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Abstract and contributions

This dissertation thesis deals with a novel dynamic texture model. The proposed toroidal
model can represent a vast amount of possible dynamic textures realisation. The proposed
model is based on triple toroid-shaped tiles and capable of texture analysis, synthesis,
enlargement, and editing. The crucial toroidal property allows synthesizing infinitely large
output simultaneously in a spatial and temporal domain. Furthermore, the analysis and
synthesis parts are entirely separated.

This dissertation thesis presents several techniques to enhance the visual quality of
results and their potential amount. Particular attention is therefore paid to a dynamic
texture inpainting problem, especially inpainting with a dynamic background which is
generally recognized as a challenging problem.

Afterwards, the dynamic texture similarity the problem is addressed and a novel Fourier
transformation based criterion is presented. Subsequently, with proposed criterion utilising
and psycho-physical test, the results of stated inpainting method and synthesizing result
are validated.

Finally, a model capability, particularly its editing abilities, to extend the existing
textural BTF model to the dynamic domain is discussed and furthermore illustrated. Con-
sequently, the novel DBTF model for representing a dynamics object is introduced.

Keywords:
Dynamic texture, temporal texture, video texture, dynamic texture synthesis, dynamic

texture editing, inpainting, error concealment, textural similarity, textural models, toroidal
tile.
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In particular, the main contributions of the dissertation thesis are as follows:

A) Dynamic Texture Synthesis Model

Creating a sufficiently general and descriptive model that offers a more in-depth
insight into dynamic in the dynamic texture. The model is capable of synthesizing
infinitely large output simultaneously in spatial dimensions and temporal dimension
(see Chapter 3).

B) Dynamic Texture Editing Approach

The novel toroidal model capable of the dynamic textures editing is presented. The
method allows to suppress visual disturbances, edit texture property like dynamics
and color tone or create the mix-of-DTs. Due to temporal editing method, the inter-
active dynamic texture that consists of states with varying dynamics can be created
(see Chapter 4).

C) Inpainting and error concealment

The proposed dynamic texture inpainting approach yields to handle challenging ob-
ject removal case where the object to remove is placed on the dynamic background.
The proposed method focuses on the perceptual quality in term of human perception
and produces visually high-quality results (see Chapter 5).

D) Dynamic Texture Perceptual Similarity

The novel multidimensional spatiotemporal frequency criterion regarding human per-
ception and a different way of perceiving spatial and temporal dimension is developed
and validated through series of psycho-physical tests (see Chapter 6).

E) Dynamic BTF

The Bidirectional Texture Function is currently the best visual texture representation
of various textured materials which can be simultaneously modeled and acquired. The
possible combination of BTF and DT model is addressed in this dissertation thesis.
The stated combination allows developing novel medium for dynamic material under
varying observing and illumination conditions (see Chapter 7).
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Chapter 1

Introduction

The use of visual textures allows the concentration of considerable amount of information
within a single medium. While for designers a texture adds material feeling to design
and allows the improve simple geometry, for computer scientist textures provide a consid-
erable amount of information as a key component to image analysis, human perception
understanding, scene segmentation and texture synthesis.

In many cases, the static images are not enough to obtain the sufficient amount of
information to scene content analysis and recognition. Multiple images of a scene from
a different viewpoint or at different time instants can add a desired semantic description.
For example, the movement vector of some object in the scene, the weather and wind
direction determining from water surface or forest images, detection of movement behind
scene object and many other. For many processes analysation, the entire sequences of
images (textures) are crucial or even necessary.

This necessity is due to the fact that the crucial information is not detectable by the
mere scene geometry in a one-time interval or by the scene radiometry but in the scene
and its evolution over time, or its dynamics only. Even though this dissertation thesis is
devoted to analysis, modeling, synthesis and editing of images of scenes that exhibit varying
statistics in the scene geometry and radiometry through time series which is closely related
to analysis, modeling, synthesis and editing of still texture the problem definition and topics
overview will by often presented in still texture domain first. Video sequences that have
certain homogeneous visual and dynamic properties will continue to be called as dynamic
textures from now on.

Unfortunately, neither static nor dynamic rigorous mathematical texture definition ex-
ists. Dynamic textures (DTs) can be vaguely defined as spatially repetitive motion patterns
exhibiting homogeneous properties in the temporal well as spatial domain. Dynamic tex-
tures examples might be smoke, haze, fire or liquids, also waving trees or straws or some
moving mechanical objects.

Visual texture modelling is the crucial part for any computer-based visualisation ap-
plication because whatever size is the measured texture (or generally any data), it is always
insufficient and requires its enlargement to cover the required visualised object’s surface
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1. Introduction

area. The typical example in still texture domain is the recent most advanced visual
surface material representation in the form of the bidirectional texture function (BTF).
Dynamic texture synthesis editing aims to create a visual texture which is perceptually
similar, ideally visually indiscernible, to the target dynamic texture and has the required
spatial and temporal extent.

Texture inpainting and error concealment (although it can also be seen as texture
editing), unlike classical texture synthesis, does not enlarge the dimension of the resulting
texture and instead removes inconsistent or unwanted objects in the texture. The original
motivation for image inpainting was to reconstruct damaged images or videos frame by
frame due to the ageing of stored media or noise.

From the original task that consists of error area and artifact restoration, methods
continuously generalize to the problem of editing and object removal. This task has been
intensively studies in the area of image restoration, and many useful results have been
reached. However the subject of the video (or dynamic texture) inpainting is far less
extensively studied, probably because of the complexity of high dimensional data processing
and due to obstacles caused by the need for homogeneity of the temporal dimension. Since
more methods can generate the desired results, it is necessary to compare the results
between each other to obtain the optimum results. Method results comparing can be
achieved either by psycho-physical tests or via a suitable validated similarity or quality
metric. Emphasize that the term (video) inpainting in the context of this thesis does not
just mean to recover missing or unwanted data but to synthesize it with regard to the
whole dynamic texture. Therefore, in the interest of the quality, borderline patch error
and homogeneity of the texture as a whole the minimal residual part of the input texture
could be sacrificed to a certain extent.

As the term texture is crucial for this thesis topics, the term definition and usage is
first briefly discussed in the Section 1.1, followed by a discussion of a more specific term
dynamic texture in Section 1.2. The general complex texture models are briefly described
in Section 1.3. The dissertation thesis motivation (Sec. 1.4), problem statement (Sec. 1.5),
goals (Sec. 1.6) and structure are presented in the order given.

2



1.1. What is a Texture?

1.1 What is a Texture?

The world around us is full of textures and materials which are visually demonstrated as
visual textures. The surface of any visible object is, in some scale, textured as well as the
apparent visual surface (like a dense forest, or a crowd of people, thick bushes, . . . ) because
also more object can be in some scale perceived as a texture. A spectrum of visual textures
is extremely wide from natural surfaces of a wood plant, skin, artificial surface like metal,
car paint, linoleum, or complex visual surfaces like grass, hair, dense forest or crowd of
people. In both real and apparent surfaces the texture refers to surface characteristics and
appearance in terms of color, arrangement, roughness, glossy, coarse or fine, reflectivity,
etc.

Texture can be obtained as a measurement from the real world by photographing or
measuring with a specific photometric device. Also, texture can be painted or rendered
from virtual scene artificially by computer graphics tools.

Here is proper to say that there is one very specific sort of textures which has a very tight
connection to human perception - sound textures. Although the sound texture synthesis
is interesting topics (see, e.g. [92, 91]) and even sound texture can be present in some
natural dynamics visual texture (i.e. the sound of water in waterfall scene, birds song
in the dynamic texture of the forest) this dissertation thesis is strictly focused to visual
dynamic texture without any sound texture track.

The basic division between tactile textures and visual textures is represented by a
primary sense that the given texture is perceived. Tactile texture directly refers to a
tangible human feel of real surfaces. Visual textures refer to human visual perception.
The impression of visual texture is more than the impression of tactile textures influenced
by the environment - illumination direction, intensity and spectral characteristics, optical
conditions of environment, but also spectral properties of the surrounding surface as well
as the observer’s own (i.e., the properties of the eye). This dissertation thesis is focused
on visual textures, so the term texture is therefore used as phrase visual texture although
this will be highlighted in some specific situations.

After the insight into some dictionaries, various definitions of the term texture can be
found. The terms are related to vast characteristics and research or art areas as painting,
taste, music, etc. More relevant definitions are related to structural arrangement or fabrics.
The various definitions of textures, for example, consist of:

English oxford living dictionary :

”The feel, appearance, or consistency of a surface or a substance.”

Merriam-Webster :

”The disposition or manner of union of the particles of a body or substance;
the visual or tactile surface characteristics and appearance of something.”
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1. Introduction

Figure 1.1: Real and apparent textures : Natural texture examples with various charac-
teristics. On the right real physical surface (tactile) textures, on left apparent surface
textures.

Dictionary.com:

”The characteristic physical structure given to a material, an object, etc.,
by the size, shape, arrangement, and proportions of its parts.”

Art Vocabulary Terms :

”The tactile quality of the surface of a work of art.”

American Heritage Collegiate Dictionary :

”Something composed of closely interwoven elements; the structure formed
by the threads of a fabric.”

The vast spectrum of characteristics as a representation of the original 16th-dimensional
function lead to many purpose-oriented models like Bidirectional Texture Function, Spa-
tially Varying Bidirectional Reflectance Distribution Function, Bidirectional Surface Scat-
tering Reflectance Distribution Function, etc. Depending on the model, textures are rep-
resented by two or more dimensional images or sets of images.

Visual texture
Although textures are remarkably often used in computer graphics and science neither

visual nor tactile rigorous mathematical texture definition exists, and term texture is often
considered to be very vague and obscure. The reason is probably the extremely wide
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spectrum of properties and close relation to particular human perception. Even worse, in
many cases, the key features are clearly contradictory or almost mutually exclusive.

The range of these properties covers regularity versus stochasticity, uniformity versus
distortion, sharpness versus noisiness, locality versus global properties. Moreover, these
properties often fluctuate with the distinctive texture scale and view angle.

From a large number of approaches and researchers, let’s name the most basic ones
which differ fundamentally from each other and represent basic views and approaches.
The different texture definitions usually consequently lead to strictly different computa-
tional approaches to texture synthesis and analysis. Francos, Meiri and Porat[50] defines a
texture vaguely as a structure which is made of a large ensemble of elements that resemble
each other very-much, with some kind of an order in their locations, so that there is no
one element which attracts the viewer’s eye in any unique way. Although the definition
is intuitively correct, it is in many cases inadequate, even inaccurate in terms of visual
perception and visual quality. The robust self-similarity criterion with no irregularity to
”attract viewer’s eye” leads to material-like or poor perception (see. i.e. marble texture in
Figure 1.1).

Haralick[60, 59] defines texture as an ”organised area phenomenon”. As a typical struc-
tural approach, this leads to texture decomposition into ”primitives” with some specific
spatial distributions. The structural decomposition is strongly driven by the human visual
experience of visual textures. The spatial structure of primitive objects (i.e. apples, leaves,
or scales on in image 1.1) is seen as a realisation of a stochastic field interestingly satisfy
many of different texture definition in a similar way as a primitive itself. The primitives
can be realised not in a stochastic way but some higher order placement (i.e. wool, knot
pattern, tile floor). With both principle (stochastic and regular) structure approach can
cover a wide variety of visual textures.

In apparent contradiction to structural approaches is stochastic one, i.e. based on
Markov Random Field[22]. Cross and Jain[22] consider that texture is ”A stochastic,
possibly periodic, two-dimensional image field.” This approach is popular probably due to
the possibility of stochastic field mathematical notation and therefore a more explicit link
with multidimensional mathematical processes, unlike structural approach. For example,
texture definition as a stochastic process that generates the texture is possible with the
stochastic approach.

Without limitation to generality and a particular model, the consensus across the com-
munity says that the key textural property is spatial and temporal homogeneity. From the
structural point of view satisfying the need for homogeneity require a repetition of tex-
ture primitives and therefore some degree of self-resemblance. Even if the exact primitives
can vary in color, illuminance or shape the basics, visual appearance is similar. Typical
examples can be fractal[127] or building block, tiled floor, or kilts and tartans. The statist-
ical approach defines homogeneity as statistical stationarity. Therefore the self-similarity
is required at the level of the statistical values of the signals. The degree of homogeneity
can serve to classify the texture into several basic groups. For example, Zhou[145] classifies
the texture into the homogeneous, weakly-homogeneous, and inhomogeneous classes.
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Figure 1.2: Irises dynamic texture enlargement example. Left: Verbatim repetition, right:
more patches. The original dynamic textures are the small pictures on the top left. Upper
row and left columns illustrates one dimension enlargement while big square represent both
spatial dimension enlargement.

Texture Synthesis
The using of texture is a quintessential part of almost any computer-based visualisation

application. Because of the desired object which needs to be textured can has any size the
appropriate amount of texture is needed. Although in some exceptional cases the measured
amount of data may be sufficient, it may easily prove inadequate if the size of the object is
changed. What’s more, sufficiently precise measurement can be resource-intensive, time-
consuming or even impossible, i.e., reconstruction and preservation of incomplete museum
artifacts. The typical example of a precise but time-consuming medium in still texture
domain is the recent most advanced visual surface material representation in the form of
the bidirectional texture function.

Texture modelling and synthesis aims to create a visual texture which is perceptually
similar, ideally visually indiscernible, to the target original texture and has the required
spatial extent. The synthesized or enlarged texture should have similar, or the same
perceptual characteristics as stated for example De Bonet[25] but should also avoid to
verbatim repetitions[145] of some pattern like tileable textures (see Figure 1.2).

Texture enlargement and synthesis are closely related to texture model approach. The
structural approach, therefore, leads directly to intelligent sampling - picking some repres-
entative patches of appropriate shape from given input texture sample of limited size and
consequently using them to generate the desired size texture. Statistical approach based
synthesis is used in some defined mathematical models, often with relation to a particu-
lar physical phenomenon. The generated texture is created according to given analytical
function. Of course, the hybrid methods, i.e. as propose Nealen[95] are possible, usually
trying to pick the advantages of both approaches.
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Figure 1.3: Dynamic texture in volumetric view : First 100 frames visualized. The side view
(from right to left) and top view (ftom top to bottom) are visualized of left and bottom,
respectively.

1.2 What is a Dynamic Texture?

At first, it is good to say that dynamic textures are sometimes called as temporal textures
in some literature, e.g. articles as by Szummer[124], or video texture, e.g. articles by
Schödel[113]. Both terms share a large part of the characteristics but due to the excessive
generality of both terms which may in principle cover an unnecessary amount of data the
term dynamic texture[30] will be exclusively used in this dissertation thesis. Remind, that
the similar areas as i.e. motion textures[99] are not part of this thesis topic, as its do not
model the time-varying spectral information but the motion measurement itself. Similarly

Table 1.1: Basic texture model overview.

Variables spatial spectral view ilumination Temporal

Sound texture 0 0 0 0 1
Still grayscale texture 2 0 0 0 0
Still multispectral texture 2 1 0 0 0
Solid texture 3 0 0 0 0
Multispectral procedural texture 3 1 0 0 0
Dynamic texture 2 1 0 1 1
BTF 2 1 2 2 0
DBTF 2 1 2 2 1
BSSRDF 4 1 2 2 0
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to other types of visual textures mentioned above, there is neither exact definition of the
dynamic texture [29, 57]. The Dynamic texture can be characterised by some spatially
invariant statistics like other visual textures [146], but additionally, temporal invariance
through particular images is also required. Consequently, the spatial and temporal ho-
mogeneity is required. It is important to say that the spatial domain homogeneity and
the temporal domain homogeneity have fundamentally different characteristics. This can
readily be seen by a simple experiment: Imagine some dynamic texture, e.g. the irises on
Fig. 1.2. For human perception the content of the dynamic texture is clear and distinct
- yellow flowers of irises moving in the wind. If the spatial axes will be switched, the
human recognized content should be preserved. Moreover, the DT’s dynamic still remains
intact. When any spatial axis (for example, horizontal dimension) will be changed with
the temporal axis (or, geometrically said, the whole data block will rotate around Y axis
by 90 degrees) the resulting dynamic texture will be for human perception not the video
of irises, but a video with oscillating yellow / green lines. Moreover, the dynamics of the
resulting dynamic texture will drastically change. The experiment can be well viewed on
volumetric view of a dynamic texture Irises on Figure 1.3.

In many typical cases, the static images are not enough to obtain the sufficient amount
of information to analyse. The recognition capabilities can be strictly limited as an image
is only one-time interval realisation. For example speed of some object, or its movement
direction needs the set of images and thus set of more time interval observation for an
effective estimation. Multiple images of a scene from a different viewpoint or at different
time instants can add a semantic description which. For many processes analysation, the
entire sequences of observations are crucial or even necessary. This necessity is due to the
fact that the crucial information is not recognizable by the mere scene geometry in the
one-time interval or by the scene radiometry, but also in scene dynamics.

The fields of application for dynamic texture consist of video restoration and recogni-
tion, animation, computer games, virtual reality, dynamic object modeling, video rendering
and many other. The basics advantage of dynamic textures allows, due to temporal high-
order characteristics, bypassing difficult modeling of some complex spatial structures and
their dynamics in particular. Moreover, using dynamic textures enables to keep photoreal-
istic material with plausible and real dynamics.

From interminable types of dynamic textures, the examples could be grass, trees in
the wind, flowers, smoke, foliage, snowing, insect swarm, waving flags, human crowd, sea
waves, haze, fire, and many others. The determination of a dynamic texture by classes are
difficult problem itself with tight connections to human perception. An immense space of
possible dynamic texture realisation with a different color, illumination of structure can be
seen on Figure 1.3 as a small subset of WATER type DTs examples.
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Figure 1.4: Various WATER-type dynamic texture examples, selected frames.

1.3 Complex Textures Models

A real material surface reflectance is a complex physical phenomenon which depends on
many physical conditions. The general reflectance function[57] can be expressed in form
of 16-dimensions function:

GRF (ςi, xi, yi, zi, ti, θi, φi, ςv, xv, yv, zv, tv, θv, φv, θt, φt) , (1.1)

where ςi is incident light spectral value. The triplet xi, yi and zi denote the illuminating
surface location in time ti. ωi = [θ, φi] is illumination spherical incidence angles observed
at time tv. Surface location is denoted by xv, yv and zv with spherical reflectance angles
ωv = [θv, φv] and appropriate spectrum ςv. ωt = [θt, φt] are the corresponding transmittance
angles. Note that ω = [θ, φ] are the elevation and azimuthal angles, respectively.

Clearly, GMF is an extremely complex function to measure or even model. Thus more
suitable model for visual texture representing is needed. The wide spectrum of simplifying
assumptions from general GMF leads to particular specific model as the existence of a
subsurface scattering, texture isotropy condition, independence on simultaneous rotation
of illumination and viewing azimuthal angles around the surface normal and many oth-
ers. From complex GRF taxonomy, the following model has the closest relation to this
dissertation thesis topics.
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1.3.1 Bidirectional Surface Scattering Reflectance Distribution Func-
tion

The Bidirectional Surface Scattering Reflectance Distribution Function (BSSRDF) is a
9-dimensional model proposed by Nicodemus[99] as a visual texture reflectance represent-
ation:

BSSRDF (ς, xi, yi, θi, φi, xv, yv, θv, φv). , (1.2)

where parameters are a GRF (1.1) model generalisation based on specular (reflected light)
and diffuse components that are determined by the light scattering in surface micro-
structure. Bidirectional Surface Scattering Reflectance Distribution Function is currently
the most general yet, with some simplifying assumptions, suitable GRF submodel. Note
that no satisfactory BSSRDF dataset was measured yet and only approximate visualiza-
tion methods exist, but still, BSSRDF is probably the best GRF approximation which is
possible that will be measured in the near future.

1.3.2 Bidirectional Texture Function

Bidirectional Texture Function (BTF) is 7-dimensional reflectance model and current visual
texture state-of-the-art. The model is defined as a BSSRDF subspace:

BTF (ς, x, y, θi, φi, θv, φv) (1.3)

and was (in monospectral variant) first proposed by Dana[23]. The BTF is currently the
best visual texture representation of various textured materials which can be simultan-
eously modeled and acquired even for nonplanar and opaque surfaces. The process of BTF
measuring is time consumable and complex, but the results are currently the most high-end
and physically correct surface materials appearance modeling. Above all, the adaptability
of the model to the illumination conditions is extremely wide.

BTF as current state-of-the-art is used in top computer graphic applications, photoreal-
istic material modeling , filming, virtual reality modeling, museums preservation, visual
scene analysis, recognition of complex real-world, biometric and medical applications and
many others.

1.3.3 Texture Models with Fixed View and Illumination Directions

Multispectral visual texture The well known and widely used model for GRF is a
simple multispectral visual texture:

V T (ς, x, y) , (1.4)

where both viewing and illumination direction if fixed. Emphasize that contrary to fre-
quently misunderstanding the function is 3-dimensional with two spatial and one spectral
dimension. The VT is usual and mostly utilized form of a texture, or generally, any image
representation.
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Monospectral Texture Recall, that monospectral texture obviously miss the ς para-
meter:

GT (x, y) . (1.5)

Procedural Texture The model similar to (1.4) is already mentioned material proced-
ural (grayscale) texture in monospectral:

PGT (x, y, z) , (1.6)

or multispectral color variant:
PT (ς, x, y, z) . (1.7)

Dynamic texture Finally, the dynamic texture model is defined as a multispcestral
texture (1.4) with dynamics and so in the most general and pure form as

DT (ς, x, y, t) . (1.8)

1.4 Motivation

Texture synthesis In the computer graphic and more specifically in pattern recognition,
the study of dynamics textures dates three decades back. The pioneering works perform
dynamic texture classification based on temporal features extracted by segments of dynamic
textures. By many years the definitions of this medium type vary from temporal texture,
video texture, spatiotemporal textures, dynamic texture and many other. The medium
was more or less precisely described in many different ways [A.5] based on statistical
or structural properties. While the structural approaches typically exhibit high-quality
results, the statistical ones present general methods but typically more time complex ones.

The methods typically try to generalise the pure spatially based approaches but lack the
temporal dimension effective handling. Thus effective method as [A.2] that can produce
high-quality results concerning main medium property - dynamics - is needed.

Texture editing Visual texture modelling is the critical part for any computer-based
visualization application because whatever size is the measured texture, it is always inad-
equate and requires its enlargement to cover the required visualized objects surface area.
The available material sample size is either too small for rendering complex and large virtual
scenes if we measure material visual properties of real existing objects, or the measurement
technique does not allow us to measure larger material samples. The typical example is
the recent most advanced visual surface material representation in the form of the bid-
irectional texture function [56]. The amount of such measured data similarly to dynamic
textures is immense, e.g., in the range of terabytes even for such spatiotemporally restric-
ted measurements thus any such texture visualization inevitably requires enlargement and
some compression capability simultaneously.
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Thus texture editing method[A.3] capable of creating photorealistic synthetic textures,
which are either difficult to measure or which even do not exist in nature and is general
enough to create a broad spectrum of dynamics textures is desired.

Textural Similarity Criterion The ranking of dynamic texture similarities is a diffi-
cult problem due to real material textures complex dependencies on 16 physical observation
parameters with a combination of temporal dimension behaviour. This problem is not sat-
isfactorily solved even for simpler static textures Currently the only reliable, but extremely
impractical and an expensive option is to exploit the methods of visual psycho-physics [56].

Clearly, criterion[A.1] that correlates well with psycho-physical tests and are capable
of ranking the synthesis or inpainting results is missing.

Dynamic Texture Inpainting Inpainting (mostly image inpainting) is intensively re-
searched part of image processing. The original motivation for image inpainting was to
reconstruct damaged images or videos frame by frame due to the ageing of stored media
mechanical damages, or noise [70]. Later many methods were introduced to use an image
and video inpainting not only for reconstruction but also for editing of image or videos in
the object removal area.

Even if there are many effective approaches (mostly working with static background),
current methods have still many drawbacks. The most of dynamic textures inpainting
approaches suffer from false optical flow or produces results with visually easy recognizable
artefacts. Even if the synthesized dynamic texture is valid, the shape of a mask is easy
observable like a (moving) silhouette in the dynamic background. Another usual problem
is time complexity. Time demanding operations are typical, i.e. for convolution nets
approaches in which the synthesizing of an even small texture can take weeks to proceed.
So some method[A.4] which can overcome these drawback is needed.

1.5 Problem Statement

This dissertation thesis aims to develop a novel dynamic texture model capable of syn-
thesizing dynamic textures and improving the current methods. The proposed model is
applicable in dynamic texture enlargement and capable of synthesising a significant amount
of dynamic textures type from water, natural scenes, human-made objects, and many other.

The model generality leads to an ability to edit dynamic textures and even recreate
photorealistic synthetic textures, which are either difficult to measure or which even do
not exist in nature.

As the model is capable of effectively edit the dynamic textures, the intensively re-
searched image processing topics called inpainting is handled with it.

As the only way to compare the quality of a synthesis and inpainting results are tedious
psycho-physical experiments, the mathematical criterion of similarity is final key topics of
this dissertation thesis.
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1.6 Goals of the Dissertation Thesis

The main goals of this dissertation thesis sustain of:

A) Dynamic Texture Synthesis Model To create a dynamic textural model cap-
able of synthesizing high-quality results. The result should be visually represented
with regard to the type of synthesized texture. The desired method should be capable
of both spatial and temporal enlargement and synthesis.

B) Dynamic Texture Editing Approach To develop a method to edit a dynamic
texture with respect to a created dynamic textural model.

C) Inpainting and Error Concealment Development a methods for restoration of
error areas or unwanted parts in the dynamic textures.

D) Dynamic Texture Perceptual Similarity To create a method capable of eval-
uating the results of the synthesized and inpainting process concerning the visual
quality and human texture perception.

E) Dynamic BTF To discuss and examine the potential of combining the BTF model
and dynamic texture model.
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1.7 Structure of the Dissertation Thesis

The thesis is organized into ten chapters as follows:

1. Introduction: Describes the motivation behind our efforts together with our goals.
There is also a list of contributions of this dissertation thesis.

2. Background and State-of-the-Art : Introduces the reader to the necessary theoretical
background and surveys the current state-of-the-art.

3. Toroid-Shaped Patch Model : Provides a description of our approach to the problem
of dynamic texture modeling.

4. Dynamic Texture Editing : Demonstrate the ability of a proposed dynamic textural
model to the dynamic texture editing problem and provides a description of model
enhancements depending on DT editing issues.

5. Dynamic Texture Inpainting : Present a dynamic texture inpainting problem descrip-
tion and demonstrate the ability of a proposed dynamic textural model to deal with
it. Next describes model enhancements depending on DT inpainting issues.

6. Dynamic Texture Similarity Criterion: Presents a novel Fourier transformation based
criterion usable for dynamic textures comparison and ranking of synthesis and in-
painting results.

7. Dynamic BTF : Demonstrates the possibility of creating novel DBTF media based
on Dynamic texture and BTF model combination.

8. Dynamic Texture Database and Criterion Validation: Covers the data which were
used for experiments to verify our approach.

9. Main Results : Contains examples of the results of the presented methods.

10. Conclusions : Summarizes the results of our research, suggests possible topics for
further research, and concludes the thesis.
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Chapter 2

Background and State-of-the-Art

At the beginning of this chapter, in Section 2.1, the necessary theoretical minimum required
to enter the topic is introduced. As the primary goals of this thesis is a novel approach
to synthesize dynamic textures with using of a triple toroidal-patch, the dynamic texture
as a term in relation to other complex textural media is explained first in Section 2.1.1
following with Section 2.1.2 where principles of a toroidal patch are recapitulated.

In the second State-of-the-art section (Sec. 2.2) goals coinciding with dynamic textures
and field overlap between them are discussed first, followed with dynamic texture overview.

Whereas the using of synthesis approach to editing and inpainting is a crucial part of
this dissertation thesis, the related areas of research covering still and dynamic textures
synthesizing and inpainting are discussed next.

Hence any synthesizing method results must be compared in some ways, last part of
state-of-the-art section summarises approaches for texture fidelity benchmarking, similarity
computing and psycho-physical test performance to compare the quality of synthesis and/or
inpainting results.

2.1 Theoretical Background

Let’s mention here what 4D means in the context of this dissertation thesis, dynamic
textures and common still texture models. The most general and accurate description
of any still visual texture can be obtained by 16D general reflectance function describing
the real material textures complex dependencies on 16 physical observation parameters as
postulates Haindl in [56].

The more general 9D bidirectional surface scattering reflectance distribution function
(BSSRDF) is defined by Nicodemus in [99] as light transport within the interaction of the
light beam with material surface.

Bidirectional texture function as introduced by Dana[23, 24] is BSSRDF generalisation
with no surface scattering and thus depends on illumination and viewing direction and
texture spatial coordinates resulting in 7D function.
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2. Background and State-of-the-Art

Presumptions on material properties influencing light scattering have resulted in more
disposable approximative 5D material representation called bidirectional reflectance distri-
bution function. The bidirectional reflectance distribution function derivation is based on
BTF representation of spatial dependency on the points of light incidence and reflection.

The most straightforward way to describe a 2D texture with spatial dimensions, say,
u, v (width and height), where values at given coordinates can be defined as magnitude on
black-white spectre. Color still 3D textures are natural extensions with two spatial and
one spectral dimension, where the last dimension can be one channel from RGB, HSV, or
in any other color model.

The solid color 4D textures are very specific procedural textures of material (e.g. wood,
marble, . . . ) with three spatial dimensions (width, height, depth) and one spectral dimen-
sion. On the contrary, the dynamic color textures (usually called as dynamic textures) are
a direct extension of still color textures with two spatial, one spectral and one temporal
dimension (see Table 1.1).

2.1.1 Dynamic Texture

The most general term relevant to dynamic textures are video textures as postulate Schödl
in [113] or as a general temporal autoregressive model by Szummer[124]. While video tex-
tures represent a general infinitely varying stream of any pictures with no exact limitations
and represent general medium, dynamic textures as defined by Doretto[27] [30] are a subset
of video textures and as a linear dynamical system (LDS) are restricted by many limits.

Although neither static nor dynamic (or temporal) rigorous mathematical texture defin-
ition exists[56], dynamic textures can be vaguely defined as spatially repetitive motion pat-
terns exhibiting homogeneous temporal properties[147] (i.e., spatial and clearly discernible
temporal homogeneity between frames). Examples might be grass, haze, fire or liquids,
also waving trees or straws or some moving mechanical objects. So the dynamic texture
can be defined as a realisation of 4D stochastic random field. Like 2D and 3D textures,
many of them can be modeled only as a mix of several dynamic textures[15, 16] or by
layered dynamic textures[17].

In general it can be said that dynamic textures must have certain spatially invari-
ant statistics[147] (be homogenous) and clearly discernible temporal homogenity between
frames. Similarly, Doretto[27] postulate dynamic texture as generative video model defined
by a random processed with some observed variable and hidden variables.

Three significant properties[27, 30] are present in dynamic textures - the static texture
itself, global dynamics and local dynamics. They intuitively define whole texture in the
meaning of human perception and texture classification.

The static texture represents a structure of the scene, and its objects, its visual appear-
ance, illumination, color in one DT frame. In the other words, the structure is analogous
to still texture and represents whole frames of DTs. The preservation of these properties
is crucial[46, 45, 47] to preserve the visual quality appearance of dynamic textures in the
meaning of geometric (G0) continuity.
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The second significant property represents moving of whole scene (handshake, camera
motion) and typically must be fixed by appropriate techniques[77].

The third property - local dynamics - is usually caused by the periodic motion of a small
object in the texture (i.e. oscillation or overlapping and disappearing of small objects) and
create the local optical flow (OF). Not preserving of the optical flow causes a violation of
G{1,2,3} continuity curves - inconsistencies in dynamics due to the entire image, create a
false optical flow, or abrupt changes in OF velocity.

Optical flow Optical flow determining is one of fundamental problems[65] in the pro-
cessing of image sequences. Its goal is to compute an approximation of the 2D or 3D motion
field of velocities and directions and thus add spatiotemporal information to spatial image
structure. The great potency to use such information reflect to wide research determined
to this extensive field - many methods for optical flow with various approaches has been
proposed.

As the optical flow computation becomes more standard and widely used process, for
example in many computer vision libraries, variation of approaches grows. Today the
optical flow approaches can challenges problems associated with complex natural scenes,
including nonrigid motion, real sensor noise, motion discontinuities, automated tracking
systems and many more.

Clearly, a fully comprehensive survey is beyond the scope of this paper. For this
dissertation thesis the dense optical flow[74], widely used traditional pyramidal Lucas-
Kanade[88, 13] can be used with advantage of simplicity in case of larger structures move-
ment detection. For handling both rough and detailed local dynamics the optical flow
prove itself to be satisfactory[6, 100, 132, 4].

Synthesis Approaches The video synthesis (and thus the dynamic texture synthesis,
too) is extensively studied in past three decades. Many contributors try to established
sufficient and exact statistical generative models of video sequences by many different
approaches which can be divided by many characteristics.

The two main approaches can be applied to the dynamic texture modelling - the de-
terministic structural models approach based on the measured data sampling (intelligent
modeling) and the mathematical statistical model based approach. The mathematical
models can be further divided to two basic categories, while the first is procedural model
devoted to some particular physical phenomena. The second mathematical model category
are adaptive models like i.e. LDS or autoregressive models.

Note that the 4D procedural models for color 3D-spatial material textures (i.e. models
of marble, wood) are offtenly taken into this class even if their labelling as ”dynamic” is
questionable and comes from the number of dimensions. On the other hand models for
behavior of water surface, hair, flames, or trees and plant is comes from this category.

The other distinction is the basis of synthesizing approach, which can be whole frames,
spatial or spatio-temporal data patches, pixels, on other statistical basis functions (like
Gabor filters or steerable filters).
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2. Background and State-of-the-Art

Finally, the last major distinction is between a physically-based model that simulates
some (usually very specific) DT types like water or gaseous phenomena i.e. by NavierStokes
equations or fluid motion hydrodynamics and ad hoc experimental model with no more
less physically-based principles i.e. on Potts field.

Mention that, of course, the division by dimension of output is possible as some methods
can synthesise results only in some dimension (temporal enlargement) or are strictly limited
in spatial dimension (synthesize only a multiple of original DT size) while others can create
infinitely large results. Of course, an even infinitely large output may not be sufficient as
the result of some method continually degrades.

Dynamic texture classes An extremely wide range of potential realizations of a par-
ticular dynamic texture requires their clustering to some particular classes. Although it is
possible to use specific mathematical criteria for some sorting of textures (such as average
color, homogeneity, entropy, . . . ), it is more practical[] to use a rather semantic category.
Note that the dynamic texture classes are addressed as FOLIAGE (marked with small
uppercase caps) and the concrete dynamic texture realisation (measured or synthesized)
as Walk (small caps). Due to the inaccurate definition of the dynamic texture itself, their
classification into these thematic classes is of course very fuzzy.

2.1.2 Tile and Patches

Deterministic structural models approach based on the measured data sampling varies in
the form of used measured data. The used patch form greatly determinate the synthesize
(inpainting, editing, . . . ) methods spectrum of outputs, their quality and possible method
limitations.

Mention here, that the word ”tile” (noted as T ) is used as the shape of the data used by
given method regarding spatial and temporal dimensions. The term ”patch” (or P) then
refers to the specific tile content given by the input data. Usually, one tile can generate
more patches. The ambiguous term ”patch tile” then covers both of the above meanings,
including their properties simultaneously.

If more than only one input dynamic texture is used, the terms tile and patches are
used in a similar way. The tile term is usually shared by more inputs and addresses its
shared properties. The patch term is then bound to concrete data from concrete dynamic
texture realization.

Double Toroidal-Shaped Tile One of the possible and well-known forms of the data
patch tile is a double toroidal-shaped tile which is created from given input (dynamic
or still) texture sample. The double toroidal-shaped tile is a tile of which the top edge
optimally fits the bottom edge, and simultaneously the right edge optimally fits the left
edge. For calculating such type of tiles an (sub)optimal fit of opposite edges must be
achieved to suppress the visual perception of edge existence. For creating nontrivial and
visually high-quality results more than one tile must be found, so computed suboptimal
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tiles are a compromise between multiple tiles. For tile of size of M pixels in height and N
pixels in width, the top vertical edge is common parametric curve:

Qv+(u) =
[
x(u), y(u)

]
, u ∈< 0..N >, (2.1)

Qv−(u) =
[
x(u) +M, y(u)

]
, u ∈< 0..N >, (2.2)

and subsequently for horizontal edges of tiles:

Qh+(u) =
[
x(u), y(u)

]
, u ∈< 0..M >, (2.3)

Qh−(u) =
[
x(u), y(u) +N

]
, u ∈< 0..M > . (2.4)

Thus tile convex surface can be written as:

Q(u, v) = Qv(u, v) ∪Qh(u, v) (2.5)

Qv(u, v) =
[
1− v, v

][Qv−(u)

Qv+(u)

]
(2.6)

Qh(u, v) =
[
1− v, v

][Qh−(u)

Qh+(u)

]
(2.7)

Toroidal mapping To define mapping between toroidal surface and flat double tor-
oidal tile let’s use for simplicity rectangular tile (Figure 2.1) with sizes M a N .

Qv(u) =
[
x(u), y(u)

]
(2.8)
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2.1.3 Toroidal Mapping

Figure 2.1: Rect-
angular tile.

The toroidal tile principles are based on a torus mapping. Here lets re-
peat the basics toroidal principles with illustration of a torus mapping.
A rectangular double toroidal patch that correspond with unfolded sur-
face of a torus has the size of M pixels in height and N pixels in width.
Introducing both horizontal and vertical overlaps extends the M ×N
unfolded double toroidal patch by h additional rows and v additional
columns.

The given rectangular texture patch is assumed to be indexed on
the regular two-dimensional lattice:

Ild = (0, . . . ,M−1)× (0, . . . , N−1) , (2.9)

where M denotes the number of rows and N the number of columns (See Figure 2.1, the
darker areas on left/right and top/down are the overlapping areas.) of the patch tile. In
case of rectangular double toroidal texture patch:

Ir = (0, . . . ,M+h−1)× (0, . . . , N+v−1). (2.10)

The surface of a torus τ can be defined parametrically using poloidal and toroidal
coordinates as follows:

x(s, t) = (R1 +R2 cos s) cos t , (2.11)

y(s, t) = (R1 +R2 cos s) sin t , (2.12)

z(s, t) = R2 sin s , (2.13)

s, t ∈ [0, 2π) , (2.14)

where s is poloidal coordinate, t is toroidal coordinate, R2 is the radius of the tube and
R1 is the distance from the center of the torus to the center of the tube.

Mapping between rectangular lattice Ir and the torus surface τ , poloidal and toroidal
angles are utilized as a generalization of poloidal and toroidal coordinates, respectively:

s, t ∈ [0,∞) . (2.15)

Then, fτ : (r1, r2)→ (s, t) is desired mapping function from the pixel position r = [r1, r2] ∈
IT to the poloidal angle s and toroidal angle t of a torus τ . They respectively, are defined
as follows:

s =
2π

M
r1 , (2.16)

t =
2π

N
r2 . (2.17)

For all possible values from the range of fτ , i.e., any pair of s ∈
{

2π
M
k | k ∈ N+

0

}
and

t ∈
{

2π
N
l | l ∈ N+

0

}
, inverse mapping f−1

τ : (s, t) → (r1, r2) can be meaningfully defined
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using the following formulas:

r1 = M
s

2π
, (2.18)

r2 = N
t

2π
. (2.19)

Using parametric equations (2.11), (2.12), (2.13), and (2.15) of the torus τ , poloidal
and toroidal angle can be projected onto the surface of τ . Obviously, the pair (s, t) projects
to any point P [x(s, t), y(s, t), z(s, t)] as well as pairs (s+2kπ, t+2lπ), where k, l ∈ Z. Such
projection results in overlapping pixels.

2.2 Previous Results and Related Work

The spectrum of research work in this dissertation thesis covers several areas of Computer
Vision, Texture Fidelity and Texture Analysis and Synthesis. Therefore this chapter con-
sists of several themes and related topics overview. At first, related textural models are
discussed here as key topics for dissertation thesistheme. Next, the other topics work as
inpainting and texture similarity are discussed.

The classical and the intuitively best way to create a physically correct model of the
natural scene for obtaining desired render (video). In this approaches the precise geometric
created manually, semimanually using photogrammetry [121], or physical model is created
and later by (usually approximated or simplified) physical laws simulated through time to
create an output video, dynamic or static texture in the desired time momentum under
given circumstances.

Many techniques for building physical models were applied for synthesizing textures,
mostly the natural phenomena (for a more detailed overview see Barzel[5]). In most cases
physically-based approaches are focused to one specific dynamic visual process for example
gaseous phenomena [34, 42, 48], fire [98, 120], hair [7], trees and plants [14], or water [39,
49, 109] (with higher or lower approximation of physical laws). Some of them use particle
systems which can be used to synthesize fire [102] or other types of textures and goals [103,
108, 117, 123] and [134] where some other approaches are used in cooperation of the particle-
like model. Many methods work with three-dimensional procedural textures [69].

Physically-based approaches have proven successful also for walkinggaits [26, 41, 64],
mechanical systems [5], and some of these approaches have already been used to synthesize
videos representing artificial life scenarios [128].

These approaches have many good qualities - the quality of textures are directly pro-
portional to the modeled scenes details and if the simulated laws are not approximated,
but correctly simulated, the output scene can be real as its physical artwork is (which
not trivially implies, that the quality of output texture do not decrease by the time).
Also, the ability to accurately edit any scene is extremely advantageous as can be seen in
Popovic [107].

Unfortunately, physically-based approaches have many disadvantages. Models are usu-
ally adapted to simulate a particular physical phenomenon. The flexibility of a created
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model is low too since the model must often be created for every scene separately. Al-
though they are physical models, still is in major part only approximation of phenomena,
and in some cases (i.e., water) it is complicated to establish them.

It is oblivious that in case of simulating scene by geometric models there are two crucial
and mutually complementary areas - the exact geometry of scene and material / textural
properties. The modelling of the complex scene consisting, i.e. natural objects trees, leaves,
grass of complex shape like water surfaces is extremely difficult and time demanding even
using auxiliary geometry modelling techniques such as photogrammetry [93, 94, 89, 121]
or procedural modelling, i.e. L-systems [83].

Many other approaches attempt not to build a robust model, but simply compute dir-
ectly on the texture. As we later explain, we can say these approaches belong to statistical
models, hence they use some additional information but not to build the exact physical
model.

The pioneering work by Nelson and Polana[96] perform dynamic texture (or temporal
textures as called by authors) classification based on temporal features extracted by seg-
ments of dynamic textures. More interestingly Nelson and Polana suggest categories from
visual motion in their later article [106]: temporal textures, activities and motion events.
Both activities and motion events can be described more or less precisely - activities (walk-
ing, jumping, car movement, etc.) as motion patterns that are strictly periodic in time and
localised in space, and motion events (e.g., opening door or falling tree) that do not show
temporal or spatial periodicity. In contrast, temporal textures exhibit some statistical reg-
ularity but have indeterminate spatial and temporal extent. The term temporal textures
has gradually changed into a dynamic texture. Authors continued with [105] which focus
to recognition with a model based on optical flow normal component features. Their ap-
proach is based only on non-rigid motion instead of (grayscale) picture itself. By this only
temporal characteristics are used, and a large amount of information remains unused. This
approach based only on optical flow is, of course, inaccurate for many types of textures.

In a later article, Nelson and Polana used spatio-temporal curves to track parts of
texture to characterize and find periodic motions by using a centroid of the pack of moving
pixels through frames. Every pack has one bounding box divided into smaller rectangular
cells, and the motion magnitude in each cell is computed and summed. These sums of
motions vectors are used as features for finding a periodic pattern by using of Fourier
analysis.

Similar like Nelson and Polana[105] who used only temporal characteristics, Allmen
and Dyer[2] used spatio-temporal curves that are tangent to the optical flow by using of
Runge-Kutta approximation method for differential equations. They presented some result
on synthetic textures (probably to overcome problems with noise, occlusion or disappearing
of small objects).

Seitz and Dyer expand their work with another article [114] that goals to detect the
cyclic motion. Their work needs fixed viewpoint but works well for some specific types of
textures (f.e. X-rays of a heart).

Some other minor work used this approach based on computing spatio-temporal curves.
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Goulg and Shah[53] try to overcome a problem with disappearing object and regenerate
continuity of curves, Anderson, Bur and van der Wall[3] similar like Heeger [63] used the
motion energy as features and tries to use them with other techniques (pyramid represent-
ation instead of a rectangular grid) to track objects in the texture.

Approaches can also be divided according to their access to the texture data too -
most common methods use Gabor filters (i.e. Bigun[12]), steerable filters by Freeman[51],
Heeger[61], or Simoncelli[116]. Of course, the finding of the best filter can be part of model
learning itself like in Zhu[147]. Many approaches like De Bonet[25], Efros[37], Wei[140] or
Lin[82, 79] and others represent the texture in the form of Markov Random Field - the
output texture is represented like a regular grid of nodes, where each node represents one
pixel in the texture and marginal probability of a pair of nodes depend on the similarity
of corresponding pixels data (typically red, green and blue values, but depends to a color
model and similarity metrics). By this, the solution can be rewritten like the finding
maximal likelihood of nodes in the grid. Usually, some approximation is searched, because
this formulation called the problem of probabilistic inference is proven to be NP-hard.

There are some other statistical models, for example, based on fractals and their self-
similarity across scales (which determine the fractal dimension). Heeger and Pentland[62]
describe a fractal model for simulating gaseous phenomena like clouds, tree leaves and
other turbulent flows. Similarly Stam[119] use Fourier analysis to model turbulent wind
gaseous phenomena in similar ways as Li[76], who suggest similarly based segmentation
model.

When some model, but not precisely physical base, is created and the output texture
created by mathematical model simulating, we can speak about parametric model.

The modeling of a dynamic texture as a (linear) spatiotemporal auto-regressive model
(STAR) was studied by Szummer[124, 125] who modeled grayscale dynamic textures like
a spatiotemporal causal model. Szummers autoregressive model is intuitively, but (as he
present it) grayscale limit and computationally demanding.

Later, as said before, Doretto[28, 30, 31, 29] and Soatto[118] presented auto-regressive
moving average (ARMA) process based on SVD. This approach contains time-consuming
iterative gradient method for parameters estimation and works in most cases on grayscale
textures only, but allow to editing synthetized texture by changing of model paramet-
ers. Fast synthesis of dynamic color textures was later presented by Filip[44] Chan[15] or
Constantini[20, 19] who use tensor decomposition and SVD techniques and others [132][84]
presented similar approaches. Since parametric models are very general and usable for
recognition[112] it can be difficult to model many types of dynamic and video textures.

The other approaches for the synthesizing of textures are non-parametric and use some
samples to represent the texture. Many approaches from this class are focused on enlar-
ging textures only in spatial dimensions, but the addressed problem is similar, and in some
cases, it can be generalized to the time dimension (but in major part the simple and direct
generalize is impossible). The sample of a texture can be the whole frame like presented
Schödl[113] or noticeably smaller like published De Bonet[25] who used multi-scale-filter
to analysis and synthesis of texture. Later works of Efros[36], Wei[140] and others im-
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prove this area. The part of this class which represents texture, not pixel-per-pixel, but by
some larger patch is intensively studied by Efros[37], Kwatra[73, 72] and others[143, 134].
Wang[133] represent texture like a linear superposition of deformable patches which posi-
tion is derived by MRF. Basically, these approaches are create by intelligent sampling of
input data subspaces in different form by copying whole patches from input texture with
some offset.

Procedural techniques are a relatively quick solution for the purpose of synthesis but
often offer lesser semantic and intertexture view because there are not learnable statistical
models which result in the lack of flexibility for purposes as recognition and classification.

The dynamic texture models can be used to synthesizing, texture enlargement, restora-
tion, or many other purposes. The prominent one is the inpainting and error concealment.

The term inpainting was introduced by Bertalmio[11], but methods for hole fitting were
researched earlier, e.g., Masnou and Morel[90] replaced arbitrary shaped areas in images by
other content by level-lines to disocclude the hole to inpaint or Roosmalen[131] use autore-
gressive models and MRF-like approach. Inpainting methods often use texture synthesis
methods like quilting[36, 37], graphcut [73], exemplars [21], Fourier transformation and
decomposing to structure image and a texture image[8, 9], and several others[68]. These
methods still mainly concentrate only to image inpainting or works with videos in another
ways - i.e., Liu[85] and Huang[67] used a similar method to video stabilization.

In the area of DT (or video) processing focused to video inpainting, there are two ma-
jor approaches, mostly consisting of the previously mentioned synthesizing method and
models. The first one is focused on temporal dimension and infinite looping data creation
and the second one is focused on spatial dimensions and similarly as the image inpainting,
on the hole fitting. The Schödl’s method [113] is a typical temporal focused approach
which can be with some adjustment utilised or used as inpainting methods. They typic-
ally work frame by frame, but it can only enlarge duration of a video. Similarly, Liao[77]
and Agarwala[1] looped whole video by different ways, part of it or only some dynamic
texture that occurs in videos as part of mix-of-DTs. The second main approach is focused
mainly on spatial dimensions. Although this area was once primarily due to computational
complexity neglected, it is now widely researched. Newson[97], Wexler[141], Granados[55],
Patwardhan[101], Strobel[122], Ebdelli[33], Huang[66] or Xie[142] are the typical repres-
entative of video inpainting approaches, which can handle camera motion, occluding, and
different illumination. These methods typically segment input to background and fore-
ground and use small patches and energy minimizing border line error criterion to fill up
the holes. Usually, the inpainting task required a user given mask [10, 33] even if is marked
as an automatic algorithm.

It is interesting that only a very small part of current approaches (like Kwatra[73],
Ding[26], Lin[78], Lguensat[75], Liao[77] or Huang[66]) works with input data as dy-
namic textures. The non-DT approaches typically suffer from a false optical flow, ar-
tifacts from deleted objects [55] or loss of frequencies in inpainted areas [97] and high
computational requirements as they usually use computational demanding approaches as
EM-like-optimization in [66], or neural convolution nets as in [142].
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Nowadays poplar energy-based convolution neural network models like [142] allow to
synthesize and inpaint large part of dynamic textures. Even if these approaches are prom-
ising in restoring a large number of smaller discontinuous areas like salt and paper noise,
they lack the consistent visual quality, creating the visually easy recognizable silhouette and
suffer from time-consuming extremal calculations and large learning data requirements.

Another great part that has connection to this dissertation thesis are texture similarity
metrics. Whereas the dynamic texture basically consists of a set of images (and moreover
because of significant lack of dynamic texture criterions) the similarity ranking of still
texture is taken into account.

Mutual similarity assessment and similarity ranking of two or more visual textures is
a challenging problem due to real material textures complex dependencies on 16 physical
observation parameters as described for example in [56].

Evaluation of how well various texture models conform to human visual perception
is essential not only for assessing the similarities between model output and the original
measured texture but also for optimal settings of model parameters, for a fair comparison
of distinct models, material recognition, etc. This problem is not satisfactorily solved even
for simpler static textures [58, 71].

Currently the only reliable, but incredibly impractical and expensive option is to exploit
the methods of visual psycho-physics. The methods for psycho-physical testing require a
lengthy process of experiment design, tightly controlled laboratory condition, and above
all representative panel of human testing subjects. Such testing obviously cannot be per-
formed on a daily basis. Several published static texture criteria allow testing selected
texture properties such as the texture regularity as presented by Lin[80], etc. Others like
Rubner[111] or Zujovic[148, 149] claim to test general texture quality.

The recent test [58] on a public texture fidelity benchmark of several state-of-the-
art image quality measures and several recently published static texture criteria confirms
their insufficient reliability and low robustness. The evaluated criteria were - the structural
similarity (SSIM) index[136], the visual information fidelity (VIF) methods[115], the visual
signal-to-noise- ratio[18] (VSNR), the mean-squared error[135] (MSE), the complex wavelet
- structural similarity (CW-SSIM) index[138], and the structural texture similarity measure
(STSIM-1, STSIM-2, STSIM-M) by Zujovic[148].The results have demonstrated, that the
standard image quality criteria (MSE, VSNR, VIF, SSIM, CW-SSIM) do not correlate well
with a human quality assessment of textures at all. Inasmuch as the criteria are inaccurate
in the field of static textures, their inappropriate behaviour in the time domain can be
assumed.

Although the STSIM texture criteria have a significantly higher correlation with hu-
man ranking, they do not successfully solve similarity problem. The textural qualitative
fully multispectral criteron by Kudělka[71] based on the generative Markov texture model
statistics slightly outperforms the best alternative - the STSIM fidelity criterion.

All previous texture similarity criteria can be formally generalized also for dynamic
textures if they are applied to the corresponding frame couples of compared dynamic tex-
tures and subsequently combined these partial results. While the mentioned methods
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like regularity ranking by Lin[81], quality evaluation by Rubner[111], Zujovic[148, 149], or
structural similarity by Wang[137] and other method intended for static textures can by
used frame-by-frame the criterion directly fitted to a temporal domain are more appropri-
ate.

The another possibility of similarity ranging is of course possibility to evaluate similarity
of parameters from known dynamic texture models like ARMA[29], STAR[126] or others.
However, admissible ranking only for some oversimplified tests such as identical dynamic
textures which differ only in additive noise level can be expected.
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Chapter 3

Toroid-Shaped Patch Based
Dynamic Texture Model

As there is no general textural model capable to model vast amount of possible dynamic
texture realisation, this chapter consists of our novel model description which can overcome
the most of current methods drawbacks. The examples of the enlargement and synthesis
results are in Figure 3.1.

The sections in this chapter are as follows. Firstly, the basic principles and potential of
the created model are stated in the Sec. 3.1. Next, in the Sec. 3.2, the crucial information
about the toroidal method principles are defined. The toroidal method is then extend to
temporal dimension in Sec. 3.3 in spatial and in Sec. 3.4 in temporal toroidal property
keeping. Finally, the synthesis process is described in the Sec. 3.5.

Figure 3.1: Synthesized dynamic texture teaser : Examples or a proposed method results.
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3. Toroid-Shaped Patch Based
Dynamic Texture Model

3.1 Method Principles Overview

The toroid-shaped patch dynamic texture model is capable of texture analysis, synthesis,
enlargement, and editing. The model is developed concerning maintaining several vital
requirements which consist mainly of the visual quality of the synthetic dynamic texture,
editing capabilities of the approach, performance of the algorithm and dynamic texture
compression. Also, the requirement of creating infinitely large output is a critical feature of
the method. A synthesised dynamic texture should ideally produce such a visual perception
so that original measured dynamic texture and the synthetic one are visually indiscernible.

The visual quality of the synthesized dynamic texture is naturally determined and
limited by the chosen dynamic texture sample (or samples). Moreover, the used sample
(or samples) represent whole dynamic texture - its dynamics, structure, color, etc. The
representativeness and descriptiveness of the picked sample (or samples) is the essential
prerequisite for visually plausible synthetic results. The intelligent sampling allows main-
taining these requirements by choosing samples that consist of crucial representative tex-
ture parts. Also, observations-nuisance-factors like an artifact of unwanted regularity must
be avoided.

The presented method principle extracts one or more mutually interchangeable texture
patches with toroid-shape with borders optimized by minimal error boundary cuts. The
extracted triple toroid-shaped dynamic texture patches can be due to toroidal property
subsequently seamlessly repeated in all data space directions spatial as well as temporal.
The method estimates optimal triple toroid-shaped tile and several triple toroid-shaped
patches. Dynamic texture tiles are created by combining estimated (dense) optical flow
and double toroid-shaped dynamic texture frame tiles. The basic principle of a presen-
ted method can be seen in Figure 3.2 together with a comparison to different typical
approaches. The bottom three images illustrate methods patch and suggest the compu-
tational difficulty of the methods. The top three images demonstrate problems with the
keeping of significant frequency from a given input texture.

The crucial characteristic of the proposed method is analytical part strictly separated
from the synthesis step. Given these steps separated each part of approach can be im-
plemented independently. The synthesis step then consists only by copying data patches
and takes negligible computation. Due to separating and storing the crucial data patches
only the compression of dynamic texture is possible. Moreover, this allows to implement
different synthesis part - different arrangement, used driven arrangement, or even random
arrangement only.

The presented toroid-shaped approach can be used on 4D multispectral dynamic tex-
tures, 3D monospectral dynamic textures or even still textures. As the temporal dimension
has different visual perception properties than spatial dimensions, the principle of spatial
and temporal cuts creating is similar but differs. Two distinct approaches for the spatial
and optical flow driven temporal cuts respectively were then developed.

The reason of developing two distinct approaches the spatial and temporal approach
instead of one general spatiotemporal method is widely used but an improper assumption of
equality of spatial and temporal dimensions instead of accepting the temporal dimension

28



3.1. Method Principles Overview

Figure 3.2: Comparison of standard DTs synthesis approaches : Left column only temporal
enlargement [113], middle column spatiotemporal enlargement [97, 142, 73] and proposed
spatial and temporal on the right. Each letter represents a different data patch and requires
its own calculation.

as different and with a unique property. The justification can be easily seen from the
spatial and temporal property of dynamic textures - a human perceives and detects errors
differently in the space and time domain [35], e.g. the well-known visual phenomenon
called filling-in have different behaviour in temporal and spatial domain [144].
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3.2 Toroidal-Shaped Tile Approach

The triple toroid-shaped tile is a patch from the original data with the specific property
to have toroidal border condition in each spatial (horizontal and vertical) and temporal
dimensions. The textural tile is assumed to be indexed on the regular three-dimensional
toroidal lattice. The lattice size depends on the estimated texture periodicity.

The optimal tile cut search algorithm which respects its toroidal border condition pro-
duces a tile which can be seamlessly repeated in both spatial and temporal dimensions;
thus the boundary between two tiles placed abreast is invisible. The main idea of the
triple toroid-shaped tiling is to find some relevant and sufficiently representative patches
from the source dynamic texture, which can be directly seamlessly copied to the output
dynamic texture, where the offset is driven by the patch placed on the three-dimensional
lattice of the patch label.

Recall that the term tile noted as T represent toroidal shape while term patch noted
as P is bounded to particular data that fill the tile shape. The dimensions of both media
consist of two spatial dimensions only for tile and two spatial and one spectral dimension
for a data patch. The extent of tile and patch to temporal dimension can be found in the
following section (Sec. 3.3).

3.2.1 Double Toroid-Shaped Tile

Figure 3.3:
Double toroid-
shaped tile.

Before the full triple toroid-shaped tile method finding let’s introduce the
simpler double toroid-shaped tile finding and property. The double toroid-
shaped tile, or patch from the original data, is two-dimensional shape with
the specific property to have toroidal border condition in each spatial (ho-
rizontal, vertical) dimension (See Figure 3.3). The textural tile is assumed
to be indexed on the regular two-dimensional toroidal lattice.

For simplicity, let’s assume that only one double toroid-shaped tile.
The toroidal property ensures that the top edge has precisely the same
shape as bottom tile and simultaneously the left edge has exactly the same
shape as right edge. Note that the double toroid-shaped tile described in

this section is addressed in one particular frame in whole textural space Y .

Figure 3.4: Tile
overlap

Overlap Error
For determining the overlap area size in which the optimal cut can

be found the distance between the overlap areas need to be computed
(the illustration is in the Figure 3.4). Evaluation of the overlap size
is based on pixel error on areas and particularly on the error between
corresponding pixels from overlapping marginal and corner parts. The
similar pixel error is subsequently used to optimal cut findings in the
founded areas.
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Let us define the square overlap error arrays ε̊h and ε̊v and their appropriate elements
for a multispectral pixel vector Yr as follows:

ε̊hr = |Yr − Yr+[N−h,0,•,0]|2 ∀r ∈ Ih , (3.1)

ε̊vr = |Yr − Yr+[0,M−v,•,0]|2 ∀r ∈ Iv , (3.2)

where the dim = 2 vector L2 norm is defined as:

ε = |Xp,q
r1,r2,•,r4|dim =

(
r3∑
s=0

|Xp,q
r1,r2,s,r4

|dim
) 1

dim

, (3.3)

Xp,q
r1,r2,s,r4

=
(
Ypr1,r2,s,r4 − Y

q
r1,r2,s,r4

)
, p, q ∈ Ir (3.4)

The multiindex r has four components r = [r1, r2, r3, r4], where the components are
row, column, spectral, and frame indices, respectively. Operator • denotes all values of the
corresponding index. Remind that the overlap rectangular regions are defined as:

Iv = (0, . . . , h)× (v, . . . ,M) , (3.5)

Ih = (h, . . . , N)× (0, . . . , v) , (3.6)

and remind that whole rectangular tile is defined as:

Ir = (0, . . . ,M+h−1)× (0, . . . , N+v−1). (3.7)

Corner areas

Note that the corner area evaluation is more complicated. In fact, the overlapping
corner area has more than only one corresponding area. The diagonal area part must
be taken into account. The corder areas and its index set is defined as:

Id = (1, . . . , h)× (1, . . . , v) . (3.8)

To handle corner areas, the error arrays ε̆h, ε̆v and ε̆d with specific horizontal, vertical
and diagonal shift and elements ε̆vr , ε̆

h
r and ε̆dr for particular pixel Yr are calculated as

follows:

ε̆hr =
(
Yr − Yr+[N−h,0,•,0]

)2
+
(
Yr+[0,M−v,•,0] − Yr+[N−h,M−v,•,0]

)2
, r ∈ Id , (3.9)

ε̆vr =
(
Yr − Yr+[0,M−v,•,0]

)2
+
(
Yr+[N−h,0,•,0] − Yr+[N−h,M−v,•,0]

)2
, r ∈ Id , (3.10)

ε̆dr =
(
Yr − Yr+[N−h,M−v,•,0]

)2
+
(
Yr+[0,M−v,•,0] − Yr+[N−h,0,•,0]

)2
, r ∈ Id , (3.11)

which can be more comprehensive written down as ε̆:

ε̆xr =
(
ε̆vr + ε̆hr + ε̆dr

)
, r ∈ Id . (3.12)
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The horizontal and vertical overlap error are calculated as sum of all particular pixel overlap
error weighted by appropriate overlap region size on the ζ area.

ζ = Iv ∪ Ih ∪ Id , (3.13)

The optimal overlap is then found by minimizing the error:

ζ∗ = min
ζ

 1

bζc
∑
∀r∈Iζ

εζr

 , (3.14)

where bζc denotes the corresponding overlap area of ζ. Iζ is the overlap area index set.
The particular total overlap error then consist of differences between overlapping hori-

zontal and vertical regions. The appropriate errors ε̊ and ε̆ are calculated as the sum of all
pixel errors in the overlap region weighted by the number of all pixels:

ε̊ =

(
1

(h(N − v))

∑
r∈Ih

ε̊Hr

)
+

(
1

h(N − v)

∑
r∈Iv

ε̊Vr

)
, (3.15)

ε̆ =
1

2hv

(∑
r∈Id

ε̆hr +
∑
r∈Id

ε̆vr

)
, (3.16)

for every overlap area type. Or more readily for horizontal and vertical areas:

˚̆εH =
1

h(N + v)

(∑
r∈Ih

ε̊Hr +
∑
r∈Id

ε̆hr

)
, (3.17)

˚̆εV =
1

v(M + h)

(∑
r∈Iv

ε̊Vr +
∑
r∈Id

ε̆vr

)
, (3.18)

Considering one corner overlap only the overlapping corner error can be calculated as the
following sum:

ε̆ =
1

hv

∑
r∈Id

exr . (3.19)
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Figure 3.5: Spatial
cuts illustration.

Optimal Spatial Cut
With given optimal overlap the exact optimal cut which distin-

guishes between both cut sides can be found. Every optimal cut then
divides overlap area to two-part - top/bottom and left/right which
creates the desired toroidal shape (the illustration is in Figure 3.5).
The searching for optimal cuts is adequate to find the minimal dis-
tance on simple vertex weight labeled undirected lattice graph

G = (V,E,w) , (3.20)

where V is set of all vertices, E is set of all edges. Every edge is a pair of two vertices from
V on rectangular 2D lattice with size v × h, h × v and (v − h) × (h − v) for horizontal,
vertical and corner overlaps respectivelly.

The E sizes can be - as the G is lattice graph - computed as (M−1)×N+M×(N−1).
The w is vertices weight function

w(V ) → < 0,∞ > , (3.21)

that is crucial for successfully representing the overlaps as graph G. The size of V is given
by bζc and appropriate bIvc, bIhc and bIdc.

The search for optimal cuts for both the horizontal and vertical edge is equivalent to
find minimum cost path in two-dimensional lattice G from the bottom to the top row and
similarly from left to right column (with some adjusting). The optimal cuts cannot be
found independently - the critical toroidal property must be kept thus some adjustment
is necessary. To ensure that the tile optimally fits the adjacent one, horizontal and ver-
tical minimal error boundary cuts are searched within the optimal horizontal and vertical
overlap regions only with adjusting the start and end node which must have the same
vertical/horizontal index or indices within the b∆c neighbourhood. This implies that due
to toroidal property desired optimal cuts parts have limited degree of freedom - apparently,
the cut termination is strictly given by a start part. Moreover, intersections of spatial cuts
correspond to vertices comprising the rectangle and cuts in the four corner part must be
identical one.

Spatial minimal error boundary cuts are searched in the error lattice εh and εh defined
by appropriate εhr and εvrvalues respectivelly. The whole spatial cut consists of two adjacent
lattices defined as:

IV = Iv ∪ Id , (3.22)

IH = Ih ∪ Id , (3.23)

which are both defined simply as weighted composition of both appropriate lattice values:

˚̆εHr =

{
1
6

(
ε̆hr + ε̆vr + ε̆dr

)
r ∈ Id ,

ε̊hr r ∈ Ih
(3.24)
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for the horizontal error lattice and for the vertical error array is defined as:

˚̆εVr =

{
1
6

(
ε̆hr + ε̆vr + ε̆dr

)
r ∈ Id ,

ε̊vr r ∈ Iv .
(3.25)

The 1
6

ensures the same range of both error arrays parts. For illustration of cut search
and arrays arrangement in DT see Figure 3.5 and Figure 3.6. Remind that due to toroidal
property the first and last cut points are the same and thus the error lattices are cylinders.
Moreover, as the corner diagonal parts are precisely the same, the lattice can be mapped
as torus where a one cut is longitudinal and other is latitudinal.

The desired spatial cuts Ch and Cv are series of nodes on lattice graph indices in the
spatial dynamic texture subspace - frame). The appropriate cuts from regions IV and IH
are defined as:

Ch = {Cr[ir, jr] | Cr ∈ IH , r = 1, . . . , nH , j1 = 0, jnH = N−1} , (3.26)

nH ∈
(
bIhHc, bIhHcbIhV c

)
,

Cv = {Cr[ir, jr] | Cr ∈ IV , r = 1, . . . , nV , i1 = 0, jnV = M−1} , (3.27)

nV ∈ (bIvV c, bIvV cbIvHc) ,

where the length of cuts (total number of cut nodes) are denoted as nV for vertical
and nH for a horizontal cut. Note that the nV and nH are not equal to the appropriate
lattice size bIV cv and bIHch as the series CV and CH are not monotone. In the case of
nV = bIV cv and nH = bIHch the spatial cuts C∗ and subsequent i0, . . . , inV and j0, . . . , jnH
are monotone series sn = sn−1 + 1. Say that in the case monotonic series the dominant
dimension is horizontal one for Ch and vertical for Cv. If the nV > bIV cv the Ck → Ck+1

should be any node that is not from C0,...,k.

Neighbourhood
The pixel or node neighbourhood for a given r is denoted by ∆r operator. The neigh-
bourhood could be monotone with respect to some dimension which is in all cases the
dominant dimension of the area in which the pixel/node come from. The monotone
neighbourhood is noted as ∆

m
.

The neighbourhood ∆8 represent well known 8-neigbourhood which is, in the mono-
tonic case of ∆

m

8 and limited to only 3 adjacent values (3.34). The ∆4 similarly denotes

4-neigbourhood. The hierarchical monotonic neighbourhood for given r with size of p
is then denoted as ∆̄

m

p
r (see eq. (3.35)).

The neigbourhood ∆Ck for node Ck can be defined as 4-neigbourhood (∆4
Ck

), 8-neigbourhood
(∆8

Ck
), p-distance monotonic neigbourhood (∆

mp
Ck

), or any else. The neigbourhood defini-
tion is determined by a method used to found the optimal cut and by a textural property.

34



3.2. Toroidal-Shaped Tile Approach

In case of using more general p-distance monotonic neighbourhood (∆
m

p) the distance

is defined in a similar manner with the possibility of greater step in the non-dominant
direction.

3.2.2 Optimal Cut Search

Figure 3.6: An op-
timal cut.

The optimal cut total error ε̃ is defined as sum of all pixel errors from
which the cut consist. For the cut lines if is defined as:

ε̃H (Ch) =
1

nH

∑
∀r∈Ch

˚̆εHr , (3.28)

ε̃V (Cv) =
1

nV

∑
∀r∈Cv

˚̆εVr . (3.29)

Here, let’s overlook the error lattice and optimal cut relation (see
Figure 3.6, pixel error are illustrated as darker area, optimal cut are
marked by yellow and violet lines. Note their the shape and temporal behaviour especially
in the Id areas.). For any given error lattice I and some series start point [i0, j0] one
of dimension values is defined as 0 where the another can take any valid value from I.
For any start point s = [0, j0] or s = [i0, 0] the sub-optimal cut exist. Obliously, there
exist bIHcv and bIV ch possible starting points. Denote the cut lines shat starts (or even
contains) aby given point s as C{s}. Hence the spatial cut C{s} is (in at least in one
dimension) continuous line there exist at least bIHcv and bIV ch sub-optimal cuts that
divide the lattice. The minimal spatial cut search then consists from minimizing the cuts
error values and searching from appropriate optimal start points:

s∗ = arg min
∀t∈I{[0;n]}

V

ε̃V
(
C
{s}
h

)
, n ∈ (0, . . . , nH) , (3.30)

t∗ = arg min
∀t∈I{[0;n]}

H

ε̃V
(
C{t}v

)
, n ∈ (0, . . . , nV ) . (3.31)

Subsequently, the optimal spatial error cuts searching consist of finding the minima
error cuts than contains the start points s∗ and t∗:

C∗h = arg min
C
{s}
h

ε̃H
(
C
{s∗}
h

)
, (3.32)

C∗v = arg min
C
{s}
v

ε̃V
(
C{t

∗}
v

)
. (3.33)

There are many ways to find particular optimal cuts specified as above. The alternative
Kwatra approaches can be used, the graph algorithm as Dijkstra or A* for efficient cut
search. Furthermore, the dynamic programming as more general and robust solution can
be utilised.
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Dynamic Programming One of many ways that are possible for an optimal toroidal cut
search is to construct integrated error values arranged structures according to the selected
adjacency nodal points (pixels). In cases of dynamic programming-like rules, the desired
optimal cut is restricted to be monotonous in the way of dominant spatial dimensions
for each horizontal and vertical case accordingly. For every horizontal and vertical cut
search in the proper field Ih and Iv the lattice is taken as an oriented level graph in the
direction of main spatial dimension. Each column/row for the horizontal/vertical case is
considered as a single level of the graph structure, and the optimal cut is searched from
the bottom to top level of a graph, and the appropriate start/end point has defined with
the same row/column indices. The dynamic programming approach is limited to find the
monotonous series only regardless of error definition. Naturally, this strictly limits the
possibilities of using the neighborhood definition. The 8-neighbourhood (∆

m

8) with limiting

to be monotonic one in natural pick there. Note that due to restricting the connectivity is
then defined as:

[i, j]
v→

∆
m

8


[i−1, j+1] , [i−1, j+1] ∈ IV , or,

[i, j+1] , [i, j+1] ∈ IV , or,

[i+1, j+1] , [i+1, j+1] ∈ IV ,
(3.34)

in the vertical case and similarly in the horizontal dimension.
In case of using more general p-distance monotonic neigbourhood (∆̄

m

p) the distance is

defined in similar manner with possibility of greater step in the non-dominant direction.
For a given p-distance is vertical connectivity defined as:

[i, j]
v→̄

∆
m
p



[i−p, j+1] , [i−1, j+1] ∈ IV , or,

[i−(p− 1), j+1] , [i−1, j+1] ∈ IV , or,

[i−(p− 2), j+1] , [i−1, j+1] ∈ IV , or,

. . .

[i, j+1] , [i, j+1] ∈ IV , or,

. . .

[i+(p− 2), j+1] , [i+1, j+1] ∈ IV , or,

[i+(p− 1), j+1] , [i+1, j+1] ∈ IV , or,

[i+p, j+1] , [i+1, j+1] ∈ IV .

(3.35)

The horizontal and vertical cut search is then defined for ∆8
+ by the according rules:

εh+
r = ˚̆εHr + min(εh+

r+[−1,−1,•,0], ε
h+
r+[0,−1,•,0], ε

h+
r+[1,−1,•,0]) , (3.36)

εv+
r = ˚̆εVr + min(εv+

r+[−1,−1,•,0], ε
v+
r+[−1,0,•,0], ε

v+
r+[−1,1,•,0]) . (3.37)

and for ∆̄
m

p according to (3.35) as:
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εh+
r = ˚̆εHr + min

{
εh+
r−[c,1,•,0], . . . , ε

h+
r+[c,−1,•,0]

}
, (3.38)

εv+
r = ˚̆εVr + min

{
εv+
r−[1,c,•,0], . . . , ε

v+
r+[−1,c,•,0]

}
. (3.39)

Like usually in the dynamic programming approaches the error lattice is filled from
bottom to top (right to left) and traversed in the reverse direction. For lattice error
composition and thus any given key start point p the values in the same row / column is
set to∞. The recursive level per level error rule application that starts from the appropriate
row/column fill the whole lattice by the corresponding values εh+

r / εv+
r . The optimal cut

is then the minimal error series fun in the reversed main dimension direction.

Dijkstra Algorithm The search for optimal cuts for both the horizontal and vertical
edge is equivalent to find minimum cost path in two-dimensional lattice G from the bottom
to top row and similarly from left to right column.

The Graph G represent the error lattice. The edge relation is defined by the used
neighbourhood relation. The full ∆8 symmetric neighbourhood is the most general case
which leads to non-monotonic cut lines while the ∆8

+ or ∆̄
m

p can create monotonic cut lines

as the dynamic programming approach. The given node weights as defined as:

w(V {i,j}) ← εζ{i,j} . (3.40)

The weight for every node is computed as ˚̆εHr (3.24) and ˚̆εVr (3.25) with ε̃Hr (3.28) and
ε̃Vr (3.29) from the whole ζ area. The cut lines are then a result of a widely recognized
Dijkstra algorithm.

Similarly, the optimal cuts C∗ are found by multiple algorithm evaluations from the
corresponding start and end points and final ε̃ minimization. Note that in the case of
symmetric relation some sub-optimal cut lines C{sj} and C{si} can be identical.

A* Algorithm If the resulted spatial cuts are desired to be a non-monotonical an A*
algorithm can be used. The advantage of the pathfinding algorithm is apparently due to
its possibility to evaluate distance to the desired final point with defining the heuristics to
the final point as a L2 distance from actual to the final point. Even if the tiles produces
by an A* algorithm can be very effective, the problematic use of the algorithm results in
a spatiotemporal domain event and its hard restrictions on assembling planes lads to its
non-use.

Double toroid-shaped tile The subspace of a texture that is generated as an intersec-
tion of the space between horizontal and vertical cuts is called a tile. Even if the searching
algorithm can vary, the tile has the same toroidal property. With a term tile, the found
shape is called, contrary to term patch which is used to particular data including shift if
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more patches are found in a given dynamic texture. The rectangular tile is a subspace of
a whole dynamic texture or more precisely:

IT = (0, . . . ,M + h− 1)× (0, . . . , N + v − 1) , (3.41)

in which the Ih, Iv and Id was detected. In the case that cuts are monotonic-series the
spatial patch can be easily defined as union of the space between two vertical cuts and two
horizontal cuts:

P = (C∗h, . . . , C
∗
h +M) ∩ (C∗v , . . . , C

∗
v +N) . (3.42)

3.3 Dynamic Toroid-Shaped Tile

The located single frame double toroid-shaped tile found is propagated along the optical
flow to subsequent frames to model the movement of the textural structures. The dense
optical flow is used to represent a dynamic texture global dynamics. The propagated
double toroid-shaped tile in every frame serves as the initialisation for local modification
of such a double toroid-shaped tile to each frame-specific final shape.

3.3.1 Animated Double Toroid-Shaped Tile

Figure 3.7: Anim-
ated tile.

The toroidal animated tile (and subsequentially all its derivate) is a
three-dimensional shape where the bottom and down planes have the
same shape as well as the right and left plane. The front and back
plane are consist of double toroid-shaped tile IT (eq. 3.2.2).

The overlap area in which the tile is computed (see Figure 3.7 for
illustration, white arrows illustrates the tile movement) is moved by a
local ΦP values to generate rectangular subspace Irt. An optimal loc-
ation for the triple toroid-shaped tile can be then found in the similar

way that the double-toroid shaped tile

Temporal and dynamic dimension
As the animated double toroid-shaped tile (and all derived constructs) and patch are
Y subspace that posses more than only two spatial dimensions, the restriction of only
one actual frame that was used in the previous section is no longer valid.

Moreover the multi-index r has from now five components r = [r1, r2, r3, r4, r5],
where the components are row, column, spectral, frame and dynamics indices, respect-
ively. The r5 dimension is not stored in original data but computed. So exactly it
is a property of function of a given r, but hence the optical flow Φ of the whole Y
is usually precomputed and assigned to appropriate locations. Note that as the r5 is
optical flow vector in the three-dimensional space, it has of course three values x, y and
t respectively.
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Temporal and dynamic error
Hence on now the r and all appropriate computing have more dimensions, the metrics
between two corresponding overlapping pixels has to be updated. Moreover, the last
dynamic dimension is three-vector. The simple difference of its components is not
satisfying. As a r5 is an optical flow vector the important properties are the vector size
and their direction.

ε(p, q) = |Xp,q
r1,r2,r3,r4,r5

|dim , (3.43)

|Xp,q
r1,r2,r3,r4,r5

|dim = X
dyn

p,q
r1,r2,s,r4,r4

+

(
r5∑
s=0

|Xp,q
r1,r2,s,r4,r5

|dim
) 1

dim

, (3.44)

X
dyn

p,q
r1,r2,r3,r4,r4

= X
dir

p,q
r1,r2,r3,r4,r5 X

val

p,q
r1,r2,r3,r4,r5

, (3.45)

Xp,q
r1,r2,s,r4,r4

=
(
Ypr1,r2,s,r4,r5 − Y

q
r1,r2,s,r4,r5

)
, (3.46)

X
dir

p,q
r1,r2,r3,r4,r5

= 1 + arccos

(
rp5 · r

q
5

|rp5||r
q
5|

)
, (3.47)

X
val

p,q
r1,r2,s,r4,r5

=

(
3∑

u=1

|Zp,q
r1,r2,r3,r4,u

|dim
) 1

dim

, (3.48)

Zp,q
r1,r2,r3,r4,u

=
(
Ypr1,r2,r3,r4,u − Y

q
r1,r2,r3,r4,u

)
, (3.49)

p, q ∈ Irt . (3.50)

The rectangular subspace of a Y in which the T is searched for is called a rectangular tile
Irt:

Irt = (0, . . . ,M)× (0, . . . , N)× (0, . . . , T ) , (3.51)

Even if the searching algorithm can vary, the tile has the same toroidal property. The
animated (or dynamic) tile is a subspace of a whole dynamic texture Y . The tile consists

of temporal-horizontal ( ˆ̂Ch∗) and temporal-vertical ( ˆ̂Cv∗) spatiotemporal union with the
exception of corner duplicate parts. The appropriate size of spatiotemporal cut planes are:

Ih∗ = (0, . . . ,M)× (0, . . . , T ) , (3.52)

Iv∗ = (0, . . . , N)× (0, . . . , T ) . (3.53)

Mention, that for more fluently writing the temporal-horizontal plane and temporal-vertical
spatiotemporal will be called as horizontal and vertical if the context is clear. The spati-
oteporal P is now defined as combination of the space between the horizontal and vertical
spatiotemporal cut planes:

PA = ( ˆ̂Ch∗, . . . , ˆ̂Ch∗ +M) ∩ ( ˆ̂Ch∗, . . . , ˆ̂Ch∗ +N) . (3.54)
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The most simplest spatiotemporal T and P can be created as set of T and P with increasing
temporal indices.

The combination of a dynamics represented by a optical flow ΦP from every previous
P(t−1) can create an animated patch. The animated patch is then similarly defined as:

PAi = ( ˆ̂Ch∗
r + Φx

PAi−1
, . . . , ˆ̂Ch∗

r + Φx
PAi−1

+M) ∩ ( ˆ̂Ch∗
r + Φy

PAi−1
, . . . , ˆ̂Ch∗

r + Φy

PAi−1
+N) . (3.55)

where i is from 1 to T and Φx
Pi−1

and Φy
Pi−1

are horizontal and vertical parts of an average
optical flow computed on a appropriate P and animated tile is defined in the similar man-
ner. The resulting animated tile then replicate the texture movement but with boundary
given from only one (first) frame.

3.3.2 Dynamic Double Toroid-Shaped Animated Tile

As the set of double toroid-shaped tiles of the same shape is called the animated tile, the
tiles fitted to local dynamics are called a dynamic double toroid-shaped animated tile.

Hence the dynamic approach is chosen to double-toroid tile search the corresponding
process is expended to the temporal domain with some changes that allows adapting to
local and global optical flow and structural changes in the dynamic texture throughout
time.

Theoretically, the optimal triple toroid-shape tile can be found by propagating the
optimal double toroid-shaped T tile from Y[r4=0] (0-th frame) to the rest of Y .

ψ̂v∗r = εv+
r + min

(
ψ̂v∗r+[−1,0,•,1], ψ̂

v∗
r+[0,0,•,1], ψ̂

v∗
r+[1,0,•,1]

)
, (3.56)

ψ̂h∗r = εh+
r + min

(
ψ̂h∗r+[0,−1,•,1], ψ̂

h∗
r+[0,0,•,1], ψ̂

h∗
r+[0,1,•,1]

)
, (3.57)

and subsequently searching for the minimal error spatiotemporal cut Ĉh∗
y and simultan-

eously searching for the minimal error spatiotemporal cut Ĉv∗
x , where x and y values denote

the order of starting point from optimal cuts Ĉh∗ and Ĉv∗. The desired cut planes ˆ̂Ch∗ and
ˆ̂Cv∗ is then union of all Ĉh∗

y and Ĉv∗
x respectivelly.

Unfortunately, this approach cannot lead to a visually satisfying solution. See this

on an example of ˆ̂Ch∗: The founded local (in the manner of one column/row) optimal
spatiotemporal cuts Ĉh∗

y and Ĉh∗
y±1 has no relation and can be very different. Even if the

spatiotemporal cut local changes are restricted to ±1 due to (3.57) and (3.56) this property

are not shared in the vertical dimension and values of ˆ̂Ch∗
x,y and ˆ̂Ch∗

x,y±1 can strongly vary.

To ensure that the ˆ̂C property will be consistent in both spatial dimensions the Ĉh∗
y

and Ĉv∗
x search has to be enhanced to keep the similar property in the primary dimension

and in the secondary dimension too. In another word, the Ĉ should be computed with
respect to adjacent cuts.
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Iterative spatiotemporal cut searching The simplest way to restrict the relation
between two adjacent spatiotemporal cuts is iterative computation of Ĉh∗

y and Ĉv∗
x on base

of previously found Ĉv∗
x−1 and Ĉh∗

y−1 respectively. The new spatiotemporal cut is then limited
by previously found adjacent cut by its neighbourhood:

ψ̂v∗r = εv+
r + min

(
δ̂vt{r−[0,0,•,1,•]} ∩ δ̂vs

)
, s = −Ĉv∗

r2
, (3.58)

ψ̂h∗r = εh+
r + min

(
δ̂ht{r−[0,0,•,1,•]} ∩ δ̂hu

)
, u = −Ĉh∗

r1
, (3.59)

where −Ĉ denotes previously computed spatiotemporal cut and δ̂vr , δ̂
h
r , δ̂htr and δ̂vtr are

defined as spatial and spatiotemporal adjacent sets derived by used ∆ neighbourhood,
respectively. In the simplest case it consist of:

δ̂vr
v−→

∆
m

8


ψv+
r+[1,0,0,0,0] , or

ψv+
r+[0,0,0,0,0] , or

ψv+
r+[−1,0,0,0,0] ,

, δ̂vtr
v−→

∆
m

8


ψv+
r+[1,0,0,−1,0] , or

ψv+
r+[0,0,0,−1,0] , or

ψv+
r+[−1,0,0,−1,0] ,

(3.60)

and δ̂hr and δ̂htr is defined in similar manner.
The iterative spatiotemporal cut searching can be enhanced by using of different ∆,

namely ∆
m

p. The used neighbourhood is not limited to be the same as in double toroidal-

shaped tile search but should be consist. Note that using of general neighbourhood obvi-
ously lead to a general spatiotemporal plane and consequently higher computational time.

The iterative approach, of course, produces two solutions for every spatiotemporal plane

search. The ↑ ˆ̂C and ↓ ˆ̂C according to chosen order of iterative process. Moreover, another
problem occurs. Hence the tile borders are toroidal the repeated iterative finding of Ĉh∗

Chy

lead after N − 1 steps to Ĉh∗
Chy−1

. Again, the problem is possibility inconsistency between

this two cuts. The solution is excluding some space and thus limiting the possible solutions
from the first cut in reverse order by repeating the neighbourhood driven δ relation.

Figure 3.8: Re-
strictive search.

Restrictive Spatiotemporal Cut Searching The drawback of an
iterative solution process can by bypassed by two-steps optical flow
driven tile animating process. The animated tile serves as the initial-
isation to define the rough area in which the exact dynamic spatiotem-
poral tile can be found (see Figure 3.8, note the areas marked around
the already founded (sub)optimal cut).

At first an (dense) optical flow Φ in the whole Y space is detected.
The array with values of an optical flow vectors of whole dynamic
texture Y noted is as ΦIY and values of the optical flow vectors from
corresponding pixel Yr as ΦYr . The average optical flow of some area,
namely the patch P , is noted as ΦP
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Figure 3.9: Toroidal boundary location for the restrictive spatiotemporal cut searching :
Yellow squares represent border initialization, while the yellow area is the area where the
precise location is searched for. Crosses represent the exact boundary, complementary
points (small crosses) must be added to make the border continuous. The parameter p is
driven by the actual optical flow.

The rough solution is generated by combining the ΦP with the T boundaries frame
by frame (Sec. 3.3.1). The resulting animated tile then replicate the texture movement
but with boundary given from only one (first) frame. This animated tile represents two
of the three main scene features. The global dynamics (scene or large objects movement,
e.g., whole trees) is represented by the optical flow and the texture itself by the double
toroid-shaped tile. However, local dynamic (like leaves or grass blades shivering) cannot
be undoubtedly sufficiently represented this way.

The local dynamics problem can be solved by the spatiotemporal plane fitting. The
animated tile then can be used as initialisation to plane fitting. The combination of
the restricted neighbourhood with the animated tile generates an extended animated tile
subspace area E (see Figure 3.9) in which the optimal spatiotemporal cuts (3.56) and (3.57)
can be found without violating the consistency of and the spatiotemporal cutting planes.

The extended animated tile subspace area remarkably speeds up the computation time
needed to find the optimal tile shape in comparison to search the whole textural space.
Moreover, this approach is beneficial also in avoiding some typical DT modeling problems
like artifacts introduced by extremely varying speed or problems with highly dynamic
texture, e.g., fire or water details.

ψ̂v∗r = εv+
r + min

(
ψ̂v∗ˆ̂Cv∗

[i=r2]
+[0,−pv ,•,•,−1]

, . . . ,

. . . , ψ̂v∗ˆ̂Cv∗
[i=r2]

+[0,0,•,•,−1]
, . . . , ψ̂v∗ˆ̂Cv∗

[i=r2]
+[pv ,0,•,•,−1]

)
(3.61)
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ψ̂h∗r = εh+
r + min

(
ψ̂v∗ˆ̂Ch∗

[j=r1]
+[−ph,0,•,•,−1]

, . . . ,

. . . , ψ̂h∗ˆ̂Ch∗
[j=r1]

+[0,0,•,•,−1]
, . . . , ψ̂h∗ˆ̂Ch∗

[j=r1]
+[ph,0,•,•,−1]

)
(3.62)

where ˆ̂Cv∗
[i=r2] denotes the r2-th value of spatiotemporal vertical cut plane and ˆ̂Ch∗

[j=r1]

denotes the r1-th value of spatiotemporal horizontal cut plane and p = [px, py, pt] denotes
the size of the boundary area (see Figure 3.9). The vector p is computed as average dense
optical flow for the whole P in the previous frame.

The resulting tile, whether created by an iterative or non-iterative method (restrictive
approach is used in this dissertation thesis), respect all three dynamic texture properties.
The global dynamics like whole scene movement is handled by tile animating and ensures
the focusing of tile to the same structural part of a texture. The optimal spatial double
toroid-shaped tile from the first frame roughly fit the exact spatial tile location. Despite
the dynamics of the dynamic texture process through time the homogeneity of a dynamic
texture keep this rough solution valid. The local structural changes, which are possible in
the dynamic texture, are then handled by recomputing the exact tile shape by an iterative
or restrictive method. This allows adapting the dynamic tile recomputing process to local
dynamics which can vary throughout the time.

Figure 3.10: Mul-
tiple rec. tiles.

Multiple tiles
To disrupt visible periodicity of the synthetic texture generated us-

ing single double toroid-shaped tile, multiple mutually interchangeable
tiles can be used. At first, a single, double toroidal tile of optimal size
is found. Then multiple tiles are found as the most fitting patch with
the same used tile or recomputed consensus tile. To allow efficient
texture synthesis particularly from the visual quality point of view, it
is necessary to find appropriate size of an optimal tile. Due to the as-
sumption of homogeneity for the whole texture the computed tile size
is optimal for the whole texture.

The desired patches P{0,...,np} are then searched by minimizing the overlap error on
shifted tile Tr+δ with three dimensional δ shift (see the illustration in the Figure 3.10,
where three tile locations with three generated patch are illustrated). Emphasize that the
overlap area only has to be taken into account as the inner part of texture (non-colored
areas in Figure 3.10) can vary.

The final T is then searched on the composite error array created as a sum of all
particular errors. Apparently with the growing tiles number the particular total cut-
planes error grows as the tiles are results of a compromise between more patches. Another
approach is to find an optimal triple toroidal tile and the next tile search as minimizing
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the error between original Pi and shifted Pr+δ. Thus one optimal (primary) and some
suboptimal (secondary) tiles are used.

Note that the satisfying number of patches (np) is usually low (see next chapter). The
resulting tiles are sufficiently visually effective in the number of two, or three.

Figure 3.11: FT
block illustration.

Fourier Transformation Tile Size Detection
Instead of the overlap error minimizing the Fourier transformation

(illustrated by Figure 3.11 as block of proposed method scheme 3.18)
can be utilized to determine an ideal T size. The optimal tile size
created by and dominant texture spatial frequency ensures that the
patch will contain the sufficiently representative minimal information
tor the texture synthesis.

Hence the frequency property of a dynamic texture is the same
(or very similar) thought time due to DTs temporal homogeneity, the
dominant frequency is computed on first dynamic texture frame (the

average from whole DT can be computed, but the test proposed to suggest is it is not
necessary).

Now, let’s assume color input texture t-th frame

Y[r4=t],

where [r4 = t] notations is used to denote the same, but more lengthy Y[•,•,•,t,•] notation.
The frame has the size M × N × S. The S spectral planes are computed separately and
the results are next combined.

Three mono-spectral texture samples Y is subsequently transformed with the aid of
discrete 2D Fourier transform from the spatial domain to its frequency domain F :

Fs(u, v) =
1

MN

M−1∑
i=0

N−1∑
j=0

Yi,j,s exp

{
−2πi

(
ui

M
+
vj

N

)}
. (3.63)

Next, an amplitude spectrum A(u, v) is calculated from the texture representation in the
frequency domain:

A(u, v) =
S∑
s=1

As(u, v) , (3.64)

As(u, v) = |Fs(u, v)| =
√

Re2(Fs(u, v)) + Im2(Fs(u, v)) . (3.65)

The result is then transformed to centered representation yielding in A(u, v), u ∈
[
−M

2
, M

2

]
,

v ∈
[
−N

2
, N

2

]
. Because an image is the real function of two real variables defined on a finite

domain, amplitude spectrum A(u, v) is symmetrical about the origin A(0, 0). Hereafter it
is of course sufficient to consider only u ∈

[
−M

2
, M

2

]
and v ∈

[
0, N

2

]
.
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The dominant spatial freuency can be founde as maximum from amplitude spectrum
A(u, v) with coefficient Am:

Am = A(fr, fc) = max

{
A(u, v)

∣∣∣∣ v ∈ [0, N2
]
, u ∈

[
−M

2
,
M

2

]
|u| > 1 ∨ v > 1

}
. (3.66)

Of course the central strongest frequency ( A(0, 0)) are excluded from the process. Coef-
ficient A(0, 0) is image mean of Y , and it is not used. In order to create more optimal
double toroidal tiles, it is necessary to detect dominant frequency which is repeated in
Y in both spatial directions at least twice. It follows constraints on u and v in equation
(3.66). Integer indices fr and fc give information how many times the dominant frequency
is repeated in vertical and horizontal direction, respectively. If fr < 0, then it is set to
fr = |fr|.

In case that fr = 0 or fr = 1, detected dominant frequency fc is aligned with hori-
zontal direction and it is necessary to determine dominant frequency in vertical direction.
Frequency fr is determined according to the largest coefficient Arm:

Arm = A(fr, ·) = max

{
A(u, v)

∣∣∣∣ u ∈ [−M2 ,−2

]
∪
[
2,
M

2

]
, v ∈ [0, 1]

}
. (3.67)

In case that fc = 0 or fc = 1, detected dominant frequency fr is aligned with vertical dir-
ection and therefore dominant frequency fc in horizontal direction is determined according
to the largest coefficient Acm:

Acmax = A(·, fc) = max

{
A(u, v)

∣∣∣∣ u ∈ [−1, 1], v ∈
[
2,
N

2

]}
. (3.68)

Estimated parameters fr and fc are used for the following precise determination of double
toroid-shaped tile size.
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3.4 Triple Toroid-Shaped Tile

The dynamic double toroid-shaped tile can be used to synthesize infinitely large output in
spatial dimensions only. The temporal transition which can create the toroidal cut plane
in the already founded dynamic double toroid-shaped patch allows to seamlessly repeat
the patch and create an infinitely large sequence in the temporal meaning.

The resulting tile T that consists of six spatiotemporal cut planes is called a Triple
Toroidal-Tile. Firstly let’s suppose only one temporal transition is used.

Similar to spatial overlap the temporal overlap has to be computed to determine the
area in which the temporal cut can be searched for. TThis can be easily done as computing
the all-to-all frames distance. This well-known principle is used e.g. in [113] and many
other approaches with distance ε as defined in eq. (3.43):

Γ∗ = min
t,u

(∑
∀x,y

ε (Yx,y,•,t,•,Yx,y,•,u,•)

)
, x ∈ P , y ∈ P , |t− u| > lt , (3.69)

where t and u are unknown temporal coordinate of the first of most similar frames, the lt
is a minimal distance between the searched frames. The lt of course depends on the source
data to keep the consistent frequency property the lt is set as:

lt = min
(
bIV cv, bIHch

)
. (3.70)

The temporal overlap is then defined in the same manner as spatial overlaps:

Ito = (0, . . . ,M − 1)× (0, . . . , N − 1)× (0, . . . , T − |u− t|) . (3.71)
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Figure 3.13: Temporal cuts : Illustration of temporal cuts without (left) and with spatial
toroidal property. Input texture (twice), temporally enlarged and spatiotemporaly enlarged
texture shown in top to down order.

3.4.1 Temporal Cut

Figure 3.12: Sim-
ilarity matrix.

The creating of the temporal cut which seamlessly loop the tile can
be done e.g. by the graph-cut algorithm[73] of by a frame-to-frame
loop[113] with using of similarity matrix(Figure 3.12) where every x−y
location is representation of x and y frames similarity.

The computing of triple toroid-shaped tiles from the dynamic
double toroid-shaped tile is not trivial. Toroidal properties of the
sample must be maintained. On the Figure 3.13 this problem is il-
lustrated: The temporal and any spatial dimensions are represented
by the horizontal and vertical dimension respectively. First, two rows
show the same texture with the cut in it; black line denotes the most
similar patch frame u and t founded by eq. (3.70). The second row show textures syn-
thesized in the temporal dimension. The third row presents synthesis in temporal and
spatial dimensions. The red dotted line shows the location where the spatial continuity is
violated. It can be easily seen, that if the temporal cut is not double toroidal itself the
border violates the spatial homogeneity.

The cost of whole (permissible) temporal cut is minimized (see 3.69) so as to preserve
the spatial properties of the toroid-shaped patch (maximal change of t between adjacent
values of Ix,y,t and Ix+i,y+j,t is ct)

ΨT∗ = min
ˆ
ĈT+

(
N∑
i=0

ε̃Tx
(
ĈTx+

[r2=i]

))
, (3.72)
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Figure 3.14: Set-of-cuts illustration: First three iteration steps of set-of-cuts estimation
illustrated. Every row represents one iteration of fining the transition plane; each column
represent different frames : t − 2, t − 1, t, t + 1, t + 2 from first to fifth respectively; every
pictures is one frame of the texture where colors represents shifted and original data; first
row - one cut that put together two most similar frames; second row - in each halfplane of
next and previous frame another finning cut is found (and the best is used); third row -
final result of additional iterations present ability to choose to change slope.

or similarly as:

ΨT∗ = min
ˆ
ĈT+

(
N∑
j=0

ĈTy+
[r1=j]

)
, (3.73)

where ĈTy+ and ĈTx+ represent horizontal and vertical cut lines and ε̃Tx their appropriate

total error. ˆ̂CT+ then denotes whole temporal cut plane. Now lets look to ways how to

find an optimal ˆ̂CT+:

Set-of-cuts
It is oblivious that the most similar temporal cut consists from the simple plane (i.e.

double toroid-shaped tile). This solution is clearly not satisfying as the dynamic texture
usually does not consist sets of the same frames. The set-of-cuts method is based on the
similarity of not only one-pixel value but whole frame areas. However, rather than finding
a single transition time for the whole image one way to determine the temporal cut is to
find whole similar areas for the transition.

The overlaying frames are iteratively cut with minimal error cutlines to two halves (See
Figure 3.14). Then the transition error of both halves is evaluated and compared. The
final frame then consists of one half from frame t and another from frame t+ bIT ct.
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Next cuts are computed iteratively on both planes (second row in Figure 3.14 for the
second iteration and so on.). The cutlines are computed until the areas consist of at least
N pixels.

Of course, this approach can lead to the greedy-like algorithm. Optimal set-of-cuts can
be easily found by not determining the next state but recursive applying the filling rules.
Every cutline then create two possible states consisting from two halfplanes A and B which
are filled by a frames t and t+ bIT c or t+ bIT c and t respectively. It is easy to see that the

number of possible states is limited to 22i−1
for i > 0 where i is an iteration. Fortunately,

the method reaches final state very quickly in less than five iterations. The all possible
set-of-cuts (4-tree of cuts) is then compared by their transition error.

This result is very similar to determining the time transition per-pixel basis, but local
spatial properties of the texture are kept. By this, the infinitely long sequence of a texture
can be found, and because patch satisfies the global texture dynamic, this simple approach
can work with it. Every spatial cut line Ĉt+ are computed on the appropriate error arrays
composed of error between two overlayed frames. The error εt for every pixel is defined as
eq. (3.43). The error array is computed exactelly like in the dynamic toroidal shape tile
as εh+ (3.38) and εv+ (3.39) as the set-of-cut approach is focused to spatial areas. The set
of cuts then consist from set of C∗h0 computed on the given areas.

The first cut is computed on the error array as eq. (3.74):

Ĉ∗h = arg min
C
{s}
h

ε̃H
(
C
{s∗}
h

)
, (3.74)

(3.75)

and two adjacent cuts on the upperhalfplane and bottom halfplane:

C∗h+ = arg min
C
{s}
h

ε̃H
(
C
{s∗}
h

)
, (3.76)

C∗h− = arg min
C
{s}
h

ε̃H
(
C
{s∗}
h

)
, (3.77)

Then the set-of-cuts is searched by minimizing all particular errors:

ε̃
(

ˆ̂C∗h

)
= ε̃

(
Ĉ
{I[CT ,CB ]}
h0

)
(3.78)

+ min

(
ε̃

(
Ĉ
{It+

[CT ,Ch0 ]
}

h+

)
, ε̃

(
Ĉ
{It−

[CT ,Ch0 ]
}

h+

))
+ min

(
ε̃

(
Ĉ
{It+

[C
h0 ,CB ]

}

h−

)
, ε̃

(
Ĉ
{It−

[C
h0 ,CB ]

}

h−

))
,
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ε̃
(
Ĉ
{I[Ct,Cm]}
h+

)
= ε̃

(
Ĉ
{I[Ct,Cm]}
h0

)
(3.79)

+ min

(
ε̃

(
Ĉ
{It+

[Ct,Ch0 ]
}

h+

)
, ε̃

(
Ĉ
{It−

[Ct,Ch0 ]
}

h+

))
+ min

(
ε̃

(
Ĉ
{It+

[C
h0 ,Cm]

}

h−

)
, ε̃

(
Ĉ
{It−

[C
h0 ,Cm]

}

h−

))
,

ε̃
(
Ĉ
{I[Cm,Cb]}
h−

)
= ε̃

(
Ĉ
{I[Cm,Cb]}
h0

)
(3.80)

+ min

(
ε̃

(
Ĉ
{It+

[Cm,Ch0 ]
}

h+

)
, ε̃

(
Ĉ
{It−

[Cm,Ch0 ]
}

h+

))
+ min

(
ε̃

(
Ĉ
{It+

[C
h0 ,Cb]

}

h−

)
, ε̃

(
Ĉ
{It−

[C
h0 ,Cb]

}

h−

))
,

where every cut line is found as its own subtree minimization eq. (3.74). The index set
I t[Ca,Cb] denotes area between two cuts Ca and Cb in the frame t. The t+ denotes next

frame and t− previous frame. The ˆ̂C∗v is defined in the similar manner.
The problem with this approach can be viewed on Figure 3.13. This can be easy

overcame by enforcing the start and end coordinates (in temporal dimension) to be the
same similarly as in the double toroidal tile. Moreover, the highest and the lowest areas
must be continuous (so it must consist of the same frame ± 1). It can be resolved by
creating a tree of all potential cuts and then traversing them to minimize this error. This
approach is effective in many textures, and because of every cut is created by the single
way in one frame it can fit the objects in the texture very well.

The double-tree structure for T ˆ̂C∗h can be defined as:

T ˆ̂C∗h = Ĉ
{I[CT ,CB ]}
h0 (3.81)

∪ L1 = Ĉ
{It+

[CT ,Ch0 ]
}

h+ , R1 = Ĉ
{It−

[CT ,Ch0 ]
}

h+

∪ L2 = Ĉ
{It+

[C
h0 ,CB ]

}

h− , R2 = Ĉ
{It−

[C
h0 ,CB ]

}

h− ,

Ĉ
{I[Ct,Cm]}
h+ = Ĉ

{I[Ct,Cm]}
h0 (3.82)

∪ L1 = Ĉ
{It+

[Ct,Ch0 ]
}

h+ , R1 = Ĉ
{It−

[Ct,Ch0 ]
}

h+

∪ L2 = Ĉ
{It+

[C
h0 ,Cm]

}

h− , R2 = Ĉ
{It−

[C
h0 ,Cm]

}

h− ,

Ĉ
{I[Cm,Cb]}
h− = Ĉ

{I[Cm,Cb]}
h0 (3.83)

∪ L1 = Ĉ
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3.4. Triple Toroid-Shaped Tile

Figure 3.15: Temporal cut plane: Each picture represents one frame in texture from left
to right and top to down order; all pictures is one frame of texture where colors represent
offset and original data; the general shape of the plane and its double toroidal property
can be easily seen.

where every cut line Ĉ has up to four (L1, R1, L2, R2) descend from next iteration.

And appropriate ˆ̂C∗h is created by filling the areas between upper and bottom plane with
corresponding t values. The errors and cut lines structure (and thus cut plane) for the
vertically oriented set is defined in the exact same manner.

Note that apparently the two optimal set-of-cuts can be found - ones with dominant
horizontal dimension (like Figure 3.14 and ones with dominant vertical dimension. Ob-
viously, both version can be computed with the one with lowest transition error can be
picked.

Interestingly this the set-of-cuts approach is well suited for dynamic textures with very
low dynamics (i.e. mostly static scene) and for dynamic textures with extremely high
dynamics like (e.g. FIRE texture).

3.4.2 Fitting plane

In some cases, the previous approaches for the temporal cut are not satisfying. Every
single cut is computed in one frame and derived by spatial data, but in fact, it drives the
temporal offset. If the temporal dynamic of the texture is significantly greater than the
local spatial dynamic, the temporal cut plane can be computed differently. Like in set-
of-cuts the problem is to create a cut with no boundary spatial errors. This can be done
by using a similar procedure like in propagating the double toroidal tile though temporal
dimension. This process depends on the direction (top-down or left-right), but in most
cases, the results are nearly the same. The finding the plane by the second way is better to
the texture with lesser local spatial dynamics (e.g. leaves or grass in string wind, flowers
or leaves). As can be seen in Figure 3.15 the planes generated by this approach is more
general, but satisfy the toroidal boundary rules and are double toroidal like a spatial patch
(this can be easily done to setting error cost of ending unwanted coordinates to infinity
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3. Toroid-Shaped Patch Based
Dynamic Texture Model

Figure 3.16: More temporal jumps : Illustration of a triple toroidal patch (violet) with
two temporal cut planes in the given DT (whole image). The vertical image dimension
illustrates any spatial dimension; horizontal dimension denotes time dimension. The yellow
dotted line is time cut-plane illustration of cut plane CT

0 , CT
1 and CT

2 . The ε(0,1), ε(1,2)

and ε(1,2) illustrates the possibly jumps and its ΨT∗ error.

before computing the structure).
The three dimensional error array are defined in the exact same manner as eqs. (3.62)

and (3.61):

ψ̂Th∗r = εth+
r + min(ψ̂tv∗r+[0,−1,•,•,−pt], . . . , ψ̂

tv∗
r+[0,−1,•,•,0], . . . , ψ̂

tv∗
r+[0,−1,•,•,pt]) , (3.84)

ψ̂Tv∗r = εtv+
r + min(ψ̂th∗r+[−1,0,•,•,−pt], . . . , ψ̂

th∗
r+[−1,0,•,•,0], . . . , ψ̂

th∗
r+[−1,0,•,•,pt]) , (3.85)

where the temporal-horizontal and temporal-vertical error arrays are defined as:

ψ̂th∗r = εh+
r + min(ψ̂v∗r+[−1,0,•,•,−pt], . . . , ψ̂

v∗
r+[−1,0,•,•,0], . . . , ψ̂

v∗
r+[−1,0,•,•,pt]) , (3.86)

ψ̂tv∗r = εv+
r + min(ψ̂h∗r+[0,−1,•,•,−pt], . . . , ψ̂

h∗
r+[0,−1,•,•,0], . . . , ψ̂

h∗
r+[0,−1,•,•,pt]) . (3.87)

The desired ˆ̂CT plane can be found by iterative spatiotemporal cut search (Sec. 3.3.2)
and/or restrictive spatiotemporal cut search (Sec. 3.3.2).

More temporal jumps
Similar problem to the visually repetitive pattern which is solved by using patches can
occur in the temporal dimension. The short sequence of a dynamic texture can be easily
recognised and degrade the visual impression. As in the spatial dimension, even in the
temporal dimension, such an impression is undesirable.

The approach that can solve this is simple: to find more than one temporal cut-plane
in the dynamic double animated toroidal-shape (see Figure 3.16). Another temporal
cut-planes are found inside the founded triple toroidal tile by the similar process as
the first one and similarly a case of finding more suboptimal tiles. Note that in the
case of more temporal cut-planes only primary-secondary approach is used. The cut
planes founded by fitting to more (at least three total transition error - Figure 3.16) are
not visually satisfying. For the determining of more temporal jumps two approaches
could be utilized: The every next cut-plane could be founded by minimizing of the
transition error to the already existing cuts (see Figure 3.16). By this way only the
same shaped cut-planes shifted temporally can be found. The second approach is to step
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3.4. Triple Toroid-Shaped Tile

Figure 3.17: More temporal jumps, two possible arrangements : Illustration of a triple tor-
oidal patch (violet) with two sets of a temporal cut planes in the given DT (whole image).
The vertical image dimension illustrates any spatial dimension, horizontal dimension de-
notes time dimension. The yellow dotted line is time cut-plane illustrate cut-planes CT

A0 ,
CT
B0, CT

A1 and CT
B1. The ε(A0,A1) and ε(B0,B1) illustrates the possibly temporal jump and its

ΨT∗ error.

back to similarity metric and found the second similar frames and compute whole cut-
planes again in the different time overlap. Note that the triple toroidal patch should be
extended this way (see Figure 3.17) if one (or both) cut-planes are found outside already
founded triple toroid-shaped tile but inside the dynamic animated double toroid-shaped
tile (illustrated by the whole rectangular area in both figures).

Note that the defined error distance based on color and dynamics solves the well-
known problems with periodical movements (e.q. pendulum) in which the image struc-
ture can be identical, but the dynamics differ.
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3. Toroid-Shaped Patch Based
Dynamic Texture Model

Figure 3.18: DT synthesis overall flowchart : The method is as follows: the double spatial
toroidal tile is computed in the 2D tile block parallel to optical flow for whole Y . The
animated 2D tile T is then created with possibility of extending to multiple 2D animated
tiles. The frame similarity matrix is computed in the Temporal Jump search block. The
analysis is finished by exact dynamic double toroidal tile(s) search in block Multiple 2D tile
search ad Temporal cut. After that the patches can be stored and then in fully separate
synthesis part any arrangement can be generated.

3.5 Synthesis

The synthesis part is entirely separated from the analytical part and thus is is extremely
fast. Texture analysis part, which is inspired by the idea of optimized but straightforward
repetition of the input texture sample, consists in the determination of parameters δh and
δv controlling the overlaps and subsequent minimal error boundary cut based edge optim-
isation. The output of the analytical part is one or more triple toroidal patch and hence
the toroidal shape they can be easily put abreast without any additional computation.

As follows from the analytical part an idea, the synthesis of any texture of required size
is an efficient repetition of the created triple toroid-shaped texture patch in all directions
until the texture of any required size is generated.

The synthesis of any size textures is merely the repetition of the created triple toroidal
patches in all dimensions until the desired size is fulfilled. The only computation in syn-
thesis is to generate once a random sequence of patches labels and next computing the
offset of pixels, which can be implemented in real time just from to the actual to the next
frame.

The generated lattice of P labels are called arrangement and can be user-driven od
randomly generated. The process of generating arrangement is then called tiling. The
overall method flowchart is in the Figure 3.18.
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Chapter 4

Dynamic Texture Editing

This chapter describes a set of specific synthesis algorithm enhancements that serve to
increase the limited number of results and, above all, to consider their visual quality of
creating mix-of-DTs (Figure 4.1). The pure texture synthesis methods can produce res-
ults with visually recognizable artifacts and patterns as recapitulated in the introductions
section 4.1 followed with an overview of presented editing methods which simultaneously
allows to spatially and temporarily enlarge the original dynamic texture(s) can be found in
the section 4.2. Finally, the mix-of-textures principles and transition textures and temporal
shift utilizing are described in the section 4.3.

Figure 4.1: Edited dynamic texture teaser : Examples of results.
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4. Dynamic Texture Editing

4.1 Dynamic Texture Editing Overview

Natural dynamic texture modelling is a very challenging and difficult task, due to an
unlimited variety of possible materials, illumination, and viewing conditions, simultan-
eously complicated by the strong discriminative functionality of the human visual system.
Visual texture modelling is the critical part of any computer-based visualization applica-
tion because whatever size is the measured texture, it is always inadequate and requires
its enlargement to cover the required visualized object’s surface area. The available ma-
terial sample size is either too small for rendering complex and large virtual scenes. The
amount of such measured data similarly to dynamic textures is immense, e.g., in the range
of terabytes even for spatiotemporally restricted measurements. Moreover, the textural
enlargement may not be sufficient to cover some complex scene. Texture editing enables
to create photo-realistic synthetic dynamic textures, which are either difficult (or unable)
to measure or which even do not exist in nature. The editing principles allow synthesizing
result composed from P from more than only one input dynamic texture Y . The carefully
selected P with one consistent T or even more different shapes T are then put together to
create a desired result.

The resulting edited dynamic texture is, therefore, a mixture of several color dynamic
textures that realistically match the given color textures appearance and respects their
original dynamics. The presented method simultaneously allows to spatially and tempor-
arily enlarge the original dynamic textures to fill any required four-dimensional dynamic
texture space.

Dynamic texture editing and its results allow to reach huge compression ratio if nu-
merous DTs can be constructed from several bases small DT samples, or to study the
relationship between model parameters and their impact on visual DT appearance, etc.
The common visual problem repetition in the spatial and temporal dimension is suppressed
by not only using more samples and their random placement in the synthesized texture
but with temporal deformation of the texture dynamics too.

The realistic appearance of the dynamic textures mix requires to edit the patch color
space and to find transition patches which consist of more than one type of the texture.
These border patches are found similarly to the multi-texture analysis patch step. Again,
all time-consuming processing such as the finding of optimal spatio-temporal triple tor-
oidal patches, are done in the analytical step only. The analytical and synthesis step are
still separated. Therefore the synthesis of the edited and enlarged texture can be done
very efficiently by applying the simple set of repeating rules to fill the three-dimensional
arrangement lattice of P labels.
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4.2. Method Overview

4.2 Method Overview

The presented editing method is based on using several triple toroid-shaped tiles (Sec. 3.4).
Moreover, with patches from more than one DT types, the number of possible outputs is
significantly higher. Few triple toroid-shaped tiles can create numerous noticeably larger
synthesized DTs with similar stochastic properties. By using of toroidal-shaped tile and
fitting them by optical flow, the synthesized texture can be recreated from various input
textures to generate many arrangements of output textures or even mix-of-textures.

The repetition of the spatial and temporal dimension is suppressed both by using
overlapping samples and their random placement in the synthesized texture and temporal
deformation of the texture dynamics. The method can create a large scale of dynamic
texture types and create results with high-quality, visually satisfying realistic appearance.

Figure 4.2: Data patches A
and B with the same tile
shape.

Editing method Presented approach allows DT editing
in several ways. The system of toroidal samples allows to
apply the textural operators to tone colors, change dynamics
or differs texture itself without the possibility to affect the
homogeneity of the whole dynamic texture. For example to
change the dynamics of one object in the dynamic texture
usually requires area segmentation which must be consistent
in all frames, detection of a given object and finally changing
its dynamics.

Primary and secondary texture

Hence the editing methods take more than one input dynamic textures to distinguish
them one of them is called primary, and rest are called secondary. The primary dynamic
texture is used to compute (multiple) optimal triple toroidal tile while other textures
only serve as a patch source for the same shaped-tile textural data (Figure 4.2). Whereas
the quality of a tile decrease with the number of patches. Using more dynamic textures
for finding the optimal global tile (tile optimal for more than one DT) has the similar
effect. Even if in some cases the optimal global tile can be found, usually the primary-
secondary approach has more satisfying results.

Presented approach obviously allows to skip the segmentation step since the texture is
divided into logically consistent patches (given by spatial similarity and similar dynamics)
from previous analysis steps so the changes made in one patch will not affect other areas.
Elementary, but not trivial type of texture editing is to synthesize texture consisting of
multiple input textures. The illustrative example of a resulting arrangement can be seen
in figure 4.3. The result is created from P from more input dynamic textures (different P
colors in Figure 4.3) with the same P shape. The resulting texture is, therefore, a mix of
textures, which can vary in two of the three fundamental properties of DT - the texture
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4. Dynamic Texture Editing

Figure 4.3: Simple mix-of-DTs arrangement : Random arrangement from two patches type
from two input dynamic textures.

itself (this includes changes in lighting, but also the other conditions - detail, different
viewing angle, etc.) and local dynamics (intensity and direction of wind, rain, etc.).

Of course, the resulting combination of given inputs should be meaningful. For example,
the combination of DT types WATER and CLOUDS textures can satisfy some trivial
texture similarity, but of course are preposterous in most cases (except horizon and similar
arrangement). The example of a mix between River and Shrubs which can be on first
look correctly synthesized is in the Figure 4.4. Therefore, the rest of the text assumes that
this requirement is met.

More DT types tiling
Lets look at the possible amount of synthesized results. It is obvious that the maximal
number of possibly synthesized textures is:

(Nin tex ·Np per tex)
(1+d bScvbT cv e)·

(⌈
bSch
bT ch

⌉
+1
)
, (4.1)

if we assume a constant distribution of patches in input textures. Nin tex is number
of input textures, Np per tex is average numbers of patches per input texture. The S
denotes the resulted synthesized dynamic texture. Therefore bScw and bSch are the
vertical and horizontal size of the synthesized texture respectively, and bT ch and bT cv
are the horizontal and vertical size of the used optimal T , respectively.

More generally and because we often use the different number of patches in every
texture (to ensure the better visual appearance of synthesized textures) the (4.1) can
be simplified to:

(Npatches)

(
1+
⌈
bSch
bT ch

⌉)
·(d bScvbT cv e+1) , (4.2)
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4.2. Method Overview

Figure 4.4: Two DT types combining : Example of problem in combining two very different
types of dynamic textures. Right: DT River and Shrub with different dynamics, Left -
DTs Light tulips and Dark tulips.

where first product in (4.1) becomes to Npatches as the number of all patches found by
analysis part of the algorithm.

The synthesis of the mix-of-DTs consists just from finding the same triple toroid-shaped
tiles or - more accurately - by finding one (or more) optimal triple toroid-shaped tiles in one
primary DT and finding the minimal cost of placing this shape to other textures by finding
the optimal time-spatial shift δ for the optimal tile. If there are many input textures the
computational time can be reduced by using texture pyramid, testing only local optical
flow, or testing global optical flow first (respectively in backward order).

Colortone Using several input textures can cause the problem (see Figure 4.4) with
slightly different color tone or illumination of particular input DTs. This problem can be
overcomed, i.e., by tone mapping [43, 32, 110], by tone operators[38] and many others.

The color tone of patches can be fitted to the color tone of the selected input texture or
a consensus of all textures. There are many advanced algorithms and approached for color
tone mapping problem [129] which can be used for mapping color tone property of one
texture to another. Again, proposed solution enables to mapping color property of only
used patches and not the whole texture. Here straightforward but satisfying approach -
fitting average H, S, L values of one texture to another by per pixel multiplication. This
simple approach creates good results in the most of cases (see Figure 4.5) of synthesized
DTs, but any advance method, i.e. Durand[32] method is of course possible. Of course,
this straightforward approach works well primary on the DT with the same type and DT
that are visually similar. The advanced tone reproducing operators like Ward[139] or
Tumblin[130]are required (see Durand[32] for comprehensive overview).
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4. Dynamic Texture Editing

Figure 4.5: Direct mix-of-DTs with color toning : Illustration of the two color toning results
for synthesized textures consisting of two DTs patches (left). Examples of synthesized
results without color toning are in the middle column. Examples of results with color
toning are on the right side.

More DT color types tiling
With varying color tones the number of possibly synthesized textures obviously then
grows to:

N∗in tex ·N
(d bScvbT cv e+1)·

(⌈
bSch
bT ch

⌉
+1
)

patches , (4.3)

where N∗in tex is a number of input textures (color tones) to which the synthesized result
can be mapped. In this automatic approach, we assume that the input DTs are selected
manually and are visually similar and do not differ drastically in color (i.e. grass and
clouds). The similar dynamic texture structure is therefore needed.

Figure 4.5 illustrates the method. An optimal shape is computed in the primary texture
and found by a spatio-temporal shift in the secondary texture. Colortone operators are
extracted from all input textures. In the synthesis step, the color tone operators of textures
are fitted to one input texture to create a similar color appearance.

This trivial approach can handle the camera automatic color balance (as in the Irises),
different illumination or similar problems and increase the credibility of the result. Of
course, as the color tone operator are vast and popular research area the developing of an
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4.3. Mix of Dynamic Textures

advanced dynamic texture color tone operators is beyond the scope of this work and is
part of one of the possible follow-up of this work.

4.3 Mix of Dynamic Textures

Figure 4.6: The transition
patches illustration.

Even if the triple dynamic toroid-shaped tile approach can
successfully handle the mix-of-DT (see Figure 4.5) only by
trivial color tone matching, in many cases it is insufficient.
Sometimes dynamic textures strongly vary in both struc-
ture and dynamics, and patches that satisfy the similarity
cannot be found.

The solution to this problem is based on using trans-
ition textures. We assume the existence of the transition
(border) between types of DT but also the lack of one (or
both) texture itself. Figure 4.6 illustrate basics method
idea with subfigures consisting from two DTs (labelled non-
mutually).

4.3.1 Transition patches

The precomputation of a transition patches (Figure 4.7, right) may be difficult to obtain,
but once (and if) they are computed, the synthesis and analysis are fully separated, and
thus thy creation of any arrangement is extremely quick. This is called as an offline method
from now. The second approach consists of transition patch founding by the process of
establishing every arrangement. Hence the transition patches are created on the flow the
method is called as online from now.

The offline method is, of course, a variant of a well-known marching cubes[86] algorithm.
The basics 2D examples (subspace form 16 needed cases) can be seen on the Figure 4.7.
The drawback of this method is clear - the high requirements on the input data. Note
that usually, it is not possible to find and precompute all possible cases even in the spatial
dimensions only, but some consistent subspaces are possible.

In the transition patches approach the optimal T is computed in the primary texture
only and by appropriate cut-plane errors minimizing found by a spatio-temporal shift in
the secondary textures. Finally, when the arrangement is filled, the δ∗ to desired patch in
the transition texture is searched for.

The P difference is composed of difference between at least two of temporal-horizontal
(top or bottom), temporal-vertical (left or right) or horizontal-vertical (front and end) cut-
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Figure 4.7: Transition texture patches illustration: A scheme of a transition texture for
4-neighbourhood is illustrated on the left. Transition texture patches are computed by
top-down order. New transition patches are computed from surroundings patches, even
transition texture patches found in the previous step. Many orders of founding patches are
possible, i.e. weighted by a number of already know neighbourhood patches; Illustrative
subspace of 8-neighborhood transition patches are on the right side.

planes. The appropriate shift (location of Pt in the Yt) are found by error minimization:

δ∗r = arg min
δr

( ∗
εth(YT , TP , δr, 0,Pbottom) +

∗
εth(YT , TP , δr, N,Ptop)

+
∗
εtv(YT , TP , δr, 0,Pleft) +

∗
εtv(YT , TP , δr,M,Pright)

+
∗
εvh(YT , TP , δr, 0,Pfront) +

∗
εvh(YT , TP , δr, 0,Pend)

)
(4.4)

where parameters of every ε function are transition texture YT , an optimal tile TP ,
desired shift δr, parameter δs that established if appropriate cut-plane (from transitional
texture) is left / bottom / front or right / top / end and finally the primary or secondary
texture patch P ,

The error is computed with using of pixel error (3.43) between appropriate pixels from
both textures. Their location is given by the T which has its own location in the primary
and secondary textures and desired location in the transition texture. As the empty ar-
rangement location are filled iteratively, some location on the arrangement lattice could be
empty. Therefore the difference is computed as:

∗
εth(Y , T , δr, δr,P) =

{
0 if P is empty ,

ˆ̂εth(Y, T , δr, δs,P) else ,
(4.5)

or if the arrangement hole is in the straight line:

∗
εth(Y , T , δr, δr,P) =

{
ˆ̂εth(Y , T ←, δ←r , δ←s ,P←) if P is empty ,

ˆ̂εth(Y , T , δr, δs,P , ) else ,
(4.6)
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where ← denotes results from previous steps and therefore the toroidal knowing pos-
sibility of the future patch (as illustrate purple to green and yellow to purple areas in
Figure 4.8).

The particular errors are computed as:

ˆ̂εth(P ,Y, T , δr, δs) =
T∑
i=0

N∑
j=0

ε

(
P[ ˆ

Ĉth
[i,j]

,j,•,i,•
],Y[

δP+δ++

[
δs+

ˆ
Ĉth

[i,j]
,j,•,i,•

]]
)

, (4.7)

where δP is patch location (global indices for the [0, 0, 0] of appropriate Ith) in the

appropriate texture. ˆ̂Cth, ˆ̂Ctv and ˆ̂Cvh are derived as part of T . The εtv, ˆ̂εtv, εvh, and ˆ̂εvh

are computed in the exact manner with previously error (3.43).

The random DT arrangement is generated for an online method by iterative growing
(erosion) of DT types on a 3D lattice from two or more arbitrary coordinates. Areas of
contiguous type grow in the random direction by given defined neighbourhood until it is
possible. The areas on the lattice which remain unfilled are then filled by transition patches
iteratively for every particular location and adjacent patches.

For each area labeled as a transitional (labeled ’??’ in Fig 4.8) the best fitting patch
from border texture is found by minimizing the error between this sample itself and each
already completed adjacent sample (the one patch for every location or one patch for every
type of surroundings DT). Patches that are computed in the second step are searched for
every empty location the best-fit patch is found in the given transition textures. The ˆ̂ε
computed to different Y is illustrated by violet in Figure 4.8. The yellow marked location
(and thus ˆ̂ε) and green marked location denotes another cut-planes. One of them (or both
if this is last empty space, none is this is first filled space) are computed in the previous
step. The optimal patch is then computed by minimizing ε ∗ consisting from at least two
border error cost ˆ̂ε to different P or even Y . The distance is computed even for each already
transition patch completed as adjacent in the previous step as can be seen on yellow and
green marked areas. By this, the second analysis phase is added, but still, the analysis and
synthesis step are separated.

Although such type of the source data is difficult to obtain, it is visually sufficient to
have even a small data sample. The dominant component that determines the quality of
the appearance of the synthesized result tends to be both significant pure DTs.

Mix of textures with border tiling

Again, lets look at the amount of possibly existing results. In transition texture based
approach, the number of possibly synthesized textures is limited by:

Nres =
YN∏
i=1

iNres +Nt , (4.8)

where Nt denotes the possible number of transition texture combinations which is of
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Figure 4.8: Transition patches principle scheme: Illustration of the mix of dynamic textures
with transition patches.
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course limited by theoretically all combinations on the maximal side and using of only
one texture (transition is a line) on the minimal side:

Nt ∈ 〈1, . . . ,Pt!〉 . (4.9)

The iNres then denotes all possible result combinations from every DT type area i:

iNres =
⌊
iS
⌋iPnum · iYct , (4.10)

where biSc is size of the appropriate i-th area and iYct possibly color-tones variations.

Many orders in which the right transition patch is, of course, possible, e.g., weighted by a
number of already know neighbourhood patches. Recall that the transition patch detection
can be in online version seen as the second analysis step which follows the arrangements
assembly. Again the final result synthesis follows this second analysis step. Moreover, if
the assumption of temporal homogeneity is used, we can presume that optimal temporal
overlap can be found in the first analysis part of a whole dynamic texture. Because
the temporal jumps detection is the dominating time-consuming part of an algorithm,
is evaluating in first analysis step greatly reduce the second step computational time.
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4.3.2 Multiple shaped tiles

Figure 4.9: Multiple shaped
tiles : A and B are from one
DT, D from another. Patch
C is transition between them.

The using of more patches from more inputs, even border
type is not satisfactory in many cases. The one universal
tile is in many cases not capable of representing the various
dynamic texture content.

In this cases, the easy but powerful enhancement could
be done. Of course, every approach increasing the general-
ity of the method brings its own limitations and limits the
fundamental advantages of the method. In this case, it is a
crucial toroidal property. If we give up the toroidal prop-
erties on a limited number of samples (transition tiles), we
can provide a higher possibility of adapting the method to
the desired result mix-of-DTs arrangement.

Instead of locating the transition patches with a given
toroidal shape the new optimal transition tile is searched
for.

The transition tile can be found not only with a given adjacent content but as a trans-
ition between two DTs types and two corresponding optimal tiles. The desired transition
tiles then consist of (at least) two cuts from two optimal tiles. The last cuts are searched
ad hoc in the online variant, or can be computed as toroidal to transition tile itself.

Again, the optimal rectangular tile for the transition tile searching is founded by error
minimization. Lets denote the original pure dynamic texture as YA and YB and the
dynamic texture in which the transition is searched as YT . The appropriate index ITrt set
for a rectangular tile is then:

ITrt = IArt + δ∗A , (4.11)

ITrt = IBrt + δ∗B , (4.12)

The optimal shift δ∗A and δ∗B are found by minimizing the error cost between at least two
cut planes. The fixed tiles cut planes from both pure dynamic textures and all possible
locations in the transition texture are searched by spatiotemporal shift. The T difference
is composed of a difference between at least two of temporal-horizontal (top or bottom),
temporal-vertical (left or right) or horizontal-vertical (front and end) cut-planes. The
appropriate shift is found by error minimization:

δ∗r = arg min
δr

( ∗
εth(YT ,Pbottom, Tbottom, δr, 0) +

∗
εth(YT ,Ptop, Ttop, δr, N)

+
∗
εtv(YT ,Pleft, Tleft, δr, 0) +

∗
εtv(YT ,Pright, Tright, δr,M)

+
∗
εvh(YT ,Pfront, Tfront, δr, 0) +

∗
εth(YT ,Pend, Tend, δr, T )

)
(4.13)

where parameters of every ε function are transition texture, pure texture patch and tile,
desired shift, and the last parameter established if appropriate cut-plane (from transitional

66



4.3. Mix of Dynamic Textures

Figure 4.10: Multiple tiles shore arrangement : Arrangement from four patches type with
one transition tile type.

texture) is left / bottom / front or right / top / end. The PS and TS are driven by
appropriate arrangements. Again, the ε∗ and ˆ̂ε∗ are computed as before:

∗
εth(Y ,P , T , δr, δr) =


0 if P is empty and not straight ,

ˆ̂εth(Y ,P←, T ←, δ←r , δ←s ) if P is empty ,

ˆ̂εth(Y ,P , T , ˆ̂C, δr, δs) else ,

(4.14)

where ← denotes results from previous steps and therefore the toroidal knowing pos-
sibility of the future patch (as illustrate purple to green and yellow to purple areas in
Figure 4.8).

The particular error are computed as:

ˆ̂εth(P ,Y, T , δr, δs) =
T∑
i=0

N∑
j=0

ε

(
P[ ˆ

Ĉth
[i,j]

,j,•,i,•
],Y[

δP+δ++

[
δs+

ˆ
Ĉth

[i,j]
,j,•,i,•

]]
)

, (4.15)

where δP is patch location (global indices for the [0, 0, 0] of appropriate Ith) in the

appropriate texture and ˆ̂Cth is from T . The εtv, ˆ̂εtv, εvh, and ˆ̂εvh are computed in the exact
manner.
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4. Dynamic Texture Editing

4.3.3 Temporal Dimension Editing

Lets remind here, that a deterministic finite state machine[52] is a quintuple (Σ, S, s0, δ, F ),
where:

◦ Σ is the input alphabet (a finite, non-empty set of symbols).

◦ S is a finite, non-empty set of states.

◦ s0 is an initial state, an element of S.

◦ δ is the state-transition function:

– δ : S × Σ→ S (deterministic),

– δ : S × Σ→ P(S), δ return a set of states (nondeterministic).

◦ F is the set of final states, a (possibly empty) subset of S

with this on the mind, the interactive textures can be defined as a medium with the
(nondeterministic) state machine behavior, where every state q ∈ S is represented as
appropriate patch P in the meaning of temporal persistence. The P here represent the
whole texture Y .

Interactive texture The DTs mixing and editing can be done directly in temporal
meaning only. The input textures and their corresponding patches can be manually labeled
by its global and local dynamics (i.e. strong of wind, the density of rain and so on).

Figure 4.11: Thuja in various rain condition
with probabilities of change of states.

The patches from their labeled textures
are then found and labeled so on. The SM
states then represent P . The transitions δ
represents temporal cut:

PA
δ−→ PA (4.16)

and/or transition to another P :

PA
δ−→ PB (4.17)

where the (4.3.3) represent loop and
(4.3.3) state change. Note that if more temporal jumps exist, the more loops are defined.
Likewise more very similar patches can be labelled as one state with inside transitions or
the superpositioned state can be defined. s0 is any state, F is empty. The Σ consist of
one symbol that drives the state change every T frames. Alternatively, Σ consist of one
symbol per every q ∈ S and state changes are driven. In the automatic approaches every
δ the state-transition function has its probability p.
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4.3. Mix of Dynamic Textures

For example for Thuja SM in figure 4.11 four states of a dynamic texture is illustrated:
heavy rain, start rain, stop rain and no rain. All states except no rain are
represented by one patch, while the no rain is represented by two patches no rain
(texture-1) and no rain (texture-2). The arrows denotes possible changes in the
states of a dynamic texture with corresponding probability p:

no rain
0.3−→ start rain

start rain
1−→ heavy rain

stop rain
1−→ no rain

heavy rain
0.3−→ stop rain

Note the p = 1 probabilities handle the nonrepeatable textures. This transition textures
has the same meaning like transition textures in the section 4.3, but with strictly temporal
meaning. With rule that can chance the inner state of the no rain:

no rain (texture-1)
0.4−→ no rain (texture-2)

no rain (texture-2)
0.4−→ no rain (texture-1)

and with complementary rules to ensure a possible repeat of the same texture:

heavy rain
0.3−→ heavy rain

no rain (texture-2)
0.3−→ no rain (texture-2)

no rain (texture-1)
0.3−→ no rain (texture-1)

the rules set is complete.
The resulting interactive texture could be played fully automatically with predefined

probabilities to vary its appearance. The state changes, even if not strongly vary itself and
its nondeterministic repeating strongly enhance the visual quality of the results.

For the nondriven, automatic dynamic texture the patches are organised with the trans-
ition from state to state:

qs −→


δ(q0, x),with probability p0

δ(q1, x),with probability p1

. . .

δ(qj, x),with probability pj

,

j∑
i=0

pi = 1, qs ∈ S, x ∈ Σ. (4.18)

where card(q) denotes the state cardinality.

Local Temporal Shift In order to avoid the typical synthesizing problem - period-
icity (usually given by the small amount of input data) - the spatial editing methods like
multiple patches, several inputs DTs or a mix-of-DTs are utilised. Besides editing of the
spatial dimension to increase results variability, another pure temporal method can be used.
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4. Dynamic Texture Editing

Figure 4.12: Arrangement with temporal
shift : Example of patch arrangement
with temporal shift. Three patches with
different time shift (0, 5 and 10 frames)
and different local (arrows) optical flow,
respectively.

As was discussed before, using only several
patch samples leads to evident repetition. The
same P samples only slightly timeshifted pro-
duces different (but still correct) dynamics,
which disrupt the overall impression of their
periodicity.

Of course, simple random time shift of one
part of DT can cause many inconsistencies in the
synthesized result. The optimal approach would
be a segmentation (consistent in all frames), de-
tection of an object and changing only its dy-
namics. Our approach allows to skip the seg-
mentation step since the texture is divided into
logically consistent parts (given by spatial simil-
arity and similar dynamics) from previous ana-

lysis steps.
The time shift Λ should be applied gradually with increasing size with the distance

from the appropriate ˆ̂C cut plane. The particular gradual λ step should be limited by
T to avoid recognizable distortions. Obviously, the size of the area in which the time is
gradually changed is:

bEΛc =
Λ

λ
. (4.19)

If λ < 1, the desired values, of course, does not exist. The desired data could be approx-
imated (which typically leads to blurring) of the nearest existing frame, or a rounded t-th
dλte one could be used. The Λ and appropriate λ values are chosen as:

2bEΛc < min(h, v, t) , (4.20)

of if the interior patches are supposed to have only consistent time shift as:

bEΛc < min

(
min

(
min
∀i,j∈Itv

ˆ̂Ctv
[i,j] , M − max

∀i,j∈Itv
ˆ̂Ctv

[i,j]

)
,

min

(
min
∀i,j∈Ith

ˆ̂Cth
[i,j] , N − max

∀i,j∈Ith
ˆ̂Cth

[i,j]

)
,

min

(
min
∀i,j∈Ihv

ˆ̂Chv
[i,j] , T − max

∀i,j∈Ihv
ˆ̂Chv

[i,j]

) )
, (4.21)

This technique strongly increases the quality of results with suppressing the visual peri-
odicity. While the patches remain structurally the same, the different dynamics drastically
suppress the visual periodicity. For examples and the detailed view, we refer the results
section.
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Chapter 5

Dynamic Texture Inpaining

This chapter overview the inpainting problem and capability of our dynamic texture model
to deal with it (see Figure 5.1 for results illustration). First, the inpainting problem is
addressed in section 5.1 in the relation of this dissertation thesis. Next, in section 5.2,
the adaptation of the presented synthesizing and editing model to inpainting problem
is explained together with addressing the different condition and circumstances like an
inability to obtain exact ground truth and ways to handle it. The section 5.3 consist of
core definition of a inpainting model principles. Finally, in the last section, 5.4 is explained
how to bypass the need for a mask for inpainting algorithm and cases where it is possible.

Figure 5.1: Several inpainted dynamic textures : Source and inpainted frames showed.
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5. Dynamic Texture Inpaining

5.1 Problem definition

As discussed previously in chapter 2, the inpainting and error concealment problem ad-
dresses many particular problems with various assumptions and circumstances. The main
key property for this problem consists of:

◦ Does a part of a covered texture occur in any axial moment?

◦ Does the scene consist of one dynamic texture of more dynamic textures?

◦ Is area to inpaint artificial or naturally occurs in given scene?

This very basics question could determine the circumstances and method limitations.
It is oblivious that in the case of using an artificial mask (like in all Thuja DTs) there is
already ground truth information. Regrettably, this not means that the original DT part
and newly inpainted data could be easily compared, i.e. directly by pixel-by-pixel distance.
As the texture (and subsequently dynamic texture) definition says, the texture as some
random field realization could vary in its exact (pixel) values. In other words, the inpainted
part of texture can be very different and still have the property of the original texture.
This drastically limits the possibilities of comparison or even determination which method
is suitable, better, or even satisfyingly working (more at chapter 6). The existence of the
original dynamic texture, of course, could be used for visual comparing or psycho-physical
test.

The critical role in problem has, of course, the object which is meant to be inpainted.
Even if the occluding object naturally occurs in the scene, there are several cases that may
more occur. In the first case, the object is moving thought scene, or during the duration
of the scene, it exits (or enters). So there is a time momentum for every location in the
texture, for which it is unoccluded. Note that the specific amount of time depended on scene
dynamics is required and so short sequence even for whole texture is not enough. Moreover,
the size of the area to inpaint must be taken into account. The size could be expressed
precisely as a percentage of the actually viewed data and to whole dynamic texture (if
the object varies in size) or inaccurately with relevance to the property of the inpainted
dynamic texture. In the latter case, it is appropriate to determine whether the area to
inpaint is substantially smaller than the underlying objects (mostly lower frequencies) from
which the dynamic texture is composed, the same size or greater size (i.e. waves on water
DT, or leaves/branches in the trees containing DT).

Of course, the primary case of a scene containing more than only one dynamic texture
is different from scene consisting of only one. Ideally, the complex scenes could be divided
into segments which could be handled separately.

The case with object naturally occurs in the scene can be extended to the case with
many objects. The higher number of objects themselves may not be problematic. The
problem occurs if we want to keep some of them and inpaint only the others. The case
with many moving objects all of which are intended to be removed can be addressed as
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5.2. Toroidal-Patch Model Adaptation

above. Let’s note that the problem becomes drastically more difficult if the original texture
is supposed to preserve.

With the above-defined assumptions, it is possible to define the following cases to be
used in this work:

◦ Dynamic texture with an artificial mask.

◦ Complex scene containing more DT with an artificial map.

◦ Naturally occluded dynamic texture with a significantly smaller object (objects).

◦ Naturally occluded dynamic texture with a significantly larger object (objects).

◦ Naturally occluded complex scene with a significantly smaller object (objects).

5.2 Toroidal-Patch Model Adaptation

The presented triple toroid-shaped patch model could be easily adapted to inpainting
problem by inpaint by synthesis approach. The analysis part of the algorithm that focuses
on the dynamic texture which is damaged could determine the property of a damaged
texture (i.e. optimal tile size). The input 4D DT’s frequencies and the optimal double
toroid-shaped tile are computed by using the Fourier analysis. Additionally, time properties
are analysed again by a pyramidal Lucas-Kanade optical flow of the whole 4D and Fourier
analysis. Finally, the search for similar patches of the same shape is done together with
and computing the optimal temporal jumps.

Synthesizing part of the approach is based on finding small triple toroid-shaped tiles
which can be used to create seamlessly fill the H of arbitrary size in any spatial and
temporal dimension. The exact location and shapes of triple toroid-shaped tiles can be
improved by the error mask which is usually given by the user but is not necessary for
presented toroidal approach.

Thus the method could be easily modified to synthesise the data to fill the error hole
or replace the unwanted object with newly synthesised texture.

The presumption of toroidal tile shape is (in almost all cases) in contradiction to the
shape of area H to inpaint. This could be easily solved by recomputing the patch in
significantly smaller and restricted area. In fact and with using of some assumptions and
textural property this does not need to be taken as a disadvantage.

On the other hand, the toroidal approach allows reducing the computational time
drastically. Classical intelligent sampling and statistical methods typically try to minimize
cost around the three-dimensional spatial area H, so the amount of method calculation is
therefore dependent on the size of a H. This lead to significantly increasing computational
cost with the H size. Furthermore, as the synthesized area consists from more samples, the
inside borders and patch require their own optimization and thus the methods computa-
tional time depends on both error hole surface and volume. Compared to that, the toroidal
approach computation is only weakly dependent (or complete independent in some cases)
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5. Dynamic Texture Inpaining

Figure 5.2: Inpainting principle illustration.

on H size at all as the computation time is given only by tile size which used multiple
tiles. The all possible hole dependent calculation consists only on a one-off calculation of
the optical flow value and its comparison and outside border error minimization.

The error hole size

The area to inpaint, both artificial or natural, is denoted as H. Usually is visualised as
a black or white area in the dynamic texture visualization in the case or artificial mask
and as a reddish area in case of removing some objects from the scene (see Figure 5.1).
In the particular case of dynamic texture with no mask (as Walk and Daisies) no
mask is shown.

The key H property is, of course, its size. Due to dynamic texture analysis and T
size given by the dominant texture frequency, the optimal tile T could be smaller or
larger than the existingH. In the first case, theH in texture is smaller than the primary
visual part of surrounding dynamic texture. The dominant frequency given optimal tile
could be relatively small in case of very stochastic texture (like water, sand, . . . ) but
relatively large for texture consists of trees of more complex scenes too. In this case,
the set of patches must be used to cover the whole H area as illustrated on Figure 5.2.
The smaller patch size allows utilizing some degrees of freedom - moving with the patch
in both spatial and temporal axis to find the minimal boundary cost. Of course, hence
the combining size of used P is larger then the H and some overlap is created (see
Figure 5.2, the ζ∗ area) In the second case the T is significantly larger than the H and
again, some overlap is created.

Of course, the using only necessary subpart of a used patch is possible (again with
possible shifts) but this, even for well-computed data patches, usually leads to visually
easy recognizable silhouettes (see Figure 5.6 and accompanying videos) . The final

approach is to use Iζ area to find the ˆ̂C between the H inside similar as interior part of
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5.2. Toroidal-Patch Model Adaptation

Figure 5.3: Inpainting by synthesis : Inpainting hole by synthesizing a set of textures (left)
arranged from six patches of two types.

a rectangular tile IT and surrounding dynamic texture. The area and appropriate index
sec could be easily approximated by a rectangular area Irζ = Iζ \ IH. Emphasize that in
this case the presented method partially lost its great advantage of independence to H
size. Moreover, as the proposed test showed, the using of an optimal synthesizing tile
is sufficient, and then the H-optimal patch is not necessary.

The synthesis of dynamic texture to fill the H consists of the appropriate use of the
computed patches Pand to cover it. The main idea is to cover a hole and minimal amount
of patches placed on the three-dimensional tile label lattice. The toroidal property al-
lows covering the H area with a seamlessly consisting texture that sufficiently represents
surroundings dynamic texture with an advantage of the possibility of assembling many
arrangements of tiled tiles (see Figure 5.3).

The H neighbourhood
Lets noteHζ as theH neighbourhood area. The whole rectangular index set Irζ = Iζ\IH
is its more straightforward and rough form and consist of possible unnecessary areas
and could be fitted better.

As the ζ area of a particular Pi is Pζi = P \H. The more suitable Hζ can be defined
as a symmetric difference of H and all used P ’s area: Hζ = H 4 ∪ni=0 P i The desired
bHζc area size is of course minimal with meaning of pixel count.

The error cost then consists similarly like in the transition patches founding approaches
from minimizing the appropriate cut-planes error with a given tile shape. The desired δ∗r
shift is due to (combined) T size with relation to T size limited.
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5. Dynamic Texture Inpaining

Lets denote the rectangular index of H as IH:

IH = (0, . . . , bHch)× (0, . . . , bHcv)× (0, . . . , bHct). (5.1)

The surrounding area in which the tile could occur is then of limited by its original
optimal T size. With relation to IH, the appropriate index set is:

Iζ = (−bPch, . . . , bHch + bPch)
× (−bPcv, . . . , bHcv + bPcv)
× (−bPct, . . . , bHct + bPct). (5.2)

The Iζ is then the neighborhood of the hole H in which the final (possibly combined)
tile shape could be placed to encompass it.

The desired δ∗r naturally could come only from Iζ . Moreover, the only some subspace
of Iζ is appropriate. The desired subspace of Iζ is its left-bottom-front quadrant.

Lets denote the left-bottom-front Iζ− quadrant as Iζ− .

I−ζ = (0, . . . , bHch − bI
T ch × 2)

× (0, . . . , bHcv − bI
T cv × 2)

× (0, . . . , bHct − bI
T ct × 2). (5.3)

or as a Iζ subspace:

I−ζ ⊂ Iζ = (−bPch, . . . ,−bPch + bHch − bI
T ch × 2)

(−bPcv, . . . ,−bPcv + bHcv − bI
T cv × 2)

(−bPct, . . . ,−bPct + bHct − bI
T ct × 2). (5.4)

then the optimal shift searching is based on minimizing appropriate errors:

δ∗r =
∑
∀PBi

arg min
δr∈I−ζ

(
ˆ̂εB
(
Y ,PBi , Iζ , δr

)
+

T∑
j=0

∑
∀Pi

εφ
(
φ̄ (Pr4=t) , φ̄

(
Y[r4=t+δr4 ]

))
· bP ∩ Hc

)
(5.5)

where PB are border patches only, ˆ̂εB is border cut-planes error and εφ is the dynamic
error. Note that εφ should be expected to zero in time-homogenous dynamic texture (as
the all P are representative texture samples). Moreover, the φ̄ values are precomputed,
so their difference estimation is extremely effective. Remind that φ̄ is average optical flow
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5.3. Dynamic Texture Inpainting

vectors and εφ their difference. The bP ∩Hc factor scale the error down for only partially
used patches.

The particular error for cut planes are computed as:

ˆ̂εB(Y ,PBi , Iζ , δr) =
( ∗

εth(Y ,PBi , Iζ , δr, 0) +
∗
εth(Y ,PBi , Iζ , δr, N)

+
∗
εtv(Y ,PBi , Iζ , δr, 0) +

∗
εtv(Y ,PBi , Iζ , δr,M)

+
∗
εvh(Y ,PBi , Iζ , δr, 0) +

∗
εvh(Y ,PBi , Iζ , δr, t)

)
(5.6)

where the particular cut-plane error are computed only if the plane is outside plane or, in
another words, for only unique indices:

ˆ̂εth(P ,Y, T , δr, δs) =
T∑
i=0

N∑
j=0

ˆ̂εi,j (5.7)

ˆ̂εi,j =


0 if δs = 0 ∧ ( ˆ̂Cth

[i,j] − bPch) /∈ Iζ
0 if δs 6= 0 ∧ ( ˆ̂Cth

[i,j] + bPch) /∈ Iζ

ε

(
P[ ˆ̂Cth

[i,j]
,j,•,i,•

],Y[
δP+δ++

[
δs+

ˆ̂Cth
[i,j]

,j,•,i,•
]]
)

, otherwise.

(5.8)

Here, δP is patch location (global indices for the [0, 0, 0] of appropriate Ith) in the appro-

priate texture and ˆ̂Cth is from T . The ˆ̂εtv, ˆ̂εtv, εvh, and ˆ̂εvh are computed in the exact
manner.

An example can be seen in Figure 5.4 where lime, green, pink and violet ellipses mark
the bot verticals and both horizontals cuts. Every color marked cuts is then computed with
distance to appropriate toroidal cuts (lime to green and pink to violet) and the appropriate
color marked area in the Hζ .

5.3 Dynamic Texture Inpainting

The proposed inpainting method (see Figure 5.4) is as follows: Input - obtaining an input
4D DT and given mask (the retained parts are denoted by the mask in blue while the
parts to be removed parts are in red) or computed of one. Double Toroid-Shaped Tile -
the optimal tile computing using FT. The red ovals marks area for vertical toroidal cut,
violet ovals marks area for horizontal toroidal cuts. A set of Double Toroid-Shaped Tiles -
if the mask is given, the double toroid-shaped tile borders are fitted to hole (denoted by
red in input mask). The tiles are (as suggest layered image) propagated through time by
the OF and their exact shape is computed. The color ovals mark corresponding areas for
recomputing the patch borders. Triple Toroid-Shaped Tiles - the set of double toroidal-
shaped tiles are used to find optimal temporal jump (blue circle arrow) and create the triple
toroidal-shaped tiles. The red round arrow denotes the exact continuity of the trimmed
temporally toroidal sample.
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5. Dynamic Texture Inpaining

Figure 5.4: The overall flowchart of the presented DT inpainting method. The straight
blue arrows indicate the procedure of the present method.

The input 4D DT’s frequencies and the optimal double toroid-shaped tile are computed
by using the Fourier analysis, their time properties and pyramidal Lucas-Kanade optical
flow of whole 4D input are analyzed in the parallel pipeline, followed by the search for
similar patches of the same shape and computing the optimal temporal jumps. This
information is used for its generalization to the dynamic triple toroid-shaped tile as in
pure synthesis variant.

The exact location and shapes of triple toroid-shaped tiles can be improved by the error
mask which is usually given by the user but is not necessary for the presented approach.
Usually, we use only rough hand-drawn area which is entirely sufficient for good results.

The static double toroid-shaped tiles are found by the pure synthesis method and later
expanded using DTs optical flow and propagated throughout the time.The tiles are finally
fitted to local dynamics by minimizing the boundary error (5.6) and estimating the optimal
tiles shift (5.5). The specificH cut-planes can be computed in the whole Irζ area in a similar
manner as whole new optimal not-toroidal tile or as a composition of more planes for the
Iζ .

Emphasize that as the H do not need to have similar size in all dimension, the ideally
fitted cut plane could consist of several cut planes for a general nonrectangular Iζ . The
different plane fitting method could be used but as their result are visually problematic
(See Figure 5.6) that approaches are not used in this thesis.

Moreover, with the assumptions that the input data are a homogenous stochastic dy-
namic texture or mix-of-DTs and that the used patches P and so every particular used
patch are a dynamic texture of the same type with the same (or very similar) property
the created output will be consistent DT with the same type. Thus in case of temporal
homogeneity:

εφ → 0 , (5.9)
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5.3. Dynamic Texture Inpainting

Figure 5.5: Randomly placed patched with globally optimal shape: The original DTs
Withered and Cherry (left column) and randomly placed inpainted patches (right
column, marked patches middle column). Both εφ and ˆ̂εB simplifying assumption used.

as the dynamics is consistent thought temporal dimension.
The border error and visually discriminable inpainted part correlates with the increasing

occurrence of complex structures, and hence with declining randomness. For a significant
part of dynamic textures this is satisfied, and thus the tile can be computed globally, and
the exact fitting is not required. Thus, moreover, the

ˆ̂εB
(
Y ,PBi , Iζ , δ

)
≈ ˆ̂εB

(
Y ,PBj , Iζ , δ

)
PBi ,PBj ∈ Sinp , (5.10)

where Sinp is arrangement of patches that cover the error hole. And thus the ˆ̂ε estimation
could by bypassed for very stochastic and selfsimilar dynamic textures.

The illustration of this textural property can be seen in Figure 5.5, where founded
optimal patch are randomly placed to and dynamic texture. Both simplifying cases are
used in both Cherry and Withered. Note that in Withered the first simplifying
assumptions are used very loosely and mostly as an example for the test. Both simplifying
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5. Dynamic Texture Inpaining

cases are not of course mutually exclusive. Note that in the dynamic texture the main
and mostly dominating property is texture’s dynamics and so the similar dynamics of the
inpainted patch and its neighbourhood is crucial.

Typical inpainting problems
Every inconsistency criterion has it own typical manifestation (see Figure 5.6). The

sufficiently synthesized dynamic texture of a patch is, of course, crucial for a suitable in-
painting result. The inadequate texture synthesis results are easy to observe as it is de
facto just replacing one unwanted texture (object) with another. Usually, this criterion is
satisfied. The manifestation of wrongly synthesized texture could be missing or shifted high
frequencies, which are easily recognizable even in still frames. The insufficiently optimized
border error leads to visually easy observable patch location and discontinuity of the dy-
namic texture in both spatial and temporal dimensions even if synthesized texture itself
could have similar textural property. It is important to distinguish between border error
caused by wrongly synthesized dynamic texture (waves DT in Figure 5.6) and sufficiently
synthesized texture with high border error (stairs).

Mostly the border error optimizing is insufficient only in the temporal domain - the
Boat texture (bottom in Figure 5.6) seems to be sufficient and challenging to detect in
the still picture visually, but are easily recognizable as moving silhouette when observed as
a video. This is a typical problem of methods that optimize the patch frame by frame or
do not distinguish between spatial and temporal dimensions. As for the dynamic texture
synthesis, the approach from chapter 3 is used, the essential texture frequencies together
with structural and color property are preserved. Toroid-shaped patches of a suitable size
naturally respect and reproduce the lost frequencies without loss of structural informa-
tion and without the need to adjust the results through an artificial supply of texture
features, estimating parameters and other techniques like ofthomographies [97, 55] which
can enhance the quality of the result.

Local dynamics problems are usually caused by the periodic motion of small objects in
the texture and create the optical flow. Not preserving of the optical flow causes a violation
of G{1,2,3} continuity curves - inconsistencies in dynamics due to the entire image, create a
false optical flow, or abrupt changes in optical flow velocity.
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5.3. Dynamic Texture Inpainting

Figure 5.6: Typical inpainting problems ;The first row left and right respectively: Syn-
thesis fails due to inadequate patch size [97], shifted vertical frequencies [55]. The second
row left and right respectively: temporal distortion and inconsistencies between frames
[77, 26]. Third row: missing high frequencies, inconsistency between frames and moving
mask silhouette [97]. Fourth row: recognizable (better to see in videos) moving mask
silhouette[142].
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The potential maximum number of needed patches c for rectangular IS trivially depends
on the hole and patch area sizes and equals to:

c = cv · ch · ct , (5.11)

ch =


⌈
bHch
bPch

⌉
⌈
bHch
bPch

⌉
+ 1

, cv =


⌈
bHcv
bPcv

⌉
⌈
bHcv
bPcv

⌉
+ 1

, ct =


⌈
bHct
bPct

⌉
⌈
bHct
bPct

⌉
+ 1

. (5.12)

But of course can by lower is the H area is strongly non-convex (see Figure 5.3). The
iterative border patch PBi selection process would lead only to a local optimum. This
greedy approach could naturally lead to a non-optimal solution. The global optimum
can be achieved by the synthesis of all possible P-arrangements S (see Figure 5.3) for
effectivelly minimize (5.6) error.

The detection of a toroid-shaped patch does not require a knowledge of the mask. The
criterion of patch minimal error is trivially minimized for samples consisting entirely from
one single dynamic textures from which the H surrounding consist from. As the rough
tile size and thus even possible arrangement can be known before computing the tiles
itself, the optimal patch tile could be computed can be created concerning the future ˆ̂ε
minimization. Thus using of, even consistent and optimal toroidal, patches from different
dynamic texture occurring in given input (mix-of-texture) naturally broke criterion and are
excluded. Detection of multiple samples and their mutual errors then ensure elimination of
a sample that consists entirely of H. This can be arranged by excluding the H data by its
mask (is exist) and using a positive mask (denoting the source texture for tile computation).
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5.4. Automated DT inpainting

5.4 Automated DT inpainting

The hole or an object to be inpainted is usually given by the mask [55] or segmentation as
the preprocessing is needed. Since presented approach deals mainly with DTs, which must
preserve textural property, these undesirable parts can be roughly detected automatically.
υ,Υ

Presented approach can detect inconsistencies primary due to different optical flow [87].
The 5D optical flow field Φ is used to detect parts of texture with different local dynamics.

The dissimilarity measure Υ detects a measure from a some (small) area ∆p
{r} with

dimensions given by p = [p1, p2, p3] and centered around r to another the most diverging
area ∆p

{r+δr}. φ(∆p
{r}) denotes dynamics of the area and I∆p

{r} its index set.

The dissimilarity measure of an area ∆p
{r} to the rest of Y is basically sum of area-to-area

measures from original to every another area in the texture (with excluding overlaps)

Υ∗(∆p
{r}, Y ) =

M−b∆pcx∑
i=b∆pcx

N−b∆pcy∑
j=b∆pcy

T−b∆pct∑
k=b∆pct

Υ(∆p
{r},∆

p
{[i,j,k]}) , ∆p

{r} ∩∆p
{[i,j,k]} = 0 . (5.13)

The dissimilarity measure Υ between two areas and their corresponding inside dynamics
vectors is defined as:

Υ(∆p
{r},∆

p
{s}) = max



∑
∀d∈I∆p

{r}

υ

Y ,∆p{
r+

(
d−
b∆pc[x,y,t]

2

)},∆p{
s+

(
d−
b∆pc[x,y,t]

2

)}


b∆pc


(5.14)

− min



∑
∀d∈I∆p

{r}

υ

Y ,∆p{
r+

(
d−
b∆pc[x,y,t]

2

)},∆p{
s+

(
d−
b∆pc[x,y,t]

2

)}


b∆pc


,

where υ(Y , r, s) is a measure between Yφr and Yφr . b∆pc[x,y,t] is size vector c = [c1, c2, c3]

composed from three x, y, t values respectively. Yφr is equal to φ(Yr) and therefore to optical
flow vector for corresponding pixel r from dynamic texture Y . Both Yφr and Yφs values are
part of the superstructure areas with the corresponding shift inside. The particular measure
of corresponding pixel vectors is:

υ(Y , r, s) = Yφr ∗ Yφr
max

{∣∣Yφr ∣∣ , ∣∣Yφr ∣∣}
min

{∣∣∣Yφr ∣∣∣ , ∣∣∣Yφr ∣∣∣} , (5.15)
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5. Dynamic Texture Inpaining

r and s are multiindices. b∆pc denotes the size of the used areas, ∗ is a scalar
product. High values of Υ indicate parts with different dynamics than the rest of the
dynamic texture. The equation (5.16) computation between some area and whole rest of
the dynamic texture can be effectively enhanced by Υ computation to not the whole Y
but only to some randomized placed ∆ areas. We usually use Υn = 5 to 7 areas with the
size of ∝ bPc plus forbidding computation of very near (adjacent) pairs which forbids local
similarity in an inpainted area. The 5.16 then becomes:

Υ(∆p
{r}, Y ) =

Υn∑
n=0

Υ(∆p
{r},∆

p
{[randi,randj ,randk]}) (5.16)

randi ∈ < 0, . . . , rx − 2× b∆pcx , rx + 2× b∆pcx , . . . ,M > (5.17)

randj ∈ < 0, . . . , ry − 2× b∆pcy , ry + 2× b∆pcy , . . . ,M > (5.18)

randk ∈ < 0, . . . , rt − 2× b∆pct , rt + 2× b∆pct , . . . ,M > . (5.19)

Emphasize that if the locations of ∆p
{r} regions are randomized and Υ is calculated for

b∆c ∝ bPc sized regions, the automatic inpainting in the resulting DT can leave small
inconsistent areas (see DT Water). The high Υ values suggest that given area should be
inpainted. Due to the Υ distribution, the high and low values are well separated and can
be easily detected (i.e. by moving average and standard deviation abruption). The higher
values are sufficient indicator for inpainting. Since analysis and synthesis are divided an
adjustment of the number of samples can be made with the negligible computational time.
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Chapter 6

Dynamic Texture Similarity Criterion

In this chapter, an overview of presented criterion for comparison dynamic textures is
presented. At first in the section 6.1 the frequency characteristics and analysis are dis-
cussed. Next, in the second section 6.2, the developed criterion model is presented in
its most general form. The adaptation of the criterion to the synthesis problem and the
inpainting problem are in section 6.3. Finally, the criterion is compared to the psycho-
physical test in the last section 6.4 at the end of this chapter.

6.1 Frequency characteristics

There are two typical basic approaches to similarity / recognition / classifying problem
in still texture domain. The first ones focus on pixel-based features and characteristics of
texture and their clustering and their subsequent comparing. The second approach then
focuses on whole texture description as its color, structural, wavelet characteristics etc.

While pixel-based characteristics can be relatively easily extended to more dimensions,
the comparable structural approaches development is notably more complex. The fun-
damental problem in extending pixel-based features is a different property of a temporal
dimension in the first place and a close relationship to the importance of spatial relation-
ships. The computing of metrics frame by frame is also inadequate as this approaches
calculates similarities only in the spatial dimension and lack the temporal property. Even
when computed from the all or several time points (frames) the criterion only approximate
a fully dynamical criterion.

Despite these drawbacks, spatial metrics have their place in calculating the likeness of
dynamic textures. The color shift in the synthesized result, the occurrence (or vice versa)
of noise, and the occurrence of artifacts are cases that are well-detectable by these methods.
Without strictly dynamic metrics, however, their use - as the psycho-physical tests (see
Sec. 6.4) show - is still insufficient.

Moreover, the criterion should have an ability to adapt to human vision system and
take into account the human possibility to recognize and distinguish particular spatial and
temporal frequencies.
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6. Dynamic Texture Similarity Criterion

Contrast Sensitivity To take into account the properties of a human visual system
and its sensitivity to contrast the criterion that suppresses frequencies difficult to obtain
or distinguish is suitable. As the crucial frequency principle is a binary decision-making
process, another method to suppress unwanted and enhanced important frequencies is
desired. As the weighting function which well suited our method the contrast sensitivity
function (CSF) model of Burbeck and Kelly[14] can be used. The factor can be computed
as:

CSF (fs, ft) = 4π2fsft · exp

(
−4π(fr + 2fs)

45.9

)
·

(
6.1 + 7.3

∣∣∣∣log10

ft
3fs

∣∣∣∣3
)

, (6.1)

where ft is temporal frequency and ft spatial frequency without any difference in dir-
ection.

6.2 General Similarity Model

The proposed DT similarity criterion for dynamic textures is based on the three-dimensional
Fourier transformation. As the notion of Fourier transformation properties varies in lit-
erature, the short introduction based on defines notation and terminology used in this
dissertation thesis follows. The Fourier transformation of a function f(x1, x2, x3) finds
the spatial frequencies ξ = (ξ1, ξ2, ξ3). The 3-dimension Fourier transformation for the
f(x1, x2, x3) function can be written as:

Ff(ξ1, ξ2) =

∫
Rn
e−2πi(x1ξ1+x2ξ2)f(x2, x2)dx1, dx2 (6.2)

where the set of all spatial frequencies is called the spectrum. The intensities of one
given frequency is called a magnitude |Ff(ξ1, ξ2)|. The energy spectrum or the power spec-
trum, is symmetric about the origin because |Ff(ξ1, ξ2)| = |Ff(−ξ1,−ξ2)|. The function
f(x1, x2) is the intensity of light at each point (x1, x2). Even when we take x = (x1, x2)
as spatial variable and ξ = (ξ1, ξ2) as frequency variable, the frequency values of ξ is
still strictly related to spatial dimensions of f(x1, x2). Similarly the ξ = (ξ1, ξ2, ξ3) of
f(x1, x2, x3) (of f 3 for simplicity) has only temporal meaning only if the vector ξ has
direction parallel with temporal axis.

There is a natural geometric interpretation of the zero phase condition which will be
often used in this dissertation thesis as important properties of the complex exponential.
For a fixed ξ the equations

ξ1x1 + ξ2x2 = n (6.3)

determine a family of parallel lines in the (x1, x2) - plane. Take n = 0. Then the condition
on x1 and x2 is

ξ1x1 + ξ2x2 = 0 (6.4)
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6.2. General Similarity Model

and we recognize this as the equation of a line through the origin with (ξ1, ξ2) as a normal
vector to the line. Then (ξ1, ξ2) is a normal to each of the parallel lines in the family.

In higher dimensions the words to describe the harmonics and the spectrum are ana-
logous and due the linear separability - the 3-dimension Fourier transformation 6.2 for the
f(x1, x2, x3) function can be rewritten as:

Ff(ξ1, ξ2, ξ3) =∫
R3

e−2πi(x1ξ1+x2ξ2+x3ξ3)f(x1, x2, x3)dx1, dx2, dx3

The harmonics are the complex exponential e±2πix·ξ with n spatial frequencies ξ =
(ξ1, ξ2, . . . , ξn). Again we single out where the complex exponential is equal to 1 (zero
phase), which is when ξ · x is an integer.

In three-dimensions a given ξ defines a family ξ ·x = integer of parallel planes (of zero
phase) in the (x1, x2, x3)-space. The normal to any of the planes is the vector ξ = (ξ1, ξ2, ξ3

and adjacent planes are a distance 1
||ξ|| apart. The exponential is periodic in the direction

ξ with period 1
||ξ|| .

Significant Dynamic Texture Frequencies
The combination of 2D and 1D Fourier transformation is used to detect dynamics of

significant local and global spatial frequencies. Although there is no pure 3D Fourier
transformation, due to linear separability resulting values respond to 3D Fourier transform-
ation. Note that spectral dimension data are solved multiple over the entire detection, and
therefore 4D dynamic texture is taken as an n-tuple of 3D monospectral dynamic textures.

Whereas the crucial part for video similarity perception is its structures, dynamic
behavior[40] the key principle of the presented criterion is to detect spatially significant
frequencies ξ from the set of f 2 and observe their behaviour by another Fourier analysis
eq. (6.2). This behavior is mainly described by a complex exponential with the normal ξ
with dominant temporal component ξ3. Components ξ3 similar to ξ1,2 are less significant
due to combining spatial and temporal directions.

Because of the separability of the individual vectors information and for simplicity of
computational model the harmonics with unit normal vectors ξ̂ are projected to ξt with

only temporal dimension. In other words, the any given ξ̂ is represented by nearest ξ̂t ‖ t,
t = (0, 0, 1), where the distance d between (ξ1, ξ2, ξ2) and (ξt1, ξ

t
2, ξ

t
2) is defined as standard

L2 norm in R3 space:

d(ξ, ξt) = ||ξ + ξt|| =
√

(ξt1 − ξ1)2 + (ξt2 − ξ2)2 + (ξt3 − ξ3)2 (6.5)

The set of all unit vectors ξ̂ are denoted as Ξ̂. The Ξ̂t then denotes all unit vectors
ξ̂ ‖ t, t = (0, 0, 1). In order to try to separate the key frequencies

˜̃ξ ∈ ˜̃Ξ
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6. Dynamic Texture Similarity Criterion

from the information unnecessary for the similarity finding process, it is possible to neglect
certain spatial frequencies ξ. It is oblivious that the noise frequencies are not necessary,
but moreover, there are many other which can be omitted with maintaining the criterion
efficiency. The group of spatial frequencies

Ξg = (ξ1, ξ2, . . . ξn)

can be roughly represent by the centroid vector ξc, or more efficiently by ˜̃ξ where the
|Ff(ξ1, ξ2)| is maximized thought all grouped cluster vectors.

Provided there is a group of representative normal (unit) vectors ξ̂ we assume a new

harmonic ˜̃ξ. Note that obliviously the

˜̃Ξ ⊂ Ξ̃t.

This strongly simplifies the criterion evaluation with negligible loss of generality.

The crucial frequency
Whereas the harmonics set expresses the behavior of one spacial frequency alongside
temporal dimension, it is essential to use only those harmonics that carry essential visual

information ( ˜̃ξ). Only if the spatial frequency temporal behavior can be considered as
significant, it should be used in the criterion. Note that the significant frequencies
designation characterises the given frequencies through all the compared DTs (i.e., Ys
and Yc). In other words, when a specific spatial frequency shows high magnitude values
and is therefore crucial for the reconstruction of a given dynamic texture, this particular
frequency and its time behavior are used for comparison.

Of course, not only the ˜̃ξ harmonics carry the necessary information. One can admit
that even information about non-occuring spatial frequencies can carry a considerable
amount of information, but with respect to the general aspect of image processing and
it Fourier transformation usage, we consider this information as a complement to strong
frequencies.

There are many problems in crucial frequency determination: How to separate cru-
cial and inessential frequency? What values of magnitude should be included in these
groups? Should be the priority the spatial frequencies distribution or magnitude val-
ues maximization? Also, how many harmonics are sufficient to represent the dynamic
texture for the comparison?

For now let’s just suppose that there is significantly smaller number of ˜̃ξ �MN ≈
w log2(MN). For more detailed analysis and testing, see next chapter.
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6.3. Criterion model

Figure 6.1: The similarity criterion computation flowchart.

6.3 Criterion model

The DT similarity criterion is based on the comparison of harmonic frequencies time series
related to significant spatial frequencies in the compared dynamic textures (Figure 6.1).
Let’s denote a set of harmonics (of Ys or Yc DT) ξζ,•Y for δ spectral band:

ξζ,•
Y δ

=


∫
R1 exp{−2πix3ξ3}F{f δ(ξ1, ξ2)} dx3 , |F{f(ξ1, ξ2)}| ∈ ˜̃Ξ

0, |F{f(ξ1, ξ2)}| /∈ ˜̃Ξ

(6.6)

Figure 6.2: Harmonics ex-
ample: Original and syn-
thesized frequencies illustra-
tion. The vertical axis de-
notes magnitudes; the ho-
rizontal axis picked crucial
harmonics.

where ˜̃Ξ is defined as wf log2(NM)-th largest vales from
Yc ∪ Ys. • denotes all corresponding index values (e.g.,
temporal frames) and ζ = (ξ1, ξ2) is some fixed spatial fre-
quencies ξ1, ξ2. wf ≥ 1 is the parameter set to speed up the
process and to better separate the noise from crucial spatial
frequencies. We set experimentally this value to wf = 2
to 3. Recall that due to steadily growing audiovisual data
resolution, this step sharply reduces the criterion of compu-
tational time complexity. From now, takes an illustrative
example in Figure 6.2 of 10 computed crucial frequencies
(horizontal axis) with magnitudes from 0 to 255 (vertical
axis) from original and synthesized dynamic texture.

Whereas the harmonics set expresses the behavior of one
spacial frequency alongside temporal dimension, it is essen-
tial to use only those harmonics that carry essential visual
information. If the spatial frequency temporal behavior can
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6. Dynamic Texture Similarity Criterion

be considered significant, it is used in the criterion. Note
that the significant frequencies designation characterizes the given frequencies through all
the compared DTs (i.e., Ys and Yc). This detection ensures that the missing or modified
frequencies in the synthesized texture are detected and evaluated.

Now with the rough knowing of ˜̃ξ characterisation let us denote general function with
a measure L between two DTs Ys and Yc as:

↑ ΘL
Ys,Yc =

∑
∀δ

∑
∀ξ1∈Y δs ∩Y δc

∑
∀ξ2∈Y δs ∩Y δc

θξ1,ξ2
Y δs ,Y

δ
c
, ∈ 〈−NMδβ; 0〉 , (6.7)

where ↑ is the desired value orientation, β is the Fourier transformation maximum, θξ1,ξ2
Y δs ,Y

δ
c

for a δ spectral band is:

θξ1,ξ2
Y δs ,Y

δ
c

= −M δ
x3

(F{fx3(ζ)}) |L(ξζ,•
Y δs
, ξζ,•
Y δc

)| , (6.8)

where Ys and Yc are source and comparison DTs, respectively. L(u, v) is the measure
between impulse characteristic u and v (a distance between two harmonics sets) like eq.
(6.12), (6.13) or(6.14). Mx3(γ) is a function which return the maximal value for the argu-
ment vector γ and scale value to the range 〈0; 1〉 over all frame’s maxima. ΘYs, Yc is a
set of all measure values θ•,•Ys,Yc between DTs Ys, Yc across all spatial frequencies. Phys-

ical meaning of θξ1,ξ2s,c represents different dynamics of the spatial frequency ξ = (ξ1, ξ2),
i.e., periodicity and magnitude variability between textures Ys and Yc. The M function
could be substituted by a different function that reproduces human visual sensitivity as i.e.
CSF (ζ, x3).

Figure 6.3: Raw frequen-
cies example: difference and
absolute values (6.10) illus-
trated. Vertical axis denotes
magnitudes, the horizontal
axis picked harmonics.

Emphasize that the Lθi, jYs,Yc is taken as negative to
preserve the definition of similarity meaning of criterion
and therefore the maximization criteria. For the purpose

of comparing the effectivity of ˜̃ξ determination the equation
6.7 for whole Ξ̂ set of appropriate harmonics.

The harmonics ˜̃ξ or more precisely the distance function
values between them are then weighted by the function M()
which correspond to human perception and further emphas-
ize the substantial difference frequencies.

The M calculation optimization
Understanding what frequencies are crucial for texture
comparison, of course, should not be taken simply from
a statistical point of view. The order of statistical and
human perception criterion enhancements is questionary.
The alternative description of equation 6.6, which could
look as:

θi,jYs,Yc = −|L∗(Mζ(ξ
ζ,•
Ys

),Mζ(ξ
ζ,•
Yc

))| . (6.9)
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6.3. Criterion model

Clearly the explicit version of the perception enhancement in eq. 6.6 involve less com-
putational time. Again, for now just suppose that M is function takes value from 0 to
1 with relation to human perception of particular time / space frequency. Moreover,
the CSF (ζ, t) (6.1) can be used to emphasize the visually important frequencies.

For the most general case (Figure 6.3) of computing dynamics similarity between two
arbitrary textures the most simplest form of metrics has form of:

Lσ(ξζ,•Ys , ξ
ζ,•
Yc

) =
∑

∀ξ3∈Ys∩Yc

lσ(ξζ,ξ3Ys
, ξζ,ξ3Yc

) , (6.10)

lσ(si, ci) = |ci − si| (6.11)

where ci and si are i-th values from the given harmonics ξ. This effortless distance
has an advantage of simplicity, metrics definition and above all physical significance. Many
textural metrics (let us mention them, for example, STSIM) have poor or no exact physical
relationship.

The physical meaning of θξ1, ξ2
s,c without weighting represents pure different dynamics

of the spatial frequency ξ = (ξ1, ξ2), i.e., periodicity and magnitude variability between
textures Ys and Yc. The values are directly dependent on image representation and in the
most usual and general are from −255 to 0, or in the little readable form −θξ1, ξ2

s,c from 0
to 255, where the value has physical meaning of the sum of differences between harmonics
set per impulse. The any given value of the distance can be directly interpreted.

Another clear advantage is the probability distribution of values directly related to the
input textures and thus the whole range of values.

Lost frequencies
When the eq. 6.10 interprets the harmonics distance in its purest way as the absolute

difference; there are another and more interesting ways to distinguish the dynamics that
can occur in the compared dynamic textures.

Figure 6.4: Lost frequencies
example: Difference of abso-
lute values (6.12)

For the purpose of comparing dynamic textures where
one was created by a modification of the other and thus it
shares major common part of the criterion function, some
additional information can be obtained.

Let us assume that we have two dynamics textures - the
synthesized dynamic texture Ys and original source texture
Yo. The dynamic texture Ys was created by modifying the
original DT Yo.

The loss of information between the synthesized dynamic
texture Ys and the original dynamic texture Yo can be
expressed concerning dynamics as the absence of some spa-
tial/temporal frequencies (see Figure 6.4) which thy syn-
thesizing / modeling approach is not able to articulate. This
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6. Dynamic Texture Similarity Criterion

particular case can be caused, for example, by inappropri-
ate sample or insufficiently learned the model and is very
common. The HPS consequence of this is a loss of structure, missing sharp edges and
details, as well as low frequencies that DT synthesizing methods are unable to represent.

The lost frequencies, both spatial and temporal, term is:

Llost(ξζ,•Ys , ξ
ζ,•
Yc

) =
∑

∀ξ3∈Ys∩Yc

ll(ξζ,ξ3Ys
, ξζ,ξ3Yc

) , (6.12)

ll(si, ci) =

{
si − ci if si ≥ ci

0, otherwise
,

where si (original) and ci (compared) are i-th values from the given harmonics ξ.

False frequencies
However, due to synthesis or inpainting methods, some other phenomena that reduce

visual quality of the synthesized DTs exist. The problem is not the missing information, but
false frequencies introduced by these methods and not related to the original texture. False
synthetic DT periodicity is visually disturbing the perception of the quality of DTs. This
is the apparent repetition of the same samples as well as the visible boundaries between
data samples from which the new texture composed.

Figure 6.5: False frequen-
cies example: difference and
absolute values illustrated.
Vertical axis denotes mag-
nitudes, the horizontal axis
picked harmonics.

Problem is not always the frequency variation made
by the method. The missing information computed as
Llost(ξζ,•Ys , ξ

ζ,•
Yc

) is not the only problem that can occur.
The missing information problem is often directly caused

by the used method and not by the input dynamic texture.
That approach determined phenomena reduce visual quality
of the synthesized dynamic textures and are manifested as
false edges, step color changes, etc. Often these phenomena
may be described as a violation of G0 or C0 continuity in
both spatial and temporal dimensions.

The problem is therefore not the missing information,
but false frequencies (see Figure 6.5) introduced by these
methods and not related to the original texture. Usu-
ally, this method determined unfaithfulness information are
manifest themselves as false periodicity and homogeneity
violation.

In relation to the name of the equation (6.12), it can be
named as false frequencies of approach determined frequen-

cies. For the sake of simplicity (and as a complement to eq. (6.12) the first term will be
used here.
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The false frequencies, both spatial and temporal, term is:

Lfalse(ξζ,•Ys , ξ
ζ,•
Yc

) =
∑

∀ξ3∈Ys∩Yc

lf (ξζ,ξ3Ys
, ξζ,ξ3Yc

) , (6.13)

lf (si, ci) =

{
ci − si if ci ≥ si

0, otherwise
.

Here it is good to remind that the newly created false frequencies are harmonics e±2πixξ

with normal ξ = (ξ1, ξ2, ξ3) where ξ(1,2,3) varies to any combination as the patches are
Rn space with noticeable error (which are usually minimized by the synthesizing method).
Thus Lfalse(s, c) can be efficiently computed on any harmonics ξx1,x2,x3

Y from which we,
for simplicity and to streamline the computation process, pick ξζ,•Y and ξx1,x2,x3

Y where
x(1,2,3) are maximized mutual value difference (i.e., ξ yielding an oblique harmonics).

In the most frequent case the false repetition is caused by an inappropriate patch (which
are usually easy to recognizable), unstable or inadequately learned synthesis model, etc.

The inadequate tile size or using of only one patch is the most obvious example: If
there is only one patch (even tileable one), the repeating pattern could be easily noticeable
even if there are no visually recognizable patch border which could which would reduce
the visual quality of the result. Even when the repetition is due to texture stochasticity
hard to observe in image space, the peaks are in Fourier frequency space are - comparing
to original texture - noticeably easier to observe.

Combined measure
Both methods (6.12), (6.13) complement the absolute difference in texture behavior and

allow more accurate behavior comparison of different DT synthesis approaches and more
detailed analysis of their weaknesses and strengths.

In the proposed criterion we use their combination:

Lα(ξζ,•Ys , ξ
ζ,•
Yc

) = αl L
lost(ξζ,•Ys , ξ

ζ,•
Yc

)

+αf L
false(ξζ,•Ys , ξ

ζ,•
Yc

) , (6.14)

where αl and αf are weight parameters between 0 and 1. After our extensive tests, it
seems that for the purpose of computed similarity of DTs the values of αl = αf = 1 are
sufficient. For applications comparing the original and modified (synthesized or inpainted)
textures the parameter αl seems to be more important and determining, thus αl ≤ αf .
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6.4 Psycho-Physical Test

Whereas quality criteria try to emulate human perceptions, it is necessary to verify them.
Thus any computed similarity criteria must be compared to human perception. Unfortu-
nately, this requires tedious psycho-physical experiments.

The psycho-physical test should be ideally performed in a controlled environment under
the supervision of the presenter. Of course, the other form of testing could be done -
i.e. testing on participants own PC in their similarly as the test performed by Haindl
and Kudělka[58]1. In these cases, of course, the different variants of the environment
(surrounding objects, lighting, etc.), hardware, and much more needs to be taken into
account.

Because the DT compression is one of the critical factors for DT inpainting test, it is
optimal to perform a test on uncompressed data. Unfortunately, the data amount produced
by current resolution in uncompress form are difficult to handle in a remote test. The use
of compression methods leads to blurring of sharp edges (both edges in the image and
especially edges between the original and synthetic parts of DT). The similar effect occurs
in downsampling the resolution. The using of compressed or downsampled dynamic texture
for test leads to biased evaluations, often deflected in favour of modified data, in which the
adjustment is less pronounced.

For our tests, participants should always compare the data in maximum quality and res-
olution undiminished. For comparing with another method, dynamic textures resolution2

will be downsampled from full resolution to reproduce the similar artifacts and texture
quality or alternative methods.

For a proper comparison of inpainting methods, two test with a different setup is
suitable. First suited to evaluate the ability to determine the border and the second test
with a goal to rank the inpainted result:

Blind test For blind tests, participants should rate the displayed dynamic texture by its
visual quality and whether it contains or does not contain obvious interference, retouch or
artifacts. The used scale from 0 to 5, is suitable and sufficiently detailed. The maximal
values 5 denotes the highest quality of the presented DTs. As a control mechanism, the
original dynamic textures without any editing or inpainting is appropriate to be added to
the evaluating process.

Informed test In the informed tests, the same set of dynamic textures should be used.
Unlike the blind test, additional information should be presented to participants. This
information consists of original dynamic textures and the corresponding masks thus parti-
cipants can directly compare changes in the presented results.

1Texture fidelity benchmark: (http://tfa.utia.cas.cz)
2which are very often downsampled - i.e. from 720×576 to 174×130 or published in loss formats such

as MPEG
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6.4. Psycho-Physical Test

Figure 6.6: Informed psycho-physical tests arrangement for DT Boat: The source data -
used masks and original textures - are in the left column in the top to down order. The
two possible output of an inpainting algorithm is shoved in the middle and right column.

To obtain a direct comparing ranking, two dynamic textures result can be simultan-
eously presented. If results from more inpainting methods exist, the all pair combinations
should be presented and evaluated. To ensure the blindness of the test, the presented
dynamic texture pairs should be randomly placed on the left / right sides. The designed
arrangement can be seen in Figure 6.6.
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Chapter 7

Dynamic BTF

The bidirectional texture function is currently the best visual texture representation of
various textured materials which can be simultaneously modeled and acquired. The process
of BTF measuring is time consumable, but the results are currently the most high-end and
physically correct surface materials appearance modeling. Above all, the adaptability of
the model to the illumination conditions is extremely wide. This short chapter consists of
a BTF and DT model combination demonstration (see Figure 7.1).

The short BTF model property overview is in the first section 7.1, while the dynamic
bidirectional texture function and using of a proposed toroidal model editing capabilities
to synthesize is discussed in the second section 7.2.

Figure 7.1: DBTF : Examples of a DBTF texture, different frames from the same sequence
with varying illumination presented.
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7. Dynamic BTF

7.1 Biderectional Texture Function

The BTF model is a 7-dimensional model, subspace of a more general BSSRDF model.
Remind, that the 7-dimensional multispectral function is defined as:

Y BTF
r = BTF (ς, x, y, θi, φi, θv, φv) , (7.1)

where ς is spectral index, x and y are planar coordinates. ωi = [θi, φi] is illumination
direction and ωv = [θv, φv] is viewing direction. Y denote a random field (true unobservable
image) for pixel r.

The BTF data acquiring is a lengthy, complex and complicated process resulting in a
huge data set. For example, single texture measurement on the University of Bonn setup
consists of 6561 (a combination of 81 view (ωv) and 81 illumination (ωi) source position)
multispectral images.

7.2 Dynamic Biderectional Texture Function

For the desired DBTF model the BTF can be then taken as generalised DBTF model with
the assumption of time dimension as a constant. The whole BTF image space is then
subspace of DBTF model:

Y BTF = Y DBTF
•,•,•,•,•,•,•,t (7.2)

where t denotes an observing time. The whole dynamic BTF model is then defined as:

DBTF (ςi, x, y, θi, φi, θv, φv, t), (7.3)

with a clear relationship to BTF model:

BTF (ς, x, y, θi, φi, θv, φv) = DBTF (ςi, x, y, θi, φi, θv, φv,Ø). (7.4)

where Ø denote missing index. Recall, that the dynamic texture is in its simplest form
defined as:

Y DT
r = DT (ςi, x, y, t) , (7.5)

Similarly, the direct extension of a BTF model (1.5) to temporal domain as combination
of BTF and DT model leads, due to compliance parameters ς, x, y that are shared by both
models in the exact same meaning, to the resulting DBTF 8-dimensional model which can
be suited as:

DBTF (ςi, x, y, θi, φi, θv, φv, t) , (7.6)

where ς is spectral index, x and y are planar coordinates. ωi = [θi, φi] is illumination
direction and ωv = [θv, φv] is viewing direction. The t parameter is again a newly added
temporal dimension index.

The measures are then stored as the set of classical rectified original measurement
(frames) with possibility to convert them into set of apparent BRDF:ABRDF[r,t](θi, φi, θv, φv).
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7.2. Dynamic Biderectional Texture Function

As this dissertation thesis recommends to address dynamic texture as 5-dimensional
function with specifically designated dynamic dimension as a representation of high-order
texture inner dynamics, the function 7.9 becomes to:

DBTF (ς, x, y, θi, φi, θv, φv, t, %d) , (7.7)

where vector % denotes the appropriate dynamic, namely, i.e. optical flow vectors.

DBTF Measuring
The crucial problem of acquiring a suitable DBTF data is, of course, demanding meas-

urement. The BTF measuring itself is a very complex process which is furthermore com-
plicated due to an assumption of a homogenous dynamic process.

The inability of a natural dynamic texture deterministic behaviour through all meas-
urements complicates the whole data obtaining process as the dynamics is usually supplied
artificially by any sort of a proper device (of course, the artificial dynamic texture with
deterministic behaviour is also possible, but usually is not our object of interest).

Inasmuch as the measurement is an iterative process, the sample is different for every
measure. Moreover, every measurement takes a significant time. The possibility of obtain-
ing more measurement simultaneously is theoretically possible, but extremely complicated
(currently, BRDF simultaneous measuring is possible).

The problem of varying subject form, however, is only apparent as the texture is defined
as the random realisation of a stochastic field with unvarying parameters. So, with the
textural assumptions applied to dynamic texture temporal dimension the samples of a
dynamic texture (and thus even dynamic BTF) are defined as the same texture (even
different realisation) as the dynamic texture are seen as generative video model defined by
a random processed with some observed variable and hidden variables[27].

Therefore, if an (artificial) dynamics has constant properties through whole measuring
process, all samples, even obtained in the different time, can be considered as one dynamic
texture.

Interestingly, the constant properties of a dynamic process source can be defined as a
hidden f process, which defines the texture inner dynamics. The general multidimensional
function f thus generate the texture dynamics:

BTF (ςi, x, y, θi, φi, θv, φv)
f(κ)−→DBTF (ςi, x, y, θi, φi, θv, φv, t, %i) , (7.8)

The dynamic BTF whose dynamic properties vary but has the same structural data can
be therefore defined in a more general way as varying dynamic DBTF:

VDBTF (ς, x, y, θi, φi, θv, φv, t, %i,f(δi)) . (7.9)

The general dynamic generative function f with hidden vector parameter κi is then, i.e.
fan wind and δ the direction, wind strength etc. The f function can then define the
high order and long-term dynamics property and can be understood as generative and
determining function for dynamic texture transition function in temporal meaning. For
example, temporal transition textures between two stable states (e.g. strong wind and
weak wing, or raining process) can be modeled this way.
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7. Dynamic BTF

Approximate DBTF modeling
Whereas a moderate precision measurement of one single material made by controlled

robotic arms with camera and light source can take around one terabyte, the amount of a
dynamic material represented by a dynamic BTF, therefore, increases significantly. Even if
the temporal dimension length can usually be noticeably smaller then a spatial resolution,
the amount of data is considerably tremendous.

The amount of data and problematic comprehensive measurement leads to use an ap-
proximate model, in which only noticeably smaller subset of a ωi and ωv are used.

Moreover, the BTF measuring problem caused by self-occluding is even more significant
in dynamic materials. Especially in the case of extreme low angles of view, the distortion of
the given dynamic texture is due to a non-planar material plane problematic and excludes
the simple approximation of values.

The using of additional information as a measured and registered depth map can be
used to produce a slightly better result, i.e. by utilizing the displace mapping algorithm.
The depth map could be used as an additional spectral plane to archive better suited
toroidal tile and patch. The methods that blur the sharp edge can be utilized.

DBTF modeling
The utilizing of a proposed toroidal model to a DBTF material is similar to a BTF

synthesizing process and DT editing process. The set of measured dynamic textures are
labelled by with appropriate ωi and ωv. The optimal triple toroidal tile is found in a
primary dynamic texture (say sample with ωv = [0◦, 0◦] and ωi = [45◦, 0◦]) and propagated
to secondary measures or can be computed as a compromise solution. The appropriate
sample is then applied to a desired location in the rendered scene.

The problem occurs when the scene illuminance r observing direction is varying. The
temporal length of a used triple toroidal patches limits the angular speed of the light source
and even the viewing direction. The angular speed

ω =
dφ

dt
(7.10)

with respect to the texture plane is directly limited by a sample density and patches
length, t denotes time and φ an angle. As the only sparse measurements are performed
the maximal illumination and viewing angle changes are defined as:

ω ≈ g · bPct , g ∈ N. (7.11)

If the ω are not linear dependent to a bPct value, the dynamic texture transition is inac-
curate. Obviously, the visualization expected error measure can be described as:

εω = ||ω| − g · bPct| , g · bPct < ω < (g + 1) · bPct , g ∈ N (7.12)

and should be minimized.
The simple example of modeling a dynamic texture measured under varying illumin-

ation condition and arrangement from measured texture patches is demonstrated in Fig-
ure 7.2.
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7.2. Dynamic Biderectional Texture Function

Figure 7.2: DBTF assembly illustration: Illustration of applying a dynamic texture to a
cylindrical object. The three dynamic texture samples obtained in the different illumin-
ation are put together to cover the object. The normal maps illustrate the angle to the
illumination source.
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Chapter 8

Dynamic Texture Database and
Criterion Validation

This chapter consist of two main parts both closely links to previously presented inpainting
method and dynamic texture similarity criterion. At first section 8.1, the created dynamic
texture database dismantled with a comparison to existing one, namely and primary Dyn-
Tex database is presented. Next, in section 8.2, the database is used to compare results
and validate the Spatiotemporal Fourier Transformation Criterion which was presented in
the previous chapter.

8.1 Dynamic Texture Database Subset

As an excellent, inspiring material, the widespread and often used DynTex[104] database
class labels could be used. The database offers three classification benchmarks dataset of
dynamic textures with various length measured under varying conditions including camera
span, zoom, and different weather but unfortunately only in PAL resolution. Most DynTex
textures are in three occurrences per each class, and current database contains over 650
sequences while covering the wide texture classes as flowers, water, fountain, foliage, flags
and many others. For used datasets the classes can be seen in Table 8.1:

Table 8.1: DynTex database classes

Dataset Clases

Alpha Sea Grass Trees
Beta Sea Vegetation Trees Flags Calm Water

Fountain Smoke Escalator Traffic Rotation
Gamma Flowers Sea Naked Tree Foliage Escalator

Calm Water Flags Grass Traffic Foutains
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8. Dynamic Texture Database and Criterion Validation

Figure 8.1: Class Calm water

Figure 8.2: Class Flower

The illustration of DT types Calm water and Flower an be seen of Figure 8.1 and
Figure 8.2. Usually, every class contains tens of textures. All three datasets consist almost
650 textures with various length, camera move or level of detail.

Database Description Four our database we consider setting which is considered as
optimal for presented method test but can be used in many other approaches. The basics
of technical settings parameters are:

◦ resolution at least FullHD (1920 × 1080),

◦ using of stative (no handshake),

◦ no camera move,

◦ manually fixed focus,

◦ manually fixed exposure and ISO,
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8.1. Dynamic Texture Database Subset

Figure 8.3: Representative selected frames from several Grass

◦ manual color balance,

while the main reason is to measure the maximal amount of data with the same parameters.
For the validating purpose and to test of presented inpainting and synthesizing method

it is optimal to satisfy not only given technical parameters but to focus on parameters
of dynamic textures themselves. The more shots of the same dynamic textures, more
measures with different dynamics and luminance etc. is then needed. Varying parameters
allow for the extensive test of various modeling methods and its robustness.

The other appropriate parameters for build database should consist of:

◦ more measures of one particular dynamic texture,

◦ sufficient distance to take into account the specific texture dynamics,

◦ the dataset should consist of visually similar textures, yet with different dynamics

◦ the database should contain textures with pronounced (strong wind, rain) and low
dynamics as well as textures with similar dynamics (directional wind) but very dif-
ferent structure.

Figure 8.3 illustrates representative measured subset of types GRASS and FOLIAGE
DTs. Note i.e. DT 11 and 33 as a textures with similar structure, but very different
dynamics. Our whole database consist of 1751 dynamic textures with duration of from
twenty second at least one minute.
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8. Dynamic Texture Database and Criterion Validation

8.2 Spatio-Temporal Fourier Transformation
Criterion Validation

The dynamic texture database and its classes were used to spatio-temporal Fourier trans-
formation criterion presented in the previous chapter. It is clear that just like a slightly
edited dynamic texture (i.e. by inpainting) should be very similar to the original dynamic
texture, the value of similarity of textures belonging to the same class should be noticeably
higher than for textures outside this class. So the ratio between inter-class and intra-class
similarities could be used to cross-validate the criterion definition (or alternatively to de-
termine the class consistency). Again note, that for the purpose of this dissertation thesis
the primary and crucial property of a dynamic texture is its dynamics.

Lets remind that the similarity based on spatio-temporal Fourier transformation cri-
terion between two given dynamic texture Ys and Yc with specific metric L is denoted
as:

ΘL
Ys,Yc ,

and similarly, with notation of any given dynamic texture class (i.e. FOUNTAIN) as FY ,
the similarity between two dynamic texture class A and B expressed as simple sum of all
perticular dynamic texture similarites:

ΘL
AY,BY =

1

|AY||BY|
∑
∀i∈AY

∑
∀j∈BY

LθAYi, BYj , (8.1)

where |AY| and |BY| denotes number of a texture in classes A and B.
Recall, that the scrips notation are organised for any function α as

method label
spaceα

metric
key ,

where metric is used metrics between harmonics sets, space is set of all used DT classes,
method label usually denotes what is measured / computed and key is the particular rel-
evant dynamic texture. The small greek case and upper greek case note if a key is one
texture or set o textures.

More comprehensive with using of • notation the similarity between classes could be
written down simply as:

ΘL
AY,BY =

∑
• θ

L
AY•,BY•

|AY||BY|
. (8.2)

The weighted value of the intra-class similarity is then

intra
Y ΘL

AYs = ΘL
AYs,AY•\s =

1

|AY|
∑
•

θLAYs,AY•\s . (8.3)

Since • denote all possible value of given variable or all elements of a set, •Y denotes a
set of all DT classes and •\AY a set of all DTs classes other than A. Consequently •\AY•
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8.2. Spatio-Temporal Fourier Transformation
Criterion Validation

denotes all DTs from all classes excluding A. The sum of similarities of one DT AYs from
given class A to all DTs in all other classes is then the inter-class similarities is:

inter
YΘL

AYs
= ΘL

AYs,•\AY• =
1

|•\AY•|
∑
•

θLAYs,•\AY• . (8.4)

The ratio of similarity values between one particular DT AYx from a given class labeled by
A to all other DTs in every class (for simplicity suppose the same class size) is then ratio
between intra-DT class similarity values and inter-DT class similarity values:

ratio
•Yψ

L
AYs = ψLAYs,•\AY• =

|AY•| − 1

(|•Y| − 1)|AY•|

∑
• ΘL

AYs,•\AY•∑
• ΘL

AYs,AY•\s

. (8.5)

The overall inter-class average ratio can be subsequently express as:

overallΨAY =
•
Ψ
AY

= ΨAY,•\AY• =
1

|AY|
∑
∀s∈AY

ratio
Y ψLAYs =

1

|AY|
∑
•

ratio
Y ψLAY• , (8.6)

or precisely, but more cryptic with two-level •• notation as:

•
ΨAY = Ψoverall

AY =
∑
•

L
Yψ

ratio
AY• =

1
AY

∑
••

|AY•| − 1

(|•Y| − 1)|AY•|

∑
•
LθAY••, •\AY•∑
•
LθAY••, AY•\s

. (8.7)

(8.8)

The total mean ratio can be therefore express as :

••
Ψ = Ψtotal

•Y =
∑
•

Ψoverall
•Y =

∑
••

L
Yψ

ratio
•Y• =

1
•Y
∑
•••

|•Y•| − 1

(|•Y| − 1)|•Y•|

∑
•
Lθ•Y••, •\•Y•∑
•
Lθ•Y••, •Y•\s

. (8.9)

(8.10)

The ratio values ψ = 1 represent extremely similar dynamics or dynamics that is
unrecognizable by our criterion.

Since our criterion does not acquire absolute values smaller than 1, the ratio ΨYs,Y• > 1
determines significantly higher mutual similarities of the intra DTs than similarity to DTs
from other classes. Thus the overall ΨYs,Y• > 1 should be maximized to achieve the highest
classes discriminability.

Let us mention that in some significant cases, the ratio of the distance of values may
be less than 1. These cases are usually caused either by different dynamics (e.g., leaves
versus branches, lee, etc.) within the DT or by the texture being composed of multiple
DT textures.

8.2.1 Subclasses criterion validation
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8. Dynamic Texture Database and Criterion Validation

Figure 8.4: Illustration of randomly
chosen sub-parts of four DTs. Three
sub-parts of each DT are marked and
used to the validation experiment.

Suppose, that every texture is random field real-
isation with given parameters. Then even vaguely
defined dynamic texture classes should have similar
parameters. Hence the proposed criterion is defined
as similarity it is obliviously maximized for identity.

Since each texture is a random field realisation
with some given parameters, which is homogeneous
in both spatial and temporal domain, the texture
property from any texture subparts should be re-
markably similar but not identical. With respect of
this fact, any given dynamic texture can be seen as
its concrete dynamic texture class and its sub-parts
as textures belonging into (note that the sub-parts
should have similar size due to due to possible vari-

ations in texture scale).
So for the validation test, the given amount of small randomly placed dynamic texture

sub-parts were extracted from every used dynamic texture. Every dynamic texture is then
taken as its own dynamic texture type and texture sub-parts as a concrete dynamic texture.
As the input DTs (or classes for this purpose) are homogenous texture, the requirement of
a consisting property is trivially satisfied.

As a source for used dynamic textures, the class GRASS was chosen as an example and
typical class with the most dynamic textures and the most differing dynamics realisations.
The several sup-parts from chosen high-resolution textures can be seen in Figure 8.4.

The illustration of the sub-parts similarity values and used sup-parts is on Figure 8.5.
The single values inside textures represent the inter-texture similarities and intra-texture
similarities ratio and then express the similarity of every particular texture to all other
textures. Clearly, the Daisies texture (on the left) is different from most another DTs.
On the other side, the Grass textures are more similar to all other. The paired values
then represent direct ration between two textures (exactly the all-to-all sub-part similarities
ratio) with an order of top-left and left.right. Then the similarity from Daisies DT to
bottom Grass DT is 1.590 and subsequently the ratio from bottom to right Grass texture
is 1.093.
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Criterion Validation

Figure 8.5: Visualization of similarity ratios between four grass DTs : Values of Ψj
Ys,Yc

are
indicated by arrows. The upper inter-value ratios are registered in top to down and left
to right order while the bottom numbers are the opposite directions. Values near circular
arrows indicates overall ΨYs,• ratio between inter-DT and all intra-DT similarities. Total
ratio Ψ•• = 1.2725.
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Chapter 9

Main Results

9.1 Dynamic Texture Model

Figure 9.1: Synthesised fireA examples : The set-of-cuts method is used.
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9. Main Results

Figure 9.2: Original of DTs FireA, FireB and FireC
.

The proposed dynamic texture model shows the ability to model suitable and visu-
ally plausible dynamic textures. Here, representative frames from synthesized results are
showed. Step between showed frames is at least 10 frames in every sequence. Examples
of representative frames of a natural dynamic textures are shoved in Table 9.1. The last
column of a table demonstrates that method could synthesize result from input consisting
of more DTs. Figure demonstrates model ability to adapt to optical flow and enlarge DT in
all dimensions. Moreover, two patches are used (here without any editing enhancements).
As textures consisting of fire and water phenomena are one of the hardest to synthesise,

Figure 9.3: Synthesized texture of FireB: The cyclic degrading of cuts can bee seen. The
set-of-cuts method is used.

some examples of representative frames are shoved. Figure 9.1, Figure 9.3 and Figure 9.4
shows the synthesized (time and spatial enlargement) fire sequences. The input sequences

Figure 9.4: Synthesized texture of FireC: The cyclic degrading of cuts can bee seen. The
set-of-cuts method is used.
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9.1. Dynamic Texture Model

Figure 9.5: Synthesized texture of DT WaterA

representative frames are in Figure 9.2.

All synthesized Fire textures were synthesized with method set-of-cuts to handle very
erratic flame behaviour. Note, that after many iterations and when flames drastically
change their location or even disappear the cuts quality can degrades for a small amount
of time.

Another dynamic texture type which is difficult to model is water. Three different
dynamic texture enlargement with the various property is shown. The various temporal
and horizontal enlargement is demonstrated in Figure 9.5 and various vertical and temporal
enlargement in Figure 9.6. The Figure 9.7 demonstrate problematic case as the strong
visible content (the reflection of the tree on the surface) is presented. The method set-of-
cuts is used in the second case. Let’s mention, that all dynamic textures are recommended
to see as a video.

Limitations Presented toroidal editing approach can work with many input DTs types,
but there are some restrictions. If some perspective distortion is present, the quality
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Figure 9.6: Synthesized texture of WaterB: The set-of-cuts method is used. Note, that
the cut-planes in this case are very dynamics.

Figure 9.7: Synthesized texture of WaterC: One of synthesized frame is original. Rest
are synthesized with spatial and temporal dimension to fit the original size.

of the result can vary widely depending on the severity of distortion (but still can be
synthesized, see Tab. 9.1, third row), dynamic textures with small non periodical color
gradient generate optically visible transition on seams because the are not any repetitive
parts to find. The strong unpredicted local dynamics with fast disappearing of small
objects can create artifacts too.
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9.1. Dynamic Texture Model

Table 9.1: Demonstration of different enlargements combination; First column: the ori-
ginal texture; Second column: texture enlarged in temporal and one spatial (horizontal)
dimension; Third column: texture enlarged in both spatial and temporal dimensions. Note
the Water texture - due to large structure the vertical dimension is problematic. The
Small irises and Withered demonstrate synthesizing from input mix-of-DTs, where
result consist from only one of them.

Original X,T enlarged X,Y,T enlarged

The result with noticeably spatial enlargement can be seen in Figure 9.2. More patched
used in every sample. The original texture is on the right, the three textures on the left
are downsampled. Figure 9.8 demonstrates noticeably changes in the visual quality if more
patches are used.
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9. Main Results

Table 9.2: Synthesized water texture examples : The first three columns show examples of
synthesized textures, the fourth column of the original sample texture.

waterD

waterE

(a) Synthetized textures - first row 2 patches, second row 3 patches;

(b) original

Figure 9.8: Different number of Kamvod patches used.
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9.2 Dynamic Texture Editing

Figure 9.9: Mix-of-DT : Fence and Shrubs are synthesized as mix-of-DT with transition
textures. Smaller (scaled) figures are input DTs, larger figures are synthesized output.

A set of individual synthesis algorithm enhancements that serve to increase the limited
number of results and, above all, to consider their visual quality was proposed. The
enhancement utilized the previously proposed 4D dynamic multispectral textures synthesis
and editing based on toroid-shaped tiles.

The synthesized examples illustrate good performance of our approach (many types of
DT can be seen on the video). Representative frames of a result subset are shown in figures
in this chapter.

The mix-of-DTs are showed in Figure 9.10, Figure 9.9 and Figure 9.11. The Figure 9.10
is pure mix-of-DTs with slight colortone enhancement, the Figure 9.9 demonstrates border
patches approach and and Figure 9.11 demonstrate border tile approach.

Moreover, dynamic texture editing approaches are suitable to synthesize dynamic BTF
textures. The example of results can be seen in section 9.6.
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9. Main Results

Figure 9.10: Mix-of-DT : Grass synthesized from two inputs. Smaller (scaled) figures are
input DT, larger figure is synthesized output.

The figure 9.13 illustrate zoomed detail of a synthesized texture that consists of only
one used patch where the time shift of Λ = 5 and Λ = 10 are used. Notice that extremely
small value of (1

6
sec) is sufficient and safe from disturbing the global Φ values.

The temporal dimension editing is showed in Figure 9.13 and scheme of an interactive
texture with multiple temporal jump in Figure 9.12. Note small zoomed detail that helps
to recognize slightly different dynamics.
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9.2. Dynamic Texture Editing

Figure 9.11: Mix-of-DTs, Trees in the rain (multiple tiles): The resulting dynamic
texture is mix-of-DTs with more border tiles. Smaller (scaled) figures are input DT; larger
figure is synthesized output.
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9. Main Results

Figure 9.12: Interactive texture Thuja in the rain.

Figure 9.13: Temporary shifted texture with three identical, time-shifted patches details
are zoomed. The texture is consistent in spatial and temporal dimensions but vary in local
dynamics.
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9.3. Dynamic Texture Inpainting

9.3 Dynamic Texture Inpainting

Table 9.3: Measured textures (left column) and inpainted results, part A: Measured textures
(left column) and inpainted results (first frame - middle column, last frame - right column).
DT Daisies, Water, and Walk are inpainted automatically. DT Cars, Ducks, Ivy
are inpainted with a rough mask (red) for undesirable (Cars) or occluded objects. DT
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9. Main Results

Table 9.4: Measured textures (left column) and inpainted results, part A: Measured textures
(left column) and inpainted results (first frame - middle column, last frame - right column).
DT Canoe and Kafka are inpainted with a rough mask (red) for undesirable objects.
DT Grass, Withered, Thuja and Cherry have artificially created masks (black).
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9.3. Dynamic Texture Inpainting

The proposed method was extensively tested on high-resolution dynamic textures from
the DynTex database and our database of DTs. All used dynamic textures were color
with resolution up to horizontal dimension 720 pixels and varying length (from seconds to
minutes). Both natural and artificially added occlusions and holes were used. The analysis
usually takes several minutes (see Table 9.5) and it strongly depends on the length and
the self-similarity of a texture (due to the branch and bound method). The synthesis time
is negligible, and it is only limited by memory operation and the video storing/coding
operations. Because the inpainting time of our method consists of strictly separated ana-
lytical and synthesis parts, our method allows adjustment of the mask or patch usage
(picking object to remove - i.e. chose which duck to remove in the DT Ducks). Presented
inpainting approach can work with video texture as well, but dynamic texture must be
present. Presented dissimilarity criterion was tested on numerous DTs with various, but
usually satisfying results. Non-periodical color gradient, strong handshake or chaotic local
dynamics might degrade the resulting inpainted DT quality but can be efficiently solved
by a various known method.

9.3.1 Time complexity

The inpainting time of our method consists of strictly separated analytical and synthesis
parts. Moreover, hence the patches are found in the analytical part and computation of
the minimizing borders is negligible or can be skipped. Our solution is strongly resilient
to the hole size or the number of holes - i.e., on DT Cherry the analysis part takes 37
minutes for one hole, 38 minutes for two holes, and DT Whitered where the analysis
part takes 23 minutes for two holes and 26 minutes for one hole, respectively. Similarly,
the time complexity of analysis of Water DT with one or tho holes are almost the same
(see Table 9.5). The comparison or our non-optimized C++ implementation with the
inpainting algorithm of Newson [97] can be checked on Table 9.5 (measured on a laptop
with 2.3Ghz Intel i7 CPU and 8GB memory). Note that although we can inpaint much
longer sequences, here due to the time complexity of the Newson method [97] we use much
shorter ones. No other calculations than the analysis and synthesis time are required.

Note that the alternative Newson methods are published as Matlab code, so the time
comparison should be interpreted with this on the mind. Even so, it is necessary to
state that the presented method is (by taking advantage of toroidal approach) an order
of magnitude faster. Emphasize, however, the principal drawback of combined synthesis
and analysis in alternative approaches. The presented method does not need a significant
additional amount of time with increasing output dimension resolution. Comparison to
this efficient algorithm with typically inpainting approach can demonstrate the strengths
of our approach - strong resilience to the error area size and the number of error regions
(error concealment) in contrast to other approaches, i.e. [33].

The other state-of-the-art method like [33] and [142] typically takes at least hours, i.e.
[66] process short video with 854 × 480 pixels, 90 frames and 18% missing took around
3 hours. DTs with a similar property like Thuja or Kafka took around minutes in our
solution. The only time-consuming part of our approach is to find proper time jumps,
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9. Main Results

Table 9.5: Time complexity comparison.

Scene,
hole size

[%]

Newson
A+S.
[min]

Our
Anal.
[min]

Our
Syn.
[min]

Size of DT

Daisies, 7 146 89 <1 720×576×20
Duckes, 5 113 24 <2 720×576×37
Boats, 9 203 16 <2 720×576×37
Canoe, 15 384 21 <2 720×576×37
Cars, 3 36 24 <1 720×576×30
Water, 13 251 45 <1 720 ×576×30
Grass, 27 320 25 <1 720×560×25
Ivy2, 28.5 356 42 <1 720×560×25
Withered1, 1.2 103 33 <1 720×560×25
Withered2, 2.4 133 39 <1 720×560×25
Cherry, 1.3 126 16 <1 720×560×25
Cherry, 2×1.3 151 16 <1 720×560×25
Kafka, 24 178 17 <1 1920×1080×25
Thuja, 2 58 23 <1 720 ×576×25
Thuja, 2×2 87 22 <1 720 ×576×25
Thuja, 5 70 21 <1 720 ×576×25
Thuja, 3×2 104 22 <1 720 ×576×25
Thuja, 10 86 22 <1 720 ×576×25
Thuja, 2×5 140 22 <1 720 ×576×25
Thuja, 10+5 340 20 <1 720 ×576×25
Walk-l, 63 2442 245 <3 720×576×167
Walk-s, 63 797 72 <1 720 ×576×25

but this can be extremely shorted by user input or setting desired loop length. Usually,
our solution is extremely fast due to triple toroid-shaped approach while other approaches
repeatedly computed borders and new patches inside the hole which is extremely time-
consuming for larger videos and holes.

Long and short DT inpainting Typically, the overlay error reaches a minimum if the
source DT contains similar or exactly the same data like H with the same or different
internal structure (δ∗r contains only temporal shift). This type of DT we called long DT.
Usually, inpainting of the long DT creates a visually much better result (for comparison
see Figure 9.14). Note that even in the (very) short DT type our solution creates visu-
ally seamless results (see Figure9.15, detailed images of DT Walk) in comparison with
alternative methods. Recall that all other input DTs are the short type.
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9.3. Dynamic Texture Inpainting

Figure 9.14: Detail of a Walk synthesis, method comparison Top: Original measured
DT Walk, yellow highlighted short DT, orange highlighted long scene; Second row: Long
scene inpaintings, patches found mainly in temporal dimension (note that the temporal
cut from the patch to the original DT is presented); Third row: Short scene inpaintings,
H occurs only occluded in the DT; Fourth row: Another measurement of the same scene.
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Dissimilarity A simple but sufficient criterion for optical flow dissimilarity was presen-
ted. This criterion was shown to be sufficient for most DTs used. The ability to substitute
segmentation of inpainted area, or using additional masks have been demonstrated. Due
to the placement of area-to-inpaint inside the set of patches and thus no need of tight mask
the presented measure is mostly sufficient.

Synthesis-based inpainting We presented DT inpainting not as an iterative greedy-like
process but by synthesizing a sufficient large DT and insertion this newly synthesized DT to
the inpainted area by the energy minimization criterion. The synthesizing process preserves
all essential textural properties like local dynamics and both high and low frequencies. No
additional computing or editing of the inpainted data are needed to reach visually satisfying
results.

Video inpainting We demonstrated the ability of our method to work properly with
video textures containing DTs. A rough mask indicating the source of dynamic textures
is useful but not always necessary - information from the dynamic textures surrounding
the repaired area is mostly sufficient to determine the correct sample through an iterative
search for the optimal filling samples.

Psycho-Physical Validation The presented method results were tested on four groups
of almost 150 participants in two test containing blind quality rating and informed pair
evaluation. The result (Figure9.19 and Fig 9.18) has shown that the presented inpainting
results dominated in most cases and their cases the results were of comparable quality.

Spatio-Temporal Criterion Validation The presented method results were evaluated
by spatio-temporal Fourier transformation based criterion and compared to the results of
three alternative approach. Proposed method dominates over most of the comparisons
with the exception of two cases where the alternative method of Newson showed less lost
data values (however, mention here a noticeably higher rate of false frequencies).

Structure preserving Our approach works well on various types of DTs but if the
structure of the DT lack high homogeneity diminished visual quality can follow. If the
input DT does not contain sufficiently similar (or another sample DT) structures, the
presence of a spatial or temporal cut can be visually recognizable (e.g., Walk-short
taken from 10 frames). In these particular cases, another DTs can be used as an input, or
a similar patch must be adjusted (e.g., by color-tone modeling, manually editing, etc.). In
the case that the structural problem is given by the temporal cut, it can be easily solved by
reusing a time-consistent toroid sample and preserving the inpainted patches throughout
all DT duration.
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9.3. Dynamic Texture Inpainting

Figure 9.15: The comparison between our and the Newson method [97] results, part A. Odd
rows: left column - original DT, middle column - Newson’s inpainted result, right column
- our inpainted result; Even rows: details from the images above.
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Figure 9.16: The comparison between our and the Newson method [97] results, part B. Odd
rows: left column - original DT, middle column - Newson’s inpainted result, right column
- our inpainted result; Even rows: details from the images above.
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9.3. Dynamic Texture Inpainting

Frequency preserving We demonstrate an extremely good efficiency of our solution in
the case of preserving both low and high frequencies from the original DTs. Many altern-
ative methods have problems, due to random patch sizes, with preserving some frequencies
- typically high on very homogeneous DT (Whitered or Cherry and Walk), and low
on more video texture-like ones (like Kafka or Walk). DT Walk is a good example,
where due to the inadequate patch size the inpainted alternative methods results can not
synthesize larger structures (see Figure9.15, fifth row, middle column). The parameter of
the patch size is in our solution driven by the most crucial frequency, and so our solution
can preserve them. Different problems can be seen on the Kafka input where a patch
based solution cannot recognize extremely strong and important periodicity (and to obtain
satisfying result parameters need to be manually changed). Similar to the spatial frequency
problem is a problem with temporal frequencies and optical flow as it can be seen on the
inpainted Walk DT. The optical flow (moving of grass in the wind) of the scene is in our
approach well preserved but can be insufficiently reproduced by patches with the wrong
size.

The illustration of an LφYs,Yc behavior and typical changes in the DTs FT is shown in
Table 9.7 for original undamaged frames (taken at a different time) and inpainted frames.
Note that false and lost frequencies behavior are method given, strongly similar throughout
all frames, not only visualized ones.
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Table 9.6: Changes in FTs between original and inpainted DTs frames, part B. First column
DTs, second column FT (power spectrum), third column 3D FT surface detail. The DT
Boat (original, proposed solution, Xie, Newson). Note the false low frequencies in both
alternative methods.
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9.3. Dynamic Texture Inpainting

Table 9.7: Changes in FTs between original and inpainted DTs frames, part B. First column
DTs, second column FT (power spectrum), third column 3D FT surface detail. The DT
Walk (original, proposed, Newson). Note the false low frequencies in both alternative
methods and a distinct oblique ellipse of false frequencies in DT. Walk.
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9.4 Psycho-physical Tests

The psycho-physical tests were performed as a double-blind test on four groups of parti-
cipants (48, 48, 24, and 30 participants). Note that participants were students unfamiliar
with results as well as presenters. As environments for test the schoolroom were used. In
first two (more significant) test dynamic textures were presented by the high-resolution
projector. For third and fourth test the Scalable Amplified Group Environment with the
resolution of 9600x4320 was used. Whereas the results of both types did not show any
observable variations, they are presented as one. All participants in every group and en-
vironment setting were subjected to the two designed test - blind and informed.

The psycho-physical test enviroment All tests were performed in Faculty of Inform-
ation Technology background. For the first and second test of dynamic texture similarity
criterion, the schoolroom with high-resolution was chosen. For the third and fourth test the
background of SAGElab 1. All dynamic textures were presented on the Scalable Amplified
Group Environment with the resolution of 9600x4320.

The psycho-physical test property All performed psycho-physical tests were per-
formed as a double-blind test thus all participants including presenters were unfamiliar
with results. Of course, only authors provided / publicated results and codes were used.
Four groups of participants were subjected to tests in the number of 48, 48, 24 and 31
participants. The used scale for the rating was used values from 0 to 5, where 5 denotes
higher quality of presented DTs.

Blind psycho-physical test arrangement The first psycho-physical test arrangement
consists of presenting one inpainted dynamic textures after another while participant should
write down the presumed quality of a presented dynamic texture (except low-resolution
caused artifacts ). Participants should rate the displayed dynamic texture by its visual
quality and whether it contains or does not contain apparent interference, retouch or
artifacts. As a control mechanism, the original dynamic textures (if exists) was added to
test set.

Informed psycho-physical test arrangement Participants should rate the two dis-
played dynamic textures by its visual quality and whether it contains or does not contain
apparent interference, retouch or artifacts. In the informed test the additional information
was presented to participants: The original dynamic texture and mask (if available). For
used arrangement see Figure 9.17. Thus participants could directly compare the inpainted
texture with original and moreover compare more results at one time. In case of more
than two methods result exist, all possible combination was used. The presented dynamic
texture pairs were randomly placed on the left / right side and both participants and
presenters were unfamiliar with the right order.

1https://sagelab.cesnet.cz
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9.4. Psycho-physical Tests

Figure 9.17: Informed psycho-physical tests arrangement : Arrangement of DTs Boat,
Canoe, Walk and Kafka showed. DTs Boat and Canoe has exact mask. DT Walk
has mask (not shown) for alternative solution only, DT Kafka has rough mask.

133



9. Main Results

Figure 9.18: Overall comprehensive results of psycho-physical tests. For every DT and mask
the four values are shown: Blue - our method blind test quality rating, violet our method
informed test rating, green - alternative method blind test rating and orange for informed
rating of an alternative method. The letters in subscribe denotes used alternative method:E
- Ebdeli method, N - Newson method, X - Xie method and R - proposed method. The
scale (vertical axis) is from 0 to 5, where 5 denotes higher quality and thus values should
be maximized.

The human ratings (see Appendix B) of over 150 participants was used to validate
the proposed criterion. The observers evaluated similarity using a rating between 0 to 5.
Tab. C.1 shows the comparison between our criterion values and values obtained from
testing. Since the difference may also have negative values, the goal is to minimize the
absolute value. A positive value means an underestimation of the criterion due to values
obtained from testing; a negative value means overestimation of the criterion.

The complete results of both psycho-physical tests are in Figure 9.18. Note that results
are organized from left to right with declining predominance of our method. For comparing
inpainting results the more comprehensive graph is shown in Figure 9.19. Emphasize that
pairs labeled as R×O compared our inpainting results with original unedited data (taken
from the slightly different time or without the artificial mask). Labels R denote proposed
method, N denotes alternative method by Newson[97], X denotes Xie [142] method and
label E denotes method by Ebdeli[33]. Label O denotes using of original dynamic texture.
The values are grouped by used dynamic texture and mask thus DT Thuja has more
results.

From the tests carried out, it can be clearly seen that the present method dominates
in the vast majority of the comparisons performed. Very interesting is the apparent dom-
inance when comparing more complex textures and the difference between the blind and
the informed test. The distinction between the blind and informed test values is expected.
The apparent inability to determine (without additional information) the texture edited
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9.4. Psycho-physical Tests

Figure 9.19: Overall results of psycho-physical tests : The scale is from 0 to 5, where 5
denotes higher quality and thus values should be maximized. Blue cones denotes our
results rating and green bars alternative method ratings. The letters in brackets denotes
alternative method: E - Ebdeli method, N - Newson method,X - Xie method, R - proposed
method and O denotes original DTs.

area and therefore the original removed texture data if of course inpainting goal. Note also
the low variance of the informed test values for our method and therefore the relatively
consistent quality of our results.

It seems surprising that the values of the informed test in most cases exceeds blind
solution values. This indicates high-quality results of all methods that stand up to the
participants’ knowledge of the mask. Moreover, the knowledge of the mask and thus ability
to focus at exact inpainted locations with a combination of great blind-informed quality
jump suggest that used method is very effective. Usually, that means that participants
cannot find an artifact in the blind test or anything that suggest what was inpainted. Note
the great leap in H-Ivy, Q-Thuja or J-Kachny. The decreasing results C-Boat and
T-Withered suggest that with the knowledge of mask, the participant were able to (or
they thought so) identify artifacts / exact mask boundary.

Note that presented inpainting solution is considered as lower in both cases only in one
Thuja version but with a difference of 0.07 in informed test and thus is considered as
the same. Proposed solution is overcomed only in P-Thuja, D-Canoe and K-Water
with difference of 0.36, 0.34 and 0.3. Interestingly, the difference between our inpainted
solution and undamaged original (case A-Boat) is only 1,17. From that point of view,
the difference in order of < 0, 0.5 > can be considered as extremely small. Moreover, this
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stressed the clear domination of proposed method in a major part of tested DT sequences.

Note that some other tests were performed on small groups (tens) of participants and
different DTs and arrangements.

9.5 Dynamic Texture Similarity Criterion Results

The behavior of a proposed similarity criterion with varying wf is showed in Table 9.8. It
can be clearly seen that with the decreasing wf and thus with a smaller number of used
frequencies (which must be subsequently stronger in the spatial frequency magnitude) the
value ratio is consistent. Thus for test included in this article the value of wf is set to 3.

Table 9.8: The average difference of spatiotemporal frequencies criterion (↓): based on the
different wf value (and thus spatial frequencies with different minimal magnitudes). The
difference between Newson (marked as N) and presented method (marked as P) are shown.
Results are shown on DTs Walk and Ivy. The minimal magnitude was then in order of
140, 160, 180 and 200 for Walk and 100, 160, 180, 200 and 250 for Ivy respectively.

Walk 7 5 4 3

α n 20,30 16,51 15,08 13,42
α p 19,54 15,79 14,25 13,16
false n 10,56 9,23 8,60 7,81
false p 10,13 8,48 7,83 7,89
lost n 11,17 8,64 7,89 7,15
lost p 11,19 8,99 8,22 7,55

Ivy 7 5 4 3 2

α n 20,01 18,37 15,14 13,73 12,41
α p 17,32 15,55 12,68 11,10 8,88
false n 13,09 11,63 9,04 8,13 6,46
false p 8,94 7,64 5,93 4,99 3,27
lost n 7,95 7,90 7,68 7,48 8,21
lost p 9,07 8,74 7,84 7,36 6,63

Boat 7 5 4 3

α n 20,64 19,27 17,89 16,52
α p 20,01 18,21 25,45 26,37
false n 10,33 10,42 10,50 10,59
false p 10,28 9,37 1,11 0,99
lost n 12,44 11,38 10,32 9,25
lost p 11,00 11,41 25,21 26,18

Grass 10 7 5 4 3 2

α n 33,15 36,73 41,98 44,81 48,76 58,27
α p 19,04 16,73 14,18 13,32 12,50 10,75
false n 29,41 34,30 40,51 43,58 47,79 57,55
false p 11,07 9,74 8,23 7,63 7,05 5,79
lost n 5,00 3,63 2,68 2,49 2,35 3,13
lost o 8,83 8,00 7,23 7,13 7,04 6,51

The overview of all three L methods and comparison of the corresponding LφYs,Yc with
all used frequencies and the crucial only (wf is set to 3) is showed in Table 9.9 as a difference
between proposed and alternative methods criterion value. The values for DTs Boats,
Walk and Daysies is shown. Used resolution is 720×576 for the first DT and 1920×1080
for the second and third one.
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Table 9.9: A spatial Fourier transformation criterion values difference comparison (↑) as
a difference between proposed and alternative methods criterion value. wf = 3 for crucial
frequencies.

DT and L all f. crucial f.

boats abs ebdeli 21421 5895
boats abs newson 19433 7354
boats false ebdeli 27042 394
boats false newson 34651 11445
boats lost ebdeli -552 5501
boats lost newson 2514 3921

DT and L all f. crucial f.

daysies abs newson -13749 -625
daysies false newson -69884 -891
daysies lost newson 56134 266,2
walk abs newson -34364 26,68
walk false newson -8918 825,4
walk lost newson -110354 -1488

The overall comparison of the spatio-temporal Fourier transformation criterion val-
ues is shown in Table 9.10 as the difference between alternative method values and our
method values comparison for DTs Boats, Canoe, Grass, Ivy and Walk. The values of
OurLφYs,Yc−AltLφYs,Yc are thus maximal and positive if presented method result is rated as
more similar and negative if the alternative method result is rated as better (more similar).
Note that only in two cases - Grasslost and Ivylost the alternative methods are rated as
better and in case of Boat-Ebdelilost, Canoe-Newsonlost and Walk-Newsonlost the
results are very similar.

Table 9.10: Overall comparison of frequency criterion values as the difference between
proposed method and alternative methods (↑): DTs Boats, Canoe, Grass, Ivy, and
Walk used. Note the proposed method takes negative (and thus is worse) in only two
cases - Grasslost and Ivylost. Used wf = 3.

texture criterion value

boats abs ebdeli 15,9509
boats abs newson 1,3543
boats abs xie 0,8504
boats false ebdeli 8,7607
boats false newson 0,6590
boats false xie 2,7462
boats lost ebdeli 0,1556
boats lost newson 0,9712
boats lost xie 0,8948

texture criterion value

canoe abs newson 1,0533
canoe false newson 1,0474
canoe lost newson -0,0324
ivy abs newson 2,8218
ivy false newson 3,9903
ivy lost newson -0,8381
walk abs newson 0,7557
walk false newson 0,4336
walk lost newson -0,0184

The time complexity comparison of our method with a very effective approach of
Newson[97] can be seen in Table 9.5, the quality comparison in Figure 9.15, and in the
accompanying video. We chose the Newson’s method over newer one as [66] as a new and
very good inpainting algorithm with open Matlab code, existing comparison with another
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Figure 9.20: Representative DTs subset for psycho-physical tests : Representative selected
frames from several GRASS and FOLIAGE dynamic textures marked with labels.

inpainting method[66] with known strengths and limitations, and as typical patch based
inpainting approach.

Experimental Dynamic Textures Subset

The proposed similarity criterion was tested on our dynamic texture database and the
DynTex[104] database. To determine the texture class, the DynTex class labels (SEA,
FLOWERS, FOLIAGE, etc.) were used also for our own database.

Our DTs have a noticeably higher resolution (including Full HD and higher) and
time duration in the order of tens of seconds or minutes. Figure 9.20 illustrates rep-
resentative GRASS and FOLIAGE Full HD DTs with all to all computed similarity
criterion (only a representative part is shown for explanation purposes).

The dataset consists of visually similar textures, yet with different dynamics. The
database contains textures with pronounced (strong wind, rain) and low dynamics as
well as textures with similar dynamics (directional wind) but very different structure.

Due to the high variability of dynamics and structure, while maintaining a similar
class, this is an interesting and representative dataset allowing useful comparison and
demonstration of strong and weak characteristics of the criterion. The criterion was
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also tested on other datasets with similar results. The furthermore criterion values can
be found n the next chapter.

The submitted dataset has been subjected to detailed psycho-physical testing with
more than 150 users who evaluated the likeness of individual DTs. This user evaluation
(Tab. B.1) is therefore used for the proposed criterion validation.

These results show both pairs rated as extremely similar (21-14), and couples that
have been rated as highly different (11-12, 10-12). For example, DTs 23-22 and 02-12
have similar structures and similar dynamics but very different color, but these couples
were evaluated as relatively similar.
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Figure 9.21: Several frames from composed DBTF : Several frames from the synthesized
video in top-down and left-right order. The source of illumination is moving from right
(outside frames) to middle.

9.6 DBTF

The resulting synthesis of an approximative DBTF shows that the DBTF as a medium is
possible and valid. The incredibly complex natural object consisting of a high number of
self-occluding and self-shadowing could be very problematic to model in a classical way.

Of course, proposed DBTF and DVBTF model are topics, which will be in focus in
further works.

The presented result shows Grass texture in Figure 9.21 composed of many samples
under a varying illuminance. Note that only one patch is used and thus temporal shift
editing method is applied to suppress the dynamics repetition. Larger arrangement is
showed in Figure 9.22 with stronger time shift (δ = 7).

More complex results which consist of the samples acquired under different viewing
angles can be seen in Figure 9.23. The measured object (plant), has a strongly varying
property under different view directions (top three row, all consist of a one spatial and
one temporal dimension enlarged texture). The result is then composed together to one
resulting texture which covers the desired object texture from θv = 90to10.

The presented results (Figure 9.21) show Grass texture composed of many samples
under a different illuminance. Note that only one patch is used and thus again editing
method is applied to suppress the dynamics repetition.

140



9.6. DBTF

Figure 9.22: Several frames from composed DBTF, detail : Several frames from the syn-
thesized video in top-down order. The source of illumination is moving from right (outside
frames) to middle. Note the temporary edited samples and its varying dynamics (see a
curved blade of grass).
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Figure 9.23: composed DBT example: Resulting DBTF (bottom) composed of three tex-
tures with different viewing angle.
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Chapter 10

Conclusions

10.1 Summary

The new approach for fast 4D multispectral dynamic textures modeling was presented.
The proposed dynamic texture model is based on a triple toroid-shaped tile, has separated
analysis and synthesis and is able to create an infinitely long dynamic texture in both spatial
and temporal domain. Therefore the synthesis can be done very quickly and effectively. The
synthesized high-resolution examples illustrate good performance of a proposed approach
for many types of dynamic textures. Our approach can edit temporal and spatial properties
of DT and can easily create a mix of dynamic textures.

A set of specific synthesis algorithm enhancements that increase the limited number of
results and, above all, to enhance their visual quality was proposed. The editing ability
and creating of mix-of-DTs was subsequently applied to the synthesis of approximative
dynamic BTF textures.

The proposed dynamic texture model ability to inpainting problem was demonstrated.
The model utilizing allows very efficient filling of an error area with maintaining the visual
plausibility. Moreover, due to toroidal principle, the process takes several minutes in-
stead of hours, days, or more. The inpainted examples illustrate good performance of
our approach for many types of DTs. We have demonstrated our solution on several DT
inpainting problems and validated its efficiency through performed psycho-physical tests.

A novel entirely spectral dynamic textural similarity criterion was presented and suc-
cessfully validated with several state-of-the-art criteria, which were straightforwardly ex-
tended to temporal domain. Due to the absence of reliable DT benchmarking extensive
psycho-physical measurements of dynamic texture similarities with more than 150 parti-
cipants was performed. The presented criterion significantly corresponds with similarity
values obtained from psycho-physical tests. The validation of presented criterion has clearly
shown its discriminatory and sufficiently diversifying capabilities within a given dynamic
texture class.
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10.2 Contributions of the Dissertation Thesis

A) Dynamic Texture Synthesis model

A sufficiently general and descriptive model that offers a more in-depth insight into
dynamic in the dynamic texture, its regularity and many others properties of a dy-
namic texture was proposed. The creation (synthesis) of the new dynamic texture
which is visually similar to the original one is the fundamental contribution of this
dissertation thesis (see Chapter 3).

Spatial Domain For only spatial domain enlargement, the double toroidal-shaped
patch approach was presented. The sufficiently representative toroidal-shaped patches
allowed extremely fast yet effective synthesis with the possibility to handle various
types of DT.

Temporal Hence the perceptual property between visual and temporal dimension
differs, the temporal domain must be handled differently. The presented model tem-
poral synthesis utilize spatial dimensions synthesis and enhance it with an ability to
adapt to the dynamics of an every particular DT.

B) Dynamic Texture Editing Approach

Pure synthesis approach is useful but not satisfactory enough in many specific cases.
The editing of patch arrangements, suppression of visual disturbances, editing of the
dynamics or specific color balancing that increases the amount of synthesis results
and field of uses was demonstrated (see Chapter 4).

Interactive texture Due to the presented general temporal synthesis approach,
the transition between more DT types can be created. Synthesized results have
varying visual and dynamics circumstances like illumination or weather conditions.
The transition order can be due to separated analysis and synthesis easily controlled.

Mix-of-DTs The general video data usually contains more dynamic textures.
Presented approach can analyze mix-of-textures and subsequently synthesize great
amount of specific arrangements containing many different dynamic texture types.

Temporal editing One of the intelligent sampling method disadvantages is the
strictly limited amount of source data patch which can lead to visually repetitive
effect. The slight temporal changes of the dynamics and structural factors which can
distinctly reduce this undesirable behaviour was shown.

C) Inpainting and error concealment One well-known image processing goal is to
remove error areas, artifact or unwanted parts of the dynamic texture. The proposed
dynamic texture inpainting approach allows to focus on cases with the dynamic
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background, which are usually extremely difficult, and handle it with the advantage of
fast toroidal-shaped patch approach. The proposed method focuses on the perceptual
quality in term of human perception and produces visually high-quality results (see
Chapter 5).

Object removal Assuming that unwanted object distorts surrounding area, which
is supposed to have dynamic texture property, the need of some exact mask can be,
in some cases, bypassed. Distorting parts in given dynamic texture can be roughly
marked automatically by proposed dissimilarity measure based on optical flow and
color information.

D) Dynamic Texture Perceptual Similarity Dynamic texture similarity ranking
is a challenging and still unsolved problem. Evaluation of how well are various dy-
namic textures similar in the way of human perception is challenging even for static
textures and requires tedious psycho-physical experiments. Characteristics of human
perception and a different way of perceiving spatial and temporal dimension com-
plicate the definition of similarity criterion in an analogous way as for the dynamic
texture synthesis (see Chapter 6).

Multidimensional Frequency Similarity Criterion A novel dynamic texture
criterion based on the Fourier transformation and properties of spatiotemporal fre-
quencies was presented. The proposed criterion allows for a qualitative comparison
of both synthesis and inpainting results. Presented criterion results correlate well
with a performed psycho-physical test (see Chapter 8).

Synthesis validation The multidimensional frequency similarity criterion has made
it possible to detect and measure crucial frequencies in the temporal and spectral do-
main and thus be used to synthesis results quality verification.

Inpainting validation A typical inpainting problem is the neglect of fundamental
spatial frequencies in the newly created data patch or the creation of frequencies
that are not to be found in a given source dynamic texture. The proposed criterion
has made it possible to measure such frequencies and thus compared two inpainting
results in quality in this way.

E) Dynamic BTF The proposed dynamic texture model editing abilities were util-
ised to synthesize novel dynamic BTF textures. The demonstrated promising result
suggests that the dynamic bidirectional textural function model is a suitable model
for modeling dynamic processes under varying illumination and observing conditions
(see Chapter 7).
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10.3 Future Work

The author of the dissertation thesis suggests to explore the following:

◦ The presented criterion evaluates the spatial frequencies temporal behaviour but not
take into account possible color variations, nor other suitable features (for example
PCA features or AR model features). Further research will also cover this aspect
together with possible scale and illumination invariance.

◦ In the following work, a developed solution should handle perspective translation or
handshake to overcome typical problems with moving scenes.

◦ A more efficient way of solving and find the (sub)optimal solution for the tiling
problem with using a mix-of-DT is also possible.

◦ It is possible and desired to expand proposed criterion to more texture fidelity and
human visual system problems.

◦ The promising DBTF result, although only the start, suggest that furthermore meas-
uring of a suitable data and better handling the approximative results, i.e. with novel
state-of-the-art, BTF methods could lead to a useful dynamic objects data model us-
able, i.e. in the VR.
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Leroy, and Jean-Luc Lévêque. Super-helices for predicting the dynamics of nat-
ural hair. In ACM Transactions on Graphics (TOG), volume 25, pages 1180–1187.
ACM, 2006.

[8] M. Bertalmı́o, L. Vese, G. Sapiro, and S. Osher. Simultaneous structure and texture
image inpainting. Trans. Img. Proc., 12(8):882–889, August 2003.

[9] Marcelo Bertalmı́o, Simon Masnou Caselles, and Gillermo Sapiro. Encyclopedia
of computer vision, ch. inpainting. In Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pages 417–424,
New York, NY, USA, 2011. Springer.

147



Bibliography

[10] Marcelo Bertalmı́o, Vicent Caselles, Simon Masnou, and Guillermo Sapiro. Inpaint-
ing. In Computer Vision, A Reference Guide, pages 401–416. 2014.

[11] Marcelo Bertalmı́o, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Image
inpainting. In Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’00, pages 417–424, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[12] J. Bigun and J.M.H. du Buf. N-folded symmetries by complex moments in gabor
space and their application to unsupervised texture segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 16(1):80–87, January 1994.

[13] Andrés Bruhn, Joachim Weickert, and Christoph Schnörr. Lucas/kanade meets
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Pérez. Video inpainting of complex scenes. SIAM Journal on Imaging Sciences,
7(4):1993–2019, 2014.

154



Bibliography

[98] Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen. Physically based
modeling and animation of fire. 21(3):721–728, 2002.

[99] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis.
Geometric Considerations and Nomenclature for Reflectance. 1977.

[100] Supot Nitsuwat. Optical flow estimation. Technical report, Technical Report from
Department of Artificial Intelligence of School of Computer Science and Engineering
of the University of New South Wales, 2006.

[101] Kedar A. Patwardhan, Guillermo Sapiro, and Marcelo Bertalmı́o. Video inpainting
under constrained camera motion. IEEE Trans. Image Processing, 16(2):545–553,
2007.

[102] C. H. Perry and R. W. Picard. Synthesizing flames and their spreading. In Proceedings
of the Fifth Eurographics Workshop on Animation and Simulation, pages 1–14, 1994.
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