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Abstract and contributions

This dissertation thesis discusses the task of iris recognition. Describes its history, intro-
duces reader to the iris recognition problem and presents current state of development and
describes available iris databases. It then presents three methods to iris occlusion detection
and describes novel approach to iris recognition. The dissertation thesis continues with
the methods results and compares them with other top performing methods. Finally, used
and implemented software is briefly discussed and the thesis is concluded with overview of
contributions and topics for future research.

In particular, the main contributions of the dissertation thesis are as follows:

1. Overview of the recent state-of-the-art in the iris recognition area in all related fields.

2. Detailed description of the available iris databases and their properties.

3. Three novel methods for detecting iris occlusions. The first one uses our own publicly
available ground truth database. The second method achieved first place in compar-
ison with 97 other competing algorithms from the worldwide NICE.I contest. The
third method was used as ground truth generation method for contestants in the
MICHE II contest. In the last method, we presented multispectral modification of
the widely used integrodifferential operator.

4. Novel approach to iris recognition. Consisting of preprocessing steps to rule out
negative iris images followed with the combination of feature representation and
dissimilarity computing method for pairs of iris images.

5. Publicly available ground truth masks for iris occlusions to measure the performance
of different methods.

Keywords:
iris recognition, iris segmentation, iris features, iris databases, biometrics, pattern re-

cognition.
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Chapter 1

Introduction

In this chapter, motivation for this dissertation thesis is described along with the brief
introduction to biometric identification. Particularly the biometric identification based on
iris. This theme is further examined in the Chapter 2. The chapter concludes with the
description of the problem we’ve tried to solve. The goals which we’ve tried to achieve and
the structure of the thesis are both communicated.

1.1 Motivation

For identification, people typically use their user names, passwords or identification cards.
But identification card can be stolen, the password forgotten and the user name used by
anybody else. So there is a big demand for improving the identification methods that are
reliable, secure, fast and easy to use. Whether one wants to use ATM, pay with credit
card or login to his computer account, in all these examples an reliable method for identity
proof is needed.

Apart from the cases where people want to identify themselves, there are also number
of cases where, on the contrary, one do not want to be known. And we want to correctly
recognize them (e.g. airport security check, search for wanted persons, movement control
of guarded person).

All these can be solved with the help of biometric identification methods, which will be
described further.

1.1.1 Biometric Identification

The biometric recognition offers more reliable method for person recognition than tradi-
tional methods (described in 1.1). Since biometric identifiers are inherent to an individual,
they are more difficult to steal, to manipulate or even to forget. The traits that will be
used also depends on the environment conditions, the technology we can afford, how robust
the results will be or how quickly we want to have the results. It can be voice, fingerprint,
palmprint, iris, retina, face, handwriting, vein and others [JRN11]. They differ in ways

1



1. Introduction

how to acquire them, their durability, reliability, necessary equipment for acquisition, and
it’s costs and the evaluation.

In this text we focus on the identification using the iris because of its stability over
lifetime, ease of acquisition (can be done from distance of up to several meters). Although
recently was found that the iris texture slightly changes over time [FB11]. But compared
to the other biometric traits it is still relatively stable over time. The eye is considered to
be an internal organ (thus it is well protected from external influences). It is also visible
from the outside and can be acquired without affecting the body. The idea of using the
eye as an identifier is over hundred years old. In the 1882 Alphonse Bertillon started to
measure body properties for the police record cards. He was also first to propose using
the iris color for the person identification in 1886 [Ber86]. The idea of using an iris for a
person identification was first suggested by Frank Burch in 1936 [Dau01].

Unlike classical biometrics traits described above, there are also soft biometrics traits
which can be described as physical, behavioral or adhered human characteristics. They
are commonly used by humans for differentiating the individuals. As stated above, their
beginnings can be connected with the work done by Alphonse Bertillon in 1886 [Ber86].
These are not unique by themselves but can be well utilized in surveillance applications.
Thus it is understandably one of the currently evolving science topics (see [Rei+13] for an
overview).

Examples of the soft biometrics traits can be:

◦ Physical : skin color, eye color, hair color, presence of beard, presence of mustache,
height, weight

◦ Behavioral : gait, keystroke

◦ Adhered : clothes color, tattoos, accessories

1.1.1.1 Iris Anatomy

The comprehensive description of an eye anatomy and it’s properties was done by Alfred
Adler [Adl60]. The iris is an annual region in the eye bounded by the pupil and the sclera
on the inner and outer boundaries. These features are important while searching for the
iris segmentation as described in the Section 2.1.2. The visual properties of an iris are
formed during the fetal body development and stabilizes in the first two years of child life.
They are also believed to be unique between persons, even uncorrelated between person
left and right eye [DD01]. See the Figure 1.2 for overview of an eye anatomy.

1.1.2 Iris Recognition System

The iris recognition undergone rapid development in the past decades [BHF13]. Still, the
processing chain remained almost same. The typically conducted steps can be seen in the
Figure 1.1. It is essentially a pattern matching system with the goal to match (or reject)
two irises.

In particular, it consists of the following steps:

2



1.1. Motivation

Figure 1.1: Iris recognition processing pipeline.

1. image acquisition

2. iris segmentation and occlusion detection

3. iris normalization

4. feature extraction

5. iris recognition

It is also worth to mention that the iris localization can be much harder task depending
on the problem definition. Generally it is necessary to first locate the human figure, than
his face and so on, see the Figure 1.3 for an brief overview. We do not take into account
these problems because they are difficult tasks on their own that can be tackled separately
and are out of the scope of this thesis.

1.1.2.1 Image Acquisition

The first step in iris recognition is capturing an image with eye. There are many different
setups depending on the application. Also the image can be captured in color, grayscale or
in infrared spectrum. To this day, majority of iris acquisition devices still use near-infrared
images (700− 900nm light wavelength) (see the Chapter 3).

Daugman in his paper from 2003 ([Dau04]) states that the image acquisition should use
near-infrared illumination. It helps to reveal the detailed structure of heavily pigmented
irises. Melanin pigment absorbs much of visible light, but reflects more of the longer
wavelengths of light. He also suggests that the iris should have diameter of at least 140
pixels. The International Standards Organization (ISO) Iris Image Standard released in
2005 is more demanding, specifying the diameter of 200 pixels.

1Source: https://en.wikipedia.org/wiki/Human eye
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1. Introduction

Figure 1.2: The eye anatomy1.
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Human
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Figure 1.3: Necessary steps before iris recognition.
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1.1. Motivation

1.1.2.2 Iris Segmentation and Occlusion Detection

The captured image of the iris typically includes also eyelashes, eyelids, sclera, pupil and
other unwanted parts. So the most basic step to get rid of them is to register the iris
to two noncentric circles (outer and inner boundary). This process is known as the iris
localization or the iris segmentation.

Subsequently it is needed to detect the occlusions in the iris texture to ensure robust
system recognition. Especially for the color images. As an occlusion are understood im-
perfections introduced in the image during the acquisition because of environmental condi-
tions, properties of capturing equipment, or illumination changes. There are also included
parts of the eye that can obstruct iris visibility (above mentioned eyelashes, eyelids). See
the Section 2.1.4 for details.

1.1.2.3 Iris Normalization

The normalization step was introduced by John Daugman [Dau93] to simplify the next
step (see Section 2.1.3 for details). The algorithms for feature computing are typically
assuming a rectangular area. Therefore the normalization is usually done to a rectangle
with a fixed size to also mitigate different iris sizes due to the different head distance to
the camera and the different pupil size due to the varying lighting conditions in the time
of capture. This step greatly simplifies the following methods as it allows to standardize
all subsequent steps to the unified iris shape.

1.1.2.4 Feature Computation

As stated above, the next step, given the segmented and normalized iris, is the feature
computation. The purpose of feature computation is to transform the iris to compact
representation format that is more suitable for comparison with other irises. These are
usually called the feature vectors. Much of the current state-of-the-art development is
done in this area (see Section 2.1.5).

1.1.2.5 Iris Recognition

And finally, the computed feature vector is compared to the database of known irises. As
described in the Section 6.1, a different types of errors can occur. And therefore, although
the classifier is usually true/false based, on the basis of the ROC curve we can say the
probabilities of each types of the error. The result itself can be ‘recognized person’ or
‘unknown iris’.

And besides applications of the human identification, the another goal can be the
recognition of various types of eye diseases. The principles of this detections can be based
on the same basis as the iris recognition (iris detection with the texture analysis and
following classification). But the first problem of this task is to obtain sufficient amount
of and well described data. But information of this kind is currently not present in any
available iris database.

5



1. Introduction

1.2 Problem Statement

While the process explained above is well known and described, much of the well known
and used methods are still focused on iris images taken from very close distance and often
even with an infrared spectrum, for which the specialized equipment is needed along with
the full cooperation of recognized person. Also the images taken that way are clear and
without specular reflections.

This work is focusing on the processing of iris images taken from bigger distance,
without the active participation of observed person and also assume that the captured iris
images will be non-ideal with various types of occlusions such as eyelashes, eyelids, various
reflections and others (described in Section 2.1.4). We will have to deal with images in the
visual spectrum taken with the consumer hardware.

One problem not discussed in the thesis but also applicable to used methods is medical
recognition. Specifically the recognition of eye diseases as glaucoma, cataract and many
others. These types of problems can be supposedly detected by our methods as they make
use of the iris texture analysis. However there are difficulties in obtaining such data due
to the obvious reasons as the privacy protection and the expert labeling.

1.3 Goals of the Dissertation Thesis

1. Overview of the recent state-of-the-art in the iris recognition area in all related fields.

2. Detailed description of available iris databases and their properties.

3. Three novel methods for detecting iris occlusions specialized on different iris acquiring
conditions.

4. Novel approach to iris recognition. With preprocessing steps to rule out negative iris
images, a feature computation and method for computing dissimilarity for pairs of
iris images.

5. Publicly available ground truth masks for iris occlusions to measure performance of
different methods.

1.4 Structure of the Dissertation Thesis

The dissertation thesis is organized into 9 chapters as follows:

1. Introduction: Describes the motivation behind our efforts. There is also a list of goals
of this dissertation thesis.

2. Background and State-of-the-Art : Introduces the reader to the necessary theoretical
background and surveys the current state-of-the-art.
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1.4. Structure of the Dissertation Thesis

3. Iris Databases : Shows the overview of iris databases that can be used for our exper-
iments and the chosen databases for our work.

4. Iris Occlusions Detection: Describes the proposed methods for detecting occlusions in
the iris and covers used algorithms with their modifications against original methods.

5. Iris Recognition Describes our approach to the iris recognition. Also proposes prepro-
cessing steps to rule out negative iris images, the feature computation and method
for computing dissimilarity for pairs of iris images.

6. Iris Biometrics Evaluation: Describes the various scoring methods for biometric
evaluation. Also gives overview of several iris recognition contests used to compare
our methods with others.

7. Achieved results of proposed methods : Shows the results of our methods in context
of other approaches solving the same problem and compare them.

8. Developed Software: Describes software that was implemented in the process of de-
veloping our methods and presents our UBIRIS database ground truth dataset.

9. Conclusions : Summarizes the results of our research, describes topics for future
research, and concludes the thesis.
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Chapter 2

State-of-the-Art

In this chapter, the sections are thoroughly describing the state-of-the-art of each step of
the iris recognition pipeline (see the Figure 2.1). The chapter also briefly surveys the iris
quality metrics that are important for the less constrained iris setups. At the end of the
chapter, the overview of recent iris related surveys is given followed with the description
of the fundamental methods used further in the dissertation thesis.

2.1 Previous Results and Related Work

2.1.1 Iris Acquisition

The image acquisition is the first step. It is typically done with the specialized camera that
capture the iris in the near infra red (NIR) spectrum or with the color camera that produces
the image in the visible spectrum. Both setups aim to provide good quality images because
the image quality have large impact on the performance of the whole system [Dau06]. Most

Figure 2.1: Iris Pipeline
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2. State-of-the-Art

current systems specialized on the iris capturing are in the NIR spectrum and also require
the user cooperation [Way+09].

The NIR cameras operate with the light in the near infra red spectrum (wavelengths
between 700nm− 900nm). Also the use of the NIR sensor has some advantages that ease
the whole recognition process: the textural nuances are visible equally regardless of the
iris color. Because in the visible light, the melanin in iris absorbs part of the light and
subsequently changes the appearance of the captured iris. In the NIR light, the reflections
from an other environmental light sources or simply the reflections of surroundings are not
so apparent.

There is growing need to recognize iris images captured with more accessible color cam-
eras. But those images are also more difficult to process as there will be bigger occlusions,
more reflections and also the iris texture will be different based on iris color.

2.1.2 Iris Segmentation

The iris segmentation task is currently done mainly by the integrodifferential operator
introduced by John Daugman [Dau93] and by circular the Hough transform proposed by
Richard Wildes [Wil97]. There are also number of other methods which are not as widely
used as the first two (or their modifications).

Integrodifferential Operator

In 1993 John Daugman [Dau93] presented the method of eye segmentation based on the
integrodifferential operator (equation 2.1). This method searches through the N3 space
(circle radius and image coordinates). The original algorithm is thus time consuming and
often modified with this improvement in mind. It also face significant difficulties when
dealing with the eyelid and eyebrow overlaps, because they disrupt the upper and bottom
circular intensity changes when moving to the eye center. On top of that, when the iris
is not in the image at all, method still returns incorrectly found iris. For non-deformed
eyes (the eyes with circular shape), its accuracy is very good. The method was originally
presented on NIR images and works only in one spectral channel.

max
(ρ,r1,r2)

∣∣∣∣Gσ(ρ) ∗ ∂

∂ρ

∮
ρ,r1,r2

I(r1, r2)

2πρ
ds

∣∣∣∣ (2.1)

The equation 2.1 searches for outer iris boundary circle represented as vector [ρ, r1, r2].
I(r1, r2) is thus image pixel and ρ given circle radius.

∮
ρ,r1,r2

ds is integrating over circle

with center in (r1, r2) and radius ρ. Then ∂
∂ρ

is subsequently differentiating over range of

integrated radii. Gσ(ρ) is convolution of sequence of differentiated radii with the Gaussian
kernel. The equation thus represent the searching for maximum difference in the sums over
the chosen position and radii (i.e. the highest change in circular intensity).

Some minor improvements were introduced by Nishino and Shree [NN04]. They mod-
ified the operator so that it is possible to search eye boundaries as ellipses, which can be

10
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a considerable improvement. Especially when the eyes are rotated to the side. But the
algorithm complexity rise to five dimensions (because of additional parameters for ellipse).

The similar operators were proposed by Camus [CW02] and Martin-Roche [MRSASR01].
Both their algorithms (with setup presented in articles) are faster but less accurate and
are maximizing the equations that locate iris borders.

Zheng et al. [ZYY05] investigated segmentation in HSV space and used integrodif-
ferential operator for pupil detection. Also presented iterative shrink and expand process
minimizing average intensity for limbic boundary detection.

Kennell et al. [KIG06] combined the integrodifferential operator with morphological
operations for pupilar boundary fitting. And variance-based image binarization on pixels
for limbic boundary fitting.

Grabowski and Napieralski [GN11] presented a hardware-based integrodifferential op-
erator for faster iris fitting.

Daugman [Dau07] also presented an enhancement to precisely fitting the iris boundaries
based on the active contours [BI98]. This method is designed to be performed after a regular
segmentation algorithm. Since it is independent on chosen segmentation method, it can
be used even after other algorithms than proposed integrodifferential operator.

Tan et al. [THS10] in their winning method (NICE.I [PA07]) described accelerated
algorithm based on integrodifferential operator combined with gradient descent. This leads
to evaluating only small fraction of possible pixels thus being a lot faster. Instead of the
original operator, they proposed integrodifferential ring which determined a direction for
next algorithm iteration. They also proposed additional methods for reflection removal
and other occlusions which will be described in following sections.

Circular Hough Transform

The idea of Hough transform was initially proposed by Paul Hough [Hou59] to find non-
ideal objects in the parametrized space through voting procedure.

Use of the Circular Hough transform (see equation 2.2) was proposed by R. Wildes
[Wil97] to be performed on an binary gradient-based edge-map. It, as well as integrodiffer-
ential operator, searches through the N3 space. But the contour of the eye can be adapted
to any simple shape, which can be described by the Hough transform. Because of that,
finding non-circular eyes is simpler. Although this proposed improvement increases the
required compute time. And this method has also problems when the iris is not present in
the image at all.

H(r1, r2, ρ) =
n∑

r1=1

m∑
r2=1

h(r1, r2, s1, s2, ρ) (2.2)
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where

h(r1, r2, s1, s2, ρ) =

{
1 if g(r1, r2, s1, s2, ρ) = 0

0 otherwise

g(r1, r2, s1, s2, ρ) = ((r1 − s1)2 + (r2 − s2)2 − ρ2) · J(r1, r2)

In equation 2.2, vector [s1, s2, ρ] represents searched iris boundary. r1 and r2 are image
coordinates, n and m are columns and rows counts in image. And J(r1, r2) is pixel from
output mask of the edge detector.

Zuo and Schmid [ZS10] presented a method where they used the Hough transform to
segment pupillary boundary. The iris image was denoised with Wiener filter, contrast
enhanced and inpainted beforehand. They refined the localization with ellipse fitting and
refined pupil segmentation.

Cui et al. [Cui+04] proposed modified Hough transform with usage of wavelet pyramid
for detecting inner iris boundary in the image. For outer boundary he is proposing the
integrodifferential operator (see section 2.1.2).

Ma et al. [MWT02] proposed a step for rough estimation of iris position by projecting
the image in horizontal and vertical direction. Followed with the Circular Hough transform
for accurate localization.

Filho and Costa [CFC10] used images in HSV and RGB spaces to segment iris. They
firstly approximated both boundaries on selected color component (hue for outer limbic
boundary and red and green for pupil boundary) by k-means clustering and further refined
it with Hough transform.

Active Contours

Active contours (AC), also called snakes, is a framework for delineating object outlines.
AC is an energy minimizing spline that is influenced by some constraint typically based on
an image pixels.

Ritter and Cooper [RC03] were first to propose AC approach with finding the equi-
librium between an internal force favouring circularity of a boundary and external force
pushing the iris boundary towards the maximum gradient.

Abhyankar and Schuckers [AS06] then proposed Active shape model which is similar
to AC. They aimed to solve specifically problems with off-gaze eye images.

Daugman [Dau07] proposed an AC based approach where he described the inner and
outer boundaries as Fourier series. The main problem for his approach remains as the need
for initial (center) iris position.

Shah and Ross [SR09] proposed an iris segmentation scheme employing geodesic active
contours to extract the iris from the surrounding structures. The proposed scheme finds
the iris texture in an iterative fashion and is guided by both local and global properties of
the image.

Nguyen et al. [NFS10] suggested rough estimation of iris position based on histogram
thresholding and morphology operators and then precise iris segmentation using shrinking
and expanding AC model.
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Koh et al. [KGC10] also roughly estimated an eye position using binarization (it is
assumed that the pupil have lowest intensity) followed with morphological operators. The
AC is then applied to sclera and pupil boundaries.

Polar Transformation

As Active contour, there are also other parameter-fitting techniques. Frequently used is
polar transformation since it simplifies the task for finding the iris boundaries. An accurate
iris center position is necessary though.

Du et al. [DIE04] proposed method that is based on adaptive thresholding and polar
transformation. Initially, the pupil boundary is detected, then the image is transformed to
a polar system. The second boundary is recognized as the sclera boundary. This method
uses the fact, that almost all eyelash occlusions affect only the outer border. Though the
method was tested only on CASIA database, which has manually highlighted pupils (with
sharper edges, see Section 3.2.1).

Luengo-Oroz et al. [LOFA10] proposed iris segmentation that relies on the closed
nested structures of iris anatomy (the sclera is brighter than the iris, and the iris is brighter
than the pupil) and on its polar symmetry. The described method applies mathematical
morphology for polar/radial-invariant image filtering and for circular segmentation using
shortest paths from generalized gray-level distances.

Self Organizing Neural Network

Liam et al. [LCF02] introduced a way to recognize the iris using self organizing neural
networks. Evaluating neural networks is fast and this method can also reject non-iris
images (instead of incorrectly recognizing eye). Unfortunately, author tested it only on the
small nonpublic iris database. Also comparison with other methods is not present at all.

Cascade Classificator

Cascade classifier (initially proposed by Paul Viola [VJ01]) builds upon the idea of several
simpler classifiers (stages) that are applied sequentially to the region of interest until at
some stage the candidate is rejected or all stages are passed. The stages are designed to
reject negative regions as fast as possible. The assumption is that the vast majority of
windows does not contain the object of interest. Conversely, true positives are rare and
worth taking the time to verify.

He et al. [He+09] proposed usage of the Cascade Classificator. It is shown that this
method (when properly learned) is very fast but also pixel-inaccurate. So additional step
for further refinement had to be introduced (the integrodifferential operator or the Circular
Hough transform discussed above).

Raja et al. [Raj+15] proposed a new segmentation scheme and adapted it to the
smartphone based visible iris images for approximating the radius of the iris to achieve a
good segmentation. They also proposed a new feature computation method based on deep
sparse filtering to obtain iris features for unconstrained images.
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Morphological Operations

The morphological operations are typically used in conjunction with other techniques.
Though Mira [JM03] proposed using the morphological operations alone for acquiring the
iris boundaries. The used operators are: thresholding, area opening, closing. But proposed
method is not compared with other approaches.

EM Algorithm

Kim et al. [Kim+04] presented application of EM algorithm for detecting the iris in the
image. They claim that the pixel intensities of the captured iris image can be classified to
three Gaussian distribution components. With use of the EM algorithm is used to estimate
the distribution parameters.

2.1.3 Iris Normalization

The iris normalization is a step proposed by Daugman in [Dau93] and is called the ‘rubber
sheet model’. This step is essentially optional. But without it, further processing would be
more difficult. In addition, most feature computation methods expects normalized form.
It is nowadays considered a standard part of iris processing chain as it is in every method
presented.

The rubber sheet model assigns each pixel (r1, r2) in iris, the real coordinates in the
target model (ρ, θ). And this can be represented as

I(r1(ρ, θ), r2(ρ, θ))→ I(ρ, θ) , (2.3)

r1(ρ, θ) = (1− ρ) · p1(θ) + ρ · l1(θ) , (2.4)

r2(ρ, θ) = (1− ρ) · p2(θ) + ρ · l2(θ) , (2.5)

with I(ρ, θ) as coordinates in the target shape. The ρ is from the interval [0, 1] and θ is
the angle from [0, 2π]. So the result is the image with width = 〈0, 2π〉 and height = 〈0, 1〉.
The r1(ρ, θ) and r2(ρ, θ) are defined as linear combinations of both the set of pupillary
boundary points (p1(θ), p2(θ)) (inner circle of the iris) and the set of limbic boundary points
(l1(θ), l2(θ)) (outer circle of the iris). The variables are visually explained in Figure 2.2.

So the iris normalization is basically transformation from the non-centric disc (disc
defined by two non-centric circles, pupillary and limbic iris boundaries) to the rectangle
(see scheme at the Figure 2.2). The transformation can be performed using the following
equations:
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Figure 2.2: Iris normalization scheme

α =

∣∣∣∣θ − arcsin

(
dy
d

)∣∣∣∣ ,
β = arcsin

(
sinα ◦ d

ri

)
,

γ = π − α− β ,

r′ = ri ◦
(

sin γ

sinα

)
− rp .

2.1.4 Detection of Iris Occlusions

Due to the various types of occlusions which are often found in the iris (especially those
acquired in an uncontrolled conditions or in a visible spectrum), additional step was in-
troduced to improve the classification results. Its main purpose is to discard the occluded
pixels from the feature computation (and therefore from classification) or deny the whole
image in case of big occlusions.
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Figure 2.3: The example of iris reflection.

2.1.4.1 Types of Occlusions

Besides the standard types of imperfections (blur, noise, . . . ), the irises tend to have
several specific types of occlusions. Those will be described in the following sections.
These occlusions could increase the false rejection rates or even cause the failure of the
segmentation method. Apart from the right image in the Figure 2.3 (which is from the
UBIRIS.v2, Section 3.3.3) images in all figures under this section are taken from the UBIRIS
database [PA05], described in Section 3.3.2.

Reflection This type of distortion highly depends on the used light spectrum and on the
environmental conditions. Especially the lights surrounding the captured person, and its
interaction with the environment. Also it highly depends on whether the person is wearing
glasses or contact lenses (their removal can be particularly hard because of big reflection
areas spreading to whole eye surroundings). The reflection distortion can appear anywhere
in the iris and can have any shape as it just depends on the surrounding environment. The
reflections from the lights have higher intensity then the reflections from the environment.
See the examples in Figure 2.3.

Upper and Lower Eyelid Probably the most common type of occlusion in the iris. As
this occlusion is for most people normal state of eyes. It often covers a large area of the
iris and is often accompanied with an eyelashes. Due to the cause of occlusion it appears
either in the upper or the lower area of the iris. See Figure 2.4 for examples.

Eyelash The eyelash occlusion is often concomitant to the eyelid occlusion. Mostly only
to the upper eyelid. It occurs either in a form of an individual lashes (thin dark lines in
the iris) or groups of lashes with their shadows on the iris (larger dark areas) as shown in
examples in Figure 2.5.

Shadows in Iris The shadows in the iris are hard to detect because they cause only
subtle changes in the iris texture and thus are difficult to remove properly as their impact
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Figure 2.4: The example images with eyelid occlusions. Left image is showing the upper
eyelid occlusion. And the right image is showing the lower eyelid occlusion.

Figure 2.5: The example of eyelash occlusion. In left image, there are apparent individual
lashes. The right image exhibits group of lashes indistinguishable one from the other.

on the iris can be easily mistaken with true change in the iris texture. They are often
accompanied with eyelashes and eyelids. These are also main cause of the shadows. See
the example shown in Figure 2.6.

Out-of-Iris This occlusion (see Figure 2.7 for example) have a special meaning. Because
when it occurs, the image should be rejected. It therefore focuses more on the segmentation
step rather than on the feature computation phase. Unfortunately most of the segmentation
algorithms does not have the ability to return ‘no iris found’ option.

Out-of-Focus Commonly occur if the capturing of the subject’s eye is done non-cooperatively.
While the small out-of-focus imperfection is not a big problem, the apparent out-of-focus
imperfection can cause a bigger false rejection rate. This can be partially dealt with an
better image acquiring hardware. Example image in Figure 2.8.
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Figure 2.6: The example of shadow caused by eyelash.

Figure 2.7: The example of out-of-iris occlusion.

Figure 2.8: The example of out of focus imperfection.
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Figure 2.9: The example of eye partially out of image.

Partially Out of Image Another type of imperfection is obviously done when the whole
iris is not presented in the image (as in Figure 2.9). This is done when captured person
unexpectedly move his head or the camera is moving. When this type of imperfection
occurs, the segmentation algorithms can have problems when detecting the iris and false
reject mistakes could occur. The iris finding algorithms are typically not designed for
finding the partial irises.

2.1.4.2 Occlusion Detection Methods

Preprocessing Zhu et al. [ZTW00] and Kim et al. [Kim+04] both proposed the
histogram equalization to reduce the effect of nonuniform illumination.

Ma et al. [MWT02] also used the histogram equalization and proposed the image
filtering with low-pass Gaussian filter to remove high frequency noise.

Reflections Detection Kong and Zhang [KZ03] proposed using the simple threshold
algorithm for detecting reflection. The threshold value is based on experiments, so it most
likely will be necessary to adjust this value for every different capturing settings (when
capture device, lighting, environment, etc. has changed).

Sankowski et al. [San+06] proposed the adaptive thresholding algorithm to detect
reflections. However, the adaptive threshold is detecting only the boundaries of reflections
so in case of large reflections they suggest to fill in those areas as a next step. The similar
method was also proposed by He et al. [He+09] with minor variants.

Eyelid Detection Methods The very basic method presented by Daugman [Dau93]
simply exclude the areas where the eyelids are expected to occur. In general this approach
enhances the final goal (the eyelash included in feature computation stage can have fatal
impact on final system), but it also excludes the areas when the eyelid is not presented at
all, thus the system is losing its robustness.

The Wildes [Wil97] proposed the localization of lower and upper eyelids by means of
edge detector followed by the parametrized parabolic arc. This method is still used today
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but it comes at additional computation costs. And is also highly dependent on the edge
detector and its parameters. This approach was also proposed by Huang et al. [HLC02],
Ives et al. [IGE04] and He et al. [He+09] with minor variants. The Vatsa [VSN05]
suggested using similar method, Canny edge detector [Can86] followed by linear Hough
transform.

Du et al. [DIE04] proposed the adaptive threshold operation with small window (in
his case the 7× 7) to mask out the occluded iris regions.

Eyelash Detection Methods Chen et al. [CDJ05] proposed a method of eyelash
removal based on simple thresholding and claims that the result quality highly depends on
chosen image capture device. He et al. [He+09] proposed a similar method (applicable
also on eyelid shadow) with threshold value estimation based on a statistical prediction
model.

The Kong and Zhang [KZ03] proposed identifying the separable eyelashes through the
energy of convolution of the image with bank of Gabor filters. The filters act similarly as
an edge detector. Multiple eyelashes detection is done through the intensity variation in
the selected area. If variation is small, the area is considered as an eyelash. The similar
method was proposed also by Huang [HLC02].

Daugman [Dau07] proposed a method to detect eyelashes by using the statistical es-
timation. This method was also proposed by He et al. [He+09] with several improvements
(eg. eyelid shadows detection).

Bachoo and Tapamo [BT05] proposed using GLCM (see Section 2.1.9.1 for description)
matrices for texture analysis. They divided the image to distinctive areas (21 × 21) and
analyzed GLCM matrix computed on each of them. They then sorted image areas to five
types (skin, eyelash, sclera, pupil and iris).

Comprehensive Occlusion Detection Methods In his thesis, Proença [PA06] presen-
ted method based on manually detecting the occlusion masks in irises. Then compute the
GLCM (see Section 2.1.9.1 for description) pixel features and train them by a Neural Net-
work classificator. This trained classifier is then used to classify the occlusion masks of
unknown irises.

Du et al. [DIE04] proposed simple adaptive thresholding filter to detect occluded
pixels. As authors used only CASIA-IrisV1 database (see chapter 3), which has only basic
occlusions, methods results are satisfactory.

Huang et al. [Hua+04] proposed a method to detect various types of occlusions in iris.
It is based on two steps: 1) edge detection based on phase congruency, 2) the infusion of
edge and region information.

Tan et al. [THS10] proposed method that eventually won the NICE.I contest (it is
described in Section 6.2). At first they employed a clustering based coarse iris localization
scheme to extract a rough position of the iris, as well as to identify non-iris regions such
as eyelashes and eyebrows. An integrodifferential constellation was then constructed for
the localization of pupillary and limbic boundaries. After that, a curvature model and a
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prediction model based on intensity statistics between different iris regions were learned to
deal with eyelids and eyelashes, respectively.

Sankowski et al. [San+10] presented method that obtained second place in NICE.I
contest. The proposed method performs the segmentation of the iris from RGB input
images. It consists of five stages. They first localize the light source reflections. Next, they
fill in those reflections. Then model the iris boundaries as non concentric circles. Followed
with modeling the lower eyelid boundary as a circular arc. And finally modeling an upper
eyelid boundary as a line segment.

Almeida [Alm10] presented method that obtained third place in NICE.I contest. His
paper describes a knowledge-based approach to the problem of locating and segmenting the
iris in images. This approach is inspired in the expert system’s paradigm. The algorithm
involves a succession of phases that deal with image preprocessing, pupil localization, iris
localization, combination of pupil and iris, eyelids detection, and filtering of reflections.

Tan and Kumar [TK12] proposed approach that works at pixel level by exploiting
the localized Zernike moments at different radii to classify each pixel into iris or non-iris
category. After that, they detect eyelids with fitting polynomial on edge map. And then
with help of histograms constructed from various iris regions and adaptive thresholding,
remove reflections, shadows and localize pupil.

Hu et al. [HSH15] proposed a novel method to improve the reliability and accuracy of
color iris segmentation from static and mobile devices. Their method is a fusion strategy
based on selection among different segmentation methods or models. They used the histo-
gram of oriented gradients (HOG) as features, and trained an SVM-based classifier which
provided the selection of given features.

2.1.4.3 Segmentation Quality Evaluation

Ma et al. [Ma+03] presented the global measure that is based on the analysis of the
frequency distributions. Authors suppose, that clean irises (without any occlusions) have
uniform distribution, while the occluded irises have not. The frequency analysis is also
done only on the two iris subareas on the left and right from the segmented pupil.

The second method was presented by Chen et al. [CDJ05]. It is based on convolution
of three Mexican hat wavelets (different scales) and such a quality measure itself can be
either global or local.

Zuo and Schmid [ZS08] proposed an algorithm for evaluating precision of iris seg-
mentation. They analyzed the effect of noise (low sclera contrast, occluded iris, specular
reflections, low contrast images, unevenly illuminated images and out-of-focus) on iris seg-
mentation.

Kalka et al. [KBC09] presented method based on probabilistic intensity and geometric
features. They check pupil segmentation quality with assumption that pupil is a flat ho-
mogeneous region compared to the iris. As iris quality measure, they check the eccentricity
and concentricity of the pupil and iris boundaries.
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2.1.5 Iris Features Computation

In 2003 John Daugman [Dau93] presented his iris representation format called IrisCode. It
is currently most widely used format for storing iris features. Many researchers proposed
iris feature computation methods that followed the general format proposed by Daugman,
i.e. represent iris as binary mask of 512 bits (e.g. four rows, 128 bits each). But they were
looking at using something other than Gabor filter used by Daugman. The output can be
visualized as rectangle image with white and black squares. The others have been using
this method as basis for comparisons.

2.1.5.1 IrisCode Based Methods

Ma et al. [MW02a] proposed minor enhancements to IrisCode. Vatsa et al. [VSN05]
proposed the similar method using a log polar form of 1D Gabor filter.

Ma et al. [Ma+04] proposed a use of dyadic wavelet transform of 1D intensity signals
around the inner part of the iris.

Tisse et al. [Tis+02] proposed constructing the fused image (combination of original
image and its Hilbert transform) to demodulate the iris texture.

Muroň et al. [MKP01] suggested to code iris through the sampling in the Fourier
power spectrum.

Yao et al. [Yao+06] proposed modified Log-Gabor filters. They stated that ordinary
Gabor filters would under-represent the components with high frequency in natural images.

Monro et al. [MRZ07] presented usage of discrete cosine transform (DCT) for feature
computation. The DCT was applied to overlapping rectangular image windows rotated 45
degrees from the radial axis. The differences between the DCT coefficients were calculated
and generated binary code.

2.1.5.2 Texture Analysis Based Methods

Wildes [Wil97] chose the iris representation through the Laplacian pyramid with four
different scales.

Boles and Boashash [BB98] proposed computing the iris features as the zero-crossing
representations of a 1D wavelet of concentric circles at different resolutions. The similar
approach was presented by Sanchez-Avila et al. [SASRMR02] with different classification
rules.

Zhu et al. [ZTW00] proposed the texture analysis method based on multichannel
Gabor filter and a wavelet transform.

Ali and Hassainen [AH03] introduced the iris code generation based on a wavelet trans-
forms followed with computation of Haar features. The similar method was also proposed
by Lim et al. [Lim+01].

Huang et al. [HLC02] proposed to employ the independent component analysis (ICA)
to extract the iris features. They divided iris images to smaller regions and applied ICA
on each.
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Dorairaj et al. [DSF05], unlike Huang [HLC02], presented experiments on both ICA
and DCA they applied those transformations to whole iris region.

Chen et al. [CHH09] proposed describing iris texture with modified GLCM based on
looking at triples of pixels instead of pairs. They called their method 3D-GLCM.

Barra et al. [Bar+15] proposed method for iris authentication on mobiles by means of
spatial histograms. They have tested proposed approach has on the MICHE-I iris dataset.

Santos et al. [San+15] presented study that focused on biometric recognition in mo-
bile environments using iris and periocular information as the main traits. Their paper
makes three main contributions. (1) They presented an iris and periocular dataset, which
contains images acquired with 10 different mobile setups and the corresponding iris seg-
mentation data. (2) They report the outcomes of device-specific calibration techniques
that compensate for the different color perceptions inherent in each setup. (3) And finally,
they propose the application of well-known iris and periocular recognition strategies based
on classical encoding and matching techniques.

Raja et al. [Raj+17] proposed multi-patch deep features using deep sparse filters to
obtain robust features for reliable iris recognition. They also proposed representation of
them in a collaborative subspace to perform classification via maximized likelihood.

Aginako et al. [Agi+17b] proposed computation of local descriptors. They compute
the collection of local descriptors (HOG, variants of LBP and others) and evaluated their
performance by means of different classification paradigms in a 10-fold cross validation
experiment.

Galdi and Duglelay [GD17] proposed Fast Iris REcognition (FIRE) algorithm designed
for iris recognition on mobile phones under visible-light. It is based on the combination of
three classifiers exploiting the iris color and texture information. They claim that algorithm
is very fast and easily parallelisable.

Abate et al. [Aba+17] proposed a method that implements iris recognition in the
visible spectrum through unsupervised learning by means of Self Organizing Maps (SOM).
They proposed method that uses a SOM network to cluster iris features at pixel level. The
discriminative feature map is obtained by using RGB data of the iris combined with the
statistical descriptors of kurtosis and skewness.

Ahmed et al. [Ahm+17] proposed biometric matching of eye images captured by the
visible spectrum smart phone cameras. They performed matching by calculating matching
scores for iris codes and periocular biometric based on the Multi-Block Transitional Local
Binary Patterns. The authentication scores were calculated separately, and the results
were fused to improve the system performance.

Ahuja et al. [Ahu+17] proposed a hybrid convolution-based model for iris recognition.
They compose the hybrid model as a combination of an unsupervised and a supervised
convolution neural network, and augment the combination with the Root SIFT model.

2.1.6 Iris Classification

The classification of irises is no different from a general classification task. The irises
coded to feature vectors are firstly used to train chosen classificator and then assigned
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to one person (class, otherwise declined as unrecognized). In iris recognition, also as
in biometrics in general it has been shown that using multiple samples for training can
improve overall performance. Du [Du06] showed that increasing training samples (one to
three) leads to the improved recognition rates.

The Hamming distance classificator was used for example in [Dau93], [VSN05], [SAS-
RMR02], [AH03] [Tis+02] [DIE04].

The Euclidean distance classificator was used for example in [MW02a] [Ma+03], [ZTW00]
[HLC02].

Few articles are using their own distance based classificator: [BB98], [Wil97].
Lim et al. [Lim+01] used for classification the competitive learning neural network

classificator.
Aginako et al. [Agi+17a] proposed a novel approach for iris dissimilarity computa-

tion (firstly presented in [PA12]). They obtain the a posteriori probability for each of
the considered class values from the preprocessed iris images using well-known image pro-
cessing algorithms. They claim that the main novelty of the presented work remains in
the computation of the dissimilarity value of two iris images as the distance between the
aforementioned a posteriori probabilities.

2.1.7 Iris Quality Metrics

For iris images acquired in less constrained conditions it is advisable to check for captured
iris quality. So while it is not part of the iris processing by itself, the iris biometric system
typically evaluate at least the focus quality and possibly other factors that can worsen the
system performance.

Belcher and Du [BD08] formulated iris quality metric that combined percent occlusion,
percent dilatation and ‘feature information’. The ‘feature information’ is calculated from
relative entropy of the iris texture when compared with a uniform distribution. Kalka et al.
[Kal+10] forms a similar metric based on estimating defocus blur, motion blur, off-angle,
occlusion, lighting, specular reflection, and iris pixel count.

Kirchen et al. [KGSD07] proposed probabilistic iris quality measure based on a Gaus-
sian mixture model (GMM). They compared its behavior to two different types of noise
which can corrupt the iris texture: occlusions and blurring. For occlusions, they compare
their quality measure to an active contour method. And for blurred case, they compare
it with a method based on Fourier transform and wavelets. Their results show that the
probabilistic quality measure is independent from the kind of noise involved.

Zhou et al. [ZDB09] proposed addition of four modules to standard iris recognition
system. A module to reject images that are generally too poor quality, a module to score
segmentation quality, a module to determine if the iris are is big enough to generate iris
features and a module that combines segmentation score and a quality score.

Proença [Pro11] proposes a method to assess the quality of iris samples captured in
visible light and in unconstrained conditions. He determines the quality of iris biometric
data according to the focus, motion, angle, occlusions, area, pupillary dilation, and levels
of iris pigmentation.
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2.1.8 Other Comprehensive Surveys

Apart from the survey in this thesis, there has been numerous attempts to cover the
development in the iris biometrics area. This Section provides their summary.

The first mentionable one is survey from Bowyer et al. [BHF08]. their survey covers
the historical development and current state of the art in image understanding for iris
biometrics up to date of publication i.e. year 2007. They divided research publications
to four categories according to their primary contribution to one of the topics: image
acquisition, iris segmentation, texture analysis and matching of texture representations.
Other research topics they covered includes experimental evaluations, image databases,
applications and systems, and medical conditions that may affect the iris. They also
suggested a short list of recommended readings for someone new to the field to quickly
grasp the big picture of iris biometrics.

The second according to date of publication is by Jain et al. [JRN11]. Their title ‘In-
troduction to Biometrics’ is the first textbook to introduce the fundamentals of biometrics
to undergraduate/graduate students. The book explore three commonly used modalit-
ies in the biometrics field, namely, fingerprint, face, and iris. Few other modalities like
hand geometry, ear, and gait are also briefly discussed along with advanced topics such as
multibiometric systems and security of biometric systems.

Next book, from Rathgeb et al. [RUW13], focuses specifically on iris. It’s called
‘Iris Biometrics: From Segmentation to Template Security’ and provides critical analysis,
challenges and solutions on iris biometric research topics, including image segmentation,
image compression, watermarking, advanced comparators, template protection and more.
They describe at that time state-of-the-art approaches accompanied by experimental eval-
uations. The book has been designed as a secondary text book or reference for researchers
and advanced-level students in computer science and electrical engineering.

Last survey is from Bowyer et al. [BHF13] and it is a continuation of the last survey
by this author ([BHF08]). This new survey is intended to update the previous one, and
covers iris biometrics research over the period of roughly 2008–2010.

2.1.9 Used Fundamental Image Processing Methods

2.1.9.1 GLCM

The Gray-level co-occurence matrix [HSD73] is a matrix that is defined to describe spatial
relationships of pixels in given image (or area in image).

The GLCM have two parameters. Namely: (∆r1,∆r2), p. The (∆r1,∆r2) represent
offset for which the matrix is computed. And the d parameter represents the number of a
different values pixels can have and consequently the size of the C matrix (which is then
d× d).
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The GLCM matrix is then defined as:

C∆r1,∆r2(i, j) =
n∑

r1=1

m∑
r2=1

{
1, if I(r1, r2) = i and I(r1 + ∆r1, r2 + ∆r2) = j

0, otherwise
, (2.6)

where r1 and r2 are the pixel coordinates in the image I and the (∆r1,∆r2) define the
offsets from (r1, r2) positions for which this matrix is calculated, then i and j are the pixel
values. And the I(r1, r2) indicates the value at pixel (r1, r2).

From the GLCM matrix can be computed number of features. Energy, Entropy, Con-
trast or Homogeneity to name a few. Comprehensive listing with definitions can be found
in original article from Robert Haralick [HSD73].

2.1.10 Local Binary Patterns

The Local Binary Patters (LBP) is a feature computation method that was first published
in the 1994 by Ojala et al. [OPH94]. It has been found to have great power for the texture
description. The LBP is essentially the feature vector that is created in the following way:

LBPP,R =
P−1∑
p=0

s(vr − vc)2p , (2.7)

s(x) =

{
1 for x ≥ 0

0 for x = 0
, (2.8)

where P denotes the length of the feature vector, R radius for the comparison values (see
Figure 2.10 for overview) and vc and vr denotes center and compared pixels. The feature
vector can now be processed using any suitable classifier.

2.1.11 Gabor Filters

Gabor filters are thought to be similar to how cells in human visual system works [Mar80].
Their impulse response is defined by a sinus function (a plane for 2D Gabor filters) multi-
plied by a Gaussian function [FS89] (See Figure 2.11 for 2D example). The filter has a real
and an imaginary component representing orthogonal directions. The two components
then may be used individually or together as complex number. John Daugman defined
Gabor filter as [Dau85]:

gλ,θ,ψ,σ,γ(r1, r2) = exp

(
−r
′2
1 + γ2r′22

2σ2

)
cos

(
2π
r′1
λ

+ ψ

)
, (2.9)

r′1 = r2 cos(θ) + r2 sin(θ) , (2.10)

r′2 = −r1 sin(θ) + r2 cos(θ) . (2.11)
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Figure 2.10: Example of creating LBP feature vector.1

Figure 2.11: Examples of Gabor kernel.

The half-response spatial frequency bandwidth b and the ratio σ/λ are related as follows:

b = log2

σ
λ
π +

√
ln 2
2

σ
λ
π −

√
ln 2
2

, (2.12)

σ

λ
=

1

π

√
ln 2

2
· 2b + 1

2b − 1
, (2.13)

where λ represents the wavelength and 1/λ the spatial frequency of the cosine factor, θ the
orientation of the normal to the parallel stripes of a Gabor function ψ is the phase offset,
σ is the standard deviation of the Gaussian envelope and γ is the spatial aspect ratio, and
specifies the ellipticity of the support of the Gabor function. It has been found to vary
in a limited range of 0.23 < γ < 0.92. The ratio σ/λ determines the spatial frequency
bandwidth. And r1, r2 denotes coordinates in the Gabor kernel.

1Source: https://en.wikipedia.org/wiki/Local binary patterns

27

https://en.wikipedia.org/wiki/Local_binary_patterns




Chapter 3

Iris Databases

This chapter surveys available iris databases and gives an overview of each along with the
image samples for several of them. It focuses specifically on the iris image databases in the
visible spectrum. The chapter concludes with the substantiation of the chosen databases.
The important part is also the table (3.2) with each database presented and comparison
of their properties.

3.1 Databases Overview

There are number of iris databases as they were developed during the time and as they were
focused on the different scenarios and approaches. Most of them provide images captured
in a near infrared spectrum (wavelengths between 700nm− 900nm) and therefore are only
monospectral. Only few of them provide color images. There is no database that would
provide both NIR and RGB images of the eye captured at the same time (or essentially
any other variant that would provide either NIR spectrum or RGB spectrum). Also most
were captured indoors with the artificial lighting. For overview of all databases see the
Table 3.2 and for overall summary, the Section 3.4.

3.2 Databases with Images in Near Infrared Spectrum

3.2.1 CASIA

The CASIA currently represents four databases from the Chinese Academy of Sciences
[Cen]. The first version was one of the first databases widely used. Images in all four
versions are monospectral, taken in NIR.

CASIA Iris Image Database Version 1.0 (CASIA-IrisV1) includes 756 iris images from
108 eyes. For each eye, 7 images are captured in two sessions with their proprietary device
CASIA close-up iris camera, where three samples are collected in the first session and four
in the second session. All images are stored as BMP format with resolution 320*280. The
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Figure 3.1: Example images from CASIA-IrisV1 database.

Figure 3.2: Example images from CASIA-IrisV2 database. Odd columns are from device
1, even columns from device 2.

pupil regions of all iris images in CASIA-IrisV1 were automatically detected and replaced
with a circular region of constant intensity to mask out the specular reflections from the
NIR illuminators. Such editing clearly makes iris boundary detection much easier but has
minimal or no effects on other components of an iris recognition system, such as feature
extraction and classifier design. See examples in Figure 3.1.

CASIA Iris Image Database Version 2.0 (CASIA-IrisV2) includes two subsets cap-
tured with two different devices: Irispass-h developed by OKI and their proprietary device
CASIA-IrisCamV2. Each subset includes 1200 images from 60 classes. See examples in
Figure 3.2.

CASIA-IrisV3 includes three subsets which are labelled as CASIA-Iris-Interval, CASIA-
Iris-Lamp, CASIA-Iris-Twins. CASIA-IrisV3 contains a total of 22,034 iris images from
more than 700 subjects. All iris images are 8 bit grey-scale JPEG files, collected under
near infrared illumination. Almost all subjects are Chinese except a few exceptions in
CASIA-Iris-Interval. Because the three data sets were collected in different times, only
CASIA-Iris-Interval and CASIA-Iris-Lamp have a small overlap in subjects.

CASIA-IrisV4 is an extension of CASIA-IrisV3 and contains six subsets. The three sub-
sets from CASIA-IrisV3 are CASIA-Iris-Interval, CASIA-Iris-Lamp, and CASIA-Iris-Twins
respectively. The three new subsets are CASIA-Iris-Distance, CASIA-Iris-Thousand, and
CASIA-Iris-Syn. CASIA-IrisV4 contains a total of 54,601 iris images from more than
1,800 genuine subjects and 1,000 synthetized subjects. All iris images are 8 bit grey-level
JPEG files, collected under near infrared illumination or synthesized. The six data sets
were collected or synthesized at different times and CASIA-Iris-Interval, CASIA-Iris-Lamp,
CASIA-Iris-Distance, CASIA-Iris-Thousand may have a small inter-subset overlap in sub-
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Figure 3.3: Example images from CASIA-IrisV4 database. Each row is from different
subset. From top to down it is: Interval, Lamp, Distance, Synthetic.

jects. See examples in Figure 3.3.

3.2.2 BATH

BATH is database from University of Bath [Uni]. Database contains 1000 images from 50
eyes with 20 images taken from each eye. All images has resolution 1280x720 pixels and
are only in gray-scale.

3.2.3 MMU

From Multimedia University [Mul], there are two databases (MMU1 and MMU2). The
MMU1 iris database contributes a total number of 450 iris images which were taken using
LG IrisAccess 2200 device (camera) from 45 persons. This camera is semi-automated and
it operates at the range of 7-25 cm. The follow up, MMU2 iris database consists of 995 iris
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Figure 3.4: Example images from MMU database. First two images are from MMU1
database, second two are from MMU2.

images. The iris images are collected using device Panasonic BM-ET100US Authenticam
and its operating range is even farther with a distance of 47-53 cm away from the user.
These iris images are contributed by 100 volunteers with different age and nationality.
They come from Asia, Middle East, Africa and Europe. Each of them contributes 5 iris
images for each eye. There are 5 left eye iris images which are excluded from the database
due to cataract disease. Image resolution in database is 320x240 pixels. All images are
taken in NIR. See examples in Figure 3.4.

3.2.4 ND Iris Image Dataset

All images in the ND 2004-2005 iris image dataset [Phi+10] were acquired using the same
LG 2200 iris biometrics system. The LG 2200 uses near-infrared illumination of the eye.
The dataset contains 64,980 images corresponding to 356 unique subjects, and 712 unique
irises. The age range of the subjects is 18 to 75 years old. 158 of the subjects are female,
and 198 are male. 250 of the subjects are Caucasian, 82 are Asian, and 24 are other ethni-
cities. None of the images correspond to subjects wearing glasses during image acquisition.
However, a significant fraction of the subjects wore contact lenses. The ND 2004-2005 iris
image data acquisition is large enough that many real-world conditions occur that may
present challenges for iris biometrics systems. There are some images that have noticeable
blur, and some in which the iris region is substantially occluded. There are some images in
which the iris region is cut off at the image boundary. While most iris images are acquired
in a near straight-on view, another real-world condition that occurs is ‘off-axis’ images,
where the subject’s view direction is not orthogonal/perpendicular to the optical axis of
the camera.

3.2.5 DMCS

The DMCS (DMCS - Department of Microelectronics and Computer Science) database was
initially designed for the Iris Finder program [San+06]. This database has been established
by the authors of Iris Finder. At the time of article’s publication it contained 141 images
of left and right eyes of 4 persons. It is worth mentioning that photos were taken not at
once, but in three consecutive sessions during 6 months. The images are colour with 8
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bits per pixel for each red, blue and green components. The photos dimension equals 3072
pixels x 2048 pixels. The acquisition was performed using Canon EOS 10D camera (6.3
Megapixel CMOS sensor). Instead of using standard lens the camera was connected to
Kontron Fundus Camera - a medical device intended for diagnosis in ophthalmology. The
images are stored in the raw format.

The database itself is however not publicly released.

3.2.6 BioSecurID

BioSecurID [Fie+10] is multimodal biometric database, acquired in the framework of the
BiosecurID project. A new multimodal biometric database, is presented together with the
description of the acquisition setup and protocol. The database includes eight unimodal
biometric traits, namely: speech, iris, face (still images, videos of talking faces), hand-
written signature and handwritten text (on-line dynamic signals, off-line scanned images),
fingerprints (acquired with two different sensors), hand (palmprint, contour-geometry) and
keystroking. The database comprises 400 subjects and presents features such as: realistic
acquisition scenario, balanced gender and population distributions, availability of informa-
tion about particular demographic groups (age, gender, handedness), acquisition of replay
attacks for speech and keystroking, skilled forgeries for signatures, and compatibility with
other existing databases. All these characteristics make it very useful in research and
development of both unimodal and multimodal biometric systems.

3.2.7 VISOB

Visible light mobile Ocular Biometric (VISOB) Dataset ICIP2016 Challenge Version is
a publicly available database [Rat+16] consisting of eye images from 550 healthy adult
volunteers acquired using three different smartphones i.e., iPhone 5s, Samsung Note 4 and
Oppo N1. The iPhone was set to capture bursts of still images at 720p resolution, while the
the Samsung and Oppo devices were capturing bursts of still images at 1080p resolution
using pixel binning. Volunteers’ data were collected during two visits (Visit 1 and Visit
2), 2 to 4 weeks apart. At each visit, volunteers were asked to take selfie like captures
using front facing cameras of the aforementioned three mobile devices in two different
sessions (Session 1 and Session 2) that were about 10 to 15 minutes apart. The volunteers
used the mobile phones naturally, holding the devices 8 to 12 inches from their faces. For
each session, a number of images were captured under three lighting conditions: regular
office light, dim light (office lights off but dim ambient lighting still present), and natural
daylight settings (next to large sunlit windows). The collected database was preprocessed
to crop and retain only the eye regions of size 240 x160 pixels using a Viola-Jones based
eye detector. See examples in Figure 3.5.
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Figure 3.5: Example images from VISOB database. Each row is from different lighting
conditions. From top to down it is: natural daylight, dim light and office light. Also first
column is from iPhone 5s, second from Oppo N1 and third from Samsung Note 4 devices.

3.3 Databases with Images in Visible Spectrum

3.3.1 UPOL

UPOL is database from University of Olomouc [DM]. Small but high quality database
contain iris images of three persons (64x left eye, 64x right eye). Images were scanned
by device TOPCON TRC50IA which is specialized retina scan device which resulted in
high quality images almost without any imperfections. This database has great value for
research of iris patterns or characteristics but not so usable when need of images from
common capture device. See examples in Figure 3.6.

3.3.2 UBIRIS

The aim of UBIRIS database [PA05] is to provide images with different types of occlu-
sions, simulating image captured with or without minimal collaboration from the subjects,
pretending to become an effective resource for the evaluation and development of robust
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Figure 3.6: Example images from UPOL database.

Figure 3.7: Example images from UBIRIS database.

iris identification methodologies. UBIRIS database is composed of 1877 images collected
from 241 persons during September, 2004 in two distinct sessions. It was constituted as
the world’s largest public and free available iris database at it’s release date (2005). See
examples in Figure 3.7.

For capturing was used a Nikon E5700 camera with software version E5700v1.0, 71mm
focal length, 4.2 F-Number, 1/30 sec. exposure time, RGB color representation and ISO-
200 ISO speed. Images dimensions were 2560x1704 pixels with 300 dpi horizontal and
vertical resolution and 24 bit depth. They were saved in JPEG format with lossless com-
pression and resolution 800x600 pixels. For the first image capture session, the enrollment,
they tried to minimize imperfection factors, specially those relative to reflections, lumin-
osity and contrast, by means of the framework installed inside a dark room. In the second
session they changed the capture location in order to introduce natural luminosity factor.
This enabled the appearance of heterogeneous images with respect to reflections, contrast,
luminosity and focus problems. Images collected at this stage pretend to simulate the ones
captured by a vision system without or with minimal active collaboration from the sub-
jects. All images from both sessions are classified with respect to three parameters (‘Focus’,
‘Reflections’ and ‘Visible Iris’) in a three value scale (‘Good’, ‘Average’ and ‘Bad’). This
classification was obtained manually and the results were: focus (Good = 73.83%,Average
= 17.53%,Bad = 8.63%), reflections (Good = 58.87%,Average = 36.78%,Bad = 4.34%)
and visible iris (Good = 36.73%,Average = 47.83%,Bad = 15.44%). There are in total
1877 images from 241 persons.
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Figure 3.8: Example images from UBIRIS.v2 database.

3.3.3 UBIRIS.v2

The major purpose of the UBIRIS.v2 database [Pro+10] is to constitute a new tool to
evaluate the feasibility of visible wavelength iris recognition under far from ideal imaging
conditions. In this scope, the various types of non-ideal images, imaging distances, subject
perspectives, and lighting conditions existent on this database could be of strong utility in
the specification of the visible wavelength iris recognition feasibility and constraints.

The database contains over 11000 images captured in realistic conditions. Images has
more occlusions, same as first UBIRIS with additional at-a-distance and on-the-move im-
perfections. See examples in Figure 3.8.

3.3.4 MICHE

MICHE-I [Mar+15] is iris biometric dataset captured under uncontrolled settings using
mobile devices. The key features of the MICHE-I dataset are a wide and diverse population
of subjects, the use of different mobile devices for iris acquisition, realistic simulation of
the acquisition process (including noise), several data capture sessions separated in time,
and image annotation using metadata. The aim of MICHE-I dataset was to make up the
starting core of a wider dataset, with the further aim to address interoperability, both in the
sense of matching samples acquired with different devices and of assessing the robustness
of algorithms to the use of devices with different characteristics. See details in Table 3.1.
See examples in Figure 3.9.

The dataset is available through authors website1. Password, needed to unpack the
data, is obtainable by email.

3.4 Databases Summary

The table with summary of the databases can be seen in 3.2. Apart from two, all of the
databases have images taken indoor. Most of them have images captured in the infrared
spectrum (one is in grayscale) and minority (5) is in the visible spectrum. All color data-
bases (apart from UBIRIS) have images taken with mobile cameras. The UBIRIS used

1http://biplab.unisa.it/MICHE/
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Figure 3.9: Example images from MICHE database. Each row is from different subset.
From top to down it is: iPhone5, SamsungGalaxyS4, SamsungGalaxyTab2. Also odd
columns are from indoor and even columns are from outdoor environment.
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3. Iris Databases

(Number of images) Distance
Resolution [cm]

iPhone5 (1262)
Front camera 960× 960, 960× 1280 ≈ 10
Rear camera 1536× 2048, 2448× 2448

2448× 3264 ≈ 13
Samsung Galaxy S4 (1297)
Front camera 1080× 1920 ≈ 10
Rear camera 2320× 4128 ≈ 13
Samsung Galaxy Tab2 (632)
Front camera 640× 480 ≈ 5

Table 3.1: Detailed description of MICHE iris database.

Nikon E5700 camera. Rest of the databases used non-consumer hardware because of the
NIR spectrum.

Most of the databases have several hundreds of subjects (only CASIA-Iris-Thousand
has more and four of the databases have less than hundred). Most databases also have
tenths of images per subject. The UPOL database have most images per subject (64)
but it also have only 3 subjects total. Minimum images per subject is 5. The databases
have usually several thousands images overall. Most databases have resolution 640x480 or
below. Only two have Full HD resolution (1920x1080) or more.

3.5 Databases used in This Thesis

As this thesis focuses on modern trend of the iris recognition in the visual spectrum with the
images taken in unconstrained conditions and without active participation of subjects, our
choice was limited only to databases with color images. The databases in visible spectrum
are UBIRIS [PA05], UBIRIS.v2 [Pro+10], MICHE [Mar+15], UPOL [DM] and VISOB
[Rat+16]. The VISOB database have too small images for our purposes. The UPOL
is database almost without occlusions with irises captured in near ideal conditions. The
UBIRIS database is a good intermediate challenge that have good resolution of iris images,
but many occlusions as reflections, eyelids and eyelashes. On the other hand UBIRIS.v2 is
database focused mainly on different types of occlusions in challenging, smaller resolution.
The MICHE database is focused on big high quality images taken by people themselves with
lots of occlusions. With sometimes even big parts of faces included in the image. Therefore,
for the experiments, the UBIRIS database was chosen mainly for the first method and the
UBIRIS.v2 database and the MICHE database were used for advanced occlusion detection.
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Chapter 4

Iris Occlusions Detection

We’ve developed three methods for better detection of irises in the image. And sub-
sequently also to detect areas with occlusion in them. Each method was developed for a
different problem specification. The first one is fastest but also uses least difficult (of the
tree) images (the UBIRIS database). The second method uses the UBIRIS.v2 database
and the third method builds on top of UBIRIS.v2 and MICHE databases.

4.1 Fast Occlusion Detection on Eye Images

The first method was published at the International Conference BTAS in 2013 [A.1]. The
occlusion detection is based on the multispectral causal autoregressive model. This meth-
ods works well on UBIRIS and UBIRIS.v2 databases (Sections 3.3.2 for UBIRIS or 3.3.3
for UBIRIS.v2 respectively). The UBIRIS images are better quality and generally less
difficult than the other two selected databases.

4.1.1 Overview

Our first method basically uses the integrodifferential operator (described in Section 2.1.2)
for iris finding and the adaptive 3D causal simultaneous auto-regressive model (see Sec-
tion 4.1.4 for description) for occlusion detection. See the method diagram at Figure 4.1.

4.1.2 Image Preprocessing

Since the UBIRIS database (described in Section 3.3.2, which we are using in this method)
have color images and couple of methods we are using expects monospectral images, we
are also converting the color images to grayscale with the following formula:

Y = 0.299 ∗R + 0.587 ∗G+ 0.114 ∗B , (4.1)
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Method 1

Iris Localization

Image
Acquisition

Reflection
detection

Iris
detection

Pupil
detection

Occlusion Detection

Iris Normalization

Feature
Extraction

Iris Classification

Figure 4.1: Processing scheme of method 1.

where Y is resulting gray-scale pixel (luma, see paragraph below for brief description) and
R,G,B are color channels (red, green and blue) from original image. This transform-
ation is to compute the luma from color image. The formula was used whenever some
algorithm used monospectral images and source images was color in RGB (and it is not
stated otherwise).

Luma The Luma is the weighted sum of RGB components. The proportion numbers
came from ITU-R Recommendation BT.601 a standard originally issued in 1982 by the
CCIR (an organization which has since been renamed as the International Telecommu-
nication Union – Radiocommunication sector). So the luma represents the brightness in
an image and is typically paired with the chrominance. As such, the luma represents the
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4.1. Fast Occlusion Detection on Eye Images

achromatic image, while the chroma components represent the color information.1

Since the reflections present in eye images can substantially obstruct the iris localization,
it is necessary to perform the search for light reflections. It is done through the adaptive
thresholding in blue spectral channel. According to our experiments, they are most visible
here. The threshold value for each pixel is the weighted sum of neighborhood pixels where
weights are a Gaussian window values. The resulting binary mask is then firstly slightly
dilated to ensure full coverage of the reflections and than the detected reflective regions
are filled using the inpainting algorithm presented in [Tel04] (see Figure 4.5 for example).
Since this thresholding is done only for better iris localization, it is not that important
that true iris texture remains untouched. Instead it is desirable for the reflection detection
to be more robust than precise.

4.1.3 Iris Localization

The eye area is found using the original integrodifferential Daugman operator [Dau93] as
described in the Section 2.1.2. The image used for this task is the output from previous
step, thus with inpainted reflections and monospectral.

4.1.4 Multispectral Iris Texture Model

For occlusions detection, our first assumption was that the multispectral iris texture can be
represented by the adaptive 3D causal simultaneous auto-regressive model [Hai12; HŠ92]:

Xr =
∑
s∈Icr

AsXr−s + εr , (4.2)

where εr is a white Gaussian noise vector with zero mean, and a constant but unknown
covariance matrix Σ and r = {r1, r2}, s = {s1, s2} are multiindices with the row and
column indices, respectively. The noise vector is uncorrelated with data from a causal
neighborhood Icr ,

As1,s2 =

a
s1,s2
1,1 , . . . , as1,s21,d

...,
. . . ,

...
as1,s2d,1 , . . . , as1,s2d,d

 , (4.3)

are d × d parameter matrices where d is the number of spectral bands. r, r − 1, . . .
is a chosen direction of movement on the image lattice (e.g. scanning lines rightward
and top to down). This model can be analytically estimated using numerically robust
recursive statistics hence it is exceptionally well suited for possibly real-time texture defect
detection applications. The model adaptivity is introduced using the standard exponential

1Full description can be read in https://en.wikipedia.org/wiki/Luma (video).
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4. Iris Occlusions Detection

forgetting factor technique in the parameter learning part of the algorithm. The model
can be alternatively written in the matrix form

Xr = γZr + εr , (4.4)

where γ = [A1, . . . , Aη] , η = card(Icr) is a d × dη parameter matrix and Zr is a
corresponding vector of Xr−s. To evaluate the conditional mean values E{Xr |X(r−1)} ,
where X(r−1) is the past process history, the one-step-ahead prediction posterior density
p(Xr |X(r−1)) is needed. If we assume the normal-gamma parameter prior for parameters
in (4.2) this posterior density has the form of Student’s probability density with β(r)−dη+2
degrees of freedom, where the following notation is used:

β(r) = β(0) + r − 1 , (4.5)

γ̂Tr−1 = V −1
zz(r−1) Vzx(r−1) , (4.6)

Vr−1 =

(
Ṽxx(r−1) Ṽ T

zx(r−1)

Ṽzx(r−1) Ṽzz(r−1)

)
+ I , (4.7)

Ṽuw(r−1) =
r−1∑
k=1

UkW
T
k , (4.8)

λ(r) = Vx(r) − V T
zx(r) V

−1
z(r) Vzx(r) , (4.9)

where β(0) > 1 and U,W denote either X or Z vector, respectively. If β(r− 1) > η
then the conditional mean value is

E{Xr|X(r−1)} = γ̂r−1Zr , (4.10)

and it can be efficiently computed using the following recursion

γ̂Tr = γ̂Tr−1 +
V −1
z(r−1) Zr(Xr − γ̂r−1Zr)

T

1 + ZT
r V
−1
z(r−1)Zr

. (4.11)

The selection of an appropriate model support (Icr) is important to obtain good iris
representation. If the contextual neighborhood is too small it can not capture all details of
the random field iris model. Inclusion of the unnecessary neighbors on the other hand adds
to the computational burden and can potentially degrade the performance of the model
as an additional source of noise. The optimal Bayesian decision rule for minimizing the
average probability of decision error chooses the maximum posterior probability model,
i.e., a model Mi corresponding to

max
j
{p(Mj|X(r−1))}

can be found analytically [Hai12; HŠ92].
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4.1. Fast Occlusion Detection on Eye Images

eyelid (a) reflection (b) eyelid and eyelash (c)

Figure 4.2: Detected iris regions containing all occlusion types apparent in UBIRIS data-
base.

4.1.5 Occlusion Detection

The iris occlusions (Figure 4.2) are detected pixel-wise. Single multispectral pixels are clas-
sified as belonging to the occluded (non-iris) area based on their corresponding prediction
errors. If the prediction error is larger than the adaptive threshold:

|Ẽ{Xr |X(r−1)} −Xr| >
α

l

l∑
i=1

∣∣∣Ẽ{Xr−i |X(r−i−1)} −Xr−i

∣∣∣ , (4.12)

then the pixel r is classified as a detected occluded pixel. The parameter l in (4.12) is
a process history length of the adaptive threshold and the constant α = 2.7 was found
experimentally.

The one-step-ahead predictor

Ẽ{Xr |X(r−1)} = γ̂s Zr , (4.13)

differs from the corresponding predictor (4.10) in using parameters γ̂s which were learned
only in the expected flawless texture area (s < r). The small learning flawless texture
cutout is found automatically inside reflection-less iris area. The whole algorithm is ex-
tremely fast because the adaptive threshold is updated recursively:

|εr+1| >
α

l

[
l−1∑
i=0

|εr−i|

]
, (4.14)

where εr is the prediction error

εr = Ẽ{Xr |X(r−1)} −Xr ,

and γ̂s is the parametric matrix which is not changing. Hence the algorithm can be easily
applied in real time iris defect detection.
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4. Iris Occlusions Detection

Figure 4.3: Normalized iris and its prediction error.

4.1.6 Occlusions Mask

The result of the previous section is taken as mask representing the detected occlusions in
a given iris (for examples see Section 4.1.5). In Figure 4.3 can be seen the normalized iris
and its prediction error before thresholding.

4.1.7 Iris Normalization

The iris normalization is done exactly as described in Section 2.1.3. In transformation to
new coordinates, the bicubic interpolation is used.

The output of method in form of iris occlusion masks is compared with other methods
and can be seen in Section 7.1.

4.2 Robust Iris Occlusion Detection in Challenging Im-
ages

The second method was published at the International Conference SITIS in 2014 [A.2].
It improves techniques from the first method (4.1), the iris localization and the defect
detection and combines them with several new techniques designed for better detection of
iris occlusions in specific areas. This second method is designed for UBIRIS.v2 database
(described in Section 3.3.3). It’s images are similar to UBIRIS but overall more challenging
as they are smaller and contain more occlusions of all kinds.

4.2.1 Overview

The first step is same as in previous method, removal of reflections. The iris localization
part is modified from previous method and described in 4.2.2. Then the iris normalization
is performed, again as described in Section 2.1.3. On the contrary, the occlusion detection is
completely reworked with additional algorithms as described in Section 4.2.3. As is shown
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Method 2

Iris Localization

Defect Detection

Image
Acquisition

Reflection
detection

Iris
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Iris
Normalization

Reflection
detection
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detection

Lower eyelid
detection

+

Feature
Extraction

Iris Classification

Figure 4.4: Processing scheme of method 2.

in the diagram in Figure 4.4, the outputs of all three occlusion finding methods (reflection
detection, upper and lower eyelid detections) are binary masks and are combined together
to form the result of the whole method.

4.2.2 Iris Localization

The iris occlusions (Fig.4.2) detection starts with searching for the reflections (Fig.4.5-left)
in the blue spectral channel where they are the most visible (according to our extensive
experiments) using the adaptive threshold. The binarization threshold is obtained using
the cross-correlation between pixel-centered windows and the Gaussian window. The res-
ulting binary mask is firstly slightly dilated (Fig.4.5-middle) to ensure full coverage of the
reflections and than the detected reflective regions are corrected (Fig.4.5-right) using the
inpainting algorithm presented in [Tel04]. The corrected image is subsequently used to
detect the iris location in the image. The eye area is found using the modified integrodif-
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4. Iris Occlusions Detection

Figure 4.5: Detected reflections in iris (middle) and their corrections.

ferential Daugman operator [Dau93]:

max
ρ,r̃1,r̃2

∣∣∣∣Gσ(ρ) ∗ ∂

∂ρ

∮
ρ,r̃1,r̃2

Yr,B2πρdsdρ

∣∣∣∣ , (4.15)

where r = {r1, r2}, s = {s1, s2} are multiindices with the row and column indices, r̃
the radius centre, ρ is the radius, Yr,B is the blue component of the r-th eye pixel, and
Gσ(ρ) denotes a Gaussian filter of scale σ. However the circle integral is not taken for
full circle but only for degrees from 0◦ to 45◦ and from 135◦ to 360◦. This is to better
deal with possible upper eyelid occlusions in the image (which would otherwise obviously
obstruct the correct localization of iris region). Fig.4.6-a illustrates local maxima (white
dots) in the accumulator of this operator. Fig.4.6-b is the corresponding maximal value of
radius for each pixel. Fig. 4.6-c is accumulator of the integrodifferential operator for pupil
(only small area when iris boundary is known). And Fig.4.6-d image shows the localized
iris regions where the outer circle correspond to the global maxima of iris accumulator (the
smaller circle corresponds to the pupil accumulator described below).

The next step is the pupil detection in the red spectral channel to separate the iris
region due to its best separability spectrum. The inner circle representing the pupil border
is found in a similar way as the iris location described above, but in its respective smaller
area (as can be seen in Fig. 4.6-c). The pupil is detected using the original (unmodified)
Daugman operator inside the iris region. Detected iris region is then verified by checking
the candidate pupil region mean with comparison of the closest left and right neighborhood
iris regions. This is to deal with possible mislocalization of the iris border as can be seen
in Fig. 4.7.

4.2.3 Iris Occlusions and Reflection Detection

Once we locate the iris region, this region is then normalized to rectangular shape (see Sec-
tion 2.1.3 for method details) and we subsequently search for each of the selected occlusions
(as can be seen in Fig.2.1). Possible occlusions are searched in the red spectral channel
and reflections in the blue spectral channel, respectively (see Figure 4.8 for example). The
resulting iris occlusion mask is results of these three methods combined.
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4.2. Robust Iris Occlusion Detection in Challenging Images

(a) (b)

(c) (d)

Figure 4.6: The accumulator of the integrodifferential Daugman operator (4.15) in the blue
spectral channel (a), the corresponding maximal radius for each pixel (b), accumulator of
the integrodifferential operator for pupil (c) (only small area when iris boundary is known)
and the resulting iris localization (d).

Figure 4.7: Imprecisely detected iris region (left), its correction (middle) and the corrected
pupil (right).
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Figure 4.8: The visibility of pupil, iris, its occlusions and reflections in each spectral channel
(red, green, blue).

4.2.3.1 Upper Eyelid

The upper eyelid (Fig.4.2-c) is detected using vertically swapped image so that a potential
upper eyelid is completely located in the center of image (otherwise it would be split in
half at the corners of normalized iris image and the polynomial fitting would be slightly
more complicated and slower). Subsequently the rays from 0◦ to 180◦ from the top center
point are drawn. These rays are convolved with differential kernel and the maximum is
located on each of them. The third order fitted polynomial than denotes the upper eyelid
occlusion region border.

4.2.3.2 Lower Eyelid

Most iris images are not obstructed with the lower eyelid. The occasional lower eyelid
occlusions (Fig.4.2-a) are detected using mean and standard deviation estimates µle and σle
of the top center region. Rows are in the range of r1 ∈ 〈0; N

2
〉 and columns r2 ∈ 〈M4 ; 3M

4
〉,

where N (M) is number of rows (columns) in the normalized iris image. If the standard
deviation is larger than 25% of µle, i.e.,

σle >
µle
4

,

then the lower eyelid is detected by simple thresholding with the threshold τ = µ + σle
2

.
The topmost central region in result mask from thresholding is detected as the lower eyelid.

4.2.3.3 Iris Reflections

The precise localization of reflections (Fig.4.2-b) is based on the fusion of similar adaptive
thresholding (without dilatation) as in section 4.2.2 and detection based on the multispec-
tral Markovian iris texture model (as presented in Section 4.1.5).
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4.3. Robust Iris Occlusion Detection in Face Images

4.3 Robust Iris Occlusion Detection in Face Images

The third method was published in the Pattern Recognition Letters journal in 2015 [A.3]
and as best current method was used as ground truth generation method in MICHE-
II contest. It builds on the second method (4.2) and improves mainly iris localization
part as this part is more challenging in the used database than in previous ones. In this
method, MICHE database (described in Section 3.3.4) was used. Its images usually contain
bigger area around eye (around half of the face) so additional steps to ensure the correct
iris localization were needed. Also the images pose additional difficulty from the bigger
resolution and better sharpness with many reflections coming from moist drops on the face.
Those can also obstruct the overall eye localization. This method is also the only one that
can detect missing eye and reject image all together.

4.3.1 Overview

As stated above, the images in MICHE database used in this method often contain big
parts of the surrounding eye area (up to half of the face). So the new step needed to
be introduced to find rough eye area because the integrodifferential operator alone often
found incorrect maxima. Also new modified (multispectral) integrodifferential operator
was introduced. The occlusion detection part remained largely unchanged. See Figure 4.9
for method diagram.

4.3.2 Reflection Correction

Similarly as in the second method, this one starts with searching for reflections (Figures
4.10-a and 4.12-c) in the blue spectral channel where they are most visible using an adaptive
threshold. The binarization threshold is obtained using the cross-correlation between pixel-
centered windows and the Gaussian window. The resulting binary mask is firstly slightly
dilated (Fig.4.10-c) to ensure full coverage of reflections and then the detected reflective
regions are corrected (Fig.4.10-d) using the inpainting algorithm presented in [Tel04].

The corrected multispectral image is subsequently used to detect eye location in the
image.

4.3.3 Iris Localization

The iris occlusion detection requires to localize the eye region in the acquired image which is
complicated with variable source image resolution and large differences in the captured face
portion. The accurate iris region is recognized using a two step procedure with rough loc-
alization using the generalized Hough transformation (GHT) (to detect eye) subsequently
elaborated by a modified integrodifferential Daugman operator (to localize iris).
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Figure 4.9: Processing scheme of method 3.

a b c d

Figure 4.10: Iris detected reflections: source image (a), blue channel (b), detected reflec-
tions (c), and their corrections(d).
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4.3. Robust Iris Occlusion Detection in Face Images

a b c d

Figure 4.11: Detected rough iris region using the generalized Hough transformation: Canny
detector(a), GHT mask(b), search window(c), detected iris(d).

4.3.3.1 Eye Localization

The generalized Hough transformation [Bal81] is used to detect approximate eye region
on a sub-sampled, reflection corrected image. The rough scale image has the width in the
range 200 − 400 pixels because the corresponding sub-sampling step is selected to avoid
non-lattice pixel positions interpolation. Down-scaled images speed up the processing
time. A binary eye template for GHT is created as the intersection of two circles which
are parameterized by the length c of their common chord. It is subsequently rescaled to
handle variable image resolution. We assume the ratios of both circular segments altitudes
h1, h2 to this chord to be fixed

k1 =
c

h1

= 4.8 ,

k2 =
c

h2

= 15.8 .

The corresponding circles radii can be computed from

Ri =
c2

8hi
+
hi
2

= c
k2
i + 4

8ki
i = 1, 2 . (4.16)

This template (Fig.4.11-b) is rotated in the range of ±15◦.

4.3.3.2 Refined Iris Localization

The accurate eye area is found using the integrodifferential Daugman operator [Dau93] gen-
eralized from monospectral into the multispectral formulation (4.17) to exploit all available

53
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upper eyelid (a) lower eyelid (b)

reflection (c) missing iris (d)

Figure 4.12: Iris region defects from iPhone5 device containing four (a,b,c,d) occlusion
types.

information. The multispectral Daugman operator is

max
ρ,r̃1,r̃2

∣∣∣∣Gσ(ρ) ~
∂

∂ρ

∮
ρ,r̃1,r̃2

Yr,•
2πρ

dsdρ

∣∣∣∣ , (4.17)

where r = {r1, r2}, s = {s1, s2} are multiindices with the row and column indices, •
denotes all corresponding spectral indices, r̃ the radius center, ρ is the radius, Yr,• is the r-
th multispectral (color) eye pixel, ~ denotes multispectral convolution, and Gσ(ρ) denotes
a 3D Gaussian filter of identical scale σ in all spectral planes (see example of output values
from this operator in Figure 4.13). The circle integral is not taken for full circle but only
for degrees from 0◦ to 45◦ and from 135◦ to 360◦. This is to better deal with possible
upper eyelid occlusions in image (which would otherwise obviously obstructed the correct
localization of the iris region). The next step is the pupil border detection in the red
spectral channel to separate iris region. The inner circle representing pupil border is found
(see Fig. 7.3, odd columns images) in a similar way as the iris location described above
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4.3. Robust Iris Occlusion Detection in Face Images

Figure 4.13: Output of multispectral integrodifferential operator (left image is ρ (radius)
of maximum value in that pixel, right image is maxρ,r̃1,r̃2 (maximum operator value) in
that pixel).

but in its respective smaller area. The pupil is detected using the original (unmodified)
Daugman operator [Dau93] inside the iris region. The detected iris region is then verified
by checking the candidate pupil region mean with comparison of the closest left and right
neighborhood iris regions. This is to deal with possible mislocalization of the iris border.

4.3.4 Iris Occlusions and Reflection Detection

Once we locate the iris region, this region is then normalized to rectangular shape [Dau93]
and we subsequently search (see Fig.2.1 scheme) for each of the selected defects as it
is illustrated in Fig.4.12. The rare cases of completely missing irises (Fig.4.12-d)) are
solved using a simple thresholding in the generalized Hough transformation space. Possible
occlusions are searched in the red spectral channel and reflections in the blue spectral
channel, respectively. The results of all three steps (upper and lower eyelid and reflections)
are binary masks that are again combined to one mask which is the method result.

4.3.4.1 Upper Eyelid

The upper eyelid (Fig.4.12-a) is detected using vertically swapped image so that a potential
upper eyelid is completely located in the center of image (otherwise it would be split in half
at the corners of normalized iris image). Subsequently the rays from 0◦ to 180◦ from the
top center point are drawn (Fig.4.14-a). These rays are convolved with differential kernel
and the maxima is located on each of them (Fig.4.14-b) and lower maxima values are
removed as potential outliers (Fig.4.14-c). The third order fitted polynomial then denotes
the upper eyelid occlusion region border (Fig.4.14-d).
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4. Iris Occlusions Detection

a

b

c

d

Figure 4.14: Upper eyelid detection steps in the red spectral channel.

4.3.4.2 Lower Eyelid

Most iris images are not obstructed with the lower eyelid. The occasional lower eyelid
occlusions (Fig.4.2-a) are detected using mean and standard deviation estimates µle and
σle of the top center region of normalized iris image (Figure 4.15-c). Rows are in the range
of r1 ∈ 〈0; N

2
〉 and columns r2 ∈ 〈M4 ; 3M

4
〉, where N (M) is number of rows (columns) in

the normalized iris image. If the standard deviation is larger than 25% of µle, i.e., σle >
µle
4

then the lower eyelid is detected by simple thresholding with the threshold τ = µ + σle
2

(Figure 4.15-c). The topmost central region is detected as the lower eyelid in the resulting
binarized image (Figure 4.15-c).

4.3.4.3 Iris Reflections

The precise localization of reflections (Fig.4.12-c) in the fine scale normalized iris is based
on fusion of similar (without dilatation) adaptive thresholding as in Section 4.3.3 and
detection based on the multispectral Markovian iris texture model (see Section 4.1.5).

56



4.4. Methods Summary

a

b

c

Figure 4.15: Thresholding for lower eyelid detection.

4.4 Methods Summary

In this chapter, we presented three methods for iris occlusion detection, each is suitable
for a different type of data. But all deal with images acquired under visible light, in
unconstrained conditions and they generally do not expect cooperation of the scanned
person. Although all of them was tested on images in visible spectrum, our methods can
be easily modified to accept monospectral images.

The first method works particularly well with close-up images of the eye. It is fast,
straightforward method, that works best with simple occlusions of all types. Though the
segmented eye should be in straight position and without glasses. The method also expects
that there won’t be widespread reflections across significant part of the eye. It was tested
on our own ground truth masks of the UBIRIS database (7.1) and part of the UBIRIS.v2
database (same part that was used in worldwide NICE.I contest).

The second method is more complex, it consists of many submethods specialized for
different occlusion types. It is also more suitable for challenging and complicated capture
conditions. The eye should be in close-up position as in previous method, this one though
deals well with eyes that are heavily occluded, with big reflections or partially closed. It
was tested on the UBIRIS.v2 database and successfully compared with methods from the
NICE.I contest.

The third method is a step towards iris localization in general images. It deals with
images not containing only eye itself but can deal with photos with large parts of the
face. The photos can be taken by user themselves without any complicated cooperation.
The method also can deal with many light reflections from moisture drops that are often
apparent on the closeup faces. It was tested on the UBIRIS.v2 and the MICHE databases,
specifically the latter contains exactly that large parts of faces.
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Chapter 5

Iris Recognition

This chapter will detail our approach to the iris recognition. Firstly we describe some
‘prerecognition’ methods that can quickly rule out dissimilar irises. Then our approach to
iris texture feature representation and classification will be described.

5.1 Our Approach

We are currently aiming to propose method for iris recognition task that will be compar-
able with the top performing participants of the NICE.II contest (6.3). From the contest
results (Tab. 5.1), it can be seen that no individual feature representation method is able
to outperform others solely by itself. And that the fusion of several disjunctive feature
representation methods (in sense of used iris features) along with some methods that can
add another type of information (periocular, outside from iris area) is needed to develop
successful iris recognition method. The overview of our method can be seen in Figure 5.1.

Iris Recognition

Eye position
estimation

Color
estimation

Feature computation
(LBP, Gabor, 3DCAR)

Irises dissimilarity
computation

Iris dissimilarity
value

Figure 5.1: Schema of iris recognition method.
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5. Iris Recognition

Figure 5.2: Examples of eyes with visible position (right, left, right).

5.2 Determining Eye Position

The recognition of the left/right eye can be useful supplemental feature that can help
recognize iris classes (i.e. when comparing left eye with right eye, it is impossible to have
positive match, since every person have different texture for left and right eye). So, we’ve
developed a method that is capable to recognize this property.

As can be seen in iris images in Figure 5.2, the eyelashes are typically on the far side
of eye (from center of face) and are noticeably more dense than on the other side of eye.
We’ve utilized this property and estimated the eye position with the following equations:

Rl = [cx − 3ρ, cy − ρ, 2ρ, ρ] , (5.1)

Rr = [cx + ρ, cy − ρ, 2ρ, ρ] , (5.2)

µRk =
1

2ρ2

Rk∑
r1,r2

I(r1, r2) , (5.3)

σRk =

√√√√ 1

2ρ2

Rk∑
r1,r2

(I(r1, r2)− µRk)2 , (5.4)

where both Rl and Rr are areas on the left and the right side of the eye ([x, y, height, width],
x and y are coordinates for the top left corner and height and width are sizes of the area).
cx and cy are coordinates of the eye centre and the ρ is iris radius. For each area, the
standard deviation σRk is computed. They are then compared against each other and the
bigger standard deviation denotes the eye position.

This method works best in the red channel because the difference between sclera and
skin is least visible here. The difference between skin and eyelashes is most apparent here
which is also advantageous for the method.
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5.3. Color Histogram

5.3 Color Histogram

Similarly to the previous section, the eye color can also serve as rule out principle. For this
approach, we utilized histograms of iris texture. The histograms are computed from the
normalized iris and the iris occlusion mask (so only true iris pixels are used). Correlation
of those two histograms is then computed (5.5).

d(Ha, Hb) =

∑
i(Ha(i)− H̄a)(Hb(i)− H̄b)√∑

i(Ha(i)− H̄a)2
∑

i(Hb(i)− H̄b)2
(5.5)

H̄k =
1

N

∑
i

Hk(i) (5.6)

where Hk is a histogram, Hk(i) is particular bin from histogram and N is number of bins
in histogram. The resulting dissimilarity value is d(Ha, Hb). As the output of this method
is not a particular iris color but rather difference in color of two irises, it is needed to utilize
the additional threshold to rule out iris with different color. This threshold was derived
experimentally. It is also possible to add the output of this method to classification to
better differentiate dissimilar irises.

5.4 Textural Features

We are analyzing the iris image itself by different texture features. Namely LBP and Gabor
filters (see Sections 2.1.10 and 2.1.11 for brief explanation of those methods) and 3D CAR
features as explained in the previous chapter (4.1.4). The iris image with occlusion mask
(again, only true pixels are used) is transformed to the matrix (corresponding to the image
pixels) of feature vectors given the used method. The vectors are then used for per pixel
classification (see next section, 5.5).

5.4.1 Local Binary Pattern Features

We are utilizing standard LBP features, not rotation invariant (as presented in [POX00]).
Because even in case of capturing person with rotated head (and thus rotated eye), thanks
to the normalization stage, the normalized iris texture will still have the same orientation
(see Figure 5.3). It will only be shifted in x axis. So in this case, it is advantageous to use
rotation variant features which will thus be more descriptive.

The LBP features are computed on each spectral channel separately and than joined
to one feature vector. On normalized iris with size 200x50, we used LBP parameters
as P = 8, R = 3. These parameters are supposedly highly dependent on mentioned
normalized iris size.
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5. Iris Recognition

Figure 5.3: Impact of rotation to iris normalization.

5.4.2 Gabor Filters

As Gabor filters have numerous parameters that have to be set (see 2.1.11), we discretized
those parameters and run wide range of experiments to determine best possible parameters
combination.

Our parameters ranged:

1/λ = 0.1 . . . 2.0, step 0.2 ,

θ = 0 . . . π, step π/4 ,

ψ = 0 . . . π, step π/4 ,

b = 0.6 . . . 2.0, step 0.2 ,

for each combination of parameters we constructed a Gabor kernel. The kernel was then
convolved with each channel of the normalized irises from the UBIRIS.v2 database. For
each iris, the matrix with Gabor feature vectors was constructed as described at beginning
of the parent section (5.4).

This set of matrices was then compared pairwise and distance of each pair was com-
puted. The distances of intra-class pairs and the distances of inter-class pairs were separ-
ated and compared as described in 6.3. As the purpose of this comparison was not to get the
best possible iris dissimilarity value but we were rather interested in maximal dissimilarity
value across all those values. The values are thus unoptimized, but it should nonetheless
give us the Gabor kernel with highest discriminability across all irises. The example of 2D
graphs with one changing parameter (others are fixed) can be seen in Figure 5.4. The best
kernels can be seen in Figure 5.5.
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5.4. Textural Features

Figure 5.4: Graphs for estimating Gabor kernel. On x axis is changing parameter value,
on y axis is result discriminability value.

Figure 5.5: Best estimated Gabor kernels (real and imaginary part).

5.4.3 CAR Model

As we stated in previous chapter (Section 4.1.4), our assumption was, that the iris texture
can be represented by the adaptive 3D causal simultaneous auto-regressive model. We are
also using this assumption to form the iris texture representation for recognition. It can be
also convenient in a way that we do not have to analyze iris again as we did it in previous
step. Thus all analysis is faster.

For the occlusion detection, we used the prediction error (Equation 4.12) which was
good choice for differentiating between two classes (‘iris texture’ and ‘other parts’). But
for further classification we need to use more descriptive parameters. We thus chose the
model parameters A (Equation 4.3). In contrast with the prediction error which is only
one value, the A matrix have x2 ∗ n values where x is a number of spectral channels and
n is a size of the neighborhood. So in case of three spectral channels (RGB) and three
neighbors, the parameter vector length for one direction is 32 ∗ 3 = 27.
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5. Iris Recognition

Figure 5.6: PCA transformation of 3DCAR (4.1.4) parameters. Top three dimensions
mapped to RGB channels.

We experimented with all main directions (row-wise and top-down, row-wise and down-
top, the same for columns and similar variations for diagonal directions, 4x). Eight dir-
ections in total. When each direction add 27 values, the parameter vector length can
quickly add up. We thus ended with using two directions, the ‘left→right, top→down’ and
‘down→top, right→left’. The examples of top three dimensions from PCA transformation
of those parameters (mapped to RGB channels) can be seen in Figure 5.6. In the top left
image in bottom left corner can be clearly seen impact of badly segmented occlusion mask
on the parameters.

5.5 Iris Classification

Generally, a iris classification involves usage of some well known classifier (SVM, Bayes,
. . . ). As we want to compare our method with other top results, we need to use some form
of benchmark that would allow such comparison. We chose well known NICE.II contest
that have challenging, public data and contains state-of-the-art results (see Section 6.3 for
description and Table 5.1 for top results).

Our setup is thus same as theirs. We are comparing two normalized iris images (with
occlusion masks) to each other. Each iris is represented as the matrix of feature vectors
where each vector corresponds to each pixel in normalized iris. And each vector is created
from concatenated feature vectors of individual feature extraction methods described above
(5.4).

Computation of dissimilarity value works as follow:

1. The iris images (and their feature vectors) are divided into regions of chosen size
(Figure 5.7). On each region and each iris, the k-nearest neighbors (KNN) classifier
is initialized, Figure 5.7-a. Note that KNN here only serves as fast nearest neighbor
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5.5. Iris Classification

Figure 5.7: Schema of classification method.

Figure 5.8: Examples of per pixel classification result images.
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5. Iris Recognition

Rank Author Dissimilarity score
1 Tan et al. [Tan+12] 2.5748
2 Wang et al. [Wan+12] 1.8213
3 Santos & Hoyle [SH12] 1.7786
4 Shin et al. [Shi+12] 1.6398
5 Li et al. [LLZ12] 1.4758
6 Marsico et al. [MNR12] 1.2565
7 Li & Ma [LM12] 1.1892
8 Szewczyk et al. [Sze+12] 1.0931

Table 5.1: Top eight alternative results from the Noisy Iris Challenge Evaluation Contest
(NICE.II) [PA12].

search as it contains only one class.

γj(r1, r2) = [p0, p1, . . . , pn] , (5.7)

Rj
i (r1, r2) = γj(s1 + r1, s2 + r2) , (5.8)

s1 = w(i mod m) , (5.9)

s2 = h
i

m
, (5.10)

where Ri is i-th iris region, j j-th iris, r1, r2 coordinates, w, h width, height respective
and m denotes number of regions in one row. Thus γj(r1, r2) represents one feature
vector and n feature vector length.

2. Next, the cross-classification is performed. For each pixel, its feature vector is
searched in corresponding region in opposite iris, Figure 5.7-b. Then the distance
from the returned nearest pixel (feature vector) from opposite region is computed by
the Euclidean distance (function denoted by ∆). This step ends with two distance
masks (one for each iris).

δji (r1, r2) = ∆(KNNk
i (R

j
i (r1, r2)), Rj

i (r1, r2)) , (5.11)

∆(~a,~b) =

√√√√ n∑
l=0

(al − bl)2 , (5.12)

where KNNk
i is KNN classifier from the k-th iris and i-th region and δji (r1, r2) is

minimal Euclidean distance for the j-th iris, i-th region.

3. The distance is then thresholded. The threshold value was estimated with the least
squares method from the selected training sample from the UBIRIS.v2 database.
The training sample consisted of 10 irises from same class that were selected and the
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threshold experimentally derived.

T ji (r1, r2) =

{
1 if δji (r1, r2) > θ

0 if δji (r1, r2) ≤ θ
, (5.13)

where T ji (r1, r2) is the thresholded value for r1, r2 pixel, i-th iris and j-th region and
θ is the threshold value.

4. This way, the classification mask for each iris is obtained (the resulting examples
can be seen in Figure 5.8, a so called per-pixel classification mask). The white
pixels denotes the distance value below threshold, the gray pixels then the distance
above threshold and the black pixels were not considered for classification due to the
occlusion mask.

5. The confidence of each mask is then computed. Confidence is ratio of white pixels to
sum of white and gray pixels. The iris Dissimilarity value is a sum of 1− confidence
of both masks.

d = 2− wj

oj
+
wk

ok
, (5.14)

wj =
∑
i

∑
r1,r2

T ji (r1, r2) , (5.15)

oj =
∑
r1,r2

M j(r1, r2) , (5.16)

where d is the resulting dissimilarity value, wj sum of white pixels, oj sum of all
classified pixels and M j is occlusion mask.

5.6 Method Summary

The method results are highly dependent on the estimated parameters and chosen feature
extraction methods. Namely regions size w, h and threshold value θ. We are still improving
our results and aim to outperform current top methods from the NICE.II contest.
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Chapter 6

Iris Biometrics Evaluation

This chapter describes a standard evaluation of a biometric system along with the descrip-
tion of different iris contests that we are using for comparison.

6.1 Performance Evaluation

Evaluation of biometric recognition systems, is mainly compared by several kinds of meas-
ures [MW02b] [Way99]:

6.1.1 Basic Criteria

The p denotes class acceptance and n denotes class rejection.

◦ True positive (TP)

The outcome from a prediction is p and the actual value is also p.

◦ False positive (FP, also Type I error)

The outcome from a prediction is p and the actual value is n.

◦ True negative (TN)

When both the prediction outcome and the actual value are n.

◦ False negative (FN, also Type II error)

When the prediction outcome is n while the actual value is p.

6.1.2 Advanced Criteria

◦ TPR (true positive rate / recall / sensitivity)

TPR = TP
TP+FN
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6. Iris Biometrics Evaluation

The probability that the system correctly matches the input sample to a matching
class in the database. It is the percent of valid inputs which are correctly accepted.

◦ FPR / FAR / FMR (false positive rate / false accept rate / false match rate / fall-out)

FPR = FP
FP+TN

The probability that the system incorrectly matches the input sample to a non-
matching class in the database. It is the percent of invalid inputs which are incorrectly
accepted.

◦ TNR (true negative rate / specificity)

TNR = TN
FP+TN

The probability that the system successfully detect a non-matching sample to any
class in the database. It is the percent of invalid inputs which are correctly rejected.

◦ FNR / FRR / FNMR (false negative rate / false reject rate / false non-match rate
/ miss rate)

FNR = FN
TP+FN

The probability that the system fails to detect a match between the input sample
and a matching class in the database. It is the percent of valid inputs which are
incorrectly rejected.

◦ ROC (receiver operating characteristic)

See 6.1.3 for description.

◦ EER / ECR (equal error rate / crossover error rate)

The rate at which both FAR and FRR errors are equal. The value of the EER can
be easily obtained from the ROC curve. The EER is a quick way to compare the
accuracy of approaches with different ROC curves. In general, it can be said that
the approach with the lowest EER is most accurate.

6.1.3 ROC Plot

The ROC plot is a visual characterization of the trade-off between the FAR and the FRR
(see Figure 6.1). In general, the matching algorithm performs a decision based on a
threshold which determines how close to a class the input needs to be for it to be considered
a match. If the threshold is reduced, there will be less false non-matches but more false
accepts. Correspondingly, a higher threshold will reduce the FAR but increase the FRR. A
common variation is the Detection error trade-off (DET), which is obtained using normal
deviate scales on both axes. This more linear graph illuminates the differences for higher
performances (rarer errors).

ROC analysis provides tools to select possibly optimal models and to discard suboptimal
ones independently from (and prior to specifying) the cost context or the class distribution.
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6.2. NICE.I Contest

Figure 6.1: Example of ROC curve1.

ROC analysis is related in a direct and natural way to cost/benefit analysis of diagnostic
decision making.

6.2 NICE.I Contest

All iris contests at that time (2009) focused only on recognition accuracy and were using
images taken under controlled environment (occlusion free image taken under longer period
of time for good iris texture). They were also taken in NIR spectrum. E.g., the Iris
Challenge Evaluation, ICE. However, those highly restricted imaging conditions clearly
reduces the range of domains where the iris recognition can be applied.

So the NICE.I contest was created with these factors in mind. The contest was run on
the subset of UBIRIS.v2 database (Section 3.3.3) which contains highly noisy eye images.
The participants had 500 training images and a disjoint test set of 500 images was used to
measure the pixel-by-pixel agreement between the binary maps made by each participant

1Source: https://en.wikipedia.org/wiki/Receiver operating characteristic
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6. Iris Biometrics Evaluation

Figure 6.2: Left is the ground truth image, center is method result image and right is diff
image from the first two.

(X) and the ground-truth data (G), manually built by the NICE.I organizers [PA07] (see
Figure 6.2).

The contest exclusively evaluates the iris segmentation and occlusion detection stages,
allowing the independent evaluation of these tasks from the iris encoding and recognition
algorithms. The contest evaluation was done by the following equation:

Error =
1

nnrnc

n∑
k=1

nr∑
s1=1

nc∑
s2=1

kXs ⊗ kGs , (6.1)

where ⊗ is the logic XOR operator, nr, nc, n are the number of rows, columns, and
testing images, respectively. kX is image output mask form benchmarked method and kG
is ground truth mask for that image.

6.3 NICE.II Contest

The NICE.II contest [PA12] complemented its predecessor in terms of the traditional pat-
tern recognition stages, evaluating different signature encoding and matching strategies.
All the participants used the exact same segmented data, which were automatically ob-
tained according to the highest performing method in the NICE.I. Sixty-seven participants
from thirty countries registered in the contest 1 and received a training set composed
of 1000 images and the corresponding binary iris segmentation masks. The task was to
construct a binary executable that receives (by command-line parameters) a pair of iris
samples and their iris segmentation masks and outputs a text file containing a score that
corresponds to the dissimilarity between the irises. This score d should be a metric, i.e., it
should meet the following conditions:

1. d(I, I) = 0

2. d(I1, I2) = 0⇒ I1 = I2

3. d(I1, I2) + d(I2, I3) ≥ d(I1, I3)

72
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In the evaluation, disjoint sets of 1000 unseen images and the corresponding segment-
ation masks were used to rank participants. The I = I1, . . . , In is a set of iris images,
M = M1, . . . ,Mn their binary iris segmentation masks and id(.) the identity function on
an image. An one-against-all comparison scheme yields a set of match DI = di1, . . . , d

i
m

and of non-match DE = de1, . . . , d
e
m dissimilarity scores, respectively, for the cases where

id(Ii) = id(Ij) and id(Ii) 6= id(Ij). As suggested by Daugman, for two-choice decisions
(e.g., match/ non-match) the decidability index d′ measures how well separated the two
types of distributions are, and recognition errors correspond to their overlap area:

d′ =
|µE − µI |√

σ2
E+σ2

I

2

(6.2)

where µI =
∑

i d
I
i

k
and µE =

∑
i d

E
i

m
are the means of the two distributions and σI =

∑
i(d

I
i−µI)

k−1

and σE =
∑

i(d
E
i −µE)

m−1
their standard deviations. The participants were ranked according

to their decidability scores, and the best eight were invited to publish in special Pattern
Recognition Letters issue (see their results in Table 7.3).

6.4 Mobile Iris Challenge Evaluation I Contest

MICHE I contest taken form of special PRL issue in 2015. It included MICHE database
(Section 3.3.4) which was used in our third method (Section 4.3). The contest was focused
on following themes:

◦ Iris detection on mobile devices.

◦ Iris segmentation on mobile devices.

◦ Iris biometric recognition on mobile devices.

◦ Applications of iris biometrics on mobile devices.

The detailed description of this contest can be found in special Pattern Recognition
Letters issue (Volume 57, published 1 May 2015). Mainly in the introduction article
[Edi+15].
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Chapter 7

Proposed Methods Results

This chapter is showing results which we were able to achieve with the proposed methods
for detecting occlusions. It showcases tables comparison with other competing methods,
example iris masks as method results and also presents our achievements in public recog-
nition of our methods.

7.1 Results for Method ‘Fast Occlusion Detection on Eye
Images’

The method is described in Section 4.1. It was initially developed for the UBIRIS database
and because there were no ground truth masks for iris occlusions for this database, we had
to produce our own. We handmade ground truth masks for samples of first 20 classes
from UBIRIS database. They are now publicly available at http://iris.utia.cas.cz/.
Examples of those masks can be seen in Figure 8.5.

The method is quite simple, it essentially uses the Daugman’s integrodifferential oper-
ator for locating iris and our multispectral causal autoregressive model for iris occlusion
detection. Thus it is fast with comparable performance to other competing methods.

The method performance on the images can be seen at the Table 7.1. The acronyms
in header are explained in the Section 6.1. In this table one can also see which type of
the occlusion is present in the given image. The method performance on the UBIRIS.v2
database can be seen at the Table 7.2. At the time of publication it placed at the third
rank. The examples of those results can be seen in Figure 7.1.

7.2 Results for Method ‘Robust Occlusion Detection in
Challenging Images’

The second method is described in Section 4.2. It was made and tested on ground truth
data from the UBIRIS.v2 database. We acquired those from organizers of the NICE.I
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7. Proposed Methods Results

detected detected
eye defects eye defects

Img 10 1 1 Img 11 1 1

Img 13 1 1 Img 94 2 3

Img 96 1 2 Img 108 1 1

Img 111 1 1 Img 115 2 2

Img 117 1 4 Img 145 2 1

Figure 7.1: Eye images and the corresponding detected occlusions masks in the first method
(UBIRIS database). Above the iris image in odd column is name of the iris in database.
For numerical results of selected irises see Table 7.1.
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7.2. Results for Method ‘Robust Occlusion Detection in Challenging Images’

UBIRIS occlusions FP [%] FN [%] TP+TN [%]
images types

Img 1 1 1 bc 1.00 10.56 88.44
Img 1 2 1 abc 8.13 5.25 86.62
Img 2 1 1 abc 8.83 2.81 88.36
Img 2 2 1 abc 14.40 3.49 82.11
Img 3 1 1 abc 5.04 2.93 92.04
Img 3 2 1 abc 3.16 3.60 93.23
Img 4 1 1 abc 31.79 2.20 66.01
Img 4 2 1 abc 15.51 1.77 82.72
Img 5 1 1 abc 3.08 8.22 88.70
Img 5 2 1 bc 5.94 1.09 92.97
Img 6 1 1 abc 2.83 3.07 94.10
Img 6 2 1 abc 12.67 7.39 79.95
Img 7 1 1 abc 7.41 4.66 87.93
Img 7 2 1 abc 32.75 2.35 64.89
Img 8 1 1 ab 0.44 4.36 95.20
Img 8 2 1 b 1.52 3.33 95.15
Img 9 1 1 abc 11.17 0.91 87.93
Img 10 1 1 abc 4.40 1.96 93.64
Img 11 1 1 abc 4.05 4.91 91.03
Img 11 2 1 abc 6.42 2.24 91.34
Img 12 1 1 abc 1.11 8.57 90.32
Img 12 2 1 abc 0.81 6.46 92.73
Img 13 1 1 abc 11.01 2.46 86.53
Img 13 2 1 abc 30.93 1.16 67.91
Img 14 1 1 abc 8.41 5.93 85.66
Img 15 1 1 abc 0.18 6.08 93.74
Img 15 2 1 abc 13.05 3.90 83.05
Img 16 1 1 ab 12.85 5.74 81.40
Img 16 2 1 bc 13.45 2.37 84.19
Img 17 1 1 ab 9.84 3.68 86.48
Img 18 1 1 abc 4.46 5.00 90.54
Img 18 2 1 abc 24.19 3.70 72.11
Img 19 1 1 ab 0.11 2.53 97.36
Img 19 2 1 bc 12.81 4.47 82.72
Img 20 1 1 abc 9.27 2.48 88.25
Img 20 2 1 abc 18.94 0.18 80.87
overall perf. 9.78 3.94 86.38

Table 7.1: The first method performance overview on the UBIRIS database (a eyelid, b
reflection, c eyelash). Percentages are to all image pixels. For image results for selected
irises see Figure 7.1.
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Rank Method No. par. Error E1 E2

1 2. & 3. method [HK14; HK15] 7 0.0124 0.042
2 Tan et al. [THS10] 9 0.0131 -
3 Sankowski et al. [San+10] 6 0.0162 0.060
4 1. Method [HK13] 2 0.0168 0.061
5 Almeida [Alm10] 5 0.0180 -
6 Tan & Kumar [TK12] x 0.0190 -
7 Li et al. [Li+10] 4 0.0224 0.068
8 Jeong et al. [Jeo+10] 3 0.0282 0.144
9 Chen et al. [Che+10] 5 0.0297 0.165
10 Scotti & Labbati [LS10] 12 0.0301 0.116
11 Luengo-Oroz et al. [LOFA10] 7 0.0305 -

Table 7.2: The Noisy Iris Challenge Evaluation Contest [PA10] top eight results (from 97
participants) on the contest UBIRIS.v2 database compared with the presented methods
and [TK12].

contest (described in Section 6.2). The method is more complicated than the first one but
it also acquired the first place in comparison to other NICE.I methods (see Table 7.2).

Examples of method results can be seen in Figure 7.2. The first column is a source
image, the second is a ground truth from the NICE.I contest. The third column is a method
result and last is a difference between the ground truth and the result (second and third
columns). The E1 displayed in the fourth column in Table 7.2 is computed exactly from
that column.

7.3 Results for Method ‘Robust Occlusion Detection in
Face Images’

The method is described in Section 4.3. It is mainly an upgrade from the previous method
and it is expanded to correctly detect iris images from the MICHE database. It was
published in the special issue MICHE I (as Mobile Iris CHallenge Evaluation I ). And was
used as the best segmentation algorithm for generating ground truth masks for the MICHE
II (as Mobile Iris CHallenge Evaluation II ).

The result on the NICE.I dataset are essentially the same as the previous method (see
Table 7.2). But the results on the MICHE database are far better. Unfortunately because
of lack of ground truth masks for this database we can not provide numeric performance.
But the algorithm itself is publicly available for download1 for contest participants to use
and try themselves.

1Link for method download: http://biplab.unisa.it/MICHE/MICHE-II/PRL Haindl Krupicka.zip
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ground detected error
eye truth occlusions differece

Figure 7.2: Eye images, ground truth, detected occlusions masks, and their comparison
with the ground truth in the second method (UBIRIS.v2 database).
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detected detected
eye defects eye defects

Figure 7.3: Selected eye images from the MICHE database and their detected defects (the
third method, MICHE database).

7.4 Iris Recognition

This section contains current results which are among top results when comparing to the
NICE.II contest 6.3.

7.4.1 Rule-out Methods

In Sections 5.2 and 5.3 we introduced two methods for a quick detection of inter-class iris
comparisons. But to measure their performances we needed to evaluate their results. To
compare them with other top performing methods from the NICE.II contest we interpreted
their output as dissimilarity score as follow:

Eye Position: The resulting dissimilarity value of this method was set to 0 if irises
were on same side and to 1 if they were not.

Eye Color: For the color histograms, we used directly the value from the histogram
distance.

80



7.4. Iris Recognition

Rank Author Dissimilarity score
1 Tan et al. [Tan+12] 2.5748
2 Wang et al. [Wan+12] 1.8213
3 Santos & Hoyle [SH12] 1.7786
4 Shin et al. [Shi+12] 1.6398
5 Li et al. [LLZ12] 1.4758
6 Marsico et al. [MNR12] 1.2565
7 Li & Ma [LM12] 1.1892
8 Methods 5.3 and 5.2 combined 1.1460
9 Szewczyk et al. [Sze+12] 1.0931
10 Color histogram (Section 5.3) 0.8736
11 Eye position (Section 5.2) 0.7285

Table 7.3: Top eight results from the Noisy Iris Challenge Evaluation Contest [PA12]
(NICE.II) compared with our individual step results.

Eye Position and Color Combined: When combined, as our intention was to only
prove effectiveness of both features, we simply used experimentally derived normalization
constant for histogram features and sum their value with the position dissimilarity value.

In the Table 7.3 can be seen results of our two methods for ruling out iris images from
comparison (before any computation of advanced iris features). Both of them individually
are a bit behind the contestants results. But when both methods combined, even without
computing any subsequent features, they easily outperform the last contestant. It is thus
viable way to improve the overall performance of iris recognition.

7.4.2 Iris Textural Features

Our actual results are currently not at the first place in comparison with other NICE.II
contestants. We are thus still improving our method to outperform them.

Examples of irises convolved with Gabor kernels can be seen in 7.6. Similarly, the
examples of LBP features computed from irises can be seen in 7.6. And visualization
of 3DCAR parameters (4.1.4) can be seen in Figure 7.5. Visualization is done by PCA
transformation with top three dimensions mapped to RGB channels.
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iris LBP
visualization

Figure 7.4: Examples of LBP feature extraction on iris images.

Figure 7.5: Examples of PCA visualized 3DCAR (4.1.4) parameters. Top three dimensions
mapped to RGB channels.
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Figure 7.6: Examples of irises convolved with Gabor kernels. The first column is input
iris, the second is real part of a kernel and the third is imaginary part of a kernel.
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Chapter 8

Developed Software

Apart from the presented methods themselves (Chapters 4 and 5) we were able to accom-
plish additional results which are presented in this chapter. Firstly is described a software
that was implemented in the process of developing our methods. Next, the UBIRIS ground
truth dataset will be showed.

8.1 Created Software

In this section is a description of the software we’ve developed while working on our meth-
ods. The main contribution is in form of the Iris library that contains the implementation
of all methods we presented in Chapters 4 and 5. Our source code for programs we imple-
mented is about 19000 lines long.

As nobody can implement all by himself, number of open source programs were used.
These are the main ones:

◦ OpenCV – https://opencv.org/

◦ Boost – http://www.boost.org/

◦ Qt Toolkit – https://www.qt.io/

◦ Jupyter Notebook – https://jupyter.org/

The OpenCV library is a general image processing library with already implemented
many (performance optimized) methods. It is also valued for its image representation
format Mat that greatly eases matrix manipulation.

The Boost library was used due to its cross-platform features (i.e. for file manipulation
regardless of operating system).

The Qt Toolkit is known for its simplicity in creating user interfaces and ability to run
same code on Windows or Linux OS.

The Jupyter Notebook greatly eases development, especially in conjunction with Py-
thon which allows for rapid development of new methods and further experimenting.
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<?xml version=” 1 .0 ” encoding=” utf−8”?>
< i r i s −r e c o g n i t i o n>

<l ogg ing−s e v e r i t y> i n f o</ logg ing−s e v e r i t y>
<proce s s>

<draw−graph> f a l s e</draw−graph>
<save−l og> f a l s e</ save−l og>
< i r i s −mask>t rue</ i r i s −mask>
<without−d e f e c t s> f a l s e</ without−d e f e c t s>
<debug> f a l s e</debug>
<output−d i r>. / tmp</output−d i r>
<auto−f i n d> f a l s e</auto−f i n d>
<save−add i t i ona l−i n f o>t rue</ save−add i t i ona l−i n f o>

</ proce s s>

Figure 8.1: First few lines from configuration file.

8.1.1 Iris Library

The Iris library is implemented in the C++ programming language. It is a standard C++
library that could be compiled as a static or dynamic library and used in other projects.
It was programmed to be cross-platform and we experimentally verified that it can run at
least on Windows and Linux OS. We used it mainly in two projects that served as user
interface (described in Section 8.1.3) and as an console interface suitable for automated
processing (described in Section 8.1.2).

The important library we used was also VR library. It is an internal library of our
department where various advanced mathematical methods are implemented. We used
mainly aforementioned multispectral causal autoregressive model. But there are many other
models that can be utilized in future development.

8.1.2 Console Application

The console application was used for batch processing and for testing the various paramet-
ers that we wanted to try. It usually runs on Linux server over several hours, processing
whole databases, possibly several times trying out different versions of our method. It is
a command line program that takes parameters file, parses it and calls methods from Iris
library. The configuration file is in XML format and is loaded with the help of methods
from the Boost library that correctly parses and process it’s parameters. Example of this
file can be seen in Figure 8.1.
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Figure 8.2: Screenshot from our ImageProcessing application.

8.1.3 Windows Application

Over the course of developing our methods. We also created a graphical application to
help us experiment with iris images. See the screenshot in Figure 8.2. This application
serves for experimenting with input images or intermediate results of each method (see
Figure 8.3 for example).

It can be used for a quick view and manipulation of source image (or any other result of
some method). We can run several image processing methods (gaussian blur, thresholding,
canny detector, resize, . . . ) in any order to quickly see how image reacts and changes, what
can be interesting paths to take the developed method further. Example of simple analysis
of image area can be seen in Figure 8.2.

It uses our Iris library, graphical interface itself is build on open source version of the
QT toolkit (can be downloaded at product website https://www.qt.io/). It’s programmed
in C++ and we successfully run it on Windows and Linux platforms. Source codes have
about 2700 lines of code.

8.2 Ground Truth Masks for UBIRIS Database

When we began to implement our first method, it quickly became apparent that we need
some form of ground truth data to evaluate its performance. We searched for datasets
with iris occlusions masks that we could use. But only one we were able to find is the one
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Figure 8.3: Example of results of occlusion detection task in application.

mentioned in Hugo Proença’s dissertation thesis [Pro06] and despite our effort we were not
able to obtain this dataset. We thus needed to create our own.

It contains 36 iris occlusions masks. Each mask is an color image with three channels
(RGB) and each of these channels denotes one type of occlusion. The occlusions are defined
by zero in respective channel (R - eyelash, G - reflection, B - eyelid). Examples are shown
in figure 8.5. Our database is unique in a way that our ground truth data are separated
to different types of occlusion. There is no other database to our knowledge with similar
data. It can be used to better understanding and evaluation of different algorithms how
well they can grasp various types of occlusions.

The dataset is publicly available at http://iris.utia.cas.cz/ (see Figure 8.4). How-
ever note that these are only the ground truth masks without original images as we do not
have the rights to share those. It is therefore necessary to obtain those from their official
website at http://iris.di.ubi.pt/ubiris1.html.
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Figure 8.4: Screen from http://iris.utia.cas.cz/ web.
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Figure 8.5: Publicly available ground truth masks of UBIRIS database (downloadable from
http://iris.utia.cas.cz/).
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Chapter 9

Conclusions

This chapter summarizes our contributions and most important findings. It also discusses
future work.

9.1 Summary

Introduction In the first chapter, motivation for this thesis is described along with
the introduction to biometric identification. Particularly biometric identification based
on iris. Then each step of the iris recognition system is described with its own specifics
and challenges. The chapter concludes with the description of the problem we’ve tried
to solve. The goals which we’ve tried to achieve and the structure of the thesis are both
communicated.

State-of-the-Art The second chapter introduces the reader to the necessary theoretical
background. It thoroughly describes each step of the iris recognition pipeline and surveys
the current State-of-the-Art of each step. Additionally it points to other surveys of the iris
processing methods and also surveys the iris quality metric articles.

Iris Databases The third chapter surveys the available iris databases and gives an over-
view of each along with image samples for the several of them. It focuses specifically on the
color iris image databases. The chapter concludes with discussion about choosing data-
bases for our experiments. The important part is also the table with comparison of each
database presented and their properties summarized.

Iris Occlusions Detection In the fourth chapter we presented our main contributions
for iris occlusions detection in form of three methods. These methods were developed over
the course of last years, and they are gradually rising in complexity but also have better
results than the previous one. With the second method we achieved the first place in
comparison with 97 other competing algorithms from the NICE.I contest from all over
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the world. The third method was submitted to the MICHE I and subsequently used in
the MICHE II as the ground truth generation method for other contestants. In the last
method we presented the multispectral modification to the widely used integrodifferential
operator.

Iris Recognition The fifth chapter describes our approach to the iris recognition. Firstly
we described two ‘prerecognition’ methods that can quickly rule out dissimilar irises. Then
our approach to iris texture features representation was described.

Iris Biometrics Evaluation In the sixth chapter, the reader is introduced to evaluation
of biometric systems along with the description of different iris contests that we are using
for comparison. As the NICE.I contest is the only widespread contest with iris occlusions
ground truth masks it is used to evaluate all of our occlusion detection methods.

Achieved Results of Proposed Methods The seventh chapter is showing results
which we were able to achieve with the proposed methods for detecting occlusions. It
showcases tables comparison with other competitive methods, example image masks as
well as method results. It also presents our achievements in public recognition of our
methods.

Developed Software In the eight chapter the supplementary results which we were
able to accomplish are detailed. Firstly is described software that was implemented in the
process of developing our methods. And next, the UBIRIS ground truth dataset is showed
with reasoning why it was created.

9.2 Contributions of the Dissertation Thesis

1. Overview of the recent state-of-the-art in the iris recognition area in all related fields.

2. Overview of the iris image databases with detailed description of their properties and
the table with comparison of each database presented and their properties summar-
ized.

3. Three novel methods for detecting iris occlusions. They range from most simple
one (also the fastest) to more complex combined from several algorithms focused on
specialized tasks. The first one uses our own publicly available ground truth database.
The second method achieved the first place in comparison with 97 other competing
methods from the worldwide NICE.I contest. And the third method was submitted
to the MICHE I and was subsequently used as the ground truth generation method
for contestants in the following contest (MICHE II ). In the last method, we presented
the multispectral modification of the widely used integrodifferential operator.
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4. Novel approach to iris recognition. Consisting of preprocessing steps to rule out neg-
ative iris images followed with combination of feature representation and dissimilarity
computing method for pairs of iris images.

5. The ground truth masks for iris occlusions made publicly available to measure per-
formance between different methods. The mask for one iris image is in fact three
masks for three different types of occlusions. It enables more in depth look to al-
gorithms performance.

9.3 Future Work

Topics for future research:

◦ Automatic adaptation on different visual conditions and environmental surroundings.

◦ Descriptive general multispectral iris recognition method.

◦ Detection of fake irises.

◦ Computer aided eye diseases diagnosis.

◦ Eye disease progress monitoring.

◦ Iris detection in general visual scenes (security cameras, . . . ).

◦ Further improved iris recognition to become the leading method.
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des images dégradées de l’iris’. PhD thesis. Université Paris-Saclay, 2017.
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