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Abstract

This dissertation thesis focuses on implementation aspect of hardware-based error-free
solving of systems of linear equations. Error-free solution of linear systems is often needed
in case of large, dense and ill-conditioned systems, where rounding errors can lead to long
run times due to stability problems, or even hinder the solution completely. We explored
the modular arithmetic approach using the Residue Number System (RNS).

We have analyzed and implemented several architectures for modular multiplication
and modular inverse, which are needed to implement the elimination algorithm for solving
the linear systems. We have redesigned the architecture of a residual processor for solving
systems of linear congruences. This is a part of a modular system for solving systems of
linear equations using the residue number system.

We have analyzed the implementation results in FPGA and ASIC platforms for different
parameters such as word length or matrix dimension. The quality of hardware implemented
algorithms was measured using the metrics of time and area and also the time-area product.

Our analysis is will serve as a base for improvement of the modular system for solving
systems of linear equations. The resulting system architecture permits error-free solution
of dense systems of linear equations of sizes of more than 1000 equations in reasonable
configuration in a few seconds using contemporary technology.

Keywords:
modular arithmetic, error-free computation, linear algebra, system of linear equations,

modular inverse, Montgomery inverse, Montgomery multiplication, FPGA, ASIC.
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Chapter1
Introduction

In the field of scientific computation, it is always needed to consider the influence of round-
off errors on the solved problems. Solving systems of linear equations is one of the most
frequent problems in scientific computation. Traditionally, solving of such systems is done
in floating point arithmetic which brings its associated rounding errors.

The input data for solving can arise from measurements, model simulation parameters,
or other sources. It is encountered in many different fields such as mechanical and electrical
modeling and simulation, modeling of plasma behavior in astrophysics [3].

Although there are algorithms that minimize the impact of rounding errors on the error
of the solution, in some cases this is not enough. Error-free solution of linear systems is
often needed in case of large, dense and ill-conditioned systems, where rounding errors can
lead to long run times due to stability problems, or even hinder the solution completely.
One of the methods to perform error-free computation is using the Residue Number System
(RNS).

When designing hardware architectures for computing in RNS, we have to implement
basic operations in modular arithmetic. In this work, we focus on modular multiplication
and modular inverse. Subsequently, these operations are used to implement an architecture
for solving systems of linear congruences with prime modulus, which serves as the basis
for solving systems of linear equations using RNS.

For modular multiplication, the Montgomery multiplication algorithm [4] is often used.
As opposed to the conventional modular multiplication, the Montgomery’s algorithm does
not use division by the modulus N, rather it uses division by 2i, which is faster, since it is
done merely by shifting (i is an integer). The reduction step is performed depending on the
least significant digit of the intermediate result, rather than on the most significant one,
as in the case of a conventional multiply. This causes another speedup, since the critical
path does not necessarily go through the full carry chain of the adder.

Calculation of the modular inverse is needed for solving systems of linear congruences
as well as conversion from RNS to integer numbers. It is also used in cryptography espe-
cially in computing point operations on elliptic curves [5], or in accelerating the modular
exponentiation operation using the so-called addition-subtraction chains [6].

1



1. Introduction

The quality of hardware implemented algorithms is measured using the metrics of time,
area and power consumption. The underlying technology is often an Application Specific
Integrated Circuit (ASIC) or a reconfigurable architecture such as a Field Programmable
Gate Array (FPGA). Other technology includes general purpose processors, DSPs or em-
bedded microcontrollers.

1.1 Structure of the Dissertation thesis

The thesis is organized as follows. Chapter 2 introduces basic definitions and terminology
regarding Montgomery multiplication, modular inverse and systems of linear equations.
Chapter 3 summarizes the previous work in this field. Chapter 4 presents our architecture
modifications. Chapter 5 presents our results in the form of a collection of published
papers, and Chapter 6 concludes with outlines for future work.

2



Chapter2
Theoretical Background and

State-of-the-Art

In this chapter, we summarize the basics covering the problem of solving systems of linear
equations in residue (modular) arithmetic. We also visit some of the individual operations
needed, namely modular multiplication and modular inverse.

2.1 Systems of linear equations

Let us assume the following linear system with a square matrix of coefficients A and a
vector of right-hand sides b 6= 0. The task is to compute the solution vector x.

Ax = b (2.1)

Most often the input values, i.e. the coefficients and right-hand sides of individual
linear equations, are floating point numbers, sometimes integers. (We are not considering
complex or irrational numbers.) Traditionally, solving of such systems is also done in
floating point arithmetic, which brings its associated rounding errors.

There are many methods to solve such systems – direct methods like the Cramer’s rule
or Gaussian elimination, matrix decomposition methods like the LU decomposition (essen-
tially equivalent to Gaussian elimination), QR decomposition or singular value decompos-
ition, and also iterative methods like Jacobi method, Gauss-Seidel method, or conjugate
gradient method.

Although there are algorithms that minimize the impact of rounding errors on the error
of the solution, in some cases this is not enough. Error-free solution of linear systems is
often needed in case of large, dense and ill-conditioned systems, where rounding errors can
lead to long run times due to stability problems, or even hinder the solution completely.
One of the methods to perform error-free computation is using the residue number system
(RNS), and thus using modular arithmetic.

3



2. Theoretical Background and State-of-the-Art

When considering which methods and algorithms are suitable for RNS, we must know
what operations are required, and how easily can they be implemented in RNS. The op-
erations needed for iterative methods include minimization of a vector of residuals that
must fullfill a termination criterion, usually a small absolute value. Magnitude comparison
operations are quite expensive in RNS, and the result is inherently imprecise, which is
against the effort to get error-free solution. The QR and SVD decomposition methods
need the square root operation, which cannot be implemented easily in RNS.

Matrix A and vector b can be given as rational or floating point numbers. In any case,
the system (2.1) it can be transformed to an equivalent linear system with integer numbers
by scaling individual rows of A together with corresponding elements of b. Therefore we
can safely assume that all numbers are integers. Nevertheless, the elements of solution
vector x will be rational in general.

First, we will convert the input system into RNS, then we will use modular arithmetic,
to compute the solution in RNS, and finally we will convert the solution from RNS to
rational numbers. In order to get correct result in full precision, we need a sufficiently
large modulus M , whose value can be derived from the Hadamard’s inequality for the
determinant D of matrix A:

D2 ≤
n∏

i=1

n∑
k=1

a2ik (2.2)

The largest value M , that can be encountered in the computation of the linear system,
is bound [7, 1] by

M > 2 max

{
n

n
2 max(aij)

n, i, j = 1, 2, ..., n,

n(n− 1)
n−1
2 max(aij)

n−1 max(bi), i, j = 1, 2, ..., n

}
(2.3)

and

gcd(M,D) = 1. (2.4)

The computation will be done using multiple-modulus residue arithmetic with the mod-
uli forming a vector β = (m1,m2, ...,mr), where mi are distinct primes and

∏
imi = M .

In practice, it would be unnecessary to enforce that the determinant D be coprime to M
rigorously. If gcd(M,D) 6= 1, it means that for some ms, gcd(ms, D) 6= 1. We can then
exclude this ms form our moduli vector β and continue with the remaining moduli.

In this work, we will use a variant of Gaussian elimination – the Gauss-Jordan elimin-
ation algorithm. Gaussian elimination converts a matrix to its row echelon form, whereas
Gauss-Jordan elimination converts it to a unity matrix (provided the matrix was square
and full rank, i.e. invertible). If applied to the augmented matrix A = (A|b) of the linear
system (2.1), it produces the solution vector x of the system.

The process of solving (2.1) using multi-modulus residue arithmetic can be done using
the following method.

4



2.1. Systems of linear equations

Algorithm 2.1 Gauss-Jordan elimination algorithm modulo m without row swapping.
Inputs: A is the augmented matrix, n is matrix dimension.
Output: Solution vector x is the last column in A.
1. assuming pivot row j is found during loading of matrix
2. for k = 1..n begin
3. A(j) = |A−1j,k A(j)|m
4. for i = 1..n except j begin
5. A(i) = |A(i)− Ai,k A(j)|m
6. test new pivot, set pivot row jnew
7. end
8. j = jnew
9. end
10. return x as xi = Ai,n+1 for i = 1..n

1. Input scaling – conversion of the input linear system from floating point (rational)
numbers to integers.

2. Input conversion – conversion of the system Ax = b to systems of congruences
Axk ≡ b (mod mk)

3. Solving SLC – solving r systems of linear congruences, computing xk and Dk =
| detA|mk

, and also the product zk = |Dkxk|mk
.

4. Output conversion – conversion of |Dk|mk
and zk = |Dkxk|mk

into integers D and z

5. Solution finalization – conversion of D and z into the final solution vector x

Input scaling is done by multiplying the coefficients the right hand side of each equation
with their common denominator (or a multiple thereof) in order to get integers. This can
be done for any rational coefficients and, provided floating point inputs, can be done just
by binary shifting. A sequential implementation requires O(n2) multiplications.

Input conversion means computing the residui of all elements of A and b modulo
individual moduli mk. This involves computing the remainder from the division of each
coefficient by mi and requires O(rn2) operations.

Solving systems of linear congruences mod mk by Gauss-Jordan elimination requires
O(rn3) operations. During the computation in each modulus, the operations needed are
modular multiplicative inverse for each of the n pivots, and modular multiplication, ad-
dition, and subtraction (or additive inverse). Additionally, either row swapping or result
reordering is needed for the cases when a pivot is not found directly at the diagonal.

Output conversion involves reconstruction of the rational solution vector x from the
individual solution vectors in each modulus. The values |D|mk

and zk = |Dx|mk
are

converted into integers. A sequential Garner algorithm for Multi-Radix Conversion takes
O(r2n) operations.

5



2. Theoretical Background and State-of-the-Art

Solution finalization results in the solution vector x = z
D
. It is computed either as a

precise rational number, or as a floating point number.
The computational complexity of the individual steps are summarized in table 2.1.

Step 1 2 3 4 5
Sequential computation O(n2) O(rn2) O(rn3) O(r2n) O(n)

Row-parallel, modulo parallel architecture O(n2) O(n) O(n2) O(rn) O(n)

Table 2.1: Computational complexity of individual steps of solving a system of linear
equations using RNS

The operations needed are modular addition, subtraction, multiplication and multi-
plicative inverse. The time complexity of individual operations depends of the hardware
architecture of each functional unit. We will consider only arithmetic of the Galois field
GF(p), where p is a prime number. Assume the bit length of p being e bits, i.e. e = dlog2 pe.
Modular addition (and subtraction) is a combination of binary addition and a modulo re-
duction. The time and area complexity of the operation depends on the architecture. Many
different architectures exist for binary adders (ripple-carry, carry look-ahead, carry-select
and many others). Depending on the word size and other constraints, number of concurrent
additions and other parameters, bit-serial adders can be appropriate.

Modular multiplication can be performed by a variety of methods, most of which are
based on a combination of integer multiplication and modulo reduction. The choice of mul-
tiplication method depends of the operand length and performance requirements. Apart
from schoolbook (long) multiplication, other methods exist mainly for large numbers, such
as Karatsuba [8], Toom-Cook [9], and Schönhage-Strassen [10].

Modulo reduction means computing a remainder after division. This can be computed
after multiplication, or interleaved during the product computation. For relatively small
operands that fit in the machine word (tens of bits), a variant of the schoolbook multiplica-
tion is suitable, as it is easily interleaved with reduction steps to maintain the intermediate
result within the machine word. Multiplication takes e additions, shifts and modular re-
ductions in the computation.

The most complex elementary operation is the modular inverse. Several different al-
gorithms exist for the inverse. In GF(p), algorithms based on the Extended Euclidean
Algorithm are prevalent. Their operational complexity is derived from the binary GCD
computation, whose average number of cycles is 1.4e.

In the following sections, we will present a brief overview of the mathematical back-
ground of arithmetic operations that are suitable for a solver of linear equations in modular
arithmetic. In section 2.2, we deal with Montgomery multiplication, a special type of mod-
ular multiplication that is often used due to its efficient hardware implementation. In
section 2.3, we will present a summary of the basic principles of modular inverse.

6



2.2. Montgomery multiplication

2.2 Montgomery multiplication

Montgomery multiplication is a method for computing modular multiplication. It operates
on a special representation of residue classes, often called the Montgomery domain. The
Montgomery domain is a set of images, also called N-residues.

Definition 2.2.1. Let N, a be integers, N > 1, 0 ≤ a < N . Let R be an integer
coprime to N and R > N . The N-residue (Montgomery image) a of a is defined as
a = |aR|N .

Let R−1 and N ′ be integers satisfying

0 < R−1 < N, 0 < N ′ < R,RR−1 − NN ′ = 1 (2.5)

The Montgomery multiplication computes:

c = MM(a, b) = |abR−1|N
It can be shown that c is the Montgomery image of c = ab, since

c = |abR−1|N
c = |aRbRR−1|N
c = |abR|N
c = |cR|N

Further we can see that the addition algorithm is unmodified, as s = |a + b|N =
|aR + bR|N = |(a + b)R|N = |sR|N and thus we get the image of the sum by adding the
images together. The same holds for subtraction.

In order to process integer numbers modulo N , we have to convert them to N-residues.
After finishing computation in the Montgomery domain, we have to convert them back to
the integer domain. We can perform forward as well as backward conversions using the
same algorithm that we use for Montgomery multiplication. Observe that a = |aR|N =
MM(a,R2) and a = |aR−1|N = MM(a, 1). The constant |R2|N can be precomputed and
stored in the system as long as the modulus does not change too often.

Note: In this paper, we will no further distinguish between an integer a and its N-
residue by its notation, since they are both integers of the same range. Their meaning is
generally obvious, possible exceptions will be denoted explicitly.

2.2.1 The original algorithm

Montgomery proposed the algorithm for modular multiplication without trial division in
his paper [4]. We choose R in such a way that operations modulo R are inexpensive;

7



2. Theoretical Background and State-of-the-Art

possibly the machine word size or a power thereof. Again, R−1 and N ′ are determined by
0 < R−1 < N, 0 < N ′ < R,RR−1 − NN ′ = 1. Montgomery has shown that if
0 ≤ T < RN , we can quickly compute |TR−1|N using the following algorithm.

Algorithm 2.2 Montgomery reduction
function REDC(T )
1. m := ||T |RN ′|R
2. t := (T +mN)/R
3. if t ≥ N then return t−N else return t

In order to get the Montgomery product c = MM(a, b), we first perform an integer
multiplication T = ab. Then we use Algorithm 2.2, c = REDC(T ), to reduce T to
|TR−1|N . Since 0 ≤ a < N, 0 ≤ b < N , it holds that 0 ≤ T < RN and thus the
input condition is satisfied.

Notice that the reduction phase is presented independently of the multiplication phase.
However, in this case we need sufficient space to store the result of the multiplication before
the reduction is done. In order to save resources, we often interleave the two phases. The
interleaving can be performed in a variety of means, some of them are presented below.

2.2.2 Choice of radix

As we stated above, we choose R to be such a value that operations modulo R are inex-
pensive to process. This usually means that R is 2k, where k is the number of bits in the
binary representation of the operands and the result. We perform operations modulo R in
the step (1) of Algorithm 2.2. If we interleave the multiplication and reduction phases, we
have a wide variety of options how to organize the computation.

Let r, e, w be positive integers, r > 1. If we choose R = re, then r is the radix of our
arithmetic operations. Usually we set r = 2w, R = re = 2ew. We express the operands
and product as A =

∑e−1
i=0 air

i, B =
∑e−1

i=0 bir
i and S =

∑e−1
i=0 sir

i. We can also express
the modulus N as N =

∑e−1
i=0 nir

i and take advantage of the digit representation by using
only the least significant digit of N ′ for the reduction: n′0 = | − n−10 |r. The computation
can be then expressed as follows: (Note that we do not perform the final subtraction, see
below.)

2.2.3 Binary radix Montgomery multiplication

Binary Montgomery multiplication is a special case where r = 2. Assuming that
A =

∑e−1
i=0 ai2

i, B =
∑e−1

i=0 bi2
i and S =

∑e−1
i=0 si2

i, we may describe the basic binary
Montgomery multiplication algorithm as presented in Algorithm 2.4. The binary version
has the advantage that we need not compute N ′, since the reduction is performed such
that the quotient q is a single bit. Given r = 2 the multiplication factor n′0 in step 3 is
always n′0 = | −N−1|2 = 1.

8
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Algorithm 2.3 High-radix Montgomery multiplication
Inputs: A,B,N, e
Output: S = MM′(A,B)
1. S := 0
2. for i = 0 to e− 1
3. q := |(s0 + aib0)n

′
0|r

4. S := S + aiB + qN
5. S := S/r
6. end for
7. return S

Algorithm 2.4 Binary-radix Montgomery multiplication
Inputs: A,B,N, k
Output: S = MM′(A,B)
1. S := 0
2. for i = 0 to k − 1
3. q := s0 + aib0
4. S := S + aiB + qN
5. S := S/2
6. end for
7. return S

2.2.4 Final subtraction

Step (3) of Algorithm 2.2 guarantees that the result is always less than N. However, the
comparison made here implies a subtraction with a consequent sign check of possibly very
long operands. This is unfortunate, since this operation is very slow. There have been
efforts to avoid the final subtraction step at all. The paper in [11] shows that for Algorithm
2.3, the result of the Montgomery multiplication is bound, S = MM′(A, B) < 2N , as
long as A < 2N , B < 2N and 2N < re−1. Another paper [12] improves this bound to
N < 2(e−1)w at the cost that w ≥ 2. This means that we have to relax the constraints on
the operands A, B, while at the same time increasing the number of digits we compute. In
both cases, we have to compute at least one more digit as opposed to the algorithm with
final subtraction. It is important to know that we get properly reduced output once we
convert the result S using MM′(S, 1). This is proved in [11].

2.2.5 Choice of encoding

We have multiple choices how to encode the operands and the (partial) product of the
multiplication.

◦ Binary encoding

9



2. Theoretical Background and State-of-the-Art

◦ Carry-save encoding

◦ Signed-digit encoding

We can also specify different encoding for individual variables in the algorithm. We
decide how to encode each of the following:

◦ Multiplication operands

◦ Partial product

Binary encoding is non-redundant, having the advantage that we do not need additional
conversions of the operands and/or the product. The drawback is that long binary addition
can be slow because of the carry path in the adders. This can be mitigated by using faster
adders such as carry look-ahead or carry completion adders. The area overhead and limited
scalability of such adders however makes them unsuitable in most cases.

There are platforms, such as Field Programmable Gate Arrays (FPGAs), which have
fast dedicated resources for carry chains and thus are (to a certain limit) less sensible to
word length when performing binary addition.

Carry-save and signed-digit encodings are redundant, making conversions necessary
when the result is to be used outside of the algorithm. Redundant representations are used
to achieve higher working frequency of the resulting hardware since they avoid direct carry
propagation through very long adders.

In order to implement more complex computation, such as a modular exponentiation, it
is necessary to reuse the result of one multiplication in subsequent multiplications. Hence,
it is desirable to avoid unnecessary conversions between redundant and non redundant
forms of any of the operands. This can be solved by leaving both operands A, B as well
as the result S in carry-save form. This approach ensures high throughput of modular
exponentiation because the intermediate results can be directly used as operands of the
next multiplication.

2.3 Modular Inverse

Modular (multiplicative) inverse MI(a) = |a−1|m of an integer a modulo m is defined as
a number satisfying aa−1 ≡ 1 (mod m), or |aa−1|m = 1. There are several algorithms for
computing the modular inverse, mainly using Fermat’s little theorem, or a variant of the
Euclidean algorithm. In this work, we consider several different variants of the Euclidean al-
gorithm. The most straightforward algorithm is the extended Euclidean algorithm (EEA),
which uses repeated integer division to compute the greatest common divisor gcd(a,m)
and two coefficients x, y of Bézout’s identity

gcd(a,m) = ax+my. (2.6)

10
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If gcd(a,m) = 1, then it x is the multiplicative inverse of a modulo m. The coefficient
y is usually not needed, therefore it is not computed at all. A reduced form of EEA, which
computes only the inverse, is given in Algorithm 2.5.

Algorithm 2.5 Extended Euclidean algorithm for modular inverse
Input: Integers a ∈ [1,m− 1] and m > 2
Output: r = |a−1|m or error
1. u := m, v := a, r := 0, s := 1, k := 0
2. while (v 6= 0)
3. q := bu/vc
4. vnew := u− qv, u := v, v := vnew
5. snew := r − qs, r := s, s := snew
6. if (u 6= 1) return "Not relatively prime"
7. if (r < 0) r := r +m
8. return r

Notice the algorithm can be split in two parts – the master part computes the greatest
common divisor, represented by the variables u and v in Algorithm 2.5. The slave part
computes the modular inverse (variables r, s) and is controlled by the master part by the
quotient q computed in step 3.

In hardware implementations, the division operation used in step 3 of Algorithm 2.5
would be unnecessary expensive. However, division by two is very cheap and is done by
shifting. A binary variant of EEA can be formulated in Algorithm 2.6. This algorithm,
attributed to M. Penk, is mentioned (in a slightly different form) in [13] (answer to exercise
39 of section 4.5.2). This algorithm performs halving in both the master part (variables
a, b) and the slave part (f1, f2, g1, g2). In order to enable division by two, the algorithm
tests if the variable is even. If not, a suitable odd value is added or subtracted to ensure
the value can be halved. This can be simplified using the Montgomery inverse described
in the next section.
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Algorithm 2.6 Extended Binary GCD Euclidean Algorithm
Input: a, b ∈ Z and a > b > 0
Output: gcd(a, b) = xa+ yb and x, y ∈ Z
1. k := 0, f1 := 1, f2 := 0, g1 := 0, g2 := 1
2. while (a even ∧ b even)
3. a := a/2, b := b/2,k := k + 1
4. while (a > 0)
5. if (a even) then
6. a := a/2
7. if (f1 even ∧ g1 even) then
8. f1 := f1/2, g1 := g1/2
9. else
10. f1 := (f1 + b)/2, g1 := (g1 − a)/2
11. else if (b even) then
12. b := b/2
13. if (f2 even ∧ g2 even) then
14. f2 := f2/2, g2 := g2/2
15. else
16. f2 := (f2 + b)/2, g2 := (g2 − a)/2
17. else
18. c := (a− b), d := f1 − f2, e := g1 − g2
19. if (c ≥ 0) then
20. a := c, f1 := d, g1 := e
21. else
22. b := −c, f2 := −d, g2 := −e
23. return gcd(a, b) := 2kb and x := f2, y := g2
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2.3.1 Montgomery Inverse

Montgomery modular inverse was introduced in 1995 by Kaliski [14] in the form |a−12n|p.
The algorithm consists of two phases. The first phase computes |a−12k|p, where k ≥ n.
The second phase then divides this intermediate result by 2k−n modulo p, yielding |a−12n|p.
This algorithm can be used to compute modular inverse of an argument in the Montgomery
domain while obtaining the resulting inverse in the integer domain: |(x2n)−12n|p = |x−1|p.
This is not always useful when we want to stay with the operands in the Montgomery
domain.

Savaş and Koç presented a modified algorithm [15] (Algorithm 2.7) that maintains
the Montgomery domain. This means that the modified Montgomery inverse takes the
argument in the Montgomery domain and provides the result also in Montgomery domain.
The first phase remains the same computing |a−12k|p, but the second phase is modified to
multiply the intermediate result by 22n−k modulo p, yielding MMI(a) = |a−122n|p. When
computing the inverse of an argument in the Montgomery domain, we get |(x2n)−122n|p =
|x−12n|p.

The first phase of Motgomery inverse is referred to as Almost montgomery inverse
AMI(a) = |a−12k|p. Therefore MMI(a) = |AMI(a)22n−k|p = |MI(a)22n|p.

Algorithm 2.7 Montgomery modular inverse
Input: a ∈ [1, p− 1] and p > 2 is prime, n number of bits in p
Output: r ∈ [1, p− 1], where r = |a−122n|p

Phase I (Almost montgomery inverse)
1. u := p, v := a, r := 0, s := 1, k := 0
2. while (v > 0)
3. if (u even) then u := u/2, s := 2s
4. else if (v even) then v := v/2, r := 2r
5. else if (u > v) then u := (u− v)/2, r := r + s, s := 2s
6. else v := (v − u)/2, s := r + s, r := 2r
7. k := k + 1
8. if (u 6= 1) then return "Not relatively prime"
9. if (r ≥ p) then r := r − p

Phase II (Savaş, Koç)
10. while (k 6= 2n)
11. r := 2r
12. if (r ≥ p) then r := r − p
14. k := k + 1
15. return r
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2.3.2 Left-Shift Inverse

In the previous algorithms, the master part, computing the greatest common divisor, was
shifted to the right. On the contrary, the algorithm by Lórencz [16] shifts the master
variables u and v to the left. The algorithm is referred to as Left-Shift Inverse (LSI) and
will be described in section 3.3.2 in the next chapter.
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Chapter3
Previous Results and Related Work

Solving systems of linear equations, being one of the most often performed tasks in sci-
entific computation, enjoys constant devotion of the scientific community. The majority
of implementations today use floating point arithmetic on (clusters of) general purpose
CPUs, or, more recently, GPUs.

Recent hardware based solvers almost exclusively use floating point arithmetic. Zhang
et al. use FPGAs to implement LU decomposition in FP arithmetic without pivoting with
the focus on portability among different FPGA platforms [17]. The problem of rounding
errors can be addressed by special FP arithmetic and iterative refinement as in [18, 19], or
increasign FP precision to Double-Double (128 bits) and Quad-Double (256 bits) [20].

In this chapter we present the summary of previous results on solving systems of linear
equations in modular arithmetic, the state-of-the-art of Montgomery multiplication and
modular inverse.

3.1 Modular system for solving systems of linear equa-
tions

Lórencz and Morháč [1, 2] presented a design of a parallel hardware system for solving dense
sets of linear equations precisely. The architecture is presented at fig. 3.1. The modular
system uses an array of processing units interconnected together and with a master control
unit via buses.

The residual processor uses Gauss-Jordan (GJ) elimination with Rutishauser modi-
fication to solve the system of linear congruences. GJ elimination has the advantage of
regular memory access pattern and associated regular arithmetic operations. A normal GJ
algorithm would produce a reduced row echelon form matrix with a solution of the associ-
ated system of linear equations in the last column. We can simplify the GJ algorithm by
omitting any row swapping at the expense of having to reorder the solution vector. This
GJ algorithm was described in Algorithm 2.1.
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RP1 RP2 RP3 RPpRPk

MODULAR SYSTEM
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CONTROL
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SYSTEM

Figure 3.1: Modular system for solving systems of linear equations exactly [1, 2].

Rutishauser modification of Gauss-Jordan elimination discards the unity submatrix
produced in the GJ algorithm by shifting the matrix one column to the left as each row
is processed. This affects two important operands in Algorithm 3.1, namely the pivot Aj,k

(step 3) and the element Ai,k controling the row reduction in step 5. Both these values will
always appear in the first column of the matrix, which simplifies the search for pivot and
effectively simplifies the design of the memory interface.

Algorithm 3.1 Rutishauser modification of Gauss-Jordan elimination modulo m.
Input: A is the augmented matrix, n is matrix dimension.
Output: Solution vector x is the first column in A.
1. assuming pivot row j is found during loading of matrix
2. for k = 1..n begin
3. A(j, 1..n− k) = |A−1j,1 A(j, 2..n− k + 1)|m
4. for i = 1..n except j begin
5. A(i, 1..n− k) = |A(i, 2..n− k + 1)− Ai,1 A(j)|m
6. test new pivot, set pivot row jnew
7. end
8. j = jnew
9. end
10. return x as xi = Ai,1 for i = 1..n

3.2 Montgomery multiplication

There are many published papers regarding analysis and implementation of Montgomery
multiplication. Most of them concern applications in cryptography, especially RSA. Oth-
ers deal with Diffie-Hellman key exchange, elliptic curves or focus on the multiplication
algorithm itself. We present a summary of some of the published work.

3.2.1 Software approaches

Although we focus on hardware implementation, there are some publications concerning
software implementation that are worth mentioning.
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Software implementations are designated to run on general-purpose or other processors
(vector processors, DSPs). As such, they are specific in that they are limited to fixed word
size operations of the particular processor. In order to be able to process long operands,
they use multiprecision arithmetic. They often use high-radix algorithms to utilize the
word-size granularity of the processors.

A basic adaptation to multiprecision arithmetic is presented in Montgomery’s original
paper [4]. However, this algorithm is not optimal since it always uses the full length of N ′
(2.5), which involves more multiplications than necessary. The paper [21] presents a faster
way to determine the quotient for modular reduction when we take advantage of the fact
that we compute one digit at a time. This is used in Algorithm 2.3, where it suffices to
use a single precision arithmetic to compute q using n′0 (which is also a single digit).

The paper [22] brings an overview of five selected software methods and analyzes their
time and memory requirements.

3.2.2 Hardware approaches

There are many hardware implementations of Montgomery multiplication ranging from
simple sequential architectures implementing the binary variant of the algorithm to complex
unified GF(p) and GF(2n) pipelined and high-radix architectures.

A basic sequential hardware implementation is sketched in Montgomery’s original pa-
per [4] using binary version of the algorithm. Although the paper does not present any
hardware architecture, it creates a base on which other authors can build. Several options
regarding hardware implementation of modular multiplication are presented in [23].

High-radix implementation on FPGA was presented in [24]. The authors used the Xilinx
XC4000 FPGA family. They used a radix of 16 and adopted a technique for simplified
quotient determination from [25]. The paper presents also an exponentiation unit and
contains a comparison of different configurations used for RSA encryption and decryption.
Other high-radix implementations include [26] and [27].

The paper [28] deals with a systolic binary implementation on the Xilinx Virtex V1000-
FG680-6 FPGA. The authors present three modifications of the binary Montgomery mul-
tiplication algorithm.

Pipelined semi-systolic implementations presented in [29], [30], [31] are targeted at
ASIC hardware. The operands are divided into words, resulting in a modified algorithm
(Algorithm 3.2). The operand Y, the modulus M and the result S are composed of e words
of size w. We add one more word that will be always zero in order to simplify the right-shift
operation, since the least significant bit is shifted towards the lower word.

We need the trailing zero word in order to get the last valid word S(e−1) at the end of the
inner loop of Algorithm 3.1. Thus Y = (0, Y (e−1), ..., Y (0)),M = (0,M (e−1), ...,M (0)), S =
(0, S(e−1), ..., S(0)) and X = (xn−1, ..., x0), where the words are marked with superscripts
and the bits are marked with subscripts.

The architectures presented are unified, i.e. able to compute in both GF(p) and GF(2n).
The architectures are also scalable, providing a means of working with arbitrary-length keys
and are configurable in word size and pipeline depth. These architectures were the base
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Algorithm 3.2 Multi-word Montgomery multiplication
Inputs: X, Y : operands, M : modulus, n: bit width, w: word size, e: number of words
Output: S: MM(X, Y )
1. S := 0
2. for i = 0 to n− 1
3. for j = 0 to e
4. (c0, S

(j)) := S(j) + xiY
(j) + c0

5. if j = 0 then q := S0

6. (c1, S
(j)) := S(j) + qM (j) + c1

7. if j > 0 then S(j−1) := (S
(j)
0 , S

(j−1)
w−1..1)

8. end for
9. end for
10. return S

of one of our experiments. Figure 3.2 shows the pipelined architecture and Figure 3.3
depicts the processing element. The architectures make use of carry-save encoding of the
partial product S in order to achieve shorter critical path. The result must be converted to
non-redundant binary representation before it can be reused in subsequent multiplications
(not shown in the picture).

PE1 PE2 PEn

X (shift reg)

Y

M

S

Control
addr, ctl.

data in

data out

x
i

x
i+1

Figure 3.2: Scalable pipelined implementation of the Montgomery multiplier.

Another approach is presented in [32], where both operands and the product are in
carry-save form. The architecture is sequential, utilizing full-length adder trees, i.e. the
adders are as long as the operands. Two different architectures are presented. They differ
in the number of operands in the adder tree. The former one, five-to-two Carry Save Adder
(CSA), uses carry-save adder tree to sum all the components. The latter one, four-to-two
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Figure 3.3: Pipeline processing element.

CSA, involves smaller adder tree and uses multiplexers and precomputed constants. The
variables D and CD are computed at the start of the multiplication and stored in registers.

Algorithm 3.3 Binary Montgomery multiplication with carry-save encoding
Inputs: A,CA,B,CB,N, k
Output: (CS, S) = MM(CA,A,CB,B)
1. (CD,D) := CB +B +N
2. (CS, S) := 0
3. for i = 0 to k − 1
4. q := |CS + S + ai(CB +B)|2
5. if ai = 0 and q = 0 then (CX,X) = (0, 0)
6. elsif ai = 0 and q = 1 then (CX,X) = (0, N)
7. elsif ai = 1 and q = 0 then (CX,X) = (CB,B)
8. else (CX,X) = (CD,D)
9. end if
10. (CS, S) := (CS + S + CX +X)/2
11. end for
12. return (CS, S)
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3.3 Modular Inverse

There are several papers that describe a hardware implementation of modular multiplicat-
ive inverse. The papers [33, 34] present a scalable architecture that deals with inversion of
very long numbers that are frequently encountered in cryptography. These operands may
be thousands of bits long and are typically stored and processed in a multi-word format.
The architecture [34] is designed as unified, i.e. it can perform inversion in GF(p) as well
as GF(2n). A different approach is taken in [35] which uses carry-free arithmetic using a
redundant binary encoding using signed digit number representation.

Our efforts focus on shorter numbers (tens to hundreds of bits), which are suitable
for error-free computation (and may also be used in elliptic curves cryptography), and
therefore we focus mainly on small and fast data paths and controllers. The paper [36]
presents a hardware implementation of an ordinary modular inverse using AMI (Almost
montgomery inverse, Phase I of MMI) with a modified second phase to obtain MI(a).

3.3.1 Subtraction-Free Montgomery Inverse

The Montgomery modular inverse can be further improved when we focus on the compar-
ison and subtraction operations. Lórencz and Hlaváč in 2005 [37] shown that a negative
result of subtraction that would normally have to be discarded can be used without further
correction when we exploit the two’s complement encoding of the result. This is taken to
the extreme so that the u register is always negative and the v always positive, thus the
effect of subtraction in the previous inversion algorithms is attained usign addition.

The algorithm thus does not involve any subtractions at all, thus its name— subtraction-
free Montgomery modular inverse. The paper [37] focuses only on the first phase of MMI
– the Almost Montgomery inverse, see Algorithm 3.4.

3.3.2 Left-Shift Inverse

Modular multiplicative inversion algorithms in GF(p) are often based on the binary exten-
ded euclidean algorithm with the operands being compared, subtracted and shifted to the
right. However, the modular inversion can also be computed by shifting the operands left,
thus aligning them to the most significant bit. The left shifting inversion algorithm was
first published in [16]. Recently, this algorithm was used in [38] to design an arithmetic
unit for computations in GF(p) with implementation in FPGA.

The algorithm can be split to three parts – the initialization, the main loop which takes
a variable number of cycles to complete, and the postprocessing which takes a fixed number
of steps.

The algorithm holds five operands in its registers u, v, r, s, p. The u and v registers are
used to compute the greatest common divisor of the argument a and the modulus p. Upon
initialization u is set to p and v is set to a. The GCD is expected to be 1 for the inverse
to exist, but as the values are shifted to the left, the resulting GCD is also shifted and
therefore the computed value becomes a power of two. The number of shifts of u is stored
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Algorithm 3.4 Subtraction-Free AMI
Input: a ∈ [1, p− 1] and p > 2 is prime
Output: o ∈ [1, p− 1] and k, where

o = a−12k mod p and n− 1 ≤ k < 2n
1. u← (−p), v ← a, r ← 0, s← 1, k ← 0
2. do
3. if (uLSB == 0) then
4. u← u/2, s← 2s
5. else if (vLSB == 0)
6. v ← v/2, r ← 2r
7. else
8. x = u+ v, y = r + s
9. if (CARRY (x) == 0) then
10. u← x/2, r ← y, s← 2s
11. else
12. v ← x/2, s← y, r ← 2r
13. k ← k + 1
14 while (x 6= 0)
15. return o← s and k

in the counter c_u, the number of shifts of v is stored in c_v. Moreover both positive
and negative subresults are allowed, so the algorithm will stop as soon as u = ±2c_u or
v = ±2c_v. The operations performed on u and v are selected according to the the most
significant bits – generally they are shifted to the left whenever possible, otherwise their
sign is compared and they are subtracted when their sign is equal or added when their sign
is different.

The r and s registers are used to compute the multiplicative inverse. Initialized to
r := 0 and s := 1, the operations with r and s are governed by the values of u and v.

The arithmetic operations involved in the algorithm are u+v, u−v, v−u, r+s, r−s, s−r
in table 3.1.

Destination Initial Main cycle Postprocessing
u p 2u u+ v u− v
v a 2v u+ v v − u
r 0 2r r/2 r + s r − s s −r p− r r + p
s 1 2r s/2 r + s s− r

Table 3.1: Left-Shift Inverse operation summary

The main loop of the algorithm can be split to the "master" part – computation with
u, v, c_u, c_v, and the "slave" part computing with r, s. The "master" part completely
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Algorithm 3.5 Left-Shift Inverse algorithm
Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1], where r = a−1 mod p, cu, cv

and 0 < cv + cu ≤ 2n
1. u := p, v := a, r := 0, s := 1
2. c_u = 0, c_v = 0
3. while (u 6= ±2c_u & v 6= ±2c_v)
4. if (un, un−1 = 0) or (un, un−1 = 1 & OR(un−2, ..., u0) = 1) then
5. if (c_u ≥ c_v) then
6. u := 2u, r := 2r, c_u = c_u+ 1
7. else
8. u := 2u, s := s/2, c_u = c_u+ 1
9. else if (vn, vn−1 = 0) or (vn, vn−1 = 1 & OR(vn−2, ..., v0) = 1) then
10. if (c_v ≥ c_u) then
11. v := 2v, s := 2s, c_v = c_v + 1
12. else
13. v := 2v, r := r/2, c_v = c_v + 1
14. else
15. if (vn = un) then
16. oper = ”− ”
17. else
18. oper = ” + ”
19. if (c_u ≤ c_v) then
20. u = u oper v, r = r oper s
21. else
22. v = v oper u, s = s oper r
23. if (v = ±2c_v) then
24. r := s, un := vn
25. if (un = 1) then
26. if (r < 0) then
27. r := −r
28. else
29. r := p− r
30. if (r < 0) then
31. r := r + p
32. return r, c_u, and c_v.
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determines the computation of the "slave" part.
The main cycle ends when u = ±2c_u or v = ±2c_v. This can happen either at

the beginning when a = 1 and thus v = 1, or during the computation after addition or
subtraction.
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Chapter4
Overview of Our Approach

Optimal implementation is such an implementation that realizes the algorithm and has
an optimum metric in time, area, power consumption or some combination of those. Our
optimization goals are time and area, we also analyze the time-area product (sometimes
called the quality factor).

The optimization process can done at several levels – from the most general system
level downto the physical implementation on silicon. We consider a subset of these levels
for our optimization namely the algorithmic level, register transfer level, and gate level.
We will follow these basic steps:

◦ Algorithm selection

◦ Structure design

◦ Technology selection

◦ RTL to gate level synthesis

Algorithm selection. At the algorithmic level, we select the algorithms according to
their suitability for hardware implementation. This criterion is the reason for selection of
binary variants of the algorithms. We further analyze the selected algorithms with regard
to the operations involved in them. We examine the operation count and the data flow in
the course of computation. We also analyze the conditions used in branches and loops and
the corresponding control flow. We describe the algorithm using a programming language
and simulate its behavior in order to gather statistical data about the data and control
flows. For high level analysis we use the C/C++ programming language with the NTL
[39] library to simulate operations with numbers that do not fit into the machine word
size. This analysis serves as a foundation for the first synthesis step which transforms the
algorithm to the register transfer level. We use Wolfram Mathematica for verification of
correct solution of more complex tasks like solving systems of linear congruences.

Structure design. The next step is to design and analyse the structure of the hardware
unit on the register transfer level. The hardware unit at this level consists of blocks
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that implement registers, multiplexers, adders, subtractors etc. The types of operations
and their occurence in the data flow influence the types and counts of the blocks and
their interconnection. Planning together with resource alocation result in the structure of
data path and the behavior of the controller that will control the computation. Operand
encoding must be considered when implementing arithmetic operations. If specific encoding
follows directly from the implementation of an operation, such as the two’s complement
code after subtraction with negative result, this knowledge can be applied to the original
algorithm.

We can describe the hardware unit using a variety of formal methods, including schem-
atics, graphs, tables and hardware description languages (HDLs). We chose a HDL to
describe the hardware unit because of the flexibility it can offer when describing paramet-
rized hardware. We have chosen VHDL — other HDLs, such as Verilog, would be equally
useful. We use VHDL generics to specify operand length, word length, number of words
and other parameters. We describe the hardware units manually at the register transfer
level in order to have full control over the architecture while still utilizing the low level
optimization and technology mapping capabilities of synthesis tools.

At the RTL level we also perform simulation in order to verify correct function of the
described architecture. We write a behavioral VHDL testbench that reads a set of stimuli
from a file and exercises the VHDL model of the unit while comparing the outputs with
the correct values generated from our C++ and Mathematica programs. We use Mentor
Graphics’ ModelSim simulator to simulate the model.

Technology selection and RTL to gate level synthesis. The RTL specification is
then synthesized to the gate level of the particular hardware platform (FPGA or ASIC).
The synthesis tools used for this task are configured using technology libraries.

Each implementation platform has its specific properties that influence the implement-
ation. FPGAs have a more coarse granularity and offer dedicated structures mainly for
arithmetic operations such as adders and subtractors, multipliers etc. These dedicated
structures can hide some complexity because the cost (area, delay) is lower than when
the same function is implemented using general logic. ASICs feature a finer granularity
depending on the level of customization. We use a standard cell technology library that
provides the functional and quantitative description of elementary logic cells. The synthesis
of complex cells such as adders is then controlled by the synthesis library which provides
one or more ways to compose a complex cell from elementary cells, e.g. ripple-carry adders
or carry look-adead adders.

Another important feature of ASIC synthesis is gate sizing. This is enabled by the
technology library containing several cells with same function differing in the size of their
internal transistors, thus with different delay and area values. The synthesis tool can then
trade delay for area by selecting the appropriate cell variation.

Memory arrays require special attention because ASIC synthesis tools cannot infer
memory elements other than registers form the standard cell library. In order to use on-
chip memories, we need technology libraries that come with memory compilers. We use
the memory compiler to create memory blocks of appropriate size and then we can use
(instantiate) them in our VHDL design.
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The synthesis process results in a gate level netlist of the designed circuit. This model is
more detailed than the source RTL VHDL model because it is described using technology
cells from the library. Design area and delays are estimated from the netlist and can be
annotated to the individual gates and signals in the circuit. Because the operations are
performed on individual bits of the operands, each bit can have a different delay. This
information can be utilized on the RTL or even algorithmic level to further modify and
optimize the algorithm and its architecture.

We synthesize the hardware unit to two different technologies. First target technology is
the Xilinx FPGA, for example Virtex2 (xc2v4000) or Virtex6 (xc6vsx475t). We use Xilinx
ISE toolchain with XST for synthesis. We synthesize the unit and perform placement
and routing. The time and area data is extracted from the placed and routed result.
Second target technology is 0.13µ ASIC (TSMC or GlobalFoundries) with Synopsys Design
Compiler 2005.09 SP2 (RTL synthesis). The time and area data is a post-synthesis estimate
extracted from the synthesized netlist using time and area reporting in Design Compiler.

We perform synthesis of several variants of the architecture parametrized to several
different operand lengths and word lengths, where applicable. For a selected subset of
models we also perform post-place and route and post-synthesis simulation in order to
verify the correct function of the resulting detailed model. For the FPGA technology we
perform post-place and route simulation using Simprim simulation libraries and ModelSim.
For the ASIC technology we perform post-synthesis simulation using a simulation library
converted form the synthesis library using Synopsys Library Compiler and ModelSim.

We present two modifications of existing architectures for mongomery multiplication,
both implemented in FPGA. The former one is a pipelined multiplier, where we study the
effect of the underlying FPGA architecture on variable word size and pipeline depth. The
latter one is based on a sequential carry-save architecture where both the operands and
the partial product are encoded in carry-save form. We modify the carry-save encoding in
that we reduce the redundancy and take advantage of the fast dedicated carry chains in
the FPGA.

Among various algorithms for computing the multiplicative modular inverse we have
selected two, montgomery modular inverse and left-shift inverse. We focus on optimizing
these two algorithms and their variants and comparing their relative implementation met-
rics in FPGA and ASIC. The algorithms were selected because of their suitability for use
in GF(p) and our previous experience. Montgomery inverse is frequently used and its vari-
ants and associated architectures are under constant development. The Subtraction-Free
algorithm for the Almost Montgomery Inverse [37] was recently published at the time of
our research. The Left-Shift Inverse algorithm [16] for the classical modular inverse was
promising because of the low number of subtractions needed to compute the inverse. Both
variants were originally studied for the purpose of implementing cryptographic algorithms,
they are however also suitable for solving systems of linear congruences.

Finally we implement a dedicated hardware processor for solving systems of linear con-
gruences in FPGA and ASIC. We use internal on-chip memory in the form of BLOCKRAM
in FPGA and synchronous static memory block compiled using special memory compiler
in ASIC.
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4. Overview of Our Approach

4.1 FPGA implementation of a pipelined Montgomery
multiplier

The multi-word Montgomery multiplication algorithm can be implemented on various ar-
chitectures in software and in hardware. The architecture consists of a computing pipeline
of p processing elements. Each processing element (PE) consists of 2 partial product gen-
erators, 2 adders and a shift and alignment layer, which includes registers. The latency of
a single PE is 1 clock cycle. The PEs are separated by registers, therefore the latency of
one pipeline stage is 2 clock cycles.

The Y operand and the modulus M are stored in memory. The X operand is stored
in a shift register, since after xi was used in the computation, it is no longer needed and
can be discarded. The partial results coming out of the pipeline are stored in a queue until
they can be used again in the computation.

Our architecture [A.13] differs from [29] in that we do not use redundant carry-save form
of the intermediate result, because the underlying FPGA architecture includes dedicated
carry logic and interconnect. Therefore a binary adder that uses FPGA-specific carry chain
is faster than a carry-save adder, as long as the carry chain is not split into pieces, which
would involve additional delay since the general-purpose routing is much slower than the
dedicated carry interconnection.

4.2 Montgomery multiplier with modified Carry-Save
encoding

We consider implementation on a Field Programmable Gate Array (FPGA) reconfigurable
hardware.

Our improvement of the architecture [32] is based on the fact, that in an FPGA, there
is hardware dedicated for implementing fast ripple-carry adders. We can make use of it
when considering the possible encoding of the operands.

Instead of using normal carry save encoding, we modify the encoding such that a carry
bit is "saved" only for each w-th bit. We break the operands into e words of length w,
e = k/w. If w = 1, we get the conventional carry-save encoding. If w > 1, we get a
modified (relaxed) carry-save encoding (Figure 4.1). Our approach was published in [A.1].

We can use both the conventional and the modified carry-save representation to con-
struct adder trees. Examples of four-to-two carry-save adder trees are presented in Figure
4.2.

When using conventional carry-save encoding, we get (CS, S) = CSA(A1, A2, A3, A4),
where S is the sum, CS is the carry and operands Ai as well as S and CS have the same
width.

Using modified carry-save encoding we have (CS, S) = CSA′(A1, CA1, A2, CA2), where
the sum parts A1, A2 and S are k-bit numbers, whereas the carry parts CA1, CA2 and CS
are e bits long.
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4.2. Montgomery multiplier with modified Carry-Save encoding
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Figure 4.1: Internal structure of adders: a) conventional carry-save adder, b) modified
carry-save adder.
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Figure 4.2: Adder tree using a) carry-save encoding, b) modified carry-save encoding.

The architecture is derived from [32], we consider four-to-two CSA. It consists of two
layers of carry-save adders with k-bit operands. We substitute w-bit sections of the carry-
save adder with sections of ripple-carry adders. Consequently, in each word, w − 1 bits of
the carry part (CS) are zeros, thus do not need to be stored in registers (Figure 4.3).

For w > 1, we extend the carry chain fragments, thus extending also the critical path.
However, due to the fast dedicated adders in FPGA, this needs not necessarily to introduce
significant delay to the critical path.

In the implementation phase the automatic synthesis, placement and routing tools make
use of the dedicated adder hardware present in FPGA and construct several carry chains
of length 2w. The carry chains consist of one adder from the first layer and one adder from
the second layer (Figure 4.3).

When increasing the word size w, we expect the occupied area to decrease, because the
number of carry bits decreases and we save more registers and logic cells. We expect that
the additional delay introduced by the ripple-carry adder segments is compensated by the
savings in routing resources associated with the carry bits.
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Figure 4.3: Multiplier architecture with modified CSA adder tree.

4.3 HW optimization of Left-Shift Inverse

The left-shift inversion algorithm (Algorithm 3.5) can be modified to better utilize hardware
components, as is shown in Algorithm 4.1. The main area of changes is in the way the test
conditions are computed. For example, step 3 of Algorithm 3.5, u 6= ±2c_u & v 6= ±2c_v

can be implemented by masking using an auxiliary register m.
Consider an example using 5 bits, where c_u = 2, and we are testing whether u =

±2c_u. The binary image of 2c_u = 22 is 00100, whereas for −22 it is 11100. Two least
significant bits must be zero. In this case only one mask value is sufficient to test both ±22:
Let m = 11100. Then u = −22 can be tested with a simple equality comparator. The other
case of u = 22 can be tested by masking with shifted value of m. If u & (m� 1) = 000000
then u = 22. This follows from the fact that u was shifted 2 bits left and so the 2 least
significant bits must be zero.

Similarly, the counter comparison tests in steps 10 and 19 of Algorithm 3.5 can be
optimized using flags d and u/v̄. This way we can replace the expensive "≤" and "≥" test
with a simpler equality test and sequential tracking of counter values. This approach is
reflected in the HW optimized Algorithm 4.1.
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4.3. HW optimization of Left-Shift Inverse

Algorithm 4.1 Left-shifting inversion algorithm, HW optimized variant
Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1], where r = a−1 mod p, c_u, c_v

and 0 < c_v + c_u ≤ 2n
1. u := p, v := a, r := 0, s := 1, c_u = 0, c_v = 0, u/v̄ := 1,m := 1, t_pos := 1, t_neg := 1
2. while (t_neg = 1 & t_pos = 1)
3. if (un, un−1 = 0) or (un, un−1 = 1 & OR(un−2, ..., u0) = 1) then
4. if (d = 0 or u/v̄ = 0) then
5. u := 2u, r := 2r, c_u := c_u + 1, u/v̄ := 0
6. else
7. u := 2u, s := s/2, c_u := c_u + 1
8. else if (vn, vn−1 = 0) or (vn, vn−1 = 1 & OR(vn−2, ..., v0) = 1) then
9. if (d = 0 or u/v̄ = 1) then
10. v := 2v, s := 2s, c_v := c_v + 1, u/v̄ := 1
11. else
12. v := 2v, r := r/2, c_v = c_v + 1
13. else
14. if (vn = un) then
15. if (d = 0) then
16. x := u− v, u := 2x, r := 2(r − s), c_u := c_u + 1, u/v̄ := 0, wu := 1
17. else if (u/v̄ = 1) then
18. x := u− v, u := 2x, r := r − s, s = s/2, c_u := c_u + 1, m := 2m, wu := 1
19. else
20. x := v − u, v := 2x, s := s− r, r = r/2, c_v := c_v + 1, m := 2m, wu := 0
21. else
22. if (d = 0) then
23. x := u + v, u := 2x, r := 2(r + s), c_u := c_u + 1, u/v̄ := 0, wu := 1
24. else if (u/v̄ = 1) then
25. x := u + v, u := 2x, r := r + s, s = s/2, c_u := c_u + 1, m := 2m, wu := 1
26. else
27. x := v + u, v := 2x, s := s + r, r = r/2, c_v := c_v + 1, m := 2m, wu := 0
28. t_pos := OR(x & 2m), t_neg := OR(x⊕m)
29. d := OR(c_u⊕ c_v)
30. if (wu = 1) then
31. if (u/v̄ = 1) then
32. s := r
33. else
34. s := r/2
35. if (t_neg = 0 & sm = 1 or t_pos = 0 & sm = 0) then
36. r := 0
37. else
38. r := p
39. if (t_neg = 1) then
40. r := r − s
41. else
42. r := r + s
43. return r
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4. Overview of Our Approach

The original table of operations (Table 3.1) is thus modified resulting in Table 4.1.

Destination Initial Main cycle Postprocessing
u p 2u 2(u+ v) 2(u− v)
v a 2v 2(u+ v) 2(v − u)
r 0 2r r/2 2(r + s) 2(r − s) r + s r − s 0 p r − s r + s
s 1 2r s/2 2(r + s) 2(s− r) r + s s− r r r/2

Table 4.1: Left-Shift Inverse HW optimized operation summary

The computation unit consists of three major parts – datapath, controller and I/O
block. The datapath contains data memory elements (registers) to store the operands
and intermediate values (u, v, r, s, p,m), two adders/subtracters to compute the arithmetic
operations, and multiplexers that switch the cata flow according to the particular operation
to be performed. The controller contains a finite state machine, two counters and some
logic, whose role is to control the progress of computation using control and status signals
to the datapath. The I/O block connect the internal input and output buses to the external
bidirectional bus and contains associated control and status signals of the whole unit.

4.3.1 Datapath

The datapath is depicted in Figure 4.4. It contains two adders/subtractors. ADD1 is a
reversible adder/subtracter, i.e. it performs u+v, u−v or v−u. Subtraction is performed
using bitwise negation of one of the operands and presenting a "hot one" carry-in. Each of
the inputs of the adder can be negated separately, thus determining order of subtraction
(u− v or v − u).

4.3.2 Controller

The controller controls the behavior of the inversion unit. The central unit is the finite
state machine (FSM) that receives status signals and produces control signals that are
connected to the datapath and I/O block. Also contained in the controller are two counters
that hold the values of c_u and c_v and an inequality comparator that compares their
values. Furthermore, the controller contains flag registers that hold values of test logic
functions from the data path.
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4.4 Comparing Montgomery inverse architectures

We implement three main variants of hardware architectures for Montgomery modular
inverse.

When implementing MMI in hardware, we can divide the data path into the master
part that computes gcd(u, v), and the slave part that computes the inverse (uses r, s).
We have studied three different hardware units for computing MMI, which differ in the
implementation of the master part of the data path as depicted in fig. 4.5. We have also
implemented the corresponding controllers.

U V

>>

SUB SUB

>>

U V

SUB

>>

U V

ADD

- +

>>

a) b) c)

Figure 4.5: Master part of AMI: a) Two subtractors, b) one subtractor with swappable
inputs, c) subtraction-free.

The simplified schematic in fig. 4.5 only shows the master part that are needed for the
first phase of MMI, i.e. the Almost Montgomery inverse. The slave part is not shown for
simplicity. The comparison of these architectures was published in [A.3].

These include AMI with one subtractor and AMI with two subtractors, which imple-
ment the first phase of Algorithm 2.7, and Subtract-free AMI, which implements Algorithm
3.4. The slave part of the data path is always the same, it contains one adder for computing
(r + s).

Variants of implementation of Algorithm 2.7 involve computations of both (u−v) (step
5) and (v−u) (step 6). There are two possible approaches to this requirement – extra time
or extra space (chip area).

The first approach leads to AMI with one subtractor, which uses an extra clock cycle to
compute the opposite difference on the same subtractor as the first difference. The master
part contains one subtractor to compute x = (u−v). The output x of the subtractor is then
used for the test (u > v), and if the condition is true, x is used in subsequent computation.
If the test condition is false (x is negative), the same subtractor is used again in the next
clock cycle to compute the opposite difference x = (v − u).

The second approach, AMI with two subtractors, uses the two subtractors to compute
both differences concurrently. Therefore both differences, (u− v) and (v − u), are always
available. The area is larger due to the additional subtractor, but there are no additional
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4.5. Solver of systems of linear equations

clock cycles, therefore this implementation is faster than AMI with one subtractor. The
number of clock cycles needed to compute the inverse corresponds to the number of itera-
tions of the algorithm main loop.

The subtraction-free AMI implementation contains one adder in the master part, and
one adder in the slave part. The result of addition x = (u + v) is always divided by 2
(shifted right), and written into either u or v; the destination register determined by the
sign of the result – this information is contained in carry.

The resulting architecture computes AMI in the same number of cycles as AMI archi-
tecture with two subtractors, but it is considerably smaller (contains 1 less adder). It is
even possible to be slightly faster due to more simple logic (simpler multiplexers, no need
to switch between (u− v) and (v − u)).

4.5 Solver of systems of linear equations

From the upper bound for M , which follows from the Hadamard’s inequality (2.3), a
simplified expression can be derived as M > 2n

n
2Bn, where B = max(aij). We can

estimate the the number of bits of M by taking a binary logarithm, therefore log2M >
log2(2n

n
2Bn) = O(n logB + n log n). The number of bits of M together with the length of

individual moduli (the machine word length) determines the number of moduli needed for
the RNS to represent the solution of the SLE (2.1).

The machine word size e will be selected to accommodate all required individual moduli
mi. Because of the potentially large number of moduli and the requirement for them to
be mutually coprime, they should be prime numbers. This has further advantage that any
nonzero number is invertible, which simplifies the search for a pivot during Gauss-Jordan
elimination.

Papers [1] and [2] design a hardware RNS linear equation solver — Modular System
(MS), depicted in Figure 3.1. However, an implementation of this system was very difficult
at that time. With current technologies, it is possible to implement the system, and
especially FPGA technologies offer a straightforward implementation with reconfiguration
possibilities based on the cardinality of the problem and optimize for time and area.

The error-free solution of an SLE with operations performed in residue arithmetic is
implemented in this special MS. The MS typically has a parallel SIMD architecture, and
consists of a control unit and several identical processing units – (RP)s denoted as RP1,
RP2, . . . , RPp interconnected with a BUS.

Individual residual processors compute the solution of a linear system in the modulus
mk assigned to RPk independently of the others. Due to the fundamental properties of
RNS, the addition is carry-free, subtraction borrow-free across the individual moduli, and
therefore the computation can occur safely in parallel. Once the computation is done, the
result is transformed back into the rational number set either with the Chinese Remainder
Theorem or the Mixed Radix Conversion.

The architecture of the residual processor RPk is depicted in Fig. 4.6 consisting of
Memory, Arithmetic Units AU2, AU3, . . . , AUn+2 and the Control unit.
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Figure 4.6: Arhitecture of the residual processor

In [A.4], we present a FPGA implementation of the residual processor. For an efficient
FPGA implementation, several parts of the system must be redesigned to use resources
found in modern FPGAs. This is true especially for the memory architecture, which in
[2] used asynchronous logic and custom memory elements. We present a new memory
architecture using standard RAM blocks found in most recent FPGAs. We also redesigned
the addressing and pivoting logic to support efficient implementation of the elimination
algorithm used.

In [A.5], we extend the implementation to ASIC technology in 130 nm standard cells,
and compare area and time performance of individual components as well as the complete
residual processor. For internal memory, we use compiled synchronous static memory
blocks available with ASIC standard cell library.

In [A.6], we compare the ASIC implementation in three different standard cells libraries,
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4.5. Solver of systems of linear equations

namely Synopsys/GlobalFoundries 130 nm and Faraday/UMC 110 nm and 55 nm. The
130 nm and 110 nm libraries are high performance libraries, while the 55 nm library is a
low power library. For the internal memory, we use the memory compiler avaliable in each
library. The results show that considering a suitable die size around 1 cm2 , the maximum
matrix dimension is 1000 for the 130 and 110 nm technologies, and 2000 for the 55 nm low
power technology.

In [A.7], we integrate the Residual Processor as part of a System on Chip architecture
on an FPGA with an integrated CPU and peripheral interconnect.

In [A.8], we bring together the previous results and create the modular system that
performs all the tasks necessary to solve the systems of linear congruences and prepare
the solutions in individual moduli of the RNS. Together with the host system, the final
solution of the system of linear equations is computed (as a rational number or to any
desired precision).
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Chapter5
Author’s Relevant Papers

This chapter presents the main results of our research. In the following six sections, a
collection of our papers is presented as they were published in the coresponding conference
proceedings or journal. Each paper is preceded by a short introduction in order to set it
in context.

The following papers are included:

RP1 [A.1] Montgomery Multiplication on FPGA with Modified Carry-Save Encod-
ing. This paper examines a modification of the carry-save encoding scheme for
the purpose of optimizing a FPGA implementation of a Montgomery modular
multiplier.

RP2 [A.3] Comparing Subtraction-Free and Traditional AMI. This paper compares
three architectures for Almost Montgomery Inverse modular inverse differing
in the type and number of arithmetic operations used. Implementation results
in FPGA are compared.

RP3 [A.4] Dedicated Hardware Implementation of a Linear Congruence Solver in
FPGA. This paper details an FPGA implementation of a solver of systems of
linear congruences.

RP4 [A.5] Comparison of FPGA and ASIC Implementation of a Linear Congruence
Solver. Evolving from RP3, the SLC solver is adapted to an ASIC technology
with memory compiler and the results are compared.

RP5 [A.6] An ASIC Linear Congruence Solver Synthesized with Three Cell Librar-
ies. The SLC solver from RP3 and RP4 is implemented in three different
standard cell libraries comparing the results in order to estimate attainable
size and performance.

RP6 [A.8] Design of a Residue Number System Based Linear System Solver in Hard-
ware. This paper presents a system for solving Linear system solver in hard-
ware using the SLC solvers presented in RP3-5.

The following figure 5.1 illustrates the relationships among individual papers presented
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in this chapter.
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Figure 5.1: Relationships among author’s relevant papers.
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5.1. RP1 – Montgomery Multiplication on FPGA with Modified Carry-Save Encoding

5.1 RP1 – Montgomery Multiplication on FPGA with
Modified Carry-Save Encoding

Modular multiplication is one of the main operations in Gauss-Jordan elimination for
solving systems of linear congruences. It is also used heavily in cryptography, for example
in RSA or elliptic curve cryptography. Although RP1 was originally written mainly with
cryptography in mind, we feel it is still relevant for the purpose of solving linear systems
and it is important to examine possible optimization of this operation on FPGA.

The paper was published in International Conference on Signals and Electronic Sys-
tems, ICSES’04, 2004 [A.1]. This paper deals with optimization of hardware Montgomery
multiplication units implemented in FPGA. FPGAs typically contain dedicated struc-
tures for implementation of arithmetic operations. This work focuses on efficient usage
of dediceted carry chain logic for implementation of carry-save encoded Montgomery mul-
tipliers.

Traditionally, carry-save encoding aims to circumvert the problem of long carry chains
increasing the critical path delay of artithmetic units by saving the carry bits for later
clock cycles. In FPGAs, the same problem is solved by introducing dedicated carry chain
logic structures that are much faster than the generic logic and interconnection fabric. Our
approach is to combine the two aspects by modifying the carry save encoding to save less
bits, effectively trading the dedicated carry chain length against the amount of carry-save
bit logic. Our architecture is based on [32], and we analyze the impact of saving less carry
bits on the time and area of the multiplication unit.
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Montgomery Multiplication on FPGA with
Modified Carry-Save Encoding

J. Buček, R. Lórencz

Department of Computer Science and Engineering, Faculty of Electrical Engineering,
Czech Technical University, Karlovo náměstí 13, 12135 Praha 2, Czech Republic

e-mail: bucekj@fel.cvut.cz, lorencz@fel.cvut.cz

Abstract  –  The  modular  multiplication  is  the  core
operation and also  the  most  time consuming operation in
many cryptographic applications such as RSA and elliptic
curve  cryptography.  We  present  a  modification  of  an
architecture  for  the  Montgomery  algorithm  for  modular
multiplication  in  GF(p)  on  a  Field  Programmable  Gate
Array (FPGA).  Montgomery multiplication is  widely  used
because  it can be implemented in faster hardware than the
conventional modular multiplication.
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I.  INTRODUCTION

As  the  demand  for  secure  computing  and  secure
communication grows,  cryptographic applications play a
more  important  role  than  ever.  The  cryptographic
algorithms used to implement the security properties are
often based on modular arithmetic operations, particularly
modular  exponentiation  which  is  achieved  by repeated
modular multiplication.

The  Montgomery  multiplication  algorithm  is  often
used to implement these operations.  As opposed to the
conventional  modular  multiplication,  the  Montgomery's
algorithm [1]  does  not  use division by the modulus  N,
rather it  uses division by  2i,  which is faster,  since it  is
done merely by shifting (i is an integer).

Moreover, the reduction step is performed depending
on  the  least  significant  bit  (LSB)  of  the  intermediate
result,  rather  than  on  the  MSB,  as  in  the  case  of  a
conventional multiply. This causes another speedup, since
the critical path does not necessarily go through the full
carry chain of the adder.  

Montgomery  multiplication  operates  on  the  set  of
images  (the  Montgomery  domain).  The  Montgomery
image of the k-bit number a is defined as a=a R mod N
where  R = 2k,  a < N < R and  N is  an  k-bit  number
relatively  prime  to  R.  The  Montgomery  multiplication
computes (1).

 

c=MM a ,b=a b R­1 mod N (1)

It can be shown that c is the image of c = ab, since

c=a b R­1 mod N
c=a b R mod N
c=c R mod N

(2)

Assuming  that  A=∑
i=0

k­1

ai 2
i and  S=∑

i=0

k­1

si 2
i,  we  may

describe  the  basic  binary  Montgomery  multiplication
algorithm as presented in Algorithm 1. 

Algorithm 1. Binary GF(p) Montgomery multiplication
Inputs: A, B, N, k
Output: S = MM(A, B)

S := 0
for i = 0 to k-1

S := S + ai B
S := S + s0 N
S := S/2

end for

II.  PREVIOUS WORK

There  are  applications,  particularly  in  cryptography,
where  long  operands  are  common (for  example,  more
than 512 bits). In order to achieve sufficient speed of the
multiplication,  one  has  to  find  a  way around the  long
carry  path  implied  by  the  adders.  There  are  several
approaches to this problem [2,3,4,5]. 

One possible method divides the operand into words
and treats  them separately,  splitting the carry chain by
registers  and  thus  implementing  a  pipeline.  Another
possible  method  eliminates  the  carry  chain  by  using
redundant Carry Save (CS) encoding of the intermediate
result S.

42



5.1. RP1 – Montgomery Multiplication on FPGA with Modified Carry-Save Encoding

These methods can be combined together [4]. In order
to  implement  more  complex  computation,  such  as  a
modular exponentiation, it is necessary to reuse the result
of  one  multiplication  in  subsequent  multiplications.
Hence,  it  is  desirable to  avoid unnecessary conversions
between redundant and non redundant forms of any of the
operands.

The architecture proposed at [6] solves this by leaving
both operands  A,  B as well as the result  S in CS form.
This  approach  ensures  high  throughput  of  an  RSA
exponentiation  because  the  intermediate  results  can  be
directly used as operands of the next multiplication.

III.  OUR APPROACH

We consider implementation on a Field Programmable
Gate Array (FPGA) reconfigurable hardware.

Our improvement of the architecture [6] is based on
the fact, that in an FPGA, there is hardware dedicated for
implementing fast ripple-carry adders. We can make use
of  it  when  considering  the  possible  encoding  of  the
operands.

Instead  of  using  normal  carry  save  encoding,  we
modify the encoding such that a carry bit is “saved” only
for each w-th bit. We break the operands into e words of
length w, e = k/w. If w = 1, we get the conventional carry
save  encoding.  If  w > 1,  we  get  a  modified  (relaxed)
carry save encoding (Fig. 1).

Fig. 1: a) carry save adder, b) modified carry save adder.

We can use both the conventional  and the modified
carry  save  representation  to  construct  adder  trees.
Examples  of  four-to-two  carry  save  adder  trees  are
presented in Fig. 2.

Fig. 2: Adder tree using a) carry save encoding, b)
modified carry save encoding.

When using conventional carry save encoding, we get 
(CS,S) = CSA(A1,A2,A3,A4), where S is the sum, CS is the
carry and operands Ai as well as S and CS have the same
width.

Using  modified  carry  save  encoding  we  have
(CS,S) = CSA'(A1,CA1,A2,CA2), where the sum parts A1, A2

and S are k-bit numbers, whereas the carry parts CA1, CA2

and CS are e bits long.

Algorithm 2.  Binary GF(p) Montgomery multiplication
with carry save encoding
Inputs: A, CA, B, CB, N, k
Output: (CS,S) = MM(CA, A, CB, B)

(CD, D) := CB + B + N
(CS, S) := 0
for i = 0 to k-1

q := CS + S + ai (CB + B) mod 2
if ai = 0 and q = 0 then (CX,X) = (0,0)
elsif ai = 0 and q = 1 then (CX,X) = (0,N)
elsif ai = 1 and q = 0 then (CX,X) = (CB,B)
else (CX,X) = (CD,D)
end if
(CS, S) := ( CS + S + CX + X ) / 2

end for

The architecture is derived from [6], we consider four-
to-two CSA. It consists of two layers of CS adders with k-
bit operands. We modify the architecture in such a way
that we substitute  w-bit sections of the carry-save adder
with fragments of  ripple-carry adders.  Consequently,  in
each word, w-1 bits of the carry part (CS) are zeros, thus
do not need to be stored in registers (Fig. 3). 

Fig. 3: Multiplier architecture with modified CSA adder
tree

For  w > 1, we extend the carry chain fragments, thus
extending also the critical path. However, due to the fast
dedicated adders in FPGA, this needs not necessarily to
introduce significant delay to the critical path.

In the implementation phase the automatic synthesis,
placement and routing tools  make use of the dedicated
adder  hardware present  in FPGA and construct  several
carry chains of length 2w. The carry chains consist of one
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adder from the first layer and one adder from the second
layer (Fig. 3).

When  increasing  the  word  size  w,  we  expect  the
occupied area to decrease, because the number of carry
bits decreases and we save more registers and logic cells.

We expect that the additional delay introduced by the
ripple-carry  adder  segments  is  compensated  by  the
savings in routing resources associated with the carry bits.

IV.  IMPLEMENTATION

The  architecture  was described  in  VHDL, simulated
and synthesized to an FPGA.

The VHDL description was performed using generic
constants for operand size  k and word size  w. Resulting
code was synthesized using Synplicity Synplify Pro. The
synthesized  netlist  was  then  placed  and  routed  using
Xilinx ISE 5.2i.

The  placement  and  routing  was  done  automatically.
The desired clock frequency was set at 80 MHz and the
implementation process was run multiple times, adjusting
the  clock  frequency  constraint  each  time  in  order  to
obtain the best result possible for the given configuration.

V.  RESULTS

We have implemented the multiplier with configurable
operand and word size.  The implementation results  for
operand  size  k = 512,   1024  and  2048  are  presented
below. 

Table 1. Implementation results for k = 512 

Table 2. Implementation results for k = 1024

Table 3. Implementation results for k = 2048

The area occupation decreases  with increasing word
size  w. The time-area product has its minimum in  w = 4
for k = 1024 and 512, and in w = 8 for k = 2048. For the
minimum time-area product,  the  area  saving more than
20% relatively to  the  conventional  carry-save encoding
(w = 1). In Table 1 to 3, the minimum time-area product
is shown in bold.

Our architecture slows down the clock frequency, as
the prolonged carry chains enlarge the critical path delay.
The savings in routing resources have lower effect than
expected, because in the original CSA design, the routing
paths were mostly local.

VI.  CONCLUSIONS

We  have  implemented  the  Montgomery  modular
multiplication  in  FPGA  using  modified  carry  save
encoding.  By utilizing the  dedicated  carry logic  in  the
FPGA, we have been able to save circuit area. The results
show a decrease in occupied area for word size  w > 1.
The clock frequency also decreases, however, we can find
a  minimum time-area  product  for  w > 1  while  saving
more than 20% area.
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1 4633 147,08 31,50
2 4231 121,30 34,88
4 3644 116,66 31,24
8 3453 99,92 34,56

Word size 
(w) Area (slices)

Max Frequency 
(MHz) Time x Area

1 9328 129,8 71,86
2 9210 116,5 79,06
4 7373 113,6 64,9
8 7088 92,83 76,35

32 6574 87,82 74,86
64 6487 64,6 100,43

128 6437 48,91 131,62

Word size 
(w) Area (slices)

Max Frequency 
(MHz) Time x Area

1 18873 114,65 164,61
2 18086 105,24 171,85
4 15384 94,34 163,07
8 14280 89,53 159,49

16 13436 80,19 167,56

Word size 
(w) Area (slices)

Max Frequency 
(MHz) Time x Area
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5.2 RP2 – Comparing Subtraction-Free and Traditional
AMI

Another important operation when solving systems of linear coruences is the modular
inverse. It is used in each elimination step to compute the multiplicative inverse of the
pivot, a value used subsequently in multiplication to process the remaining elements in the
pivot’s row.

This paper was published in Design and Diagnostics of Electronic Circuits and systems,
DDECS’06, 2006 [A.3]. The paper deals with FPGA implementations of multiplicative
inverse operations in GF(p). More precisely, it compares three variants of the Almost
Montgomery Inverse (AMI), an operation that computes |a−12k|n, and is the first part of
the computation of the Montgomery inverse. The variants studied are the Subtraction-Free
AMI, and the classical AMI with subtractions in two variants (one and two subtractors).

The relatively new Subtraction-Free algorithm makes use of the fact that in GCD
computation, we can keep the main operands in separate positive and negative forms,
thereby solving the problem of direction of subtraction, and potentially simplifying the
hardware unit. The algorithm was first published in [37], and in our paper we perform a
quantitative comparison of multiple variants implemented in FPGA. Our work has been
cited in 4 other publications at this time.
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Abstract— This paper presents FPGA implementations of tra-
ditional Almost Montgomery Inverse and Subtraction-free Al-
most Montgomery Inverse and compares their space and time
properties. The subtraction-free algorithm with its hardware
architecture overcomes the disadvantages of currently known
methods (e.g. [2]). The ”>” or ”<” tests that require either extra
clock cycles or extra chip area are completely eliminated.

I. INTRODUCTION

Calculation of the modular inverse forms a part of various
cryptographic algorithms, such as the decipherment of the RSA
algorithm [10], digital signature systems [9], and so on. It is
especially important in computing point operations on elliptic
curves [8], or in accelerating the modular exponentiation
operation using the so-called addition-subtraction chains [1].
Many cryptographic applications require an efficient hardware
implementation of the modular inverse due to its time com-
plexity and also for security reasons.

The majority of algorithms for computing the modular
inverse are derived from the Extended Euclidean Algorithm
[5]. The modular arithmetic operations are often performed
in a Galois Field GF(p), where p is prime. An efficient
”left-shifting” algorithm for computing the modular inverse in
GF(p) is described in [6]. This algorithm avoids the ”less-
than/greater-than” tests that are in GF(p) subject to carry
propagation delays. The algorithms discussed in this paper
assume GF(p) as well.

One class of modular inversion algorithms computes the
Montgomery Modular Inverse (MMI, [4]), which is defined
as MMI(a) ≡ a−122n (mod p), where n = dlog2pe.
MMI is computed in two steps. The first step computes
the Almost Montgomery Inverse (AMI), AMI(a) ≡ a−12k

(mod p), where k ∈ [n, 2n]. The second step adjusts the result,
multiplying it by 22n−k. In this paper, we focus only on the
first step, thus computing AMI.

II. SUBTRACTION-FREE ALMOST MONTGOMERY INVERSE

This paper presents the first implementation of the
Subtraction-Free AMI algorithm [7], which is a new variant
of AMI published in [4].

The traditional algorithm for AMI uses the test (u > v),
which involves subtraction, and the sign of the difference
determines the test result. If the condition is true, the result
of this subtraction (u − v) can be used in further processing
(dividing by two, assigning into u). However, if the condition
is false, result of the subtraction is negative and we need to

compute the opposite value. When implementing in hardware,
this requirement may present a significant overhead, since we
must compute the difference (v − u) or negate the previous
result. A variant of the traditional AMI is given in Algorithm 1.

ALGORITHM 1, AMI WITH SUBTRACTIONS

Input: a ∈ [1, p− 1] and p > 2 is prime
Output: o ∈ [1, p− 1] and k, where

o = a−12k mod p and n− 1 ≤ k < 2n
1. u← p, v ← a, r ← 0, s← 1, k ← 0
2. while(1)
3. if (uLSB == 0) then
4. u← u/2, s← 2s
5. else if (vLSB == 0)
6. v ← v/2, r ← 2r
7. else
8. x = u− v, y = r + s
9. if (x == 0) then return o← s and k
10. if (CARRY (x) == 1) then
11. u← x/2, r ← y, s← 2s
12. else
13. v ← (x = (v − u))/2, s← y, r ← 2r
14. k ← k + 1

ALGORITHM 2, SUBTRACTION-FREE AMI

Input: a ∈ [1, p− 1] and p > 2 is prime
Output: o ∈ [1, p− 1] and k, where

o = a−12k mod p and n− 1 ≤ k < 2n
1. u← (−p), v ← a, r ← 0, s← 1, k ← 0
2. do
3. if (uLSB == 0) then
4. u← u/2, s← 2s
5. else if (vLSB == 0)
6. v ← v/2, r ← 2r
7. else
8. x = u+ v, y = r + s
9. if (CARRY (x) == 0) then
10. u← x/2, r ← y, s← 2s
11. else
12. v ← x/2, s← y, r ← 2r
13. k ← k + 1
14 while (x 6= 0)
15. return o← s and k
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Algorithm 2 computes AMI completely without subtrac-
tions, thus avoids the overhead of computing both (u − v)
and (v − u). To achieve the same result as in Algorithm 1, it
computes (u+v), where one of the addends must be negative.
By keeping u always negative and v always positive, we
can compute an equivalent of the differences in the original
algorithm, without subtraction.

It can be shown that in every iteration of the AMI cal-
culation, same values appear in v, r, s in Algorithm 2 as in
Algorithm 1, while opposite values appear in u [7].

The negative values in u are represented using two’s com-
plement code. This allows us to use normal binary adders.
Moreover, the information about the sign of u does not need
to be stored explicitly, because u cannot be positive (and v
cannot be negative). Therefore, we do not need any extra bits
for storing the negative values, compared to the number of bits
required to represent the always positive values in Algorithm 1.

By avoiding the (u > v) test, our approach either saves chip
area (compared to [2]; instead of two subtractors, one needs
a single adder) or performs faster (compared to [3]; no extra
clock cycles are needed). Furthermore, there is no need for
multi-function arithmetic units (adders/subtractors).

There are other, more complex architectures for AMI and
MMI, which deal with inversion of very long numbers (thou-
sands of bits), thus focus on scalability [11] or use carry-
free arithmetics [12]. Our implementations focus on shorter
numbers (hundreds of bits), which are suitable for elliptic
curves cryptography, and therefore we focus mainly on small
and fast data paths and controllers.

A. Time Complexity
The time complexity of Algorithm 1 and 2 is determined by

the number of operations in every iteration, which correspond
to the iterations of the binary GCD algorithm. Knuth mentions
in [5] that, for binary gcd(u, v), where u, v ∈ [1, 2n], the
number of iterations and shifts k ≈ 2qn, number of addi-
tions/subtractions s ≈ qn, number of (u > v) tests t ≈ (qn)/2
(Algorithm 1 only), where q ≈ 0.70597.

Assuming that all operations (additions, subtractions, shifts,
tests) are performed in a single cycle and that we are able
to add and shift in a single cycle, the speedup S of AMI
calculation using Algorithm 2 compared to Algorithm 1 is:
S ≈ k+t

k = 1 + (qn)/2
2qn = 1.25. If additions, subtractions

and (u > v) tests take more clock cycles than shifts because
of carry propagation delay, which would be true for large n
(n > 512), then the speedup is

S(f(n)) ≈ k+f(n)s+t(1+f(n))

k + f(n)s
= 1 +

(1+f(n))/2

2 + f(n)
, (1)

where f(n) is a real function of a positive integer n such that
0 ≤ f(n) ≤ f(n+ 1) for all n. The function f(n) represents
additional clock cycles due to carry chain propagation delay.
Using equation (1) with f(n) = 0 for some small n we obtain
S ≈ 1.25 as shown above. If n → ∞, hence f(n) → ∞, we
obtain the maximum theoretical speedup

Smax ≈ lim
f(n)→∞

S(f(n)) = 1.5,

which can be achieved with the proposed Algorithm 2 com-
pared to Algorithm 1.

This of course assumes that operations with r and s are
performed in parallel with operations performed with u, v as
specified in Algorithm 1 and 2.

Unlike Algorithm 1, Algorithm 2 needs the negative value
of p. It can be pre-calculated once for use in AMI as well
as in other operations that require reductions modulo p. For
example, −p is actually more useful than p even for subsequent
AMI to MMI conversion. The AMI only needs to be shifted
certain number of times, subtracting p (that is, adding −p)
whenever necessary to keep the result within [1, p−1]. Again,
only an adder is needed.

III. AMI IMPLEMENTATIONS WITH SUBTRACTORS

When implementing AMI in hardware, we can divide the
data path into the master part that computes gcd(u, v), and the
slave part that computes the inverse (uses r, s). We have studied
three different hardware units for computing AMI, which differ
in the implementation of the master part of the data path, and
in the corresponding controller.

These include AMI with one subtractor and AMI with
two subtractors, which implement Algorithm 1, and Subtract-
free AMI, which implements Algorithm 2. The slave part of
the data path is always the same, it contains one adder for
computing (r + s).

Variants of implementation of Algorithm 1 involve compu-
tations of both (u − v) and (v − u). There are two possible
approaches to this requirement – extra time or extra space (chip
area). The first approach leads to AMI with one subtractor,
which uses an extra clock cycle to compute the opposite
difference on the same subtractor as the first difference. The
second approach, AMI with two subtractors, uses the two
subtractors to compute both differences concurrently.

A. AMI with One Subtractor

This implementation uses the time approach. The master
part contains one subtractor to compute x = (u − v). The
output x of the subtractor is then used for the test (u > v), and
if the condition is true, x is used in subsequent computation. If
the test condition is false (x is negative), the same subtractor
is used again in the next clock cycle to compute the opposite
difference x = (v − u).

By using only one subtractor in the master part, we save area
at the expense of extra clock cycles each time the test fails.
However, some area overhead still applies – we have to connect
multiplexers to the inputs of the subtractor. Hence the area
saved by using only one subtractor depends on the particular
technology platform, namely the area sizes of subtractors and
multiplexers.

The number of clock cycles needed to compute AMI is
greater than the number of iterations of the main loop of
Algorithm 1
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B. AMI with Two Subtractors

This implementation uses the space approach. There are
two subtractors in the master part, therefore both differences,
(u − v) and (v − u), are always available. The area is larger
due to the additional subtractor, but there are no additional
clock cycles, therefore this implementation is faster than AMI
with one subtractor. The number of clock cycles needed to
compute the inverse corresponds to the number of iterations
of the algorithm main loop.

IV. SUBTRACTION-FREE AMI IMPLEMENTATION

The subtraction-free AMI implementation contains one
adder in the master part, and one adder in the slave part.
The result of addition x = (u + v) is always divided by 2
(shifted right), and written into either u or v; the destination
register determined by the sign of the result – this information
is contained in carry.

The resulting architecture computes AMI in the same num-
ber of cycles as AMI architecture with two subtractors, but
it is considerably smaller (contains 1 less adder). It is even
possible to be slightly faster due to more simple logic (simpler
multiplexers, no need to switch between (u− v) and (v−u)).

The subtraction-free architecture is faster than AMI archi-
tecture with one subtractor while being approximately equal
in area occupation. It is even possible to be both smaller and
faster because it lacks the extra multiplexers.

V. RESULTS

We have implemented in VHDL three different architectures
for computing AMI: Subtraction-free AMI (SF-AMI, Section
IV), AMI with one subtractor (1-SUB-AMI, Section III-A),
and AMI with two subtractors (2-SUB-AMI, Section III-B).
The target platform is a FPGA device Xilinx Virtex2 3000.

We have synthesized the generic designs using bit lengths
of n = 64, 128, 162 and 256 bits, the results are presented
in Table I. Area occupation is given in slices, the numbers
are gathered from the map report of the Xilinx toolchain. The
minimum clock period is gathered from the post place and
route static timing report.

An important metric is the Time×area product (Table II),
which reflects both the minimum time needed for the computa-
tion of AMI and the chip area occupied by the unit. Therefore,
the numbers for AMI with one subtractor also reflect the
average slowdown of 1.25 caused by the extra clock cycles
needed when an opposite subtraction must be performed.

TABLE I
AREA OCCUPATION (SLICES), MINIMUM CLOCK PERIOD (NS)

SF-AMI 1-SUB-AMI 2-SUB-AMI
area period area period area period

n (bits) (slices) (ns) (slices) (ns) (slices) (ns)
64 347 15.328 411 14.631 393 14.855

128 638 14.369 801 15.189 710 17.777
162 917 19.660 955 19.709 1044 19.380
256 1272 24.591 1269 24.542 1491 24.610

TABLE II
TIME×AREA PRODUCT, SCALED (SLICES*NS/1000)

n (bits) SF-AMI 1-SUB-AMI 2-SUB-AMI
64 5.3 7.5 5.8
128 9.2 15.2 12.6
162 18.0 23.5 20.2
256 31.3 38.9 36.7

VI. CONCLUSION AND FUTURE WORK

We have implemented the recently published Subtraction-
free Almost Montgomery Inverse algorithm in FPGA and
compared it to two different architectures for the traditional
Almost Montgomery Inverse algorithm with subtractions.

Implementation results show that the Subtraction-free AMI
algorithm [7] is suitable for hardware implementation and its
implementation is equally fast as the implementation of AMI
with two subtractors, yet about 13–17% smaller in area.

The Subtraction-free AMI implementation is equally small
as the implementation of AMI with one subtractor, yet it
is about 25% faster. We have observed that for smaller bit
lengths, the Subtraction-free AMI implementation is both
smaller and faster.

Our experiments with FPGA implementations were influ-
enced by the fact that FPGAs contain dedicated hardware
structures for carry chains (adders and subtractors). Our fu-
ture work will focus on implementing the Subtraction-free
algorithm in ASIC. Adding and subtracting numbers to about
256 bits is implementable using conventional binary adders
and these word lengths are suitable for elliptic cryptography,
finding its application, among others, in smart cards.
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5.3 RP3 – Dedicated Hardware Implementation of a
Linear Congruence Solver in FPGA

This paper was published in IEEE International Conference on Electronics, Circuits and
Systems (ICECS) 2012 [A.4]. The third paper examines the FPGA hardware implement-
ation of a solver of systems of linear congruences, the main part of the linear solver.

Main topic of this paper is the architecture of the arithmetic units and memory suitable
or FPGA, and the evaluation of the resulting hardware implementation. Particular interest
lies in the memory architecture, since it forms a bottleneck in the computation, and it must
support the special operations needed in solving linear systems, namely pivoting and result
reordering.

The work is based on [1] and [2] and is further used and extended in our subsequent
relevant papers RP4-6.
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Faculty of Information Technology

Czech Technical University in Prague
Thákurova 9, 160 00 Prague, Czech Republic

Email: { bucekj | xkubalik | lorencz | zahradt }@fit.cvut.cz

Abstract— The residual processor is a dedicated hardware for
solving sets of linear congruences. It is a part of the modular
system for solving sets of linear equations without rounding
errors using Residue Number System. We present a new FPGA
implementation of the residual processor, focusing mainly on the
memory unit that forms a bottleneck of the calculation, and
therefore determines the effectivity of the system. FPGA has
been chosen, as it allows us to optimally implement the designed
architecture depending on the size of the problem. The proposed
memory architecture of the modular system is implemented using
the internal FPGA block RAM. Our goal is to determine the
maximum matrix dimension fitting directly into the FPGA, and
achieved speed as a function of the dimension. Experimental
results are obtained for the Xilinx Virtex 6 family.

I. INTRODUCTION

Residue Number System (RNS), despite being known for a
long time, is becoming a hardware attractive arithmetic today,
not only because it permits us to represent long integers as
independent combinations of small integers based on the Chi-
nese Remainder Theorem, but also because it requires a simple
arithmetic unit. These properties offer natural parallelism, lead
to simpler hardware, and reduce chip size when compared to
a traditional floating point unit implemented in hardware.

RNS is used in areas of digital image processing [1][2],
digital signal processing [3][4][5], and in public-key [6] and
elliptic curve [7][8] cryptography. RNS is also used to simulate
multiple precision arithmetic and for error-free solution of
linear systems [9][10]. Error-free solution of linear systems
is often needed in case of large, dense and ill-conditioned
systems, where rounding errors can lead to long run times due
to stability problems, or even hinder the solution completely.

Performing error-free solution of linear systems on regular
CPUs has large time (and area) complexity. The CPU architec-
ture is usually not optimized for the algorithms and operations
needed (parallelism with respect to multiple modules, modular
arithmetic operations etc).

Papers [11] and [12] design a hardware RNS linear equation
solver — Modular System (MS) — whose implementation
was very difficult at that time. With current technologies, it
is possible to implement the system, and especially FPGA
technologies offer a straightforward implementation with re-
configuration possibilities based on the cardinality of the
problem and optimize for time and area.

RP1 RP2 RP3 RPpRPk

MODULAR SYSTEM
CENTRAL
CONTROL

UNIT

BUS

HOST
SYSTEM

Fig. 1. Architecture of the Modular System [11]

However, for an efficient FPGA implementation, several
parts of the system must be redesigned to use resources found
in modern FPGAs. This is true especially for the memory
architecture, which in [12] used asynchronous logic and cus-
tom memory elements. We present a new memory architecture
using standard RAM blocks found in most recent FPGAs. We
also redesigned the addressing and pivoting logic to support
efficient implementation of the elimination algorithm used.

After a brief introduction of the architecture of the MS for
solution of sets of linear equations (SLE)s Ax = b, the paper
focuses on the memory architecture of the residual processors
(RP)s inside the MS. Next, there follow FPGA implementation
results for various problem sizes, their analyses, and evalua-
tions. Finally, the paper is concluded with the properties of
the FPGA residual processor implementation.

II. ARCHITECTURE OF THE MODULAR SYSTEM

Paper [12] describes the method, the algorithm, and the cor-
responding parallel hardware architecture of the MS (Fig. 1).

It should be noted that evaluation in each modulus is
performed independently of the others and that the addition is
carry-free, subtraction borrow-free across the individual mod-
uli, and therefore the computation can occur safely in parallel.
Once the computation is done, the result is transformed back
into the rational number set either with the Chinese Remainder
Theorem or the Mixed Radix Conversion.

The error-free solution of an SLE with operations performed
in residue arithmetic is implemented in this special MS. The
MS typically has a parallel SIMD architecture, and consists of
a control unit and several processing units – (RP)s denoted as
RP1, RP2, . . . , RPp interconnected with a BUS (see Fig. 1).

III. RESIDUAL PROCESSOR ARCHITECTURE

The architecture of the residual processor RPk is depicted
in Fig. 2 consisting of Memory, Arithmetic Units AU2, AU3,
. . . , AUn+2 and the Control unit.
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Figure 2: Residual processor

The main contributions of both papers are:

• The design of a new hardware architecture of a residual processor (Figure 2 of [15]
and Figure 1). The interconnection of memory and arithmetic units covered by a
patent [16] (see Figure 2). The architecture of RPs lower the time complexities of
the conversion from SLE to SLCs and the SLCs computation by a factor of n.

• An e�cient solution of a problem with negative values of the resulting vector.

• A discussion and calculation of the probability of a failure in the situation when
gcd(M, d) > 1, i.e. dk ⌘ 0 (mod mk) for any k 2 [1, r].

• An introduction of a hardware solution to the so-called ”non-zero residue pivotiza-
tion” of the Gauss-Jordan elimination of SLC.

• A detailed design of the hardware architectures of individual parts of the modu-
lar system with respect to an e�cient execution of basic arithmetic operations in
modular arithmetic.

The method of solving a SLE implemented in the modular system uses only four basic
arithmetic operations, namely addition, subtraction, multiplication and division, to obtain
the solution vector. For solving the SLC using RP’s, four basic arithmetic operations
executed in modular arithmetic are used. An important operation in modular arithmetic
is multiplicative modular inverse because of its largest computational complexity. The
modular system has a very e�cient hardware implementation of addition, subtraction
and multiplication. However, multiplicative modular inverse is realized by a look-up
table (ROM), where for each integer in Galois Field GF(mk), a value of the multiplicative
inverse modulo mk is associated. Such a solution has several drawbacks. First, with
a growing modulus mk the time complexity of the conversion also grows because larger
addresses need to be decoded. The capacity of the ROM grows with the size of mk

exponentially. For some parameters of a SLE to be solved using the modular system the
look-up table takes more space than the residual processor. Due to this fact it was needed
to solve the problem of e�cient computation of the multiplicative inverse (INV unit of
RP, see Figure 2) in Galois Field GF(p), where p is prime, and its implementation in
hardware.

10

Fig. 2. Architecture of the Residual Processor [11]

The memory contains residues of matrix A and vector x
elements. The storage of values of a row of the matrix from
AU registers is performed bitwise via Serial Inputs SI1, SI2,
. . . , SIn+1. Loading of values of rows of Memory to AUs
is done via Serial Outputs SO2, SO3, . . . , SOn+1. The bits
of element values of the first matrix column are read by
the Control unit via the parallel bus PO1. All AUs and the
Control unit are interconnected via Internal Data Buses IDBin
and IDBout. The above RPk architecture can solve systems
of linear congruences (SLC)s Axk ≡ b (mod mk). RPs
together with the Control unit of the MS also support all
conversion operations from integer to RNS and vice versa.
The INV and DET units compute the modular multiplicative
inverse and the determinant of A, respectively.

All SLCs in MS are solved with the Gauss-Jordan elim-
ination with Rutishauser modification [12] (GJR), which is
especially suitable for hardware implementation. The elimina-
tion process in RNS is specific in a way that it has to perform
a so called “nonzero residue pivoting” that was introduced in
[11]. Pivoting and massive data access constitute a bottleneck,
and therefore the memory architecture design is critical and is
dealt with in the next section.

The Rutishauser modification of Gauss-Jordan elimination
implies that the column data is shifted by one column to the
left during each elimination step. The shift is accomplished
by the AUs and the memory interconnection design in Fig. 2.
In addition, the first column of the SLC matrix contains values
of the elements intensively used during the elimination process
and for this reason the output from the first column needs to
be parallel (these values are used in the INV and DET units).
The values in the first column determine the first multiplication
operand in the entire row being processed, both in pivot
elimination and row reduction. The other columns ai2 to ain+1

inclusive are used as the second multiplication operand, and
also for addition operations. Assuming serial-parallel (shift-
add) multiplication, we need to read individual bits of these
values, thus requiring serial access only.

A. New Memory Architecture and Pivoting

The elimination process requires nonzero residue pivoting.
The pivot column is always the first column of the matrix, and
all nonzero values are equally acceptable as pivots. Search for
a pivot is done sequentially; however, this search can be easily
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Fig. 3. New architecture of the Residual Processor including new memory
architecture

performed concurrently with write operations to the memory.
The search is performed while the matrix is loaded or updated
during computation. In most cases, the pivot is passed to the
inversion unit (INV) long before the inverse is needed. In order
for a value to be accepted as a pivot, i) it must be nonzero,
ii) the row has not contained a pivot yet, and iii) no pivot has
yet been found for this elimination step.

Once the pivot is found, its row index must be stored in
a pivot index vector at the address of the current elimination
step. The pivot row must be flagged in order to skip it during
the pivot search performed in subsequent elimination steps. If
no pivot was found, the matrix is singular in this modulus.

The elimination is performed by rows. The architecture must
support addressing of the pivot row first; then sequentially
reduce memory matrix rows, with an exception of the pivot
row which must be skipped. The first value in each row must
be read in parallel. This value is either the pivot, which is
inverted, or a value from a different row, which is negated.

The remaining values in each row are read bit-serial (but
all values concurrently) from the MSb first. This ensures the
correct order for left-shift modular multiplication and addition,
and follows from the design depicted at Fig. 3.

Upon completion of the elimination process, the solution
vector appears in the first column. The order of its elements
corresponds to the pivot row indices and may need to be
reordered. The result is therefore read out in correct order
by addressing through the pivot index vector.
Algorithm 1. Elimination algorithm including the pivoting
instructions from Table I. Parameters: n is matrix dimension,
e is word length.

1. k = 0, assuming pivot is found during loading of matrix
2. while k < n begin
3. PSI
4. GETD
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TABLE I
PIVOTING INSTRUCTIONS USED IN ALGORITHM 1.

Instruction Description
PSI Select pivot row
GETD Read data row from memory
PUT Write data to memory and test for pivot
PTS Test and skip pivot row during reduction
PCRR Reset row counter

5. multiplication of the pivot row with pivot−1

(5e clocks)
6. PUT
7. PCRR
8. repeat n− 1 times begin
9. PTS

10. GETD
11. reduction of other matrix rows using adjusted

pivoting row (5e clocks)
12. PUT
13. end repeat
14. end while

B. Arithmetic Units, Modular Inverse and Controller

The Arithmetic Units AU2, AU3, . . . , AUn+2 and AUD
design closely follows the original design in [12]. The modular
inversion unit INV was originally designed as a look-up table.
However, for larger moduli, this table grows too large, and
therefore we use a new inversion unit computing modular
inverse with the left-shift modular inverse algorithm [13].

The controller contains a finite state machine using a
memory-based transition and output functions. This allows
flexibility with regard to modification and future extensions.

C. FPGA Implementation

The memory architecture as a critical part of the RP can
be divided into two parts: the pivoting unit and common
memories. The pivoting unit is always implemented in FPGA.
Memory can be implemented internally using block RAM
components, or externally e.g. by a DDR SDRAM. The main
implementation differences are in their parameters such as
memory capacity, throughput, and latency. On one hand,
the internal implementation with FPGA memory has small
capacity and low latency, while on the other hand the external
memory provides large capacity but also a high latency.

We design an architecture with the internal memory. We can
estimate the size of the largest matrix with respect to maxi-
mum size of the block RAM given by the FPGA chip type.
Nonetheless, the maximum frequency of the implemented
design cannot be easily estimated or calculated. Our tested
memory architecture consists of two parts: i) the internal
memory, and ii) a pivoting control logic to support addressing
during the calculation in the RP. The design of our memory
architecture is shown in Fig. 3.

The memory matrix consists of the first column ai1 and
the remaining columns ai2 to ai,n+1. All columns share a
common address. During pivot search, the address is taken

from the Row counter and if the pivot is found in the current
row, the address is written into the Pivot index vector at the
address of current elimination step, and the Pivot flag for the
address of the current row is set. At the same time, the pivot
address is stored in the Pivot index register for comparison
during the next elimination step.

IV. EXPERIMENTAL RESULTS

All experiments were conducted on the residual processor
architecture consisting of: data memory, Pivot index, Pivot
flags, counters, arithmetic units, inversion unit, and control
units. The tools used for simulation and implementation were
selected with respect to the hardware programming language.
The design was written in VHDL. The maximum matrix
dimension n and the word length e and are configurable at
synthesis time using generics. The actual matrix dimension,
value of the modulus and matrix data are set at runtime.

The design was simulated, synthesized and implemented
(mapped, placed and routed). The experiments were performed
on one residual processor (single modulus), including the input
data modulo reduction and matrix elimination. (Transforma-
tion into the rational numbers was not performed).

To verify the design, we added test units increasing testa-
bility and observability of the simulated design to verify
the calculation. The test data were generated using Wolfram
Mathematica and converted with a Python script. The simula-
tion of the residual processor architecture ran within Mentor
ModelSim. The simulation results and Mathematica results
were compared by another script. The simulation was done for
matrices up to n = 100, greater matrices were not simulated
due to a high simulation time.

The implementation process started after simulation, when
correctness matrix calculation was verified. We tested several
different matrix dimensions, and always set the word length
to 24 bits. The block RAM modules were inferred from a
functional description by the synthesis tool. Each column
(ai1 to ai,n+1) is implemented as a block RAM module.
The memory is not always used effectively, depending on the
number of rows. Each memory module has the full capacity
given by the width of its address bus, that is a power of
two. Therefore the memory utilization increases by a step
when the number of address bits changes. The number of
arithmetic units was automatically generated by the selected
matrix dimension.

The Xilinx FPGA platform was selected for all tests.
We used Xilinx ISE to synthesize and implement our design
to the FPGA. We selected the FPGA with the highest block
RAM memory capacity in the Virtex 6 family, that is, the
xc6vsx475t-2-ff1156. In order to get a good estimate of
the best achievable timing, we set the “High effort” with
“Continue on Impossible” options for the implementation part.
Constraining the timing would achieve even better timing. We
gathered the minimum period, logic and memory utilization
from the implementation (post place and route) report files.
The results of our experiments are shown in Table II.

691
52



5.3. RP3 – Dedicated Hardware Implementation of a Linear Congruence Solver in FPGA

TABLE II
IMPLEMENTATION RESULTS FOR THE FPGA RESIDUAL PROCESSOR

ARCHITECTURE (FPGA IS XILINX XC6VSX475T).

Area utilization Time
n slices %slices BRAM %BRAM TP[ns] fclk[MHz] Telim [ms]

100 4223 6% 101 10% 6 166 7.2
300 12194 16% 301 28% 7 143 74.8
500 19277 26% 501 47% 9 111 266.6
700 29394 40% 701 66% 11.4 88 658.2
900 38372 52% 901 85% 12.7 78 1216.6

1000 42368 57% 1001 94% 13 77 1537.1

The n column denotes the matrix dimension. The “slices”
and “BRAM” columns are the number of used slices and
used block RAMs also with the percentage of occupied FPGA
resources (xc6vsx475t). The “TP” and “fclk” columns are
minimum clock periods and maximum operation frequencies.
The “Telim” column shows the time in milliseconds to solve
a set of linear congruences for one modulus depending on
minimum clock period for the selected matrix dimension.

The elimination time (Telim) assumes the data are already
loaded and stored in memory and elimination process is in
run. The load part takes only a small part of all time needed
for solution of a set of linear congruences. For example, for
matrix dimension n = 100, the load process takes only 12.7%,
while for n = 1000 it takes only 11.7%.

The results show that our residual processor architecture
allows for a maximum matrix size of approx. 1000 rows by
1001 columns with a word size of 24 bits in the chosen FPGA
type. Even with the maximum tested matrix dimension of
1000, which uses more than 90% of the available block RAM,
only approx. 60% of all available slices in FPGA are used.

The clock period increases with the increasing matrix di-
mension. Static time analysis shows that the main parts of the
delay in the circuit are in addressing, control and inner data
bus signals. The fanout of signals significantly increase when
size of matrix increases. For comparison, on a CPU, solving
a SLC of dimension 100, 500 and 1000 takes approximately
3 ms, 424 ms, and 3.37 s, respectively (Intel T9400 CPU at
2.53GHz, cache size 6144 KB, C language compiled with
GCC). This shows that for n = 1000, our design is approx.
2 times faster. In case of future ASIC implementation of our
design, we can expect even greater speedup (which is difficult
to predict, but can reach 100 or more).

Further work will focus on the design of an external memory
interface, which will be influenced by the limited FPGA
input/output pins. The acquired results will be used to design
the whole system for solving SLEs.

V. CONCLUSION

We have designed a Residual Processor (RP) architecture
which solves a set of linear congruences. RP was designed
with a focus on its effective implementation in FPGA for
various problem sizes with a special attention to the memory
architecture. The memory design is critical to the RP because
of massive data access and pivoting. RPs are portions of a
Modular System for solving sets of linear equations in RNS.

All important parts of the RP architecture, such as data
memory, Pivot index, Pivot flags, counters, arithmetic units,
inversion unit and control unit were implemented and tested
in a Xilinx Virtex 6 FPGA with the largest RAM size. The
results show that our RP architecture allows for a maximum
matrix size of approx. 1000 rows by 1001 columns with a
word size of 24 bits in the chosen FPGA type. The maximum
tested matrix dimension of 1000 uses more than 90% of the
available block RAM and approximately 60% of all available
slices in the FPGA while being approx. 2 times faster than a
CPU software implementation.

Future work will focus on a new RP architecture with
external memory and limited numbers of AUs. Also bitwise
communication between internal memory and AUs will be
studied. Next, we will implement the RP in ASIC and evaluate
its performance.
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5.4 RP4 – Comparison of FPGA and ASIC Implement-
ation of a Linear Congruence Solver

This paper was published in Euromicro Conference on Digital System Design (DSD 2013)
[A.5]. In this paper, we adapt the architecture of the solver of systems of linear congruences
to ASIC technology. Memory architecture was adapted to the memory compilers available
with the ASIC technology library. The results are compared with FPGA. The results of
this paper are used in our subsequent relevant papers RP5-6 in order to examine the
possibilities of a hardware system for solving systems of linear equations.
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Abstract—Residual processor (RP) is a dedicated hardware
for solution of sets of linear congruences. RPs are parts of a
larger modular system for error-free solution of linear equa-
tions in residue arithmetic. We present new FPGA and ASIC
RP implementations, focusing mainly on their memory units
being a bottleneck of the calculation and therefore determining
the efficiency of the system. First, we choose an FPGA to easily
test the functionality of our implementation, then we do the
same in ASIC, and finally we compare both implementations
together. The experimental FPGA results are obtained for
Xilinx Virtex 6, while the ASIC results are obtained from
Synopsys tools with a 130 nm standard cell library. Results
also present a maximum matrix dimension fitting directly into
the FPGA and achieved speed as a function of the dimension.

Keywords-system of linear equations; residue number sys-
tem; error-free computation; FPGA; ASIC

I. INTRODUCTION

Solving systems of linear equations is one of the most fre-
quent tasks in scientific computation. Traditionally, solution
of such systems is carried out in floating point arithmetic
bringing its associated rounding errors. Although there are
algorithms minimizing the impact of rounding errors upon
the solution, in some cases this does not need to be enough.
An error-free solution of linear systems is often needed in
case of large, dense, and possibly ill-conditioned systems,
where needless rounding errors can result in longer run
times, or even swamp the solution completely. One of the
methods to go around rounding errors is to perform an error-
free computation by means of residue arithmetic — Residue
Number System (RNS).

RNS permits us to represent long integers as indepen-
dent combinations of small integers based on the Chinese
Remainder Theorem. It requires a simple arithmetic unit
without any rounding and normalization logic that would be
needed for floating point calculation. These properties offer
natural parallelism, lead to a simpler hardware, and reduce
chip size when compared to a traditional floating point unit
implemented in hardware.

RNS is used in areas of digital image processing [1],
digital signal processing [2], and in public-key [3] and
elliptic curve [4] cryptography. RNS is also used to simulate
multiple precision arithmetic and for error-free solution of
linear systems [5].
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Figure 1. Architecture of the Modular System [7]

Our previous work [6] presents an FPGA implementation
of a residual processor (RP) being a dedicated hardware
for solution of sets of linear congruences. In this paper, we
implement RP in ASIC and compare the achieved time and
area complexity to its FPGS implementation.

Papers [7] and [8] design a hardware RNS linear equation
solver — Modular System (MS) — whose implementation
was very difficult at that time. With current technologies,
it is possible to implement the system, either using FPGAs
offering a straightforward implementation with reconfigura-
tion possibilities, or in ASIC to achieve higher speeds and
possibly a lower price, when produced in larger quantities.

After an extensive redesign in [6] to use block RAM
cells found in most recent FPGAs, we implemented the
architecture in ASIC using a 130 nm technology with
standard cells and compiled memory modules. We also
redesigned the addressing and pivoting logic to support
efficient implementation of the elimination algorithm used.

After a brief introduction of the MS architecture perform-
ing solution of sets of linear equations (SLE)s Ax = b, the
paper focuses on the memory architecture of RPs inside MS.
Next, there follow FPGA and ASIC implementation results
for various problem sizes, their analyses, and evaluations.
Finally, the paper is concluded with FPGA and ASIC RP
implementation properties.

II. ARCHITECTURE OF THE MODULAR SYSTEM

Paper [8] describes the method, the algorithm, and the cor-
responding parallel hardware architecture of the MS (Fig. 1).
Evaluation in each modulus is performed independently of
the others with the addition carry-free, subtraction borrow-
free across the individual moduli, and thus the computation
can occur safely in parallel. Once the computation is done,
the result is transformed back into the rational number set
either with the Chinese Remainder Theorem or the Mixed
Radix Conversion.
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Figure 2. Architecture of the Residual Processor

The error-free solution of an SLE with operations per-
formed in residue arithmetic is implemented in this special
MS. The MS typically has a parallel SIMD architecture
consisting of a control unit and several processing units —
RPs denoted as RP1, RP2, . . . , RPp interconnected with a
BUS (see Fig. 1).

III. RESIDUAL PROCESSOR ARCHITECTURE

The architecture of the residual processor RPk is depicted
at Fig. 2 and consists of Memory, Arithmetic Units AU2,
AU3, . . . , AUn+2 and the Control unit.

The memory contains residues of matrix A and vector
x elements. The storage of values of a row of the matrix
from AU registers is performed bitwise via Serial Inputs
SI1, SI2, . . . , SIn+1. Loading of values of rows of Memory
to AUs is done via Serial Outputs SO2, SO3, . . . , SOn+1.
The bits of element values of the first matrix column are read
by the Control unit via the parallel bus PO1. All AUs and
the Control unit are interconnected via Internal Data Buses
IDBin and IDBout. The above RPk architecture can solve
systems of linear congruences (SLC)s Axk ≡ b (mod mk).
RPs together with the Control unit of the MS also support all
conversion operations from integer to RNS and vice versa.
The INV and DET units compute the modular multiplicative
inverse and the determinant of A, respectively.

All SLCs in MS are solved with the Gauss-Jordan elimina-
tion with Rutishauser modification [8] (GJR), which is espe-
cially suitable for hardware implementation. The elimination
process in RNS is specific in a way that it has to perform a
so called “nonzero residue pivoting” that was introduced in
[7]. Pivoting and massive data access constitute a bottleneck,
and therefore the memory architecture design is critical and
is dealt with in the next section.

The Rutishauser modification of Gauss-Jordan elimination
implies that the column data is shifted by one column to the
left during each elimination step. The shift is accomplished
by the AUs and the memory interconnection design in
Fig. 2. In addition, the first column of the SLC matrix

contains values of the elements intensively used during the
elimination process and for this reason the output from the
first column needs to be parallel (these values are used in
the INV and DET units). The values in the first column
determine the first multiplication operand in the entire row
being processed, both in pivot elimination and row reduction.
The other columns ai2 to ain+1 inclusive are used as the sec-
ond multiplication operand, and also for addition operations.
Assuming serial-parallel (shift-add) multiplication, we need
to read individual bits of these values, thus requiring serial
access only.

A. Memory Architecture in FPGA and ASIC

In order for a value to be accepted as a pivot,
i) it must be nonzero, ii) the row has not contained a pivot
yet, and iii) no pivot has yet been found for this elimination
step. The pivot is always in the first column of the matrix.
Search for a pivot is done sequentially; however, this search
can be easily performed concurrently with write operations
to the memory. The search is performed while the matrix
is loaded or updated during computation. In most cases, the
pivot is passed to the inversion unit (INV) long before its
inverse is needed.

Once the pivot is found, its row index must be stored in a
pivot index vector at the address of the current elimination
step. The pivot row must be flagged in order to skip it during
the pivot search performed in subsequent elimination steps.
If no pivot was found, the matrix is singular in this modulus.

The elimination is performed by rows. The architecture
must support addressing of the pivot row first; then sequen-
tially reduce memory matrix rows, with an exception of the
pivot row which must be skipped. The first value in each
row must be read in parallel. This value is either the pivot,
which is inverted, or a value from a different row, which is
negated.

The remaining values in each row are read bit-serial (but
all values concurrently) from the MSb first. This ensures
the correct order for left-shift modular multiplication and
addition, and follows from the design depicted at Fig. 2.

Upon completion of the elimination process, the solution
vector appears in the first column. The order of its elements
corresponds to the pivot row indices and may need to be
reordered. The result is therefore read out in correct order
by addressing through the pivot index vector.

B. Arithmetic Units, Modular Inverse and Controller

The Arithmetic Units AU2, AU3, . . . , AUn+2 and AUD
design is modified from the original circuit in [8] by
using strictly synchronous design. It supports computation
of modulo operation on multi-word inputs, which is used
when loading a new matrix into the modular system. During
elimination, it computes modular multiplication and addition
operations. Multiplication operations are performed using a
shift-add algorithm with interleaved modulus subtraction.
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Figure 3. Arithmetic Unit architecture

The block diagram of the arithmetic unit is given in Fig.
3. The main part of the unit is the adder that performs
all addition and subtraction operations including elementary
additions during multiplication. The intermediate results are
stored in the A register. The B register serves as a temporary
storage for the values of the multiplied pivot row to be used
during row reduction.

For computing the modular inverse in the INV unit, the
left-shift modular inverse algorithm [9] is used.

The controller contains a finite state machine using a
memory-based transition and output functions. This allows
flexibility with regard to modification and future extensions.

C. FPGA and ASIC Implementation

The memory architecture as a critical part of the RP
can be divided into two parts: the pivoting unit and data
memory containing the matrix. The pivoting unit is always
implemented using on-chip logic and memory blocks in
FPGA or ASIC. The data memory can be implemented
internally using block RAM components, or externally e.g.
by a DDR SDRAM. The main implementation differences
are in their parameters such as memory capacity, throughput,
and latency. On one hand, the internal implementation with
FPGA memory has small capacity and low latency, while on
the other hand the external memory provides large capacity
but also a high latency.

In order to compare the implementations in FPGA and
ASIC, we used internal memory in both cases. For a given
FPGA type, we can estimate the size of the largest matrix
that fits on chip according to maximum size of the block
RAM. In ASIC, we do not have such hard limits, but we
can observe the occupied chip area as a function of the
internal memory capacity. In both cases, we analyze the
maximum frequency of the design after implementation (or,
in the case of ASIC, after synthesis). Our tested memory
architecture consists of two parts: i) the internal memory, and
ii) a pivoting control logic to support addressing during the
calculation in the RP. The design of our memory architecture
is shown in Fig. 2.

The memory matrix consists of the first column ai1 and
the remaining columns ai2 to ai,n+1. All columns share a
common address. During pivot search, the address is taken

Table I
IMPLEMENTATION RESULTS FOR THE FPGA RESIDUAL PROCESSOR

ARCHITECTURE (FPGA IS XILINX XC6VSX475T).

Area Utilization Timen
BRAM Mem [sl] Au [sl] Cntl [sl] All [sl] All [MHz]

100 103 480 2889 77 4223 166
300 303 1269 8920 87 12117 142
700 701 2821 21438 73 29560 79
1000 1001 4068 30095 73 42368 76

from the Row counter and if the pivot is found in the current
row, the address is written into the Pivot index vector at the
address of current elimination step, and the Pivot flag for the
address of the current row is set. At the same time, the pivot
address is stored in the Pivot index register for comparison
during the next elimination step.

IV. EXPERIMENTAL RESULTS

All experiments were conducted on an RP architecture
consisting of data memory, Pivot index, Pivot flags, counters,
arithmetic units, an inversion unit, and control units. The fi-
nal design was written in VHDL. The maximum matrix
dimension n and the word length e are configurable at
synthesis time using generics, while matrix dimension n,
modulus, and the matrix data are set at runtime.

The design was simulated, synthesized and implemented
(only for FPGA) (mapped, placed, and routed). The exper-
iments were performed on 1 RP (with a single modulus),
including the input data modulo reduction and matrix elim-
ination. A transformation into the rational numbers set was
not performed. The experiments were performed separately
for FPGA and ASIC.

After verification of a simulation correctness we started an
implementation in FPGA. The Xilinx FPGA platform was
selected for all FPGA tests in Xilinx ISE. We selected the
FPGA with the highest block RAM memory capacity in the
Virtex 6 family i.e xc6vsx475t-2-ff1156. The results of our
experiments are shown in Table I.

The n column denotes the matrix dimension. In the area
utilization part the “All” and “BRAM” columns are the num-
ber of slices and Block RAMs for whole residual processor
implementation. The “Mem”, “Au” and “Control” columns
show the number of slices used only for the memory, AUs
and for the controller. The “Time” column contains the
maximum frequency obtained from the implementation.

For ASIC we performed only the synthesis. Since block
RAMs were not in the ASIC library as standard cells, we
generated them with a special memory generator tool that
comes with the library.

Synopsys Design Compiler was used for all ASIC tests
with a 130 nm technology library. The results of our
experiments are shown in Table II. The table headings
are similar to Table I, but area figures are given in mm2.
The maximum frequency is obtained from synthesis.
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Table II
SYNTHESIS RESULTS FOR THE ASIC RESIDUAL PROCESSOR

ARCHITECTURE (130 NM LIBRARY).

Area Utilization Timen
Mem [mm2] Au [mm2] Control [sl] All [mm2] All [MHz]

100 2,22 0,82 0,015 3,08 380
300 14,02 2,22 0,016 16,57 348
700 52,41 5,09 0,017 58,16 309
1000 93,53 7,34 0,017 101,74 310

The number of clock cycles needed for load and elimi-
nation process can be calculated by (1) and (2), where n is
matrix size, with z bits per word and q input words.

load(n, z, q) = ((((2(n+1))+(1+2+2z))q)+7)n+1, (1)

elim(n, z) = ((z + (4z − 2))n+ 3)n+ 14. (2)

To calculate the elimination time (Telim) we assume, that
the data are already loaded and stored in memory and
elimination process is in run. The load part takes only a
small part of all entire SLC solution time. For example,
for an n = 100 matrix, the loading process takes only
12.7 %, while for n = 1000 it takes only 11.7 %. As we
can calculate, the elimination time for a 100 column matrix
is 7 ms for FPGA and 3 ms for ASIC. For a 1000 column
matrix, the elimination time is 1552 ms for FPGA and
380 ms for ASIC.

When we run the same task on a CPU solving an SLC of
dimensions 100, 500, and 1000, it takes approximately 3 ms,
424 ms, and 3.37 s, respectively calculated on Intel T9400
CPU running at 2.53 GHz with a 6144 KB cache. This shows
that for n = 1000, our design is approximately 5 times faster.

The results show that our residual processor architecture
allows for a maximum matrix size of approximately 1000
rows by 1001 columns with a word size of 24 bits in the
chosen FPGA type. Even with the maximum tested matrix
dimension of 1000, which uses more than 90 % of the
available block RAM, only approximately 60 % of all FPGA
available slices are used.

The clock period increases with an increasing matrix
dimension. Static time analysis shows that the main parts
of the delay in the circuit are in addressing, control and
inner data bus signals. The fanout of signals significantly
increases when the size of matrix increases.

V. CONCLUSION

We have designed a Residual Processor (RP) architecture
performing a solution of a set of linear congruences. RP was
designed with a focus on its effective implementation in
FPGA and ASIC for various problem sizes with a special
attention to the memory architecture.

All important parts of the RP architecture were im-
plemented and tested in Xilinx Virtex 6 FPGA with the
largest RAM size available. The ASIC synthesis process
was performed to compare our solution with both types of

implementation. The results indicate that our RP architecture
allows for a maximum matrix size of approximately 1000
rows by 1001 columns with a 24-bit word size in the
chosen FPGA type. The maximum tested matrix dimension
of 1000 uses more than 90 % of the available block RAM
and approximately 60 % of all available slices in the FPGA
while being approximately 5 times faster than a software
implementation running on a CPU. In a case, when we use
ASIC with a 130 nm technology, the elimination time is
4 times faster than in FPGA for a 1000 rows matrix.

Future work will focus on a new RP architecture with an
external memory and a limited number of AUs.
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5.5 RP5 – An ASIC Linear Congruence Solver Syn-
thesized with Three Cell Libraries

This paper was published in 21st IEEE International Conference on Electronics, Circuits
and Systems (ICECS 2014) [A.6] The paper describes an ASIC implementation of a pre-
viously implemented FPGA linear congruence solver, part of a parallel system for solution
of linear equations, and presents synthesis results for three different standard cell libraries.
The previous VHDL design was adapted to three ASIC technologies (130 nm, 110 nm, and
55 nm) from two different vendors and the synthesized results were mutually compared.
The maximum clock frequency and occupied area of the synthesized design were collected
and analyzed for several input matrix dimensions and the maximum possible input problem
size for each of the technologies was determined.

The comparison results were further used to obtain a view of design properties in
higher density technologies. The results of this paper are important as input for the final
considerations of the perspective of the solver of systems of linear equations, whose system
design and analysis is presented in our subsequent paper RP6.
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Abstract— The paper describes an ASIC implementation of a
previously implemented FPGA linear congruence solver, part of
a parallel system for solution of linear equations, and presents
synthesis results for three different standard cell libraries. The
previous VHDL design was adapted to three ASIC technologies
(130 nm, 110 nm, and 55 nm) from two different vendors and
the synthesized results were mutually compared. The maximum
clock frequency and occupied area of the synthesized design
were collected and analyzed for several input matrix dimensions
and the maximum possible input problem size for each of
the technologies was determined. The comparison results were
further used to obtain a view of design properties in higher
density technologies.

I. INTRODUCTION AND BACKGROUND

Solution of a system of linear equations (SLE) Ax = y is
a common task of linear algebra and is frequently computed
in a floating point arithmetic, which involves rounding. There
are numerous methods for solving linear systems of various
sizes, for spare or dense systems, for differently conditioned
systems, for symmetric, or positive definite systems etc., and
all of them need to choose an arithmetic wherein to perform
their operations. A common choice is one of the floating point
(FP) arithmetics defined in the IEEE 754:2008 Standard [1]
and, it is a well known fact, that using an FP arithmetic shall
induce a question of numerical stability, especially in the case
of large, dense, and/or ill-conditioned systems, where the input
error magnification and/or roundoff errors may heavily impact
or even destroy the solution of the SLE.

When rounding is undesired, it is possible to use arithmetics
that do not round, such as the arithmetic of the Residual
Number System (RNS) [2][3], usually at cost of an increased
complexity. Parallel algorithms for solving SLEs using con-
gruence techniques were proposed in [4][5][6] converting
the input SLE into several to many independent systems of
linear congruences (SLC)s, solving them independently, and
reconstructing the SLE result with the Chinese Remainder
Theorem, summarized in three steps:

1) Transformation of the augmented SLE matrix A | y into
independent linear systems (A | y) mod mi, each with
a distinct prime number modulus mi, for i = 1 . . . p
being a number of moduli.

2) Solution of p independent systems of linear congruences
(SLC)s in form Ax ≡ y (mod mi).

3) Reconstruction of the SLE solution vector x from its
RNS residual representations x (mod mi).

Using RNS increases the temporal and spatial complexity
and one of the ways to go is to use a dedicated hardware
Modular System (MS) performing SLE solution and exploit-
ing natural parallelism offered by the RNS. Such MS was
discussed in our previous papers [5][6][7][8].

When studying methods of solving SLEs in RNS arithmetic,
a gap in the publication activity can be observed since the
mid 1990’s. This can be explained by the limited technology
resources available at the time and thus limited sizes of
instances that could be solved. At the same time, better and
more sophisticated methods for solving SLEs in FP arithmetic
were developed that could be performed on general purpose
CPUs. The current demand for precise SLE solving is based on
the fact that FP arithmetic has its limitations, and at the same
time, progress in technology enables creating HW solvers that
can effectively use RNS to solve SLEs for real applications.
RNS is currently used in areas of digital image processing
[9][10], digital signal processing [11][12][13], and in public-
key [14] and elliptic curve [15][16] cryptography.

The goal of this paper is to explore the achievable area con-
sumption and maximum speed for several ASIC technology
libraries, and thus establishing the limitations on the maximum
SLC instance size that can be solved. Previous work [8]
indicated that the internal memory was a limiting factor and it
is then interesting to compare the synthesis results in different
technologies with their corresponding memory blocks.

The paper is organized as follows: Section I. introduces
the reader into the problematics. Section II. provides a brief
overview of the previous work. Section III. presents the archi-
tecture of the basic SLC solution unit — a Residual Processor.
Section IV. summarizes the results, Section V. concludes the
paper, while Section VI. describes our future efforts.

II. PREVIOUS WORK

The method of the SLE solution is based on the previous
work [5][6] including methods, algorithms, and the corre-
sponding parallel hardware architecture of the MS (Fig. 1).
MS solves the SLE in RNS and therefore transforms the
input SLE onto multiple independent SLCs, each with its own
unique prime number modulus, solved at a distinct Residual
Processor (RP). It should be noted that evaluation in each
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RP1 RP2 RP3 RPpRPk

MODULAR SYSTEM
CENTRAL
CONTROL

UNIT

BUS

HOST
SYSTEM

Fig. 1. Architecture of the Modular System [5]. The Central Control Unit
controls solution processes and communicates with the Host System. RP1

through RPp are individual Residual Processors, each with its own modulus
mi for i = 1 . . . p. RPs perform transformation of the input SLE into RNS,
perform SLC solution mod mi, and also back-transformation from RNS, while
The Bus denotes an internal interconnection of all units within the MS.

modulus is performed independently of the others and that
the addition and subtraction are carry/borrow-free across the
individual moduli, and thus the computation can occur safely
in parallel. Once the SLC solutions are available, they are
recombined back into a solution of the SLE.

The architecture of the residual processor RPk is depicted
at Fig. 2 consisting of a Memory, Arithmetic Units AU2, AU3,
. . . , AUn+2 and a Control unit. RP, which was described in [7],
was designed with a focus on its effective implementation in
FPGA for various problem sizes with special attention to the
memory architecture. The memory design was critical to the
RP because of massive data access and pivoting. All important
parts of the RP architecture, such as data memory, Pivot
index, Pivot flags, counters, arithmetic units, inversion unit and
control unit were implemented and tested in a Xilinx Virtex 6
FPGA with the largest block RAM capacity of its family, i.e.
38304 Kibits. The results showed that RP architecture with
a 1000-row matrix and with a 24-bit word size in Xilinx
XC6VSX475T occupied more than 90 % of the available
block RAM and approximately 60 % of all available slices.
This implementation was the largest possible to fit in the
FPGA and ran approximately 2 times faster than a software
implementation at a CPU.

The 24-bit word length was chosen as a compromise so
that enough prime moduli can be generated to represent the
largest number needed during solution of the system of linear
equations. This follows from the Hadamard’s inequality and
its application on solving a linear system exactly [5].

Paper [8] implemented the same RP architecture in ASIC
with a 130 nm standard cell library and compared it to the
FPGA architecture described in [7]. Results in our previous
paper [8] indicated that the ASIC implementation was yet
4 times faster than its FPGA counterpart.

This contribution builds on papers [7][8] and extends the
ASIC implementation of our SLC solver to three different
standard cell libraries for three ASIC technologies from two
different vendors – Synopsys/GlobalFoundries 130 nm and
Faraday/UMC 110 nm and 55 nm. The 130 nm and 110 nm
libraries are high performance libraries, while the 55 nm
library is a low power library. We have chosen these particular
libraries mainly because of their availability including memory
compilers, which are important in our design and evaluation.
The last one being a low power library, it is not directly
comparable in terms of speed, but it can be used to evaluate
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Fig. 2. Architecture of the Residual Processor. aijs represent elements of
the augmented SLC matrix, AUi stand for individual arithmetic units, PO1

is a parallel output, SIi/SOi denote serial inputs/outputs, IDBIN/IDBOUT

represent internal data buses, while DBIN/DBOUT represent external data
buses. INV, AUD, G, Mo, M, and N are auxiliary units described in [6].
Other blocks serve to implement partial pivoting.

the area savings coming from greater integration. The chosen
libraries, although not the most recent ones, are sufficient
to reveal technology-dependent properties of the architecture,
allowing prediction of the behavior of our design in general.
The output of these implementations will provide insight into
the properties of the design in higher density technologies.

The next section describes the experimental results, com-
pares them together, and analyzes the maximum clock fre-
quency and occupied area of the synthesized RP design.

III. ARCHITECTURE OVERVIEW

Each residual processor RPk can solve systems of linear
congruences (SLC)s Axk ≡ b (mod mk) and its architecture
is depicted at Fig. 2 and consists of Memory, Arithmetic Units
AU2, AU3, . . . , AUn+2 and the Control unit.

The memory contains an augmented matrix (A|b) mod mk.
It consists of SRAM blocks that are created using the memory
compiler specific for the ASIC library and an appropriate size
block must be selected for the maximum matrix dimension n.

The arithmetic units AU are connected to the memory via
Serial Inputs (SI) and Serial Outputs (SO). The leftmost ele-
ments of the matrix are read by the Control unit via the parallel
bus PO1. All AUs and the Control unit are interconnected
via Internal Data Buses IDBin and IDBout. The INV and
AUD units compute the modular multiplicative inverse and
the determinant of A mod mk, respectively.

During elimination, partial pivoting is used, where any
non-zero element can be a pivot (Zero detect block). The
Pivot index block holds the row address of the pivot for
the current elimination step. Pivot flags contain one bit for
each row indicating whether the row contained the pivot in
past elimination steps, while the Pivot index memory block
contains row addresses of all pivots found up to the current
elimination step. These addresses are used at the end of the
elimination process for result reordering (no row swapping is
done during elimination).
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IV. EXPERIMENTAL RESULTS

All experiments were conducted on the RP architecture
shown at Fig. 2. The design was specified in VHDL, sim-
ulated in Mentor Graphics ModelSim, and synthesized using
Synopsys Design Compiler.

The maximum matrix dimension n and the word length e
were configurable at synthesis time using generics, while the
actual matrix dimension, the modulus, and the matrix data
were specified at runtime.

The solution designed for FPGA [7] was modified to
obtain a solution usable for synthesis process for ASIC. The
modification was focused mainly on memory interface and
restrictions of the synthesis process such as a number of gate
inputs. The designed ASIC architectures for various matrix
dimensions were used to conduct a set of SLC solution
experiments on a single RP. The SLC solution included input
both data modulo reduction and matrix elimination.

In order to verify the design, we added test units to increase
testability and observability of the simulated design and to
verify the calculation. The test data were generated using
Wolfram Mathematica and converted with a Python script into
a file format suitable for the simulation. The RP was simulated
with Mentor ModelSim to solve SLCs and their solutions
were compared to SLCs solutions precomputed in Wolfram
Mathematica. The simulation was performed for matrices up to
matrix dimension n = 100. Matrices with dimension n > 100
were not simulated due to high simulation times.

After the verification of simulation correctness we started
the ASIC synthesis process. Since block RAMs were not
present in the ASIC library as standard cells, we generated
them with a special memory generator tool coming with the
library. We generated a suitable set of synchronous RAM
modules with sizes to cover the expected matrix dimensions.
The generated RAM modules were then instantiated according
to the generic parameters from the VHDL description to
implement memory matrix columns (ai1 to ai,n+1).

We compared three different standard cell libraries for three
ASIC technologies (130 nm, 110 nm, and 55 nm) from
two different vendors. The maximum clock frequency and
the occupied area of the synthesized design were collected
and analyzed for several matrix dimensions. The first two
technologies 130 nm and 110 nm were high speed and the
last technology, the 55 nm one, was low power. Synopsys
Design Compiler tools were used for all ASIC tests. In order
to get a good estimate of the best achievable timing while
keeping the synthesis run time reasonable, we set the synthesis
effort to “medium” and defined the required minimum clock
period in a compile script file. The results of our experiments
are shown in Table I. The n column denotes the matrix
dimension, “Area Utilization” describes an estimation of the
final size, while “Frequency” describes an estimation of the
maximum frequency. Both previous columns are divided into
three technology size: 130 nm, 110 nm, and 55 nm (low
power).

The number of clock cycles needed for the elimination
process can be calculated from (1), where n stands for a

Matrix dimension n [−]
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Fig. 3. Achieved frequency of the design based on matrix dimension n.

matrix size and z a number of bits per word, which is also
the bit length of the modulus and the data path width. For our
comparisons and analyses, we chose the word size z = 24
and the number of words per element q = 3, i.e. input
integer element length is 72 bits, as a reasonable compromise
regarding the range of input data values. Each input integer
(matrix element) is first reduced using a 24-bit modulus and
all internal computation is carried out in a 24-bit modular
arithmetic.

elim(n, z) = ((z + (4z − 2))n+ 3)n+ 14. (1)

To calculate the elimination time (Telim), we assume that
the data is already loaded and stored in memory and the
elimination process is in run. The load part takes only a small
part of the SLC solution time (about 10 % for the instances
considered). The elimination time on a 130 nm ASIC takes
3 ms for an n = 100 matrix and 380 ms for an n = 1000 one.

The maximum achieved frequency of the design based on
matrix dimension n is shown in Fig. 3. The results show that
the performance strongly depends on the type of ASIC library
used. For small designs, the 55 nm library yields the best
speed and the smallest area. However for n = 300 and larger,
the 55 nm library is the slowest even though it would seem
that due to its smaller pitch it should be faster. This is due
to the fact that it is a low power library not optimized for
performance.

Interesting effect was observed when comparing the max-
imum frequency between the 130 nm and 110 nm libraries
for n ≥ 2000, where the smaller technology is slower. This

TABLE I
SYNTHESIS RESULTS FOR THE ASIC RESIDUAL PROCESSOR

ARCHITECTURE.

Area Utilization (mm2) Frequency (MHz)
n

130 nm 110 nm 55 nm 130 nm 110 nm 55 nm
500 32 42 9 318 354 174

1000 102 117 28 310 314 114
2000 342 367 97 297 271 135
4000 1221 1260 353 255 165 151
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is caused by different net delay models and different choice
in cell sizes among the two libraries. Further investigation
would require analysis at the layout level, however the library
backends are not readily available for both libraries.

The same task was implemented on a CPU solving an SLC
of dimensions 100, 500, and 1000, it takes approximately 3 ms,
424 ms, and 3.37 s, respectively calculated on Intel T9400 CPU
running at 2.53 GHz with a 6144 KiB cache [17]. This shows
that for n = 1000, our design is approximately 5 times faster.

The results show that our residual processor architecture
allows for a maximum reasonable matrix size of approximately
2000 rows by 2001 columns with a word size of 24 bits in the
chosen ASIC type. With larger maximum sizes, the frequency
drops considerably as a result of high fan-in and fan-out of
the array of AUs, and the die size grows as a result of on-
chip memory required. The memory area consumption can be
addressed either using on-chip dynamic RAM (which was not
available in the library design kit), or better yet, by using off-
chip external memory for the matrix during the elimination
process. The latter option is suitable for significantly larger
matrices and requires significant changes in the design.

V. CONCLUSION

The paper describes an implementation of a solver of sys-
tems of linear congruences in ASIC, part of a parallel system
for solution of systems of linear equations. We modified the
previous FPGA design for ASIC and compared three types
of standard cells libraries: 130 nm, 110 nm, and 55 nm. The
first two technologies were high speed, while the last one was
low power. These implementations provide insight into the
properties of the design in higher density technologies.

The occupied area and speed were gathered from synthesis
reports. The most significant part was the memory used to
store the data for calculation. The time needed to solve one
SLC with 4000 congruences was 15 s and the occupied area
was 3.5 cm2 of die. Considering a suitable die size around
1 cm2, the maximum matrix dimension is 1000 for the 130
and 110 nm technologies, and 2000 for the 55 nm low power
technology. The 55 nm technology allowed us to use the same
die space for solution of a much larger SLC, but since the
technology is low power, the solution time is significantly
slower than with the other two technologies.

VI. FUTURE WORK

The implemented linear congruence solver, a Residual Pro-
cessor (RP), will be used as a part of the Modular System
(MS) for solution of sets of linear equations. Time and area
complexity results of the implemented RP obtained in the
paper have already been used to extrapolate properties of an
MS yet to be synthesized in higher density technologies [18].

In future work we intend to focus on RP’s external memory
and optimization of the arithmetic unit utilization. Using
external memory requires design of a memory interface,
possibly limiting data throughput during the parallel read/write
operations, and requires further research. The architecture with
an external memory also offers opportunity to a more efficient

utilization of arithmetic units during the elimination process
through efficient memory interface control.

ACKNOWLEDGMENT

This research was supported by the Czech Science Founda-
tion project no. P103/12/2377.

REFERENCES

[1] IEEE Computer Society Standards Committee., IEEE Standard for
Floating-Point Arithmetic, ser. ANSI/IEEE STD 754-2008. The In-
stitute of Electrical and Electronics Engineers, Inc., 2008.

[2] A. Omondi and B. Premkumar, Residue Number Systems: Theory and
Implementation, 1st ed. Imperial College Press, 2007, vol. 2.

[3] M. Lu, Arithmetic and Logic in Computer Systems. John Wiley &
Sons, Inc., 2004.
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5.6 RP6 – Design of a Residue Number System Based
Linear System Solver in Hardware

This paper was published in the Journal of Signal Processing Systems, 87(3), 2017 [A.8].
This paper is focused on error-free solution of dense linear systems using residual arith-

metic in hardware. The designed Modular System uses hardware identical Residual Pro-
cessors (RP)s for solving independent systems of linear congruences and combines their
solutions into the solution of the given linear system. This approach uses the residue
number system which is based on the Chinese remainder theorem.

In order to efficiently exploit parallel processing and cooperation of the individual com-
ponents, a hardware architecture of the Modular System with several RPs is designed. In
order to verify the proposed architecture, a Xilinx FPGA with a MicroBlaze processor was
used. Experimental results are obtained for an evaluation FPGA board with Virtex 6. The
implemented design was used to verify correctness of the architecture and to gather time
and performance data.

Results from implementation serve for subsequent theoretical analysis of the system
performance for various linear system sizes and further improvement of the system. The
proposed system can be useful as a special hardware peripheral or a part of an embedded
system for solving large nonsingular systems of linear equations with integer, rational or
floating-point coefficients with arbitrary precision.
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Abstract This paper is focused on error-free solution of
dense linear systems using residual arithmetic in hardware.
The designed Modular System uses hardware identical
Residual Processors (RP)s for solving independent systems
of linear congruences and combines their solutions into the
solution of the given linear system. This approach uses
the residue number system which is based on the Chinese
remainder theorem. In order to efficiently exploit parallel
processing and cooperation of the individual components, a
hardware architecture of the Modular System with several
RPs is designed. In order to verify the proposed architec-
ture, a Xilinx FPGA with a MicroBlaze processor was used.
Experimental results are obtained for an evaluation FPGA
board with Virtex 6. Results from implementation serve for
subsequent theoretical analysis of the system performance
for various linear system sizes and further improvement of
the system. The proposed system can be useful as a special
hardware peripheral or a part of an embedded system for
solving large nonsingular systems of linear equations with
integer, rational or floating-point coefficients with arbitrary
precision.
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arithmetic · Error-free computation · FPGA
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1 Introduction

Solving a system of linear equations (SLE) is a com-
mon task in numerical mathematics. The difficulty of the
solution process depends on many aspects, such as an
input matrix dimension, its density, conditioning, accu-
racy requirements, and properties of the matrix. Solution
is performed using different numerical methods and algo-
rithms on all kinds of computational resources includ-
ing PCs, GPUs, clusters, specialized hardware, and even
supercomputers.

Using floating-point (FP) arithmetic, as defined in the
IEEE 754:2008 Standard [1], requires the result of each
operation rounded to a representable FP number, intro-
ducing a roundoff error. Input error magnification and the
accumulation of rounding errors committed during solu-
tion may even destroy the result. For this reason, SLE
solution shall always induce a question of numerical sta-
bility, esp. in case of a large, dense, and/or ill-conditioned
system. An example field of application for error-free
SLE solution is magnetohydrodynamic simulations, which
involves solving large systems of differential equations
(whose part is solving SLE) [2]. In some cases, solv-
ing for singular points in systems with unstable solu-
tions, where FP arithmetic is not sufficient and traditional
methods (such as the Jacobi conjugate gradient mehtod)
fail.

Non-rounding arithmetics can go around rounding prob-
lems and such SLE solution processes were already imple-
mented in special hardware. To avoid undesired rounding
effects, it is possible to use a non-rounding arithmetic such
as the arithmetic of the Residue Number System (RNS) [3],
which, in addition to the absence of rounding, offers natu-
ral parallelism. Parallel algorithms for solving SLEs using
RNS were proposed in [4–6] and are further exploited by
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a dedicated hardware Modular System (MS). Such MS was
discussed in [5–8].

When studying SLE solution methods in RNS arithmetic,
a gap in the publication activity can be observed since the
mid 1990s. This can be explained by limited technology
resources available at that time and thus limited sizes of
instances that could be solved. At the same time, better and
more sophisticated methods for solving SLEs in FP arith-
metic were developed that could be performed on general
purpose CPUs. The current demand for precise SLE solu-
tion is based on the fact that FP arithmetic has its limitations,
and at the same time, progress in technology enables creat-
ing hardware solvers that can effectively use RNS to solve
SLEs for real applications.

RNS is currently used to accelerate computation in areas
such as the digital image processing [9, 10], digital signal
processing [11, 12], and cryptography [13, 14].

The paper deals with the design of a dedicated SLE
solution hardware in RNS (Modular System) and provides
important results for further development and verification.
Architectures so far designed and testing of its implemen-
tation in FPGA and ASIC technologies were covered in
papers [7, 8, 15] and [16]. These papers focused mainly
on design and implementation of the Residual Processor, a
solver of systems of linear congruences (SLC).

Solving SLCs is as the most important and computation-
ally intensive part of the whole process of SLE solution,
while this paper deals with Residual Processors composed
into the Modular System including interconnection and inte-
gration into an SLE solving system. Such system can be
useful as a special hardware peripheral attached to a host
system, or a part of an embedded system requiring SLE
solution. The hardware design provides a platform for anal-
ysis of a practical and functional system. The results of this
analysis are important for subsequent development of the
system and confirmation of the validity of the method and
design process.

The paper is organized as follows: Section 1 (Introduc-
tion) introduced the reader into the context of the paper.
Section 2 (Mathematical background) explains basic princi-
ples of solving SLE in RNS. Section 3 (Design of Modular
System) discusses so far designed components (Residual
Processors) of the designed SLE solver. Section 4 (Archi-
tecture of Modular System on FPGA) describes the system
architecture of the SLE solver using the Residual Pro-
cessors described earlier. Section 5 (Implementation and
Experimental Results) presents the results of an implemen-
tation of the system with multiple RPs on FPGA with the
ML605 prototyping board and compares the implementa-
tion’s performance with a model. Section 6 (Perspectives
of the Modular System) discusses possible extensions and
improvement of the system, while Section 7 (Conclusion)
summarizes the paper.

2 Mathematical Background

As already mentioned RNS appears to be a suitable num-
ber system for implementing certain numerical methods for
error-free solving of a system of linear equations [5, 6, 17,
18]. In this section, we describe the basic mathematical
principles of method solving SLE in the RNS.

Although RNS is defined on integers, we can convert sys-
tems with rational (FP) coefficients to integer coefficients.
Both sides of each equation of the system can be multiplied
by a suitable number that transforms all coefficients to inte-
gers. The solution of such transformed system is the same as
the solution of the original SLE. In the rest of this section,
we will assume only integer coefficents. Symbols used in
the rest of this text and their meaning are summarized in
Table 1.

Let us have a SLE of dimension n with integer
coefficients

Ax = b, (1)

where A is invertible and b is nonzero. If we denote
M(b) = max(|bi |) and M(A) = max(|ai,j |), where
i, j ∈ {1, 2, . . . , n}, then the size of a modulus M of single-
modulus residue arithmetic used in an error-free algorithm
to solve (1) follows from the Hadamard’s inequality and is
given as [19]

M > 2 max{nn
2 M(A)n, n(n− 1)

n−1
2 M(A)n−1M(b)}. (2)

Since the modulus M estimated using Eq. 2 is very large,
its application to calculations is not practical. The hardware
architecture would be impossible to implement, or, in the
case of a software realization, the computational complexity
would be immense. Therefore it is suitable to use a known

Table 1 Description of used symbols.

Symbol Meaning

A matrix of integer coefficients of the SLE to solve

b vector of integer right-hand sides

n dimension of A (no. of equations in SLE)

r number of moduli needed

p number of Residual Processors (RPs)

mk k-th modulus

M product of moduli (CRT big modulus)

x solution (rational) of Ax = b

yk solution of Ax = b modulo mk

dk determinant of A mod mk

z scaled solution (integers), z = xd

zk scaled solution modulo mk

tk column vector zk and dk

e word length (since Section 3)

q number of words in each element of A (Section 4)
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set of moduli m1, m2, . . . , mr of RNS using the multiple-
modulus residual arithmetic. Then the calculation in each
single-modulus residual arithmetic with modulus mi can be
carried out in parallel as long as there is a dedicated hard-
ware architecture that allows it. The moduli must fulfill the
following conditions [17, 19]:

a) M =
r∏

i=1
mi fulfills (2),

b) each mi for i ∈ {1, 2, . . . , r} is prime.

The results of solving an SLE modulo mi are then converted
to integers according to the Chinese Remainder Theorem
(CRT).

The equivalent of a SLE in modular arithmetic is a
system of linear congruences (SLC) modulo mk .

Ayk ≡ b (mod mk) (3)

In order to get the solution of the SLE (1), it is necessary
to solve at most r SLCs (3), k ∈ {1, 2, . . . , r}, and then
convert their solutions yk to the solution x of Eq. 1.

The elements of the solution vector x are rational num-
bers, but the CRT is defined only for integers. Therfore, we
need to scale the solution to obtain integers, and transform
it into fractions afterwards. We make use of the fact, that the
determinant d = detA is an integer, and by the Cramer’s
rule, x d is an integer vector. Let us denote this integer vector
as z = x d . This way, we can get x as fractions

x = z
d

, (4)

where d and the elements of z and are all integers.
Therefore, we multiply each yk by the determinant dk =

detA mod mk , which is computed together with solving (3).
We denote this product zk:

zk = dk yk mod mk.

Because z ≡ zk (mod mk) and d ≡ dk (mod mk), we
get z and d according to the CRT.

The method of solving (1) according to the previous
conditions consists of three basic stages [5]:

Method 1

1. Input conversion. Conversion of the coefficients ai,j of
matrix A and the coefficients bi of vector b, where
i, j ∈ {1, 2, . . . , n}, of SLE (1) to r systems of
linear congruences (SLC) Ayk ≡ b (mod mk), k ∈
{1, 2, . . . , r}.

2. SLC solving. Solving r systems of SLC Ayk ≡ b
(mod mk) using the Gaussian elimination with pivot-
ing [5] in modular arithmetic modulo mk , where k ∈
{1, 2, . . . , r}.

Also the determinants dk = detA mod mk are com-
puted. Then, zk = dkyk mod mk is obtained for k =
1, 2, . . . , r .

3. Output conversion. Conversion of the resulting vectors
zk and the determinants dk using the Mixed-Radix Con-
version (MRC) algorithm [17] from the RNS into a
single vector z such that zk ≡ z (mod mk) for k =
1, 2, . . . , r . The solution of (1) is obtained as x = 1

d
z.

The first step of the method can be executed in paral-
lel. This means that each SLC solver (from 1 to p) , reads
integer (or rational number) elements of the matrix A and
the vector b of SLE, and converts them simultaneously into
residues modulo m1, m2, . . . , mr . Assuming the number of
processors p is equal to r , for the first step of the method
we have O(n2) parallel operations that convert integers into
residuals.

The second step of the method is completely parallel
since the solutions of each SLC Ayk ≡ b (mod mk) are
independent for every k = 1, 2, . . . , r . In the case when the
number of SLC solvers p in a parallel system is equal to r ,
the SLC solver k can be allocated for computations modulo
mk: SLC solver k solves the SLC Ayk ≡ b (mod mk), and
computes the determinant dk = d mod mk , and then pro-
ceeds to compute zk = dk yk mod mk . This computation
is performed simultaneously by all SLC solvers 1, 2, . . . , r .
Since the Gaussian elimination on a matrix of dimension n

requires O(n3) arithmetic steps, assuming p = r we get
O(n3r/p) = O(n3) arithmetic steps for the second step of
the method.

RP1

RP2

RP3

RPk

RPp

HOST 
SYSTEM

CENTRAL
CONTROL

UNIT

COMUNICATION 
UNIT

MAIN MEMORY

...
...

MODULAR SYSTEM

BUS

Figure 1 The architecture of the modular system [5]. The central con-
trol unit controls processes required by Method 1. RP1 through RPp

are individual Residual Processors, each with its own modulus mi for
i = 1 . . . p. RPs support all Method 1 stages i.e. perform transfor-
mation into RNS (stage 1), perform SLC solution mod mi (stage 2),
and back-transformation from RNS (stage 3). Main memory stores the
input SLE and the solutions. The bus denotes an internal interconnec-
tion of all units within the modular system. The communication unit
communicates with the host system.
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Because of the easy implementation in hardware, the
Gauss-Jordan (GJ) elimination algorithm was chosen for
solving SLC [6]. The elimination process of one SLC
according to this algorithm needs to perform so called
nonzero residue pivoting. It is for the reason that during
computation, zero value of elimination element (pivot can-
didate) can occur. Such a GJ elimination of SLC Ayk ≡ b
(mod mk) can be described by this algorithm:

At the end of the second step of the METHOD 1 we obtain
the n-element vector zk and the integer dk in the SLC solver
k for k = 1, 2, . . . , r . We apply the MRC algorithm [17] to
compute an n-element vector z and an integer d.

Let the (n + 1)-element vector tk be

tk =
[
zk

dk

]

. (5)

We can use the MRC algorithm to compute the (n + 1)-
element vector t so that t ≡ tk (mod mk) [20]. The MRC
algorithm returns the vector t, from which we extract the
value of determinant d and the elements of vector z. Then
the final solution vector x is computed using Eq. 4.

The following Algorithm 2 represents the Output conver-
sion step of Method 1:

Algorithm 2 consists of two parts. The first part is the
MRC algorithm [3], the second part perform solution final-
ization in order to obtain the final solution of the solved
SLE. The solution elements are converted to floating point
representation in chosen precision. If needed, exact rational
numbers can be obtained that may have large numerators
and denominators in general.

Since the MRC algorithm of r moduli takes O(r2) arith-
metic operations to convert one element from RNS to
integer [19, 21], we have O(nr2) arithmetic operations,
which are required by sequential MRC algorithm for the
(n + 1) vector t. This time complexity applies when we
compute the final solution in floating point representation.
For exact rational solution computation, the complexity will
be increased due to complex operations in full precision
rational numbers.

In order to illustrate the computation, an example is
presented in the Appendix A.
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Using Method 1 has both its pros and cons. An obvi-
ous disadvantage is the increased time and/or space com-
plexity. An advantage is gained by exploiting the built-in
parallelism, lowering the time complexity by implement-
ing the method in hardware. Although parallel processing
increases spatial complexity, computation units at the Stage
2 of Method 1 (SLC Solving) are identical and provide a
time-space complexity tradeoff.

3 Design of Modular System

SLE solution in RNS performed in dedicated hardware [5]
requires that the hardware is able to perform all Method 1
stages. The architecture of such system is depicted in Fig. 1.

The Modular System (MS) consists of a Central Con-
trol Unit (CCU), Comunication Unit (CU), Main Memory
(MM), p hardware identical Residual Processors (RP)s –
SLC solvers, and an interconnection Bus. CCU communi-
cates through CU with an external Host System such as
a computer, coordinates RP’s work, and dispatches data
to and from RPs. Each RP works with its own distinct
prime number modulus mi and in [5] was designed to sup-
port all 3 Method 1 stages. MM stores the input SLE and
the solutions. The Bus, not necessarily implemented as a
data/control bus, denotes necessary interconnection of all
units within MS. The following paragraphs recapitulate so
far achieved progress in papers [7, 8] and [15], all dealing
with an RP architecture.

Paper [7] presents an initial RP architecture (Fig. 2)
designed to perform a Gauss-Jordan (GJ) elimination upon
individual SLCs mod mi stored within the Residual Pro-
cessor Memory. RPs contain specialized Arithmetic Units
(AU)s interconnected with the Residual Processor Memory.
This allows performing vector operations (SIMD) corre-
sponding to the GJ elimination, which is controlled by the
Control Unit. The dedicated hardware for residual pivot-
ing also solves the zero pivot occurrence problem. Next,
there are a control unit and auxilliary units (see Fig. 2),
primarily for computing a multiplicative modular inverse
mod mi (INV) and the determinant (DET) of the SLC, both
needed during the back-transformation performed in stage 3
of Method 1.

The Residual Processor Memory contains residues of
matrix A and vector b elements. The storage of values of
a row of the matrix from AU registers is performed bitwise
via Serial Inputs SI1, SI2, . . ., SIn+1. Loading of values of
rows from Memory to AUs is done via Serial Outputs SO2,
SO3, . . ., SOn+1. The SI and SO connections with Resid-
ual Processor Memory are designed in such manner that the
individual elimination steps shift the values in the rows to
the left (according to GJ elimination), then the resulting vec-
tor is in the first column. The element values of the first

 

Figure 2 The Architecture of a Residual Processor. aij s represent
elements of the augmented SLC matrix, AUi stand for individ-
ual arithmetic units, PO1 is a parallel output, SIi/SOi denote serial
inputs/outputs, IDBIN/IDBOUT represent internal data buses, while
DBIN/DBOUT represent external data buses. INV, AUD, G, Mo, M, and
N are auxilliary units described in [6]. Pivot index vector, Pivot flags,
Pivot index, Zero detect, and Pivot found registers are used to support
the non-zero residual pivoting [7].

matrix column are read by the Control Unit via the parallel
bus PO1. All AUs and the Control Unit are interconnected
via Internal Data Buses IDBin and IDBout.

The above RPk architecture can solve systems of lin-
ear congruences (SLC)s: Ayk ≡ b (mod mk). RPs together
with the Central Control Unit of the MS also fully sup-
port all conversion operations from the integer set to RNS,
and by computing the determinant and multiplying the SLC
solution vector zk = dk yk mod mk , they also prepare for
the conversion back from RNS to the integer set. The output
conversion is done in the Host System.

The Control Unit contains a finite state machine using
a memory-based transition and output functions. It imple-
ments a GJ elimination algorithm as well as data input and
output and allows flexibility with regard to modification and
extensions.

One of the main contributions of the paper [7] is the
design of new Residual Processor Memory Architecture and
pivoting. The pivot column is always the first column of
the matrix, and all nonzero values are equally acceptable
as pivots. Search for a pivot is done sequentially; however,
this search can be easily performed concurrently with write
operations to the memory. The search is performed while
the matrix is loaded or updated during computation. In most
cases, the pivot is passed to the inversion unit (INV) long
before the inverse is needed. In order for a value to be
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accepted as a pivot, i) it must be nonzero, ii) the row has not
contained a pivot yet, and iii) no pivot has yet been found
for this elimination step.

Once the pivot is found, its row index must be stored in
a pivot index vector at the address of the current elimina-
tion step. The pivot row must be flagged in order to skip it
during the pivot search performed in subsequent elimination
steps. If no pivot was found, the matrix is singular in this
modulus.

The elimination is performed by rows. The architecture
must support addressing of the pivot row first; then sequen-
tially reduce memory matrix rows, with an exception of the
pivot row which must be skipped. The first value in each
row must be read in parallel. This value is either the pivot,
which is inverted, or a value from a different row, which is
negated.

The remaining values in each row are read bit-serial (but
all values concurrently) from the MSb first. This ensures
the correct order for left-shift modular multiplication and
addition, and follows from the design depicted at Fig. 2.

Upon completion of the elimination process, the solution
vector appears in the first column. The order of its elements
corresponds to the pivot row indices and may need to be
reordered. The result is therefore read out in correct order
by addressing through the pivot index vector.

The following algorithm presents a simplified descrip-
tion of the hardware implementation of the SLC solving part
(stage 2) of Algorithm 1 with focus on memory operations.

The design of Arithmetic Units AU2, AU3, . . ., AUn+2

and AUD at Fig. 2 is modified in [8] from the original cir-
cuit in [6] by using strictly synchronous design. It supports
computation of modulo operation on multi-word inputs,
which is used when loading a new matrix into the modu-
lar system. During elimination (Algorithm 1), it computes

modular multiplication and addition operations. Multiplica-
tion operations are performed using a shift-add algorithm
with interleaved modulus subtraction.

The block diagram of the arithmetic unit is given in
Fig. 3. The main part of the unit is the adder that performs
all addition and subtraction operations including elementary
additions during multiplication. The intermediate results are
stored in the A register. The B register serves as a temporary
storage for the values of the multiplied pivot row to be used
during row reduction.

For computing the modular inverse in the INV unit, the
left-shift modular inverse algorithm [22] is used.

4 Architecture of Modular System on FPGA

This section deals with design of an interconnection of the
units within MS. The architecture, which is depicted at
Fig. 4, is designed to allow interconnection of RPs with
the Host System (HS), Main Memory, and other units to
perform Stages 1 and 2 of Method 1.

In Stage 1, the augmented matrix is sent to the MS from
the Host System using the Ethernet Interface. It provides a
good flexibility and is supported in FPGA development sys-
tems by several performance options. The matrix in form
of multi-word integer numbers is transferred and stored into
the Main Memory and is therefore prepared for loading and
parallel conversion to modulus mi . Main Memory will hold
the augmented matrix of the SLE to be solved and is con-
nected to the FPGA with a (DDR3) SDRAM Controller
supporting burst transfers in between the memory and other

  

Figure 3 Arithmetic unit architecture. A and B are working registers
for storing intermediate results. ADD is an e + 2 bit binary adder.
AND is a parallel gate that controls the left input to ADD according to
the value of mu and is used for shift-add multiplication and reduction.
Control signals from the Control Unit (ctrl) are decoded in the Comb.
logic block, which also performs data multiplexing.
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Figure 4 The modular system as a system on chip in FPGA. The cen-
tral control unit is a MicroBlaze soft-processor. RP1 through RPp are
individual Residual Processors, each with its own modulus m1 to mp .
RPs are connected using an internal bus and form a common AXI4 bus
master peripheral. The AXI4 crossbar switch is used for a high speed
interconnect, while the Bus is used for a lower speed programmed I/O.

parts of the system. A high-throughput channel is created
using a high performance interconnect (AXI4 in crossbar
configuration) between the SDRAM Controller and a set of
RPs. RPs share a common data channel from Main Mem-
ory since they always get the same data. During loading
of a matrix, each RP applies the modulo operation on the
data with its modulus mi . The set of RPs is connected using
a common bus-master AXI4 peripheral (the RP Interface).
The system contains a Xilinx MicroBlaze processor as the
Central Control Unit (CCU) for overall communication,
data loading, and synchronization control. The MicroBlaze
processor was chosen as a convenient way to create a proto-
type implementation including network protocol handling.
Although MicroBlaze is not a final solution, it is suffi-
cient for performing experiments and evaluation of basic
properties of the proposed system.

The CCU uses a network protocol for communication
and data transfer from the Ethernet Inteface to the Main
Memory. After receiving the matrix data, it starts the pro-
cess of loading this data from Main Memory to the RPs.
This is done by initiating a bus master read by the RP Inter-
face from a specified address in memory. The RP Interface

broadcasts the data to all RPs for parallel loading and con-
version. After loading and converting all the data (Stage 1
of Method 1 (Input Conversion)), the RPs automatically
start solving their SLCs independently (Stage 2 of Method 1
(SLC Solving)). The CCU can either wait for the RPs to
complete or perform other tasks such as communication to
load another instance from the HS.

The SLE solving process according to Method 1 can
be implemented on the architecture in Fig. 4 using two
algorithms synchronized by data communication over the
Ethernet Interface (Eth). The algorithms, Algorithm 4 for
the Host System, and Algorithm 5 for the Modular System,
including their cooperation are shown in Fig. 5.

The system is now ready to perform experiments and
evaluate the experimental results.

5 Implementation and Experimental Results

The designed architecture of the MS (see Fig. 4) was imple-
mented in FPGA and verified by simulation and hardware
prototyping. The implementation and testing platform used
for the development was a Xilinx ML605 board with a
Virtex-6 LX240T FPGA, 1 GiB DDR3 SDRAM memory,
gigabit Ethernet interface, and other peripherals. The MS
is controlled using a MicroBlaze soft-processor inside the
FPGA.

The MicroBlaze processor controls the transfer of data
between Main Memory and the RPs. External DDR3
SODIMM was the Main Memory used to store the aug-
mented matrix of the SLE, and the processor program
code.

The hardware (RPs, the RP bus-master and slave inter-
face) was described in VHDL, while the software running
on MicroBlaze was written in C. The MicroBlaze processor
is an IP core included in the development tool. Xilinx ISE
and Embedded Development Kit (EDK) development tools
were used to describe, synthesize, and implement the SoC
architecture into FPGA.

The selected FPGA platform allowed for a system with
the number of parallel RP units p = 1, 2, . . . , 5, and
matrix dimensions n = 20, 100, 200. Each matrix element

Figure 5 Algorithms for
solving a SLE synchronized by
data communication over the
Ethernet Interface (Eth). Note
that partial output conversion
(HS step 4) is interleaved with
the computation in the MS.
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is q = 3 words long, where each word is e = 24 bits long.
Each modulus mi is also 24-bit all internal computation
is done in a 24-bit modular arithmetic, and the following
text assumes these values. Parameters p, n, q, e are con-
figurable at synthesis time. The maximum attainable matrix
dimension n depends on the number of RPs p implemented
on one FPGA. For up to n = 200, we could attain the default
clock frequency of the MicroBlaze processor of 100 MHz.
Without the MicroBlaze processor impairing the design tim-
ing, the attainable frequency for n = 100 was 166 MHz,
and for n = 200, 154 MHz.

The RP peripheral attachment to the AXI4 crossbar was
created using a bus master template from Xilinx EDK. The
RPs are connected to the rest of the system via a FIFO. The
networking code for the MicroBlaze processor was based
on a TCP echo server example contained in the EDK and
was extended to enable data transfer in between the Main
Memory and an RP peripheral. Time measurement was done
using a dedicated timer peripheral and reported using a
serial interface.

5.1 Experimental Results

The testing data for our experiments were generated using
Wolfram Mathematica. We have generated several SLE
instances together with their solutions for verification. Data
were transfered between PC and the tested system over
Ethernet using the ncat1 tool.

The times needed for processing of individual steps,
mainly for load, elimination, and result read are collected.
The resulting measurements are presented in Table 2. The
column Load describes time needed for loading data from
the Main Memory to all RP units including reduction mod-
ulo mi , Elim describes time needed for computing the
solution vector in p moduli in parallel (for example, mod-
ulo m1, . . . , mp) by GJ elimination in all p RPs, and Read
denotes time needed to retreive the results from the corre-
sponding number of RPs into the Main Memory. Loading
and elimination are performed with all RPs in parallel,
while the read operation is performed sequentially. Table 2
shows that most of the time is spent in elimination. The
chosen platform (Xilinx Virtex-6 LX240T) allowed us to
implement a maximum of 2 RPs for n = 200.

Table 3 presents the area occupation measured in lookup
tables (LUTs) and block RAM of the Virtex-6 device used.
In order to simplify the table, the RAM blocks are pre-
sented as equivalent number of 18 Kibit blocks denoted as
RAMB18E1, any RAMB36E1 is counted twice.

The gathered performance data from a real implemen-
tation are important for evaluation of the whole modular
system operation as it reflects the real behavior including

1Ncat 5.51 (http://nmap.org/ncat)

Table 2 Load, elimination, and read times for the MS architecture
with multiple RPs.

n Load [ms] Elim [ms] Read [ms] for a number of RPs

1 2 3 4 5

20 0.13 0.51 0.015 0.025 0.036 0.047 0.058

100 2.18 12.60 0.054 0.104 0.154 0.204 0.254

200 7.46 50.41 0.103 0.202 – – –

external parts (e.g. the DDR3 memory). The measured time
and area complexity are used for subsequent analysis, which
is the topic of the next section.

5.2 Analysis of the Experimental Results

The number of clock cycles needed for load and elimination
process can be calculated by the Eqs. 6 and 7 which were
presented in [8]. These equations express the behavior of a
model of the RP without accounting for its surroundings,
i.e. interface to other parts of the MS.

load(n, e, q) = ((2n + 2e + 5)q + 7)n + 1, (6)

elim(n, e) = ((5e − 2)n + 3)n + 14. (7)

The load(n, e, q) equation describes the number of
cycles needed to accept the matrix of n by n + 1 elements,
each having q words e bits long. It includes the cycles
needed to reduce the matrix modulo an e-bit modulus, and
storing the matrix in the RP Memory. The elim(n, e) equa-
tion describes the number of cycles an RP needs for the
GJ elimination to compute the solution vector, assuming the
data already loaded and stored in the RP Memory.

The experimental measured times (Table 2) were com-
pared the with the theoretical estimation from Eqs. 6 and 7.
For this comparison, the clock period was assumed to be
10 ns (corresponding with the implementation). The elimi-
nation process is largely independent of the control by the

Table 3 FPGA (Xilinx xc6vlx240t) area occupation of MS architec-
ture with multiple RPs.

n p 1 2 3 4 5 1 (RP only)

20 LUTs 11932 15527 18838 22124 25021 3595

BRAM 43 66 89 112 135 23

100 LUTs 20525 32897 45222 57347 66499 12372

BRAM 123 226 329 432 535 103

200 LUTs 30630 52886 – – – 18698

BRAM 223 426 – – – 203

The last column is only the RP without the rest of the MS. BRAM
is the number of block RAM primitives computed as the number of
RAMB18E1 plus 2 × RAMB36E1
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MicroBlaze Central Control Unit and the time measurement
was burdened only with a small error caused by reading state
of an external timer.

The measured load times however were ≈ 2.7 times
longer than the estimation. For example, for n = 200,
the estimated load time was 2.73 ms according to Eq. 6,
but 7.46 ms was measured. (See also Table 4 described in
the next section.) Load times were first estimated with an
assumption that all data were available when needed. In
the real system, control and synchronization overhead was
added to the loading times, causing this load time growth.
Even though data were read from Main Memory using
AXI4 master read transfers, it was necessary to read them
in blocks (of 32 words) under MicroBlaze software con-
trol. When loading data, the RP(s) compute remainders of
loaded data modulo the assigned modulus. Thus some form
of throttling or flow control had to be implemented and in
our case, this was done in software. The associated over-
head could be decreased by improving the master read data
throttling without the need for software control. Even with
the current overhead, the load portion of the time was small
compared to the elimination.

6 Perspectives of the Modular System

In this section, a performance analysis of a technically
realistic hypothetical Modular System configuration is pre-
sented. The experimental data gathered in the previous
sections will be used to evaluate performance of the overall
projected system.

The number and magnitude of all moduli can be derived
from M in Eq. 2. From this bound, a number of e-bit prime
moduli needed to express the solution can be derived. The
number of moduli r is generally higher than the number of
RPs p in MS, and thus it is necessary to process r by p

moduli in parallel.
For the subsequent analysis, a SLE size of n = 20 to

2000, and the number of RPs in the system p = 25 to 1000
is assumed. The operating frequency of the MS is fcl = 100
MHz, this figure is taken from the implementation, and is

Table 4 Estimated, Measured, and Extrapolated Times for 1 RP.

n Load [ms] Elim [ms] Read [ms] Total [ms]

Est M/Ex Est M/Ex

20 0.06 0.13 0.47 0.51 0.015 0.66

100 0.77 2.18 11.8 12.60 0.054 14.84

200 2.73 7.46 47.2 50.41 0.103 57.96

1000 ∼ 174 ∼ 1260 0.5 1434

2000 ∼ 688 ∼ 5039 1 5728

determined by the MicroBlaze processor used. With a dif-
ferent clock configuration, the frequency could be higher,
therefore 100 MHz is a conservative estimation. The data
throughput between the HS and MS is 1 Gibit/s.

Table 4 contains the times of loading, elimination, and
result read of a single RP. Numbers printed in cursive signify
esimated values according to Eqs. 6 and 7, numbers printed
in bold signify measured values, while the remaining num-
bers (for n = 1000 and 2000) were extrapolated from the
actually measured times.

In order to analyze the performance of the system, it was
necessary to fractionate the time in a communication and
computation part. First, the communication part is analyzed.

In Table 5 we present the amount of data that is sent from
the Host System to the Modular System to transfer the SLE
augmented matrix, and also the amount of data received as
the solution, i.e. MS to HS. The received data depends on
the number of moduli actually used that is always less than
the maximum number of moduli r .

From Table 5 we can see that for the considered cases,
and thus the required data amounts, the estimated times are
in the order of hundreds of milliseconds. If needed, the times
could be improved by using a faster data connection (e.g. a
10 Gibit/s Ethernet or PCI Express).

Some FPGAs, such as the Xilinx Zynq platform, contain
hard-core integrated processor (ARM Cortex A9). This can
be beneficial as the hardware processor has greater perfor-
mance than the Microblaze soft-processor. Central Control
Unit of the Modular System runs on this processor and
therefore can benefit of more computing power for handling
communication protocols.

Next, we analyze the time taken by the computation part.
We use the values for a single RP from Table 4, and extrap-
olate based on the number of RPs p from 25 to 1000 and
n from 100 to 2000. The results of the extrapolation are
presented in Table 6.

The r column in Table 6 denotes the maximum number
of moduli needed for the solution. The loading and elimi-
nation process is done in parallel by p RPs. If more than p

moduli is needed, RPs are assigned a new moduli set and
the process is repeated (c.f. Algorithms 4 and 5). The results
show that solving larger systems (n ≥ 1000) in reasonable

Table 5 Ethernet transfer data size and estimated time (1 Gibit/s).

Max Size [KiB] Data Transfer

n r HS to MS MS to HS Total Time [ms]

100 314 89 93 182 1

200 632 353 372 725 6

1000 3208 8798 9408 18206 149

2000 6457 35174 37853 73027 598
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Table 6 Solution time for different sizes and numbers of RP units.

Solution time for a MS with p RP [s]

n r p = 50 p = 100 p = 200 p = 500 p = 1000

100 314 0.110 0.06 0.04 0.04 0.04

200 632 0.80 0.43 0.25 0.14 0.14

1000 3208 93.55 47.57 24.58 10.78 6.19

2000 6457 746.0 376.2 191.3 80.3 43.3

time (units and tens of seconds) can be achieved by using
parallel systems with p = 100 and more RPs. Although the
times may seem high for the considered SLE dimensions,
it must be noted that the solution occurs without rounding
errors. By comparing the computation and communication
parts of the time, it is evident that even for p = 1000
RPs, and n = 2000, the communication time is in orders of
magnitude less than computation.

The conversion process consists of two parts, namely
transformation into mixed-radix digit represenatation, and
rational number computation. In order to estimate the pro-
cessing power needed, experiments were performed using
a PC (a single core of Intel Core i7–2640M runnning at
2.8 GHz, code compiled using GCC (4.8.5). The results are
presented in Table 7. From the table and comparison with
Table 6 it can be seen that one CPU core is able to pro-
cess approx. p = 100 RP units. The conversion process
can be easily parallelized either by vector elements, or by
moduli.

The performance can be further improved by fine-tuning
the design of the architecture. The architecture can be imple-
mented in ASIC [8], [15]. Using more advanced technology
nodes and construction (e.g. 3D stacking for memory con-
nection) could speed up the system up to 10 times. By
employing a larger word size, the performance can be
further improved.

The number of moduli needed is always less than the the-
oretical upper bound considered in our data. The amount of
moduli needed is detected during MRC conversion. In most
cases, around a half of the maximum number of moduli is
needed. Considering the mentioned possible improvements,

Table 7 MRC part of the output conversion time for different SLE
sizes, measured for 1 CPU core, extrapolated.

MRC conversion time [s]

n r 1 core 4 cores 16 cores 64 cores

100 314 0.046 0.012 0.003 0.0007

200 632 0.406 0.102 0.025 0.0063

1000 3208 51.05 12.76 3.19 0.798

2000 6457 413.5 103.38 25.84 6.46

Table 8 Performance comparison between different SLE solver
implementations using RNS for n = 1000 and p = 50.

Solution time [s]

of single SLC of whole SLE

Implementation p = 1 p = 1 p = 50

Plain C 5 16040 320

Mathematica 15 48120 960

Our system 1.47 4700 94

Compared to sequential solution time (p = 1), MRC conversion not
included

the SLE n = 2000 could be solved on a MS with p = 500 to
1000 RPs in a time under 1 second. Such a result would be
useful for a number of applications requiring solving SLEs
without rounding errors.

The output conversion from the RNS into the rational
number set, which is performed by the HS, also contributes
(not necessarily significantly) to the overall time and it is
therefore important to perform the conversion efficiently.
One such parallel approach is described in [23]. In our
case (n = 2000), we would need a computing cluster with
approx. 100 cores to keep the conversion time approx. 1
second.

We can also implement the RNS-based algorithms for
error-free solving of SLEs in plain C or Mathematica.
Table 8 presents a comparison of these implementations.
Plain C and Mathematica versions were run on a single core
of Intel Core i7–2640M runnning at 2.8 GHz and extrap-
olated with the assumption of p = 50 and r = 3208 to
obtain the solution time. Even though our system is a proof-
of-concept that runs at substantially lower frequency (100
MHz), it is still approx. 3.4 times faster.

7 Conclusion

Solving dense systems of linear equations (SLE) without
loss of precision is an important problem of numerical math-
ematics. Error-free solution of SLEs is important in several
fields of physical modeling and analysis (for example, [2]),
where traditional methods struggle to provide valid solu-
tion. The Modular System (MS) architecture of an SLE
solver using residue arithmetic to avoid rounding errors is
presented. MS was described in VHDL, designed, and a pro-
totype was implemented on a Xilinx ML605 development
board with a Virtex 6 FPGA with a 1 GiB DDR3 memory
and a gigabit Ethernet interface, which was used to trans-
fer data between the Host System and the evaluation board.
RNS was chosen as a way to enable parallel processing that
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overcomes problems encountered in computing with very
large precision operands.

The implemented design was used to verify correctness
of the architecture and to gather time and performance data
with a limited number of a maximum of 5 parallel Resid-
ual Processors (RP) and 200 equation SLEs. Measured time
also contained a control overhead of starting data transfers
and start/end of the elimination process. Elimination times
agreed with the estimation and high load time overhead
was identified and future improvements suggested. In the
current state our system can solve a single system of lin-
ear congruences (SLC) with n = 200 equations in approx.
58 ms. Time and area complexity of the real implementation
including external memory is useful for future development
of a complete system with many residual processors. Based
on the prototype implementation, we may extrapolate that
for n = 1000, with 50 processors, our architecture would
solve a SLE without rounding errors in approx. 94 s, com-
pared to software with 320 s. This is a promising result
with potential for future improvements and optimizations
including ASIC implementation that would enable order-
of-magnitude faster computation, enabling the solution of
SLEs with larger dimensions. Such a system can be useful as
a hardware peripheral attached to a Host System, or part of
an embedded system needing error-free SLE solution. The
important feature of this system is the ability to scale per-
formance just by attaching additional modules in the form
of hardware-identical RPs.
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ence Foundation project no. P103/12/2377.

Appendix A: Examples

Let us have a system of 3 linear equations given by the
augmented matrix:
⎛

⎝
3 −1 2 1

1.5 3 −2 −1
0.5 −1 1.5 2

⎞

⎠

First, we convert the system to an equivalent system with
integer coefficients. In this case, it suffices to multiply rows
2 and 3 by 2. The solution to this system is the same as
before. This matrix is the input to Method 1, and thereby
also to Algorithm 1:

(A|b) =
⎛

⎝
3 −1 2 1
3 6 −4 −2
1 −2 3 4

⎞

⎠

Let us now choose the set of moduli (m1, m2, m3) =
(5, 7, 11) for the RNS representation. For example, the

element a2,2 = 6 has the RNS representation (1, 6, 6) mod-
ulo (5, 7, 11). This representation is unique modulo M =∏r

i=1 mi = 5 × 7 × 11 = 385.
Then, we compute the residues of (A|b) mod

m1, m2, m3, which gives the augmented matrices of
three systems of linear congruences (SLCs). This oper-
ation denoted in Algorithm 1 as well as in Method 1 as
Input conversion.

(A|b) mod 5 =
⎛

⎝
3 4 2 1
3 1 1 3
1 3 3 4

⎞

⎠

(A|b) mod 7 =
⎛

⎝
3 6 2 1
3 6 3 5
1 5 3 4

⎞

⎠

(A|b) mod 11 =
⎛

⎝
3 10 2 1
3 6 7 9
1 9 3 4

⎞

⎠

Next, we will solve the individual SLCs in their respec-
tive moduli (SLC Solving). We will show the process for
m2 = 7.

In the first elimination step, a pivot is found a
(0)
1,1 = 3.

Its row index is stored in c1 = 1, and the determinant
intermediate value is d2 = 3.

The pivot’s inverse2 is 3−1 mod 7 = 5 and the pivot’s
row is multiplied with this inverse: a

(1)
1,j = [a(0)

1,j+1 × 3] mod
7. The first row is thereby shifted one element to the left (no
information is lost, the discarded value would be a constant
1).

a
(0)
i,j =

⎛

⎝
3 6 2 1
3 6 3 5
1 5 3 4

⎞

⎠ →
⎛

⎝
2 3 5 ·
3 6 3 5
1 5 3 4

⎞

⎠

Further in this elimination step, all other rows (l = 2, 3)

are reduced using the adjusted pivot’s row: a
(1)
l,j = [a(0)

l,j+1 −
(a

(0)
l,1 a

(1)
1,j )] mod 7. Again, the elements are by this process

shifted to the left, discarding unnecessary zeros.

a
(1)
i,j =

⎛

⎝
2 3 5 ·
0 1 4 ·
3 0 6 ·

⎞

⎠

In the second elimination step, a pivot is found a
(1)
3,1 =

3. Its row index is stored in c2 = 3, and the determinant
intermediate value is d2 = 3 × 3 mod 7 = 2. The pivot’s
inverse is 3−1 mod 7 = 5 and the pivot’s row is multiplied
with this inverse: a

(2)
3,j = [a(1)

3,j+1 × 5] mod 7.
⎛

⎝
2 3 5 ·
0 1 4 ·
0 2 · ·

⎞

⎠

2The modular multiplicative inverse can be computed by one of the
variants of the Extended Euclidean Algorithm; for further reference,
see [21] or [17], for example.
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Then, all other rows (l = 1, 2) are reduced using the
adjusted pivot’s row: a

(2)
l,j = [a(1)

l,j+1 − (a
(1)
l,1 a

(2)
3,j )] mod 7.

Again, the elements are by this process shifted to the left,
discarding unnecessary zeros.

a
(2)
i,j =

⎛

⎝
3 1 · ·
1 4 · ·
0 2 · ·

⎞

⎠

In the third and final elimination step, a pivot is found
a

(2)
2,1 = 1. Its row index is stored in c3 = 2, and the deter-

minant intermediate value is d2 = 2 × 1 mod 7 = 2. The
pivot’s inverse is 1−1 mod 7 = 1 and the pivot’s row is
multiplied with this inverse: a

(3)
2,j = [a(2)

2,j+1 × 1] mod 7.

⎛

⎝
3 1 · ·
4 · · ·
0 2 · ·

⎞

⎠

The other rows (l = 1, 3) are reduced as in the previous
steps: a

(3)
l,j = [a(2)

l,j+1 − (a
(2)
l,1 a

(3)
2,j )] mod 7

a
(3)
i,j =

⎛

⎝
3 · · ·
4 · · ·
2 · · ·

⎞

⎠

The solution y2 is now in the first column, but not in the
correct order, since the pivots were found in the order of c =
(1, 3, 2). Therefore, the solution is reordered to get y2 =
(3, 2, 4)T.

For the same reason, the sign of the computed determi-
nant must be corrected. In the index vector c, an odd number
of pair swaps is needed to create the ordered sequence
(1, 2, 3). Therefore, sgn(c) = −1 and the determinant’s sign
is corrected d2 = 2 × (−1) mod 7 = 5.

The solution is then multiplied by the determinant to get
z2 = y2 d2 mod 7 = (3, 2, 4)T × 5 mod 7 = (1, 3, 6)T.

Similarly, the solutions and determinants in the other
moduli are computed, giving z1 = (0, 0, 2)T, d1 = 4 and
z3 = (2, 1, 7)T, d3 = 8.

Next, we will perform the Output conversion, the third
stage of Method 1. First, the intermediate results are written

in the form of tk =
[
zk

dk

]

[t1, t2, t3] =

⎡

⎢
⎢
⎣

0 1 2
0 3 1
2 6 7
4 5 8

⎤

⎥
⎥
⎦

The values t1, t2, t3 are now converted according to
Algorithm 2. First, we will show the conversion of the deter-
minant d, whose RNS digits are the last elements of tk ,

i.e. d = detA has the RNS representation (d1, d2, d3) =
(4, 5, 8) modulo (5, 7, 11).

During the computation of Algorithm 2, mixed-radix dig-
its (4, 3, 0) are computed, shown in boxes in the table above.
(In fact, the first digit 4 is just taken from t1). The mixed-
radix digit weights are (1, m1, m1 m2) = (1, 5, 5 × 7). The
value of the determinant is thus d = 4×1+3×5+0×5×7 =
19. Because d < M

2 , i.e. 19 < 385
2 , it is positive.

A negative number is converted the same way. For exam-
ple, the first element of z has the RNS represenatation
(0, 1, 2):

The mixed-radix representation is thus (0, 3, 10), and the
value is 0+3×5+10×5×7 = 365, which is more than M

2 ,
therefore it is negative. The correct value can be computed
by subtracting M , yielding 365 − 385 = −20.

The same process is applied on all members of [t1, t2, t3],
getting (z, d)T = (−20, 45, 62, 19)T.

The final step is to get the solution vector x = z
d

=
(− 20

19 , 45
19 , 62

19 )T. We can now verify that x is indeed the
solution of the SLE (A|b):

⎛

⎝
3 −1 2
3 6 −4
1 −2 3

⎞

⎠ .

⎛

⎜
⎝

− 20
19
45
19
62
19

⎞

⎟
⎠ =

⎛

⎝
1

−2
4

⎞

⎠
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Chapter6
Conclusions

6.1 Summary

Error-free (exact) solution of systems of linear equations is a demanding taks that requires
the usage of special arithmetic operations. The Residue Number System is used as a
means to represent arbitrary precision numbers, it comes however with its specific issues
that must be addressed. Solving systems of linear equations in modular arithmetic using
Gauss-Jordan elimination requires implementation of individual operations as well as a
hardware architecture that can implement the algorithm.

Papers RP1 and RP2 deal with individual operations of multiplication and inverse
in modular arithmetic. The papers were written with mainly cryptographic applications
in mind, however the type of operation is equivalent and of high importance for other
applications of modular computation as well.

In RP1, we introduce a new modified carry-save encoding scheme for Montgomery
multiplication that reduces the number of saved carry bits. It enables us to trade speed
with area, aiming to optimize the architecture for FPGAs with dedicated adder carry chain
logic. We have tested the architecture for several operand lengths k and word sizes w, where
w = 1 corresponds to the normal carry-save encoding. The area occupation decreases with
increasing w, as expected. The clock frequency decreases however, as the prolonged carry
chains enlarge the critical path delay. The time-area product has its minimum in w = 4
for k = 1024 and 512, and in w = 8 for k = 2048. For the minimum time-area product,
the area saving more than 20 % relatively to the conventional carry-save encoding (w = 1).

In RP2, we have implemented the Subtraction-free Almost Montgomery Inverse al-
gorithm in FPGA and compared it to two different architectures for the traditional Almost
Montgomery Inverse algorithm with subtractions. We have synthesized the generic designs
using bit lengths of n = 64, 128, 162 and 256 bits, and gathered data about the speed and
area from the implementation tools.

Implementation results show that the Subtraction-free AMI algorithm [37] is suitable
for hardware implementation and its implementation is equally fast as the implementation
of AMI with two subtractors, yet about 13–17% smaller in area. The Subtraction-free AMI
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implementation is equally small as the implementation of AMI with one subtractor, yet it
is about 25% faster. We have observed that for smaller bit lengths, the Subtraction-free
AMI implementation is both smaller and faster.

Our papers RP3 to RP5 deal with design and technology aspects of the hardware
solver of systems of linear congruences. Finally, RP6 analyzes the solver of systems of
linear equations as a complete system including hardware peripherals (Residual Processors)
and the Host System managing conversions and communication tasks to facilitate solving
SLEs.

The SLC solvers were implemented and verified in Xilinx Virtex-6 FPGA exploiting
the internal memory and the parallel processing of the FPGA. The architecture was also
adapted and synthesized for various ASIC technologies to examine the properties of the
parallel architecture in ASIC and gather knowledge about its limits.

The system for solving systems of linear equations was implemented on the Xilinx
ML605 prototyping board with a Virtex-6 LX240T FPGA. A system-on-chip architecture
was created with several RPs as peripherals and a MicroBlaze soft-processor as a central
controller. The system was prototyped with p = 1 to 5 RPs and maximum linear system
size n = 20 to 200, up to the maximum capacity of the FPGA type used. Tables 6.1 and
6.1 summarize the time and area implementation results, respectively.

n Load [ms] Elim [ms] Read [ms] for a number of RPs Total (1 RP) [ms]1 2 3 4 5
20 0.13 0.51 0.015 0.025 0.036 0.047 0.058 0.66
100 2.18 12.60 0.054 0.104 0.154 0.204 0.254 14.84
200 7.46 50.41 0.103 0.202 - - - 57.96

Table 6.1: Load, elimination, and read times for the MS architecture with multiple RPs.
The Total architecture is the sum of each row for the case of 1 RP.

n p 1 2 3 4 5 1 (RP only)

20 LUTs 11932 15527 18838 22124 25021 3595
BRAM 43 66 89 112 135 23

100 LUTs 20525 32897 45222 57347 66499 12372
BRAM 123 226 329 432 535 103

200 LUTs 30630 52886 - - - 18698
BRAM 223 426 - - - 203

Table 6.2: FPGA (Xilinx xc6vlx240t) area occupation of MS architecture with multiple
RPs. The last column is only the RP without the rest of the MS. BRAM is the number of
block RAM primitives computed as the number of RAMB18E1 plus 2 × RAMB36E1.
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6.2 Contributions of the Dissertation Thesis

The main contribution of this thesis is the exploration of the architecture of the solver of
systems of linear equations in modular arithmetic with respect to the underlying platform
properties (FPGA, ASIC technologies). The system-dependent optimization has shown
the strengths and weaknesses of using residue arithmetic and RNS in particular for solving
systems of linear equations. The requirements for error-free solution is a major factor in
the overall complexity as it influences the operand lengths and thus number of moduli and
solution time.

For the process of solving systems of linear congruences, a new synchronous internal
memory architecture was proposed with support for pivoting and reordering of solution
elements.

FPGA prototype system using an embedded processor and peripheral was designed
enabling verification of the architecture and function testing. System integration (Modular
System) of one central processor with several peripherals (Residual Processors) enables
running multiple solvers using multiple moduli for computation of the SLC solution.

Communication complexity was analyzed and total solution times estimated for several
posisble problem dimensions. The suitability and performance of the Gauss-Jordan elimin-
ation method using RNS depends on several factors. Time and area complexity was studied
depending on the maximum linear system size, input number lengths and the prime modu-
lus length. The input number length, i.e. the dynamic range, and the maximum number of
equations, directly influence the maximum possible number of bits in needed to represent
the exact solution, and therefore also the number and size of individual moduli in RNS.

A system designer must decide on the word length of the internal processing units, and
this sets the limits on the maximum value of the modulus, and consequently, the maximum
number of moduli available (in the case of many moduli, only prime numbers are suitable).
For example, 16 bit word size may be not enough, as there are only 3030 prime numbers
of this length, and this may be limiting the maximum system size and dynamic range that
can be solved. We have determined that 24 bit moduli give enough choice, and with a
conservative assumption of 3 words per element, we need aproximately as many moduli as
3 times the number of equations.

The resulting system architecture permits error-free solution of dense systems of linear
equations of sizes of approx. 2000 equations in reasonable configuration using contemporary
technology.

6.3 Future Work

The author of the dissertation thesis suggests to explore the following:

◦ Improve the Residual Processor’s internal computation by improving the critical
path delay and possibly also different organization from the current serial-parallel
multiplication and bit-serial, operand-parallel memory access.
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◦ Design a memory access system for sparse matrices, as the current memory system
supports only dense matrices effectively.

◦ Design hardware support for back conversion (MRC), currently handled in the host
system (in software).

◦ Exploit advanced ASIC technology including novel interconnection methods with
memory. Three-dimensional chip design may be highly benefitial.

◦ Exploit different architecture possibilities for the arithmetic unit utilization – com-
pute segment-wise, for example.

82



Bibliography

[1] Lórencz, R.; Morháč, M. A Modular System for Solving Linear Equations Exactly,
I. Architecture and Numerical Algorithms. Computers and Artificial Intelligence,
volume 11, no. 4, 1992: pp. 351–361.

[2] Morháč, M.; Lórencz, R. A Modular System for Solving Linear Equations Exactly, II.
Hardware Realization. Computers and Artificial Intelligence, volume 11, no. 5, 1992:
pp. 497–507.

[3] Skála, J.; Bárta, M. LSFEM implementation of MHD numerical solver. arXiv preprint
arXiv:1206.2730, 2012.

[4] Montgomery, P. Modular Multiplication Without Trial Division.Mathematics of Com-
putation, volume 44, no. 170, April 1985: pp. 519–521.

[5] Menezes, A. J. Elliptic curve public key cryptosystems, volume 234. Kluwer Academic
Pub, 1993.

[6] Eg̃eciog̃lu, O.; K. Koç, C. K. Exponentiation Using Canonical recoding. Theoretical
Computer Science, volume 129, no. 2, 2004: pp. 407–417.

[7] Newman, M. Solving equations exactly. Journal of Research of the National Bureau
of Standards, volume 71, 1967: pp. 171–179.

[8] Karatsuba, A.; Ofman, Y. Multiplication of Many-Digital Numbers by Automatic
Computers. Doklady Akad. Nauk SSSR, volume 145, 1962: pp. 293–294, translation
in Physics-Doklady 7, 595-596, 1963.

[9] Cook, S. On the minimum computation time of functions. Doctoral diss., Harvard U.,
Cambridge, Mass, volume 1, 1966.

[10] Schönhage, A.; Strassen, V. Schnelle multiplikation grosser zahlen. Computing,
volume 7, no. 3-4, 1971: pp. 281–292.

83



Bibliography

[11] Walter, C. Montgomery Exponentiation Needs No Final Subtraction. Electronics Let-
ters, volume 35, no. 21, October 1999: pp. 1831–1832.

[12] Hachez, G.; Quisquater, J.-J. Montgomery Exponentiation with no Final Subtractions:
Improved Results. In Cryptographic Hardware and Embedded Systems – CHES 2000,
Lecture Notes in Computer Science, volume 1965, Springer-Verlag, 2000, pp. 293–301.

[13] Knuth, D. E. Seminumerical Algorithms, The Art of Computer Programming,
volume 2. Addison Wesley, 1969.

[14] Kaliski Jr, B. S. The Montgomery Inverse and Its Application. IEEE Transaction on
Computers, volume 44, no. 8, 1995: pp. 1064–1065.

[15] Savaş, E.; Koç, C. K. The Montgomery Modular Inverse – Revisited. IEEE Transac-
tion on Computers, volume 49, no. 7, 2000: pp. 763–766.

[16] Lórencz, R. New algorithm for classical modular inverse. In Cryptographic Hardware
and Embedded Systems-CHES 2002, Springer, 2003, pp. 57–70.

[17] Zhang, W.; Betz, V.; Rose, J. Portable and scalable FPGA-based acceleration of a
direct linear system solver. ACM Trans. Reconfigurable Technol. Syst., volume 5, no. 1,
Mar. 2012: pp. 6:1–6:26, ISSN 1936-7406, doi:10.1145/2133352.2133358. Available
from: http://doi.acm.org/10.1145/2133352.2133358

[18] He, C.; Qin, G.; Lu, M.; et al. Group-alignment based accurate floating-point sum-
mation on FPGAs. In ERSA’06: Proc. of the 6th International Conference on Engin-
eering of Reconfigurable Systems and Algorithms, Citeseer, 2006, pp. 136–142.

[19] He, C.; Qin, G.; Ewing, R. E.; et al. High-precision blas on fpga-enhanced computers.
Proceedings of ERSA 2007, 2007: pp. 107–116.

[20] Dou, Y.; Lei, Y.; Wu, G.; et al. FPGA accelerating double/quad-double high precision
floating-point applications for ExaScale computing. In Proceedings of the 24th ACM
International Conference on Supercomputing, ICS ’10, New York, NY, USA: ACM,
2010, ISBN 978-1-4503-0018-6, pp. 325–336, doi:10.1145/1810085.1810129. Available
from: http://doi.acm.org/10.1145/1810085.1810129

[21] Dussé, S. R.; Kaliski Jr, B. S. A Cryptographic Library for the Motorola DSP56000. In
Advances in Cryptology - EUROCRYPT ’90, edited by I. Damgård, Springer-Verlag,
1991, pp. 230–244.

[22] Koç, C. K.; Acar, T.; Kaliski Jr, B. S. Analyzing and comparing Montgomery multi-
plication algorithms.Micro, IEEE, volume 16, no. 3, 1996: pp. 26–33, ISSN 0272-1732,
doi:10.1109/40.502403.

[23] Koç, C. K. RSA Hardware Implementation. Technical report, RSA Data Laboratories,
1995.

84

http://doi.acm.org/10.1145/2133352.2133358
http://doi.acm.org/10.1145/1810085.1810129


Bibliography

[24] Blum, T.; Paar, C. High-radix Montgomery modular exponentiation on reconfigurable
hardware. Computers, IEEE Transactions on, volume 50, no. 7, 2001: pp. 759–764,
ISSN 0018-9340, doi:10.1109/12.936241.

[25] Orup, H. Simplifying Quotient Determination in High-Radix Modular Multiplication.
In Proc. 12th IEEE Symposium on Computer Arithmetic, edited by S. Knowles; W. H.
McAllister, IEEE Computer Society, 1995, pp. 193–199.

[26] Takagi, N. A Radix-4 Modular Multiplication Hardware Algorithm for Modular Ex-
ponentiation. IEEE Transactions on Computers, volume C-41, no. 8, August 1992:
pp. 949–956.

[27] Kornerup, P. High-Radix Modular Multiplication for Cryptosystems. In Proc. 11th
IEEE Symposium on Computer Arithmetic, IEEE Computer Society, 1993, pp. 277–
283.

[28] Daly, A.; Marnane, W. Efficient architectures for implementing montgomery modular
multiplication and RSA modular exponentiation on reconfigurable logic. In Proceed-
ings of the 2002 ACM/SIGDA tenth international symposium on Field-programmable
gate arrays, ACM, 2002, pp. 40–49.

[29] Savaş, E.; Tenca, A. F.; Koç, C. K. A scalable and unified multiplier architecture for
finite fields GF(p) and GF(2m). In Cryptographic Hardware and Embedded Systems-
CHES 2000, Springer, 2000, pp. 277–292.

[30] Tenca, A. F.; Koç, C. K. A scalable architecture for modular multiplication based on
Montgomery’s algorithm. Computers, IEEE Transactions on, volume 52, no. 9, 2003:
pp. 1215–1221, ISSN 0018-9340, doi:10.1109/TC.2003.1228516.

[31] Savas, E.; Tenca, A. F.; Ciftcibasi, M. E.; et al. Multiplier architectures for GF(p) and
GF(2n). In Computers and Digital Techniques, IEE Proceedings-, volume 151, IET,
2004, pp. 147–160.

[32] Mclvor, C.; McLoone, M.; McCanny, J. V. Fast Montgomery modular multiplication
and RSA cryptographic processor architectures. In Signals, Systems and Computers,
2003. Conference Record of the Thirty-Seventh Asilomar Conference on, volume 1,
IEEE, 2003, pp. 379–384.

[33] Gutub, A. A.-A.; Tenca, A. F.; Koç, C. K. Scalable VLSI architecture for GF(p) Mont-
gomery modular inverse computation. In VLSI, 2002. Proceedings. IEEE Computer
Society Annual Symposium on, 2002, pp. 46–51, doi:10.1109/ISVLSI.2002.1016874.

[34] Savaş, E.; Naseer, M.; Gutub, A.-A.; et al. Efficient unified Montgomery inversion
with multibit shifting. IEE Proceedings-Computers and Digital Techniques, volume
152, no. 4, 2005: pp. 489–498.

85



Bibliography

[35] Savas, E. A Carry-Free Architecture for Montgomery Inversion. IEEE Transactions
on Computers, volume 54, no. 12, Dec. 2005: pp. 1508–1519.

[36] Hlaváč, J.; Lórencz, R. Ordinary Modular Inverse Using AMI–Hardware Implement-
ation. In Proc. IEEE Workshop on Design and Diagnostics of Electronic Circuits and
Systems–DDECS, volume 3, 2003, pp. 309–310.

[37] Lórencz, R.; Hlaváč, J. Subtraction-free Almost Montgomery Inverse Algorithm. In-
formation Processing Letters, volume 94, no. 1, 2005: pp. 11–14.

[38] Hlaváč, J.; Lórencz, R. Arithmetic Unit for Computations in GF(p) with the Left-
Shifting Multiplicative Inverse Algorithm. In Architecture of Computing Systems –
ARCS 2013, Lecture Notes in Computer Science, volume 7767, Springer Berlin Heidel-
berg, 2013, ISBN 978-3-642-36423-5, pp. 268–279, doi:10.1007/978-3-642-36424-2_23.

[39] Shoup, V. NTL: A library for doing number theory. 2007, www.shoup.net/ntl.

86



Reviewed Publications of the Author
Relevant to the Thesis

[A.1] Buček, J.; Lórencz, R. Montgomery Multiplication on FPGA with Modified Carry-
Save Encoding. International Conference on Signals and Electronic Systems, IC-
SES’04, Poznan, PTETiS, 2004, pp. 313–315, ISBN 83-906074-7-6.

[A.2] Buček, J. Montgomery Multiplication Implementations in GF(p). Počítačové Ar-
chitektúry a Diagnostika (PAD 2004), CVUT FEL Praha, 2004, pp. 117–121.

[A.3] Buček, J.; Lórencz, R. Comparing subtraction-free and traditional AMI. Design and
Diagnostics of Electronic Circuits and systems, DDECS’06 IEEE, pp. 97–99, 2006.

The paper has been cited in:

◦ Guajardo, J.; Güneysu, T.; Kumar, S.; Paar, C.; Pelzl, J. Efficient Hardware
Implementation of Finite Fields with Applications to Cryptography, Acta Ap-
plicandae Mathematica, 93(1), September 2006, Kluwer Academic Publishers,
pp. 75-118. (citation indexed in WoS SCI, Scopus)

◦ Schinianakis, D.M.; Fournaris, A.P.; Michail, H.E.; Kakarountas, A.P.;
Stouraitis T. An RNS implementation of an Fp elliptic curve point multiplier,
IEEE Transactions on Circuits and Systems I: Regular Papers, 56(6), June
2009, pp. 1202-1213. (citation indexed in WoS SCI, Scopus)

◦ Mohammadi, M.; Molahosseini, A.S. Efficient design of Elliptic Curve Point
Multiplication based on fast Montgomery modular multiplication. Computer
and Knowledge Engineering (ICCKE), The 3rd International Conference on,
2013, IEEE, pp. 424-429. (citation indexed in WoS SCI, Scopus)

◦ Mohan, A.P.V. RNS in Cryptography. Residue Number Systems: Theory and
Applications, 2016, Birkhäuser, Springer International Publishing, pp. 263-347.
(citation indexed in Scopus)

87



Reviewed Publications of the Author Relevant to the Thesis

[A.4] Buček, J.; Kubalík, P.; Lórencz, R.; Zahradnický, T. Dedicated hardware implement-
ation of a linear congruence solver in FPGA. 19th IEEE International Conference
on Electronics, Circuits and Systems (ICECS), pp. 689–692, 2012.

[A.5] Buček, J.; Kubalík, P.; Lórencz, R.; Zahradnický, T. Comparison of FPGA and
ASIC Implementation of a Linear Congruence Solver. 16th Euromicro Conference
on Digital System Design (DSD) 2013.

[A.6] Buček, J.; Kubalík, P.; Lórencz, R.; Zahradnický, T. An ASIC linear congruence
solver synthesized with three cell libraries. In: Electronics, Circuits and Systems
(ICECS), 21st IEEE International Conference on, pp. 706–709, 2014.

[A.7] Buček, J. and Kubalík, P. and Lórencz, R., and Zahradnický, T., System on Chip
Design of a Linear System Solver, 2014 International Symposium on System-on-Chip
Proceedings, Piscataway, US, 2014, ISBN 9781479968909,

[A.8] Buček, J.; Kubalík, P.; Lórencz, R.; Zahradnický, T. Design of a Residue Number
System Based Linear System Solver in Hardware. In: Journal of Signal Processing
Systems, 87(3), pp.343-356. 2017.

88



Remaining Publications of the
Author Relevant to the Thesis

[A.9] Buček, J.; Kubalík, P.; Lórencz, R.,; Zahradnický, T., System Design of an FPGA
Linear Solver, Proceedings of the Work in Progress Session held in connection
with the 40th EUROMICRO Conference on Software Engineering and Advanced
Applications and the 17th EUROMICRO Conference on Digital System Design,
Linz, AT, 2014, ISBN 978-3-902457-40-0.

[A.10] Buček, J.; Lórencz, R., Subtraction Free Almost Montgomery Inverse in ASIC and
FPGA, Proceedings of Workshop 2006, Praha, CZ, 2006, pp. 260–261, ISBN
80-01-03439-9.

[A.11] Buček, J., Montgomery Multiplication Implementations in GF(p), Počítačové ar-
chitektúry a diagnostika, Bratislava, SK, 2004, pp. 117–121, ISBN 80-969202-0-0.

[A.12] Buček, J.; Lórencz, R., GF(p) Montgomery Multiplication for Cryptosystems on
FPGA, Proceedings of Workshop 2005, Praha, CZ, 2005, pp. 282–283, ISBN
80-01-03201-9.

[A.13] Buček, J., Montgomery Multiplication on FPGA, POSTER 2004, Praha, CZ, 2004,
pp. IC5.

89





Remaining Publications of the Author

[A.14] Jeřábek, S.; Buček, J.; Schmidt, J.,; Novotný, M., Emulator of Contactless Smart
Cards in FPGA, Proceedings of the 6th Mediterranean Conference on Embedded
Computing (MECO 2017), Bar, 2017, pp. 96–99, ISBN 978-1-5090-6741-1.

[A.15] Buček, J.; Novotný, M.,; Štěpánek, F., Practical Session: Differential Power Ana-
lysis for Beginners, Hardware Security and Trust, 2017, pp. 77–91, ISBN 978-3-
319-44316-4.

[A.16] Buchovecká, S.; Lórencz, R.; Kodýtek, F.,; Buček, J., True Random Number Gen-
erator Based on ROPUF Circuit, Proceedings of 19th Euromicro Conference on
Digital System Design DSD 2016, Los Alamitos, CA, US, 2016, pp. 519–523, ISBN
978-1-5090-2816-0.

[A.17] Kodýtek, F.; Lórencz, R.; Buček, J.,; Buchovecká, S., Temperature Dependence of
ROPUF on FPGA, Proceedings of 19th Euromicro Conference on Digital System
Design DSD 2016, Los Alamitos, CA, US, 2016, pp. 698–702, ISBN 978-1-5090-
2816-0.

[A.18] Kodýtek, F.; Lórencz, R.,; Buček, J., Improved ring oscillator PUF on FPGA and
its properties, pp. 55–63, Microprocessors and Microsystems, 47, November, 2016,
ISSN 0141-9331.

[A.19] Bartík, M.; Buček, J., A Low-Cost Multi-Purpose Experimental FPGA Board for
Cryptography Applications, 2016 IEEE 4th Workshop on Advances in Information,
Electronic and Electrical Engineering (AIEEE), Piscataway, NJ, US, 2016, ISBN
978-1-5090-4473-3.

[A.20] Bartík, M.; Buček, J., A Low-Cost Unified Experimental FPGA Board for Crypto-
graphy Applications, TRUDEVICE 2016 Final Conference, Barcelona, 2016, pp.
75–80.

91



Remaining Publications of the Author

[A.21] Štěpánek, F.; Buček, J.,; Novotný, M., Differential Power Analysis under Con-
strained Budget: Low Cost Education of Hackers, Proceedings of 16th Euromicro
Conference on Digital System Design, Piscataway, US, 2013, pp. 645–648, ISBN
978-0-7695-5074-9.

[A.22] Buček, J.; Fornůsek, T.; Moňok, M.; Altman, T.,; Lórencz, R., Analýza zabezpečení
komunikace bezkontaktních čipových karet, (Research Report), 2011, pp. 40.

[A.23] Lórencz, R.; Zahradnický, T.,; Buček, J., Forenzní analyzátor pro operativní
analýzu, Sborník příspěvků XXXII. konference EurOpen, Plzeň, CZ, 2008, pp.
51–58, ISBN 978-80-86583-14-3.

[A.24] Buček, J.; Hlaváč, J.; Lórencz, R.,; Matušková, M., Cost-Effective Architectures
for RC5 Brute Force Cracking, pp. 61–66, Acta Polytechnica, 45 (2), August, 2005,
ISSN 1210-2709.

[A.25] Matušková, M.; Hlaváč, J.; Buček, J.,; Lórencz, R., RC5 Brute Force Crack-
ing Engine, Proceedings of the Sixth International Scientific Conference Electronic
Computers and Informatics ECI 2004, Košice, SK, 2004, pp. 259–264, ISBN
80-8073-150-0,

[A.26] Buček, J.; Lórencz, R., Speedup of Computation using Accelerators, Workshop
2004, Praha, CZ, 2004, pp. 370–371, ISBN 80-01-02945-X,

[A.27] Buček, J., Metodika pro připojování numerických akcelerátorů k nadřazeným sys-
témům, Počítačové Architektury & Diagnostika PAD 2003, Brno, CZ, 2003, pp.
36–37, ISBN 80-214-2471-0,

[A.28] Kubalík, P.; Buček, J., FPGA Implementation of USB 1.1 Device Core, Proceedings
of Workshop 2003 (online), Praha, CZ, 2003, pp. 304–305, ISBN 80-01-02708-2,

92


	Abbreviations
	Introduction
	Structure of the Dissertation thesis

	Theoretical Background and State-of-the-Art
	Systems of linear equations
	Montgomery multiplication
	The original algorithm
	Choice of radix
	Binary radix Montgomery multiplication
	Final subtraction
	Choice of encoding

	Modular Inverse
	Montgomery Inverse
	Left-Shift Inverse


	Previous Results and Related Work
	Modular system for solving systems of linear equations
	Montgomery multiplication
	Software approaches
	Hardware approaches

	Modular Inverse
	Subtraction-Free Montgomery Inverse
	Left-Shift Inverse


	Overview of Our Approach
	FPGA implementation of a pipelined Montgomery multiplier
	Montgomery multiplier with modified Carry-Save encoding
	HW optimization of Left-Shift Inverse
	Datapath
	Controller

	Comparing Montgomery inverse architectures
	Solver of systems of linear equations

	Author's Relevant Papers
	RP1 – Montgomery Multiplication on FPGA with Modified Carry-Save Encoding
	RP2 – Comparing Subtraction-Free and Traditional AMI
	RP3 – Dedicated Hardware Implementation of a Linear Congruence Solver in FPGA
	RP4 – Comparison of FPGA and ASIC Implementation of a Linear Congruence Solver
	RP5 – An ASIC Linear Congruence Solver Synthesized with Three Cell Libraries
	RP6 – Design of a Residue Number System Based Linear System Solver in Hardware

	Conclusions
	Summary
	Contributions of the Dissertation Thesis
	Future Work

	Bibliography
	Reviewed Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author

