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Abstract and contributions

This thesis presents novel descriptive multidimensional Markovian textural models applied
to computer aided diagnosis in the field of X-ray mammography. These general mathemat-
ical models, applicable in wide areas of texture modeling outside X-ray mammography as
well, provide ideal visual verification using synthesis of the corresponding measured data
spaces, contrary to standard discriminative models. All achieved results in the thesis are
extensively benchmarked.

The thesis presents two methods for breast density classification in X-ray mammogra-
phy. The methods were tested on the widely known MIAS database and the state-of-the art
INbreast database, with competitive results.

Several methods for completely automatic mammogram texture enhancement are pre-
sented. These methods are based on the descriptive textural models developed in the thesis
which automatically adapt to the analyzed X-ray texture, thus being universal for any type
of input without the need of further manual tuning of specific parameters. The methods’
outputs highlight regions of interest, detected as textural abnormalities. The methods pro-
vide the possibility of enhancement tuned to specific types of mammogram tissue. Hence,
the enhanced mammograms can help radiologists to decrease their false negative evalua-
tion rate. It has been shown that the algorithms work well both for small findings, such
as microcalcifications, and for bigger lesions.

The pseudocolour method offers a unique way of mammogram feature fusion for visual
evaluation and vastly enriches the the information content of the enhanced mammogram.
The results were verified also by radiologist consultants.

New contrast criterion was implemented which outperforms previously published con-
trast criteria.

The focus of our study is mammogram texture and the following search for its optimal
mathematical representation.

The main contributions of the dissertation thesis are as follows:

1. Descriptive multidimensional texture models development for texture analysis and
synthesis applications
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a) Hierarchical Potts MRF model

b) Directional CAR models

c) Spiral CAR models

d) Compound Potts MRF model (CMRFP3AR)

e) Compound Potts Voronoi MRF model (CMRFPV 3AR)

f) Algorithm for estimation of Potts model parameters for texture mimicking

2. X-ray mammograms tissue analysis based on the descriptive multidimensional texture
models

a) Algorithm for breast composition classification

◦ A sub-result is the classification of texture in mammograms into fatty and
dense

b) Potts model based classification of breast composition

3. Development of methods for mammogram parenchymal patterns enhancement

a) Unilateral method for mammogram enhancement with three specific tissue tar-
geted outputs

b) Nonrigid bilateral comparison method

c) Texture model based bilateral comparison method

d) Pseudocolour enhanement method

4. Development of image enhancement criteria and their verification

a) Contrast criteria comparison using our benchmark

b) Region contrast criterion SRC which passes all our benchmarking conditions

Keywords:
mammography, Markov random fields, texture analysis, texture synthesis, computer

aided diagnosis, image enhancement, image classification, contrast criteria.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Texture modeling

Texture is the notion commonly used to mathematically represent visual appearance of real
world materials. Significant improvement in material or biological tissue recognition can-
not be expected without sophisticated multidimensional descriptive data models and the
corresponding contextual classifiers based on these models. Standard approaches use over-
simplified discriminative data models and context-free classifiers. To overcome the limits
of the common approach, we need to utilize complex multidimensional descriptive models
which contain significantly larger amounts of information to describe intricate correlations
present in visual data.

Unfortunately, these models have lots of unsolved theoretical issues such as parameter
estimation, optimal contextual neighborhood selection, stability, efficient synthesis, etc.,
and usually require many compromising approximative solutions. Our aim is to add some
new knowledge to these difficult classes of problems.

1.1.2 Mammography

Breast cancer is the most common type of cancer among middle-aged women in most
developed countries [1, 2]. Almost one woman in ten develops a breast cancer in her life.
To lower the mortality rate, women in the developed countries usually regularly attend a
preventive mammography screening. However, around 25% of radiologically visible cancers
are missed by the radiologists at screening [3]. This means that millions of cancer cases are
missed and therefore even a slightest improvement in the detection methods could have a
huge impact and save many lives.

One of the means of improving the cancer detection rate is computer aided detection
(CAD). However, there is about 40% rate of false negatives reported by the currently used
CADs. Automatic mammogram analysis is still difficult task due to wide variation of

1



1. Introduction

breast anatomy, and ambiguous definitions of both visual and mathematical features of
regions of interest (ROIs).

Specialists disagree on how much the CADs can influence the screening process - some
argue the CAD systems could bring great improvement in the screening efficiency [4],
others state that little relevant improvement has been proved when the radiologist had the
assistance of a CAD system [3, 5]. The truth is probably in the middle since the impact of
CADs on diagnosis depends a lot on the radiologist’s use of the CAD system. According
to [6], however, there is a potential of lowering the radiologist’s false negative rate by as
much as 70%.

The biggest problem with current CAD systems is their large false negative rate and
an even larger false positive rate. Most CAD systems point out 2-3 regions of interest
(ROIs) per mammogram on average. Taking into account that there are about 8 malignant
mammograms in 1000 [3], the radiologists consider the current CAD systems as misleading,
which proves the need for a better new system with lower false positive and false negative
rates.

1.1.3 Contrast

Image enhancement methods aim to improve human image interpretation accuracy by
increasing visual distinguishability of single objects recorded in a visual scene. This re-
quires an increase in image contrast which is the relative difference in luminance or colour
between multiple objects. A typical important application for image enhancement is pre-
ventive mammography screening. In such important image enhancement applications even
a slightest improvement in the detection methods could have a huge impact and save many
lives. A reliable quality contrast criterion is then the prerequisite for any monitoring of an
image enhancement method development progress or for ranking existing methods.

1.2 Problem Statement

This thesis aims to develop novel descriptive multidimensional Markovian textural models
and improve computer aided diagnosis in the field of X-ray mammography using these
nontrivial models.

These general mathematical models, applicable in wide areas of texture modeling out-
side X-ray mammography as well, allow ideal visual verification using synthesis of the
corresponding measured data spaces, contrary to standard discriminative models. The
integral part of the thesis is extensive benchmarking of achieved results.

Computer aided detection of mammographic regions of interest (ROIs - microcalcifica-
tions, developing cancers, abnormalities) is a nontrivial task of pattern recognition with
hard to define indistinct definition of what a ROI might be. We also have to bear in mind
that the final goal is not the replacement of diagnosticians, but rather a help for them to
make their work easier. Therefore we do not focus in this work on ROI segmentation, but
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1.3. Goals of the Dissertation Thesis

instead on accentuation of regions which do not fit into the particular part of the breast
according to our models and bilateral mammogram comparison.

The focus of our study is mammogram texture and the following search for its optimal
mathematical representation.

1.3 Goals of the Dissertation Thesis

1. Descriptive multidimensional texture models development for texture analysis and
synthesis applications

2. X-ray mammograms tissue analysis based on the descriptive multidimensional texture
models

3. Development of methods for mammogram parenchymal patterns enhancement

4. Development and verification of image enhancement criteria

1.4 Structure of the Dissertation Thesis

The thesis is organized into ten chapters as follows:

1. Introduction: Describes the motivation behind our efforts together with our goals.
There is also a list of contributions of this dissertation thesis.

2. Background and State-of-the-Art: Introduces the reader to the necessary theoretical
background and surveys the current state-of-the-art.

3. Experimental Data: Covers the data we used for experiments to verify our approach.

4. Texture Models: Presents our work in the field of texture models.

5. Texture Synthesis: Shows our developed methods in the field of homogeneous texture
synthesis.

6. Breast Tissue Density Classification: Provides the description and results of our
approach to the problem of mammogram tissue density classification.

7. Mammogram Texture Enhancement: Demonstrates our usage of descriptive textural
models for the enhancement of abnormalities in X-ray mammograms.

8. Local Contrast Criteria: Presents the comparison of methods for computing image
contrast along with our proposed surrounding region contrast method.

9. Developed Software: Contains a short overview of the software we developed and used
for the experiments during our research.

3
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10. Conclusions: Summarizes the results of our research, suggests possible topics for
further research, and concludes the dissertation thesis.
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Chapter 2

Background and State-of-the-Art

In this chapter we first present the theoretical background in Sec. 2.1. We focus mostly on
the description of texture representation (Sec. 2.1.1) we based our work on. Then follow
the sections on Gaussian mixtures (Sec. 2.1.2) and Extremal regions (Sec. 2.1.3). The
last section of the theoretical background covers some basic information on mammography
(Sec. 2.1.4).

The second section (Sec. 2.2) then covers the work which has been previously done
by other researchers in the area of breast segmentation (Sec. 2.2.1), texture analysis
(Sec. 2.2.3), breast density classification (Sec. 2.2.4), texture enhancement (Sec. 2.2.5),
breast registration (Secs. 2.2.6 and 2.2.7), contrast measures (Sec. 2.2.8) and texture
synthesis (Sec. 2.2.9).

2.1 Theoretical Background

2.1.1 Texture Representation

There is no rigorous mathematical definition [7] of texture but this notion is commonly
used to represent the visual appearance of real world materials. We are interested in
mathematical descriptive texture representations which can be beneficial for both analyt-
ical representation as well as physically correct texture visualization. Currently, the best
mathematical textural models are based on multidimensional Markov random fields which
can built upon from several simpler lower dimensional random field models.

2.1.1.1 2DCAR Texture Model

Definition The 2DCAR [8] random field is a Markovian family (wide-sense Markov) of
random variables with a joint probability density on the set of all possible realizations Y
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of the M ×N lattice I, subject to the following condition:

p(Y | γ, σ−2) = (2πσ2)−
(MN−1)

2 exp

{
−1

2
tr

{
σ−2

(
−α
γT

)T
ṼMN−1

(
−α
γT

)}}
, (2.1)

where α is a unit vector, tr() is a trace of the corresponding matrix, and the following
notation is used

Ṽr−1 =
r−1∑
k=1

(
YkY

T
k YkX

T
k

XkY
T
k XkX

T
k

)
=

(
Ṽy(r−1) Ṽ T

xy(r−1)

Ṽxy(r−1) Ṽx(r−1)

)
.

Here, r = [r1, r2] is spatial index denoting history of movements on the lattice I.

The 2DCAR model can be expressed as a stationary causal uncorrelated noise-driven
2D autoregressive process:

Yr = γXr + er , (2.2)

where γ = [a1, . . . , aη] is the parameter vector, η = cardinality(Icr), I
c
r denotes a causal (or

alternatively unilateral) contextual neighbourhood (i.e., all support pixels were previously
visited and they are known). Furthermore, er denotes white Gaussian noise with zero mean
and a constant but unknown variance σ2, and Xr is a support vector of Yr−s where
s ∈ Icr .

Our implementations use a locally adaptive version of this 2DCAR model [9], where its
recursive statistics are modified by an exponential forgetting factor, i.e., a constant smaller
than 1 which is used to weight the older data.

The posterior probability density [9] of the model is:

p(Yr |Y (r−1), γ̂r−1) =
Γ(β(r)−η+3

2
)

Γ(β(r)−η+2
2

) π
1
2 (1 +XT

r V
−1
x(r−1)Xr)

1
2 |λ(r−1)|

1
2(

1 +
(Yr − γ̂r−1Xr)

Tλ−1
(r−1)(Yr − γ̂r−1Xr)

1 +XT
r V

−1
x(r−1)Xr

)−β(r)−η+3
2

(2.3)

And the conditional mean value predictor of the one-step-ahead predictive posterior den-
sity (2.3) for the normal-gamma parameter prior is

E
{
Yr |Y (r−1)

}
= γ̂r−1Xr . (2.4)

Parameter Estimation Parameter estimation of a 2DCAR model using either the
maximum likelihood, or the least square or Bayesian methods can be found analytically.

6



2.1. Theoretical Background

The Bayesian parameter estimates of the 2DCAR model using the normal-gamma param-
eter prior are:

γ̂Tr−1 = V −1
x(r−1)Vxy(r−1) (2.5)

σ̂2
r−1 =

λ(r−1)

β(r)
(2.6)

where

λ(r−1) = Vy(r−1) − V T
xy(r−1)V

−1
x(r−1)Vxy(r−1) ,

V(r−1) = Ṽ(r−1) + V(0) ,

β(r) = β(0) + r − 1 ,

and β(0) is an initialization constant and submatrices in V(0) are from the parameter
prior. The estimates (2.5), (2.9) can also be evaluated recursively ([9]).

2.1.1.2 3DCAR Texture Model

Definition The causal autoregressive random field (3D CAR) model [10] is a family of
random variables with a joint probability density on the set of all possible realizations Y
of the M ×N × d lattice I, subject to the following condition:

p(Y | γ,Σ−1) =
|Σ−1|

(MN−1)
2

(2π)
d(MN−1)

2

exp

{
−1

2
tr{Σ−1

(
−I
γT

)T
ṼMN−1

(
−I
γT

)
}

}
,

where the following notation is used

Ṽr−1 =

(
Ṽyy(r−1) Ṽ T

xy(r−1)

Ṽxy(r−1) Ṽxx(r−1)

)
,

Ṽyy(r−1) =
r−1∑
k=1

YkY
T
k ,

Ṽxy(r−1) =
r−1∑
k=1

XkY
T
k ,

Ṽxx(r−1) =
r−1∑
k=1

XkX
T
k .

The 3D CAR model can be expressed as a stationary causal uncorrelated noise driven 3D
autoregressive process:

Yr = γXr + er , (2.7)
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2. Background and State-of-the-Art

where γ is the d × dη parameter matrix γ = [A1, . . . , Aη] , η = card(Icr) , Icr is a
causal neighbourhood, er is a Gaussian white noise vector with zero mean and a constant
but unknown covariance matrix Σ (estimated by (2.10)) and Xr is a corresponding
vector of Yr−s (design vector).

Parameter Estimation The selection of an appropriate CAR model support is impor-
tant to obtain good results in modeling of a given random field. If the contextual neighbour-
hood is too small it cannot capture all details of the random field. Inclusion of the unneces-
sary neighbours on the other hand add to the computational burden and can potentially de-
grade the performance of the model as an additional source of noise. The optimal Bayesian
decision rule for minimizing the average probability of decision error chooses the maximum
posterior probability model, i.e., a model Mi corresponding to maxj{p(Mj|Y (r−1))} where
Y (r−1) denotes the known process history Y (r−1) = {Yr−1, Yr−2, . . . , Y1} . The most prob-
able CAR model given past data Y (r−1), the normal-Wishart parameter prior and the
uniform model prior is the model Mi for which i = arg maxj{Dj(r−1)}

Dj(r−1) =
d2η

2
lnπ

d∑
i=1

[
ln Γ(

β(r)− dη + d+ 2− i
2

) − ln Γ(
β(0)− dη + d+ 2− i

2
)

]
− d

2
ln |Vxx(r−1)| −

β(r)− dη + d+ 1

2
ln |λ(r−1)|

where β(r) = β(0) + r − 1 , β(0) > 1 , and

λ(r) = Vyy(r) − V T
xy(r)V

−1
xx(r)Vxy(r) . (2.8)

Parameter estimation of a CAR model using the maximum likelihood, the least square or
Bayesian methods can be found analytically. The Bayesian parameter estimations of the
causal AR model with the normal-Wishart parameter prior which maximize the posterior
density are:

γ̂Tr−1 = V −1
xx(r−1)Vxy(r−1) (2.9)

and

Σ̂r−1 =
λ(r−1)

β(r)
, (2.10)

where Vuz(r−1) = Ṽuz(r−1) + Vuz(0) and matrices Vuz(0) are the corresponding matrices
from the normal-Wishart parameter prior. The estimates (2.8), (2.9) and (2.10) can be
also evaluated recursively if necessary.
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2.1. Theoretical Background

2.1.1.3 Potts MRF

Definition The Potts model [11, 12] is a generalization of the 2-state Ising model [13, 14]
to n-states, where n ∈ N. It is one of the simplest MRFs which was first designed for
physical simulations of grain growth in metals or coarsening of foams. But it also has a
variety of possible uses in image processing and its main advantage is that it is analytically
solvable. In image processing, it can be used for texture synthesis, segmentation, noise
reduction, etc.

The Potts model is a model of interacting spins on a lattice (same as the Ising model),
but whereas the Ising model allowed only two possible states for a node on the lattice, the
Potts model allows it to be in one of general n possible states - si ∈ {1..n}.

The general Potts model is defined by the following equation:

βH = −β
∑
(i,j)

Jijδ(si, sj)−
∑
i

hisi ,

where δ is the Kronecker delta, Jij is 1 iff i and j are neighbors, otherwise 0 and H
(the Hamiltonian of the system) is the energy of the system as in the Gibbs distribution:

P (X|β) =
1

Z(β)
e−β(

∑
(i,j) Jijδ(si,sj)−

∑
i hisi) . (2.11)

For our purpose of texture synthesis, we can omit the external magnetic field part:

H =
∑
(i,j)

Jijδ(si, sj)

This way the parameter β can be effectively estimated by the pseudo-likelihood method,
as described in [15, 16]. We will cover this further in this section.

Parameter Estimation Potts model has the advantage that only one parameter needs
to be estimated - β. The estimation using maximum pseudo-likelihood method was de-
scribed in [15] and is done as follows.

The local density function for each point in the image lattice can be computed as

p(si = q|sηi , β) =
eβUsi (q)∑M
l=1 e

βUsi (l)
,

where Usi(q) denotes the number of neighbours of node si that are in state q.
Assuming conditional independence of the points in the lattice, we get the pseudo-

likelihood function:

PL(β) =
∏
si∈S

p(si = q|sηi , β) .

When we make a logarithm of the pseudo-likelihood function, differentiate it by β and
require the result to equal zero, we get the following equation whose solution is the desired

9



2. Background and State-of-the-Art

Figure 2.1: Example of a sampled Potts model with 10 colours.

β with maximal pseudo-likelihood. The solution is easy to compute numerically for most
given lattices.

Ψ(β) =
∑
si∈S

Usi(q)−
∑
si∈S

∑M
l=1 Usi(l)e

βUsi (l)∑M
l=1 e

βUsi (l)
= 0 .

Sampling The Potts model can be sampled using standard MCMC approaches for real-
izing MRF such as the Gibbs sampler or Metropolis algorithm [17]. For the Potts model
also exist specialized fast samplers: the Wolf’s algorithm [18] and the Swendsen-Wang
algorithm [19] that we have chosen.

The advantage of the Swendsen-Wang (SW) algorithm is that it converges very fast.
Furthermore, the changes made to the sampled system are substantial - in each step, the
system can change into any other state of the state-space, which is suitable for our further
use.

The SW algorithm is based on the idea of extending the Potts field with a graph whose
vertices correspond with the nodes of the Potts field and edges represent a bond between
the nodes. It is a MCMC method without a specified ending. Fig. 2.2 shows a sample step
of the SW algorithm, which is described in Alg. 2.1.

2.1.1.4 BTF

The Bidirectional Texture Function (BTF) [20] is currently the most precise approximation
of the physically correct texture representation, e.g. with applications is 3D graphics
texture rendering, that we are able to measure. Multispectral BTF is a seven-dimensional
function which considers measurement dependency on color spectrum, planar material
position and its dependence on illumination and viewing angles:

BTF (r, θi, φi, θv, φv) ,
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Algorithm 2.1 Swendsen-Wang algorithm pseudocode.

Input: β, lattice I, neighborhood IN
loop

for all v ∈ I do
for all u ∈ IN(v) do

Form an edge between u and v with probability p = 1− eβ
end for

end for
for all connected component C ⊂ I do

col = randomColor
for all v ∈ C do

v ← col
end for

end for
end loop

Figure 2.2: Swendsen-Wang algorithm step.

where the multiindex r = [r1, r2, r3] denotes the planar horizontal and vertical position
(r1 and r2 respectively), r3 is the spectral index, θ, φ are respectively the elevation and
azimuthal angles of the illumination (θi, φi) and view direction vector (θv, φv). Fig. 2.3
shows an illustration of the BTF’s variables.

2.1.2 Gaussian Mixtures

Gaussian mixture model (GMM) is a probability distribution (2.13) consisting of a weighed
sum of N Gaussian distribution components (2.12), such that the sum of the weights
equals 1 (2.14). We use this model to represent feature space distribution in our developed
classification methods.
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Figure 2.3: Explanation of the BTF space measurements.

N (θ|µ,Σ) =
1√

(2π)N |Σ|
e(−

1
2

(θ−µ)TΣ−1(θ−µ)) (2.12)

f(θ|µk,Σk, wk, k ∈ {1 . . . N}) =
N∑
k=1

wkN (θ|µk,Σk) , (2.13)

N∑
k=1

wk = 1 (2.14)

2.1.2.1 EM Algorithm

The EM algorithm [21, 22] is an iterative algorithm that can be used to estimate the
parameters of a GMM from the given random samples. Let Θ be the set of observations
θ, τ be the threshold of relative improvement between steps, T be the maximum number
of steps. Then, iteratively, the estimated parameters wk, µk,Σk can be found as:

2.1.2.2 Kullback-Leibler Divergence

Kullback-Leibler divergence (KL divergence) [23] is a measure of how much one probability
distribution diverges from another (it is not symmetrical). It is defined as:

D(f(x)||g(x))
def
=

∫
f(x) log

f(x)

g(x)
dx .

For the Gaussian distribution, the KL divergence can be solved analytically:

D(f(x)||g(x)) =
1

2

(
log
|Σg|
|Σf |

+ tr(Σ−1
g Σf )− d+ (µf − µg)TΣ−1

g (µf − µg)
)

.
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Algorithm 2.2 EM algorithm pseudocode.

Input: Set of random samples Θ
repeat

qt(k|θ) ← wtkN (θ|µtk,Σt
k)∑N

l w
t
lN (θ|µtl ,Σt

l)

wt+1
k ← 1

|Θ|
∑
θ∈Θ

qt(k|θ)

µt+1
k ← 1∑

θ∈Θ q
t(k|θ)

∑
θ∈Θ

θqt(k|θ)

Σt+1
k ← 1∑

θ∈Θ q
t(k|θ)

∑
θ∈Θ

qt(k|θ)(θ − µt+1
k )(θ − µt+1

k )T

Lt+1(Θ) ←
∑
θ∈Θ

log f(θ|µt+1
k ,Σt+1

k , wt+1
k , k ∈ {1 . . . N})

t ← t+ 1

until Lt+1−Lt
Lt+1 < τ ∨ t ≥ T

for all k ∈ {1 . . . N} do

µk ← µtk
Σk ← Σt

k

wk ← wtk

end for
Output: Estimated sets of µk, Σk and wk

However, for the GMM, the KL divergence is not analytically solvable. Therefore, we
use the following approximation [24]:

Dv(f(x)||g(x)) '
M∑
i=1

wf,i log

∑
i′ wf,i′e

−D(fi||fi′ )∑
j wg,je

−D(fi||gj)
,

where D(fi||fi′) and D(fi||gj) denote the KL divergences of the components of the
GMM and wf,i and wg,j are their corresponding weights.

2.1.3 Extremal Regions

The Extremal Regions (ER) [25, 26] are a fast (O(n log log n)) method of getting all thresh-
olds (or rather a threshold tree) of an image with respect to one colour channel.

Let I be a rectangular lattice, r = [r1, r2] ∈ I be a pixel location and Yr ∈ S be
the value of pixel r in image channel Y , where S is the set of all possible values of Yr,
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typically S = {0, . . . , 255}, but any totally ordered set can be used. Let A ⊂ I × I be the
neighbourhood adjacency relation.

Region R of an image Y is a continuous subset of I, i.e. ∀r, s ∈ R,∃t1, . . . , tn :
rAt1A . . .AtnAs.

Outer region boundary δR is the set of pixels which are adjacent to region R but do
not belong to it: δR = {s ∈ I \ R : ∃r ∈ R : rAs}.

Extremal region is a region whose pixels’ values are strictly lower than those of its outer
boundary: ∀r ∈ R, s ∈ δR : Yr < Ys. An ER at threshold τ (Rτ ) is a union of a set of
ERs at threshold τ ′ < τ and pixels of value τ which are on their boundaries or connect
them: Rτ = (

⋃
Rτ ′ , ∀τ ′ < τ) ∪ (

⋃
s ∈ I : Ys = τ). This induces an inclusion relation on

the Extremal Regions where each region can have any number of predecessors and exactly
one successor. The only exception is the ultimate successor Rτmax , where τmax = max

r
Yr,

which has no successor and, transitively through its predecessors, contains all pixels in the
image.

2.1.4 Mammography

In this section we briefly describe the mammographical terminology we are going to use in
the rest of this work.

Cranio-caudal view (CC) is the top-down view of the breast. The CC views of the left
and right breasts are denoted LCC and RCC respectively. An example is shown in Fig. 2.4
on the left.

Medio-lateral oblique view (MLO) is the side oblique view of the breast. The MLO
views of the left and right breasts are denoted LMLO and RMLO respectively. An example
is shown in Fig. 2.4 on the right.

Microcalcifications are tiny grains of calcium deposits, that can be scattered through-
out the mammary gland. They are perfectly normal, but under certain circumstances can
also be the sign of a developing cancer. In the mammograms they look like tiny little white
dots. A sample image displaying microcalcifications is in Fig. 2.5 on the left.

Lymphatic nodes Lymphatic nodes, like the microcalcifications are a normal benign
parts of breast, but their increased presence can be the sign of malignant changes in the
breast. In the mammograms they look like small circular lighter shades. An example of
lymphatic nodes can be seen in Fig. 2.5 on the right.

Asymmetries Asymmetries between the left and right breast are a always warning el-
ement. Quite often they are the sign of a developing cancer which is the reason that
radiologists compare the images of the left and right breast together and look for differ-
ences between them. An example can be seen in Fig. 2.6 on the left and in the middle.
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Figure 2.4: Example of a cranio-caudal view (left) and a medio-lateral oblique view (right)
of a mammogram.

Figure 2.5: Example of clustered microcalcifications scattered inside a tiny cancer in the
center of the image (left) and several lymphatic nodes inside the pectoral muscle (right).
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Figure 2.6: Example of an asymmetry between the left and right breasts (left and middle).
Image shown on the right displays an example of a mass.

Masses Masses are what radiologists are usually looking for in the mammograms. They
are brighter areas in the mammogram which could be both benign and malignant. They can
be caused by several different things - cysts (non-cancerous, fluid filled sacs), non-cancerous
solid tumours (such as fibroadenomas) or they can be cancerous regions. Fig. 2.6 on the
right shows an example of a CC mammogram with a mass.

2.1.4.1 ACR BI-RADS Standard

American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-
RADS) [27] specifies a guidance system for mammogram reporting. From this system, we
are interested in the classification of breast composition and the assessment of the risk of
cancer (a short overview can be found in Tab. 2.1).

Breast composition is classified into the following 4 groups (example images can be seen
in Fig. 2.7):

BI-RADS a The breast is almost entirely fat, fibrous and glandular tissue makes up less
than 25% of the breast.

BI-RADS b There are scattered areas of fibroglandular density. Fibrous and glandular
tissue makes up from 25 to 50% of the breast.
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BI-RADS c The breast tissue is heterogeneously dense and the breast has more areas of
fibrous and glandular tissue (from 51 to 75%) that are found throughout the breast.
This can make it hard to see small masses (cysts or tumours).

BI-RADS d The breast tissue is extremely dense. The breast is made up of more than
75% fibrous and glandular tissue. This can lead to missing some cancers.

Composition Tissue density description Assessment Assessment description
- unspecified BI-RADS 0 incomplete

BI-RADS a entirely fatty BI-RADS 1 normal
BI-RADS b scattered fibroglandular d. BI-RADS 2 benign
BI-RADS c heterogeneously d. BI-RADS 3 probably benign
BI-RADS d extremely d. BI-RADS 4 suspicious

BI-RADS 5 highly suggestive of malignancy
BI-RADS 6 biopsy-proven malignancy

Table 2.1: Density and assessment categories.

There are 6 assessment categories according to the ACR BI-RADS system:

BI-RADS 0 Incomplete, needs additional imaging evaluation and/or prior mammograms
for comparison

BI-RADS 1 Negative. Describes a normal examination with nothing to comment on.

BI-RADS 2 Benign. There is a benign finding in the mammogram, be it calcified fi-
broadenomas, skin calcifications, fat-containing lesions, etc.

BI-RADS 3 Probably benign. Should have a ≤ 2% probability of malignancy and is not
expected to change over the suggested period of imaging surveillance.

BI-RADS 4 Suspicious. The finding does not have a classic appearance of malignancy
but is suspicious enough to justify a recommendation for biopsy. This category is
split into three subcategories, 4a, 4b, 4c - low suspicion, moderate suspicion and high
suspicion respectively.

BI-RADS 5 Highly suggestive of malignancy. The probability of malignancy should be
≥ 95%.

BI-RADS 6 Biopsy-proven malignancy.
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Figure 2.7: Example mammograms with different density values - left to right consequently
contain BI-RADS densities 1, 2, 3 and 4.

2.2 Previous Results and Related Work

Automatic analysis of mammograms is a wide field of study with several sub-problems
to be solved. Single view analysis methods focus on segmenting the breast area, finding
clustered microcalcifications, segmentation of lesions, etc. Multiple view analysis then
focuses on registration of both bilateral and temporal mammograms and their comparison,
fusion of data acquired from CC and MLO views and fusing multi-modal mammography
information such as sonography or magnetic resonance.

2.2.1 Breast Segmentation

The complexity of breast area segmentation differs greatly based on whether the segmen-
tation is performed on scans of analogue mammograms or on digitally acquired mammo-
grams.

The basic approach would be simple thresholding and its variations such as e.g. in [28]
where the authors compute an adaptive threshold for each row separately.

In [29], the described method classifies pixels into homogeneous, edge, raster and
aquarelle classes and based on the found classes then finds the breast region.

2.2.2 Microcalcification Segmentation

Microcalcifications play an important role in mammography analysis because they can
indicate a developing cancer in the otherwise undetectable very early stages.
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In [30] a gradient based method is proposed which uses contrast enhancement and
thresholding to 30% brightest pixels in the image.

In [31] the difference of the input image and an image created by blurring it using
Gaussian blur is used for locating microcalcifications.

2.2.3 Breast Texture Analysis

While unsupervised methods are used for breast area and microcalcification segmenta-
tion, in segmentation focused on identifying lesions we encounter both the supervised and
unsupervised approach.

In [32, 33] unsupervised methods for texture segmentation are applied to detecting
mammographical ROIs. The methods are based on using 3D CAR models, segmentation
is done in parameter space based on Gaussian mixture model solved by the EM algorithm.

The method described in [34] uses a Gaussian mixture based approach to construct a
likelihood image which shows the measure of abnormality of the particular parts of the
image.

There is an interesting approach shown in [35] for segmenting the breast into texture
types called Tabár building blocks, inspired by [36] - nodular, linear, homogeneous, radi-
olucent, creating probability maps for further processing.

In [37] we can see a method which finds a lesion around a given seed. It uses the
assumption that most lesions are of a circular character and works in polar coordinate
system. It then uses dynamic programming to find the least energetically demanding path
from the −π to +π angles.

The paper [38] describes another seed based method which is based on region growing
according to the gradient information.

2.2.4 Breast Density Analysis

Muhimmah and Zwiggelaar [39] use multiresolution histogram features-based method com-
puted on Gaussian pyramid with the Directed Acyclic Graph - Support Vector Machine
(DAG-SVM) classifier.

Mustra et al. [40] extract multiple features using gray level co-occurrence matrices and
histogram based approaches and classify the density using the kNN classifier.

2.2.5 Texture Enhancement

The mammogram enhancement methods can be roughly categorized into frequency and
spatial based methods. The frequency based methods [41, 42, 43, 44] use mostly some
wavelet multiscale decomposition with modified wavelet coefficients to enhance mammo-
gram contrast. The spatial methods [45, 46] use some nonlinear or adaptive linear filters.

We have implemented four representative mammogram enhancement methods from
several published alternatives [42, 43, 46, 47, 48, 49, 50, 51] to compare with our adaptive
probabilistic mammogram enhancement methods.
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2.2.5.1 Histogram Equalization

The well known grayscale image enhancement technique is histogram equalization [52],
which is based on the idea of forcing the enhanced image histogram to be uniform. This is
a popular technique for contrast enhancement because of its simplicity and time efficiency.
However, it may overenhance the noise and sharp regions in the original images.

2.2.5.2 Matting-Based Enhancement

The enhancement method based on the idea of image matting was published in [53]. The
method sees the mammographic images (Y ) as a superposition of adipose tissue (B), which
forms most in the background of the image, and the mammary glands and other breast
structures that the radiologists need to focus on, denoted by (G):

Y = Gc+B(1− c) (2.15)

The enhancement method then selectively subtracts the background tissues from the su-
perposition, thus creating the enhanced image.

To enable this, the authors had to estimate the background (B) and the opacity alpha
value for each pixel by which it is blended with the rest of the image (c). In this method
the background is set as a constant value for the whole image represented by the 85%
percentile of grey values of the breast part of the image.

2.2.5.3 Nonlinear Unsharp Masking

A nonlinear unsharp masking (NLUM) combined with nonlinear filtering for mammogram
enhancement was introduced in [54]. The method embeds different types of filters into the
nonlinear filtering operator within the 3× 3 window which fuses the enhanced and original
mammogram data.

High-frequencies of the signal are emphasized by either subtracting a low-pass filtered
signal from its original or adding a scaled high-frequency factor to the measured original.
The method’s eight parameters are optimized with relation to a proposed second-derivative-
like measure of enhancement (SDME) [54].

2.2.5.4 Direct Contrast Enhancement

Tang et al. [41] developed an enhancement method based on wavelet transformation.
It transforms the mammogram image into a multi-level 2D wavelet space. Directional
contrast at each level of the wavelet transformation is estimated; namely, the three high-
pass components are divided, each by its low-pass component. The contrast estimate
is then multiplied by a constant contrast enhancement factor λ. The enhanced image
is acquired by running the inverse wavelet transform one level at a time. To make up
for the contrast enhancement changes, the high-pass components are re-multiplied by the
newly computed low-pass component in each iteration until the whole inverse is achieved.
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This also allows the method to enhance the image’s contrast without introducing excessive
additional noise.

2.2.5.5 Non-linear Polynomial Filters

Bhateja et al. [55] have published an enhancement method based on the Non-linear poly-
nomial filtering framework based on quadratic Volterra filters for contrast and edge en-
hancement of mammographic images. The method performs both low-pass and high-pass
filtering of the image and combines the output in one contrast and edge enhanced result.

2.2.6 CC - MLO Pseudoregistration

To decrease false positive rate in detecting mammogram abnormalities or to enhance the
belief in the finding, radiologists try to find corresponding areas in CC and MLO views of
the same breast. As bright areas in the mammogram can be also formed by superposition
of normal tissue along the line of the X-ray, this approach can help distinguish between
the superposition and a possible abnormality.

Cranio-caudal to medio-lateral oblique view data fusion usually uses the nipple as a
reference point [56] and creates a coordinate system based on the distance of a point to
the chest and the coordinate in the axes of the CC and MLO views almost precisely copy
the new 3D coordinates introduced.

In [57] a complex approach is proposed which detects stellated patterns, finds nodular
areas using radial gradient vectors and tries to find a corresponding structure in the other
view as well. The scan is done in equidistance to the nipple with search width extent
given as an empirically obtained parameter. This method is supervised, based on neural
networks.

The method described in [58] tries to reconstruct a 3D model of the breast and display
microcalcifications segmented and registered from both CC and MLO views. Coordinate
system is based on the distance to the nipple and direction parallel and perpendicular to
the vector from the nipple to the chest.

2.2.7 Bilateral and Temporal Registration

Most research in mammogram registration has been done in the area of bilateral and
temporal mammogram comparison. However, the authors usually create a sophisticated
registration method, but then compare the mammograms only using simple pixel-wise dif-
ference. This is a large drawback since the breasts similarity does not go to such an extent
that they could be compared pixelwise. The methods also frequently rely on mammo-
graphic features which may not always be present in the mammograms.

In [59, 60] is a registration technique for temporal analysis only based on thin-plate
spline transformation [61]. They first analyze the boundary curve to find reference points
- the nipple, rib and axilla. Wavelet based feature detection is then used to find internal
landmarks. The [60] uses SMF [62, 63] normalization before proceeding to registration.
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The drawback of this otherwise very interesting method is that neither the rib nor the
axilla are always visible in the mammogram. Thin-plate spline based approach is also used
in[64].

[65] is also a temporal method only. It simply translates the breast to align the centers
of the breast areas. This is used as an initial estimate of the position of a lesion in the prior
image. Masses are then segmented using features to detect stellated lesions and focal mass
lesions. Corresponding masses are then searched in the reference image based on Pearson’s
correlation measure. The size of the masses is compared assuming that malignant masses
grow in time.

The method described in [66] deals also only with the comparison of temporal mammo-
grams, with further conclusions being made. It is based on a general method for registering
images with the presence of abnormalities. However, it needs the apriori knowledge about
the distribution of abnormalities which is a major drawback. The registration and trans-
formation are based on Bayesian MAP approach with minimization of the registration and
deformation energy.

An interesting approach is proposed in [67]. The coordinate system is based on the
distance of the equidistance line to the breast contour and the position on the line itself.
The mammograms are then transformed into this new coordinate system and the compar-
ison is then made using correlation. This approach is rather vulnerable to the fact that
the bilateral mammograms do not have to display the same breast area.

In [68] the registration is done by aligning breast contours which serves as a guideline
for affine transformation.

2.2.8 Contrast Measures

The contrast criterion is not uniquely defined [69] and many criteria, which are usually
categorized into local, global and region based measures, are available. Another possible
categorization is whether they use only monospectral information, e.g. WC, MC, EME,
EMEE, AME, AMEE, SDME, C1, C2, C3 (2.16)-(2.27), RCC (2.32), or they use all three
colour bands, e.g. WlfRsc (2.30), BCC (2.33). Typical measures used are the Weber or
Michelson contrast criteria. The Weber contrast [70] is

↑ WC =
Yobj − Yback

Yback
≥ 0 , (2.16)

where ↑ is the required criterion movement, Yobj, Yback are the object and background
luminance, respectively. The Michelson contrast [71] is defined as

↑MC =
Ymax − Ymin

Ymax + Ymin

≥ 0 , (2.17)

where Ymax, Ymin are the highest and lowest luminances. Several modifications [72, 73, 74]
of this criterion which replace either Ymax or Ymin with Ymean were also published.
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2.2.8.1 Global Contrast Measures

The measure of enhancement (EME) based on a Weber-law-based contrast measure was
proposed by Agaian [75] and analogically the measure of enhancement by entropy (EMEE).
The Michelson law measure of enhancement (AME) and its entropy modification, Michelson
law measure of enhancement by entropy (AMEE), were later proposed by the same authors
[76]. Panetta et al. [54] used these global monospectral contrast measures for mammogram
enhancement assessment and introduced a second-derivative-like enhancement measure
(SDME). The SDME results were found to be consistent with the mean opinion score
(MOS) from seven human observers, while the AME, AMEE, EME, EMEE criteria were
found to be inconsistent [54]. All these contrast measures assume an evaluated image
divided into k1 × k2 blocks.

↑ EMEk1,k2 =
1

k1 k2

k1∑
l=1

k2∑
k=1

20 ln

(
Ymax,k,l
Ymin,k,l

)
〈0;∞) , (2.18)

↑ EMEEk1,k2 =
1

k1 k2

k1∑
l=1

k2∑
k=1

[
α

(
Ymax,k,l
Ymin,k,l

)α
ln

(
Ymax,k,l
Ymin,k,l

)]
〈0;∞) , (2.19)

↓ AMEk1,k2 = − 1

k1 k2

k1∑
l=1

k2∑
k=1

20 ln

(
Ymax,k,l − Ymin,k,l
Ymax,k,l + Ymin,k,l

)
〈0;∞) , (2.20)

↓ AMEEk1,k2 =
−α
k1 k2

k1∑
l=1

k2∑
k=1

(
Ymax,k,l − Ymin,k,l
Ymax,k,l + Ymin,k,l

)α
ln

(
Ymax,k,l − Ymin,k,l
Ymax,k,l + Ymin,k,l

)
〈0;∞) , (2.21)

↓ SDMEk1,k2 = − 1

k1 k2

k1∑
l=1

k2∑
k=1

20 ln

(
Ymax,k,l − 2Ycenter,k,l + Ymin,k,l
Ymax,k,l + 2Ycenter,k,l + Ymin,k,l

)
〈0;∞) , (2.22)

where α is a constant, Ymax,k,l, Ymin,k,l, Ycenter,k,l are the corresponding maximum, minimum,
and center values, respectively.

The main disadvantage of these global measures is their insufficient robustness. They
exhibit strong dependence on two single extreme brightness or darkness points (possibly
outliers), while the overall contrast perception might be completely different.

2.2.8.2 Local Pixelwise Contrast Measures

Difference-of-Gaussians based contrast measures Three different local contrast
measures (C1, C2, C3) based on the difference of Gaussians were introduced by Tadmor
and Tolhurst [77]. These contrast measures (especially C3) should model the response of
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the eye to the variations in contrast.

Cen(i, j) = exp

[
−
(
i

ρc

)2

−
(
j

ρc

)2
]
,

Sur(i, j) = 0.85

(
ρc
ρs

)2

exp

[
−
(
i

ρs

)2

−
(
j

ρs

)2
]
,

Rc(x, y) =

x+3ρc∑
i=x−3ρc

y+3ρc∑
j=y−3ρc

Cen(i− x, j − y)Yi,j , (2.23)

Rs(x, y) =

x+3ρs∑
i=x−3ρs

y+3ρs∑
j=y−3ρs

Sur(i− x, j − y)Yi,j , (2.24)

↑ C1(x, y) =
Rc(x, y)−Rs(x, y)

Rc(x, y)
〈0;∞〉 , (2.25)

↑ C2(x, y) =
Rc(x, y)−Rs(x, y)

Rs(x, y)
〈0;∞〉 , (2.26)

↑ C3(x, y) =
Rc(x, y)−Rs(x, y)

Rc(x, y) +Rs(x, y)
〈0;∞〉 , (2.27)

where ρc and ρs denote the radius for the centered and surrounding Gaussian respectively,
ρc < ρs, and x, y are spatial indices.

Weighted-level framework The Weighted-Level Framework with Retinal-like sub-
sampling contrast, WlfRsc method [78], works in the CIELAB (or RGB) color space av-
eraging the values of the actual bands. It computes the difference of Gaussians (2.23),
(2.24)

DOG(x, y) = Rc(x, y)−Rs(x, y) > 0 , (2.28)

contrast for the lightness and also for the two chromatic channels. The three independent
measures of each channel are then merged by a weighted linear combination.

This method is based on the idea of the difference of Gaussians (DOG) combined with
the Gaussian pyramid

WlfRsc,i =
1

Nl

Nl∑
l=1

λlEl{C3i} , (2.29)

↑ WlfRsc =
d∑

k=1

ciWlfRsc,i > 0 , (2.30)

where Nl is the number of levels in the Gaussian pyramid, El{...} is the mean value of the
given contrast measure at the sub-sampled level l, d is the number of spectral bands, λl is
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the weight of level l and C3i is from (2.27) computed on the i-th spectral channel, and ci
are the weights of each color channel. For the RGB color space Simone et al.[78] suggest
ci to be the variance of pixel values for the corresponding channel, while in the Lab color
space they propose to use ci = 0.33 ∀i.

2.2.8.3 Region of Interest Based Contrast Measures

Region contrast The contrast between two regions is computed on the basis of the
average values of features of adjacent regions [79]:

ci,j =
|µi − µj|
µi + µj

ki,j =
|border(i)

⋂
border(j)|

|border(i)|
ci =

∑
∀Rjadj Ri

ki,jci,j (2.31)

↑ RCC =

∑
∀Rj |Rj|cj∑
∀Rj |Rj|

> 0 (2.32)

where µi denotes the mean value of region i, border(i) are the pixels on the border of
region i, and adjRi are regions which are adjacent to region i. Equation (2.31) computes
the contrast of ith region and equation (2.32) sums the global contrast.

Border contrast The contrast measure [80] computes the mean difference of pixel values
along the border of a region of interest. For each region of interest Ri and all border pixels
b(Ri) it computes the mean pixel values µinj and µoutj of small windows next to the border
inside and outside of the desired region of interest, normalized by the image’s maximum
pixel value Ymax. The value of ns is a normalization factor denoting the number of spectral
bands of the image so that gray-scale images can be compared with multispectral ones.

↑ BCC =
100

Ymax
√
ns

∑
i

|b(Ri)|
∑
i

∑
j∈b(Ri)

||µinj − µoutj || > 0 . (2.33)

2.2.9 Texture Synthesis

Physically correct and convincing virtual models require not only detailed 3D shapes ac-
corded with the captured scene, but also object surfaces covered with realistic nature-like
surface material textures to enhance realism in virtual scenes. The primary purpose of any
synthetic texture approach is to reproduce and enlarge a given measured texture image so
that ideally both natural and synthetic texture will be visually indiscernible.

Texture synthesis can be primarily divided into sampling and model based methods [81].
Sampling approaches rely on sophisticated sampling from real texture measurements while
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the model-based techniques describe texture data using multidimensional mathematical
models and their synthesis is based on the estimated model parameters only. For details
on these corresponding approaches, see survey articles [7, 81].

As we want to apply the textural models also for visual information analytical applica-
tions, we are interested in this work only in the mathematical textural models.
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Chapter 3

Experimental Data

All methods need experimental verification. In this chapter we present the databases we
used in our experiments. Sec. 3.1 covers the mammogram databases, Sec. 3.2 covers the
images we used during our work on texture synthesis and Sec. 3.3 covers the dermatological
data.

3.1 Public Mammogram Databases

There are not many publicly available mammogram databases [82, 83, 84, 85, 86, 87],
older databases like DDSM [84], MIAS [82] are digitized from the X-ray films, while newer
databases like INbreast [86] are already digitally acquired. The databases that we use for
our experiments are the INbreast database (covered in more detail in Sec. 3.1.1), the MIAS
database (covered in more detail in Sec. 3.1.2) and the DDSM (see Sec. 3.1.3).

The LLNL/UCSF database [83] (ftp://gdo-biomed.ucllnl.org/pub/mammo-db/) con-
tains 198 digitized films from 50 patients with 4 views per patient but only with 2 views
from one mastectomy case.

The recent OPTIMAM database [87] shows good promise and we plan to use it for
our experiments in the future. According to their homepage, it should currently contain
over 170000 images which makes it to our knowledge the largest mammogram database
(https://medphys.royalsurrey.nhs.uk/imagedb/).

The BancoWeb LAPIMO Database [88] was acquired at two hospitals using Senographe
500t and Senographe 600t mammographs and digitized by using two laser scanners Lumis-
can 50 and Lumiscan 75 (http://lapimo.sel.eesc.usp.br/bancoweb/).

As far as we know, only the MIAS, DDSM and LLNL/UCSF databases are completely
free to download. Other databases, such as the INbreast and OPTIMAM require anyone
who wants to use it to sign an agreement whereas the LAPIMO database has a restricted
server approach which needs to be validated by its administrators.

The survey of database features for the MIAS, DDSM, INbreast, LLNL and LAPIMO
databases is listed in Tab. 3.1. An example of images from the three databases we used
can be seen in Fig. 3.1.
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Figure 3.1: Example of images from different mammogram databases with ground truth.
Left to right: DDSM, MIAS, INbreast.

3.1.1 INbreast

The INbreast database [86] is a mammographic database, with images acquired at a Breast
Centre, located in a University Hospital (Hospital de São João, Breast Centre, Porto,
Portugal). INbreast has a total of 115 cases (410 images) of which 90 cases are from
women with both breasts (4 images per case) and 25 cases are from mastectomy patients
(2 images per case). Several types of lesions (masses, calcifications, asymmetries, and
distortions) are included. Accurate contours made by specialists are also provided in XML
format.

Fig. 3.1 on the right shows an example of a mammogram from the INbreast database.
The pectoral muscle is marked in green (the ground truth is supplied by the database) and
regions of interest in red. We can see that this database provides high quality images with
the most accurate outlines of regions of interest. The only drawback of the database is the
relatively low number of images (410).

3.1.2 MIAS

The Mammographic Image Analysis Society Digital Mammogram Database (MIAS) [82]
is a database with 322 medio-lateral oblique (MLO) 1024 × 1024 images digitized to 50
microns per pixel from the original X-ray filmscreen mammograms by the scanning micro-
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DDSM
([84])

INbreast
([86])

LAPIMO
([88] )

LLNL
([83])

miniMIAS
([82])

nmam 10480 410 1473 198 322

nviews 4 4 4 4 2

ngl 16/12 14 12 12 8

x resolution 1411− 5641 2560− 3328 1024

y resolution 3256− 7111 3328− 4084 1024

normal 695 70 294 38 204

↓ benign 141 116 994 128

benign 870 44 66

malignant 914 180 112 32 52

density ACR ACR no no own scale

BI-RADS yes yes yes no no

Table 3.1: Public Mammogram Databases: where (nmam) is the number of mammograms,
(nviews) number of views, (ngl) number of grey levels in bits, and ↓is benign without
callback.

densitometer SCANDIG3. uses its own density description - fatty (∼ ACR BI-RADS a),
fatty-glandular (∼ ACR BI-RADS b-c), dense-glandular (∼ ACR BI-RADS c-d).

MIAS mammographic images are available via the Pilot European Image Process-
ing Archive (PEIPA) at the University of Essex http://peipa.essex.ac.uk/ipa/info/
mias.html.

Fig. 3.1 in the middle shows an example of an image from the MIAS database. We can
see the main drawback of this database at first glance - the regions of interest are provided
only in the form of circles (the centre point coordinates and radius). Apart from that, the
images have a quite good quality for digitized mammograms. The second drawback, same
as for the INbreast database, is the low number of images.

3.1.3 DDSM

The Digital Database for Screening Mammography (DDSM) [84] is a database of mam-
mograms digitized from original X-ray filmscreens in different resolutions and with associ-
ated ground truth and other information http://marathon.csee.usf.edu/Mammography/
Database.html. This database was completed in 1999 and contains mammograms from
four different sources using four different digitizers (DBA M2100 ImageClear, Howtek 960,
Lumisys 200 Laser, Howtek MultiRad850) and 12 or 16 bits quantization. The database
contains normal, benign, and histologically proven cancerous mammograms in four differ-
ent views (left and right cranio-caudal (CC) and medio-lateral oblique (MLO)).

It is fully annotated according to the breast imaging reporting and data system (BI-
RADS) assessment and breast density categories. The DDSM database is the largest free
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Figure 3.2: Example of textures from our database. Left to right: rusty plate, bark,
meadow, lichen.

Figure 3.3: Example of dermatological images.

database available. The database contains images obtained from three different digitizers.
Although the quality is mostly acceptable, it contains very noisy images as well (e.g. Fig.
3.1 on the left). The outlines are specified pointwise but tend to be a bit larger than the
actual region of interest, as seen in Fig. 3.1.

3.2 UTIA Pattern Recognition Department’s Texture
database

At the Institute of Information Theory and Automation’s (UTIA) Pattern Recognition
department we have collected over 2000 different images of homogeneous textures. The
images are split into 34 classes ranging from natural textures of various scales such as
flowers, lichen, meadows etc. to man made textures such as concrete, floor tiles, mosaic
windows etc. The dimensions are 1536× 1024px.

We used a subset of these images for our work on texture synthesis. An example of
images from our database can be seen in Fig. 3.2.

3.3 Dermatological Data

At the courtesy of Dr. Harald Kittler, Medical University of Vienna, in Vienna/Austria,
we have at our disposal a set of 548 dermatological cases with images both benign and
containing skin cancer. Fig. 3.3 shows an example of three images from the dermatological
set we used.
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Chapter 4

Texture Models

There is no general texture model which is capable to model a vast variety of possible ma-
terial textures. It is only possible to develop textural models optimal for certain subclasses
of possible textures.

We have developed several multidimensional textural models which can be applied to
physically correct material modeling as well as robust texture recognition. For all these
models we have derived robust parameter estimation methods. Except for the spiral models
(Sec. 4.2.2), fast efficient synthesis has been derived as well.

In Sec. 4.1 we describe our work on the Potts MRF - the surrogate Potts model param-
eters (Sec. 4.1.1) and the Hierarchical Potts random field (Sec. 4.1.2). Sec. 4.2 covers our
generalizations of the CAR models (Secs. 4.2.1 and 4.2.2).

4.1 Potts MRF

4.1.1 Surrogate Potts Model Parameters

When working with the model, we can encounter two issues concerning its parameter
β. The first one is that since it is numerically estimated using an iterative algorithm, it
takes quite a long time to compute. The second one is that it is highly sensitive to small
perturbations of region boundaries as well as noise. Fig. 4.1 shows two realizations of the
Potts MRF that are visually indistinguishable. When computing their β parameter using
the pseudo-likelihood method, however, the results are diametrically different. In texture
synthesis, or rather texture mimicking, this fact leads to bad results when using just the
β parameter.

To make up for this problem we have to find a measure that strongly correlates with the
β parameter without the sensitivity to noise. Such a measure could be used in β’s stead
for comparison of the manner of the texture and to give a hint as to whether a texture has
greater or lesser β parameter than another texture. Fortunately, finding such a measure is
not very hard. Here are several examples that we used in our experiments which are fast
and easy to implement:
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4. Texture Models

Figure 4.1: Two seemingly equal realizations of Potts model. Left β = 2, right β = 3.15.

◦ Sum of squares of region sizes (area2)

◦ Sum of squares of continuous line segments of the same colour (lines2)

◦ Sum of region perimeters (perimeter)

The top plot in Fig. 4.2 shows the development of the estimates of the β parameter as
well as the proposed surrogate parameters during the first 30 iterations of Gibbs sampling
of a 3 colour Potts field from random noise with a set β = 1.5. The values have been
normalized to range < 0, 1 > for better comparison. We used Gibbs sampling for this
measurement because it takes more iterations to converge so that we could draw the plot.
We can see that all the three proposed measures correlate with the β parameter (the precise
correlations can be seen in Tab. 4.1).

The bottom plot in Fig. 4.2 shows the relative differences in each iteration in the
variables when the synthesized Potts random field is iteratively smoothened by a 3 × 3
max-occurrence filter. The synthesized Potts field and the first two smoothened versions
can be seen in Fig. 4.3 (since the following smoothened versions look almost the same, we
left them out). We can see that whereas the β parameter changes by more than 50% in
the first step and almost 30% in the second, the area2, lines2 and perimeter surrogate
parameters change only by 4%, 13% and 24% respectively in the first iteration and almost
negligibly thereafter.

Another thing that we can notice is that when synthesized from random noise, the
measures as well as β behave at first almost monotonously until reaching the equilibrium
when the β starts to oscillate. We take advantage of this property for our modified SW
synthesis algorithm, which is described in Sec. 5.1.3.

4.1.2 Hierarchical Potts model

The Potts model can be effectively used in texture synthesis as a control field to decide
which texture type to use in which part of the resulting image. For the texture synthesis
based on the Potts model we use a CMRF model with posterior probability defined as

P (X, Y |Ỹ ) = P (Y |X, Ỹ )P (X|Ỹ )
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4.1. Potts MRF
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Figure 4.2: Plot of the β parameter and surrogate parameters for the Potts model. Top:
development during synthesis starting at noise, bottom: development for progressive noise
reduction.

Correlation area2 β lines2 perimeter
area2 1,00 0,75 0,99 0,83
β 0,75 1,00 0,83 0,99

lines2 0,99 0,83 1,00 0,90
perimeter 0,83 0,99 0,90 1,00

Table 4.1: Correlation between the β parameter and surrogate parameters for the Potts
model.
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4. Texture Models

Figure 4.3: Left to right are the original image and its first two successively smoothened
versions.

where X is the principal field modeled by the Potts MRF that controls regional switch-
ing to local texture models

Y =
K⋃
i=1

iY

where K denotes the number of texture types. Y are modeled using the 3D causal autore-
gressive random (3DCAR) field model [8, 89]. The Ỹ is the original texture which is used
to train the X and Y models.

The training itself is done using a two step approximation

X̆ = arg max
X∈ΩX

P (X|Ỹ )

Y̆ = arg max
Y ∈ΩY

P (Y |X̆, Ỹ )

This approximation imposes a significant simplification to the training process, because
we can apply simple analytical estimation of the local MRF models.

The resulting thematic control map X̆ is represented by the hierarchical two-scale
Potts model

X̆(a) =
1

Z(a)
exp

{
−β(a)

∑
s∈Ir

δ
X

(a)
r X

(a)
s

}
(4.1)

where Z is the appropriate normalizing constant and δ() is the Kronecker delta function.
The rough scale upper level Potts model (a = 1) regions are further elaborated with the

detailed fine scale level (a = 2) Potts model which models the corresponding sub-regions
in each upper level region.

The parameter β(a) for both level models is estimated using an iterative estimator
which starts from the upper β limit (βmax) and adjusts (decreases or increases) its value
until the Potts model regions have similar parameters (average inscribed squared region
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4.2. CAR Model Generalizations

Figure 4.4: Typical problem of the CAR model – causality inertia. Left to right: original
image, enhancements by prediction probability, prediction errors, combined enhancement
and the γ parameters of the 2DCAR model.

size and/or the region’s perimeter) with the target texture switching field. The estimator
is presented in more detail in Sec. 5.1.3.

This iterative estimator is faster and gives more resembling results with the target
texture than the alternative maximum pseudo-likelihood method [90].

4.2 CAR Model Generalizations

The adaptive CAR models [9] that we are using in our work (both 2D and 3D) are defined
in such a way that the spatial multiindex r = [r1, r2] denoting history of movements on the
lattice I does not have a clearly specified movement direction. Traditionally, it is presumed
that the direction is row-wise left to right, top to bottom. This is indeed convenient in
case of using the model for texture synthesis but in case of texture analysis, thanks to the
artificial causality of the model, for each pixel the model neglects at least one half of the
context of the data space dependencies. In Sec. 4.2.1 we propose an approach to broaden
the context of the CAR model for texture analysis.

Another issue of the CAR models is the inertia of its parameters when there are too big
differences in texture. An example can be seen in the analysis of mammogram in Fig. 4.4
(analysis done by method described in Sec. 7.3), where the large necrotic calcification
influences the parameters so much that they never return to normal after encountering it.
This manifests in the pictures as the half-planes in the prediction probability based and
combined enhancement (for details on these enhancements, refer to Sec. 7.3) divided by
the calcification cluster. The best way to see the inertia are the lingering lines in the γ
parameters in the last image of Fig. 4.4. To make up for it, we propose the spiral CAR
models in Sec. 4.2.2.
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4. Texture Models

4.2.1 Directional CAR models

We propose a directional generalization to the CAR model. This generalization was suc-
cessfully applied in methods for breast density classification (published in [A.6], described
in Chapter 6) and mammogram texture enhancement (under review in [A.8], described in
Chapter 7).

Let r = [r1, r2, φ] be the spatial multiindex denoting the history of movements on the
rectangular lattice I, where r1, r2 are row and column indices, and φ are the possible
model development directions:

φ ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦} .

Note that although the model can use any directional angle, only the selected 8 direc-
tions allow us to avoid inevitable interpolation on the rectangular lattice.

The directional CAR model (both 2D and 3D variants) can be expressed as a stationary
causal uncorrelated noise-driven autoregressive process:

Yr = γφXr + er , (4.2)

where γφ are the parameter vectors for each direction φ, Xr is a support vector of
[Yr−s1 , . . . , Yr−sη ]

T where s ∈ Icr .
The parameters are estimated in the same way as for classical CAR models. The sole

change that needs to be done is the transformation of the contextual neighborhood to
take into account the direction of movement on the lattice. Presuming that Icr are the
coordinates for the causal neighborhood with φ = 0◦, the coordinates of the transformed
neighborhood I ′cr are as follows:

φ =



45◦ : I ′cr1 = Icr1 I ′cr2 = Icr1 + Icr2
90◦ : I ′cr1 = Icr2 I ′cr2 = Icr1
135◦ : I ′cr1 = −Icr1 I ′cr2 = Icr1 + Icr2
180◦ : I ′cr1 = −Icr1 I ′cr2 = Icr2
225◦ : I ′cr1 = −Icr1 I ′cr2 = Icr2 − I

c
r1

270◦ : I ′cr1 = Icr2 I ′cr2 = −Icr1
315◦ : I ′cr1 = Icr1 I ′cr2 = Icr2 − I

c
r1

(4.3)

For reverse secondary movement in the same directions (that is, e.g., left to right,
bottom to top instead of top to bottom), the transformations are computed analogously.

4.2.2 Spiral Models

As was already discussed at the beginning of Sec. 4.2 and shown in Fig. 4.4, the CAR model
suffers from inertia which makes it keep the values of parameters over too large context in
case of rapid changes in texture and thus lose the locality of the texture description. This
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4.2. CAR Model Generalizations

Figure 4.5: The paths of the two “spirals” in an image. Left: octagonal, right: rectangular.
The numbers designate the order in which the pixels are traversed and the red square means
the center pixel.

can be made up for by not running the model through the whole image but instead on a
limited area following a circular or “spiral” like path.

The spiral CAR model is the same as the directional CAR model (4.2) with the excep-
tion that the movement r on lattice I takes the form of circular or spiral like paths as seen
in Fig. 4.5. The causal neighborhood Icr has to be transformed (4.3) for each direction in
the traversed path. The paths used can be arbitrary as long as they keep transforming
the causal neighborhood Icr in such a way that all neighbors of a pixel have been visited
by the model in previous steps. We shall call all these paths spirals further on. We have
developed and implemented two types of spiral paths - octagonal (Fig. 4.5 on the left)
and a rectangular spiral (Fig. 4.5 on the right). During our experiments they exhibited
comparable results with the octagonal path being faster thanks to its consisting of fewer
pixels for the same radius.

After the whole path is traversed, the parameters for the center pixel (shown as red
square in Fig. 4.5) of the spiral are estimated. This can be done either for every pixel
in the image or only for a subset of pixels, interpolating the values inbetween. Multiple
parameter sets can be computed for every pixel based on the size and shape of the spiral
used with the model.

Contrary to the standard CAR model, since this model’s equations do not need the
whole history of movement through the image but only the given one spiral, the spiral
CAR models can be easily parallelized. If the spiral paths used have circular shape, the
spiral CAR models exhibit rotational invariant properties thanks to the CAR model’s
memory of all the visited pixels.

This model is promising but its applications are still preliminary and we intend to
develop them further in our future work.
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4. Texture Models

Figure 4.6: Rectangular spiral, left to right: original, α1, α2, α3.

4.2.2.1 Preliminary experiments

During our tests, we used the following illumination invariant features of the 3DCAR model
[9]:

α1 = 1 + ZT
r V
−1
zz Zr

α2 =

√∑
r

(Yr − γ̂Zr)T λ−1 (Yr − γ̂Zr)

α3 =

√∑
r

(Yr − µ)T λ−1 (Yr − µ)

Figs. 4.6 and 4.7 show examples of spiral 2DCAR model features computed on a
mammogram with which the classical 2DCAR would have inertia based problems (Fig. 4.4).
The images were created by computing the spiral models for radii 1− 10px, applying the
Karhunen-Loeve transform and taking the most significant 3 planes as r, g and b channels.

We have also tried to use the spiral CAR features for unsupervised segmentation of
the rotational invariant set from the Prague Texture Segmentation Benchmark (http:
//mosaic.utia.cas.cz). The unsupervised segmentation method used was published in
[91]. Although these results have been extensively tested on the benchmark, we intend
to apply this promising model on medical applications in our future work. Tab.4.2 shows
the comparison of the spiral 3DCAR model with Multidirectional 3DCAR model and plain
3DCAR. All of them used the same neighborhood, forgetting constant and the illumination
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4.2. CAR Model Generalizations

Figure 4.7: Octagonal spiral, left to right: original, α1, α2, α3.

invariant features α1, α2 and α3. The segmentation results can be seen in App. A. We
can see that the spiral 3DCAR model exhibited better results than the Multidirectional
3DCAR model, which in turn showed better results than the plain 3DCAR. For more
detailed information on the benchmark criteria and results, please refer to [92].
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4. Texture Models

Benchmark – Colour (Rot. Inv.)
Spiral 3DCAR Multidirectional 3DCAR 3DCAR

↑CS 47.10 1 38.57 2 36.68 3

↓OS 61.32 3 47.08 1 47.70 2

↓US 9.70 1 14.50 2 25.18 3

↓ME 16.35 2 22.86 3 15.09 1

↓NE 16.30 2 23.67 3 14.87 1

↓O 26.19 1 30.61 2 33.97 3

↓C 98.52 3 92.96 1 94.69 2

↑CA 65.92 1 60.87 2 57.09 3

↑CO 71.71 1 67.20 2 66.22 3

↑CC 86.25 1 81.76 2 75.49 3

↓ I. 28.29 1 32.80 2 33.78 3

↓ II. 4.47 1 5.65 2 6.19 3

↑EA 74.58 1 70.01 2 65.36 3

↑MS 65.39 1 58.32 2 54.60 3

↓RM 4.19 1 4.97 2 7.17 3

↑CI 76.42 1 71.92 2 67.43 3

↓GCE 12.55 1 13.08 2 13.17 3

↓LCE 6.96 1 7.91 3 7.81 2

↓ dD 16.56 1 19.30 2 20.06 3

↓ dM 14.47 1 16.89 2 21.05 3

↓ dVI 16.01 3 15.72 2 14.64 1

Table 4.2: Colour (Rot. Inv.) benchmark results for Spiral 3DCAR, Multidirec-
tional 3DCAR, 3DCAR; (Benchmark criteria: CS = correct segmentation; OS = over-
segmentation; US = under-segmentation; ME = missed error; NE = noise error; O =
omission error; C = commission error; CA = class accuracy; CO = recall - correct as-
signment; CC = precision - object accuracy; I. = type I error; II. = type II error; EA =
mean class accuracy estimate; MS = mapping score; RM = root mean square proportion
estimation error; CI = comparison index; GCE = Global Consistency Error; LCE = Local
Consistency Error; dD = Van Dongen metric; dM = Mirkin metric; dVI = variation of
information).
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Chapter 5

Texture Synthesis

During our work on texture synthesis, we focused mainly on the Potts random field and its
applications as a control field for the Compound Markov random field models, which are
currently our best texture synthesis models. More specifically, we use it to switch between
several local models for the synthesis of local textures.

This chapter is organized as follows: Sec. 5.1 presents the hierarchical Potts MRF
synthesis and describes our method for alternate Potts MRF parameter estimation applied
to our modification of the Swendsen-Wang algorithm for texture synthesis (Sec. 5.1.3).
Then we examine the possibilities of using the Potts model for the synthesis of mosaic-
like textures (Sec. 5.2). We conclude the chapter with example texture synthesis results
(Sec. 5.4).

Physically correct realistic modeling of material surfaces respecting illumination and
viewing changes require sophisticated nontrivial mathematical models. The purpose of
texture synthesis is to represent and enlarge a given measured textural data space so that
ideally both natural and synthetic texture will be visually indiscernible and simultaneously
contain all necessary information for accurate material recognition.

Current state-of-the-art compound Markov random field models (CMRF) consist of
several sub-models each having different characteristics along with an underlying structure
model which controls transitions between these sub models [93]. CMRF models were
successfully applied to image restoration [93, 94, 95, 96], segmentation [97], or modeling
[A.1, 98, 99]. However, these models always require demanding numerical solutions with all
their well known drawbacks. The exceptional CMRF [98] model allows analytical synthesis
at the cost of a slightly compromised compression rate.

5.1 Hierarchical Potts Synthesis

In [A.1] we proposed a hierarchical Potts model based texture synthesis. This method can
be easily applied to synthesizing numerous natural textures such as lichen, thawing snow,
rust on metal plates, clouds, etc. It is covered in detail in the following sections:

41



5. Texture Synthesis

5.1.1 Compound Markov Model

Let us denote a multiindex r = (r1, r2), r ∈ I, where I is a discrete 2-dimensional rectan-
gular lattice and r1 is the row and r2 the column index, respectively. Xr ∈ {1, 2, . . . , K}
is a random variable with natural number value (a positive integer), Yr is multispectral
pixel at location r and Yr,j ∈ R is its j-th spectral plane component. Both random fields
(X, Y ) are indexed on the same lattice I. Let us assume that each multispectral observed
texture Ỹ (composed of d spectral planes e.g. d = 3 for colour textures) can be modeled by
a compound Markov random field model, where the principal Markov random field (MRF)
X controls switching to a regional local MRF model Y =

⋃K
i=1

iY . Single K regional
submodels iY are defined on their corresponding lattice subsets iI, iI ∩ jI = ∅ ∀i 6= j
and they are of the same MRF type. They differ only in their contextual support sets iIr
and corresponding parameters sets iθ. The CMRFP3AR model has posterior probability

P (X, Y | Ỹ ) = P (Y |X, Ỹ )P (X | Ỹ ) (5.1)

and the corresponding optimal MAP solution is:

(X̂, Ŷ ) = arg max
X∈ΩX ,Y ∈ΩY

P (Y |X, Ỹ )P (X | Ỹ ) ,

where ΩX ,ΩY are corresponding configuration spaces for random fields (X, Y ).
To avoid iterative MCMC MAP solution, we propose the following two step approxi-

mation:

(X̆) = arg max
X∈ΩX

P (X | Ỹ ) , (5.2)

(Y̆ ) = arg max
Y ∈ΩY

P (Y | X̆, Ỹ ) . (5.3)

This approximation significantly simplifies the CMRFP3AR estimation because it allows to
take advantage of simple analytical estimation of regional MRF models in (5.3).

5.1.2 Region Switching Markov Model

The principal MRF (P (X | Ỹ )) is represented by a flexible K−state hierarchical Potts
random field (described in Sec. 4.1.2).

The learning control random field X̆ is estimated from the target texture using simple
K-means clustering of Ỹ in the RGB colour space into predefined number of K classes,
where cluster indices are X̆r ∀r ∈ I estimates. The number of classes K can be
estimated using the Kullback-Leibler divergence and considering sufficient amount of data
necessary to reliably estimate all local Markovian models.

The corresponding Potts models are synthesized by a modification of the fast Swendsen-
Wang sampling method [100]. The regions sampled by the hierarchical Potts model are
then filled by textures synthesized by the local Markov models (Sec. 5.3).
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5.2. Mosaics

5.1.3 Modified SW Synthesis

In Sec. 4.1.1 we have described the issues with using only the estimated parameter β for
mimicking a texture and proposed several texture measures which strongly correlate with
the β parameter. Label such a measure as m. This measure helps us also with the problem
of ending the SW algorithm - we can simply iterate and adjust the β parameter until m
meets the desired conditions - e.g. until it is close enough to m of the texture we are trying
to mimic.

The last issue to solve for texture synthesis using the SW algorithm is the distribution
of colours. There are few textures which have the same ratio of all colours. To be able to
sample textures with different ratios of different colours, we utilize a simple heuristic. We
create virtual colours which symbolize the same colour in such a manner that the ratios
between colours are kept the same as in the original (mimicked) picture and join them
after the synthesis terminates.

The whole proposed algorithm is described in Alg. 5.1, where SW (X̆, β) means “apply
one step of the SW algorithm on X̆ with the parameter β”. The bounds βmin and βmax
should be set to such values that βmin leads to complete noise and βmax leads to one
continuous colour. Usually, βmin = 0 and βmax = 20 suffice.

5.2 Mosaics

This section introduces a method for modeling mosaic-like textures using a multispectral
parametric Bidirectional Texture Function (BTF) compound Markov random field model
(CMRF) which we published in [A.4]. It can be used to model the irregular texture with
linear region borders of many man made materials such as stonework, floor tiles, stained
glass mosaics or natural textures such as cracks in nacre.

The compound Markov random field model consists of several sub-models each having
different characteristics along with an underlying structure model which controls transitions
between these sub models. The proposed model uses the Potts random field for distribut-
ing local texture models in the form of analytically solvable wide-sense BTF Markovian
representation for single regions among the fields of a mosaic. The control field of the
BTF-CMRF is generated by the Potts random field model build on top of the adjacency
graph of a measured mosaic. The Potts MRF parameter is estimated from the adjacency
graph of the mosaic approximated by the Voronoi diagram. The Voronoi diagram was
chosen due to its suitable representation of the intended class of the modeled man made
textures and simultaneously due to the simplicity of its estimation and synthesis. The com-
pound random field synthesis combines the modified fast Swendsen-Wang Markov Chain
Monte Carlo sampling of the hierarchical Potts MRF part with the fast and analytical
synthesis of single regional MRFs. The local texture regions (not necessarily continuous)
are represented by an analytical BTF model which consists of single factors modeled by
the adaptive 3D causal auto-regressive (3DCAR) random field model. The 3DCAR model
can be analytically estimated as well as synthesized thus avoiding a time consuming Monte
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Algorithm 5.1 Modified SW synthesis pseudocode.

Input: input texture Ỹ , texture measure m, threshold τ and bounds βmin and βmax
Initialize:
min ← m(Ỹ )
X̆0 ← noise

Run:
repeat

repeat
t← t+ 1
X̆ t+1 ← SW (X̆ t, βmax)
mx ← m(X̆ t+1)

until mx > min . If mx < min after a number of steps, raise βmax by a small factor.

Update bounds:
β′ ← βmax+βmin

2

ml ← m(X̆ t))
X̆ ← SW (X̆ t, β′)
mx ← m(X̆)

if ml > mx then
βmax ← β′

else
βmin ← β′

end if
until |mx−min|

min
< τ

Output: Synthesized field X̆, estimated parameter β′

Carlo sampling.
We propose a hierarchical Voronoi CMRFPV 3AR model which combines two types of

parametric Markov random field (MRF) models with a parametric mosaic model [101].
One MRF model can be analytically solved, while the other can use the exceptionally
fast iterative Swendsen-Wang Markov Chain Monte Carlo (MCMC) sampling [100] for its
synthesis.

5.2.1 Potts Field-Based Mosaic Modeling

The control field (X) of the CMRFPV 3AR is a mosaic represented as a Voronoi diagram
[102] and the distribution of the particular colors (texture classes) of the mosaic is modeled
as a Potts random field which is built on top of the adjacency graph (G) of the mosaic.
The Voronoi diagram was chosen due to its suitable representation of the intended class of
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5.2. Mosaics

the modeled man made textures and simultaneously due to the simplicity of its estimation
and synthesis.

Figure 5.1: Control field synthesis algorithm flowchart.

The control field synthesis is performed as illustrated in Fig. 5.1. The algorithm requires
an input in the form of a segmented mosaic with distinguishable regions of the same texture
type.

Since the Potts field needs a reasonably small number of classes (in our experience, in
the case of mosaics it works best with about 5-15 classes), the number of classes is reduced
using simple K-means clustering of Ỹ in the RGB colour space into a predefined number
of K classes, where the cluster indices are X̆u ∀u ∈ V estimates. The number of classes
K can be estimated using the Kullback-Leibler divergence, considering sufficient amount
of data necessary to reliably estimate all local Markovian models.

After that follows the identification of the mosaic field centers and the estimation of
the parameters of the 2D discrete point process which samples the control points of the
newly synthesized Voronoi mosaic. This is done using a 2D histogram, which has shown
to be sufficient for the good quality estimate. The only other parameter is the number of
points to be sampled, which grows linearly with the required area of the synthetic image
in the case of texture enlargement applications.

With the control points for the Voronoi mosaic cells having been sampled, we compute
the Voronoi diagram and optionally mark the delimiting edges between adjacent cells. The
assignment of a regional texture model to each mosaic cell (the principal MRF (P (X | Ỹ )))
is then mapped by the flexible K−state Potts random field [103, 104].

Let us denote G = (V,E) the adjacency graph of the mosaic areas and
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5. Texture Synthesis

Nu = {∀v ∈ V : (u, v) ∈ E}, u ∈ V

the 1st order neighborhood, where V,E are the vertex and edge sets. Vertices correspond
to the particular areas in the mosaic and there is an edge between two vertices iff their
corresponding areas are directly next to each other.

The resulting thematic control map X̆ is represented by the Potts model for a general
graph

p(X̆|β) =
1

Z
exp

{
−β

∑
u∈V,v∈Nu

δ(Xu, Xv)

}
(5.4)

where Z is the appropriate normalizing constant and δ() is the Kronecker delta func-
tion. The parameter β is estimated from the K-means clustered input mosaic using the
maximum pseudo-likelihood method described by Levada [90] (described in Sec. 2.1.1.3).

The corresponding Potts models are synthesized using the fast Swendsen-Wang sam-
pling method [100], although for smaller fields, which the mosaics undoubtedly are, other
sampling MCMC methods, such as the Gibbs sampler [94] or the Metropolis algorithm
[105], should also work with sufficient speed.

5.3 Local Markov Models

For both the the presented compound models (Sec. 5.1 and Sec. 5.2), the local i-th texture
region (not necessarily continuous) is represented by the adaptive 3D causal autoregressive
(3DCAR) random field model [9, 10] because this model can be analytically estimated
as well as synthesized (described in more detail in Sec. 2.1.1.2). Alternatively we could
use spectrally decorrelated 2DCAR or 2D or 3D Gaussian Markov random field (GMRF)
models [81, 106]. All these models allow analytical synthesis (see [81] for the corresponding
conditions) and they can be unified in the following matrix equation form (i-th model index
is further omitted to simplify notation):

Yr = γ Xr + εr , (5.5)

where

Xr = [Y T
r−s : ∀s ∈ Ir]

T . (5.6)

is the η d × 1 data vector with multiindices r, s, t, γ = [A1, . . . , Aη] is the d × d η
unknown parameter matrix with sub-matrices As.

In the case of d 2DCAR / GMRF models stacked into the model equation (5.5),
the parameter matrices As are diagonal. Otherwise they are full matrices for general
3DCAR models [10]. The model functional contextual neighbour index shift set is denoted
Ir and η = cardinality(Ir) .

46



5.3. Local Markov Models

Figure 5.2: The original images of a floor (upper row left) and nacre stone (upper row
right). Corresponding synthetic control fields - Voronoi Potts model (middle row), and
the resulting synthetic CMRFPV 3AR model texture (bottom row).

GMRF and CAR models mutually differ in the correlation structure of the driving noise
εr (5.5) and in the topology of the contextual neighbourhood Ir (see [81] for details). As
a consequence, all CAR model statistics can be efficiently estimated analytically [9] while
the GMRF statistics estimates require either numerical evaluation or some approximation
([81]).

Although an optimal causal (for (2D/3D)CAR models) functional contextual neigh-
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5. Texture Synthesis

Figure 5.3: The nacre stone texture mapped to a 3D model created with Blender (left)
and with synthetic texture (right).

Figure 5.4: Texture synthesis of a stained glass window. From left to right: a stained glass
photo, its segmentation, synthetic Voronoi Potts model control field, the final synthesis,
and the comparison with the CMRFP3AR model.

bourhood Ir can be solved analytically by a straightforward generalization of the Bayesian
estimate in [9], we use faster approximation which does not need to evaluate statistics for
all possible Ir configurations. This approximation is based on large spatial correlations.
We start from the causal part of a hierarchical non-causal neighbourhood and neighbour
locations corresponding to spatial correlations larger than a specified threshold (> 0.6) are
selected. The i-th model synthesis is a simple direct application of (5.5) for both 2DCAR
or 3DCAR models. GMRF model synthesis requires one FFT transformation at best [81].
3DCAR / GMRF models provide better spectral modeling quality than the alternative
spectrally decorrelated 2D models for motley textures at the cost of a small increase in the
number of parameters to be stored.
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5.4. Results

Figure 5.5: An example of the floor mosaic (top-left), the control field (top-right),
CMRFPV 3AR synthesis, and the comparison with the CMRFP3AR model result.

5.4 Results

5.4.1 CMRFP3AR results

Fig. 5.7 shows our results with using the Potts model for texture synthesis. The left images
show the original texture, middle ones are the Potts synthesized texture maps and the right
ones are the final textures created by the compound model based on the 3DCAR random
field.
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5. Texture Synthesis

Figure 5.6: An example of a the St. Vitus cathedral in Prague Castle stained glass window
with some original panels replaced with our synthetic images.

The top row shows the synthesized texture of clouds, the middle one is lichen and the
bottom one is a rusty plate.

5.4.2 CMRFPV 3AR results

We have tested the presented Voronoi CMRFPV 3AR model on selected colour textures from
our extensive texture database (Fig. {5.2, 5.4, 5.5, 5.6}-floor, stained glass), which currently
contains over 1500 colour textures. Examples on Figs.5.2 and 5.3 use 1st order neighbour
for the Potts field on the Voronoi mosaic with K = 5 for the floor and K = 8 for the nacre.
The examples of the stained glass in Fig. 5.4 use K = 14. The local texture models’ causal
neighbourhood is derived from the 4th order hierarchical contextual neighbourhood.

We have successfully tested the method mainly on man made surfaces such as different
types of linoleum, smoothed stones, stone walls or stained glass and on selected natural
materials such as chipped nacre. The visual quality of the resulting complex synthetic
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5.4. Results

Figure 5.7: Potts CMRF synthesis. Left column shows original measurements, middle
column is Pots control field, right column displays the resulting CMRF synthesis.

textures generally surpasses the outputs of the previously published simpler MRF models
[10, 81, 106, 107]. Since there is no universally optimal texture modeling algorithm, neither
the presented method can model every type of texture. Textures on which the algorithm
will exhibit poor quality are regular textures or textures with fixed patterns such as most
textile or knitted wool textures.

However, the model can be easily modified to use a different method for the creation
of the control mosaic, which could better mimic the particular desired mosaic type, e.g.
for brick walls, flooring materials, etc. The model can be easily generalized also for com-
plex bidirectional texture function (BTF) models. The full BTF-CMRFPV 3AR variant of
the presented model uses similar fundamental flowchart with the Markovian BTF model
[107] (i.e., BTF space intrinsic dimensionality estimation, BTF space segmentation, BTF
subspace MRF model estimation, subspace MRF model synthesis and interpolation of un-
measured BTF space parts), but allows to avoid its range map estimation, range map
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5. Texture Synthesis

Figure 5.8: An example of a wooden floor BTF measured mosaic (top row), modeled control
field mosaic with measured BTF wood (middle row), and our synthetic BTF-CMRFPV 3AR

model (bottom row), where the illumination azimuthal angle φ and elevation angle θ are
successively for each column: φ = 0◦, θ = 0◦ for the left column, φ = 60◦, θ = 60◦ for the
middle column and φ = 60◦, θ = 240◦ for the right column.

modeling and displacement filter steps, respectively. Fig. 5.8 shows an example of our
BTF-CMRFPV 3AR applied on texture editing a BTF floor mosaic with wooden tiles.
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Chapter 6

Breast Tissue Density Classification

Mammographic breast density is very important but one of the most undervalued and
underused risk factors in studies investigating breast cancer occurrence. The risk for breast
cancer is four to six times higher in women with dense breasts [108]. Breast density may
also decrease the sensitivity by up to 40 % [108], obscure tumours, or mimic breast cancer,
and, thus, the accuracy of the mammography screening.

An increase in breast density can also be used to characterize the effects of hormone
replacement therapy. Thus many papers [39, 40, 109, 110, 111, 112, 113] consider automatic
breast density classification with different approaches in feature extraction, used classifiers,
and tested databases.

This chapter presents the method for breast density segmentation that we published in
[A.6] (Sec. 6.2) our work on developing a more accurate approach (Sec. 6.3) and a method
for breast density classification based on the Potts model (Sec. 6.4).

Note that although the ACR BI-RADS standard labels breast densities with letters
a-d, we use numerical designation in this chapter.

6.1 Breast Segmentation

When analyzing mammograms, the first thing that needs to be done is extracting the
breast area from the image. In case of fully digital mammogram databases, this can
usually be done using simple thresholding, as digital mammographs’ output is usually
already processed to have zero value background. Digitized mammograms, on the other
hand, contain lots of background noise and the images frequently include labels and tags
concerning the contents of the mammogram (see the left image of Fig. 6.1).

For the supervised segmentation of the breast area, we use a simple application of the
Potts model (2.11) in combination with Gaussian mixtures (2.13):

P (X|Y, θc, β) =
1

Z(β)
exp

{
−β
∑
r,s

Jr,sδ(Xr, Xs)−
∑
r

log f(Yr|θc)

}
,
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6. Breast Tissue Density Classification

Figure 6.1: Example of breast segmentation. Left to right: original image, segmentation,
extracted breast area.

where Y are the texture features for each pixel position r, f(•|θc) are the trained
Gaussian mixtures of the features of the breast/nonbreast areas (θc) and X is the final
segmentation. The features used are the grayscale values of the first three levels of the
Gaussian pyramid. The segmentation is done by synthesizing the Potts field using the
iterated conditional modes [114] approach until there is no improvement in the energy of
the field. The breast is then selected as the biggest non-background area.

6.2 Maximal Texture Type Occurrence Based
Classification

6.2.1 Breast Texture Description

We presume that even though the ACR BI-RADS density description [27] specifies the
different classes based on the ratio of fatty and dense areas in the breast, our texture model
is able to distinguish between fatty, heterogeneous, mostly dense and dense textures. Thus
we can train the texture models as if the heterogeneity is a kind of texture within the
breast.

For texture description we use the directional 2DCAR model’s (4.2) γφ parameters
extracted for each direction φ at each pixel location:

Yr = γφXr + er .

For performance efficiency we also downscale the images to 400 px height keeping the
width/height ratio.
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6.2. Maximal Texture Type Occurrence Based Classification

Figure 6.2: Classifier training flowchart.

6.2.2 Classifier Training

The classifier is trained as indicated in Fig. 6.2. After the breast area has been segmented
from the image, we extract the feature vectors θ for each pixel θ = {γφ1 , γφ2 , ...} . The
model directions used are φi ∈ {90◦, 135◦, 180◦, 315◦}, for which we observed the best
results.

We use the maximum-likelihood classifier based on the multivariate Gaussian distribu-
tion:

f(X|C) =
1√

(2π)k|ΣC |
e(−

1
2

(θ−µC)TΣC
−1(θ−µC)) (6.1)

where C is the BI-RADS density value of the particular mammogram. µC is the mean
value of class C and ΣC is the corresponding covariance matrix.

This way we estimate the feature distribution of each BI-RADS density class.

6.2.3 Feature Space Visualisation

To confirm the correctness of our chosen texture model for the application of breast texture
modeling, we visualised the feature space, distinguishing the different density types with
the colour of the pixels. We extracted the feature values for all the pixels of different
breasts and applied the Karhunen-Loeve transform, taking values of the 2 most significant
components as the x and y coordinates of the features to be displayed.
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6. Breast Tissue Density Classification

Figure 6.3: Visualisation of features from INbreast sample data. Features displayed for
class combinations (rightwards, top to bottom) 1x4, 1x2, 1x3, 2x3, 2x4, 3x4

We can see in Fig. 6.3 that our model distinguishes the different density textures fairly
well with the best results being between the most distant classes. This is indeed logical
since closer classes have more similar textures.

6.2.4 Breast Density Classification

We classify the mammograms into the different density categories as shown in Fig. 6.4.
We first extract the feature vectors for each pixel as described in Sec. 6.2.2 and then for
each pixel compute the likelihood for each density class (6.1). The pixel is then assigned
the class with highest likelihood. We can see in the example in Fig. 6.5 that the different
texture types are reasonably assigned with the dense area clearly marked in red colour.

The whole breast is then classified according to the pixel majority class.

6.2.5 Results

The comparative experimental results were tested on the MIAS database [82] and on
the state-of-the-art public digital mammogram INbreast database [86]. We tested the
classification of all the possible pairs of classes to see the limits of our method. We also
tested the classification of all the classes together. For each tested case we selected 5
random mammograms for each class as training data and classified the rest of the database
(excluding training images). The results can be seen in Tabs. 6.1, 6.2. Value at i-th row
and j-th column means the number of times a mammogram of class i was classified as
class j. The top-left cell of each table section shows which classes have been classified
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6.2. Maximal Texture Type Occurrence Based Classification

Figure 6.4: Classification flowchart.

against each other. We present the classifications of non-trained classes for illustration of
the behaviour of the algorithm on non-trained classes.

The results for the MIAS database seem a little more precise than for the INbreast
database. This can be caused by the fact that the MIAS database does not provide the
density information according to the ACR BI-RADS standard but rather provides its own
method with 3 classes instead of 4.

6.2.6 Comparison with Leading Methods

There are no alternative tissue classification results for the INbreast database, so we com-
pare our results with the state-of-the-art methods applied to the obsolete MIAS data.

Muhimmah and Zwiggelaar [39] obtained slightly better results (〈63; 91〉%) sensitivity
and precision (〈74; 80〉%) for their best multiresolution histogram features-based published
method and (〈57; 83〉%) sensitivity and precision (〈54; 75〉%) for the single resolution vari-
ant on the MIAS database. Both methods use the Directed Acyclic Graph - Support Vector
Machine (DAG-SVM) classifier. However, the multiresolution method uses fifty times more
features than our method and the single resolution method is worse than our presented
single resolution method. Mustra et al. [40] has the best published results - (〈75; 87〉%)
sensitivity and precision (〈74; 91〉%) on MIAS to our knowledge. They need fifteen times
more features than we do, use a slow kNN classifier, and while we train the classifier on
just five images per class, they use the whole database of 321 images (leave-one-out).
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6. Breast Tissue Density Classification

Figure 6.5: Example of pixel classification into different density classes.

6.3 2DCAR Parameter Analysis

6.3.1 Optimizing Neighbourhood

After publishing our classification method in [A.6], we further focused on the analysis of
the behaviour of the algorithm based on the various parameters of the 2DCAR model.
We did all the testing on the MIAS database from which we randomly selected half the
pictures for training and left the rest for testing.

First we tried to find the ideal neighbourhood for the 2DCAR model. We did this
using the genetic algorithms in the following way. The genetic code was the set of possible
neighbours with genes attaining true/false value based on whether the given neighbour was
used or not. Fig. 6.6 shows what the best and worst found neighbourhoods looked like.
The red cell means the pixel for which the neighbourhood is computed, black cell means
that the neighbour was used while white cell means that the neighbour was not used. The
numbers inside the cells are the coordinates of the given neighbours. It was quite surprising
that the best and worst neighbourhoods did not differ that much from each other. This is
currently ongoing research and will be covered by our future work.

The genetic algorithm had 100 specimen in each generation, keeping 20 best specimen
between iterations. Each kept specimen had a 5% chance of dying between generations.
The criterion function of the genetic algorithm was the precision with which the given
configuration was able to classify the training set. Crossover was performed uniformly
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6.3. 2DCAR Parameter Analysis

Figure 6.6: Best found neighbourhood for the 2DCAR model (left) and worst found neigh-
bourhood (right).
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Figure 6.7: The overall best results found by the genetic algorithm during 1000 iterations.
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6. Breast Tissue Density Classification

1x4 1 2 3 4 Sensitivity
1 132 0 0 4 97%
2 88 0 0 59 0.0%
3 23 0 0 76 0.0%
4 2 0 0 26 92.8%

Precision 98.5% 86.7%
1x3, 1 128 0 8 0 94.1%

2 81 0 66 0 0.0%
3 15 0 84 0 84.8%
4 4 0 24 0 0.0%

Precision 88.3% 91.3%
1x2, 1 80 56 0 0 58.8%

2 20 127 0 0 86.4%
3 7 92 0 0 0.0%
4 0 28 0 0 0.0%

Precision 80% 69.4%
2x4, 1 0 133 0 3 0.0%

2 0 137 0 10 93.2%
3 0 60 0 39 0.0%
4 0 4 0 24 85.7%

Precision 97.2% 70.6%
2x3, 1 0 132 4 0 0.0%

2 0 122 25 0 83.0 %
3 0 33 66 0 66.7%
4 0 6 22 0 0.0%

Precision 78.7% 72.5%
3x4, 1 0 0 96 40 0.0%

2 0 0 118 29 0.0 %
3 0 0 89 10 89.9%
4 0 0 14 14 50.0%

Precision 86.4% 58.3%
1x2x3x4, 1 95 23 18 0 69.9%

2 33 60 49 5 40.8%
3 6 19 58 16 58.6%
4 0 7 3 18 64.3%

Precision 70.9% 55% 45.3% 46.2%

Table 6.1: INbreast database classification results for all double-class combinations and
the complete four BI-RADS tissue classes (rows ∼ references, columns ∼ interpretation).
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6.3. 2DCAR Parameter Analysis

1x3 1 2 3 Sensitivity
1 92 0 12 88.5%
2 33 0 70 0.0%
3 5 0 106 95.5%

Precision 94.8% 89.8%
1x2, 1 72 32 0 69.2%

2 10 93 0 90.3%
3 2 109 0 0.0%

Precision 87.8% 74.4%
2x3, 1 0 104 0 0.0%

2 0 95 8 92.2%
3 0 57 54 48.6%

Precision 62.5% 87.1%
1x2x3, 1 89 8 7 85.6%

2 20 57 26 55.3%
3 8 34 69 62.2%

Precision 76.1% 57.6% 67.6%

Table 6.2: MIAS database all dichotomous and one classification result for all three (fatty,
fatty-glandular, dense-glandular) tissue classes (rows ∼ references, columns ∼ interpreta-
tion).

1 2 3 Sensitivity
1 88 5 7 88.0%
2 13 53 33 53.5%
3 6 11 90 84.1%

Precision 82.2% 76.8% 69.2%

Table 6.3: Best result’s contingency table.

for each possible neighbour, with 50% chance of getting the value of either parent. Fig.
6.7 shows the overall best classification precision during 1000 iterations of the genetic
algorithm. We achieved the precision of 75.49% (pessimistic hold-out estimate) which is
8% better than our published result. The contingency table of the best result is shown in
Tab. 6.3.

6.3.2 Exponential Forgetting Factor

When we analyzed the results of the genetic algorithm based neighbourhood optimization,
we noticed that the results are heavily dependent on the configuration of the 2DCAR model.

61



6. Breast Tissue Density Classification

0.9 0.92 0.94 0.96 0.98 1
0.3

0.4

0.5

0.6

0.7

forgetting

ac
cu
ra
cy

Figure 6.8: The influence of the exponential forgetting factor on the classification result.

The remaining free parameter to be examined was the exponential forgetting factor [9]. We
fixed all parameters except for the exponential forgetting factor which we tried for values
in range < 0.9, 1 > with step 0.0001. The result is shown Fig. 6.8. We can see that the
exponential forgetting factor should have values close to 1 for the model to exhibit stable
results with optimum at values 0.994. However, after 0.999 the results fall rapidly. We
tried this approach with lots of different random generated neighbourhoods and observed
always the same dependency.

6.4 Potts-based Classification Using Extremal Regions

In this section we present our preliminary results in combining the Potts random field
with Extremal regions to classify breast density. We first compute the Extremal regions
of a mammogram image on its positive image, negative image and gradient image. The
Extremal region thresholds increase by 5%, giving us 20 region images for each image type,
60 in total. On the region images, we estimate the β parameter of the Potts random field
(for example, see Fig. 6.9). The resulting 60 estimated parameters are then used as feature
vector.

We classified the MIAS database using the kNN classifier with k = 42. The testing
method was leave-one-out. The result (see Tab. 6.4) was comparable with our previously
published result [A.6]. We intend to combine both the methods in the future, hopefully
resulting in better classification results.
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6.4. Potts-based Classification Using Extremal Regions

Figure 6.9: Example of extremal regions computed on breast image. Left to right, top to
bottom: Original mammogram, its negative and Extremal regions with thresholds increas-
ing by 10%. Estimated Potts field βs of the Extremal regions, successively: 2.672, 2.679,
2.722, 2.727, 3.03, 2.628, 2.523, 2.631, 2.665, 2.479

1 2 3 Sensitivity
1 68 27 9 65.4%
2 14 57 32 55.3%
3 6 23 82 73.9%

Precision 77.3% 53.3% 66.7%

Table 6.4: Contingency table of the Potts field Extremal regions based classification.
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Chapter 7

Mammogram Texture Enhancement

We make the presumption that mammograms can be thought of as textures and therefore
modeled using texture models. Indeed, in [35, 36] the authors state that the breast is made
of only by 4 types of texture - nodular, linear, homogeneous and radiolucent. When we
look at mammograms, we can see that they really do separate into several texture types
that look more or less the same on different places of the mammogram. The ROIs can
then be thought of as abnormalities in these texture types.

To model the texture that the mammogram comprises of, we have selected the 2DCAR
model and its multidirectional generalization we proposed in Sec 4.2.1. This model has ana-
lytical solutions to parameter estimation and can be easily used for local texture prediction
- that gives us a great way of finding abnormalities using the local predictor error.

We have published several articles on mammogram enhancement [A.2, A.3, A.5] and one
journal paper is currently under review [A.8]. In the following sections, we first introduce
our unilateral approach (Sec. 7.1), continued by the bilateral comparison method (Sec. 7.2)
and concluded by our pseudocolour enhancement method (Sec. 7.3).

7.1 Unilateral Enhancement

The mammographic tissue textures in the form of mono-spectral images are locally modeled
by their dedicated independent Gaussian noise-driven autoregressive random field two-
dimensional model (2DCAR), because this model has good modeling performance, is very
fast and allows analytical treatment (2.2).

The method uses a locally adaptive version of this 2DCAR model, where its recursive
statistics are modified by an exponential forgetting factor, i.e., a constant smaller than 1
which is used to weight the older data.

The single-view enhancement method uses fused information from up to eight direc-
tional models (Sec. 4.2.1). The enhancement algorithm exploits model statistics (7.1)-(7.3).
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7. Mammogram Texture Enhancement

Figure 7.1: Single-view cancerous mammogram enhancement. Left to right: ground truth,
prediction error based enhancement (Y enh

r ), probability based enhancement (Y enh2
r ) and

absolute prediction error based enhancement (Y enh3
r ).

Y enh
r =

∑
∀φ∈Φ̄

(Yr+1 − γ̂r−1Xr) , (7.1)

Y enh2
r =

∑
∀φ∈Φ̄

p(Yr |Y (r−1), γ̂r−1) , (7.2)

Y enh3
r =

∑
∀φ∈Φ̄

|Yr+1 − γ̂r−1Xr| , (7.3)

where Φ̄ is the set of used directions. This method provides three different enhancement
outputs (7.1)-(7.3) targeting different types of mammographic tissue. All the enhanced
values are normalized into the 0 − 255 range. An example of the results of this method
can be found in Fig. 7.1. We can see how the various movement directions φ influence the
result in Fig. 7.3. The dependency of the results on the exponential forgetting factor can
be seen in Fig. 7.2.

7.2 Bilateral and Temporal Enhancement

Bilateral mammograms exhibit a large degree of similarity. Indeed even the radiologists
visually compare two images of the same view type (either CC or MLO) to find irregular-
ities. We present two methods of bilateral comparison. Note that bilateral mammogram
comparison can be used usually without any changes also to analyze temporal mammogram
sequences.

First we introduce the nonrigid approach which is spatially independent, working only
by searching for best fitting local window in the corresponding view to show that even such
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Figure 7.2: Single-view MLO mammogram enhancement using different functional neigh-
bourhoods consecutively rightwards - 9, 5, and 3 pixel neighbourhood distance from the
enhanced pixel (blue pixels - bottom row).

a trivial method can have some significance and thus indicate that more intricate methods
should work.

The second method starts by registering the bilateral views and assumes that local
textural features of the two images should be corresponding with each other. This way
we estimate the parameters of a 2DCAR MRF model and apply them to the registered
reference image.
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7. Mammogram Texture Enhancement

Figure 7.3: Single-view cancerous mammogram enhancement, ground truth and single
rightwards model - upper row, single downward model and omnidirectional model combi-
nation - bottom.

7.2.1 Bilateral Analysis - Nonrigid Approach

This approach utilizes the idea that since carcinomas appear in the mammograms as parts
which do not suit into the image of the breast, using an image of a healthy breast to build
up an image of a breast with a carcinoma should result in the later differing from the
original image noticeably in the parts where the carcinoma is. This would be caused by
the fact that a healthy breast does not contain tissue similar to a carcinoma.

The method works as follows: Pick a window size (for usual mammogram resolution
of our used experimental databases, 8-40 pixels usually work best) and trace the source
mammogram with it. For each window find a most similar window in the corresponding
mammogram. Our experiments show that in order to not use all possible search windows
in the reference mammogram, about 1000 randomly picked windows suffice. The similarity
measure can be e.g. euclidean distance, correlation, etc. After reconstructing the given
mammogram from the reference, we make a difference image based on the selected distance
measure and threshold the result to not take into account too similar parts. Higher values
therefore represent abnormalities.

This way we can iterate over different window sizes and sum up the results (or rather
consider each run with a different window size as a separate classifier). A sample result
is shown in Fig. 7.4. The breast contains a cancer in the upper part of the image and a
benign lymphatic node (marked with a blue circle).

In the first row, the left image shows the original mammogram with marked ground
truth, the middle one shows an example of reconstruction with window size 8px, the right
image shows an example of reconstruction with window size 28px.
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Figure 7.4: Mammogram analysis - nonrigid approach.
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In the second row the left image shows an example of the difference image for window
size 28px, the right image is the final result of the method with summed differences from
window sizes 4,8,12,...40.

We can see that the nonrigid method could find all these ROIs and mark them with
red dots. There are many false positives. The greatest false positive regions visible in
the upper part of the mammogram are caused by the complexity of the structures which
attract the focus of this method.

In this method we presume the mammogram to be built by a limited number of different
texture types (about 5-8 at most) which have little spatial variances among the same
texture type. Therefore in this method we do not have to perform any registration at all
- the best fitting windows are selected from the whole image.

A problem of this method is, that the images differ a lot at the breast boundaries.
Therefore, for the result to not contain too many false positives, the differences near the
breast contour are masked away. This can result in not noticing a cancer near the breast
boundary.

7.2.2 Texture Model Based Bilateral Comparison

The following method extends the idea presented in the previous section. We presume that
left and right breasts are architecturally symmetrical. This presumption is indeed reason-
able, since radiologists frequently compare bilateral mammograms to find asymmetrical
parts, which could indicate a developing cancer. The architectural symmetry, however,
does not denote pixel-wise similarity of the two images.

The novelty of the presented method is that whereas other alternative methods usually
use simple pixel difference or trivial statistics like cross-correlation to compare the bilateral
images, we use the mammograms of one breast as a learning sample for the 2DCAR breast
texture model [8, 89] and then try to analyze the other mammogram based on this acquired
information. Using the 2DCAR model for bilateral comparison, we achieve a result which is
robust to inaccurate registration, very fast, and which gives improved enhancement results
than just a single-view analysis even using similar local texture modeling.

The texture based symmetry detection neither needs to assume the pixel-wise corre-
spondence of the both breast images, nor their ideal sub-pixel registration inside the breast
area.

The method can be divided into three separate steps: mammogram registration, model
parameters estimation, cross-prediction and cross-difference statistics evaluation.

7.2.2.1 Mammogram Registration

The registration process is described for mammographic MLO views (medio-lateral oblique),
but it can be easily adapted also for CC views (cranio-caudal). Since we compare the images
based on textural features rather than pixel-wise, we do not require as precise registration
as other methods, and can use simple affine transformation based registration.
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Figure 7.5: Registered mammograms with visible reference points.

Three reference points are needed for the affine transformation. We chose the nipple
and one point above and one below it which are closest to the pectoral muscle.

The nipple is located using the heuristic method described in [56]. It works on the
idea of the nipple being a point on the skin-line of the breast which is the most distant to
the line of the pectoral muscle. After the candidates for nipple reference points have been
found in both the mammograms, the position of the reference point can still slightly differ
in both images. Therefore, we adjust their position by searching the neighborhood on the
skin line of the breast for the most correlated window.

The remaining reference point candidates have to be further adjusted as well. Since the
bilateral mammograms usually do not cover the same area of the breast, some anatomical
parts of the breast can be seen only in one of the images and therefore the reference points
would not match. To make up for this problem, we measure the distance of the points to the
nipple, weighted by the nipples distance to the pectoral muscle. The weighting compensates
for differences of positioning the breast in the mammogram which could result in one image
displaying the breast bigger than the other. We then adjust the corresponding reference
points, so that they are on the skin line with the most similar weighted distance to the
nipple possible.

Having the reference points, the affine transformation is performed. Fig. 7.5 left to
right shows the images of right and left breast with marked line of the pectoral muscle
(coloured in red) and the distance from the pectoral muscle to the nipple, the registered
breasts with the reference points painted as white squares with the right breast (last but
one on the right) transformed to match the left breast.

7.2.2.2 Data Fusion

When the bilateral mammograms are registered, their mutual comparison is possible. As
we have stated in Chapter 2, most methods simply make a pixel-wise difference. Using
texture models for difference instead of just the gray-level pixel values brings a bigger
robustness to inaccuracies during the registration.
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Figure 7.6: Mammogram with cancer in the right breast - original image with ground
truth, CAR prediction error, CAR cross-prediction error
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Figure 7.7: Mammogram from Fig. 7.6 - cross difference with highlighted cancer

For this purpose we devised the 2D Cross-CAR model. It is derived from the standard
2DCAR model (2.2). It is based on estimating the 2DCAR parameters for one breast
image while applying them to the other one. Mathematically speaking we could write the
2D Cross-CAR model as follows:

YR/L,r = γL/RXR/L,r + er

where R/L means the random field belonging to the mammogram of the right/left
breast respectively. Notice that the γL/R has the left/right mark swapped. The local
cross-predictor can be then defined as

Ecross{YR/L,r|Y (r−1)
R/L } = γL/R,r−1XR/L,r

The local cross-predictor error is

ErrcrossR/L,r = Ecross{YR/L,r|Y (r−1)
R/L } − YR/L,r = γL/R,r−1XR/L,r − YR/L,r

Furthermore, we add the cross-prediction difference, which works by locally predicting
the left breast using right breast parameters and then subtracting it from the image of
right breast locally predicted by the left breast parameters.
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Figure 7.8: Mammogram with cancer in the right breast - original image with ground
truth, CAR prediction error, CAR cross-prediction error

CrossDiff = Ecross{YR,r|Y (r−1)
R } − Ecross{YL,r|Y (r−1)

L } = γL,r−1XR,r − γR,r−1XL,r

7.2.2.3 Results

Fig. 7.6 shows the registered mammograms of left and right breast, prediction error of the
2DCAR model and the cross-prediction error obtained using the 2D Cross-CAR model.
These results are then completed by the cross-prediction difference shown in Fig. 7.7. We
can see that the cross-prediction error leads to much more contrasting results than using a
simple prediction error of the 2DCAR. We can see a highlighted area in the middle of the
left image which is the present cancer. The cross-difference clearly separates the cancer as
an abnormality which does not exist in the other breast.
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Figure 7.9: Mammogram from Fig. 7.8 - cross difference with highlighted cancer

In Fig. 7.8 we can see another example of the results of bilateral information fusion. This
time there is a lesion in the left breast which does not visually differ from the surrounding
texture. However, we can see in the cross-prediction difference (Fig. 7.9 that the area
clearly protrudes. There are many false positive highlights in this example which we
pointed out also in the previous example. We believe that they could be eliminated by
incorporating the information from CC-MLO registration, which we intend to do in the
future research. The important thing now is that the asymmetry is caught and clearly
visible in the difference image, which has been our main aim.

7.2.3 Discussion

The results confirm that our proposed method is capable of highlighting abnormal differ-
ences in bilateral mammograms. There is a large rate of false positive highlights which
is due to the differences between the breasts and possibly a too finely grained setting of
the comparison model. However, the results can still be used as a guide during inspection
of the breast both done by humans and computers and there are many possibilities of
reducing the false positive rate which we aim at researching in our future work.
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Figure 7.10: Multiple-view medio-lateral mammogram enhancement consecutively right-
wards - ground truth, pixel difference between registered LMLO and RMLO, cross-
predicted gradient, and cross-prediction probability density. The upper row contains
LMLO, bottom row RMLO.

7.3 Pseudo Color Enhancement

The mammogram enhancement is based on efficient fusion of several hundred textural
statistics, each describing different aspect of the mammogram texture, their subsequent
decorrelation, and visualization of a weighted combination of the three most informative
transformed features and the original X-ray mammogram. Fig. 7.11 shows the flowchart
of the method, which is described in more detail in the following text.

To compute the mammogram enhancement features, the following statistics of the direc-
tional 2DCAR model (Sec. 4.2.1) are evaluated for each pixel in the original mammogram
measurements for all directions, as well as in the smoothed variants obtained by median
filters with window sizes 2, 3, 5, 8, and 10px (the filter sizes were selected based on the
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Figure 7.11: The enhancement method’s flowchart.

resolution of the input mammograms):

Prediction error – the prediction error can be computed as

Errrpred = E
{
Yr |Y (r−1)

}
− Yr . (7.4)

This statistic is sensitive to smaller to medium-sized texture abnormalities, such as
lymph nodes.

Absolute value of the prediction error – the absolute value of the previously
defined Prediction Error

|Errrpred| =
∣∣E {Yr |Y (r−1)

}
− Yr

∣∣ . (7.5)

This statistic is sensitive to small texture abnormalities such as lymph nodes, necrotic
calcification, and larger benign calcifications.

Innovation error – this statistic combines the prediction error with the gradient:

Errrin = E
{
Yr−1 |Y (r−2)

}
− Yr . (7.6)

The innovation error highlights very small texture abnormalities with sharp edges.

Absolute value of the innovation error – the absolute value of the previously
defined Innovation Error

|Errrin| =
∣∣E {Yr−1 |Y (r−2)

}
− Yr

∣∣ . (7.7)

This statistic is sensitive to very small texture abnormalities, such as microcalcifica-
tions.
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Prediction probability – equation (2.3). This statistic is sensitive to medium-sized
and larger texture abnormalities, such as lesions and larger lymph nodes.

This way we get a number of new images corresponding to the original mammogram
but emphasizing different texture features of the image. Because the 2DCAR model is
directionally dependent, each analysis is also performed separately for each of the eight
different basic directions φ.

The resulting model statistics (2.3) and (7.4) through (7.7) are stored in 240 planes
(five different statistics computed on the original and five filtered images for each direction
φ) with the same dimensions as the original image. These 240 computed features have
various and spatially dependent mutual correlations. The Karhunen-Loeve transform is
then performed on these planes in order to obtain the most informative transformed three
components (99% of the overall eigenvalues), which are then assigned respectively to the
red, green and blue color channels of the resulting enhanced image. The latter thus con-
sists of the original X-ray measurement and a linear combination of the computed textural
statistics. Different partial results are susceptible to different-sized abnormalities, in par-
ticular the prediction error components are better for enhancement of smaller findings,
such as microcalcifications. The analysis based on prediction probability is, on the other
hand, more susceptible to larger abnormalities, such as lesions and masses. Therefore, we
split the results of our method into three different outputs:

1. Based purely on prediction probability (7.8) – these results tend to be smoother and
work very well on larger areas, e.g., in Fig. 7.13–top row, second image.

2. Based purely on prediction errors (7.9) – good enhancement of smaller abnormalities
such as microcalcifications , e.g., in Fig. 7.15–top row, third image.

3. All aspects combined (7.10) – joins the advantages of both of the previous methods,
but does not have such good contrast, e.g., in Fig. 7.14–top row, fourth image.

Yb
r = Tb

(
p(Yr |Y (r−1)), . . .

)T
, (7.8)

Ys
r = Ts

(
Errrpred, |Errrpred|, Errrin,

|Errrin|, . . .
)T

, (7.9)

Ym
r = Tm

(
Errrpred, |Errrpred|, Errrin, |Errrin|,

p(Yr |Y (r−1)), . . .
)T

, (7.10)

where T are 3 × {48, 192, 240} transformation matrices. Matrix rows are eigenvectors
corresponding to the three largest eigenvalues from the actual data spaces.

Finally, the enhanced mammograms are optionally combined with the original image
to enable the radiologist to perceive both the enhancement and the original structure of
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the breast and customize the ratio:

Yenh
r = (1− c)Yr

 1
1
1

+ cYr ,

where parameter c depends on the radiologist’s personal preference:

c =


0.15 light

0.3 medium

0.6 heavy

1.0 full .

7.3.1 Comparison with alternative methods

For comparison, we have implemented four state-of-the-art methods for mammogram image
enhancement [41, 53, 54, 55]. These methods enhance mammograms in the grayscale
format. We are not aware of any other mammogram enhancement method producing
results in color.

7.3.2 Contrast measures

To evaluate our results, we have implemented three different contrast measures already
used in the literature. The local contrast is computed using a slightly modified Second-
derivative-like measure of enhancement (SDME) proposed by Panetta [54], Border contrast
by Erdem et al. [80] and the Weighted-level framework with Retinal-like subsampling
contrast (Wlf(Rsc)) proposed by Simone et al. [78]. Furthermore, we have evaluated the
contrasts with our proposed contrast measure SRC (8.4).

7.3.3 Numerical contrast results

We present the mean results of the individual contrast measures applied to all the images
in the INbreast database in Tab. 7.1. The contrast measures were computed on images
subsampled to 1024px height, keeping aspect ratio, and with region of interest overlapping
at 20px to cover the context of the computed ROI. The SDME and SRC contrast measures
are computed on grayscale images, whereas the border contrast and Wlf(Rsc) are computed
in the CIELAB color space. Furthermore, we distinguish between the contrasts computed
for different types of ROIs: masses, calcifications and all ROIs together. The best results
for each set are printed in boldface, and our presented methods’ outputs in italics.

7.3.4 Numerical Evaluation

The four contrast measures exhibit different sensitivities, depending on the types of in-
formation measured. The most consistent results can be seen in the Wlf(Rsc) contrast,
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Method Wlf(Rsc) SDME Border SRC
Masses

Bhateja [55] 0.96 0.99 2.84 0.25
Combined (7.10) 1.02 1.00 7.96 0.29

Original 0.94 0.99 1.29 0.18
Panetta [54] 0.94 0.95 1.89 0.22

Prediction errors (7.9) 0.88 1.01 7.53 0.18
Prediction probabilities (7.8) 1.65 0.98 10.8 0.27

Tang [41] 0.76 1.00 2.35 0.22
Wang [53] 1.02 0.82 6.26 0.47

Calcifications
Bhateja 0.98 0.98 2.90 0.14

Combined 1.79 1.00 7.76 0.16
Original 0.97 0.99 1.35 0.10
Panetta 0.98 0.97 2.20 0.11

Prediction errors 1.72 1.00 7.49 0.13
Prediction probabilities 1.05 0.99 10.8 0.15

Tang 0.82 0.99 2.16 0.15
Wang 1.03 0.90 6.39 0.25

All ROIs together
Bhateja 0.97 0.99 2.87 0.16

Combined 1.78 1.00 7.78 0.19
Original 0.97 0.99 1.33 0.12
Panetta 0.97 0.96 2.13 0.14

Prediction errors 1.64 1.00 7.42 0.14
Prediction probabilities 1.27 0.99 10.7 0.17

Tang 0.81 0.99 2.15 0.17
Wang 1.02 0.88 6.26 0.30

Table 7.1: Enhancements’ contrast comparison.
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Figure 7.12: Enhanced mammogram example with a lesion and a big calcification. Top
row from left to right: original with ground truth, enhancement based on prediction prob-
abilities, enhancement based on prediction errors, and combined enhancement. Bottom
row from left to right: comparison methods by [54], [53], [41] and [55].

which confirms our assumption that the prediction-probability-based enhancement is more
suitable for enhancing masses while the prediction-error and combined methods are more
suitable for calcifications. The combined method is more sensitive to lesions than the
prediction-error-based method. Since calcifications cover most of the ROIs taken from the
INbreast database, the overall results (bottom part of Tab 7.1) are more biased toward the
calcification-focused approaches.

The contrast criteria suggest that our method significantly outperforms the compared
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Figure 7.13: Examples of mammogram enhancement. Top row from left to right: original
with ground truth, enhancement based on prediction probabilities, enhancement based on
prediction errors, and combined enhancement. Bottom row from left to right: comparison
methods by [54], [53], [41] and [55].

alternatives even in grayscale images. The alternative methods may occasionally exhibit
contrast values even lower than those encountered in the original images. Our SRC contrast
measure is the only contrast measure giving better values to an alternative enhancement
method than to our enhancements. In all the measured cases, under the SRC contrast
measure, the Wang method produced higher contrast than our enhancement methods.
However, this is at the cost of the presented discriminative information in the enhanced
mammogram. The SRC method takes into account only the local surroundings of the
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Figure 7.14: Enhanced mammogram example with a dimly visible cancer. Top row from
left to right: original with ground truth, enhancement based on prediction probabilities,
enhancement based on prediction errors, and combined enhancement. Bottom row from
left to right: comparison methods by [54], [53], [41] and [55].

regions of interest, in which the Wang method doubtlessly has higher contrast, but forgoes
the many false positive enhancements the Wang method produces.

7.3.5 Visual Evaluation

Fig. 7.12 shows an example of a medio-lateral oblique (MLO) mammogram with a low-
contrast lesion and a big calcification. The lesion is better visible in the prediction-
probability-based image, which on the other hand almost does not show the calcification,
whereas the calcification is brightly highlighted in the prediction-error-based image. The
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Figure 7.15: Enhanced mammogram example with a several microcalcifications. Top row
from left to right: original with ground truth, enhancement based on prediction probabil-
ities, enhancement based on prediction errors, and combined enhancement. Bottom row
from left to right: comparison methods by [54], [53], [41] and [55].

combined image shows both abnormalities acceptably. Fig. 7.13 shows another MLO mam-
mogram with an elliptical lesion near its edge. The lesion is visible with equal ease in all
three enhanced images. In Fig. 7.14 there is a very small malignancy in a cranio-caudal
(CC) mammogram. Because of its size and relatively low contrast in comparison with its
surroundings, it is not very visible in either the prediction-probability-based enhancement
or the prediction-error-based one. The combined view, however, shows it as a bright red
circle.

There are several microcalcifications in the CC mammogram in Fig. 7.15. They are
marked as thick blue dots in the prediction-error-based image and as rather bluish dots in
the combined view. Because of their size and character, they are omitted by the prediction-
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Figure 7.16: Enhanced benign mammogram example. Top row from left to right: original
image, enhancement based on prediction probabilities, enhancement based on prediction
errors, and combined enhancement. Bottom row from left to right: comparison methods
by [54], [53], [41] and [55].

probability-based image.

In the bottom rows of Figs. 7.12, 7.13, 7.14, 7.15, and 7.16, we can see a comparison
with methods by Panetta et al., Wang et al., Tang et al. and Bhateja et al. The advantage
of our method is in making clearly visible contours around texture abnormalities, microcal-
cifications, and malignant findings while keeping non-suspicious mammograms (Fig. 7.16)
fairly homogeneous in comparison with these alternative methods.

Fig. 7.17 shows an example of texture enhancement in one of the digital mammograph
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Figure 7.17: Example of the pseudocolour method compared with the unilateral result. Left
to right: original with ground truth, enhancement by the unilateral method, enhancement
based on prediction probabilities, enhancement based on prediction errors, and combined
enhancement.

Senographe 2000 D MLO mammograms using single-directional rightward 2DCAR model
using our previously published method [A.2] compared with our new method. It is clearly
visible that the lesion and the lymph nodes are better visible in the colored images. The
lesion is better visible in the prediction-probability-based enhancement and in the combined
enhancement (which is not too different from the probability based one due to lower quality
of input data) and the nodes are better visible in the prediction-error-based image.

The use of targeted frequency bands makes the algorithm more susceptible to abnormal-
ities of different sizes, ranging from microcalcifications (Fig. 7.15) to medium-size lesions
(Fig. 7.12) and lymph nodes. Larger lesions are enhanced with a somewhat lower contrast,
but since they can easily be seen with the naked eye even by untrained people, we do not
see this limitation as a serious drawback.

7.3.6 Radiologists’ Verification

The presented method was consulted with five expert radiologists who focus solely on
mammography. The radiologists underwent a test using a perceptual validation program
working with the INbreast database images.

This program generates two types of tests: either the perceptual validation test on
the original X-ray mammograms (blind test A) or the test where each window contains
the X-ray measurements on the left half of the screen and its enhanced version using the
presented method on the right half (enhanced test B, Fig. 7.18).

The radiologists were asked to click on all suspicious-looking spots in the mammogram.
They could choose from the three different types of enhancement combined with one of the
four enhancement levels (light, medium, heavy, full). All tests were performed with only a
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Table 7.2: Tests A and B (radiologists 2 and 3 did not take test A, CS – correctly selected,
TS – total selected, TPC – time per case).

Radiologist #ROIs #CS #TS TPC (s)
Test A

1 5 5 26 28
2 - - - -
3 - - - -
4 5 5 9 11
5 8 7 22 16

Test B
1 11 11 29 63
2 5 4 9 27
3 5 5 14 138
4 4(3) 3 17 36
5 7 6 14 42

two-minute introduction without any previous schooling or trials.

Single test screens for both test types were randomly chosen from the combined IN-
breast database and the corresponding enhanced mammograms. The success rate of every
radiologist was evaluated together with the time spent on evaluation of each spot, screen,
and left or right image (for test B).

Each standard test (both A and B) contains 20 different screens, i.e., 40 screens total
with images of both benign and malignant instances. However, due to time constraints of
the participants, test A is missing and test B contains just 10 and 16 cases, respectively
for radiologists numbers 2 and 3. Although any more definite conclusion would need a
much larger study, we believe that these results indicate the positive trend of our method.
Average time per case for test B is about three times longer than for test A, which is not
surprising due to the novelty of the presented method and 12 different configurations of
the enhancement settings. We expect comparable times in routine usage.

The results, shown in Tab. 7.2, were comparable. At first glance the results of test B
might look a bit worse, which would speak against the proposed enhancement method since
while the radiologists missed only one abnormality in test A, they missed two abnormalities
in test B. However, the abnormality missed by radiologist No. 5 in test A was classified as
BI-RADS 4c, which means higher than intermediate suspicion of malignancy, whereas the
abnormalities omitted in test B were BI-RADS 2 and 3, which means benign (BI-RADS
2) and probably benign (BI-RADS 3) findings. Moreover, when we discussed the missed
abnormalities with the experts after the test, we found out that radiologist No. 4 did not
highlight the BI-RADS 2 finding deliberately as she found it to be a non-suspicious texture
summation. Considering this, we added a third row to the summary Tab. 7.3 to show the
corrected results. Our radiologist consultants expressed keen interest in the method and

87



7. Mammogram Texture Enhancement

Figure 7.18: Screenshots of the radiologist validation program - test B.

Table 7.3: Summary (TP - true positives, FP - false positives, FN - false negatives).

Summary
Test TP FP FN Time (s)
A 94% 70% 5% 18
B 90% 65% 9% 62

B - corrected after discussion 96% 65% 4% 62

appreciated its outputs.
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Chapter 8

Local Contrast Criteria

Image enhancement methods aim to improve human image interpretation accuracy by
increasing visual distinguishability of single objects recorded in a visual scene. This requires
an increase in image contrast which is the relative difference in luminance, colour or texture
between multiple objects.

A typical important application for image enhancement is preventive mammography
screening. Around 25% of radiologically visible cancers are missed by the radiologists at
screening [115] which means that millions of cancer cases are missed every year. In such
important image enhancement applications even a slightest improvement in the detection
methods could have a huge impact and save many lives. A reliable quality contrast criterion
is then the prerequisite for any monitoring of an image enhancement method development
progress or for ranking existing methods.

During our work on mammogram enhancement, we encountered several different en-
hancement measures and contrast measures [75, 76, 77, 78, 79, 80]. When we applied them
in our experiments, we found out that their results are rarely consistent with each other
(i.e. that their results on different images are sorted in the same order).

In this chapter we investigate the behaviour of different contrast measures on various
types and levels of image degradations. In Sec. 8.1 we describe different contrast measure
categories and how to apply them for region based contrast estimation, Sec. 8.2 introduces
our contrast criterion, Sec. 8.3 describes our contrast validation benchmark and Sec. 8.4
presents the experimental results.

8.1 Contrast Measure Categories

As we have already mentioned in Sec. 2.2.8, contrast criteria can be categorized into three
different groups:

1. Global contrast measures compute the overall contrast of the whole image.

2. Local contrast measures compute the contrast for each and every pixel.
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3. Region contrast measures compute the contrast of some region of interest with
respect to its surroundings and/or the rest of the image.

8.1.1 Modifying Contrast Measures for Regions of Interest

Not all contrast measures can be utilized to computed region contrast directly. In the
following sections we propose a simple modification to enable any contrast measure to be
applied to region contrast computation.

8.1.1.1 Using global and local contrast measures for region contrast computation

Measuring the contrast for local abnormality enhancement is somewhat dubious since ide-
ally we want to lower the contrast of normal texture as much as possible and only raise the
contrast of the abnormalities. Denoting an object O and B as background, we propose
the following modification to contrast measures to make them suitable for measuring the
contrast of regions of interest:

ContrastFactor =
C(O)

C(B \O)
, (8.1)

where C(.) is an arbitrary global contrast measure.
This way we can compute the factor by which the contrast at the abnormality is greater

(or lower) than the contrast in the rest of the breast image. The same equation can be
directly applied to all the global contrast measures such as the SDME (2.22). For local
contrast measures, which give local contrast values for each pixel (denoted L(x, y), where
x, y are spatial indices), such as the WlfRsc (2.30), we sum the values for each pixel
beforehand and take their mean value:

ContrastFactor =
|B \O|
|O|

∑
x,y∈O L(x, y)∑

x,y∈(B\O) L(x, y)
(8.2)

8.1.1.2 Multispectral generalization of the grayscale contrast measures

The straightforward generalization of monospectral contrast measures C(. ) to any d num-
ber of spectral bands is

CQ = [C1, . . . , Cd]Q [C1, . . . , Cd]
T , (8.3)

where Q is some appropriate positive definite weighting matrix. Q can be the unity matrix
Q = diag[1, . . . , 1] or for colour images it can be their grayscale conversion, e.g., converted
from the RGB colour space:

Q =

 0.2989 0 0
0 0.587 0
0 0 0.114

 .
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Other possibilities, e.g. those proposed by Simone et al. [78], include using the variance
of each channel’s values as the weight or 1

µ
where µ is the mean value in the colour channel,

or simply converting the image to grayscale beforehand.

8.2 Our Proposed Contrast Criterion

We propose a contrast criterion loosely based on the Region contrast (2.32). The main idea
is that the distinguishability of a region is mostly influenced by its direct surroundings.
Let’s define the surroundings Si,d of region i as all pixels which do not belong to the region
i and their distance from the region in both x and y axes is at most d. The surrounding
region contrast

SRC =

∣∣∣∣µi − µSi,d∣∣∣∣∣∣∣∣µi + µSi,d
∣∣∣∣ , (8.4)

where µi is the mean value of region i and µSi,d is the mean value of its surroundings up
to the distance d.

The distance d of the surroundings can be determined as either a constant value or
relative to the size of the region of interest.

8.3 Contrast Measures Benchmarking

To validate the contrast measures, we take a set of images on which we then apply several
different degradations in varying amounts and observe the results of the contrast measures.
Ideally, they should behave monotonously. The image degradations, an example of which
can be seen in Fig. 8.1, are:

1. Additive Gaussian noise (GN), varying standard deviations (σ ∈ {10, 20, . . . , 100}),

2. Salt and pepper noise (SP), varying ratio of presence (10%, 20%, . . . , 100%),

3. Linearly combined uniform noise (U) (0-255), ratio (10%, 20%, . . . , 100%),

4. Gray level range reduction (LC) (1
2
, 1

4
, . . . , 1

1024
),

5. Averaging (AVG) of values within windows of sizes (1, 3, 5, . . . , 21).

8.4 Experimental Validation

We have validated the contrast criteria on the more than 100 grayscale images from the
INbreast database [86] which include an abnormal mass and on 20 colour skin images
with cancer-like abnormalities. The validated contrast measures are: AME (2.20), AMEE
(2.21), EME (2.18), EMEE (2.19), SDME (2.22), C3 (2.27), WlfRsc (2.30), BCC (2.33),
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Figure 8.1: Example of image degradations applied to a mammogram. Top row, left to
right: mammogram, its region of interest template, and its degradation using the additive
Gaussian noise σ = 30, σ = 100, additive noise with uniform noise 30% blending. Bottom
row, left to right: Additive noise with uniform noise 80%, range reduction 2 bits, range
reduction 4 bits, salt and pepper noise 10%, and 50%.

RCC (2.32) and our proposed method, SRC (8.4). The global and local contrasts were
modified using our proposed equations (8.1) and (8.2) respectively.

The experiments use the parameters k1 = width/5, k2 = height/5, α = 0.5 for AME,
AMEE, EME, EMEE, SDME, for C3 and WlfRsc (2.29) ρc = 1, ρs = 2, Nl = 5, λl is the
variance of pixel values in each channel at level l. For the BCC we have selected a window
of size 3×3, with the window’s center 5 pixels distant from the border. Since the C1 (2.25)
and C2 (2.26) criteria give values similar to C3 (correlation > 0.99), they are not included
in the presented results.

In our proposed method, we set the parameter d = 6 to match the contrast measures
with similarly parametrized distances.

For a correctly functioning contrast criterion, the corresponding degradation graph
should be monotonous and consistent among the different image degradations. The results
(plotted in the graphs in Figs. 8.2-8.6) demonstrate that the different contrast criteria are
not consistently reliable. The sole two exceptions are the Region contrast criterion (2.32)
which only fails in one case (averaging on the dermatological data), and our proposed
Surrounding region contrast (8.4), which shows consistent results in all the experiments.

The presented graphs are normalized to the range < 0; 1 > to provide better visual
comparison. The horizontal axes start at 0 with the original images and the deterioration
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then increase rightwards.
Tab. 8.1 shows a summary of the behaviour of the different contrast measures. We

can see that except for the SRC measure, all the contrast measures exhibit non-monotony
and the AME, BCC, SDME and WlfRsc even show inconsistent monotonous behaviour (for
some degradations, they are monotonously increasing while for others they are decreasing).
The second best enhancement measure is the RCC which only exhibited one minor non-
monotony in one case but otherwise behaved consistently.
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Figure 8.2: The criteria behaviour for the averaging image degradation. Left: dermatolog-
ical data (colour), right: mammography data (grayscale).
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Figure 8.3: The criteria behaviour for the Gaussian noise image degradation. Left: der-
matological data (colour), right: mammography data (grayscale).
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Figure 8.4: The criteria behaviour for the uniform noise image degradation. Left: derma-
tological data (colour), right: mammography data (grayscale).

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Dermatological data

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Mammography data

AME
AMEE
BCC
C3

EME
EMEE
RCC
SDME
SRC

WlfRsc

Figure 8.5: The criteria behaviour for the range reduction image degradation. Left: der-
matological data (colour), right: mammography data (grayscale).
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Figure 8.6: The criteria behaviour for the salt and pepper noise image degradation. Left:
dermatological data (colour), right: mammography data (grayscale).
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8.4. Experimental Validation

Dermatological data (colour) Mammography data (grayscale)
AVG GN U LC SP AVG GN U LC SP

AME x x x ↑ x ↓ ↑ ↑ x x
AMEE ↑ x x ↑ x x x x x x
BCC ↓ x x ↓ ↑ x ↓ x ↓ x
C3 x ↑ x ↑ x x ↑ x x x

EME x x x x x x ↑ ↑ ↑ x
EMEE x x x x x x ↑ x ↑ x
RCC x ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

SDME x x ↑ ↑ x ↓ ↑ x x x
SRC ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
WlfRsc ↑ x ↑ ↑ x x ↓ x x x

Table 8.1: Summary of the behaviour of the different contrast measures among different
degradations. ↑ means monotonous increasing, ↓ means monotonous decreasing and x
means non-monotonous behaviour.
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Chapter 9

Developed Software

To our knowledge, there is no application or software library which would implement the
texture models we are using for our work, so we had to implement all the methods on our
own.

All the described methods were implemented in the Java programming language (mostly
versions 7 and 8) taking into account object oriented programming best practices. The
software bundle is actively used for texture synthesis and mammography analysis research
at the Department of Pattern Recognition of the Institute of Information Theory and
Automation of the Czech Academy of Sciences. The software is platform independent
and takes advantage of modern multi-processor computers by automatically detecting the
number of available CPU cores and scaling accordingly whenever the computation can be
parallelized. The bundle consists of over 2 MiB of sources with over 70 000 lines of code.

In the following sections we present a short introduction into the developed software.
Sec. 9.1 presents the applications developed for the study of the Potts model, Sec. 9.2
describes the application developed for mammography analysis, Sec. 9.3 introduces our
supervised segmentation application, Sec. 9.4 deals with our framework for storing and
analyzing the results of experiments, Sec. 9.5 describes our framework for easy parametriza-
tion of console applications and, finally, Sec. 9.6 provides a short list of external libraries
that we used.

9.1 Potts Applications

We have developed two applications for the modeling of the Potts random field. One is
for the hierarchical Potts mimicking (Sec. 9.1.1) and the other is for Potts mosaics (Sec.
9.1.2).

9.1.1 Hierarchical Potts Texture Mimicking

Fig. 9.1 shows our application for working with the hierarchical Potts field. It allows us
to import an image, select different colours and group them together in hierarchy, select
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9. Developed Software

Figure 9.1: Example of our application for Potts hierarchical mimicking with one selected
colour.

different measures for the Potts field synthesis (Sec. 5.1), run the mimicking synthesis and
post process the resulting image.

9.1.2 Potts Mosaics

The Potts mosaic application (Fig. 9.2) has a very simple gui which allows us to import
an image, filter it and run the mimicking synthesis procedure.

9.2 Mammograms

9.2.1 Graphical User Interface

The graphical user interface for mammogram analysis mostly comprises of the view of the
mammogram database (Fig. 9.3). The table containing the information on the database’s
cases is procedurally generated and depends on the type of database displayed as all the
mammogram databases provide different information.
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9.3. Supervised Texture Model Based Segmentation

Figure 9.2: Example of our application for Potts mosaics.

9.2.2 Unified Interface for Mammogram Databases

Following the “low coupling - high cohesion” principle of object oriented design, we have one
shared interface for all mammogram databases and database entries, as shown in Fig. 9.4.
In the diagram, we can see that the MammoDBEntry is a class instead of an interface.
This was caused historically by the class having some default implementations and can
be implemented in an interface since Java 8, which will be done by simple refactoring in
future work. This approach allows us to seamlessly switch between mammogram databases
without any change to the developed algorithms for their analysis.

9.3 Supervised Texture Model Based Segmentation

We have developed a general application supervised segmentation using different texture
models. Fig. 9.5 shows the segmentation application and segmentation result. An interest-
ing option of the segmentation application is the possibility to visualize the features and
feature space of the training samples as shown in Fig. 9.6
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Figure 9.3: Example of our application for mammogram analysis.

Figure 9.4: Class diagram of the mammogram databases.
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9.4. Storing and Analyzing Results

Figure 9.5: Segmentation application example. Left: the application with training samples,
right: the segmentation result.

Figure 9.6: Visualization of the feature space (left) and features for each pixel (right).

The segmentation model and trained parameters are designed to be easily storable
in human readable configuration files. These can later be easily loaded and executed as
shown for example in Fig. 9.7 which presents code used for the segmentation of digitized
mammograms from the MIAS database.

9.4 Storing and Analyzing Results

During our work, we have designed a unified approach of storing and analyzing the mea-
sured results of our experiments. The way the results are stored can be seen in Fig. 9.8
(this figure shows an actual code from our project). We can see that every result data can
have multiple parameters on which it depends and can also store multiple result values
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// load configuration from file

SegmentationConfiguration configuration =

ResourceHelper.loadYamlObjectFromResource("yml/mias_gray.yml", SegmentationConfiguration.class);

// initialize segmentation worker

SegmentationWorker segmentationWorker = new SegmentationWorker(configuration);

// perform segmentation

int [][] segmentation = segmentationWorker.runSynchronousSegmentation(sourceImage);

// postprocessing - smoothen

ClassificationUtils.postProcess(segmentation, 2, 2);

// final result

boolean [][] mask = ClassificationUtils.extractLargestArea(segmentation, 0);

Figure 9.7: Sample code for digitized mammogram segmentation.

// set the results to be stored into the given output file

ResultSet rs = new ResultSet(outputFile);

ResultsData rd = new ResultsData();

rd.putParam("discretization", disc);

rd.putParam("size", size);

rd.putParam("neighborhood", neighborhood);

rd.putResult("#correctly classified", result);

rd.putData("contingency table", new ContingencyTableHolder(contingencyTable));

rs.addResultData(rd);

Figure 9.8: Sample code for our results management.

(although the example shows only one). Apart from that, every result data can also hold a
number of additional information about the result, e.g. the configuration of the segmenter.
Several different types of values can be stored ranging from numbers, text, contingency
tables to neighbourhood information for the CAR model. The data is stored using the
YAML format.

The stored set of results can be easily read and analyzed either programmatically
or using our result viewing application (see Fig. 9.9). The gui changes according to the
structure of the results data. All the results, plots, contingency tables, etc., can be exported
to LATEX on one click.

9.5 Parametrizing Runnables

Graphical user interface is not always the most convenient means of executing experiments.
Using command line interface is quite often more suitable, e.g. when executing various
batches of data or when accessing a remote computer through ssh.
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Figure 9.9: Results viewer application example. Top row: overall view of all the results
with results, parameters and additional information distinguished by colour. Bottom row,
left: plot of two different results depending on the same variable, right: detail of one results
data showing the neighbourhood of the CAR model along with some results.
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@ParameterField

public static int someValue = 10;

@Action(value="init database", calledAlways=true, isInit=true, initOrder=0)

public static void initDatabase(String db, String dbPath) { ... }

@Action(value="analyze")

public static void runAnalyzeDatabase(String [] fileNameTemplates, int discretization,

int startSize, int startNeighborhood) { ... }

public static void main(String[] args) throws Exception {

ArgumentsHelper.processArguments(args, Main.class);

}

Figure 9.10: Sample code for our arguments annotations.

action=genetics

db=mias

dbPath=/dev/shm/MIAS/data.txt

inputDirPath=../

fileNameTemplates=mias_, inbreast_, ddsm_

outputFile=output.yml

keptBestSpecimenRatio=0.05

randomSpecimenRatio=0.02

geneticSurvivability=0.95

fillRatio=0.2

nIterations=10000

maxThreadRatio=0.7

Figure 9.11: Sample configuration of a console application.

We have implemented a user friendly way of parametrizing our console application
without the need of manually parsing the command line arguments or configuration files.
Each parametrized variable or method can be decorated with an Annotation providing
the information on its parametrization (a sample code can be seen in Fig. 9.10). The
ArgumentsHelper.processArguments(...) method then analyzes the given class, finds
all the annotations and sets the parameters according to their type. The parameters can
be passed either as command line arguments or within a configuration file. An example
configuration can be seen in Fig. 9.11. If the arguments are set incorrectly, the application
prints the error line along with an automatically generated help and exits.

If the application has too many different parameters, writing them down by memory
or from help text could be cumbersome. For this case we have implemented a graphical
application which automatically generates a form for the arguments of a given executable,
checks the validity of the arguments and in the end either outputs a configuration file or
directly runs the application (see Fig. 9.12).
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Figure 9.12: Arguments viewer application example.

9.6 External Libraries Used

We used the external libraries listed in Tab. 9.1 for the development of our software. They
are all opensource and thus enabled us to make modifications to better work with our own
code where necessary.
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Name Url Licence Notes
JWave https://github.com/

cscheiblich/JWave

Apache 2.0 Used for fast wavelet trans-
form.

ImageJ https://imagej.net/
ImageJ

BSD, GPL Used for reading DICOM im-
ages.

JLatexMath https://github.com/
opencollab/jlatexmath

GPL Used for drawing latex equa-
tions in Java applications.

opencsv http://

opencsv.sourceforge.net/
Apache 2.0 Used for reading / writing

CSV files.
YamlBeans https://github.com/

EsotericSoftware/

yamlbeans

Free Used for parsing / writing
yaml files.

Guava https://github.com/
google/guava

Apache 2.0 Utilities for easier Java de-
velopment.

Table 9.1: External libraries used in our project.
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Chapter 10

Conclusions

We have developed several state-of-the-art descriptive multidimensional textural models
of the Markovian type together with corresponding methods for their statistics estimation
and efficient synthesis. The models allow for seamless multispectral/BTF texture synthe-
sis and enlargement with an extremely high compression rate independent of the size of
the desired resulting texture. The data needed to be stored is comprised of only several
dozens of parameters. Using a simple modification of the method we can use it for texture
editing (by changing the local texture models for several indices of the control field) or
even the synthesis of new, unmeasured textures by manually assigning the models’ param-
eters. We have successfully applied these models to physically correct surface materials’
appearance synthesis and editing as well as to mammography applications.

We have presented two methods for breast density classification in X-ray mammogra-
phy. The methods were tested on the widely known MIAS database and the state-of-the
art INbreast database, and our results are promising and competitive. Furthermore, the
intermediate results of our method can be used for preliminary breast tissue type classifi-
cation.

We have developed several methods for completely automatic mammogram enhance-
ment. These methods are based on the descriptive textural models developed in the thesis
which automatically adapt to the analyzed X-ray texture, thus being universal for any
type of input without the need of further manual tuning of specific parameters. Although
the algorithms use random-field-type models, the models are very fast thanks to efficient
recursive and numerically robust model estimation, and therefore it is much faster than
the usual alternative Markov random field models, which require an approach based on
the Markov chain Monte Carlo estimation.

Our methods’ outputs highlight regions of interest, detected as textural abnormalities.
Cancerous areas typically manifest themselves in X-ray images as such textural defects.
The methods provide the possibility of enhancement tuned to specific types of mammogram
tissue. Thus, the enhanced mammograms can help radiologists to decrease their false
negative evaluation rate. It has been shown that the algorithms work well both for small
findings, such as microcalcifications, and for bigger lesions. In the examples it can be
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seen that even barely visible abnormalities, with the same average gray level as their
surroundings, are highlighted very well using our methods, and this could be of great
benefit in breast cancer detection.

The pseudocolour method offers a unique way of mammogram feature fusion for visual
evaluation and vastly enriches the the information content of the enhanced mammogram.
We have compared our pseudocolour enhancement method with four state-of-the-art meth-
ods and visually and numerically evaluated the results. Our method shows better sensitiv-
ity for enhancing both larger and smaller abnormalities. These observations are confirmed
by numerical state-of-the-art contrast criteria, and also by our radiologist consultants.

We have implemented a new contrast criterion and compared it with nine different
existing contrast criteria using our developed benchmark. It has been shown that for the
purposes of region of interest enhancement validation, very few contrast measures can be
trusted.

10.1 Contributions

The thesis contributions are summarized in the following list:

1. Descriptive multidimensional texture models development for texture analysis and
synthesis applications

a) Hierarchical Potts MRF model (Sec. 4.1.2).

b) Directional CAR models (Sec. 4.2.1)

c) Spiral CAR models (Sec. 4.2.2)

d) Compound Potts MRF model (CMRFP3AR) (Sec. 5.1.1)

e) Compound Potts Voronoi MRF model (CMRFPV 3AR) (Sec. 5.2).

f) Algorithm for estimation of Potts model parameters for texture mimicking
(Sec. 5.1.3)

2. X-ray mammograms tissue analysis based on the descriptive multidimensional texture
models

a) Algorithm for breast composition classification (Sec. 6.2)

◦ A sub-result is the classification of texture in mammograms into fatty and
dense (Sec. 6.2)

b) Potts model based classification of breast composition (Sec. 6.4)

3. Development of methods for mammogram parenchymal patterns enhancement

a) Unilateral method for mammogram enhancement with three specific tissue tar-
geted outputs (Sec. 7.1)

b) Nonrigid bilateral comparison method (Sec. 7.2.1)
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c) Texture model based bilateral comparison method (Sec. 7.2.2)

d) Pseudocolour enhanement method (Sec. 7.3)

4. Development of image enhancement criteria and their verification

a) Contrast criteria comparison using our benchmark (Sec. 8.3)

b) Region contrast criterion SRC which passes all our benchmarking conditions
(Sec. 8.4)

10.2 Future Work

Not all the theoretical results achieved in the thesis were already applied and published. In
the near future, we would like to verify the spiral CAR models, derive Markovian rotational
invariance and apply them to rotational invariant material recognition.

The Compound MRF models will be exploited in texture editing applications.
We would also like to further our focus on mammography analysis. We would like to

apply the probability models to risk assessment based on the mammogram composition
recognition.

As we have recently acquired a database of dermatological images, we would like to
broaden our medical imaging focus in this area, where we will apply our models in skin
lesion analysis and illness progress monitoring.

10.2.1 Mammography Analysis

Our research in mammography is anything but finished. We have shown that our methods
lead to an improvement of automated mammogram analysis but further research in this
area is still necessary.

10.2.1.1 Segmentation of Regions of Interest

The main focus of all automated mammogram analysis is the effort to automatically find
regions in the mammograms which could be of help for the radiologists during diagnosis.
In this work we focused on accentuating the areas of mammograms which differed from
their counterparts in the mammogram of the other breast or from its own breast’s texture.
The natural advancement is that we would like to be able to help the radiologists find
the carcinomas. Therefore we would like to further lead our research to segmentation of
microcalcifications, lymphatic nodes and mass lesions.

10.2.1.2 Mammogram Modeling

Thanks to the descriptive textural models, we could not only more accurately analyze the
measured visual data, but if we were immodest, we could synthesize artificial mammogram
phantoms to e.g. help with the training of new radiologists.
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10.2.2 Multidimensional Random Fields

Nontrivial Markov random fields are one of the best means of texture modeling, which is
the reason why we are using them for medical image analysis. We would also like to further
explore them in general and hopefully further develop novel MRF models which could be
more suitable for medical image purposes.
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[10] Haindl, M.; Havĺıček, V. A multiscale colour texture model. In Proceedings of the
16th International Conference on Pattern Recognition, edited by R. Kasturi; D. Lau-
rendeau; C. Suen, Los Alamitos: IEEE Computer Society, August 2002, pp. 255–258.
Available from: http://dx.doi.org/10.1109/ICPR.2002.1044676

[11] Potts, R. B.; Domb, C. Some generalized order-disorder transformations. Pro-
ceedings of the Cambridge Philosophical Society, volume 48, 1952: p. 106, doi:
10.1017/S0305004100027419.

[12] Wu, F. Y. The Potts model. Rev. Mod. Phys., volume 54, no. 1, Jan 1982: pp.
235–268, doi:10.1103/RevModPhys.54.235.

[13] Ising, E. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fur Physik, vol-
ume 31, Feb. 1925: pp. 253–258, doi:10.1007/BF02980577.

[14] McCoy, B.M. and Wu, T.T. The Two-Dimensional Ising Model. 1973.

[15] Levada, A. and Mascarenhas, N. and Tannus, A. Pseudolikelihood Equations for
Potts MRF Model Parameter Estimation on Higher Order Neighborhood Systems.
Geoscience and Remote Sensing Letters, IEEE, volume 5, no. 3, July 2008: pp.
522–526, ISSN 1545-598X, doi:10.1109/LGRS.2008.920909.

[16] Levada, A. and Mascarenhas, N. and Tannus, A. Improving Potts MRF model pa-
rameter estimation using higher-order neighborhood systems on stochastic image
modeling. In Systems, Signals and Image Processing, 2008. IWSSIP 2008. 15th In-
ternational Conference on, 2008, pp. 385 –388, doi:10.1109/IWSSIP.2008.4604447.

[17] Frigessi, A. and Di Stefano, P. and Hwang, C.R. and Sheu, S.J. Convergence rates of
the Gibbs sampler, the Metropolis algorithm and other single-site updating dynamics.
Journal of the Royal Statistical Society. Series B (Methodological), 1993: pp. 205–
219.

[18] Wolff, U. Collective Monte Carlo updating for spin systems. Physical Review Letters,
volume 62, no. 4, 1989: p. 361.

[19] Swendsen, R.H. and Wang, J.S. Nonuniversal critical dynamics in Monte Carlo sim-
ulations. Physical Review Letters, volume 58, no. 2, 1987: p. 86.

112

http://dx.doi.org/10.1007/978-1-4471-2353-8_14
http://dx.doi.org/10.1109/ICPR.2002.1044676


Bibliography

[20] Dana, K. J.; Van Ginneken, B.; Nayar, S. K.; et al. Reflectance and texture of real-
world surfaces. ACM Transactions On Graphics (TOG), volume 18, no. 1, 1999: pp.
1–34.

[21] Schlesinger, M. I. Relation between learning and self-learning in pattern recognition.
Kibernetika (Kiev), volume 6, no. 2, 1968: pp. 81–88.

[22] Dempster, A. P.; Laird, N. M.; Rubin, D. B. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the royal statistical society. Series B (method-
ological), 1977: pp. 1–38.

[23] Kullback, S.; Leibler, R. A. On information and sufficiency. The annals of mathe-
matical statistics, volume 22, no. 1, 1951: pp. 79–86.

[24] Hershey, J. R.; Olsen, P. A. Approximating the Kullback Leibler divergence between
Gaussian mixture models. In Acoustics, Speech and Signal Processing, 2007. ICASSP
2007. IEEE International Conference on, volume 4, IEEE, 2007, pp. IV–317.

[25] Matas, J.; Chum, O.; Urban, M.; et al. Robust wide-baseline stereo from maximally
stable extremal regions. Image and vision computing, volume 22, no. 10, 2004: pp.
761–767.

[26] Neumann, L.; Matas, J. Real-time scene text localization and recognition. In Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE,
2012, pp. 3538–3545.

[27] of Radiology, A. C.; Committee, B.-R.; et al. ACR BI-RADS breast imaging and
reporting data system: breast imaging atlas. American College of Radiology, 2003.

[28] Abubaker, A. and Qahwaji, RS and Aqel, M.J. and Saleh, M.H. Average Row Thresh-
olding Method for Mammogram Segmentation. In Engineering in Medicine and Biol-
ogy Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the,
IEEE, 2006, pp. 3288–3291.

[29] Wirth, M.; Nikitenko, D.; Lyon, J. Segmentation of the Breast Region in Mammo-
grams using a Rule-Based Fuzzy Reasoning Algorithm. ICGST International Journal
on Graphics, Vision and Image Processing, volume 05, January 2005: pp. 45–54.

[30] Norhayati Ibrahim and Hiroshi Fujita and Takeshi Hara and Tokiko Endo. Auto-
mated detection of clustered microcalcifications on mammograms: CAD system ap-
plication to MIAS database. Physics in Medicine and Biology, volume 42, no. 12,
1997: p. 2577. Available from: http://stacks.iop.org/0031-9155/42/i=12/a=021

[31] Dengler, J.; Behrens, S.; Desaga, J. Segmentation of microcalcifications in mammo-
grams. Medical Imaging, IEEE Transactions on, volume 12, no. 4, 1993: pp. 634–642.

113

http://stacks.iop.org/0031-9155/42/i=12/a=021


Bibliography

[32] Haindl, M. and Mikes, S. Unsupervised mammograms segmentation. In Pattern
Recognition, 2008. ICPR 2008. 19th International Conference on, IEEE, 2008, pp.
1–4.
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Appendix A

Unsupervised segmentation results

Here are the preliminary results of using our proposed spiral and directional 3DCAR model
when used as features for unsupervised segmentation using the method published in [91],
compared to just 3DCAR features.

Left to right: segmented image, ground truth, segmentation based on spiral 3DCAR
features, segmentation based on multidirectional 3DCAR features, segmentation based on
pure 3DCAR features.
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