
Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

On Indexes of Ordered Trees for Subtrees and Tree Patterns and

Their Space Complexities

by

Ing. Martin Poliak

A thesis submitted to

the Faculty of Information Technology, Czech Technical University in Prague,

in partial fulfilment of the requirements for the degree of Doctor.

PhD programme: Informatics

Prague, June 2017

ii

Thesis Supervisor:
Doc. Ing. Jan Janoušek, Ph.D.
Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Copyright © 2017 Ing. Martin Poliak

iii

Abstract

This doctoral thesis deals with methods of indexing of a tree for subtrees and for tree
patterns. Two types of indexes are considered. The first type is the index of a tree for
subtrees, i.e. a full index that accepts all subtrees of a given tree. The second type is the
index of a tree for tree patterns, i.e. a full index that accepts all tree patterns that match
a given tree at any of its nodes. The results of the doctoral thesis are divided into three
parts.

As the first result, this doctoral thesis presents a deterministic pushdown automaton
called tree compression automaton (TCA), which can be used for multiple purposes. Firstly,
as an index of the subject tree(s) for subtrees. Secondly, as a subtree matcher. Thirdly,
TCA can be used for computing subtree repeats. Lastly, it can be used for compression
of indexed tree(s). A conversion algorithm from a TCA to a finite tree automaton (FTA)
[18] is given.

As the second result, this doctoral thesis presents a linear-space index of a tree for
tree patterns. A fast searching algorithm that uses this index is given. It is shown that
the presented index, together with the searching algorithm, is an efficient simulation of a
non-deterministic tree pattern pushdown automaton, which accepts all tree patterns that
match a given tree.

As the third result, this doctoral thesis investigates the space complexities of determin-
istic finite tree automata and deterministic tree pattern pushdown automata. Both au-
tomata that represent an index of a tree for tree patterns and they have non-deterministic
variants with linear size. This text shows that there exist trees such that any deterministic
finite tree automaton used as an index of these trees for tree patterns has size exponential
with respect to the indexed trees. A related result is demonstrated for deterministic tree
pattern PDAs.

The results are a part of arbology research [50]. Arbology is an algorithmic discipline
dealing with processing of trees that bases its approach on pushdown automata.

Tree compression automaton

Tree compression automaton (TCA) is a specific deterministic pushdown automaton that
is shown to be suitable for indexing of a tree for subtrees, for subtree matching, locating
subtree repeats and for tree compression. The TCA accepts by empty pushdown store all
subtrees in prefix bar notation [3] of trees in a given set of trees T .

An on-line and incremental construction algorithm for TCA is presented. The con-
struction algorithm creates a TCA whose size is in the worst case linear with respect to
the size of the indexed tree(s). In the best case, the size of the created TCA is logarithmic.
This property of TCA can be used for compression of the indexed tree(s).

A TCA for a tree with n nodes has at most n+1 states, 2n+1 pushdown store symbols
and the number of transition rules is 4n. If a hash map is used for the storage of the
transition function of a TCA, the construction of a TCA for a tree with n nodes takes time
O(2n) and requires working space of size at most 2n.

iv ABSTRACT

A linear-time decompression algorithm for TCA is presented. The compression and
decompression performance of TCA is verified experimentally and compared to other com-
pression methods. A library that provides compression by TCA is available [52].

An algorithm for subtree matching that uses TCA is introduced. Given a tree t with n
nodes and a set of trees T , the algorithm reports all subtrees of tree t that match trees in
set T in time O(2n) if hashing is used.

An algorithm for finding exact repeats of subtrees in a set of trees is presented. The
algorithm for finding exact repeats takes linear time with respect to the size of the input
when a hash map is used for the storage of transition function δ.

The tree compression automaton is put into context of finite tree automata (FTA). A
conversion algorithm from a TCA into a deterministic FTA that accepts the same trees is
given.

A full and linear index of a tree for tree patterns

For indexing of a tree for tree patterns, arbology presents a tree pattern pushdown au-
tomaton (tree pattern PDA). This automaton can have size exponential with respect to
the size of the indexed tree. This motivated the creation of a linear size index whose usage
can be seen as a simulation of a tree pattern PDA. The index consists of a compact suffix
automaton [20], and a subtree jump table.

Given a subject tree t with n nodes, the indexing phase is proved to take O(n) time and
require O(n) space. The number of distinct tree patterns which match the tree is O(2n),
but the index that is built during the indexing phase requires only O(n) space.

The searching phase reads an input tree pattern P of size m and locates all its oc-
currences in tree t. For an input tree pattern P in linear prefix notation pref(P) =

P1SP2S . . . SPk, k ≥ 1, the searching is performed in time O(m +
k∑

i=1

|occ(Pi)|)), where
occ(Pi) is the set of all occurrences of string Pi in pref(t).

On space requirements of indexes based on FTA and on tree pat-

tern PDA

A specific deterministic finite tree automaton suitable for indexing of a tree for tree patterns
is presented. Trees are shown such that all deterministic FTAs that index them have
exponential size with respect to the size of the indexed trees, whereas the non-deterministic
FTAs that index them have linear size.

More precisely, let t be a tree over alphabet A. Let NS
t denote a non-deterministic

finite tree automaton (NFTA) that accepts all tree patterns that match t. Let DS
t denote

deterministic FTA (DFTA) equivalent to NS
t . Then there exists a tree td with n nodes

(shown in the text of the doctoral thesis), whose NFTA NS
td has O(n) states and whose

minimum complete DFTA DS
td has O(2n/4) states.

An analogous result is shown for tree pattern PDAs. It is shown that there exists a tree

v

t of size n such that the deterministic tree pattern PDA that indexes it has exponential
size O(2n/4). This proof is an improvement of a related result from arbology [29].

Keywords:
Tree Indexing, Tree Pattern Indexing, Subtree Matching, Tree Compression, Tree Re-

peats, Tree Compression Automaton, Finite Tree Automaton, Tree Indexing Complexity

vi

Acknowledgements

I would like to express my gratitude to my doctoral thesis supervisor, Jan Janoušek, Ph.D.,
associate professor of computer science. He has been a constant source of encouragement
and insight during my research and helped me with numerous problems and professional
advancements. I valued especially his guidance in my research and his experience through
which he could identify and open the interesting and promising topics that eventually lead
to this thesis. Praise should also be given to Jan Janoušek’s support and proofreading
during the writing of this thesis.

I would like to thank professor Bořivoj Melichar for his guidance in the area of stringol-
ogy and arbology. His years of experience and valuable insight into the field of theoretical
informatics together with his focus on detail and formal correctness have been a tremen-
dous help. The captivating theoretic informatics courses lead by Jan Janoušek and Bořivoj
Melichar during my master’s program motivated me to continue as a Ph.D. student.

Many thanks go to the members of the Department of Theoretical Computer Science,
especially professor Jan Holub, Ph.D., Jan Trávńıček, Radomı́r Polách and Martin Šlapák,
who helped me with my research and who maintained a pleasant and flexible environment.

I would like to express special thanks to my thesis supervisor, Jan Janoušek, and the
department management for providing most of the funding for my research.

Finally, my greatest thanks go to my family members, for their unending patience and
care. To my wife Lenka for her loving support, to my mother Mahulena for her support
and encouragement throughout my years at the university and to all my beloved ones for
their help during my studies.

vii

Dedication

Lence, Tomáškovi a Terezce

viii

Contents

Abstract and contributions iii

List of Figures xiii

List of Tables xv

Abbreviations xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 1

1.2.1 Tree compression automaton . 2
1.2.2 A full and linear index of a tree for tree patterns 3
1.2.3 Tree indexes - space requirements 3

1.3 Structure of the doctoral thesis . 4

2 Definitions 5
2.1 Basic Definitions . 5

2.1.1 Alphabet, language, context–free grammar, pushdown automaton . 5
2.1.2 Graph, tree, prefix notation, bar notation 6
2.1.3 Index of a tree . 9

2.2 Finite tree automaton . 10
2.3 Subtree PDA, Tree Pattern PDA . 12

3 Related Work 19
3.1 Introduction . 19
3.2 String indexing . 19

3.2.1 Suffix trie . 20
3.2.2 Suffix tree . 20
3.2.3 Suffix automaton, compact suffix automaton 21
3.2.4 String indexing conclusion . 22

3.3 Tree indexing . 23
3.3.1 Arbology and tree indexing . 23
3.3.2 Tree indexing for tree patterns . 24

ix

x CONTENTS

3.4 Tree compression . 25
3.5 XML Indexing Methods . 26

4 Tree Compression Automaton 29
4.1 Definition of tree compression automaton 29
4.2 Construction of TCA . 32

4.2.1 Size of the output of Algorithm 4.12 (TCA-construction) 40
4.3 Tree decompression from TCA . 43
4.4 Time and space complexity of compression & decompression 45

4.4.1 Compression and decompression conclusion 47
4.5 TCA as an index of a tree . 47
4.6 TCA as a matcher . 48
4.7 Exact repeats by TCA . 50

4.7.1 Time and space complexity of Algorithm TCA-repeats-search . . . 52
4.8 Comparison with related compression methods 52
4.9 Implementation . 53
4.10 Experimental compression results . 53
4.11 Corresponding Finite Tree Automaton . 55

5 A Linear Index of a Tree for Tree Patterns 57
5.1 Construction of Index . 58
5.2 Searching occurrences of input tree patterns 60
5.3 Time and space complexities . 68
5.4 Linear index as a simulation of a tree pattern PDA 69

6 Tree Indexes - Space Requirements 73
6.1 DFTA as an index for tree patterns . 74
6.2 Tree Pattern PDA as a full index of a tree for tree patterns 80
6.3 Trees with small indexes, trees with large indexes 82

6.3.1 Upper bound on the number of states of the index 83
6.3.1.1 Number of different subtrees of a tree 83
6.3.1.2 Distinguishing suffixes . 84
6.3.1.3 Examples of very small and very large indexes 84

6.3.2 Discussion . 86
6.3.3 Conclusion . 88

7 Conclusions 89
7.1 Tree compression automaton . 89
7.2 A linear index of a tree . 90
7.3 Space Requirements of an Index . 91
7.4 Suggestions for further research . 91

7.4.1 Tree compression automaton . 91
7.4.2 A linear index of a tree . 92

CONTENTS xi

7.4.3 Space Requirements of an Index . 92

Bibliography 93
Publications of the Author . 99

xii CONTENTS

List of Figures

2.1 Tree t1 from Example 2.1 . 8
2.2 Examples of tree patterns . 9
2.3 Tree context C ′ and tree pattern p′′ . 11
2.4 Tree t2 from Example 2.8 . 12
2.5 Reductions of an example NFTA . 12
2.6 PDA Mp(t2) constructed for tree t2 . 13
2.7 PDA Mnps(t2) constructed for tree t2 . 14
2.8 PDA Mpt(t2) constructed for tree t2 . 16
2.9 PDA Mnpt(t2) constructed for tree t2 . 17

3.1 Suffix trie of string abbaa . 20
3.2 Suffix tree of string abbaa . 21
3.3 Suffix automaton of string abbaa . 22
3.4 Compact suffix automaton of string abbaa 22

4.1 Example tree t1 . 30
4.2 Subtree identification mapping . 30
4.3 TCA({t11}) constructed by Algorithm 4.12 34
4.4 TCA({t12}) constructed by Algorithm 4.12 34
4.5 TCA({t13}) constructed by Algorithm 4.12 34
4.6 TCA({t1}) constructed by Algorithm 4.12 35
4.7 Tree t3 and its prefix bar notation from Example 4.22 41
4.8 Tree t2 and its prefix bar notation from Example 4.24 43
4.9 Comparison with related results . 53

5.1 Subtree jump table construction for tree t1 from Example 5.4 59
5.2 Transition diagram of compact suffix automaton Mc(pref(t1)) 60

6.1 Tree t4 from Example 6.3 . 75
6.2 Patterns p13 and p23 that match tree t4 from Example 6.3 80
6.3 Tree tk from the proof of Theorem 6.13 . 81
6.4 Tree patterns used in the proof of Theorem 6.13 81
6.5 Mapping between nodes of 2 trees implied by tree patterns that match them 84
6.6 Tree whose tree pattern PDA has a very low number of states 85

xiii

xiv LIST OF FIGURES

6.7 Minimal tree pattern PDA for tree from Figure 6.6 85
6.8 Tree whose tree pattern PDA has an exponential number of states 87

List of Tables

4.1 Compression performance of TCA . 54

5.1 Subtree jump table for tree t1 from Example 5.4 59
5.2 Array Pair13{(1,11),(2,8),(3,5)} from Example 5.6 60

xv

xvi LIST OF TABLES

Abbreviations

Alphabet, Language, String

A Alphabet
a, b Letter of an alphabet
L Language
ε Empty string
A∗ Set of all strings over A, including ε
A+ A∗ \ {ε}
w, x, y, z String

Tree

N Set of nodes
R Set of edges
t Tree
T Set of trees
r Root node
pref(t) Prefix notation of tree t
pref par(t) Prefix parenthesis notation of tree t
pref bar(t) Prefix bar notation of tree t
S Placeholder for any subtree
p Tree pattern
occ Occurrence of a tree pattern

Grammar

G Grammar
N Set of non-terminal symbols
P Set of rules
S Start symbol of a grammar
⇒ Derivation

Pushdown Automaton

xvii

xviii ABBREVIATIONS

PDA,M Pushdown automaton
Q Set of states
G Pushdown store alphabet
α, β, γ Strings over A∪G
δ Transition function
⊢M Transition of automaton M
p, q, r States
Z,Z0 Elements of pushdown store alphabet

Finite Tree Automaton

FTA,M Finite tree automaton
DFTA Deterministic finite tree automaton
NFTA Non-deterministic finite tree automaton
X Set of variables
C Tree context
→
M

Move relation of tree automaton M

Tree Compression Automaton

TCA,M,N Tree compression automaton
GTCA General tree compression automaton
I Set of subtree identifiers
µ Labeling function that assigns subtree identifiers to trees

Other symbols

Mp(t) PDA accepting pref(t)
Mnps(t) Non-deterministic subtree PDA
Mdps(t) Deterministic subtree PDA
srms(t) Set of subtree rightmost states of tree t
Mpt(t) Treetop PDA for tree t
Mnpt(t) Non-deterministic tree pattern PDA for tree t
Mdpt(t) Deterministic tree pattern PDA for tree t
SJT (t) Subtree jump table for tree t
Mc(w) Compact suffix automaton for string w
TPP (p) Tree pattern prefix of tree pattern p
p, pi Tree pattern, sub-pattern
occt(pi) Set of all occurrences of sub-pattern pi in pref(t)
ac Arity checksum
m,n, k Length, number of elements

xix

|A| Number of elements in set A
O(x) Big O notation
Θ(x) Big Θ notation
w.r.t. Abbreviation for with respect to

Chapter 1

Introduction

1.1 Motivation

Trees are one of the key structures in Informatics with their usage ranging from data
storage in XML to intermediate representation of programs in compilers. Various kinds of
theoretical approaches to analysis and operations on trees exist. Results of this doctoral
thesis builds upon the results of the theory of tree languages and tree automata [18] and
of arbology [3].

A crucial property of trees is that they can be easily manipulated when linearised
to a string form [50, 3, 38]. The structures and algorithms presented in this doctoral
thesis are built upon this property. Algorithmic problems on linearised trees are similar to
problems on strings. The input domain of such problems is restricted to linearised forms of
trees, which are all strings. However, not all strings are linearised forms of trees. Certain
structural constraints can thus be placed on the outputs.

For instance, tree indexing that uses linearized forms of trees typically requires a lin-
earised tree from which an index is built during the indexing phase. During the searching
phase, a linearised subtree which is to be located in the indexed tree is required. Compare
this to string indexing, which requires a string and a substring for the indexing phase and
the searching phase, respectively. The input domain restriction by the algorithmic prob-
lems on linearised trees adds a new level of complexity to these problems, but on the other
hand offers possibilities for better performance of the algorithms that solve them.

This similarity between the problems on trees and the problems on strings means that
the existing algorithms on strings can often be adapted to trees. An existing algorithm on
strings for variable length gap matching [7] was an inspiration to an algorithm for building
and using a full and linear index of a tree for tree patterns presented in Chapter 5.

1.2 Problem statement

Arbology presents a systematic approach to the study of tree algorithms with the use
of pushdown automata [3, 38]. Some of the key areas for which a pushdown automaton

1

2 CHAPTER 1. INTRODUCTION

was found to be well suited are tree indexing [32], subtree and tree pattern matching [29]
or computing repeats in trees [31]. However, pushdown automata presented by arbology
always have at least linear size and are thus not suitable for compression of the indexed
trees. It would be helpful if the power of pushdown automata used in arbology could be
combined with an efficient usage of space.

A regular (recognizable) tree language is a set of trees accepted by some finite tree au-
tomaton (FTA). Regular tree languages have similar properties to regular word languages.
For instance, regular tree languages are closed under union, intersection and complementa-
tion [18]. The set of tree patterns that match a tree is a finite tree language. This implies
that there exists a (deterministic) finite tree automaton that can be used as an index of a
tree for tree patterns. We have not found any relevant analyses of such automaton, nor has
it been shown in the literature what the size of such finite tree automaton is. It is known
that tree pattern pushdown automaton can have at worst exponential size with respect to
the indexed tree [29]. A hitherto open question asks whether the finite tree automata that
accept the set of tree patterns that match a tree also have exponential size.

This work shows that deterministic automata based on the above mentioned approaches
(arbology or FTAs) are not suitable as indexes of trees for tree patterns because they have a
worst-case exponential size. The non-deterministic versions of the same automata however
have linear size. It would thus be helpful if an efficient way to simulate the non-deterministic
indexing automata was found.

1.2.1 Tree compression automaton

Indexing of a tree for subtrees can be solved using a subtree pushdown automaton [50]. The
size of the subtree pushdown automaton depends linearly on the size of the indexed tree.
But that is inefficient; trees often contain regularities that can be compressed. Moreover,
there are classes of trees (for instance, Fibonacci trees or full n-ary trees) that can be
described by a structure logarithmic in size with respect to the size of the tree.

This work introduces a particular pushdown automaton structure called tree compres-
sion automaton (TCA), which serves as a compressed index of a set of trees. Several
theorems are proved about TCA. Its properties are studied - determinism, indexing and
matching capabilities, suitability for computing tree repeats. The performance of TCA for
compression of trees is examined on real world data. The proposed algorithms based on
TCA are on-line and their input are labelled ordered unranked trees.

An on-line and incremental construction algorithm for TCA is presented. The con-
struction algorithm creates a TCA whose size is in the worst case linear with respect to
the size of the indexed tree(s). In the best case, the size of the created TCA is logarithmic.
This property of TCA can be used for compression of the indexed tree(s).

A TCA for a tree with n nodes is shown to have at most n+1 states, 2n+1 pushdown
store symbols and the number of transition rules is 4n. If a hash map is used for the
storage of the transition function of a TCA, the construction of a TCA for a tree with n
nodes takes time O(2n) and requires working space of size at most 2n.

A linear-time decompression algorithm for TCA is presented. The compression and

1.2. PROBLEM STATEMENT 3

decompression performance of TCA is verified experimentally and compared to other com-
pression methods. A library that provides compression by TCA is available [52].

An algorithm for subtree matching that uses TCA is introduced. Given a tree t with n
nodes and a set of trees T , the algorithm reports all subtrees of tree t that match trees in
set T in time O(2n) if hashing is used.

An algorithm for finding exact repeats of subtrees in a set of trees is presented. The
algorithm for finding exact repeats takes linear time with respect to the size of the input
when a hash map is used for the storage of transition function δ.

A conversion algorithm from a TCA to a corresponding deterministic FTA that accepts
the same trees is given.

1.2.2 A full and linear index of a tree for tree patterns

Whereas the pushdown automaton is a convenient computational model for indexing of
a tree for subtrees, it quickly becomes unwieldy when faced with indexing of a tree for
tree patterns [3]. This work shows that if used for indexing of a tree for tree patterns, the
deterministic pushdown automaton offered by arbology [32] and deterministic finite tree
automata used for the same purpose have an exponential worst-case size with respect to
the size of the indexed tree.

This motivated the creation of a linear size index of a tree for tree patterns. The index
consists of a compact suffix automaton [20], and a subtree jump table.

Given a subject tree t with n nodes, the indexing phase is proved to take O(n) time and
require O(n) space. The number of distinct tree patterns which match the tree is O(2n),
but the index that is built during the indexing phase requires only O(n) space.

The searching phase reads an input tree pattern P of size m and locates all its oc-
currences in tree t. For an input tree pattern P in linear prefix notation pref(P) =

P1SP2S . . . SPk, k ≥ 1, the searching is performed in time O(m +
k∑

i=1

|occ(Pi)|)), where
occ(Pi) is the set of all occurrences of string Pi in pref(t).

It is shown that searching for tree patterns using the linear index is analogous to a
simulation of a tree pattern PDA.

1.2.3 On space requirements of indexes of a tree for tree patterns

based on FTA and on tree pattern PDA

There exist indexes of trees for tree patterns built on top of pushdown automata and on top
of finite tree automata whose searching time is strictly linear with respect to the searched
pattern. Their space requirements can be exponential, though.

The deterministic tree pattern pushdown automaton [50] is such an index. The search-
ing time is linear if hashing is used for the storage of the transition function. For some
trees, however, the deterministic tree pattern PDA has an exponential size.

An index of a tree for tree pattern may also be built as a finite tree automaton. An
algorithm that builds such an index is presented. It is proved that there are trees such

4 CHAPTER 1. INTRODUCTION

that any deterministic FTA that indexes them has exponential size, whereas the non-
deterministic FTA that indexes them has linear size.

1.3 Structure of the doctoral thesis

This doctoral thesis is organised into 7 chapters as follows:

1. Introduction: Describes the motivation behind the efforts of the doctoral thesis to-
gether with its goals. It places this work in the context of arbology. It identifies two
areas suitable for further research: a compressed indexing of a tree and an indexing
of a tree for tree patterns.

2. Definitions : Introduces the reader to the necessary theoretical background. It
presents the necessary pushdown automata from arbology [3] and the finite tree
automaton [18].

3. Related Results : Overviews related results from the fields of arbology and stringology,
finite tree automata and XML indexing.

4. Tree Compression Automaton: This section presents tree compression automaton
(TCA) and the algorithms for tree indexing, tree pattern matching, subtree repeats
searching and tree compression that use TCA.

5. A Full and Linear Index of a Tree for Tree Patterns : This section presents a method
that constructs a linear-sized index of a tree that is subsequently used for tree pattern
(tree template) searching. The method is compared with related results, including a
detailed space and time complexity analysis.

6. On Space Requirements of an Index of a Tree for Tree Patterns : This section analyzes
the space required for building an index of a tree for tree patterns. Two methods for
building the index are analyzed; one uses a finite tree automaton, the other a tree
pattern PDA. It is proved that an index in the form of a finite tree automaton or in
the form of a tree pattern PDA requires a worst-case exponential size with respect to
the size of the indexed tree. Examples of trees for which the indexes have exponential
size are shown. On the other hand, examples of trees for which the indexes have linear
size are also shown. Several properties of trees that affect the size of the indexes are
considered.

7. Conclusions : This section summarises the results of the research, suggests possible
topics of the further research, and concludes the doctoral thesis.

Chapter 2

Definitions

2.1 Basic Definitions

This section defines the basic terms necessary for the doctoral thesis. The definitions of
the basic notions are partially based on [32] and [18]. The following theoretical concepts
are introduced: alphabet, language, context–free grammar, pushdown automaton, graph,
tree, prefix notation, tree bar notation, finite tree automaton.

2.1.1 Alphabet, language, context–free grammar, pushdown au-
tomaton

Notions from the theory of string languages are defined similarly as they are defined in [1].

An alphabet is a nonempty finite set of symbols. A language over an alphabet A is
a set of strings over A. Expression A∗ stands for the set of all strings over A including
the empty string, denoted by ε. Set A+ is defined as A+ = A∗ \ {ε}. Similarly, for string
x ∈ A∗, notation xm, m ≥ 0, denotes the m-fold concatenation of x with x0 = ε. Set x∗ is
defined as x∗ = {xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm : m ≥ 1}. Given a string x, |x|
denotes the length of x.

A context-free grammar (CFG) is a 4-tuple G = (N,A, P, S), where N and A are finite
disjoint sets of non-terminal and terminal symbols, respectively. P is a finite set of rules
of the form A → α, where A ∈ N , α ∈ (N ∪ A)∗. S ∈ N is the start symbol. Relation ⇒
is called derivation: if αAγ ⇒ αβγ, A ∈ N , and α, β, γ ∈ (N ∪ A)∗, then rule A → β
is in P . Symbols ⇒+, and ⇒∗ are used for the transitive closure, and the transitive and
reflexive closure of ⇒, respectively. The language generated by a G, denoted by L(G), is
the set of strings L(G) = {w : S ⇒∗ w, w ∈ A∗}.

An (extended) non-deterministic pushdown automaton (non-deterministic PDA) is a
seven-tuple M = (Q,A, G, δ, q0, Z0, F), where Q is a finite set of states, A is an input
alphabet, G is a pushdown store alphabet, δ is a transition function from Q× (A∪{ε})×G∗

into a set of finite subsets of Q × G∗, q0 ∈ Q is an initial state, Z0 ∈ G is the initial
pushdown store symbol, and F ⊆ Q is the set of final (accepting) states. Elements of the

5

6 CHAPTER 2. DEFINITIONS

transion function will be called transition rules. Triple (q, w, x) ∈ Q×A∗×G∗ denotes the
configuration of a pushdown automaton. In this doctoral thesisthe top of the pushdown
store x is written on its left hand side. The initial configuration of a pushdown automaton
is a triple (q0, w, Z0) for the input string w ∈ A∗.

The relation ⊢M⊂ (Q×A∗×G∗)×(Q×A∗×G∗) is a transition of a pushdown automaton
M . It holds that (q, aw, αβ) ⊢M (p, w, γβ) if δ(q, a, α) ∋ (p, γ). A transition ⊢M⊂ (Q ×
∅×G∗)× (Q×A∗×G∗) is called an ε-transition. The k-th power, transitive closure, and
transitive and reflexive closure of the relation ⊢M is denoted ⊢k

M , ⊢+
M , ⊢∗

M , respectively. A
pushdown automaton M is a deterministic pushdown automaton (deterministic PDA), if
it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.

2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β then α is not a suffix of β and β is not a
suffix of α.

3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix of β and β is not a suffix of α.

A language L accepted by a pushdown automaton M is for the purposes of this doctoral
thesis defined by:

1. Accepting by empty pushdown store:

Lε(M) = {x : (q0, x, Z0) ⊢∗
M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

When PDA accepts the language by empty pushdown store, the set F of final states is the
empty set.

A compact suffix automaton Mc for string x is a variant of finite automaton [1] intro-
duced in [20]. The compact suffix automaton accepts any sub-string w of string x in time
O(|w|) [20]. Construction of the compact suffix automaton for string x takes time O(|x|)
[20]. The automaton reports all k occurrences of a sub-string w in string x in time O(|w|)
[20].

2.1.2 Graph, tree, prefix notation, bar notation

Notions on trees are defined similarly as they are defined in [1, 18, 35] and [32].
A ranked alphabet is a finite nonempty set of symbols each of which has a unique

nonnegative arity (or rank). Given a ranked alphabet A, the arity of a symbol a ∈ A
is denoted Arity(a). The set of symbols of arity p is denoted by Ap. Elements of arity
0, 1, 2, . . . , p are respectively called nullary (constants), unary, binary, . . ., p-ary symbols.
We assume that A contains at least one constant. In the examples we use numbers at the
end of the identifiers for a short declaration of symbols with arity. For instance, a2 is a
short declaration of a binary symbol a. We use |A| notation for the size of set A.

Based on concepts from graph theory (see [1]), a labelled, ordered tree over an alphabet
A can be defined as follows:

An ordered directed graph G is a pair (N,R), where N is a set of nodes and R
is a set of linearly ordered lists of edges such that each element of R is of the form

2.1. BASIC DEFINITIONS 7

((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N , n ≥ 0. This element will indi-
cate that, for node f , there are n edges leaving f , the first entering node g1, the second
entering node g2, and so forth.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node f0 to node
fn if there is an edge which leaves node fi−1 and enters node fi for 1 ≤ i ≤ n. A cycle is
a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag (dag stands for Directed Acyclic
Graph) is an ordered directed graph that has no cycle. A labelling of an ordered graph
G = (A,R) is a mapping of A into a set of labels. We use af for a short declaration of
node f labelled by symbol a.

Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R, where g ∈ A.
By analogy, the in-degree of node f is the number of distinct pairs (g, f) ∈ R, where g ∈ A.

A rooted and directed tree t is an acyclic connected directed graph t = (N,R) with a
special node r ∈ N , called the root, such that

(1) r has in-degree 0,

(2) all other nodes of t have in-degree 1,

(3) there is just one path from the root r to every f ∈ N , where f 6= r.

A node g is a direct descendant of node f if a pair (f, g) ∈ R. Nodes with out-degree
0 are called leaves.

A labelled, (rooted, directed) tree is a tree having the following property:

(4) every node f ∈ N is labelled by a symbol a ∈ A, where A is an alphabet.

A ranked, (labelled, rooted, directed) tree is a tree labelled by symbols from a ranked
alphabet and out-degree of a node f labelled by symbol a ∈ A equals to Arity(a). Nodes
labelled by nullary symbols (constants) are called leaves.

An ordered, (ranked, labelled, rooted, directed) tree is a tree where direct descendants
af1, af2, . . . , afn of a node af having an Arity(af) = n are ordered.

A subtree of tree t = (N,R) rooted at node f, f ∈ N, is a tree tf = (Nf , Rf), Nf ⊆
N,Rf ⊆ R, such that

1. node f, f ∈ Nf , is the root of tf ,

2. there exists no tree t′ = (N ′, R′), f ∈ N ′, N ′ ⊆ N,R′ ⊆ R, rooted at node f such
that |N ′| > |Nf] or |R′| > |Rf |.

If g is not a node of an ordered tree (N,R), but not its root, then there exists an edge
(f, g) ∈ R. A right sibling of node g is a node h that is the smallest node greater than g
that satisfies (f, h) ∈ R.

A tree s with root rs is a child subtree of tree t = (N,R) with root rt if s is its subtree
and (rt, rs) ∈ R).

Two trees t, t′ are identical if their roots r, r′ are labeled with the same label, the roots
have the same number k of child subtrees si, s

′
i for 1 ≤ i ≤ k and every two child subtrees

si, s
′
i for 1 ≤ i ≤ k are identical.
The prefix notation pref(t) of tree t is defined as follows:

8 CHAPTER 2. DEFINITIONS

a04 b05 a06 a07

a43 a08 b09 a010

a42 a011 a012 b013

a41

Figure 2.1: Tree t1 from Example 2.1

1. pref(a) = a0 if a is a leaf,

2. pref(t) = an pref(b1) pref(b2) . . . pref(bn), where an is the root of tree t and
b1, b2, . . . bn are the respective child subtrees of a.

The prefix parenthesis notation pre par(t) of tree t is defined as follows:

1. pref par(a) = a if a is a leaf,

2. pref(t) = a(pref par(b1) . . . pref par(bn)), where a is the root of tree t and
b1, b2, . . . bn are the respective child subtrees of a.

Example 2.1 Consider a ranked alphabet A = {a4, a0, b0}. The number in the symbol
stands for the arity of the symbol; thus Arity(a4) = 4 and Arity(b0) = 0. Consider an
ordered, ranked, labelled, rooted, and directed tree t1 = ({a41, a42, a43, a04, b05, a06, a07,
a08, b09, a010, a011, a012, b013}, R1) over an alphabet A, where R1 is a set of the following
ordered pairs:

R1 = {(a41, a42), (a41, a011), (a41, a012), (a41, b013), (a42, a43), (a42, a08),
(a42, b09), (a42, a010), (a43, a04), (a43, b05), (a43, a06), (a43, a07)}.

Prefix notation of tree t1 is pref(t1) = a41a42a43a04b05a06a07a08b09a010a011 a012b013. Tree
t1 is illustrated in Figure 2.1.

We will use notation |t| to denote the number of nodes of a tree t.
To define a tree pattern, we use a special nullary symbol S 6∈ A, Arity(S) = 0, which

serves as a placeholder for any subtree. A tree pattern is defined as a labelled ordered tree
over an alphabet A ∪ {S}. In this doctoral thesis we assume that the tree pattern has at
least one node labelled by a symbol from A.

A tree pattern p with k ≥ 0 occurrences of symbol S matches a subject tree t (at node
n) if there exist subtrees t1, t2, . . . , tk (not necessarily the same) of tree t such that tree p′,
obtained from tree pattern p by substituting subtree ti for the i-th occurrence of symbol
S in p, i = 1, 2, . . . , k, is equal to the subtree ts of tree t rooted at node n. Tree ts is the
matched subtree of tree t.

Let a tree pattern p match a subject tree t at node n and let m be the num-
ber of nodes in the matched subtree ts. Let i be the index of node n in pref(t) =

2.1. BASIC DEFINITIONS 9

a05a04b03a02

a41

S5S4a03S2

a41

Figure 2.2: Subtree p′ (left) and tree pattern p′′ (right) from Example 2.2

a1a2 . . . aiai+1 . . . ai+m−1ai+m An occurrence of tree pattern p in subject tree t is a
pair (i, i + m). The pair (i, i + m) is also an occurrence of sub-string pref(ts) in string
pref(t).

Example 2.2 Consider tree t1 from Example 2.1.

Consider subtree p′ over alphabet A, p′ = ({a41, a02, b03, a04, a05}, Rp′), pref(p′) =
a4 a0 b0 a0 a0 and Rp′ = {((a41, a02), (a41, b03)), ((a41, a04), ((a41, a05))}.

Consider tree pattern p′′ over an alphabet A ∪ {S}, p′′ = ({a41, S2, a03, S4, S5},
Rp′′). Tree pattern p′′ in prefix notation is pref(p′′) = a4 S a0 S S and Rp′′ =
{((a41, S2), (a41, a03)), ((a41, S4), ((a41, S5))}.

Tree patterns p′ and p′′ are illustrated in Figure 2.2. Tree pattern p′ has one occurrence
in tree t1 – it matches t1 at node a43. Tree pattern p′′ has two occurrences in tree t1 – it
matches t1 at nodes a41 and a42.

The prefix bar notation pref bar(t) of tree t is defined as follows:

1. pref bar(a) = a | (a is a leaf),

2. pref bar(t) = a pref bar(b1) pref bar(b2) . . . pref bar(bn) |, where a is the root of
tree t and b1, b2, . . . bn are direct descendants of a.

2.1.3 Index of a tree

An index is a structure that extracts information from data to improve the query times
over it. For an index, the following are the fundamental considerations:

– type of the supported queries,

– size of the index relative to data size,

– query time.

Assume a given subject tree t. An index of tree t for subtrees, or a full index that accepts
all subtrees of tree t, is a structure based on tree t that allows for fast (typically sub-linear
or independent of the size of tree t) queries about the presence of a given subtree within
tree t. An index of tree t for tree patterns, or a full index that accepts all tree patterns that
match tree t at any of its nodes, is a structure based on tree t that allows for fast queries
about the presence of subtrees of t that are matched by a given tree pattern at their root
node.

10 CHAPTER 2. DEFINITIONS

2.2 Finite tree automaton

Tree compression automaton (TCA), which is presented in the next chapter, is closely
related to finite tree automaton (FTA) [18]. The theory of regular tree languages views
sets of trees as languages, some of which are regular (or recognizable, the notions are
shown to be equivalent in [18]). Regular tree languages are generated by regular tree
grammars and they are accepted by finite tree automata. The theory shows that regular
tree languages share a number of properties with context-free languages. One of the most
important is the fact that the set of derivation trees of any context-free language is a
regular tree language. Another important property is that given a regular tree language,
the set of yields of its elements is a context-free language. The following text presents
these concepts formally. The definitions are based on [18].

The first definition introduces finite tree automaton. For representing trees, the defini-
tion uses prefix parenthesis notation. It uses the notion of variable, which in this context
is a constant that stands for any subtree. For FTA, it is customary to express a tree in
notation a(bcd), where a is the root of the tree and b, c, d are the subtrees rooted under a.

Definition 2.3 Let X be a set of variables. Let A be a ranked alphabet. A (non-
deterministic) finite tree automaton (NFTA) over A is a 4-tuple M = (Q,A, Qf , δ) where
Q is a set of (unary) states, Qf ⊆ Q is a set of final states, and δ is a set of transition rules
of the following type:

f(q1(x1) . . . qn(xn)) → q(f(x1 . . . xn))),

where n ≥ 0, f ∈ An, q, q1, . . . , qn ∈ Q, x1, ..., xn ∈ X .

Example 2.4 Let A = {a2, a1, a0}. Consider NFTA M = (Q,A, Qf , δ), where Q =
{qodd, qeven}, Qf = {qeven}, and

δ = { a0 → qodd(a0), (1)
a1(qodd(x)) → qodd(a1(x)), (2)
a1(qeven(x)) → qeven(a1(x)), (3)

a2(qodd(x) qodd(y)) → qeven(a2(x y)), (4)
a2(qeven(x) qeven(y)) → qeven(a2(x y)), (5)
a2(qodd(x) qeven(y)) → qodd(a2(x y)), (6)
a2(qeven(x) qodd(y)) → qodd(a2(x y)) }. (7)

This automaton accepts all binary trees with an even number of leaves.

A finite tree automaton accepts trees over A. The automaton runs in bottom-up way.
There is no initial state; instead, the automaton applies its transition function δ whenever
it is applicable to any of its subtrees. For this purpose, a tree context and a move relation
have to be defined.

2.2. FINITE TREE AUTOMATON 11

x35x24a03x12

a41

S5S4a03S2

a41

Figure 2.3: Tree context C ′ from example 2.6 (left) and tree pattern p′′ (right) from
Example 2.2

Definition 2.5 Let A be an alphabet. Let X = {x1, . . . , xn} be a set of variables. A tree
context C over A∪ X is a tree over alphabet A∪ X . The expression C[t1, . . . , tn] denotes
a tree t obtained from C, in which each variable xi for all 0 < i ≤ n has been replaced by
tree ti. A tree context in which each variable occurs at most once is called linear. Tree
contexts that are not linear are called non-linear.

In this text, only linear tree contexts are considered.

Example 2.6 Let A = {a4, a0}. Let X = {x1, x2, x3}. Let C ′ be a tree context over
A ∪ X , pref(C ′) = a41x12a03x24x35. Context C’ is illustrated in Figure 2.3. Compare
the tree context with tree pattern p′′ from Example 2.2. The semantics of both patterns
is analogous. Whereas every xi represents a unique subtree, the S placeholder symbol
can stand for any subtree at each of its occurrences. Since the symbols S do not allow
non-linear pattern matching, tree contexts where any variable xi occurs more than once
are not considered.

Definition 2.7 Let M = (Q,A, Qf , δ) be a finite tree automaton over A. Let t, t′ be trees
over A∪Q. Let T (A ∪Q) be the set of all trees over A ∪Q. The relation
→
M
⊂ T (A∪Q)×T (A∪Q) is called a move relation and an application of this move relation

is called a reduction. It holds that

t →
M

t′ ⇐⇒

∃ context C over A ∪Q, ∃ trees t1, . . . , tn,

f(q1(x1) . . . qn(xn)) → q(f(x1 . . . xn)) ∈ δ,

t = C[f(q1(t1), . . . , qn(tn))],

t′ = C[q(f(t1 . . . tn))].

∗→
M

denotes the reflexive and transitive closure of→
M
. AutomatonM accepts tree t if t

∗→
M

q(t)

and q ∈ Qf .

Example 2.8 Consider NFTA M from Example 2.4. Consider tree t2, pref(t2) =

a21a12a03a04. Tree t2 is illustrated in Figure 2.4. It holds that t2
∗→
M

qeven(t2). The

series of reductions is shown in Figure 2.5. Automaton M ends in state qeven, which if
final. The tree is accepted.

Definition 2.9 A deterministic finite tree automaton (DFTA) is a non-deterministic finite
tree automaton in which no two transition rules have the same left-hand side.

12 CHAPTER 2. DEFINITIONS

a03

a12 a04

a21

Figure 2.4: Tree t2 from Example 2.8

a03

a12 a04

a21

(1),(1)→
M

qodd

a12 qodd

a21

a03

a04

(2)→
M

a12

qodd qodd

a21

a03

a04

(4)→
M

a03

a12 a04

a21

qeven

Figure 2.5: Reductions that NFTA M from Example 2.4 performs on tree t2 from Exam-
ple 2.8

Example 2.10 The finite tree automaton from Example 2.4 is deterministic.

A set of trees is a tree language. Two FTAs are equivalent if they accept the same tree
languages.

For every NFTA there exists an equivalent DFTA. The equivalent DFTA may be con-
structed by a determinisation algorithm [18].

The NFTAs can be extended with ε-transitions, similar to ε-transitions of string finite
automata. Such extended NFTAs are of the same power as plain NFTAs and a conversion
algorithm exists [18].

For every set L of trees recognized by some NFTA there exists a minimum DFTA that
accepts it. This minimum DFTA has the least number of states of all DFTAs that accept
set L.

A complete DFTA defines its transition function for all possible inputs [18].

2.3 Subtree PDA, Tree Pattern PDA

The subtree pushdown automaton and the tree pattern pushdown automaton are now
presented, based on definitions from [50].

Definition 2.11 Let t and pref(t) be a tree and its prefix notation, respectively. A
subtree pushdown automaton for pref(t) is a pushdown automaton Mnps(t) that accepts
all subtrees of t in prefix notation [50].

2.3. SUBTREE PDA, TREE PATTERN PDA 13

0 1 2 3 4

a2|S 7→ SS a1|S 7→ S a0|S 7→ ε a0|S 7→ ε

Figure 2.6: Transition diagram of PDA Mp(t2) from Example 2.13 constructed for tree t2
from Example 2.8

The construction of subtree pushdown automaton is done in two steps. In the first
step, a pushdown automaton that accepts pref(t) is constructed by algorithm 2.12. In the
second step, the automaton is extended into a subtree pushdown automaton by algorithm
2.14.

Algorithm 2.12: Construction of a PDA accepting pref(t) by empty pushdown store
[50]

Name: Subtree-PDA-preparation
Input: A tree t over ranked alphabet A in prefix notation pref(t) = a1a2 . . . an,

n ≥ 1
Output: Pushdown automaton Mp(t) = ({0, 1, . . . , n},A, {S}, δ, 0, S, ∅)

1 begin
2 foreach state i, where 1 ≤ i ≤ n do
3 insert into δ the following transition rule: δ(i− 1, ai, S) = (i, SArity(ai)),

where S0 = ε
4 end

5 end

Example 2.13 Consider tree t2 from Example 2.8, pref(t2) = a21a12a03a04. The automa-
ton Mp(t2) = ({0, 1, 2, 3, 4},A, {S}, δ, 0, S, ∅) accepting tree t2 has its transition function δ
illustrated in Figure 2.6.

Example 2.15 Consider tree t2 from Example 2.8, pref(t2) = a21a12a03a04. The au-
tomaton Mnps(t2) = ({0, 1, 2, 3, 4},A, {S}, δ, 0, S, ∅) constructed for tree t2 has its transi-
tion function δ illustrated in Figure 2.7.

Definition 2.16 Let t and pref(t) be a tree and its prefix notation, respectively. A tree
pattern pushdown automaton for pref(t) is a pushdown automaton that accepts all tree
patterns in prefix notation which match tree t at some of its nodes [50].

14 CHAPTER 2. DEFINITIONS

Algorithm 2.14: Construction of a non-deterministic subtree PDA [50]

Name: Subtree-PDA-construction
Input: A tree t over ranked alphabet A in prefix notation pref(t) = a1a2 . . . an,

n ≥ 1
Output: Non-deterministic PDA Mnps(t) = ({0, 1, . . . , n},A, {S}, δ, 0, S, ∅)

1 begin
2 create PDA Mp(t) by Algorithm 2.12 (Subtree-PDA-preparation) and set

Mnps(t) = Mp(t);
3 foreach state i, where 2 ≤ i ≤ n do
4 insert into δ the following transition rule: δ(0, ai, S) ∋ (i, SArity(ai)), where

S0 = ε
5 end

6 end

0 1 2 3 4

a2|S 7→ SS a1|S 7→ S a0|S 7→ ε a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a0|S 7→ ε

Figure 2.7: Transition diagram of PDA Mnps(t2) from Example 2.15 constructed for tree
t2 from Example 2.8

2.3. SUBTREE PDA, TREE PATTERN PDA 15

The construction of tree pattern pushdown automaton is in two steps, similarly to
construction of subtree pushdown automaton. In the first step a special automaton is
constructed and has to be defined.

Definition 2.17 Let t, r and pref(t) be a tree, its root and its prefix notation, respectively.
A treetop pushdown automaton for pref(t) accepts all tree patterns in prefix notation which
match the tree t at root r [50].

Definition 2.18 Let t and pref(t) be a tree and its prefix notation, respectively. The
set srms(t) of subtree rightmost states is defined as srms(t) = {i : pref(t) = a1 . . . an,
1 ≤ i ≤ n, Arity(ai) = 0} [50].

Algorithm 2.19: Construction of a treetop PDA for a tree t in prefix notation pref(t)
[50]

Name: Treetop-PDA-construction
Input: A tree t over ranked alphabet A in prefix notation pref(t) = a1a2 . . . an,

n ≥ 1
Output: Treetop PDA Mpt(t) = ({0, 1, . . . , n},A∪ {S}, {S}, δ, 0, S, ∅)

1 begin
2 create PDA Mp(t) by Algorithm 2.12 (Subtree-PDA-preparation) and set

Mpt(t) = Mp(t);
3 create a set srms = {i : 1 ≤ i ≤ n, δ(i− 1, a, S) = (i, ε), a ∈ A0};
4 foreach state i, where i = n− 1, n− 2, . . . 1, δ(i, a, S) = (i+ 1, Sp), a ∈ Ap do
5 insert into δ the following transition rule: δ(i, S, S) ∋ (l, ε), where l is the

p-th smallest integer such that l ∈ srms and l > i;
6 remove all j, where j ∈ srms and i < j < l, from srms;

7 end

8 end

Example 2.20 Consider tree t2 from Example 2.8. Treetop PDA Mpt(t2) constructed by
Algorithm 2.19 (Treetop-PDA-construction) is illustrated in Figure 2.8.

Example 2.22 Consider tree t2 from Example 2.8. Non-deterministic tree pattern PDA
Mnpt(t2) constructed by Algorithm 2.21 (Tree-pattern-PDA-construction) is illustrated in
Figure 2.9.

The tree pattern PDA Mnpt may be determinised to a deterministic tree pattern PDA
Mdpt using a standard determinisation algorithm for input-driven pushdown automata from
[50], presented in Algorithm 2.23.

16 CHAPTER 2. DEFINITIONS

0 1 2 3 4
a2|S 7→ SS a1|S 7→ S a0|S 7→ ε a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε S|S 7→ ε

Figure 2.8: Transition diagram of treetop PDA Mpt(t2) from Example 2.20 constructed for
tree t2 from Example 2.8

Algorithm 2.21: Construction of a non-deterministic tree pattern PDA for a tree t
in prefix notation pref(t) [50]

Name: Tree-pattern-PDA-construction
Input: A tree t over ranked alphabet A in prefix notation pref(t) = a1a2 . . . an,

n ≥ 1
Output: Non-deterministic tree pattern PDA

Mnpt(t) = ({0, 1, . . . , n},A ∪ {S}, {S}, δ, 0, S, ∅)
1 begin
2 create PDA Mpt(t) by Algorithm 2.19 and set Mnpt(t) = Mpt(t);
3 foreach state i, where 2 ≤ i ≤ n do
4 insert into δ the following transition rule: δ(0, ai, S) ∋ (i, SArity(ai)), where

S0 = ε;

5 end

6 end

Algorithm 2.23: Construction of an equivalent deterministic PDA for an input-
driven non-deterministic PDA [50]. The sets that form states in Q′ shall be called
d-subsets.
Name: Input-driven-PDA-determinisation
Input: Input-driven non-deterministic PDA Mn = ({0, 1, . . . n},A, G, δ, 0, Z0, ∅)
Output: An equivalent deterministic PDA Md = (Q′,A, G, δ′, qI , Z0, ∅)

1 begin
2 set Q′ = {[0]}, qI = [0], qI is an unmarked state;
3 foreach unmarked state q′ from Q′ do
4 insert into δ the following transition rule: δ(q′, a, α) ∋ (q′′, β), where

q′′ = {q : δ(p, a, α) ∋ (q, β) for all p ∈ q′};
5 if q′′ is not in Q′, add q′′ to Q′ as unmarked state;

6 end

7 end

2.3. SUBTREE PDA, TREE PATTERN PDA 17

0 1 2 3 4
a2|S 7→ SS a1|S 7→ S a0|S 7→ ε a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε S|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a0|S 7→ ε

Figure 2.9: Transition diagram of tree pattern PDA Mnpt(t2) from Example 2.22 con-
structed for tree t2 from Example 2.8

18 CHAPTER 2. DEFINITIONS

Chapter 3

Related Work

3.1 Introduction

Indexing a data subject preprocesses the subject and allows to locate occurrences of input
patterns in the subject repeatedly and quickly, in time typically not depending on the size
of the subject. The subject is typically much larger than the input patterns.

The similar problem of matching a pattern in a data subject preprocesses the pattern
and allows to locate its occurrences in input data subjects repeatedly and quickly, in time
typically not depending on the size of the pattern. The pattern is typically much smaller
than the subject.

Since trees can be represented as strings, it is appropriate to explore methods that are
used for string indexing.

3.2 String indexing

The theory of text indexing, explored extensively in stringology [20, 22, 23], is very well-
researched and uses many sophisticated data structures: suffix tree and suffix array are
widely used structures for text indexing, providing efficient solutions for a wide range of
applications [20]. The Directed Acyclic Word Graph [9], also known as suffix (or factor)
automaton [19], is another efficient indexing structure. The minimised versions of suffix
trees and suffix automata are represented by compact versions of suffix (factor) automata
[8, 20].

The structures presented above share a common property: they index the set of tree’s
suffixes.

Definition 3.1 Let w = a1a2 . . . an be a string over alphabet A. The set of suffixes of w,
denoted by suff(w), is defined as suff(w) = {wj = ajaj+1 . . . an| for all 1 ≤ j ≤ n}.

19

20 CHAPTER 3. RELATED WORK

a b b a a

b

a a

b

a a

a

Figure 3.1: Suffix trie of string abbaa

3.2.1 Suffix trie

One of the simplest indexes of tree’s suffixes is a suffix trie [34]. One of possible definitions
of a suffix trie is given below.

Definition 3.2 A suffix trie of a string w is a finite automaton that accepts suff(w). It
has no unreachable states and no loops. All its non-root states have in-degree 1 and all its
leaf states are final states.

The graph defined by the trie’s states and transitions is a rooted directed tree.

Example 3.3 Consider string w over alphabet {a, b}, w = abbaa. A suffix trie of string
w is presented in Fig. 3.1.

The suffix trie is space-inefficient. It indexes a string of length n into a graph of at
most n ∗ (n + 1)/2 + 1 nodes.

3.2.2 Suffix tree

A suffix tree of a string w [64] is a compacted version of suffix trie of a string w. It collapses
the trie by deleting from it all states whose out-degree is 1 and that are not final states.

To describe the conversion algorithm more formally, let q be a state to remove. It has
one incoming edge (qs, q) with a string label x and one outgoing edge (q, qt) with a string
label y. The state is removed along with edges (qs, q) and (q, qt) and is replaced by an edge
(qs, qt) with a label xy. This procedure is repeated until there is no state q left to remove.

3.2. STRING INDEXING 21

a bbaa

b

aa

baa

a

Figure 3.2: Suffix tree of string abbaa

The conversion described above is trivial and it creates a suffix tree of string w in time
O(n2). An on-line algorithm for construction of suffix trees that takes linear time has been
presented in [60].

For a string of length n, suffix tree has at between n + 1 and 2n states and edges [20].
It also stores the input string w and each of its edges is represented as a pair (i, d), where
i is an index into w and d is a length of a substring from w at index i.

Example 3.4 A suffix tree of string abbaa is presented in Fig. 3.2.

3.2.3 Suffix automaton, compact suffix automaton

Another way to decrease the size of a suffix trie is to minimize it. The resulting automaton
is called suffix automaton or also Directed Acyclic Word Graph (DAWG) [24].

Suffix automaton that indexes strings w of length n has at most 2n−1 nodes and 3n−4
edges [20].

Example 3.5 A suffix automaton that accepts suff(abbaa) is presented in Fig. 3.3.

There is still some redundancy present in the suffix automaton. A compact suffix
automaton is a modified finite automaton that removes this redundancy. This automaton
labels its edges not by symbols, but by strings.

The conversion from suffix automaton to compact suffix automaton is straightforward.
All non-final states and non-initial states whose in-degree is 1 and whose out-degree is 1
are collapsed. Formally speaking, consider a suffix automaton M that is to be compacted.
Extend its transition function to use strings and not just symbols. Take any non-final and

22 CHAPTER 3. RELATED WORK

a b b a a

b

a
b

a

Figure 3.3: Suffix automaton that indexes string abbaa

a bbaa

b

aa

baa

a

Figure 3.4: Compact suffix automaton that indexes string abbaa

non-initial state q of M that has an incoming transition rule (qs, q) labeled with x and only
one outgoing transition rule (q, qt) labeled with y. Remove the incoming transition rule
(qs, q) and add a new transition rule to the automaton’s transition function: (qs, xy) → qt.
If state q has no incoming transition rules left, remove it. This process is repeated until
there are no more states to remove.

The conversion described above is naive and is in fact not necessary for a construction
of a compact suffix automaton. A linear-time construction algorithm was presented in [25].

The compact suffix automaton can also be created from suffix tree by minimisation of
the suffix tree [20].

Another space-efficient variant to a suffix automaton is a suffix array [47], a sorted
array of string’s suffixes along with possible additional information for faster lookup times.

Example 3.6 A compact suffix automaton that accepts suff(abbaa) is presented in Fig.
3.4.

3.2.4 String indexing conclusion

Another text indexing structure, called position heap, was proposed recently [27]. It allows
building a string’s index in linear time and provides searches that depend linearly on the
length of the input pattern.

3.3. TREE INDEXING 23

Generally, the number of substrings in a text is quadratic to the size of the text, but
the size of the text index structure for substrings is typically linear to the size of the text.
This property is desirable for tree indexes. And possible, too: the number of subtrees of a
tree is linear to the size of the tree. The size of the index structure is often linear to the
size of the tree, but can be smaller in some cases as is shown in [11] and in this doctoral
thesis.

3.3 Tree indexing

Trees can be represented as strings by using a linear notation. Subtree searching and tree
pattern searching are thus often declared to be analogous to problems of string pattern
searching [5, 37]. Still, there are some structural properties of such strings that are unique
to linear notations of trees. For example, a prefix linear notation of a tree has an arity
checksum of 0 [50]. The similarity between strings and trees means that algorithms used
for string indexing can be adapted for indexing trees, as is done by arbology [50].

Trees can be described by means of tree languages and tree automata that accept them.
A finite tree automaton [18] is an example of a computational model that relies on tree
languages. A finite tree automaton can be used for indexing of a tree for subtrees.

The view of trees as languages suggests another formalism, tree grammars [18]. A
grammar-based representation of trees has been found suitable for compression, as shown
in [11].

XML is a language used for storing data in a tree-like structure. Since the XML files
contain not only a tree but also element data, the methods of XML indexing need to meet a
wider set of requirements than do methods used for simple tree indexing. A brief overview
of XML indexing methods is provided below.

3.3.1 Arbology and tree indexing

Arbology [50] builds on pushdown automata for processing linearised trees. It has numerous
results. Pushdown automaton as a model of computation is suitable for indexing trees [32],
finding subtree repeats [31] or searching linear and non-linear patterns in trees [58].

In [50], a pushdown automaton for indexing trees for subtrees was presented under
name subtree pushdown automaton. This automaton was used as an index for labeled,
ordered, ranked trees. The subtree pushdown automaton has both non-deterministic and
deterministic variants and accepts a tree and all its subtrees in prefix notation. The
construction of the automaton takes O(n) time in respect to the size of the input tree. An
example of a (non-deterministic) subtree pushdown automaton is shown in Fig. 2.7.

The subtree pushdown automaton is directly based on suffix automaton [20]. It is thus
not surprising that its determinisation algorithm runs in linear time and the total size of
the deterministic automaton is not more than 2n+ 1 states and 3n transition rules, given
n as the number of nodes of the indexed tree [50].

24 CHAPTER 3. RELATED WORK

Finding subtree repeats using subtree pushdown automaton was shown to be possible
in O(n) time and space in [31] and also in [14]. In the latter article the authors did not
have to rely on hashing to achieve linear indexing time, the drawback being a need for
multiple passes through input. All of the above works rely on ranked trees for input.

3.3.2 Tree indexing for tree patterns

String-based approaches

A tree pattern p is a tree whose leaves can be labelled by a special symbol S, which serves as
a placeholder for any subtree. As any other tree, tree pattern p can be converted to string
lin(p) using a prefix or postfix linear notation. Consider a subject tree t that contains
occurrences of pattern p (symbols S are matched by any subtree). Given a linearized
version of a subject tree lin(t), the occurrences of lin(p) correspond to substrings of lin(t).
Thus tree pattern searching is analogous to the problem of searching strings (patterns)
with gaps.

The problem of searching patterns with gaps and wildcards has been repeatedly ex-
plored [28, 2, 21, 33]. The methods differ in the kinds of considered gaps, in the achieved
complexity and in the fact whether the subject or the pattern is preprocessed.

In [6], an index is constructed for searching patterns with wildcards. A wildcard matches
any single symbol from the alphabet. In [45], an index is constructed for searching patterns
with variable length gaps. Unfortunately, the searching time depends on the gap size, which
is not efficiently usable for searching tree patterns, where gaps can be of any size.

In [7], a matching algorithm for variable length gap matching in strings was proposed.
Even though similar in the definition of the problem, this solution is incompatible with the
tree pattern matching problem because of a different interpretation of gaps. Nevertheless,
the matching algorithm inspired a method for tree pattern indexing presented in this
doctoral thesis.

Tree-based approaches

In [44], a similarly stated problem of tree pattern matching using a non-deterministic
pushdown automaton is examined. The solution suffers from an exponential blow-up of
number of states of the deterministic pushdown automaton. This problem is partially
resolved by using a simulation of the non-deterministic pushdown automaton.

An overview of methods for tree pattern matching and searching is provided in [17].
The work presents an overview of solutions for the problem of tree pattern matching and
for the problem of tree acceptance. It defines tree acceptance as the problem of deciding
whether a tree belongs to a tree language described by a given tree grammar. The work
assembles known solutions into two taxonomies, one for tree pattern matching, the other
for tree acceptance.

Tree indexing for tree patterns can be seen as a variant of tree acceptance - the subject
tree defines a tree grammar G, which generates all trees and tree patterns that match the

3.4. TREE COMPRESSION 25

subject tree and any of its subtrees. This doctoral thesis focuses on deterministic algo-
rithms for tree indexing based on pushdown automata and tree automata, in a leaf-to-root
direction. These are most closely matched by deterministic tree acceptance frontier-to-root
algorithms from section 5.6.6.4 of [17]. However, the algorithms from the taxonomy pre-
sented there are tailored for general tree grammars, whereas the structure of tree grammar
G is very specific. The general deterministic algorithms have a worst-case exponential time
and space requirements [17]. This doctoral thesis investigates whether these requirements
can be improved upon in case of tree pattern indexing.

In [15] and [30] a non-deterministic pushdown automaton is constructed for tree pattern
matching. The solution has a drawback that the equivalent deterministic automaton can
have an exponential size.

A finite tree automaton [18] representing a full index of a tree for tree patterns can be
constructed, but as this doctoral thesis shows, its size is again exponential with respect to
the size of the subject tree.

A subtree pushdown automaton from the arbology research can be extended to accept
not only subtrees of a given tree, but also tree patterns that are matched by these subtrees.
Such automaton is called tree pattern pushdown automaton [50]. This automaton also has
non-deterministic and deterministic variants. The deterministic variant can be minimised
into a minimal tree pattern pushdown automaton, which has the least possible number
of states. It is known that the number of distinct tree patterns for a given tree can be
exponential, at most 2n−1 + n [40]. The non-deterministic variant has linear size, whereas
the deterministic variant can have size exponential with respect to the non-deterministic
counterpart, as is shown in this doctoral thesis. That also means that the determinisation
algorithm runs in at worst exponential time. An example of a tree pattern pushdown
automaton is shown in Fig. 2.9.

In this thesis, a new method for the indexing of a tree for tree patterns is presented.
Given a subject tree t, the tree is preprocessed and an index of tree t, which consists of a
standard text compact suffix automaton [20] and a structure called subtree jump table, is
constructed. Any text index can possibly be used instead of the compact suffix automaton,
which was chosen here because of its convenient space and time complexity.

3.4 Tree compression

Since trees can be represented as strings, known text compression methods can be used
for the compression of trees (e.g. [65]). However, when a constraint is placed that the
compressed tree structure should act as an index, there are fewer methods available.

In [29], a method for locating subtree repeats was presented. The author correctly
observed that the table of tree repeats of a tree can be used for the compression of the
processed tree. This fact is used for tree compression by tree compression automaton
introduced in Chapter 4.

In [11], grammar-based representation of trees has been found suitable for compression
and an algorithm for compression of trees called BPLEX was proposed. The trees can be

26 CHAPTER 3. RELATED WORK

converted to context-free grammars (also known as straight-line grammars). A straight-
line grammar produces a single sentence from its starting symbol. Thus it can represent a
tree in its linear form. Moreover, context-free grammars can be extended into context-free
tree grammars [35].

Context free tree grammars include an additional set Y of parameters beside the set
of ranked nonterminal symbols N , the set of terminal symbols T , the set of production
rules and the starting symbol. A production rule of a context-free tree grammar has the
following form: A(y1, . . . , yk) → t, where A is a nonterminal symbol of arity k, y1, . . . , yk
are parameters from Y and t is a tree over N ∪ T ∪ Y . During rewriting, a parameter
may be replaced by a terminal symbol, a non-terminal symbol, or a tree over terminal and
non-terminal symbols. If all non-terminal symbols have rank 0, i.e. no parameters appear
in production rules, the grammar is a regular tree grammar.

The BPLEX algorithm takes as input a straight-line grammar (or an equivalent straight-
line regular tree grammar) that generates a tree. It then produces a straight-line context-
free tree grammar that generates the same tree using fewer production rules.

A comparison of compression performance between the tree compression automaton
from this doctoral thesis and the BPLEX algorithm is provided in section 4.10.

3.5 XML Indexing Methods

XML documents store data in a hierarchical, rooted tree structure. The trees are un-
ordered, which is a difference from the trees considered by algorithms presented in this
doctoral thesis. Parsing of the documents can be done in many ways, out of which two
have become standard.

An on-line variant, Simple API for XML (or SAX for short) [57] uses an event-based
model that allows to process the tree without needing to contain the whole tree in the
memory at once. This approach is useful for simpler tasks on XML documents or when
the document is too big for the available memory. However, as the tree is never fully in
memory, a full index is not built.

A more widespread variant of parsing builds an XML DOM object from the XML
Document. The DOM object represents the whole XML tree and is available for queries.
The standard language for queries over XML DOM objects [26] is XPath [68] and its
superset, XQuery [70], but other query languages are also available (XPointer [69], XLink
[67]). XPath is a query language for accessing data in XML documents. It allows searching
for specific structures in the trees, similarly to tree pattern matching, but has a greater
expressive power. Roughly speaking, it supports queries that can match any subset of
XML tree’s nodes based on the tree structure and on data stored inside the tree’s nodes.
XQuery is a superset of XPath; it supports SQL-like queries with FLWOR syntax (FOR-
LET-WHERE-ORDERBY-RETURN).

Answering an XPath query often involves traversing the whole XML tree, which is
inefficient if done on an unindexed tree. There are many different approaches for building
an XML index. In [12], the indexes were classified based on the types of supported queries

3.5. XML INDEXING METHODS 27

and the indexing strategy.
The article identified three types of XML queries:

1. Tree structure queries. These queries require a tree index for an efficient execution.
The queries define either a straight path through the tree or a branching path through
the tree. Tree indexing discussed in this doctoral thesis concentrates on a subset of
branching paths (for subtree matching and tree template matching).

2. Queries that start from the root node (total matching) and queries that don’t (partial
matching). Tree indexing for subtree and tree pattern matching is typically used for
partial matching.

3. Content-based queries, which check element content, not the graph structure.

The article also identified two main query processing strategies based on node location
schemes they use:

1. Position-based schemes that assign a number to the document’s nodes based on their
position in the document. These schemes require rebuilding of the index when a new
node is inserted.

2. Path-based schemes that add a label to each node. The label captures the path to
the node from the root node of the document.

The proposed classification of indexes is the following [12]:

1. Summary indexes. These indexes provide efficient support for non-branching path
queries by creating an index as a tree which is created by recursively collapsing the
tree’s nodes that differ only by order in the document. These indexes require addi-
tional processing when presented with a branching query. Typically, the branching
queries are de-composed into non-branching queries, whose results are then merged
together. Examples include DataGuide [36], Forward and Backward Index [63], Tem-
plate Index [51], MTree [53], and Adaptive Path Index for XML Data [16]. The last
example, APEX Index, is a partial summary index, which means that it indexes only
for the most often issued queries.

2. Structural join indexes. These indexes provide quick access to sets of elements or
nodes that satisfy elementary queries (usually through B-trees). A query is answered
by first being decomposed into a tree of elementary queries, which are resolved using
the index and then joined together using a structural join algorithm. Examples
include XML Indexing and Storage System [46], XML Region Tree [41] and Lazy
XML Join [13].

3. Sequence-based indexes represent the trees in a linearized form, as sequences. Sub-
sequence matching is used for answering queries. The subsequence matching can
generate false hits, which have to be pruned by some verification process. Examples
include Virtual Suffix Tree [62] and Prüfer sequences [55].

28 CHAPTER 3. RELATED WORK

A different classification appears in [49]. Among types of queries it considers are so
called ”twigs” [10]. The twigs are a generalized form of tree template queries answered by
tree template pushdown automaton [30]. A twig describes a subgraph of a tree, which can
be composed of multiple (disconnected) components. Compare this with a tree template
[30], which always defines a connected subgraph of a tree. The proposed classification
separates indexes that support twig queries into sequence-based indexes (Virtual Suffix
Tree [62]) and summary-based indexes (Forward and Backward Index [63]). It also adds
a new class of indexes, called Content Indexes, which separate storage of data and tree
structure (Tindex [48]).

Chapter 4

Tree Compression Automaton

4.1 Definition of tree compression automaton

This chapter presents tree compression automaton (TCA), as described in [A.1]. A general
tree compression automaton (GTCA) for a set of trees T is a pushdown automaton that
accepts all trees in set T and all of their subtrees. Tree compression automaton is defined
as a deterministic version of GTCA constructed using the provided construction algorithm.
TCA for a set of trees T is proved to be deterministic and to be a GTCA. In the following
sections TCA is shown to be suitable for tree indexing, tree matching, tree compression
and locating subtree repeats.

Example 4.1 Figure 4.1 shows a tree t1 and its prefix bar notation.

Definition 4.2 Let T be a set of trees. Let I be a set of symbols. Let µ be an injective
mapping from the set of all subtrees of all trees from set T into set I such that two
subtrees are assigned the same element from set I if and only if they are identical. The
triplet (T, I, µ) is called subtree identification mapping for set T .

Example 4.3 An example of a subtree identification mapping is shown in Figure 4.2.

Definition 4.4 Let T be a set of trees. Let (T, I, µ) be a subtree identification mapping
for set T . Let t be any ordered subtree of any tree in set T . Let it have k child subtrees
child subtreei for i from 1 to k in this order. Let r be the root of subtree t and let L be
an ordered list (µ(child subtree1), µ(child subtree2), . . .). Given (T, I, µ), the pair (r, L)
is called a tree stub of tree t.

Example 4.5 Tree stubs that are derived from the subtree identification mapping
({t1}, {1, 2, 3, 4}, µ1) from Example 4.3:

– tree stub of subtree t11, t11 = a|, µ1(t11) = 1: (a, ()),

– tree stub of subtree t12, t12 = aa||, µ1(t12) = 2: (a, (1)),

29

30 CHAPTER 4. TREE COMPRESSION AUTOMATON

a

a

a a

a

a

a a

a

pref bar(t1) = aaa|aa|||aa|aa||||

Figure 4.1: Tree t1 and its prefix bar notation

a

a

a a

a

a

a a

a

t1
↓
4

a

a a

a

t13
↓
3

a

a

t12
↓
2

a

t11
↓
1

Figure 4.2: Subtree identification mapping ({t1}, {1, 2, 3, 4}, µ1) maps every unique subtree
of tree t1 from Example 4.1 to a unique identifier

4.1. DEFINITION OF TREE COMPRESSION AUTOMATON 31

– tree stub of subtree t13, t13 = aa|aa|||, µ1(t13) = 3: (a, (1, 2)),

– tree stub of tree t1, t1 = aaa|aa|||aa|aa||||, µ1(t1) = 4: (a, (3, 3)).

Theorem 4.6 Let (T ,I,µ) be a subtree identification mapping for a set of ordered trees T .
Let t be any ordered subtree of any tree in set T . Let pair (r,L) be the tree stub of tree t.
Tree t can be reconstructed from mapping (T ,I,µ) and tree stub (r,L). At the same time,
given mapping (T ,I,µ), exactly one tree stub exists for every subtree from set of trees T .

The proof shows that the prefix bar notation of tree t can be reconstructed from the
subtree identification mapping and its tree stub. Then it shows that a tree stub exists for
every subtree of any of the trees from the set of trees T . Lastly, it proves that the tree
stub can be only one for a given tree.

P r o o f . (1) Let tree t with k child subtrees be written as tree stub (r, (µ(child subtree1),
µ(child subtree2), . . .)). The prefix bar notation of t is r pref bar(child subtree1)
pref bar(child subtree2) . . . pref bar(child subtreek) |. Since mapping µ assigns the same
symbol only to identical trees, it is safe to use µ to rewrite the tree stub that describes
tree t into (r,(pref bar(child subtree1),
pref bar(child subtree2), . . .)). This pair can then be easily transformed into pref bar(t).
Tree t can be reconstructed.

(2) Suppose that there is a subtree t′ from set of trees T for which there exists no
tree stub. Tree t′ has a prefix bar notation and a root r. If the depth of tree t′ is
0 and therefore pref bar(t′) = r|, tree t′ can be rewritten into a tree stub (r, ()), which
contradicts the initial assumption and therefore this tree t′ cannot exist. Suppose the depth
of t′ is d + 1. The pref bar(t′) can be rewritten into a pair (r, (pref bar(child subtree1),
pref bar(child subtree2), . . ., pref bar(child subtreek))). But pref bar (child subtreei) for
i from 1 to k is a prefix bar notation of a child subtree of the tree t′ that has depth at most
d and for which there is a tree stub. This child subtree was assigned an element from set
I. The pair can therefore be rewritten into (r,(µ(child subtree1), µ(child subtree2), . . .,
µ(child subtreek))), which is a tree stub of tree t′. Tree t′ therefore cannot exist.

(3) There can be only one tree stub (r,(µ(child subtree1), µ(child subtree2), . . .,
µ(child subtreek))) for an ordered tree t. This is because the root of tree t is always
the same node r, the identifier µ(child subtreei) for i from 1 to k maps to a single value
by definition and the order of the subtrees is only one for one tree t. �

Corollary 4.7 (extension of Theorem 4.6) Given a subtree identification mapping
(T, I, µ), there exists a unique mapping between the set of identifiers I and the set of tree
stubs of T .

P r o o f . By the previous theorem, every tree has exactly one tree stub and every tree also
has exactly one identifier from the set of identifiers I. �

Example 4.8 Reconstruction of tree t1 from Example 4.1 from the tree stubs from Ex-
ample 4.5:

32 CHAPTER 4. TREE COMPRESSION AUTOMATON

– t11 = a|, µ(t11) = 1: (a, ()) → a|,
– t12 = aa||, µ(t12) = 2: (a, (1)) → (a, (a|)) → aa||,
– t13 = aa|aa|||, µ(t13) = 3: (a, (1, 2)) → (a, (a|, aa||)) → aa|aa|||,
– t1 = aaa|aa|||aa|aa||||, µ(t1) = 4: (a, (3, 3)) → (a, (aa|aa|||, aa|aa|||)) →
aaa|aa|||aa|aa||||.

Definition 4.9 A general tree compression automaton for a set of trees T - GTCA(T) - is
a pushdown automaton M = (Q,A∪{|,⊣},A∪ I ∪{#}, δ, q0,#,∅). A is a set of labels of
the nodes of the trees from set T and I is a set of symbols. Symbol ⊣ is a marker symbol
for the end of the input string. The automaton accepts input by an empty pushdown
store. A ∩ {#,⊣} = ∅, (A ∪ {#}) ∩ I = ∅. A GTCA(T) accepts (by definition) exactly
all subtrees of the trees in set T in the prefix bar notation.

Definition 4.10 An initial general tree compression automaton (Initial GTCA) is a
GTCA(∅) = (q0, {|,⊣}, {#},∅, q0,#,∅).

Definition 4.11 Tree Compression Automaton - TCA
A GTCA(T) is a tree compression automaton (TCA(T)) if

1. T = ∅, or

2. T = T ′ ∪ {t} and GTCA(T) is the output of Algorithm 4.12 (TCA-construction)
with input TCA(T ′) and t.

4.2 Construction of TCA

The following algorithm describes an on-line algorithm that extends a TCA(T) to create
an automaton TCA(T ∪ {t}). As proved later, this automaton is a GTCA(T ∪ {t}).

If pushdown store P used by the following algorithm is considered as the pushdown store
of automaton TCA(T), then it is clear that the algorithm simulates automaton TCA(T)
while trying to accept input tree t. If a transition rule is missing in automaton TCA(T),
the algorithm extends the transition function. If automaton TCA(T) does not accept a
subtree that it should accept, the transition function is extended in Step 28.

A TCA constructed for a given input is shown in the following example.

Example 4.13 TCA-construction
Consider tree t1 from Example 4.1. Given pref bar(t1) and an Initial TCA(∅), Al-

gorithm 4.12 constructs a TCA({t1}). As more subtrees are processed, the TCA grows
progressively. Figures 4.3, 4.4 and 4.5 show how the TCA grows during construction. The
resulting TCA is shown in Figure 4.6.

Theorem 4.14 The output of Algorithm 4.12 (TCA-construction) is a deterministic push-
down automaton.

4.2. CONSTRUCTION OF TCA 33

Algorithm 4.12: Construction of Tree Compression Automaton

Name: TCA-construction
Input: A tree t in prefix bar notation and an automaton M = TCA(T)
Output: Automaton TCA(T ∪ {t})

1 begin
2 let M = (Q,A, G, δ, q0,#,∅) be the input pushdown automaton; let P be a

pushdown store; let qact mark the current state;
3 let the pushdown store P = (#); Let i = 0;
4 if δ(q0, |, ε) 6= (q1, ε) then
5 set Q := Q ∪ {q1} and δ(q0, |, ε) := (q1, ε);
6 end
7 while P 6= () do
8 while i < |pref bar(t)| and pref bar(t)[i] 6= | do
9 a := pref bar(t)[i];

10 A := A∪ {a}, G := G∪ {a}, δ(q0, a, ε) := (q0, a); push symbol a on top of
pushdown store P ;

11 i := i+ 1;

12 end
13 qact := q1;
14 repeat
15 pop a symbol b from the top of pushdown store P ;
16 if b /∈ A then
17 if δ(qact, ε, b) = (qb, ε) then
18 qact := qb;
19 else
20 create a state qnew;
21 Q := Q ∪ {qnew}, δ(qact, ε, b) := (qnew, ε), qact := qnew;

22 end

23 end

24 until b ∈ A;
25 if δ(qact, ε, b) = (qb, c) then
26 push symbol c on top of the pushdown store P ;
27 else
28 create a new pushdown store symbol snew; Set G := G ∪ {snew},

δ(qact, ε, b) := (q0, snew) and push snew on the pushdown store P .
δ(q0,⊣, snew#) := (q0, ε);

29 end
30 if pushd. store P contains only s#, s /∈ A then set P := ();

31 end
32 Exit and output automaton M = TCA(T ∪ {t});
33 end

34 CHAPTER 4. TREE COMPRESSION AUTOMATON

q0 q1

a, ε 7→ a

⊣, 1# 7→ ε

|, ε 7→ ε

ε, a 7→ 1

pref bar (t11) : a| ⊣

Figure 4.3: TCA({t11}) constructed by Algorithm 4.12

q0 q1

1
a, ε 7→ a

⊣, 1# 7→ ε

⊣, 2# 7→ ε

|, ε 7→ ε

ε, 1 7→ ε

ε, a 7→ 1

ε, a 7→ 2

pref bar(t12) : aa|| ⊣

Figure 4.4: TCA({t12}) constructed by Algorithm 4.12

q0 q1

1

2 3

a, ε 7→ a

⊣, 1# 7→ ε

⊣, 2# 7→ ε

⊣, 3# 7→ ε

|, ε 7→ ε

ε, 1 7→ ε

ε, 2 7→ ε ε, 1 7→ ε
ε, a 7→ 1

ε, a 7→ 2

ε, a 7→ 3

pref bar (t13) : aa|aa||| ⊣

Figure 4.5: TCA({t13}) constructed by Algorithm 4.12

4.2. CONSTRUCTION OF TCA 35

q0 q1

1

2 3

4 5

a, ε 7→ a

⊣, 1# 7→ ε

⊣, 2# 7→ ε

⊣, 3# 7→ ε

⊣, 4# 7→ ε

|, ε 7→ ε

ε, 1 7→ ε

ε, 2 7→ ε ε, 1 7→ ε

ε, 3 7→ ε

ε, 3 7→ ε

ε, a 7→ 1

ε, a 7→ 2

ε, a 7→ 3

ε, a 7→ 4

pref bar (t1) : aaa|aa|||aa|aa|||| ⊣

Figure 4.6: TCA({t1}) constructed by Algorithm 4.12

P r o o f . The input of Algorithm 4.12 is either an Initial GTCA, which is trivially de-
terministic, or an automaton that it output on a previous run. The output automaton is
shown to be a deterministic pushdown automaton if one can show that it is deterministic
at every step of the algorithm. Assume that the input automaton is a deterministic push-
down automaton. The output automaton M has a certain structure that follows from the
algorithm:

– There are three groups of transition rules going out of the state q0:

1. δ(q0, |, ε) = (q1, ε),
2. δ(q0, a, ε) = (q0, ε), a ∈ (A \ {|,⊣}),
3. δ(q0,⊣, a#) = (q0, ε), a ∈ G.

If the automaton M is in the state q0, then δ is clearly a mapping for any input
symbol s. The algorithm ensures that the relation δ remains a mapping by carefully
checking if δ(q, a) is defined before attempting to define a value for δ(q, a).

– There are two types of transition rules going out of all states q other than q0:

1. δ(q, ε, a) = (q0, i), a ∈ A, i ∈ G,
2. δ(q, ε, a) = (q′, ε), a /∈ A.

Again, if automaton M is in state q, then it is unambiguous which group of pairs
from mapping δ to choose from when looking for a transition rule for an input symbol
a. As before, the algorithm ensures that relation δ remains a mapping.

The trivial input automaton, Initial GTCA, is deterministic. The relation δ remains a map-
ping throughout the algorithm. The output automaton of the algorithm is a deterministic
pushdown automaton. �

Theorem 4.15 (No cyclic configurations in a TCA) Let an automaton M be the output
of Algorithm 4.12 (TCA-construction). Let it be in configuration (q, α, β). The sequence
of transitions (q, α, β) ⊢+ (q, α, β) is not possible.

36 CHAPTER 4. TREE COMPRESSION AUTOMATON

P r o o f . There are two types of states that automaton M can be in: q0 and the others.

– Let automaton M be in configuration (q0, α, β). There are no ε-transitions from this
configuration. If automaton M reads a symbol from the input string, it cannot get
back into configuration (q0, α, β). Note that any input symbol a ∈ A is put on the
pushdown store only if it is also read from the input string.

– Let automaton M be in configuration (q, α, β), where q 6= q0. While q 6= q0, ev-
ery transition removes an element from the pushdown store and pushes no element
back. This means that even if automaton M can get from state q back to state q
by a nonempty sequence of transitions, the pushdown store contents in these two
configurations will be different, unless automaton M passes through state q0.

�

Definition 4.16 Let δ(q, ε, a) = (q0, i) be a transition rule of an automaton TCA(T).
The symbol i is called a subtree identifier.

It is shown later in this Section that for an automaton TCA(T) there exists a subtree
identification mapping (T, I, µ) such that I is a set of the subtree identifiers from automaton
TCA(T).

Theorem 4.17 Let t be a tree and T be a set of trees. Let M = (Q,A, G, δ, q0,#,∅) be
the output automaton of Algorithm 4.12 (TCA-construction) for input TCA(T) and tree
t. If automaton M is in the configuration (q0, pref bar(t)α, β), then there exists a finite
sequence of deterministic transitions such that (q0, pref bar(t)α, β) ⊢ (q0, α, iβ), where i
is the subtree identifier of tree t.

P r o o f . Automaton M is a deterministic automaton. See the proof of Theorem 4.14.
Algorithm 4.12 simulates the pushdown automaton it creates. Whenever a transition

rule is missing, the algorithm first extends the transition function to enable it and then
continues simulation. This proof shows that the algorithm does not extend the transition
function in a way that would contradict the Theorem.

State q0 is the only state in which automaton M reads symbols from the input string.
Let pref bar(t) = a|. AutomatonM can only be in configuration (q0, a|α, β), if it starts

reading a| from its input string. It then takes the transition (q0, a|α, β) ⊢ (q0, |α, aβ). Since
automaton M is deterministic, Algorithm 4.12 has to take this transition while simulating
TCA for input string a|. Symbol a is now on the top of the pushdown store. A bar is
the next input symbol, which forces Algorithm 4.12 to take the transition (q0, |α, aβ) ⊢
(q1, α, aβ).

While in the configuration (q, α, γ), q 6= q0, γ = γ′aβ, γ′ ∈ G∗, automaton M has to
behave deterministically independent of the input, deciding the transitions only based on
the symbols from γ. The only transitions that lead automaton M back into the state q0
are the transitions that read a symbol a, a ∈ A, from the top of the pushdown store. The
sequence of transitions (q1, α, γ) ⊣+ (qx, α, aβ) is thus completely determined by γ down

4.2. CONSTRUCTION OF TCA 37

to the first symbol a ∈ A. This sequence of transitions is finite because there can be no
”cycle” in the sequence of configurations (see the proof of Theorem 4.15).

Automaton M makes transition from configuration to configuration until it pops a
symbol a, a ∈ A from the top of the pushdown store. At that moment automaton M has
performed a sequence of transitions that uniquely identifies subtree a|. The automaton M
assigns a subtree identifier i to a| and pushes i on the pushdown store. Automaton M
performed the following transition: (q1, α, aβ) ⊢ (q0, α, iβ).

Let pref bar(t) = a pref bar(t1) . . . pref bar(tk)|. Let automaton M be in the con-
figuration (q0, a pref bar(t1) . . . pref bar(tk)|α, β) when it starts reading symbols from
the input string. After pushing symbol a on top of the pushdown store, it will process
pref bar(t1) from the input string, eventually making a transition to the configuration
(q0, pref bar(t2) . . . pref bar(tk)|α, i1aβ). This is repeated for the remaining subtrees in the
input string until automaton M makes a transition to the configuration (q0, |α, ik . . . i1aβ).
At this moment, the same reasoning as in the previous paragraph can be applied. There is
exactly one finite sequence of transitions that leads automaton M from the configuration
(q0, |α, ik . . . i1aβ) to the configuration (q0, α, iβ). �

Theorem 4.18 Algorithm 4.12 (TCA-construction) constructs a GTCA(T ∪ {t}) for a
given TCA(T) and a tree t.

The proof consists of two parts. In the first part, it is shown that the output of
Algorithm 4.12 still recognises all subtrees of the trees from T .

In the second part of the proof, it is first proved that the constructed automaton accepts
all subtrees of tree t. Then it is shown that the constructed automaton does not accept
anything else than subtrees from T ∪ {t}.
P r o o f . Firstly, the input automaton TCA(T) and the output automaton as well are
pushdown automata, which directly follows from the definition of the TCA. Throughout
Algorithm 4.12 nothing is deleted from the input TCA(T). The TCA(T) is modified only
through additions to its sets Q,A, G and extension of the transition function δ. Since
nothing is deleted from the transition function, the language that the GTCA(T ∪ T ′)
pushdown automaton accepts must contain the language that TCA(T) accepts.

Secondly, let pref bar(t) = a|. Let T ′ = {t}. Let the input of Algorithm 4.12 be a
TCA(T) automaton M and set T ′. Let the contents of the pushdown store of automaton
M be β. The algorithm starts simulating automaton M for input a|α. In this case β =
#, α =⊣. The algorithm puts the node label a on the pushdown store (simulating either
an existing transition rule or a newly created transition rule δ(q0, a, ε) = (q0, a)). It then
reads a bar from the input and has to transition to state q1. The tree that was read is
present on pushdown store P . On the top of pushdown store P is root a of a subtree,
a ∈ A. The automaton then performs a sequence of transitions that ends in state q0 and
stores an identifier i for the just read subtree on the pushdown store. The content of the
input string is now α, the pushdown store holds iβ on the top. The transition function
is extended in automaton M to accept tree t by emptying the pushdown store if it is the
only tree on input. If the depth of tree t is zero, automaton M is constructed to accept it.

38 CHAPTER 4. TREE COMPRESSION AUTOMATON

Any tree or subtree on input of Algorithm 4.12 should be accepted by the constructed
TCA. For input starting with pref bar(t), the automaton makes a sequence of transitions
from the configuration (q0,pref bar(t)α,β) to the configuration (q0,α,iβ). The transition
function is extended if necessary: δ(q0,⊣,i#)=(q0,ε). Automaton M makes a transition
using δ to accept a tree t if α =⊣.

Assume that every tree t′ of depth at most k that is a subtree of a tree t of depth k+1
is accepted by a TCA(T ∪ {t}) thanks to Algorithm 4.12. This assumption implies that
the TCA will have the subtree identifier of tree t′ on top of its pushdown store after a
recognised tree t′ of depth at most k is read by it from the input string.

Let t denote a tree of depth k + 1 with n child subtrees that is put on the input of
TCA(T) by Algorithm 4.12. When a bar symbol b that corresponds to the root symbol a
of tree t is reached while reading the pref bar(t), the subtree identifiers of child subtrees
subtreej of tree t for j = 1 to j = n of depth at most k present between symbol a and its
bar b are already present on the pushdown store in the reverse order of appearance in the
original tree, in the form of subtree identifiers. This follows from Theorem 4.17.

The pushdown store looks like this: P = αnαn−1...α1a, a ∈ A, αj ∈ Q for j = n to
j = 1, i.e. on and just below the top of the pushdown store are subtree identifiers of all the
subtrees that were sequentially identified after symbol a was read but before bar symbol b
was reached. The subtree identifiers are stored on the pushdown store in reverse order of
the subtrees of tree t.

Algorithm 4.12 creates a sequence of new states and extends transition function δ for
the sequence of subtree identifiers, if necessary. If state q is the last state of this sequence,
Algorithm 4.12 ensures that there will be a transition rule δ(q,ε,a)=(q0,m), a ∈ A, with a
unique m. As there exists a transition rule that empties the pushdown store in the case
that only m# is on it and there is nothing left on the input, the automaton M will accept
tree t.

It remains to show that TCA(T) does not accept anything else than the subtrees of
trees from set T .

– Identifier i that is pushed on the pushdown store is always the same for the same input
tree t - that is based on the determinism of the automaton and on the fact that if
the automaton accepts tree t, then the sequence of transitions from the configuration
(q0,pref bar(t)α,β) to the configuration (q0,α,iβ) must be possible within automaton
M .

– Identifier i is also unique for tree t. That is, it is not possible for automaton M to get
from configuration (q0, pref bar(t′)α, β) to configuration (q0, α, iβ) if pref bar(t) 6=
pref bar(t′). It is easy to see that the in-degree (number of transitions leading to
the state) of every state except state q0 of automaton M is 1. Whenever a transition
rule is missing in automaton M (except for a transition that should lead to state
q0), Algorithm 4.12 extends the transition function. The algorithm also extends the
transition function δ(q, ε, a ∈ A) = (q0, m), if necessary, using a unique m. Therefore
for two different δ(q1, ε, a) = (q0, m), δ(q2, ε, b) = (q0, n), a, b ∈ A, it holds m 6= n.
Identifier i is unique for tree t.

4.2. CONSTRUCTION OF TCA 39

– Algorithm 4.12 assigns only as many subtree identifiers as necessary - based on the
number of unique subtrees in input tree t that were not present in set T . Therefore if
a tree t′ is present in the input string of automaton M constructed by Algorithm 4.12
and t′ is not one of the subtrees of T ∪ {t}, then after automaton M reads tree t′

from the input string and makes a transition out from state q0, it cannot get back
into state q0 and therefore cannot accept this different tree t′.

Automaton M is a GTCA(T ∪ {t}). �

Corollary 4.19 A pushdown automaton TCA(T), where T is a set of trees, is a deter-
ministic pushdown automaton.

P r o o f . The proof follows directly from the fact that the output of Algorithm 4.12 (TCA-
construction) is a deterministic pushdown automaton. �

Theorem 4.20 Let T be a set of trees and let t be a subtree of any of the trees in T . Let i
be the subtree identifier of t. Let M = (Q,A∪{|,⊣},A∪I∪{#}, δ, q0,#,∅) be a TCA(T)
and there exists a subtree identification mapping (T, I, µ). If the transition function δ
contains the values δ(q0, |, ε) = (q1, ε), δ(q1, ε, C) = (q2, ε), . . ., δ(qk−1, ε, X) = (qk, ε),
δ(qk, ε, r) = (q0, i), then (r, (X, . . . , C)) is a tree stub of tree t.

P r o o f . The set of pushdown store symbols G of automaton M consists of A∪ I ∪ {#},
where every element from I is a subtree identifier of some subtree of some tree from set T .
As shown in the proof to the previous Theorem, every unique tree is assigned a different
element from set I. Also, if two subtrees are the same, automaton M will assign them the
same element from set I. This implies that automaton M defines a bijective mapping µ
between the set of subtrees of the trees in set T and set I. That means that there exists a
subtree identification mapping (T ,I,µ).

Let t be a subtree of any of the trees in set T . There must exist the following unique
sequence of transitions between configurations of automaton M : (q0, pref bar(t), α) ⊢+

(q0, ε, iα). Symbol i is then the subtree identifier of tree t. It is unique because automaton
M is deterministic.

Let pref bar(t) = rpref bar(t1) . . . pref bar(tk)|. There must exist a transition
(q0, pref bar(t), α) ⊢ (q0, pref bar(t1) . . . pref bar(tk)|, rα). Then if i1,. . .,ik are the
subtree identifiers of t1,. . .,tk respectively, there must exist a sequence of transitions
(q0, pref bar(t), α) ⊢ (q0, |, ik . . . i1rα). Since every subtree identifier is an element of the
I and there is a bijective mapping between set I and the subtrees of the trees in the T ,
(r, (i1, . . . , ik)) is a tree stub of tree t, given the subtree identification mapping (T ,I,µ). �

40 CHAPTER 4. TREE COMPRESSION AUTOMATON

4.2.1 Size of the output of Algorithm 4.12 (TCA-construction)

Let automaton M be a TCA(T), where T is a set of trees. Let t be a tree with n nodes.
When Algorithm 4.12 is executed with tree t and automaton M as input, it may add
new states, transitions and pushdown store symbols to automaton M . This Subsection
computes the maximum and minimum number of states, transitions and pushdown store
symbols that can be added to automaton M by the algorithm.

There are two cycles in Algorithm 4.12. It is first shown how many times each cycle is
executed, and then the size of the output is established.

The first cycle (step 8 of Algorithm 4.12) reads symbols from the input string. A
symbol a 6= | is read and pushed on the pushdown store n times in total. Every time this
happens the transition function is extended and one pushdown store symbol can be added
to automaton M , adding at maximum n pushdown store symbols to the pushdown store
alphabet of automaton M .

Symbol a = | is read n times as well. The execution then enters the second cycle that
starts with Step 14. In total, the first cycle is executed 2n times.

The second cycle is the pushdown store contents processing cycle at Steps 14 through
25 in the algorithm. It is reached n times from the first cycle, whenever a bar is read.

The execution of Algorithm 4.12 returns from the second cycle to the first cycle every
time that a symbol from A is present on top of the pushdown store. If and only if the
execution returns to the first cycle, the algorithm pushes a symbol b /∈ A onto the pushdown
store and can add symbol b to the pushdown store alphabet. Execution returns to the first
cycle n times.

Exactly n symbols a ∈ A and n symbols b /∈ A are pushed onto the pushdown store in
total. At every execution of the body of the second cycle one symbol b /∈ A is popped from
the pushdown store. Algorithm 4.12 pops one symbol b /∈ A and one symbol # from the
pushdown store before exiting. Only 2n − 1 symbols can be and are popped throughout
the execution of the algorithm. Therefore the body of the second cycle is executed 2n− 1
times.

Theorem 4.21 Let t be a tree with n nodes. Let M be the output TCA of the Algo-
rithm 4.12 (TCA-construction) for input consisting of tree t and an Initial GTCA. TCA
M has at most n+ 1 states, 2n+ 1 pushdown store symbols and the number of transition
rules is 4n.

P r o o f . A new state can be added to automaton M in the body of the second cycle only
when a symbol b /∈ A is on top of the pushdown store. That happens n − 1 times during
the execution of Algorithm 4.12 (the nth time that symbol b is on top of the pushdown
store, the whole tree is accepted and no state is created). Only two states can be added
to automaton M outside the body of the second cycle (states q0 and q1). This means that
at maximum n + 1 states can be added to automaton M by the algorithm.

The pushdown store alphabet of an Initial GTCA contains one symbol, #. At maximum
n symbols a ∈ A can be added to the pushdown store alphabet. Symbols b /∈ A can be

4.2. CONSTRUCTION OF TCA 41

a

a

a

a

pref bar(t3) = aaaa||||

Figure 4.7: Tree t3 and its prefix bar notation from Example 4.22

added to the pushdown store alphabet every time a symbol a ∈ A is popped from the
pushdown store. This happens n times. Therefore at maximum n symbols b /∈ A can be
added to the pushdown store alphabet. In total, the pushdown store alphabet has at most
2n+ 1 symbols.

The transition function is extended δ(q0, a, ε) = (q0, a) for every symbol a ∈ A that is
read from the input. This can be at most n times. The transition function is extended
δ(q0, ε, b#) = (q0, ε) for every pushdown store symbol b /∈ A. This can be again at most n
times. One extension of δ can be added from state q0 to state q1. One extension of δ can
be added by Step 28 for every symbol a ∈ A on top of the pushdown store. This is again
at most n extensions. One extension of δ is added by the second cycle every time a new
state is added. This is at most n− 1 times. In total, automaton M will have at most 4n
transition rules . �

Trivially, the algorithm adds no new states, pushdown store symbols and extensions of
δ to the TCA(T) if input tree t is a subtree of any of the trees in set T . Note that an
implementation of the TCA can omit the storing of transition rules of type δ(q0, a, ε) =
(q0, a), a ∈ A, and δ(q0, ε, b#) = (q0, ε), b /∈ A, because these transition rules exist for
all a, b respectively. In such case only 2n elements of the transition function δ need to be
stored.

The case of maximal output size is encountered when there are no subtree repeats in
the set of input trees T .

Example 4.22 Figure 4.7 shows a tree t3 for which a TCA provides the worst compression
it is capable of. This tree has no repeating subtrees.

Theorem 4.23 Let t be a tree with n nodes. Let an automaton M be the output
TCA({t}) of Algorithm 4.12 (TCA-construction) with input consisting of tree t in its
prefix bar notation and an Initial GTCA. If n = 3d, where d is the depth of tree t,
TCA({t}) M can have only 2 ∗ log3(n)+ 2 states, log3(n)+ 2 pushdown store symbols and

42 CHAPTER 4. TREE COMPRESSION AUTOMATON

4∗log3(n)+4 transition rules. In general, automaton M cannot have less than ⌈log6(n)⌉+2
states, ⌈log6(n)⌉+ 2 pushdown store symbols and number of transition rules smaller than
3⌈log6(n)⌉ + 4 δ.

P r o o f . Let t be a tree for which the ratio r = (number of states plus number of transition
rules in TCA({t}))/(number of nodes in t) is minimal.

If two subtrees of tree t have the same depth, they have to be identical. If they were
not, then one could imagine a tree t′ in which the occurrences of the smaller of the two
subtrees are replaced by the greater one. TCA({t′}) would not need to create states and
extend δ, which would be needed to encode the smaller of the two subtrees while encoding
a tree with at least as many nodes as there are in tree t.

Let tk+1 be a subtree of depth k + 1. As child subtrees, this subtree will have all the
child subtrees of subtree tk of depth k. The child subtrees will be in the same order as in
subtree tk. Such a tree requires no new states and no extension of δ in automaton M to
encode the child subtrees copied from child subtree tk. The subtree tk+1 will also have a
number nk of copies of subtree tk as its leftmost child subtrees. To encode nk child subtrees
tk in subtree tk+1, the TCA({t}) requires nk new states and nk δ extensions. To encode
the root of subtree tk+1 and allow acceptance of subtree tk+1, the TCA({t}) needs 2 more
δ extensions.

Let tree t have depth d. Let nk be the number of subtrees of depth k in the subtree of
depth k + 1. The tree t has (nd−1 + 1)(nd−2 + 1) . . . (n0 + 1) nodes. TCA({t}) will have
4 + 2d + (nd−1 + nd−2 + ... + n0) transition rules, 2 + (nd−1 + nd−2 + ... + n0) states and
2 + d pushdown store symbols.

Number nk cannot be higher than 5. If there were 6 child subtrees of depth k in subtree
s, the subtree s would have 7 ∗ nodes(k) nodes, where nodes(k) is the number of nodes in
the subtree of depth k. The encoding of s would require 6+2 additional δ extensions, 6
additional states and one additional pushdown store symbol in a TCA that already accepts
the subtree of depth k. One could imagine a subtree s1 with 2 child subtrees of depth k
and a subtree s2 with 2 child subtrees of depth k + 1. s2 would have 3 ∗ 3 ∗ (nodes(k))
nodes, but s1 and s2 would require only 4+4 additional δ extensions, 4 additional states
and 2 additional pushdown store symbols in the TCA. Therefore s cannot be present in
tree t. The same reasoning can be applied if s has 7 and 8 child subtrees of depth k.

If s has 32 child subtrees of depth k and therefore has 10 ∗ (nodes(k)) nodes, one would
imagine a subtree s3 with two child subtrees of depth k+2, which again requires less space
in the TCA and encodes the tree with more nodes, 27 ∗ (nodes(k)). Subtree s has more
than 27 ∗ (nodes(k)) nodes if it has at least 33 child subtrees of depth k. Adding more
(33, 34, . . .) child subtrees to s allows encoding of trees with 33, 34, . . . times more nodes
while requiring 33, 34, . . . times more space in TCA. Adding subtrees si with increasing
depth (i = k+3, i = k+4, . . .) allows encoding of trees with as many nodes while requiring
only 3 ∗ 2, 4 ∗ 2, . . . times more space in the TCA.

Ratio r is equal to 8 + 3d+ 2(nd−1 + nd−2 + ...+ n0)/(nd−1 + 1)(nd−2 + 1) . . . (n0 + 1).
Ratio r is minimal for nk with values from {1, 2, 3, 4, 5}, where k ranges from 1 to d − 1.
The minimal value of ratio r therefore cannot be higher than (8 + 3d+ 2 ∗ (d ∗ 5))/2d. In

4.3. TREE DECOMPRESSION FROM TCA 43

a

a a a a

a a a a

pref bar(t2) = aa|a|aa|a||aa|a|||

Figure 4.8: Tree t2 and its prefix bar notation from Example 4.24

fact, it cannot be higher than (8+3d+2∗ (d∗2))/3d, the value achieved if nk = 2. Ratio r
also cannot be lower than (8+3d+2 ∗ (d))/6d. The exact lower bound for r is not known.

�

The best compression ratio is achieved for example for Fibonacci trees and full k-ary
trees. A Fibonacci tree of order n is a binary tree with the left subtree of order n− 1 and
the right subtree of order n − 2. A Fibonacci tree of order 0 has no nodes. A Fibonacci
tree of order 1 has 1 node [43].

Example 4.24 Figure 4.8 shows a tree t2 for which a TCA provides the best compression
it is capable of. This tree has a large number of repeating subtrees.

4.3 Tree decompression from TCA

The output of Algorithm 4.12 (TCA-construction), a TCA(T), will be shown as suitable
for compression of trees that contain repeating subtrees. The compression ratio ranges
from linear to logarithmic. The worst case is encountered if the compressed tree contains
no repeating subtrees, as in Example 4.22. The best case is a tree that has all subtrees of
the same depth identical, while keeping number of child subtrees between 2 and 6. Such
trees are found in the proof to Theorem 4.23. Example 4.24 shows such a tree.

The decompression algorithm reconstructs tree t from TCA(T) if t is a subtree of
any of the trees in set T . The main idea of the decompression algorithm is to transform
TCA(T) into a straight-line grammar [11] that generates exactly one string, tree t. The
decompression algorithm needs two things on the input: TCA(T) and the subtree identifier
i that was assigned to tree t by Algorithm 4.12 (TCA-construction).

The subtree identifier i of tree t has to be remembered if set T 6= {t}. Else it can be
found as the only subtree identifier for which δ(q, ε, i) = ∅ for all states q ∈ Q.

Example 4.26 Consider tree t1 from Example 4.1. The TCA({t1}) constructed for this
tree is shown in Figure 4.6. The grammar that generates pref bar(t1), constructed by
Algorithm 4.25, is Rt1 = ({1, 2, 3, 4}, {a, |}, Pt1, 4), where

44 CHAPTER 4. TREE COMPRESSION AUTOMATON

Algorithm 4.25: Decompression of a tree from TCA

Name: TCA-decompression
Input: Automaton TCA(T). Subtree identifier i assigned to a tree t by

Algorithm 4.12 during construction of TCA(T).
Output: Tree t in prefix bar notation.

1 begin
2 let M = (Q,A, G, δ, q0,#,∅) be the TCA(T); let qact be a marked state;
3 create a grammar R = (N,A∪ {|}, P, S), where N = G \ A \ {#}, S = i and P

is an empty set of rules;
4 reverse the transition function in TCA(T), that is, replace every

(p, v, α) → (q, β) by (q, v, α) → (p, β);
5 foreach x ∈ A, qy ∈ Q,C ∈ G such that δ(q0, ε, x) = (qy, C) do
6 create a rule r = C → x and set qact := qy;
7 while exists D ∈ G, qz ∈ Q such that δ(qact, ε, D) = (qz, ε) do
8 append D to the right-hand side of rule r and set qact := qz;
9 If qact = q0, set the rules P := P ∪ {r} and continue Step 5 for the next

element from transition function δ;

10 end

11 end
12 For output, generate any string of language L(R) (this language will be shown to

contain exactly one string, pref bar(t));

13 end

4.4. TIME AND SPACE COMPLEXITY OF COMPRESSION & DECOMPRESSION45

Pt1 = { 4 → a33|,
3 → a12|,
2 → a1|,
1 → a| }.

Compare this straight-line grammar with the tree stubs for tree t1 from Example 4.5.

Theorem 4.27 Let t be a tree. Let M be a TCA(T) such that tree t is a subtree of one
of the trees in set T . Let i be a subtree identifier assigned to tree t by automaton M . Let
w be the output of Algorithm 4.25 (TCA-decompression) whose input was automaton M
and subtree identifier i. Then w = pref bar(t).

P r o o f . Let u be any subtree of any of the trees in set T . Let ru be the root of tree u. Let
iu be the subtree identifier of subtree u. Let pref bar(u) = r pref bar(s1) . . . pref bar(sk)|
and let i1, . . . , ik be the subtree identifiers of subtrees s1, . . . , sk, respectively. Then for
input < pref bar(u) > α, automaton M must be able to take a sequence of transitions
into a configuration (q0, |α, ik . . . i1r). From Algorithm 4.12 (TCA-construction), it holds
that
(q0, |α, ik . . . i1r) ⊢ (q1, α, ik . . . i1r) ⊢ (q2, α, ik−1 . . . i1r) ⊢ . . . ⊢ (q0, α, iu)
and all states qi, qj , i 6= j are pairwise different.

Let M ′ be a pushdown automaton equivalent to automaton M that has its transition
function δ reversed. Directly following from Algorithm 4.12, δ(q0, ε, x) = {(qy, C)} exists
only if C is a subtree identifier of a subtree of any of the trees in T . Also based on
Algorithm 4.12, for every state other than q0 in automatonM ′ there is exactly one outgoing
transition rule δ(q, ε, x) = {(qy, C)}. Based on the previous paragraph, it must then hold
that δ(q0, ε, ru) = (qk, iu), δ(qk, ε, i1) = (qk−1, ε), . . . , δ(q2, ε, ik) = (q1, ε), δ(q1, |, ε) = (q0, ε).

The Algorithm 4.25 thus constructs the rules r of grammar R in the form r = iu →
rui1 . . . ik| for every subtree u. If u is a subtree of depth 0, then the right-hand side of rule
r is the prefix bar notation of u. If u is a subtree of depth d+1, then again the right-hand
side of rule r is the prefix bar notation of u if the non-terminals i1, . . . , ik are ”transitively”
rewritten to their right-hand sides. That is exactly how grammar R generates its language
if the initial symbol is set to be the non-terminal iu.

�

4.4 Time and space complexity of compression & de-

compression

Lemma 4.28 Let n be the number of nodes of a tree that is an input to Algorithm 4.12
(TCA-construction). When a hash map is used for the storage of the transition function
δ, Algorithm 4.12 requires O(2n) time and O(2n) space.

46 CHAPTER 4. TREE COMPRESSION AUTOMATON

Proof. The time and space complexity of the Algorithm 4.12 with input consisting of
a TCA(T) and a tree t with n nodes depends on the implementation of the lookup of
transition function δ.

If the algorithm is provided with a zeroed space of size (2n+1)×|Q|, a lookup table can
be created for transition function δ. Finding an appropriate transition in such table takes
constant time. The space taken by transition function δ is (2n+ 1)× |Q|. Alternatively, a
hash map can be used for storing the transition function δ. In fact, a hash map was used
for this purpose in a working implementation of TCA [52].

If the algorithm does not construct a lookup table or a hash map for transition function
δ, then a searching algorithm must be used for finding the appropriate transition rule. The
maximum size of a set of outgoing transition rules from a state is n+1 in the case of state
q0. The transition rule lookup time is therefore at worst log2(n + 1). If each element of
transition function δ takes up space log2(n+ 1), space taken by transition function δ is at
worst 4n ∗ log2(n+ 1) or just 2n ∗ log2(n+ 1) when the optimization mentioned below the
proof of Theorem 4.21 is used.

The total time and space requirements of Algorithm 4.12 depend directly on the im-
plementation of transition function δ. The Subsection 4.2.1 that computes the size of the
output TCA showed that there were two cycles in the algorithm. The first cycle is run n
times, and the second cycle is also run n times.

Every run of the body of the first cycle has to find δ(q0, a, ε). If a lookup table or a
hash map is available, then the body of the first cycle is executed in constant time. If a
lookup table is not available, then one run of the body of the first cycle requires c+ log2+1n
time, where c is a constant.

One run of the body of the second cycle has to find δ(qact, ε, b) and can add a new
transition rule to transition function δ. The rest of the body executes in constant time and
can require constant space. Again depending on the implementation of transition function
δ, the execution of the body of the second cycle can take either constant or c + log2+1n
time.

Depending on the implementation of transition function δ (hash map or array), Al-
gorithm 4.12 (TCA-construction) can either require at worst c1 ∗ n = O(n) time and
2n ∗ log2(n + 1) space or at worst c2 ∗ 2n ∗ log2(n + 1) time and 2n ∗ log2(n + 1) space,
respectively. c1, c2 are constants of the algorithm. For reasonable sizes of n (less than 264),
the log2n+ 1 part of the space complexity is reduced to 1 on modern 64-bit computer
hardware and the space complexity is in O(2n). �

The implementation of TCA [52] used a hash map implementation provided by the
C++ standard library (std::unordered map). This map has a guaranteed constant average
insert, erase and retrieve time [39].

Lemma 4.29 Let n be the number of nodes of a tree that is the output of Algorithm 4.25
(TCA-decompression). When a hash map is used for the storage of the transition function
δ, Algorithm 4.25 requires O(5n) time and O(3n) space.

4.5. TCA AS AN INDEX OF A TREE 47

Proof. If transition function δ is implemented using a lookup table or a hash map, the δ
lookup time is constant and the transition rule reversal takes time 2n (same optimization
of the transition function is assumed as in the previous Lemma). If δ is not implemented
through a lookup table or a hash map, then the transition lookup time is at worst log2(n+1)
and reversal of the transition rules will take time at worst (2n∗ log2(n+1)). For the rest of
the analysis, we assume that a hash map is used for the storage of the reversed transition
function.

All operations in Step 6 and Steps 8 through 9 of the algorithm can be made within
constant time c1, , c1 ≥ 1. In total, Step 6 can be performed at most n times and Steps 8
through 9 can be performed at most n times. This in total requires at most c1 ∗ 2 ∗n time.

The grammar R = (N,A ∪ {|}, P, S) will generate its language in time less than or
equal to c2 ∗ n, c2 ≥ 1. The size of the generated language will be n.

Let |TCA| be the size of the TCA on input. Algorithm 4.25 requires space |TCA| +
|N | + n = O(3n). The algorithm requires time 2n + c1 ∗ 2 ∗ n + c2 ∗ n = O(5n). |N | is
guaranteed to be less than or equal to n, because each non-terminal denotes a subtree. �

4.4.1 Compression and decompression conclusion

When TCA is transformed into a grammar using Algorithm 4.12 (TCA-decompression), it
is obvious that the compression method that uses Algorithm 4.12 (TCA-construction) is
similar to a technique for grammar compression of trees [11].

The proposed compression algorithm for trees offers a good compression ratio for trees
with repeating sub-patterns. It does not achieve such a good compression ratio as the
comparable LZ methods [71, 65], but exchanges this drawback for an output that is easy
to work with if one requires for example to search for a pattern in the compressed tree.

4.5 TCA as an index of a tree

It is important to note at this moment that the TCA({t}) is quite naturally an index of
tree t. If hashing is used for storing the transition function δ, deciding whether any tree u
is a subtree of tree t is an operation that takes time at most |u|.

The searching algorithm takes TCA({t}) and u as input and then executes Algo-
rithm 4.12 (TCA-construction). If at any step Algorithm 4.12 tries to add a new state
to its set of states (Step 21) or to add a new pushdown store symbol to its set of push-
down store symbols (Step 28), tree u does not occur in t. Otherwise it does occur and its
subtree identifier is the last symbol that is pushed on the pushdown store before the exit
of Algorithm 4.12.

48 CHAPTER 4. TREE COMPRESSION AUTOMATON

4.6 TCA as a matcher

A matcher is a structure that allows to search for occurences of trees from a given set
of trees within any provided tree. TCA can be used as a matcher for the given set
of trees {t1, t2, . . . , tk}. A TCA used as a matcher for trees t1, t2, . . . , tk is simply a
TCA({t1, t2, . . . , tk}). It is constructed using Algorithm 4.12 (TCA-construction). The
user of the matcher TCA must note the subtree identifiers id1, id2, . . . , idk of the trees
t1, t2, . . . , tk, respectively.

The matching algorithm is a slightly modified TCA-construction algorithm. For clarity,
the algorithm is presented in Algorithm 4.30 (TCA-matching). The difference from the
TCA-construction algorithm lies in the usage of the Znp symbol, which stands for ”non-
matching subtree” and in the reporting of matching subtrees.

Algorithm 4.30 takes a tree t and TCA({t1, t2, . . . , tk}) as input. For every symbol
read from pref bar(t), the matching algorithm increases an internal counter of position i.
Whenever a subtree identifier that corresponds to a tree in {t1, t2, . . . , tk} is pushed on the
pushdown store, the algorithm outputs the value of the internal counter of position i inside
input and the corresponding subtree identifier.

The matching algorithm needs to have a few special improvements so the input TCA is
not changed. A special ”not-present” state qnp is used, a special ”not-present” pushdown-
store symbol Znp is used and a special ”not-present” alphabet symbol anp is used. If at any
step the original matching algorithm tries to add a new state to its set of states (Step 21)
or to enter this state, or to add a new pushdown store symbol (alphabet symbol) to its
set of pushdown store symbols (alphabet symbols) (Step 28) or to use it, the modified
matching algorithm uses its ”not-present” state and ”not-present” pushdown store symbol
(alphabet symbol), respectively. This way the input TCA is not modified and all matches
are reported.

Example 4.31 Consider tree t2 from Example 4.24. Consider TCA({t1}) from Exam-
ple 4.13. Assume that we want to report matches of subtrees with identifiers 1,2,3 and 4
in tree t2.

With tree t2 and TCA({t1}) on input, Algorithm 4.30 reports six matches of subtrees
with identifier 1 in tree t2 (essentially, only the 6 leafs are the subtrees that are common
to both trees t1 and t2).

Lemma 4.32 Let t, t1, t2, . . . , tk be trees. Let M be a TCA({t1, t2, . . . , tk}). Let id1, id2,
. . . , idk be the subtree identifiers of trees t1, t2, . . . , tk, respectively. Algorithm 4.30 (TCA-
matching) reports positions and subtree identifiers of all subtrees of t that match any of
trees in {t1, t2, . . . , tk}.

Proof. Algorithm 4.30 is a modified Algorithm 4.12 (TCA-construction). Algorithm 4.12
identifies all subtrees in tree t that match any of trees in {t1, t2, . . . , tk} after Step 25 of
Algorithm 4.12. Algorithm 4.30 reports these matching subtrees at Step 27. At this step,
the value of counter i is equal to the position of the end of the prefix bar notation of

4.6. TCA AS A MATCHER 49

Algorithm 4.30: Subtree matching using TCA

Name: TCA-matching
Input: Automaton TCA({t1, t2, . . . , tk}). Subtree identifiers idi assigned to tree ti

for all i, 0 < i ≤ k, by Algorithm 4.12 during construction of
TCA({t1, t2, . . . , tk}). A subject tree t.

Output: Positions of matched subtrees in pref bar(t) and the respective subtree
identifiers.

1 begin
2 let M = (Q,A, G, δ, q0,#,∅) be the TCA({t1, t2, . . . , tk});
3 let P be a pushdown store; let qact mark the current state;
4 create an alphabet symbol anp such that anp /∈ A;
5 create a pushdown store symbol Znp such that Znp /∈ G;
6 create a state qnp such that qnp /∈ Q;
7 let the pushdown store P := (#); let i := 0;
8 if δ(q0, |, ε) 6= (q1, ε) then
9 return error - no trees indexed in the input TCA;

10 end
11 while P 6= () do
12 while i < |pref bar(t)| and pref bar(t)[i] 6= | do
13 a := pref bar(t)[i];
14 if a ∈ A then push symbol a on top of pushdown store P ;
15 else push symbol anp on top of pushdown store P ;
16 i := i+ 1;

17 end
18 i := i+ 1;
19 qact := q1 ;
20 repeat
21 pop a symbol b from the top of pushdown store P ;
22 if b /∈ A and b 6= anp then
23 if δ(qact, ε, b) = (qb, ε) then qact := qb;
24 else qact := qnp;

25 end

26 until b ∈ A or b = anp;
27 if δ(qact, ε, b) = (qb, c) then
28 push symbol c on top of the pushdown store P ;
29 report a match (idj , i) if c = idj for some j, 0 < j ≤ k

30 else
31 push symbol Znp on top of the pushdown store P ;
32 end
33 if pushd. store P contains only s#, s /∈ A and s 6= anp then set P := ();

34 end

35 end

50 CHAPTER 4. TREE COMPRESSION AUTOMATON

the matched tree in the input. Thus the reported position of the matched subtree is the
position of the last symbol of the matched subtree in the input.

To identify a subtree that is already indexed in a TCA, it is not necessary to add any
state, pushdown store symbol or alphabet symbol to the TCA. That is why Algorithm 4.30
can avoid modifying TCA M and still report all subtrees that match any of the trees in
{t1, t2, . . . , tk}. At the same time, if a state, a pushdown store symbol or an alphabet
symbol has to be added to a TCA while a subtree is being read from input, then this tree
was not yet indexed by the TCA and it cannot be one of the trees in {t1, t2, . . . , tk}. The
subtree identifier of such subtree is thus not relevant. That is why Algorithm 4.30 does
not need to modify TCA M . �

Lemma 4.33 Let T be a set of trees. Let id1, id2, . . . , idk be the subtree identifiers of trees
in set T . Let t be a tree with n nodes. Assume a hash map is used for storing the transition
function δ of TCA(T). Assume a hash map is used for storing the subtree identifiers. Given
TCA(T), id1, id2, . . . , idk and t for input, Algorithm 4.30 (TCA-matching) runs in O(2n)
time.

Proof. The proof follows from the proof of Lemma 4.28, because Algorithm 4.30 is
a modified Algorithm 4.12 (TCA-construction). The only change that can increase the
complexity of the algorithm is at Step 27, where the subtree identifiers need to be searched
for a match with a subtree identifier c. When a hash map is used, this operation runs in
constant time. �

The time required for finding all matching subtrees is an optimal result comparable
with [32].

4.7 Exact repeats by TCA

The tree compression automaton can be easily used for searching subtree repeats in tree t.
For every subtree ts of t, a list of its occurrences in tree t can be created using an extension
of Algorithm 4.12 (TCA-construction).

The algorithm works by simulating the TCA({t}) automaton. Whenever the automa-
ton reads a non-bar symbol from the input string, the index of the symbol is remembered.
This symbol is a root node of some subtree of tree t. After the last symbol (the closing
bar) of this subtree is read from the input string, the subtree is identified and the position
of its root node is associated with the subtree identifier of the subtree.

This algorithm can be modified to accept TCA(T) on the input, where t is a subtree of
any of the trees in T . The size of its output is affected by the ratio |TCA(T)|/|TCA({t})|.
Its running time is not affected by this ratio if transition function δ is implemented by a
lookup table.

4.7. EXACT REPEATS BY TCA 51

Algorithm 4.34: Find all repeats in a tree

Name: TCA-repeats-search
Input: A tree t and TCA({t}) = (Q,A, G, δ, q0,#, ε)
Output: A relation occ ⊂ S × N, S = G \ (A ∪ {#}). (s, i) ∈ occ only if s is a

subtree identifier of a subtree ts of tree t and ts has a root at index i in
pref bar(t).

1 begin
2 let P be a pushdown store; let i be a counter;
3 set i := 0;
4 simulate automaton TCA({t}) for input string pref bar(t):
5 begin
6 whenever a transition (q0, aα, β) ⊢ (q0, α, aβ) is made, increment i; if a 6= |,

push the value of counter i on top of pushdown store P ;
7 whenever a transition (q, α, aβ) ⊢ (q0, α, jβ) is made, pop a number x from

the top of the pushdown store and set x ∈ occ(j);
8 when automaton TCA({t}) accepts the input string, output occ and exit;

9 end

10 end

Theorem 4.35 Relation occ defined by Algorithm 4.34 maps the position of every subtree
root to a subtree identifier. If two subtrees are the same, the indices of their roots are
mapped to the same subtree identifier.

P r o o f . Algorithm 4.34 (TCA-repeats-search) can be viewed as a modified Algorithm 4.12
(TCA-construction) that:

– pushes a pair (a, index(a)) on top of the pushdown store whenever a symbol a ∈
A, a 6= | is read from the input string

– pops a pair (a, index(a)) from the top of the pushdown store and replaces it there
with a whenever the transition (q, α, aβ) ⊢ (q0, α, bβ) is to be taken.

Since symbol b is the subtree identifier of the tree whose root is symbol a, index(a) ∈ occ(b)
is set for all roots a that are read from the input. This means that every subtree root is
mapped to a subtree identifier.

Let ts be a subtree of tree t that is the input of Algorithm 4.34. Let is be the subtree
identifier of ts. Let TCA({t}) be in the configuration (q0, pref bar(ts)α, β). There is a
sequence of transitions that TCA({t}) can take ending in the configuration (q0, α, isβ). It
must hold that index(rs) ∈ occ(is). If two subtrees are identical, their prefix bar notations
are identical and therefore their subtree identifiers are identical. Therefore their root indices
must be mapped to the same subtree identifier. �

52 CHAPTER 4. TREE COMPRESSION AUTOMATON

4.7.1 Time and space complexity of Algorithm TCA-repeats-

search

The time complexity depends directly on the complexity of Algorithm 4.12 (TCA-
construction). It also depends on the complexity of the simulation of the TCA automaton
and on the complexity of adding an element into occ(b).

The TCA automaton is constructed in linear time if a lookup table or a hash map is
used for transition function δ. Otherwise it is constructed in n ∗ log2n time. If n is the
length of an input tree, the TCA automaton can be simulated in time either equal to n if
a lookup table exists for the transition function δ, or n ∗ log2n otherwise.

The complexity of adding an element into occ(b) is constant if a linked list is used for
holding elements of occ(b).

In total, the complexity of Algorithm 4.34 (TCA-repeats-search) follows the complexity
of Algorithm 4.12 (TCA-construction): it is linear or O(n ∗ log2n), depending on imple-
mentation of a lookup table by Algorithm 4.12.

The size of the output is n ∗ log2n, which is the space required for storing pointers to
the subtrees of tree t.

The total space required by Algorithm 4.34 again depends on the space required by the
TCA automaton - the number of repeats is bounded by n.

4.8 Comparison with related compression methods

As stated in the Introduction, a similar approach to tree compression was investigated
in [11]. There the result of tree compression is a grammar. The relationship be-
tween the two methods is shown on the example tree from Example 4.1. The grammar
G = (N = {1, 2, 3, 4}, T = {a}, P, 4) created by [11] that generates this tree has the fol-
lowing rules in P :
4 → a33|
3 → a12|
2 → a1|
1 → a|

The pushdown store symbols of the TCA created for the example tree are the non-terminals
of grammar G together with initial symbol #. The right-hand sides of the rules of grammar
G are preserved in the form of states and transition function δ. For example, when consid-
ering tree stub (a, (3, 3)), the rule 4 → a33| corresponds to the states q1, 4, 5 and transition
function δ that involves them: δ(q0, |) = q1, δ(q1, 3) = 4, δ(4, 3) = 5, delta(5, a) = q0. It
holds that all words in the set {w : X ∈ N,X ⇒∗ w,w ∈ T ∗} are accepted by the TCA.
If the smallest grammar extension from [11] is omitted, this set are exactly the words
accepted by the TCA. Figure 4.9 illustrates this relationship.

4.9. IMPLEMENTATION 53

a

3 3

4

a 3 3 |

Tree stub (a, (3, 3)) Grammar rule 4 → a33|

q0 q1

4 5
⊣, 4# 7→ ε

|, ε 7→ ε
ε, 3 7→ ε

ε, 3 7→ ε

ε, a 7→ 4

Excerpt from the TCA(t1) corresponding to the tree stub (a, (3, 3))

Figure 4.9: A tree stub, its rule in a straight line grammar, its states and transition rules
in TCA

4.9 Implementation

The algorithms on tree compression automaton have been implemented as a C++ library
[52]. The library can build a TCA from the provided tree in prefix bar notation. It can
use the TCA as an index to find occurrences of the provided trees. It can decompress a
TCA into the original tree. The library implements multiple options for representation of
the transition function δ, including a hash map. The implementation verifies that using a
hash map for representation of the transition function δ, the construction of TCA and its
decompression takes time O(n) [52], where n is the number of nodes of the indexed tree. An
interesting point is that in the performed measurements, decompression was approximately
4 times faster than compression. This difference is caused by the construction of the hash
map during compression phase.

4.10 Experimental compression results

During experiments, the TCA was compressed into two separate sections: the transition
table and a label lookup table. The transition table first indicates the incoming edges to
each state that is not q0 or q1. Then it indicates all incoming edges to state q0. The label
lookup table stores a mapping between node labels and internal alphabet symbols. The
compressed binary file also contains a header that indicates how many bits a fixed-length

54 CHAPTER 4. TREE COMPRESSION AUTOMATON

Total Stripped BPLEX c.r. mod. TCA c.r.
BPLEX c.r.

Swiss-Prot 77.27M 61.05M 2.43 3.72 2.55
Ligand Expo 16.95M 12.55M 4.58 5.54 4.49

xMark 11.88M 3.71M 3.48 7.61 6.25
Alpino Treeb. 2.54M 2.06M 4.27 5.58 3.00

Table 4.1: Compression performance compared to BPLEX; total = total size of XML files
to compress; stripped = total size of XML files to compress, with text data removed from
nodes

binary representation of an automaton state, alphabet symbol and subtree identifier takes.
The compression achieved by TCA was compared with compression of a grammar-based
algorithm BPLEX [11]. As these two approaches are close in nature, the compression
ratios follow a similar curve. The compression performance was tested on pruned XML
files, where text was removed from nodes. The sample data was retrieved from protein
databases, linguistic records and was generated using specialised tools. The protein XML
data was obtained from Swiss-Prot at UniProtKB [66] (first 1000 files) and Ligand Expo
at Protein Data Bank [4] (also first 1000 files). Sample auction web-site XML data was
generated by xMark [56], scaling factor was set to /f 0.1. Linguistic structures stored in
XML were retrieved from the Alpino Treebank [61] (first 1000 files again). All sample
XML files were stripped of text data (but not node labels) so that the tests measure solely
the compression performance on the tree structures themselves.

The column BPLEX c.r. stands for compression ratio achieved by BPLEX, whereas
modified BPLEX c.r. stands for compression ratio achieved by modified algorithm BPLEX
which performs no further compression of the straight-line grammar.

The compression performance of the TCA is comparable with that of BPLEX; a
worse performance is some cases is expected due to the fact that Algorithm 4.12 (TCA-
construction) does not perform, compared to BPLEX, further compression of the generated
straight-line grammar (especially notable on the xMark benchmark). However, the TCA
outperforms BPLEX when compressing small XML files found in the Alpino Treebank
database, possibly due to a better representation of the output. The same reason explains
why the TCA outperforms BPLEX when compressing protein data from the Ligand Expo
databank.

Algorithm 4.12 (TCA-construction) does not apply any compression on the produced
TCA, similarly as the modified BPLEX algorithm does not to perform any further com-
pression of the generated straight-line grammar. TCA outperforms the modified BPLEX.
Due to similarities in nature between the TCA and BPLEX compression approaches, it is
probable that after applying further compression to the generated automaton, TCA could
perform as well or better than unmodified BPLEX.

4.11. CORRESPONDING FINITE TREE AUTOMATON 55

4.11 Corresponding Finite Tree Automaton

Tree compression automaton can be converted to a deterministic finite tree automaton
(DFTA) that accepts the same set of trees as the TCA. This section presents an algorithm
that takes a TCA as input and constructs a DFTA which accepts the same set of trees as
the TCA. It then proves that the constructed DFTA is deterministic and accepts the same
set of trees.

Definition 4.36 Let T be a set of trees. Let N = (QN ,A, QNf , δN) be an NFTA (see
Definition 2.3). Let M = (Q,Ar, G, δ, q0,#, ∅) be a TCA(T). NFTA N and TCA M are
equivalent if the set of all subtrees of trees in T is the set of trees accepted by NFTA N .

Algorithm 4.37: Transformation of TCA to equivalent DFTA

Name: TCA-to-DFTA
Input: TCA(T) = (Q,A, G, δ, q0,#, ε)
Output: DFTA M = (QM ,AM , QMF , δM) equivalent to TCA(T)

1 begin
2 construct grammar R = (N,A∪ {|}, P, S) from TCA(T) using Algorithm 4.25

(TCA-decompression);
3 set QM := {}, δM := {}, AM = {};
4 foreach rule r = C → a x1 . . . xn |, r ∈ P , a ∈ A, x1 . . . xn ∈ G do
5 set QM := QM ∪ {C, x1, . . . , xn};
6 set AM = AM ∪ {an};
7 set δM := δM ∪ {a(x1(y1) . . . xn(yn)) → C(a(y1 . . . yn))};
8 end
9 set QMF := QM ;

10 end

Example 4.38 Consider tree t1 from Example 4.1. The TCA({t1}) constructed for this
tree is shown in Figure 4.6. The DFTA equivalent with TCA({t1}), constructed by Algo-
rithm 4.37, is a finite tree automaton M = ({q1, q2, q3, q4}, {a2, a1, a0}, {q1, q2, q3, q4}, δM),
where

δM = { a(3(y1)3(y2)) → 4(a(y1y2)),
a(1(y1)2(y2)) → 3(a(y1y2)),

a(1(y1)) → 2(a(y1)),
a() → 1(a()) }.

Theorem 4.39 The NFTA M constructed by Algorithm 4.37 (TCA-to-DFTA) is deter-
ministic (it is a DFTA).

56 CHAPTER 4. TREE COMPRESSION AUTOMATON

P r o o f . Automaton M is not deterministic if there exists two different rules r1, r2
with the same left-hand side. This is only possible if TCA(T) contains two different
sequences of states S1 = (q1, q11, . . . , q1n) and S2 = (q1, q21 . . . , q2m) such that m = n,
(q1, ε, a) → (q11, ε) ∈ δ, (q1i, ε, Zi) → (q1(i+1), ε) ∈ δ and (q1, ε, a) → (q21, ε) ∈ δ,
(q2i, ε, Zi) → (q2(i+1), ε) ∈ δ for all 0 < i ≤ m. If the sequences are indeed different,
this implies that there exists a state q in TCA(T) such that {(q, ε, Z) → (q′, ε), (q, ε, Z) →
(q′′, ε)} ∈ δ, q′ 6= q′′. But that would mean that TCA(T) is non-deterministic, which is
not true. Thus NFTA M is deterministic. �

In other words, automaton M would be non-deterministic if there was a subtree identi-
fier in TCA(T) that marked two different trees. But that is not possible (see Theorem 4.6).

Theorem 4.40 Given a set of trees T , automaton TCA(T) and DFTA M constructed by
Algorithm 4.37 (TCA-to-DFTA) with input TCA(T) are equivalent.

P r o o f . It has to be shown that DFTA M accepts all trees in T and all their subtrees
and no other tree.

ALL: Grammar R constructed from TCA(T) has been proved to generate all subtrees
of trees in T in prefix bar notation. If rule r = C → a|, then new rule a → C(a) is
added to δM . Since state C is final, tree a| is accepted by DFTA M . By induction, if rule
r = C → ax1 . . . xn|, then subtrees generated by grammar R from non-terminal symbols
x1 . . . xn are reduced by DFTA M into the corresponding states x1, . . . , xn. Since rule
a(x1(y1) . . . xn(yn)) → C(a(y1 . . . yn)) exists in DFTA M , tree with subtree identifier C is
accepted by DFTA M . Thus all subtrees of trees in T are accepted by M .

NO OTHER: Assume that tree t is the smallest tree that is accepted by DFTA M but
not by TCA(T). If pref bar(t) = a| for some a ∈ A, then rule C → a for some C ∈ G must
exist in grammar R. But then tree a| is accepted by TCA(T), which is a contradiction.

If pref bar(t) = a pref bar(t1) . . . pref bar(tn) |, then trees t1, . . . tn are accepted
by TCA(T). These trees reduce to states q1, . . . qn by application of transition func-
tion δM of DFTA M . If M accepts tree t by state qf , then there must exist a rule
r = a(q1(y1) . . . qn(yn)) → qf (a(y1 . . . yn)), r ∈ δM . Rule r is a member of δM only if at
Step 6 rule r is added to δM , based on rule rorig = qf → a q1 . . . qn | of grammar R. But
if rorig is a rule of grammar R, then TCA(T) must accept tree with subtree identifier qf .
This is a contradiction. �

The existence of Algorithm 4.37 for conversion between TCA and NFTA implies that
finite tree automaton is suitable for subtree indexing, for compression of trees and for
finding exact repeats of subtrees. The latter two applications have not been explored in
[18] and TCA is thus a contribution to the theory presented there.

Chapter 5

A Full and Linear Index of a Tree for
Tree Patterns

Tree pattern searching with an index assumes a single subject tree t, of which an index is
built to improve performance of repeated searching of patterns. A tree pattern p is input;
this pattern is searched in the subject tree t using the index. Tree pattern p is a tree with
some of its leaves replaced by a special symbol S, which is a placeholder for any subtree.
The goal of tree pattern searching is to find all subtrees of tree t that match tree pattern p
[3]. When using linear tree notations, tree pattern searching can be treated as a variant of
string searching with variable length gaps [54]. Using linearised trees, symbols S represent
gaps in the linearised tree pattern p. The gaps are of unknown size and a condition is
placed on the matched string to be a linear representation of some tree.

This chapter presents a solution for building a tree index for ranked tree patterns and
for searching ranked tree patterns from paper [A.2]. Given a subject ranked tree t with n
nodes, the tree is preprocessed and an index, which consists of a standard text compact
suffix automaton and a subtree jump table, is constructed. The number of distinct tree
patterns which match the tree is O(2n), but the size of the index is O(n). The searching
phase reads an input tree pattern p of size m and locates all its occurrences in tree t.
For an input tree pattern p in linear prefix notation pref(p) = p1Sp2S . . . Spk, k ≥ 1,

the searching is performed in time O(m +
k∑

i=1

|occ(pi)|)), where occ(pi) is the set of all

occurrences of pi in pref(t).

The chapter consists of four sections. The first section deals with the preprocessing
phase, in which an index of a subject tree is constructed. The second section describes
the searching phase, in which tree pattern occurrences of an input tree pattern are located
using the index. The third section describes the time and space complexities of both
phases. The last section shows that the presented algorithms for construction and usage
of the index can be viewed as a simulation of a non-deterministic tree pattern PDA.

57

58 CHAPTER 5. A LINEAR INDEX OF A TREE FOR TREE PATTERNS

5.1 Construction of Index

The index of a tree t consists of two parts:

– A compact suffix automaton [20] for pref(t), which accepts all substrings of pref(t).
We note that there are substrings of pref(t) which are not subtrees of t in the prefix
notation.

– A subtree jump table, a linear-size structure needed for finding ends of subtrees rep-
resented by special symbols S.

The preprocessing phase constructs the two parts of the index. It also constructs and
initializes a working data structure (called Pairs) that is used during the searching phase.

Definition 5.1 Let t and pref(t) = a1a2 . . . an, n ≥ 1, be a tree and its prefix notation,
respectively. A subtree jump table SJT (t) is defined as a mapping from set {1..n} into set
{2..n+1}. If aiai+1 . . . aj−1 is the prefix notation of a subtree of tree t, then SJT (t)[i] = j,
1 ≤ i < j ≤ n+ 1.

Algorithm 5.2: Construction of subtree jump table

Name: SJT-construction
Input: Tree t in prefix notation pref(t), index of current node rootIndex (default

value = 1), reference to an (initially empty) subtree jump table SJT (t)
Output: index exitIndex, subtree jump table SJT (t)

1 begin
2 index = rootIndex+ 1;
3 for i = 1 to Arity(pref(t)[rootIndex]) do
4 index = SJT-construction(pref(t), index, SJT (t));
5 end
6 SJT (t)[rootIndex] = index;
7 return index;

8 end

Lemma 5.3 Given pref(t) and rootIndex equal to 1, Algorithm 5.2 constructs subtree
jump table SJT (t).

Proof. The algorithm terminates because every recursive step is for the next symbol
from pref(t), starting with the first symbol.

Property of SJT : Each pair (first, last) of the subtree jump table maps a symbol at
index first to index last. If m is the number of nodes of subtree rooted at node at index
first, then last = first+m.

5.1. CONSTRUCTION OF INDEX 59

Assume Algorithm 5.2 is invoked with input pref(t) and rootIndex = 1. Then, at
every entry to line 2 of the algorithm the index first = rootIndex is equal to index of the
root of the currently processed subtree because rootIndex is incremented for every symbol
of pref(t) in the left-to-right order.

For subtrees that consist of a single node, Property of SJT is satisfied if the algorithm
is called with the correct index first of the root node in the prefix notation. After return,
exitIndex − rootIndex = 1 is equal to the size of the processed tree.

For subtrees of greater size than 1, the Property of SJT is satisfied because the index
exitIndex = last is equal to first plus one (for the root node) plus the sum of the sizes of
the child subtrees of node at index rootIndex. �

1

2

3

4 5 5 6 6 7 7 8

8 8 9 9

a04 b05 a06 a07

a43 a08 b09 a010

a42 a011 a012 b013

a41

Figure 5.1: Subtree jump table construction for tree t1 from Example 5.4

Example 5.4 Consider tree t1 over A from Example 2.1, pref(t1) = a41a42a43a04
b05a06a07 a08b09a010 a011a012b013.

– Compact suffix automaton Mc(pref(t1)) [20] is illustrated in Figure 5.2.

– Subtree jump table SJT (t1), constructed by Algorithm 5.2, is in Table 5.1. The idea
behind construction of Subtree jump table is illustrated in Figure 5.1.

source 1 2 3 4 5 6 7 8 9 10 11 12 13
target 14 11 8 5 6 7 8 9 10 11 12 13 14

Table 5.1: Subtree jump table for tree t1 from Example 5.4

60 CHAPTER 5. A LINEAR INDEX OF A TREE FOR TREE PATTERNS

[0] [1]
[2] [13]

a4
a4

a0b0a0a0a0b0a0a0a0b0

a4a0b0a0a0a0b0a0a0a0b0

a0b0a0a0a0b0a0a0a0b0

[4′]

[5′] [9′]

[7′′]

a0
b0

b0

a0

a0a0a0b0
a0a0a0b0

a0b0

b0

Figure 5.2: Transition diagram of compact suffix automaton Mc(pref(t1)) for tree t1 from
Example 5.4; the long edge labels can be replaced by pairs of beginning and ending indexes
into pref(t1)

Furthermore, the array PairnP serves as a working data structure for the main searching
algorithm during the searching phase and its initial value, denoted Pairn{}, is to be set once.

Definition 5.5 Let P = {(first1, last1), . . . (firstk, lastk)} be a set of pairs of positive
integers such that lasti 6= lastj if i 6= j, 1 ≤ i ≤ k, 1 ≤ j ≤ k. Array PairnP is an array of
integers such that PairnP [lasth] = firsth for all 1 ≤ h ≤ k. For all other values 1 ≤ v ≤ n,
PairnP [v] = −1.

The array PairnP will be used for representing occurences of subtrees in the prefix
notation of a subject tree. The array is structured in a way that allows fast lookups of the
index first given an index last.

Example 5.6 Array Pair13{(1,11),(2,8),(3,5)}, which represents occurrences of prefix a4 S of
tree pattern p′′ from Example 2.2 in tree t1 from Example 2.1, is illustrated in Table 5.2.

index 1 2 3 4 5 6 7 8 9 10 11 12 13
value -1 -1 -1 -1 3 -1 -1 2 -1 -1 1 -1 -1

Table 5.2: Array Pair13{(1,11),(2,8),(3,5)} from Example 5.6

5.2 Searching occurrences of input tree patterns

Algorithm 5.23 (SearchPattern - see below) finds all occurrences of an input pattern p in
tree t. The algorithm uses three sub–algorithms that are presented before the searching
algorithm: Algorithm 5.18 (VerifyArityChecksum), Algorithm 5.19 (FindOccurrences) and
Algorithm 5.21 (MergeOccurrences).

Definition 5.7 Let pref(p) = p1Sp2S . . . Spk be the prefix notation of a tree pattern p
over an alphabet A ∪ {S}, where no substring pi, 1 ≤ i ≤ k, contains any symbol S. The
substring pi is called a sub-pattern of p at index i.

5.2. SEARCHING OCCURRENCES OF INPUT TREE PATTERNS 61

Example 5.8 Consider pref(p′′) = a4Sa0SS, the prefix notation of tree pattern p′′ from
Example 2.2. Tree pattern p′′ has four sub-patterns, pref(p′′) = p1Sp2Sp3Sp4, where
p1 = a4, p2 = a0, p3 = ε and p4 = ε.

Definition 5.9 Let pref(t) = a1a2...an be the prefix notation of a tree t. Let pref(p) =
p1Sp2S...pk be the prefix notation of a tree pattern p. An occurrence of sub-pattern pi in
pref(t) is a pair (first, last), where:

– if pi = ε, 1 < first = last ≤ n + 1,

– if pi 6= ε, 1 ≤ first < last ≤ n+ 1 and afirstafirst+1 . . . alast−1 = pi.

The set of all occurrences of sub-pattern pi in pref(t) is denoted by occt(pi). If tree t is
obvious from the context, the set can be denoted by occ(pi).

Example 5.10 Consider sub-pattern p2 = a0 of tree pattern p′′ from Example 2.2. Sub-
pattern p2 has seven occurrences in tree t: occt(p2) = { (4, 5), (6, 7), (7, 8), (8, 9), (10, 11),
(11, 12), (12, 13) }.

Definition 5.11 Let pref(p) = p1Sp2S . . . Spk be the prefix notation of a tree pattern p.
Then any string p1Sp2S . . . Sp′k, k

′ ≤ k, or p1Sp2S . . . Sp′′kS, k
′′ < k, is called a tree pattern

prefix of tree pattern p, abbreviated TPP (p).

Example 5.12 Consider tree pattern p′′, pref(p′′) = a4Sa0SS, from Example 2.2. Then
{a4, a4S, a4Sa0, a4Sa0S, a4Sa0SS} is a set of tree pattern prefixes of tree pattern p′′.

Definition 5.13 Let p be a tree pattern and t be a tree. An occurrence of tree pattern
prefix TPP (p) = p1Sp2S . . . Spk in tree t is a pair (first, last), where (first, last1) is an
occurrence of sub-pattern p1 in pref(t), pair (SJT (t)[last1], last2) is an occurrence of sub-
pattern p2 in pref(t), . . . , and pair (SJT (t)[lastk−1], last) is an occurrence of sub-pattern
pk in pref(t). The set of all occurrences of a tree pattern prefix TPP (p) in pref(t) is
denoted by occt(TPP (p)). If tree t is obvious from the context, the set can be denoted by
occ(TPP (p)).

Example 5.14 Consider tree pattern prefix TPP1(p
′′) = a4S of tree pattern p′′ from

Example 2.2. Consider tree t1 from Example 2.1. Then occt1(TPP1(p
′′)) = {(1, 11), (2, 8),

(3, 5)}.

Lemma 5.15 Let (first, last) be an occurrence of a tree pattern prefix pref(p) in a tree t,
pref(p) = p1Sp2 . . . Spk, pref(t) = a1a2 . . . afirstafirst+1 . . . alast−1alast . . . an. Then pattern
p matches tree t at node afirst. Node alast−1 is the rightmost leaf of the subtree rooted at
node afirst.

Proof. Prefix notation of subtree rooted at node afirst is afirst . . . afirst+m−1. By definition
of occurrence of sub-pattern, afirstafirst+1 . . . afirst+|p1|−1 = p1. Pair (afirst, afirst+|p1|) is the

62 CHAPTER 5. A LINEAR INDEX OF A TREE FOR TREE PATTERNS

occurrence of tree pattern prefix p1. If pref(p) = p1, then tree pattern p matches tree t
at node afirst and it holds that afirst+|p1|−1 = alast−1 = afirst+m−1 is the rightmost leaf of
subtree p.

The proof proceeds by induction.
Let (afirst, alasti) be an occurrence of tree pattern prefix p1S . . . Spi, 1 ≤ i < k. By

definition of subtree jump table, it holds that alasti . . . alasti+j−1 is the prefix notation of a
subtree ti of j nodes, rooted at alasti . By definition of occurrence of tree pattern prefix,
alasti+j . . . alasti+j+|pi+1|−1 = pi+1. Pair (afirst, alasti+j+|pi+1|) is then an occurrence of tree
pattern prefix p1S . . . piSpi+1.

If i + 1 = k, then afirstafirst+1 . . . alasti+j . . . alasti+j+|pi+1|−1 is the prefix notation of a
tree obtained from tree pattern p by substituting a subtree ti′ for the i′-th occurrence of
symbol S in p, i′ = 1, 2, . . . , i. Thus tree pattern p matches tree t at node afirst. The
rightmost leaf of the matched subtree is alasti+j+|pi+1|−1 = alast−1 = afirst+m−1. �

We note that an occurrence of tree pattern p in tree t is an occurrence of tree pattern
prefix pref(p) in pref(t).

Example 5.16 Consider tree pattern p′′ from Example 2.2. Tree pattern p′′ has two
occurrences in tree t1: occ

t1(p′′) = {(1, 14), (2, 11)}.

Lemma 5.17 Let t be a tree and p be a tree pattern. Let pairs (firstA, lastA) and
(firstB, lastB), firstA 6= firstB, be occurrences of tree pattern prefix TPP (p) =
p1Sp2S . . . in tree t. If TPP (p) 6= pref(p), then lastA 6= lastB .

Proof. If TPP (p) = p1 and TPP (p) 6= pref(p), then lastA = firstA + |p1| and
lastB = firstB + |p1|. Then it is true that lastA 6= lastB.

The proof proceeds by mutual induction.

– If TPP (p) = p1Sp2S . . . pkS, then there exist occurrences (firstA, last
′
A) and

(firstB, last
′
B), last′A 6= last′B, of tree pattern prefix TPP ′(p) = p1Sp2 S . . . pk.

There must exist two subtrees tA, tB of tree t, pref(tA) = alast′
A
alast′

A
+1 . . . alast′

A
+i

and pref(tB) = alast′
B
alast′

B
+1 . . . alast′

B
+j, last

′
A+ i = lastA−1, last′B + j = lastB −1.

If last′A + i = last′B + j, then tB is a subtree of tA or vice versa.

Let us assume, without loss of generality, that tree tB is a subtree of tree tA. Then
no node on the path path from root(tA) to root(tB) has a right sibling (because
last′A + i = last′B + j). Since root(tA) 6= root(tB), path is of non-zero length. By
induction, this implies that any node on the path from the node at position last′A +
i−1 = lastA−1 to the node at position firstA has no right sibling. But this implies
that TPP (p) = pref(p), which contradicts the initial condition.

– If TPP (p) = p1S . . . pk−1Spk, then there exist occurrences (firstA, last
′
A) and

(firstB, last
′
B), last

′
A 6= last′B, of tree pattern prefix TPP ′(p) = p1Sp2 S . . . pk−1S.

Since lastA = last′A + |pk| and lastB = last′B + |pk|, it holds that lastA 6= lastB.

5.2. SEARCHING OCCURRENCES OF INPUT TREE PATTERNS 63

�

Algorithm 5.18: Verification of arity checksum from [50]

Name: VerifyArityChecksum
Input: String over a ranked alphabet str = a1a2 . . . an, n ≥ 1.
Output: Decision whether str = pref(t) for some tree t.

1 begin
2 Set ac(str) := 1;
44 /* ac(str) stands for arity checksum of a string str */

5 for i := 1 to n do
6 ac(str) := ac(str) + Arity(ai)− 1;
7 if i < n and ac(str) = 0 then
8 return false;

9 end
10 if ac(str) = 0 then
11 return true;
12 return false;

13 end

Algorithm 5.19: Finding Occurrence of Sub-patterns

Name: FindOccurrences
Input: Compact suffix automaton Mc(pref(t)), |pref(t)| = n, sub-pattern pi of

tree pattern p
Output: occt(pi)

1 begin
2 Let q be the state of the Mc reached after processing pi from input;
3 Find all paths from state q that lead to a final state of Mc;
4 For each path of length length from state q to a final state, there is an

occurrence (n− length− |pi|, n− length) of sub-pattern pi;

5 end

Lemma 5.20 Given a string str = a1a2 . . . an on the input, Algorithm 5.18 (VerifyArity-
Checksum) decides whether str = pref(t) for a tree t.

Proof. If str = pref(t) for a tree t, then:
If Arity(a1) = 0, arity checksum is 0 and the algorithm outputs true. For

pref(t) = a1 pref(t1) . . . pref(tk) for some trees t1 . . . tk and Arity(a1) = k, the algorithm

64 CHAPTER 5. A LINEAR INDEX OF A TREE FOR TREE PATTERNS

outputs true for input pref(t1), true for input pref(t2), . . . and true for input pref(tk).
This means that arity checksum ac of any of these strings is 0 and it never is 0 for any
prefix of these strings. Since it holds that ac(pref(t)) = Arity(root(t)) + ac(pref(t1)) −
1 + · · ·+ ac(pref(tk))− 1, the arity checksum ac(pref(t)) = 0 and the algorithm outputs
true.

If str 6= pref(t) for any tree t, then:

– If |str| = 1, then k 6= 0 and the algorithm outputs false.

– Otherwise consider substring sub of str, sub = a1a2 . . . an. If there does not exist a
prefix psub of sub, psub = a1a2 . . . am, m ≤ n such that psub = pref(t1) for some
t1, then by induction the algorithm outputs false. If such prefix psub exists, set
sub = am+1am+2 . . . an and apply same reasoning to substring am, am+1 . . . an until
m = n. When m = n and substring sub has been successfully divided into prefix
notations of k′ subtrees, then the algorithm outputs false if k′ 6= k. If the algorithm
outputs true, then k′ = k and str = pref(t) for some tree t - but this contradicts the
original assumption that str 6= pref(t).

�

Algorithm 5.21: Merging Occurrences

Name: MergeOccurrences
Input: A set prevOcc = occt(TPP (p)), a set subOcc = occt(pk), an array

Pair
|pref(t)|
{}

Output: A set mergedOcc = occt(TPP (p)pk)
1 begin
2 mergedOcc := {};
3 foreach (first, last) in prevOcc do Pair

|pref(t)|
prevOcc [last] := first ;

4 foreach (first′, last′) in subOcc do

5 if Pair
|pref(t)|
prevOcc [first

′] 6= −1 then

mergedOcc := mergedOcc ∪ {(Pair
|pref(t)|
prevOcc [first

′], last′)} ;

6 end

7 foreach (first, last) in prevOcc do Pair
|pref(t)|
{} [last] := −1 ;

8 return mergedOcc;

9 end

Theorem 5.22 Let TPP ′(p) = p1Sp2S . . . Spk−1Spk be a tree pattern prefix of a tree
pattern p. Let prevOcc = occt(TPP (p)) be a set of occurrences of a tree pattern prefix

5.2. SEARCHING OCCURRENCES OF INPUT TREE PATTERNS 65

TPP (p) = p1Sp2S . . . Spk−1S; let subOcc = occt(pk) be a set of occurrences of a sub-
pattern pk. Given prevOcc and subOcc on input, Algorithm 5.21 (MergeOccurrences)
computes occurrences mergedOcc = occt(TPP ′(p)) of tree pattern prefix TPP ′(p).

Proof. The proof is by contradiction. Throughout the proof, set Pair is used. Thanks
to Lemma 5.17, indexes last in set of pairs prevOcc are known to be pairwise different and
thus no conflicts in use of set Pair can occur.

1. An occurrence (firstinv, lastinv) is output in set mergedOcc although it is not an
occurrence of tree pattern prefix TPP ′(p).

The occurrence (firstinv, lastinv) must have been included in mergedOcc on

line 5 of the algorithm, (firstinv, lastinv) = (Pair
|pref(t)|
prevOcc [first

′], last′) for some index
first′. That means that an occurrence (first′, last′) is an occurrence of sub-pattern
pk, which must be present in occt(pk).

Since Pair
|pref(t)|
prevOcc [first

′] 6= −1, an occurrence (Pair
|pref(t)|
prevOcc [first

′], f irst′) is an occur-
rence of tree pattern prefix TPP (p) and it must be present in occt(TPP (p)). Since

TPP ′(p)=TPP (p)pk, it holds that firstinv = Pair
|pref(t)|
prevOcc [first

′], lastinv = last′,
(firstinv, lastinv) ∈ occt(TPP ′(p)).

2. An occurrence (firstinv, lastinv) of tree pattern prefix TPP ′(p) is not output in the
set mergedOcc.

Since TPP ′(p) = TPP (p)pk, there must exist an index last such that
(firstinv, last) is an occurrence of TPP (p) and (last, lastinv) is an occurrence of pk:
(firstinv, last) ∈ prevOcc and (last, lastinv) ∈ subOcc. Because of Lemma 5.17 and
lines 3 and 5 of the algorithm, (firstinv, lastinv) ∈ mergedOcc.

�

A linear time merging algorithm would be simple if the sets of occurrences (first, last)
were in the form of lists sorted by index first or by index last. Such a principle is
used in related work [7]. Unfortunately, we do not know how to gain a sorted list of
occurrences from the compact suffix automaton in a linear time and therefore we avoid
sorting completely, reaching the linear time for merge operation by other means.

Algorithm 5.23 (SearchPattern) finds all occurrences of a pattern p in tree t. It calls
these sub-algorithms:

– Algorithm 5.18 (VerifyArityChecksum) – this algorithm computes arity checksum of
the provided tree pattern p to make sure that p is a valid tree pattern. The arity
checksum of the whole pattern must be equal to 0, while the arity checksums of all
non-empty proper prefixes of pref(p) must be greater than 0 [50].

66 CHAPTER 5. A LINEAR INDEX OF A TREE FOR TREE PATTERNS

Algorithm 5.23: Searching for occurrences of a tree pattern

Name: SearchPattern
Input: Tree pattern p, pref(p) = p1Sp2S . . . pk, compact suffix automaton

Mc(pref(t)), subtree jump table SJT (t), Array Pair
|pref(t)|
{}

Output: List of occurrences of tree pattern p
1 begin
2 if VerifyArityChecksum(p) = false then
3 return ERROR – invalid pattern;
4 end
5 prevOcc := {};
6 for i := 1 to k do
7 if pi 6= ε then
8 occ := FindOccurrences(Mc,pi);
9 if i = 1 then prevOcc := occ ;

10 else prevOcc := MergeOccurrences(prevOcc,occ,Pair
|pref(t)|
{}) ;

11 end
12 if i 6= k then
13 foreach occurrence (first, last) in prevOcc do
14 (first, last) := (first, SJT (t)[last]);

15 end

16 end

17 end
18 return prevOcc;

19 end

5.2. SEARCHING OCCURRENCES OF INPUT TREE PATTERNS 67

– Algorithm 5.19 (FindOccurrences) – this is a substring searching algorithm from [20].
This algorithm is reproduced in Listing 5.19 with some technical details omitted for
the sake of brevity and clarity.

– Algorithm 5.21 (MergeOccurrences) – this is an algorithm that merges two sets of
occurrences in linear time.

Example 5.24 Consider the prefix notation pref(p′′) = a4Sa0SS of tree pattern p′′,
illustrated in Figure 2.2. Tree pattern p′′ can be rewritten as pref(p′′) = p1Sp2Sp3Sp4,
where p1 = a4, p2 = a0 and p3 = p4 = ε.

Consider the run of Algorithm 5.23 (SearchPattern) using tree pattern p′′, compact
suffix automaton Mc(pref(t1)) and subtree jump table SJT(t1):

Algorithm 5.18 (VerifyArityChecksum) returns true for tree pattern p′′ because p′′ is a
valid tree pattern (if you replaced symbols S with a0 symbols in the prefix notation of the
pattern, you would get a prefix notation of a tree).

At i = 1, after Algorithm 5.19 (FindOccurrences) is executed, prevOcc = {(1, 2), (2, 3),
(3, 4)}. Using subtree jump table SJT (t1), prevOcc is then rewritten to prevOcc = {(1, 11),
(2, 8), (3, 5)}.

At i = 2, after Algorithm 5.19 is executed, occ = {((4, 5), (6, 7), (7, 8), (8, 9), (10, 11),
(11, 12), (12, 13)}. Using Algorithm 5.21 (MergeOccurrences), prevOcc is rewritten to
prevOcc = {(1, 12), (2, 9)}. Using SJT (t1), prevOcc is then rewritten to prevOcc =
{(1, 13), (2, 10)}.

At i = 3, algorithm uses SJT (t1) to rewrite prevOcc to prevOcc = {(1, 14), (2, 11)}.
At i = 4, prevOcc is not modified because sub-pattern p4 is the empty string and the

algorithm returns set of occurrences {(1, 14), (2, 11)}.
Algorithm 5.23 has found two occurrences of tree pattern p′′: the first one starting at

position 1 (ending at position 14) and the second one at position 2 (ending at position 11)
in pref(t1).

Theorem 5.25 Algorithm 5.23 (SearchPattern) finds all occurrences occt(p) of tree pat-
tern p = p1Sp2S . . . Spk in tree t.

Proof. First, the algorithm verifies validity of the provided tree pattern p prior to
continuing. This checking simplifies reasoning about the rest of the algorithm.

The algorithm then proceeds as follows: it iteratively finds all occurrences of tree
pattern prefix p′1 = p1S, then p′2 = p1Sp2S and so on until p′k−1 = p1Sp2S . . . Spk−1S.
Eventually, it finds occurrences of tree pattern p = p1Sp2S . . . Spk in tree t.

There are two cases to disprove:

1. An occurrence (first, last) of pattern p is not output in the set of all occurrences.

If k = 1, the algorithm outputs exactly the output of the compact suffix automaton,
including (first, last). This contradicts the assumption.

For all k > 1, the algorithm is able to find all occurrences occt(p′k−1) of tree pat-
tern prefix p′k−1 = p1Sp2S . . . Spk−1S. This is achieved by finding all occurrences

68 CHAPTER 5. A LINEAR INDEX OF A TREE FOR TREE PATTERNS

(first′, last′) of tree pattern prefix p1Sp2S . . . Spk−1 and then (line 13) by using sub-
tree jump table to extend these occurrences to occurrences (first′, SJT (t)[last′]) of
tree pattern prefix p′k−1. Using compact suffix automatonMc(pref(t)), the algorithm
finds all occurrences occt(pk) of sub-pattern pk. The two sets of occurrences are then
given to Algorithm 5.21 (MergeOccurrences), which was proved to output a set of
occurrences occt(p′k−1pk). Since pref(p) = p′k−1pk and (first, last) must be equal to
some (first′, SJT (t)[last′]+ |pk|), the occurrence (first, last) must be present in the
returned set prevOcc, which contradicts the original assumption.

2. Algorithm outputs a pair (first, last) in set occt(p) that is not an occurrence of tree
pattern p in tree t.

If k = 1, this cannot happen, because a compact suffix automaton is used to generate
the pair (first, last).

For all k > 1, the algorithm can find exactly the occurrences of tree pattern pre-
fix p1Sp2S . . . Spk−1 and, using the subtree jump table, also exactly the occurrences
occt(p′k−1) of tree pattern prefix p′k−1 = p1Sp2S . . . Spk−1S. Using the compact suf-
fix automaton Mc(pref(t)), the algorithm finds exactly the occurrences occt(pk) of
sub-pattern pk. Algorithm 5.21 (MergeOccurrences) was proved to output only oc-
currences of tree pattern p for these inputs pk−1 and pk. Since at this point i = k,
only occurrences of pattern p are output. This contradicts the original assumption.

�

5.3 Time and space complexities

Lemma 5.26 Algorithm 5.2 (SJT-construction) runs in O(n) time, where n is the number
of nodes of the subject tree t.

Proof. The algorithm is based on a depth-first search traversal of the subject tree, where
at each node only a constant amount work is performed (line 7). Thus, its running time is
bound by the number of nodes n. Counting assignment operations, the running time is at
worst 7n. �

Theorem 5.27 Construction of index of a tree t (construction of subtree jump table and
of compact suffix automaton) takes time O(n) and produces an index of size O(n).

Proof. The creation of compact suffix automaton of size O(n) [20] and the creation of
an array of integers of size n require O(n) time. Algorithm 5.2 that creates the subtree
jump table is proved to be linear in time and space in Lemma 5.26. The array Pairs is
created in time O(n). Following from the definitions, the size of array Pairs is n and the

5.4. LINEAR INDEX AS A SIMULATION OF A TREE PATTERN PDA 69

size of the subtree jump table is also n. Thus the size of the whole index is O(n) and it is
created in O(n) time. �

Lemma 5.28 Algorithm 5.21 (MergeOccurrences) runs inO(|prevOcc|+|occ|) time, where
|prevOcc|+ |occ| is the number of occurrences in both input sets.

Proof. The algorithm uses an extra memory of size n prepared during the indexing
phase. This memory allows for the fast lookup used by the algorithm. The algorithm runs
in three loops whose lengths are determined by |prevOcc|+ |occ| and at each iteration in
each loop, the amount of work is constant. Thus, the total running time holds. Counting
assignment operations, the running time is at most 1+2|prevOcc|+min(|occ|, |prevOcc|).

�

Theorem 5.29 Let pref(p) = p1Sp2S . . . Spk of total length m be the prefix notation of a

tree pattern p. Algorithm 5.23 (SearchPattern) runs in O(m+
k∑

i=1

|occ′(pi)|)) time, where:

– occ′(pi) = occ(pi) if pi 6= ε,

– occ′(pi) = occ′(pi−1) otherwise.

Proof. Verification of arity checksum for the pattern is a linear-time problem that will
take O(m) time (see Algorithm 5.18).

Finding the occurrences of sub-pattern pi 6= ε takes time O(|pi|+ |occ(pi)|). Summing

over all sub-patterns yields total time O(m+
k∑

i=1,pi 6=ε

|occ(pi)|).
The merging time will be the sum of running times of all calls of Algorithm 5.21 with

input size O(|occ(pi)|), pi 6= ε. Algorithm 5.21 outputs a list whose size is less than or equal
to the minimum of the sizes of the two provided lists of occurrences. Thus, remembering
that merging is not performed for pi = ε, it must hold that the running time of all calls of

Algorithm 5.21 will be less than or equal to O(
k∑

i=1,pi 6=ε

(2 ∗ |occ(pi)|)) = O(
k∑

i=1

|occ′(pi)|).
Line 13 of the algorithm is called for every i to perform ”jumps” on the prepared

occurrences. The size of the prepared occurrences will not be greater than |occ′(pi)|. �

5.4 Linear index as a simulation of a tree pattern

PDA

A deterministic tree pattern PDA [50] supports index queries that run in time linear with
respect to the pattern, but its size can be exponential with respect to the indexed tree

70 CHAPTER 5. A LINEAR INDEX OF A TREE FOR TREE PATTERNS

(see Chapter 6 for details). The linear index presented in this chapter can be seen as an
efficient simulation of a non-deterministic tree pattern PDA. The following is an outline of
a proof, which shows that algorithm SearchPattern is a simulation of a non-deterministic
tree pattern PDA (Algorithm 5.30).

Let t be a tree. Let Mnpt(t) = (Q,A, G, δ, 0, Z0, ∅) be a non-deterministic tree pattern
PDA for tree t. Let pref(p) = p1Sp2S . . . Spk of total length m be the prefix notation of a
tree pattern p, p ∈ (A∪ S)∗. Let Qcurr denote the set of states that automaton Mnpt(t) is
in at a single step of a computation. When reading pref(p), the automaton performs the
computation depicted in Algorithm 5.30. The description of the algorithm intentionally
separates processing of sub-patterns from processing of S symbols so that comparison with
the linear index from this chapter is easier.

The processing of sub-patterns performed by the pushdown automaton in Algo-
rithm 5.30 is simulated by the linear index in algorithm SearchPattern, on lines 6 to
10. Before processing subpattern pj, the pushdown automaton in Algorithm 5.30 is in a
subset of states Qcurr. The algorithm FindOccurrences called by algorithm SearchPattern
assumes the pushdown automaton is in the (full) set of states Q. Because of that, its
output (set occ) has to be pruned of states that could not be reached from states in Qcurr.
This is done by algorithm MergeOccurrences.

In Algorithm 5.30, after reading tree pattern prefix p1S . . . pj, automaton Mnpt(t) is
simultaneously in states Qcurr. After reading the same input, algorithm SearchPattern
maintains a set of occurrences prevOcc that was returned by MergeOccurrences.

At this moment in the algorithms, there exists a bijection between sets Qcurr and
prevOcc. Set prevOcc can be converted to set Qcurr by reducing the occurrences to the
elements first. Set Qcurr can be converted to prevOcc by adding a (unique) last element
to each state q.

The processing of symbols S performed by the pushdown automaton in Algorithm 5.30
is simulated by the linear index in algorithm SearchPattern, on lines 11 to 13. Subtree
jump table is used for storing the targets of the S transition rules. There again exists a
bijection between the set of states Qcurr and the set of occurrences prevOcc.

Since prevOcc corresponds to Qcurr after processing any sequence p1Sp2S . . ., algorithm
SearchPattern running on an index built for a tree t can be seen as an efficient simulation
of a nondeterministic tree pattern PDA Mnpt(t).

5.4. LINEAR INDEX AS A SIMULATION OF A TREE PATTERN PDA 71

Algorithm 5.30: Algorithm describing the computation of a non-deterministic tree
pattern PDA Mnpt(t) on input pref(t); pushdown store operations are omitted for
clarity

Name: ReadPattern
Input: Tree pattern p, pref(p) = p1Sp2S . . . pk; Mnpt(t) = (Q,A, G, δ, 0, Z0, ∅)
Output: Ends of occurrences of tree pattern p in tree t stored in Qcurr

1 begin
2 Qcurr = {0};
3 for i := 1 to k do

// process pattern pi
4 for j := 1 to h, where pi = a1 a2 . . . ah do
5 Qnew = ∅;
6 foreach q ∈ Qcurr (do in parallel) do
7 Qnew = Qnew ∪ {q′} for all q′, where δ(q, aj, S) ∋ (q′, SArity(aj));
8 end
9 Qcurr = Qnew;

10 end
// process symbol S

11 if i 6= k then
12 Qnew = ∅;
13 foreach q ∈ Qcurr (do in parallel) do
14 Qnew = Qnew ∪ {q′} for all q′, where δ(q, S, S) ∋ (q′, ε);
15 end
16 Qcurr = Qnew;

17 end

18 end

19 end

72 CHAPTER 5. A LINEAR INDEX OF A TREE FOR TREE PATTERNS

Chapter 6

On Space Requirements of Indexes of
a Tree for Tree Patterns Based on
FTA and on Tree Pattern PDA

This chapter deals with full indexes of a tree for tree patterns based on deterministic finite
tree automaton (DFTA) and on deterministic tree pattern pushdown automaton (Mdpt).
These automata can serve as indexes that allow to process input queries in linear time.
However, as this section proves, they require exponential space for some trees. The contents
of this section have been submitted for publication [A.3].

Finite tree automaton is a computational model that can be used for building an index
of a tree for tree patterns and for tree pattern searching. A specific instance of a finite
tree automaton for tree indexing is presented in the first section of this chapter. It has a
deterministic and a non-deterministic variant. Its space requirements are analyzed.

A pushdown automaton specifically designed for tree pattern searching, a tree pat-
tern pushdown automaton, has been proposed in [50]. It has a deterministic and a non-
deterministic variant too. Its space requirements are analyzed in the second section.

The space complexity for the construction of the index of these two implementations
is analyzed. It is proved that the minimal deterministic tree pattern pushdown automaton
has a worst-case exponential size O(2n/4) for some indexed trees (an improvement over the
square-root-exponential size O(2

√
n) proved in [29]). A similar exponential result is proved

for a specific finite tree automaton. Moreover, a tree t with n nodes, n = 4k + 1, k ≥ 1, is
introduced such that any deterministic finite tree automaton that accepts all tree patterns
that match t (at any of its nodes) has at least O(2n/4) states. In other words - for some
trees, a minimum deterministic finite tree automaton has exponential size when used as
an index of a tree for tree patterns.

73

74 CHAPTER 6. TREE INDEXES - SPACE REQUIREMENTS

6.1 DFTA as an index for tree patterns

The major publications on finite tree automata [18, 35] do not directly present a finite
tree automaton that would serve as a (full) index for tree patterns, i.e. which would
accept all tree patterns that match a given tree. The construction of such finite tree
automaton is straightforward, however. Algorithm 6.2 describes algorithm NFTA-for-tree-
patterns, which creates a non-deterministic finite tree automaton as an index for tree
patterns. Determinisation of this automaton is possible. An algorithm for construction of
an equivalent deterministic FTA for a given NFTA is presented in [18] and is repeated here
for clarity, because it will be used by subsequent algorithms.

Algorithm 6.1: Construction of equivalent deterministic finite tree automaton for a
given non-deterministic finite tree automaton [18]

Name: DET (for NFTA)
Input: Non-deterministic FTA MN = (QN ,A, QNf , δN)
Output: Deterministic FTA MD = (QD,A, QDf , δD) equivalent with MN

1 begin
2 Set QD := ∅;
3 Set δD := ∅;
4 repeat
5 Set QD := QD ∪ {s};
6 Set δD := δD ∪ {f(s1, . . . , sn) → s};

where: f ∈ An, s1, . . . , sn ∈ QD;
s = {q ∈ QN |∃q1 ∈ s1, . . . , qn ∈ sn, f(q1, . . . , qn) → q ∈ δN};

7 until no transition rule can be added to δD;
8 Set QDf := {s ∈ QD|s ∩QNf 6= ∅};
9 return DFTA MD = (QD,A, QDf , δD);

10 end

When the NFTA automaton constructed by Algorithm 6.2 (NFTA-for-tree-patterns)
encounters a symbol S while processing a tree pattern, it non-deterministically chooses
the best subtree that fits in the place of the symbol S. It will be shown that when this
automaton is determinised to a minimum equivalent DFTA, it can reach an exponential
number of states with respect to the size of the input tree n.

Example 6.3 Consider tree t4, pref(t4) = a4 a4 a4 a4 a0 b0 a0 a0 a0 b0 a0 a0 a0 b0 b0 a0 a0.
Tree t4 is illustrated in Figure 6.1. Tree t4 is an example of a tree for which minimum
deterministic finite tree automata have an exponential number of states with respect to
the number of states of the equivalent NFTA constructed by Algorithm 6.2 (NFTA-for-
tree-patterns). For this tree, the minimum deterministic tree pattern PDAs also have an
exponential number of states (see theorems 6.10 and 6.13).

6.1. DFTA AS AN INDEX FOR TREE PATTERNS 75

Algorithm 6.2: Construction of non-deterministic finite tree automaton that accepts
all tree patterns that match a tree t

Name: NFTA-for-tree-patterns
Input: Tree t, pref(t) = a1 . . . an, a1, . . . , an ∈ A
Output: Non-deterministic FTA MN that accepts all tree patterns over A ∪ {S}

that match tree t
1 begin
2 construct a deterministic FTA 6.1 MN = (Q,A, Qf , δ) that accepts only tree t

and its subtrees;
3 foreach transition rule r = a(q1(x1)q2(x2) . . . qk(xk)) → q(a(x1x2 . . . xk)), r ∈ δ,

k ≥ 0 do
4 insert into δ a new transition rule S → q;
5 end

6 end

a40

a41

a42

a43

a04 b05 a06 a07

a08 b09 a010

a011 a012 b013

b014 a015 a016

Figure 6.1: Tree t4 from Example 6.3

76 CHAPTER 6. TREE INDEXES - SPACE REQUIREMENTS

Example 6.4 Let alphabet A = {a4, a0, b0}. Consider DFTA M = (Q,A, Qf , δ), where
Q = {qa, qb, q1, q2, q3, q4}, Qf = Q, and

δ = { a0 → qa(a0),
b0 → qb(b0),

a4(qa(x1) qb(x2) qa(x3) qa(x4)) → q1(a4(x1 x2 x3 x4)),
a4(q1(x1) qa(x2) qb(x3) qa(x4)) → q2(a4(x1 x2 x3 x4)),
a4(q2(x1) qa(x2) qa(x3) qb(x4)) → q3(a4(x1 x2 x3 x4)),
a4(q3(x1) qb(x2) qa(x3) qa(x4)) → q4(a4(x1 x2 x3 x4)), }.

This finite tree automaton is a minimum DFTA [18] that accepts tree t4 from Example 6.3
and all its subtrees. It has 6 states and 6 transition rules.

Example 6.5 Let A = {a4, a0, b0}. Consider NFTA MN = (Q,A ∪ {S}, Qf , δ), where
Q = {qa, qb, q1, q2, q3, q4}, Qf = Q, and

δ = { a0 → qa(a0),
b0 → qb(b0),

a4(qa(x1) qb(x2) qa(x3) qa(x4)) → q1(a4(x1 x2 x3 x4)),
a4(q1(x1) qa(x2) qb(x3) qa(x4)) → q2(a4(x1 x2 x3 x4)),
a4(q2(x1) qa(x2) qa(x3) qb(x4)) → q3(a4(x1 x2 x3 x4)),
a4(q3(x1) qb(x2) qa(x3) qa(x4)) → q4(a4(x1 x2 x3 x4)),

S → qa(S),
S → qb(S),
S → q1(S),
S → q2(S),
S → q3(S) }.

This finite tree automaton, constructed using Algorithm 6.2 (NFTA-for-tree-patterns) is
an NFTA that accepts tree t4 from Example 6.3, all its subtrees and all tree patterns that
match tree t4. It has 6 states and 10 transition rules.

Note that NFTA MN accepts a single symbol S. It would be possible to modify this
NFTA to not accept a single symbol S, but the size of the NFTA rises substantially.
The modification requires that Q′ = {q′a, q′b, q′1, q′2, q′3}, Q = Q ∪ Q′ and transition rules
S → qa(S), . . . , S → q3(S) be replaced with transition rules S → q′a(S), . . . , S → q′3(S).
For each transition rule of form a4(. . .) → q(a4(. . .)), 25 new transition rules must be added
to accommodate for new states from Q′.

Using determinisation algorithm DET for NFTAs [18], NFTA MN can be transformed
into an equivalent DFTA MD. The deterministic FTA is shown in the next example.

Example 6.6 Deterministic FTA MD constructed by determinisation algorithm DET [18]
from FTAMN from Example 6.5 (that accepts tree t4 from Example 6.3, all its subtrees and
all tree patterns that match tree t4) has 18 states and more than 100 transition rules. MD =
(Qd,A ∪ {S}, Qfd, δd), where Qd = {qa, qb, q1, q2, q3, q4, qab123, q12, q13, q23, q14, q24, q34, q123,
q124, q134, q234, q1234}, Qfd = Q. Part of transition function δd of the automaton is illustrated
in the following table:

6.1. DFTA AS AN INDEX FOR TREE PATTERNS 77

δd = { a0 → qa(a0),
b0 → qb(b0),

a4(qa(x1) qb(x2) qa(x3) qa(x4)) → q1(a4(x1 x2 x3 x4)),
a4(q1(x1) qa(x2) qb(x3) qa(x4)) → q2(a4(x1 x2 x3 x4)),

. . . ,
a4(qab123(x1) qb(x2) qa(x3) qa(x4)) → q14(a4(x1 x2 x3 x4)),
a4(qab123(x1) qa(x2) qb(x3) qa(x4)) → q2(a4(x1 x2 x3 x4)),

. . . ,
a4(qa(x1) qab123(x2) qa(x3) qa(x4)) → q1(a4(x1 x2 x3 x4)),

. . . ,
a4(qab123(x1) qab123(x2) qa(x3) qa(x4)) → q14(a4(x1 x2 x3 x4)),

. . . ,
a4(qab123(x1) qab123(x2) qab123(x3) qa(x4)) → q124(a4(x1 x2 x3 x4)),
a4(qab123(x1) qab123(x2) qa(x3) qab123(x4)) → q134(a4(x1 x2 x3 x4)),
a4(qab123(x1) qa(x2) qab123(x3) qab123(x4)) → q23(a4(x1 x2 x3 x4)),

a4(qab123(x1) qab123(x2) qab123(x3) qab123(x4)) → q1234(a4(x1 x2 x3 x4)),
. . . ,

a4(q123(x1) qab123(x2) qab123(x3) qab123(x4)) → q234(a4(x1 x2 x3 x4)),
S → qab123(S) }.

This FTA is not minimum, because any its state of the form qR, R ⊆ {a, b, 1, 2, 3, 4}, 4 ∈
R, |R| > 1, is equivalent to state q(R)\{4}. In the minimum FTA, state q14 is equivalent to
state q1, state q234 is equivalent to state q23 etc.

Note that the deterministic FTA has new states q12, q13, q23, q123 etc., which represent
all possible combination of states q1, q2, q3, q4 of the original non-deterministic FTA. With
increasing arity of the non-leaf symbols, the number of these combinations rises exponen-
tially with respect to arity r of the non-leaf symbols. Even in the minimum DFTA the
number of states rises exponentially, as is shown by Theorem 6.10.

The following two definitions are needed for the proof that the minimum deterministic
FTA can have an exponential number of states w.r.t the tree t for which the DFTA serves
as an index for tree patterns. The definitions are based on [18].

Definition 6.7 Let τ be a set of all trees over alphabet A. An equivalence relation ≡ on
τ is a congruence ∼= on τ if for every a ∈ An

(∀ 1 ≤ i ≤ n, ui ≡ vi) ⇒ a(u1 . . . un) ≡ a(v1 . . . vn).

The congruence is of finite index if there are finitely many equivalence classes.

Definition 6.8 Let X be a set of variables. Let τ be a set of all trees over alphabet A.
Let L be a tree language over A. Congruence ∼=L on τ is defined by:

u ∼=L v if for all contexts C over A ∪ X , C[u] ∈ L ⇔ C[v] ∈ L.

78 CHAPTER 6. TREE INDEXES - SPACE REQUIREMENTS

The following definition of distinguishing context is similar to the notion of distinguish-
ing suffix as used by the Myhill-Nerode theorem for regular languages [38].

Definition 6.9 Let X be a set of variables. Let L be a tree language over A. Let u, v be
trees such that u ≇L v. Then there must exist a context C over A∪X such that (C[u] ∈ L
and C[v] /∈ L) or (C[u] /∈ L and C[v] ∈ L). Context C is called a distinguishing context
for trees u, v in L.

The following theorem uses a generalized version of automaton MN from Example 6.5.
Whereas MN accepts a tree whose nodes are either of arity 0 or 4, the generalized au-
tomaton accepts trees of the same kind whose nodes are either of arity 0 or k + 1 for
k > 0.

The theorem itself exploits an already known fact that the determinisation process
of NFTA can result in an exponential blow-up of states [18]. Its proof shows a non-
deterministic FTA with k + 2 states, k > 0 for which the minimum complete equivalent
deterministic FTA has 2k + 2 states.

Theorem 6.10 Let NS
t denote an NFTA that accepts all tree patterns that match a tree

t. Let DS
t denote a minimum complete DFTA equivalent to NS

t . Then there is a tree tek
with n = (k + 1) ∗ (k + 1) + 1 nodes, k > 0, for which there exists an NFTA NS

tek
with

k+3 = O(
√
n) states and for which the minimum complete DFTADS

tek
has 2k+3 = O(2

√
n)

states.

Proof. Let A = {a0, b0, ak} be an alphabet. Let Mne be a non-deterministic
FTA with k + 2 states and the following structure: Mne = (Q,A ∪ {S}, Qf , δ), Q =
{qa, qb, q1, q2, . . . , qk, qk+1}, Qf = {q1, q2, . . . , qk+1} and

δ = { a0 → qa(a0),
b0 → qb(b0),

ak(qa(x1) qb(x2) qa(x3) . . . qa(xk+1)) → q1(ak(x1 x2 x3 . . . xk+1)),
ak(q1(x1) qa(x2) qb(x3) . . . qa(xk+1)) → q2(ak(x1 x2 x3 . . . xk+1)),

. . .
ak(qk−1(x1) qa(x2) qa(x3) . . . qb(xk+1)) → qk(ak(x1 x2 x3 . . . xk+1)),
ak(qk(x1) qb(x2) qa(x3) . . . qa(xk+1)) → qk+1(ak(x1 x2 x3 . . . xk+1)),

S → qa(S),
S → qb(S),
S → q1(S),
S → q2(S) }.

Given a specific value of k, the automaton Mne accepts a certain tree tek and all tree
patterns that match tree tek. An example of tree tek for k = 3 is shown in Figure 6.1. The
construction used for creating automaton Mne is analogous to the construction of NFTA
for tree t4 from Example 6.5.

6.1. DFTA AS AN INDEX FOR TREE PATTERNS 79

1. Using determinisation of NFTA Mne by algorithm DET (6.1), an equivalent DFTA
Mde = (Qd,A ∪ S,Qfd, δd) is created. By application of DET, it holds that Qd =
{qa, qb} ∪ P and Qfd = P , where P = {qp|p ∈ 2K , where K = {1, 2, . . . , k}}.

2. Consider the minimisation of DFTA Mde. It is obvious that states qa, qb lie in their
own equivalence classes.

Consider number i, 1 ≤ i ≤ k, 1 and any state qp from P , i ∈ p. There exists a tree

pattern tep over A∪S such that tep
∗→

MD

qp(tep) and there exists a tree tei over A such

that tei
∗→

MD

q{i}(tei). There is at least one tree context Ci over A such that Ci[tei] is

a tree accepted by Mne and Ci[tep] is a tree pattern accepted by Mne.

Consider, without loss of generality, state qr from P , qr 6= qp, i /∈ r. There exists

a tree pattern ter such that ter
∗→

MD

qr(ter). Because of determinisation, being in

state qr is equivalent to being in all states q{j}, j ∈ r, at once. Since q{j} 6= q{i} for
all j ∈ r and q{i} has a unique distinguishing context for all i ≤ k, context Ci is
a distinguishing context for tree patterns ter and tep and thus ter ≇L(M) tep. That
means that states qr and qp are not equivalent.

If the state q{} is considered as the error state, then the number of states of the
minimum complete DFTA Mde is |Qd| = 2k + 3.

Since automata Mne and Mde are equivalent and they both accept tree tek and all its
subtrees, this concludes the proof.

�

Expressed informally, consider tree t4 from Example 6.3 and generalize its depth and
arity of non-constant nodes by k. Take any two different sets of nodes A and A′ of arity k,
A ⊆ {ak1, ak2, . . . akk}, A′ ⊆ {ak1, ak2, . . . akk}. The proof notices that one can construct a
tree pattern that matches the subject tree at (and only at) all nodes from A. Such pattern
has a symbol S where any node ak ∈ A has a node b0 as a direct descendant. For every
subtree tei rooted at node aki, 1 ≤ i ≤ k, there exists a unique tree context Ci such that
Ci[tei] is accepted by Mne and Ci[tei] contains the root node of generalized version of tree
t4. Therefore any two different sets of nodes A and A′ have a distinguishing context and
cannot be represented by the same state.

Corollary 6.11 For some non-deterministic finite automata that accept all tree patterns
that match a given tree, the equivalent minimum determinstic finite automata have expo-
nentially more states.

Proof. The proof directly follows from the proof of Theorem 6.10. �

1not ≤ k + 1 due to technical reasons

80 CHAPTER 6. TREE INDEXES - SPACE REQUIREMENTS

a40

a01 S2 a03 S4

Pattern p13, pref(p13) = a4 a0 S a0 S

a40

a01 a02 S3 S4

Pattern p23, pref(p23) = a4 a0 a0 S S

Figure 6.2: Patterns p13 and p23 that match tree t4 from Example 6.3

Example 6.12 Consider tree t4 from Example 6.3. This tree is the tree from Theorem 6.10
with k = 3. The minimum deterministic FTA MS

t4 that accepts tree t4 and all patterns that
match it has states Qd = {qa, qb, q1, q2, q3, q4, q12, q23, q13, q14, q24, q34, . . .}. Its final states are
Qfd = Qd\{qa, qb}. Two patterns p13 and p23 that cannot lead DFTAMS

t4 to the same final
state are shown in Figure 6.2. After processing patterns p13 and p23 from input, DFTA
MS

t4
ends in states q13 and q23, respectively. Note that although both states are final, they

are not equivalent. Two states qa, qb of an FTA are equivalent if for any single-variable tree
context C the trees C[qa] and C[qb] are either both accepted by the FTA or both rejected
by the FTA [18].

6.2 Deterministic tree pattern PDA as an index for

tree patterns

The tree pattern pushdown automaton [50] is a specific pushdown automaton that accepts
all tree patterns that match a given tree or its subtrees. It was designed to serve as an index
for tree patterns. In non-deterministic form, it takes linear space with respect to the size
of the indexed tree. After determinisation, however, the automaton can have exponential
size. An example of a tree for which the deterministic tree pattern PDA has exponential
number of states is shown in Example 6.3. Notice that the finite tree automaton that
accepts tree patterns that match this tree has exponential size too.

The Theorem 6.10 can be extended to the case of tree pattern PDA. The proof uses a
generalized version of tree t4 from Example 6.3. The general form of tree t4 used as tk in
the proof is shown in Figure 6.3. Note that it was already shown that a deterministic tree
pattern PDA can have exponential size O(2

√
n) in [29]. The proof shown here is interesting

because it uses the same tree as the tree shown in the proof of the exponential size of
deterministic finite tree automata. Moreover, Subsection 6.3.1 shows a stronger result: a

6.2. TREE PATTERN PDA AS A FULL INDEXOF A TREE FOR TREE PATTERNS81

a40

a41

a42

...

a4k−1

a0k b0k+1
. . . a02k−2 a02k−1

a0 . . . b0 a0

a0 . . . a0 b0

b0 . . . a0 a0k2

Figure 6.3: Tree tk from the proof of Theorem 6.13; indexes of some leaf symbols are
omitted for the sake of clarity

a40

a41

a02 a03 . . . a0k a0k+1

a0k+2 . . . a02k−1 a02k

Figure 6.4: A ”template” for tree patterns from set p of tree patterns used in the proof of
Theorem 6.13

minimal deterministic tree pattern PDA of size O(2n/4).

Theorem 6.13 Let t be a tree over alphabet A. Let Mnpt(t) denote a non-deterministic
tree pattern PDA that accepts tree t and all tree patterns that match t. Let Mdpt(t)
denote a deterministic tree pattern PDA equivalent to Mnpt(t). Then there is a tree tk
with n = k2 + 1 nodes, whose automaton Mnpt(tk) has n + 1 = k2 + 2 states and whose
automaton Mdpt(t) cannot have less than 2k = O(2

√
n) states.

Proof. Let k be an integer, k > 0. Let tk be a tree with k2 + 1 nodes. The structure of
tree tk is illustrated in Figure 6.3. The non-deterministic tree pattern PDA Mnpt(tk) that
accepts tree tk and all patterns that match it constructed by Algorithm 2.21 from Chapter 2
has k2 + 2 states. The equivalent deterministic tree pattern PDA Mdpt(tk) constructed by
Algorithm 2.23 from Chapter 2 has at least 2k states, but it is not minimal. The following
steps show that the minimal tree pattern automaton cannot have less than 2k states.

1. The minimal automaton must have an initial state.

2. Consider a set of tree patterns p = {pK |K ∈ 2{2,3,...,k+1}}. Each pattern pK , pK ∈ p
is of the form pref(pK) = a40 a41 a02 a03 . . . a02k, where symbol a0 at position i is

82 CHAPTER 6. TREE INDEXES - SPACE REQUIREMENTS

replaced by symbol S if i ∈ K. This ”template” for tree patterns from p is illustrated
in Figure 6.4. The set p contains all tree patterns that match this template and do
not contain a symbol S at position 1. All these patterns match tree tk.

3. Consider any two different tree patterns p1, p2 from set P . After reading the first k+2
symbols of patterns p1 and p2, the deterministic tree pattern PDA Mdpt(tk) ends in
two different states q1, q2, respectively. States q1 and q2 are not equal because of the
same reason as in the proof of Theorem 6.10. There must exist a number i that be-
longs to p1 and not to p2 (or vice versa). This number identifies a unique distinguish-
ing suffix suff such that pref (p1)[0]pref (p1)[1] . . . pref (p1)[k+1]suff is a prefix nota-
tion of a tree pattern accepted by Mdpt(tk) and pref (p2)[0]pref (p2)[1] . . . pref (p2)[k+
1]suff is a prefix notation of a tree pattern not accepted by Mdpt(tk) (or vice versa).

Thus states q1 and q2 cannot be equal. This means that after reading the first k + 2
symbols of the tree pattern, the minimal automaton can end up in more than 2k−1

different states.

4. Consider tree patterns from the set of tree patterns P . In their prefix notation, the
tree patterns have either a symbol S or an a0 symbol on positions 2 and beyond. After
reading the first two symbols of any of tree patterns P , the minimal automaton ends
in the same state q{2,3,...,k+1}1. After reading the next symbol (a0 or S), the automaton
can end in two new different states: q{2,3,...,k+1}2 or q{3,...,k+1}2. After reading the next
symbol, the automaton can end in four new different states: q{2,3,...,k+1}3, q{2,...,k+1}3,
q{3,...,k+1}3 or q{4,...,k+1}3. Eventually, after reading k + 2 symbols, the automaton can
end in 2k−1 new different states. In total, this is 2k − 1 states.

5. Parsing only patterns from the set of tree patterns P , the minimal automaton can
visit up to 2k−1 different states, plus the initial state. Thus the minimal automaton
cannot have less than 2k states.

�

Note that the tree tk from the proof of Theorem 6.13 is only slightly different from the
tree t4, whose generalized form was used in the proof of Theorem 6.10. Tree tk from the
proof of Theorem 6.13 could in fact be used for both proofs without (more than a constant)
effect on the exponential size result.

6.3 Trees with small indexes, trees with large indexes

In the previous sections, trees with exponential-size indexes have been shown. One may
then ask the following question - is there a property that trees with exponential-size indexes
share? And on the contrary, what property do trees with sub-exponential indexes have?

6.3. TREES WITH SMALL INDEXES, TREES WITH LARGE INDEXES 83

A conclusive answer is not provided here. However, several properties are identified and
three trees, two of them with index of size O(n), another with index of size O(2n/4), are
described. The case of tree pattern PDA is considered. The case of Finite Tree Automaton
is analogous.

6.3.1 Upper bound on the number of states of the index

6.3.1.1 Number of different subtrees of a tree

Consider a tree t indexed by a deterministic tree pattern PDA Mdpt. Consider two identical
subtrees t1, t2 of tree t. Such subtrees cannot be distinguished by tree pattern PDA Mdpt.
For instance, after reading any prefix of tree t1, the PDA will end in state q. After reading
the same prefix of tree t2, it must end in the same state q. Since the index of tree t does
not distinguish between identical subtrees, its size must be determined by the number of
different subtrees of tree t.

There are types of trees that have very few different subtrees. For instance, a complete
binary tree (labeled by the same label on all nodes) has n = 2k − 1 nodes, but it has only
k different subtrees. The maximum possible number of different d-subsets is bounded by
the number of possible combinations of these k different subtrees, multiplied by at most
their length (see Lemma 6.14 for details). There are 2k possible combinations and the
length is at most 2k − 1. Therefore the index (tree pattern PDA Mdpt) cannot have more
than 2k ∗ (2k − 1) < (n + 1)2 nodes. But the upper bound in this case lies even lower -
the minimal deterministic tree pattern PDA for a complete binary tree with n nodes has
only n + 1 states - many states are merged together during minimisation. The reason for
this is the fact that the suffixes of tree patterns accepted by the PDA Mdpt are suffixes of
tree patterns that match tree t at its root node. This allows many states to be merged
together. The resulting automaton strongly resembles treetop PDA for t, which has n+ 1
states.

Lemma 6.14 Assume two trees t1, t2 whose roots are of the same arity and are labeled
by the same symbol. Assume a tree pattern p that matches them both at the root node
and has the most non-S nodes out of all tree patterns that match the two trees at the root
node. Tree pattern p implies a 1:1 mapping between nodes matched by its non-S symbols
in the the two trees. Any other tree pattern that matches the two trees at the root node
implies a subset of this mapping.

Proof. It is apparent that tree pattern p implies a mapping between the nodes of the
two trees. See Figure 6.5 for an illustration of this property. The sizes of subtrees of t1 and
t2 that are matched by symbols S of tree patttern p can be different, but are fixed. Any
tree pattern p′ different from p that still matches subtrees t1, t2 at the root node differs
from p by replacing some of the subtrees of p by an S symbol. Take one subtree of p which
was replaced by an S symbol; call this symbol S1. The subtree contained some S symbols,
which altogether skipped k1 symbols in tree t1 and k2 symbols in tree t2. It also contained

84 CHAPTER 6. TREE INDEXES - SPACE REQUIREMENTS

a2

a0 a2

a0 a0

a2

a1

a0

a2

a0 a1

a0

Figure 6.5: Mapping between nodes of two trees implied by tree patterns that match them

some non-S symbols, which skipped k3 symbols in both trees. But k1+k3 is the size of the
subtree in t1 matched by symbol S1 and k2 + k3 is the size of the subtree in t2 matched by
symbol S1. No relative shift of indexes in trees t1 and t2 occured. Therefore the mapping
implied by tree pattern p′ is consistent with (is subset of) the mapping implied by tree
pattern p. �

6.3.1.2 Distinguishing suffixes

Recall that the proofs in the previous section used the notion of distinguishing context
and distinguishing suffix. Consider a deterministic tree pattern PDA determinised using
determinisation algorithm 2.23. Take any of its d-subsets d. The elements of d correspond
to prefixes prefi of prefix notations of all subtrees t1, t2, . . . , tk that are ’matched’ by the
same prefix of prefix notation of some tree pattern. We will say that two subtrees t1, t2 are
indistinguishable in d-subset d if there exist identical suffixes suff1 and suff2, such that
prefisuffi = pref bar(ti) for i ∈ {1, 2}.

In principle, inserting an S transition to a subtree PDA may cause some d-subsets
(corresponding to states of the PDA) to keep their size upon reading the S symbol rather
than splitting into smaller d-subsets. Inserting an S symbol may thus create new d-subsets
in the automaton. If those new d-subsets contain indistinguishable subtrees, it may be
possible to merge these new d-subsets with already existing d-subsets and the size of the
PDA will not increase. The following examples show such trees.

6.3.1.3 Examples of very small and very large indexes

Example 6.15 Figure 6.6 provides an example of a tree whose tree pattern PDA has
d-subsets that correspond to indistinguishable subtrees. Minimised tree pattern PDA
constructed for this tree is illustrated in Figure 6.7. The number of states of this PDA is
further reduced thanks to the fact that the PDA accepts tree patterns by empty pushdown
store (for instance, d-subset {6} could be merged with d-subset {5, 6}).

6.3. TREES WITH SMALL INDEXES, TREES WITH LARGE INDEXES 85

a20

a21

a22

a23

b04 a05

a06

a07

a08

Figure 6.6: An example of a tree whose tree pattern PDA has a very low number of states
thanks to a high number of indistinguishable subtrees in the d-subsets

0 1234 234 34 4 5 56 567 5678 6789

a2|S 7→ SS a2|S 7→ SS a2|S 7→ SS a2|S 7→ SS b0|S 7→ ε

S|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

b0|S 7→ ε

b0|S 7→ ε

b0|S 7→ ε

Figure 6.7: Minimal tree pattern PDA for tree from Figure 6.6

86 CHAPTER 6. TREE INDEXES - SPACE REQUIREMENTS

Example 6.16 Drawing on the notions of different subtrees and distinguishing suffixes,
one may also construct trees for which the index size is exponential. Consider the tree te
from Figure 6.8, pref(te) = b2 a0 a2 a0 a2 a0 . . . a2 a0 a2 b0 a2 a0 a2 a0 . . . a2 a0 b2 a0 a0.
All subtrees of tree te that begin with symbol a2 are different. Moreover, given any d-subset
that corresponds to at least two different subtrees of te that begin with symbol a2, the
subtrees have a distinguishing suffix and cannot be treated as the same subtree. Lastly,
the d-subsets of tree pattern PDA for tree te can grow or shrink by one element at a time
due to the structure of the tree. These three properties are enough to make the size of
the index exponential with respect to the size of the indexed tree. The following lemma
provides a precise statement.

Lemma 6.17 Let te be a tree with n nodes, pref(te) = b2 a0 a2 a0 a2 a0 . . . a2 a0 a2 b0
a2 a0 a2 a0 . . . a2 a0 b2 a0 a0, where the symbol b0 occurs in the middle of the prefix
notation of the tree. The minimal tree pattern PDA that indexes it cannot have less than
O(2n/4) nodes. The minimum DFTA that indexes it also cannot have less than O(2n/4)
nodes.

Proof. The proof to this lemma for tree pattern PDA and for DFTA is analogous to
the proof of Theorem 6.13 and the proof of Theorem 6.10, respectively. The distinguishing
contexts for the FTA proof are inserted from top, whereas the distinguishing suffixes for the
tree pattern PDA proof are inserted from the bottom. Note that the number of nodes (or
states) is O(2n/(2∗2)). The number of nodes (or states) in this expression is twice devided
by 2 because for each symbol of arity 0 there is one symbol of arity 2 (leaving n/2 symbols
of arity 0) and because the tree patterns used in the proof contain up to k = one half of
all symbols of arity 0 (second division). See the Figure 6.8 for a visual explanation. �

This is a stronger result than proved in Theorems 6.13 and 6.10.

6.3.2 Discussion

We show two examples of deterministic pushdown automata used as an index (of a tree for
tree patterns). Both have worst-case exponential size. It is therefore natural to consider
the question whether there is any deterministic pushdown automaton that could be used
as an index and have less than exponential size. The grammar that generates the language
LP of all tree patterns that match a tree t in linear prefix form has linear size with respect
to the number of nodes of tree t (the rules can be in Greibach normal form). The theory of
deterministic context-free languages shows that there are languages whose parsers (based
on deterministic PDAs) have size exponential compared to the generating grammars [59].
It is possible that language LP is such a language. Language LP is finite. From the results
presented in this text it is obvious that it cannot be accepted by a deterministic finite
automaton of less than exponential size. It is unknown whether it is possible to build
a parser of language LP that would run in linear time and have linear size. If so, the
computational model is unclear as well. The deterministic PDA does not seem suitable.

6.3. TREES WITH SMALL INDEXES, TREES WITH LARGE INDEXES 87

b2

a0 a2

a0 a2

a0 . . .

a2

a0 a2

b0 a2

a0 a2

a0 . . .

a2

a0 b2

a0 a0

k nodes a2

k nodes a2

︸

︷︷

︸

︸

︷︷

︸

a2

a0 a2

S . . .

a2

a0 a2

S S

k + 1 nodes a2

︸

︷︷

︸

Figure 6.8: Tree te whose tree pattern PDA has an exponential number of states O(2n/4)
and an example of a tree pattern that matches two of its subtrees

88 CHAPTER 6. TREE INDEXES - SPACE REQUIREMENTS

The next step in the computational complexity hierarchy, the class of growing context-
sensitive grammars, recognizable by length-reducing two-pushdown automata, could be
the candidate for such parser. It has the desirable property that the membership problem
is still decidable in polynomial time [42]. Computational model of a Turing Machine has
been successfully used for building a linear-size index, but its matching time was super-
linear [A.2].

6.3.3 Conclusion

It has been shown that there exists a tree such that any deterministic finite tree automaton
that accepts all tree patterns that match this tree has an exponential number of states
O(2n/4) with respect to the number of nodes n of the tree. The same result was proved
for the case of the deterministic tree pattern pushdown automaton (an improvement over
the result in [29]). This seems to suggest that if one wishes to have an index of a tree for
tree patterns such that the searching phase takes linear time, the index size is at worst
exponential, at least under the computational model of pushdown automaton. Given that
the index of a tree for tree patterns presented in Section 5.1 of Chapter 5 has linear size,
it is of no surprise that the complexity of the searching phase of this index is not strictly
linear with respect to the size of the indexed tree.

Chapter 7

Conclusions

This doctoral thesis set three goals. Firstly, to propose an index for exact tree indexing
that can be used for compression of the indexed tree. Secondly, to explore and improve
current methods of indexing of a tree for tree patterns. Thirdly, to investigate the time
and space requirements for the construction of an index of a tree for tree patterns based
on finite tree automaton and on tree pattern pushdown automaton. The results were put
into context with the pushdown automaton approach coined by arbology [3].

7.1 Tree compression automaton

In Chapter 4, a new method for tree indexing was proposed. A kind of pushdown au-
tomaton called tree compression automaton (TCA) was introduced. The TCA is a special
version of a general tree compression automaton (GTCA), which was defined to accept by
empty pushdown store all subtrees in prefix bar notation [3] of trees in a given set T . The
TCA is a GTCA that was constructed by Algorithm 4.12 (TCA-construction). The TCA
was proved to be deterministic in Theorem 4.14.

It was proved that TCA can be used as an index for not only a single tree, but for a
set of trees. Algorithm 4.12 (TCA-construction) is on-line, which means that the TCA is
built while the input tree is being read. Moreover, if at any iteration of Algorithm 4.12
a tree is indexed by the algorithm, then all its subtrees were already indexed in previous
iterations. Algorithm 4.12 is incremental, which means that a TCA that indexes one tree
can be extended to index another tree simply by providing the existing TCA as an input
to the algorithm together with the tree that is to be indexed.

The complexity of the construction of TCA and the size of TCA for a given tree was
examined. Size of TCA is linear with respect to the input: when t is a tree with n nodes
and M is a TCA({t}) (a TCA that indexes tree t), then TCA M has at most n+1 states,
2n+1 pushdown store symbols and the number of transition rules is 4n. The construction
of TCA for tree t takes time 2n∗ log2(n+1) and requires working space of size at most 2n.
However, if a hash map is used for the storage of the transition function δ of the TCA, the
construction time reduces to O(2n) and the working space stays at 2n.

89

90 CHAPTER 7. CONCLUSIONS

It was shown that the above-mentioned space requirements of the TCA are the max-
imum space requirements of TCA reached only for trees without any subtree repeats.
When a tree with subtree repeats is indexed, a substantially smaller size of the TCA can be
reached after running Algorithm 4.12 (TCA-construction). It was shown that the TCA can
have a logarithmic size with respect to the indexed tree. This means that Algorithm 4.12
can be used for a compression of trees.

A decompression algorithm for TCA was presented. Its correctness was proved and its
time and space complexities were examined. The decompression algorithm requires time
O(5n) and space O(2n) for its execution. The output of the decompression algorithm is
the tree that was indexed using the TCA. It has n nodes and its prefix bar notation takes
2n space.

The compression and decompression performance of TCA was verified experimentally.
Compression by TCA reached the performance of grammar-based compression techniques
[11]. It did not achieve the compression ratio of the LZ compression methods [71, 52], but
has indexing capabilities that are not present in these methods. A library implementation
of TCA for compression and decompression has been created [52]. The implementation
verified that when a hash map is used for storing the transition function δ of the TCA,
both TCA construction and TCA decompression have O(n) time complexities.

An algorithm for subtree matching that uses TCA was presented. It was proved that
given a tree t with n nodes and a set of trees T , the algorithm for subtree matching reports
all subtrees of t that match trees in T in time O(2n) if hashing is used.

An algorithm for finding exact repeats of subtrees in a set of trees was presented as a
natural extension of Algorithm 4.12 (TCA-construction). The algorithm for finding exact
repeats takes linear time with respect to the size of the input when a hash map is used for
the storage of transition function δ.

The tree compression automaton has been placed into context of finite tree automata. A
conversion algorithm from a TCA into a deterministic FTA that accepts the same trees has
been presented. The existence of a conversion algorithm between TCA and FTA implies
that finite tree automaton is suitable for subtree indexing, compression of trees and finding
of exact repeats of subtrees. The latter two applications have not been explored in [18]
and TCA is thus a contribution to the theory presented there.

7.2 A full and linear index of a tree for tree patterns

The finite tree automaton as a model of computation [18] is suitable for exact subtree
indexing. The TCA from this doctoral thesis and the subtree pushdown automaton from
arbology [50] have also been shown to be appropriate for this purpose. However, when the
subtree indexing is extended to allow patterns with wildcards, as in tree pattern matching
[50], all these approaches yield automata whose size can be exponential with respect to the
indexed tree.

A new method of a full and linear index of a tree for tree patterns has been presented.
The index consists of the compact suffix automaton, which is a standard text index struc-

7.3. SPACE REQUIREMENTS OF AN INDEX 91

ture, and a so-called subtree jump table.
Given a subject tree T with n nodes, the indexing phase is proved to take O(n) time

and O(n) space. The number of distinct tree patterns which match the tree is O(2n), but
the index that is built during the indexing phase requires only O(n) space.

The searching phase reads an input tree pattern P of size m and locates all its oc-
currences in the tree T . For an input tree pattern P in linear prefix notation pref(P) =

P1SP2S . . . SPk, k ≥ 1, the searching is performed in time O(m +
k∑

i=1

|occ(Pi)|)), where
occ(Pi) is the set of all occurrences of string Pi in pref(T).

Compared to an FTA-based index, to a TCA and to a tree pattern pushdown automa-
ton, the searching phase has no longer strictly linear complexity, but the size of the index
is linear instead of worst-case exponential.

The presented algorithms for tree pattern indexing can be extended for unranked trees
when the prefix bar linear notation of the tree [50] is used instead of the prefix notation.

7.3 Space Requirements of an Index of a Tree for Tree

Patterns

This doctoral thesis showed trees such that the deterministic FTAs that index them have
exponential size O(2(n/4)) with respect to the size n of the indexed trees, whereas the
non-deterministic FTAs that index them have linear size. The same result is proved for
the same kind of trees for tree pattern PDAs. Examples of trees for which the same types
of indexes have linear size were shown. Several properties of trees that affect the size of
the investigated indexes were examined.

The linear index presented in Section 5.1 has linear size. The complexity of the searching
phase is not strictly linear with respect to the size of the pattern, but depends on the
structure of the indexed tree.

7.4 Suggestions for further research

7.4.1 Tree compression automaton

1. The tree compression automaton can compress a tree and provide an index of it
at the same time. It can compress efficiently trees that have a recursive structure,
like full k-ary trees or Fibonacci trees. However, many trees, especially in XML
databases, have a structure where one parent has multiple child subtrees that have the
same structure. Currently TCA does not use these repeats for further compression.
TCA would achieve better compression ratio if the repeating child subtrees could be
compressed, for example into a pair (subtree identifier, number of repeats).

2. The TCA could be used for indexing of a tree for tree patterns. However, a straight-
forward approach that extends the TCA for this purpose can lead to a rapid increase

92 CHAPTER 7. CONCLUSIONS

of the number of its states. Methods for extension of TCA for tree patterns should
be examined. Firstly, methods that keep the pushdown automaton as the model of
computation. As these methods will probably result in a quadratic or even exponen-
tial blow-up in the number of states of the TCA, methods that use more powerful
models of computation should be examined, similarly as Chapter 5 examined the
index of a tree for tree patterns to overcome limits faced by tree pattern pushdown
automaton [50].

3. The TCA compression library [52] should be extended to allow not only compression
of trees, but to include compressed text data of tree nodes. The library should also
be extended to accept XML files for input. With these extensions, the library will
be applicable for compression and indexing of large XML files.

4. This whole doctoral thesis focused on ordered trees. A natural extension of the
presented results is an application for unordered trees. With minor modifications,
the algorithms that work with TCA could be used for unordered trees. The structure
of TCA is optimized for ordered trees. It is a question whether and how its structure
could be modified to allow for fast queries over unordered trees.

7.4.2 A full and linear index of a tree for tree patterns

1. To offer a linear-time searching capability, the index currently requires an O(n) extra
space (array Pairs), where n is the number of nodes of the indexed tree. Although
the presence of this extra space does not change the asymptotic space complexity
of the indexing phase or the searching phase, it would be interesting to find an
algorithm that can avoid using this extra space for the searching phase and maintain
the asymptotic time complexity of the searching phase. Techniques used for linear-
time construction of suffix trees or of compact suffix automaton might be useful.

2. It remains an open question whether it is possible to build a linear-size index of a tree
for tree patterns that would allow purely linear-time queries in the searching phase.
This doctoral thesis suggests that if such an index exists, a pushdown automaton is
a computational model that might not be powerful enough for this purpose.

7.4.3 Space Requirements of an Index of a Tree for Tree Patterns

1. The exponential sizes of pushdown automaton-based indexes proved in this Doctoral
thesis suggest the following proposition:

Proposition 7.1 Let I(t) denote the set of deterministic pushdown automata
(DPDA) that accept all tree patterns that match a tree t. Then for any k, k > 0,
there exists a tree tk with n nodes, n > k, such that all DPDA from set I(tk) have
size at least 2m∗n, where m is a constant shared by all k.

Bibliography

[1] Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation, and compil-
ing. Prentice-Hall Englewood Cliffs, N.J., 1972.

[2] Amihood Amir, Dmitry Keselman, Gad M. Landau, Moshe Lewenstein, Noa Lewen-
stein, and Michael Rodeh. Text indexing and dictionary matching with one error. J.
Algorithms, 37(2):309–325, November 2000.

[3] Arbology www pages. URL: http://www.arbology.org/, 2013. May 2013.

[4] Helen M. Berman, John D. Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat,
Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The protein data bank.
Nucleic Acids Research, 28(1):235–242, 2000.

[5] P. Bille. Pattern Matching in Trees and Strings. PhD thesis, FIT University of
Copenhagen, Copenhagen, 2008.

[6] Philip Bille, Inge Li Gortz, Hjalte Wedel Vildhoj, and Soren Vind. String indexing
for patterns with wildcards. In FedorV. Fomin and Petteri Kaski, editors, Algorithm
Theory - SWAT 2012, volume 7357 of Lecture Notes in Computer Science, pages
283–294. Springer Berlin Heidelberg, 2012.

[7] Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and David Kofoed Wind. String
matching with variable length gaps. In Proceedings of the 17th international confer-
ence on String processing and information retrieval, SPIRE’10, pages 385–394, Berlin,
Heidelberg, 2010. Springer-Verlag.

[8] Anselm Blumer, J. Blumer, Andrzej Ehrenfeucht, David Haussler, and Ross M. Mc-
Connell. Linear size finite automata for the set of all subwords of a word - an outline
of results. Bulletin of the EATCS, 21:12–20, 1983.

[9] Anselm Blumer, J. Blumer, David Haussler, Andrzej Ehrenfeucht, M. T. Chen, and
Joel I. Seiferas. The smallest automaton recognizing the subwords of a text. Theor.
Comput. Sci., 40:31–55, 1985.

[10] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: Optimal
XML pattern matching. In Proceedings of the 2002 ACM SIGMOD International

93

http://www.arbology.org/

94 BIBLIOGRAPHY

Conference on Management of Data, SIGMOD ’02, pages 310–321, New York, NY,
USA, 2002. ACM.

[11] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Grammar-based tree com-
pression. Technical report, Universitat Oldenburg, Universitt Stuttgart, 2004.

[12] Barbara Catania, Anna Maddalena, and Athena Vakali. XML document indexes: A
classification. IEEE Internet Computing, 9(5):64–71, September 2005.

[13] Barbara Catania, Beng Chin Ooi, Wenqiang Wang, and Xiaoling Wang. Lazy XML
updates: Laziness as a virtue, of update and structural join efficiency. In Proceedings of
the 2005 ACM SIGMOD International Conference on Management of Data, SIGMOD
’05, pages 515–526, New York, NY, USA, 2005. ACM.

[14] Michalis Christou, Maxime Crochemore, Tomáš Flouri, Costas S. Iliopoulos, Jan
Janoušek, and Bořivoj Melichar Solon P. Pissis. Computing all subtree repeats in
ordered ranked trees. In SPIRE, pages 338–343, 2011.

[15] Michalis Christou, Tomáš Flouri, Costas S. Iliopoulos, Jan Janoušek, Bořivoj Melichar,
Solon P. Pissis, and Jan Žďárek. Tree template matching in unranked ordered trees.
J. Discret. Algorithms, 20:51–60, May 2013.

[16] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. Apex: An adaptive path index
for XML data. In Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’02, pages 121–132, New York, NY, USA, 2002.
ACM.

[17] L. Cleophas. Tree Algorithms. Two Taxonomies and a Toolkit. PhD thesis, Technische
Universiteit Eindhoven, Eindhoven, 2008.

[18] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. URL:
http://www.grappa.univ-lille3.fr/tata, 2008. release November, 18th 2008.

[19] Maxime Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63–86,
1986.

[20] Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings.
Cambridge Univ Pr, 2007.

[21] Maxime Crochemore, Costas Iliopoulos, Christos Makris, Wojciech Rytter, Athanasios
Tsakalidis, and Kostas Tsichlas. Approximate string matching with gaps. Nordic J.
of Computing, 9(1):54–65, March 2002.

[22] Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford University Press,
1994.

http://www.grappa.univ-lille3.fr/tata

BIBLIOGRAPHY 95

[23] Maxime Crochemore and Wojciech Rytter. Jewels of stringology. World Scientific,
2002.

[24] Maxime Crochemore and Renaud Vérin. Direct construction of compact directed
acyclic word graphs. In Combinatorial Pattern Matching, pages 116–129. Springer,
1997.

[25] Maxime Crochemore and Renaud Vérin. On compact directed acyclic word graphs.
In Structures in Logic and Computer Science, pages 192–211. Springer, 1997.

[26] Document object model (dom) level 3 core specification. URL:
http://www.w3.org/TR/DOM-Level-3-Core/, 2015.

[27] Andrzej Ehrenfeucht, Ross M. McConnell, Nissa Osheim, and Sung-Whan Woo. Po-
sition heaps: A simple and dynamic text indexing data structure. J. Discrete Algo-
rithms, 9(1):100–121, 2011.

[28] M. J. Fischer and M. S. Paterson. String-matching and other products. Technical
report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1974.

[29] T. Flouri. Pattern Matching in Tree Structures. PhD thesis, FIT Czech Technical
University, Prague, 2013.

[30] Tomáš Flouri, Costas S. Iliopoulos, Jan Janoušek, Bořivoj Melichar, and Solon P.
Pissis. Tree template matching in ranked ordered trees by pushdown automata. J. of
Discrete Algorithms, 17:15–23, December 2012.

[31] Tomáš Flouri, Jan Janoušek, Bořivoj Melichar, Costas S. Iliopoulos, and Solon P.
Pissis. Tree indexing by pushdown automata and repeats of subtrees. In FedCSIS,
pages 899–902, 2011.

[32] Tomáš Flouri, Bořivoj Melichar, and Jan Janoušek. Subtree matching by deterministic
pushdown automata. In IMCSIT, pages 659–666, 2009.

[33] Tomáš Flouri, Kunsoo Park, Kimon Frousios, Solon P. Pissis, Costas S. Iliopoulos,
and German Tischler. Approximate string-matching with a single gap for sequence
alignment. In Proceedings of the 2Nd ACM Conference on Bioinformatics, Computa-
tional Biology and Biomedicine, BCB ’11, pages 490–492, New York, NY, USA, 2011.
ACM.

[34] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, September
1960.

[35] F. Gecseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, edi-
tors, Handbook of Formal Languages, volume 3 Beyond Words. Handbook of Formal
Languages, pages 1–68. Springer, 1997.

http://www.w3.org/TR/DOM-Level-3-Core/

96 BIBLIOGRAPHY

[36] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation and
optimization in semistructured databases. In Proceedings of the 23rd International
Conference on Very Large Data Bases, VLDB ’97, pages 436–445, San Francisco, CA,
USA, 1997. Morgan Kaufmann Publishers Inc.

[37] Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching in trees. J.
ACM, 29(1):68–95, 1982.

[38] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata
theory, languages, and computation. Addison-Wesley, Boston, 2nd edition, 2001.

[39] ISO. ISO/IEC 14882:2011 Information technology — Programming languages —
C++. International Organization for Standardization, Geneva, Switzerland, February
2012.

[40] Jan Janoušek. Arbology: Algorithms on Trees and Pushdown Automata. Habilitation
thesis. TU FIT, Brno, 2010.

[41] Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. Xr-tree: indexing XML
data for efficient structural joins. In Data Engineering, 2003. Proceedings. 19th Inter-
national Conference on, pages 253–264, March 2003.

[42] Tomasz Jurdzinski and Krzysztof Lorys. Lower bound technique for length-reducing
automata. Inf. Comput., 205(9):1387–1412, 2007.

[43] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 1998.

[44] Jan Lahoda and Jan Žďárek. Simple tree pattern matching for trees in the prefix bar
notation. Discrete Applied Mathematics, 163, Part 3:343–351, January 2014.

[45] Moshe Lewenstein. Indexing with gaps. In Roberto Grossi, Fabrizio Sebastiani, and
Fabrizio Silvestri, editors, String Processing and Information Retrieval, volume 7024
of Lecture Notes in Computer Science, pages 135–143. Springer Berlin Heidelberg,
2011.

[46] Quanzhong Li and Bongki Moon. Indexing and querying XML data for regular path
expressions. In Proceedings of the 27th International Conference on Very Large Data
Bases, VLDB ’01, pages 361–370, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[47] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.
siam Journal on Computing, 22(5):935–948, 1993.

BIBLIOGRAPHY 97

[48] Christian Mathis, Theo Härder, and Karsten Schmidt. Storing and indexing XML
documents upside down. Computer Science-Research and Development, 24(1-2):51–
68, 2009.

[49] Christian Mathis, Theo Härder, Karsten Schmidt, and Sebastian Bächle. XML index-
ing and storage: Fulfilling the wish list. Comput. Sci., 30(1):51–68, February 2015.

[50] Bořivoj Melichar, Jan Janoušek, and Tomáš Flouri. Arbology: Trees and pushdown
automata. Kybernetika, 48(3):402–428, 2012.

[51] Tova Milo and Dan Suciu. Index structures for path expressions. In Proceedings of the
7th International Conference on Database Theory, ICDT ’99, pages 277–295, London,
UK, UK, 1999. Springer-Verlag.

[52] Robin Ob̊urka. Implementation of tree compression pushdown automaton. Bachelor
thesis. ČVUT FIT, Prague, 2013. Sources available at https://gitlab.fit.

cvut.cz/arbology-group/Full-Linear-Index-For-Tree-Pattern-Matching-

Implementation.

[53] P. Mark Pettovello and Farshad Fotouhi. Mtree: An XML xpath graph index. In
Proceedings of the 2006 ACM Symposium on Applied Computing, SAC ’06, pages
474–481, New York, NY, USA, 2006. ACM.

[54] M.Sohel Rahman, CostasS. Iliopoulos, Inbok Lee, Manal Mohamed, and WilliamF.
Smyth. Finding patterns with variable length gaps or dont cares. In DannyZ. Chen
and D.T. Lee, editors, Computing and Combinatorics, volume 4112 of Lecture Notes
in Computer Science, pages 146–155. Springer Berlin Heidelberg, 2006.

[55] Praveen Rao and Bongki Moon. PRIX: Indexing and querying XML using Prüfer
sequences. In Data Engineering, 2004. Proceedings. 20th International Conference on,
pages 288–299. IEEE, 2004.

[56] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana
Manolescu, and Ralph Busse. Xmark: A benchmark for XML data management.
In VLDB, pages 974–985, 2002.

[57] Project home page. URL: http://www.saxproject.org/, 2015.

[58] Jan Trávńıček, Jan Janoušek, and Bořivoj Melichar. Nonlinear tree pattern pushdown
automata. In FedCSIS, pages 871–878, 2011.

[59] Esko Ukkonen. Lower bounds on the size of deterministic parsers. J. Comput. Syst.
Sci., 26(2):153–170, 1983.

[60] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

https://gitlab.fit.cvut.cz/arbology-group/Full-Linear-Index-For-Tree-Pattern-Matching-Implementation
https://gitlab.fit.cvut.cz/arbology-group/Full-Linear-Index-For-Tree-Pattern-Matching-Implementation
https://gitlab.fit.cvut.cz/arbology-group/Full-Linear-Index-For-Tree-Pattern-Matching-Implementation
http://www.saxproject.org/

98 BIBLIOGRAPHY

[61] Leonoor van der Beek, Gosse Bouma, Rob Malouf, and Gertjan van Noord. The alpino
dependency treebank. In CLIN, pages 8–22, 2001.

[62] Haixun Wang, Sanghyun Park, Wei Fan, and Philip S. Yu. Vist: a dynamic index
method for querying XML data by tree structures. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data, pages 110–121. ACM,
2003.

[63] Wei Wang, Jiang Haifeng, Hongzhi Wang, Xuemin Lin, Hongjun Lu, and Jianzhong
Li. Efficient processing of XML path queries using the disk-based f&b index. In
Proceedings of the 31st International Conference on Very Large Data Bases, VLDB
’05, pages 145–156. VLDB Endowment, 2005.

[64] Peter Weiner. Linear pattern matching algorithms. In Switching and Automata The-
ory, 1973. SWAT’08. IEEE Conference Record of 14th Annual Symposium on, pages
1–11. IEEE, 1973.

[65] Terry A. Welch. A technique for high-performance data compression. IEEE Computer,
17(6):8–19, 1984.

[66] Cathy H. Wu, Rolf Apweiler, Amos Bairoch, Darren A. Natale, Winona C. Barker,
Brigitte Boeckmann, Serenella Ferro, Elisabeth Gasteiger, Hongzhan Huang, Rodrigo
Lopez, Michele Magrane, Maria Jesus Martin, Raja Mazumder, Claire O’Donovan,
Nicole Redaschi, and Baris E. Suzek. The universal protein resource (uniprot): an
expanding universe of protein information. Nucleic Acids Research, 34(Database-
Issue):187–191, 2006.

[67] XML linking language (xlink) version 1.1. URL: http://www.w3.org/TR/xlink11/,
2015.

[68] XML path language (xpath) 3.1. URL: http://www.w3.org/TR/xpath-31/, 2015.

[69] XML pointer language (xpointer). URL: http://www.w3.org/TR/xptr/, 2015.

[70] W3c XML query (xquery). URL: http://www.w3.org/XML/Query/, 2015.

[71] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compres-
sion. IEEE Transactions on Information Theory, 23(3):337–343, 1977.

http://www.w3.org/TR/xlink11/
http://www.w3.org/TR/xpath-31/
http://www.w3.org/TR/xptr/
http://www.w3.org/{XML}/Query/

Publications of the Author

Reviewed Relevant Publications of the Author

[A.1] M.Poliak, J. Janoušek, B. Melichar Tree Compression Pushdown Automaton. Ky-
bernetika, vol. 48, No. 3, pp. 429-452, 2012.

[A.2] M. Poliak, J. Janoušek, J. Trávńıček, R. Polách, B. Melichar A Full and Linear
Index of a Tree for Tree Patterns. 16 th Descriptional Complexity of Formal Systems,
Turku, Finland, LNCS, Vol. 8614 , pp. 198-209, 2014.

Relevant Publications of the Author Undergoing Review

[A.3] M. Poliak, J. Janoušek On Space Requirements of Indexes of a Tree for Tree Pat-
terns Based on Deterministic Pushdown Automata. Submitted for publication to
Theoretical Computer Science (2017), waiting for reviews.

Remaining Relevant Publications of the Author

[A.4] M. Poliak Arbology - indexing trees with the use of pushdown automata. Doctoral
Study Report, Faculty of Information Technology, Prague, Czech Republic, 2012.

Other Publications of the Author

[A.5] J. Feyereisl, M. Nikl, M. Poliak, M. Stransky, M. Vlasak General AI Challenge Round
One : Gradual Learning. Invited submission; to appear in: EGPAI 2017, Melbourne,
Australia

99

	Abstract and contributions
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Problem statement
	Tree compression automaton
	A full and linear index of a tree for tree patterns
	Tree indexes - space requirements

	Structure of the doctoral thesis

	Definitions
	Basic Definitions
	Alphabet, language, context–free grammar, pushdown automaton
	Graph, tree, prefix notation, bar notation
	Index of a tree

	Finite tree automaton
	Subtree PDA, Tree Pattern PDA

	Related Work
	Introduction
	String indexing
	Suffix trie
	Suffix tree
	Suffix automaton, compact suffix automaton
	String indexing conclusion

	Tree indexing
	Arbology and tree indexing
	Tree indexing for tree patterns

	Tree compression
	XML Indexing Methods

	Tree Compression Automaton
	Definition of tree compression automaton
	Construction of TCA
	Size of the output of Algorithm 4.12 (TCA-construction)

	Tree decompression from TCA
	Time and space complexity of compression & decompression
	Compression and decompression conclusion

	TCA as an index of a tree
	TCA as a matcher
	Exact repeats by TCA
	Time and space complexity of Algorithm TCA-repeats-search

	Comparison with related compression methods
	Implementation
	Experimental compression results
	Corresponding Finite Tree Automaton

	A Linear Index of a Tree for Tree Patterns
	Construction of Index
	Searching occurrences of input tree patterns
	Time and space complexities
	Linear index as a simulation of a tree pattern PDA

	Tree Indexes - Space Requirements
	DFTA as an index for tree patterns
	Tree Pattern PDA as a full index of a tree for tree patterns
	Trees with small indexes, trees with large indexes
	Upper bound on the number of states of the index
	Number of different subtrees of a tree
	Distinguishing suffixes
	Examples of very small and very large indexes

	Discussion
	Conclusion

	Conclusions
	Tree compression automaton
	A linear index of a tree
	Space Requirements of an Index
	Suggestions for further research
	Tree compression automaton
	A linear index of a tree
	Space Requirements of an Index

	Bibliography
	Publications of the Author

