accordance with the theory introduced

in (Boshoff, 2007) to deal with the crack spacing. The boundary conditions of the model are

shown in Fig. C.7(a) as well as the beam dimensions. The other mesh size is chosen to study

the mesh sensitivity.

Table C.1: Model parameters

General Tension Compression

Param. Value Param. Value Param. Value

E 9.2 · 103 MPa εt0 2.42 · 10−4 εc0 −2.5 · 10−3

ν 0.35 εtp 3.92 · 10−2 εcp −3.5 · 10−3

σtp 2.79 MPa σcp −25.0 MPa

wt 6.0 mm εcu −1.00 · 10−1

at 3.0 dc 50 mm

bt 0.8 ac 3.0

bclt 0.8 bc 0.7

bclc 0.6

C.3.0.3 Results

The presented crack rotating model (RCM) is used to obtain the force-deflection diagrams.

These results are plotted in Fig. C.7(b) together with the experimental data and response pro-

duced by the model based on a damage mechanics formulation (DM) by Boshoff (2007). As

can be seen, the numerical models demonstrate good agreement with experimental data in

the elastic as well as hardening part. The discrepancy is detected for the softening part. This

is probably caused by the fibers alignment close to the surface which is not taken into ac-

count for generally used numerical models and the interested readers are referred to Boshoff

(2007). The mesh dependency is observed by comparison of the two different mesh sizes.
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(a) (b)

Figure C.7: Three-point bending test: (a) Setup, (b) results

To provide entire overview about the model the evolution of strain in the longitudinal

direction is shown in Fig. C.8. After the first elastic stage the strain starts to localize into the

elements which undergo hardening and then softening. Note that more than one element can

soften before the strain is finally localized into one single crack. This is believed to be the

reason for the shown mesh dependence (Boshoff, 2007).

C.4 Conclusion and future work

In this study a two-dimensional numerical model for Strain Hardening Cement-based Com-

posites was introduced. This approach is based on a rotating crack model implemented in the

commercially available software package DIANA. The presented model takes into account:

• strain hardening and softening in tension as well as in compression,

• nonlinear unloading,

• nonlinear loading after stress state change - crack closing,

• the effect of Poisson’s ratio.

The suitability of the introduced approach was demonstrated by means of a three-point flex-

ural test. Nevertheless, the model should be verified for different loading conditions before
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Figure C.8: Evolution of ε11 during three-point flexural test simulation (load vs. mid-span

vertical deflection

using for larger structural components. The spurious stress transfer associated with the rotat-

ing crack models has to be treated simultaneously, for more see (Jirásek and Zimmermann,

1998). The authors also intend to incorporate the time-dependent behavior in the model.
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