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Abstract
In recent years, modern control algorithms have gained popularity in many fields of indus-
try. One of the methods that has become widely recognized is Model Predictive Controller
(MPC). Such controller brings innumerable advantages such as possibility to define con-
trol requirements compactly as an objective function, ability to incorporate potential con-
straints directly into the optimization task and many others—at the same time, it brings
some disadvantages as well. Above all, its main drawback is the fact that it crucially
needs a mathematical model for its proper functioning. Its internal model not only has to
describe the reality (the responses of the real controlled system) accurately but it should
also be as simple as possible due to the computational complexity of the resulting task.
However, a mathematical model that is not a sufficiently reliable replica of the controlled
system can significantly degrade the performance of the controller relying on it. There-
fore, extensive attention needs to be paid to the search for an appropriate system behavior
predictor.

The first part of this work deals with the problem of identification of a model for a
predictive controller under real-world conditions. Methods of minimization of multistep
prediction error are introduced—the reason to choose them is the fact that the models
they provide are able to predict the behavior of the system even for longer period ahead
and therefore, they are suitable for use with MPC. The designed algorithms are thoroughly
tested and a significant part of their verification is performed using real-life data gathered
from several buildings. Further proof of validity of the provided identification techniques
is given by the fact that these models are used by real operational MPCs serving as indoor
climate controllers in these buildings.

In the second part of this thesis, a task of ensuring sufficiently excited data for the
subsequent re-identification of a model used within the model predictive control framework
is discussed. Two novel algorithms tackling this problem are introduced and gradually
adapted to suit both the standard MPC formulation with reference tracking requirement
and also a class of zone MPCs. Various model structures are considered ranging from
linear systems trough linear systems with (partially) predictable disturbances up to a
chosen class of nonlinear systems containing bilinear systems and systems with polynomial
nonlinearities.

Keywords:
Model predictive control, system identification, model predictive control relevant iden-

tification, persistent excitation, closed-loop experiment design, dual control, building cli-
mate control.
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Abstrakt
V posledných rokoch došlo k rozmachu moderných algoritmov pre riadenie v rôznych od-
vetviach priemyslu. Jednou z metód, ktorá sa stala vel’mi populárnou, je aj predikt́ıvny
regulátor založený na modeli. Takýto regulátor prináša nespočetné množstvo výhod, ako
napŕıklad možnost’ kompaktne definovat’ požiadavky na riadenie vo forme účelovej funkcie,
schopnost’ zahrnút’ obmedzenia priamo do optimalizačnej úlohy a mnoho d’aľśıch. Zároveň
však tento typ regulátora prináša aj niekol’ko nevýhod. Jeho hlavným problémom je pre-
dovšetkým fakt, že pre svoje správne fungovanie potrebuje mat’ k dispoźıcii matematický
model systému. Tento vnútorný model nielenže muśı dostatočne presne popisovat’ rea-
litu (odozvy skutočného riadeného systému), ale mal by byt’ aj čo najjednoduchš́ı kvôli
výpočtovej zložitosti výslednej úlohy. Matematický model, ktorý nie je dostatočne vernou
replikou riadeného systému, môže významne degradovat’ správanie regulátora, ktorý sa na
tento model spolieha. Z tohto dôvodu je nevyhnutné venovat’ hl’adaniu vhodného prediktora
správania systému náležitú pozornost’.

Prvá čast’ tejto práce sa zaoberá problémom identifikácie matematického modelu pre
predikt́ıvny regulátor v podmienkach reálneho sveta. Sú predstavené algoritmy pre mini-
malizáciu viackrokovej predikčnej chyby. Tieto metódy sú vybrané kvôli tomu, že modely,
ktoré poskytujú, dokážu predikovat’ budúce správanie systému aj na dlhš́ı čas vopred a sú
preto vhodné pre použitie s MPC. Navrhuté algoritmy sú dôkladne otestované a významná
čast’ ich overenia je vykonaná s využit́ım skutočných dát źıskaných z niekol’kých budov.
Ďaľśım dôkazom správnosti poskytnutých identifikačných techńık je to, že tieto modely sú
použ́ıvané reálne nasadnými MPC regulátormi, ktoré slúžia na riadenie vnútornej mikro-
kĺımy v týchto budovách.

V druhej časti tejto práce je diskutovaná úloha zabezpečenia dostatočne vybudených
dát pre následnú reidentifikáciu modelu, ktorý je použitý v rámci predikt́ıvneho regulátora
založeného na modeli. Sú navrhnuté dva algoritmy pre riešenie tohto problému, ktoré sú
následne upravené tak, aby sa vedeli vysporiadat’ ako so štandardnou MPC formuláciou s
požiadavkou na sledovanie referencie, tak aj s triedou takzvaných zónových predikt́ıvnych
regulátorov. Sú uvažované viaceré štruktúry modelu od lineárnych systémov cez lineárne
systémy s (čiastočne) predpovedatel’nými poruchovými vstupmi až po vybranú triedu ne-
lineárnych systémov obsahujúcu bilineárne systémy a systémy s polynomiálnymi nelinea-
ritami.

Kl’́učové slová:
Predikt́ıvný regulátor založený na modeli, identifikácia systémov, identifikácia vhodná

pre predikt́ıvny regulátor založený na modeli, vytrvalé vybudenie, návrh experimentu v
uzavretej slučke, duálne riadenie, riadenie vnútornej kĺımy v budovách.
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dôsledne citovala použitú literatúru.
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Chapter 1

Introduction and Motivation

During the last years, modern control methods relying on use of a model of the controlled
system have witnessed significant boom. Being popular not only among the academicians
[Mayne, 2014], [Corriou, 2018], these approaches of which the most noticeable one is the
Model Predictive Control (MPC) have started to be more and more appreciated also by the
community of process control engineers [Darby and Nikolaou, 2012], [Forbes et al., 2015].

The MPC brings a wide variety of new possibilities, opportunities and advantages, the
most significant of which are the ability to handle constraints and control multivariable
plants and the capability of formulating control requirements in a comprehensive and
compact form of an optimization cost function and satisfying them in an optimal way.
Going hand in hand with plenty of indisputable benefits, several problems arise with use
of this type of controller.

The most crucial bottleneck of this framework is the fact that for its proper functioning,
the MPC needs a mathematical model of the controlled system capable of predicting the
behavior of the system as accurately as possible since based on these predictions, the MPC
optimizes the input actions applied to the system.

While model creation is mentioned only marginally in majority of the academic works
dealing with the MPC and these usually assume that the model of the system is either per-
fectly known or found in literature, the task is much more complicated and time-consuming
in case of real applications—sometimes, it can be even more complex and involved than
the controller design itself [Zhu, 2001], [Forbes et al., 2015].

As already mentioned, the predictive controller makes use of the model of the con-
trolled system to predict its future behavior over the prediction horizon. Therefore, the
chosen model must be able to accurately predict the response of the system for suffi-
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ciently long time ahead. However, majority of the commonly used identification methods
provide models that are optimized only in the sense of one-step prediction error [Ljung,
1999], [Ljung, 2001]. Predictions of such models might be sufficiently precise for a few
steps ahead, however, their multistep predictions are usually not accurate enough, which
results in the performance of the MPC being suboptimal. A solution to this issue might be
to employ identification methods directly minimizing the multistep prediction error—such
methods are able to provide models with reliable multistep predictions appropriate for use
with MPC. These approaches are collectively called Model Predictive Control Relevant
Identification (MRI) methods [Shook et al., 1992], [Gopaluni et al., 2004], [Zhao et al.,
2014].

The next issue making the whole process of obtaining a mathematical model more
complicated is the fact that majority of real systems are controlled continually by certain
feedback controller. It is often impossible to execute any identification experiment because
of either operating or economical reasons and therefore, it is necessary to identify only from
the data that are available—closed-loop data. These data use to suffer from several unde-
sired phenomena such as insufficient excitation, correlation between certain input signals or
input-disturbance correlation causing that even well-designed identification methods fail.

There exists a broad spectrum of special identification methods capable of handling
also closed-loop identification data [Gustavsson et al., 1977], [Van den Hof, 1998], however,
most of these methods work well only for simple linear controllers. On the other hand, the
MPC framework results in a much more involved controller structure and therefore, it is
desirable to search for alternative ways of tackling this task.

A very promising perspective is to focus on methods where the controller itself can
bring some additional information which then improves the model of the process—in such
case, the controller can be viewed as performing certain kind of closed-loop identification
experiment. Relating this to the MPC framework, the controller is designed not just
to meet the standard MPC requirements but also to ensure that the gathered data are
sufficiently excited [Marafioti et al., 2010], [Rathousky and Havlena, 2013], [Tanaskovic
et al., 2014], [Larsson, 2014], [Bustos et al., 2016].

One of the most emerging application areas where the MPC has been steadily gaining
popularity is undoubtedly building climate control. According to the available literature,
overall expenses spent on heating/cooling of building complexes reach as high as half of the
total energy consumption in the building sector, the area to which about 40% of the global
energy consumption is attributed. It has turned out that use of advanced control methods
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such as MPC opens door to about 30% energy consumption reduction [Oldewurtel et al.,
2010], [Ma et al., 2011], [Razmara et al., 2015], [Smarra et al., 2018].

Speaking about data excitation, the building climate control differs significantly from
other application areas of control engineering. For example, using an engine test stand, an
automotive control engineer can implement basically arbitrarily rich identification experi-
ment thus simplifying the subsequent search for the mathematical model—a situation that
is hardly possible when dealing with building climate controller design. However, build-
ing climate control area—together with process control and others—is just one of many
branches where any identification experiment might be very cumbersome. This might have
various reasons of mostly economical nature, nevertheless, focusing on the building climate
control in particular, operating reasons join as well since the buildings are usually perma-
nently inhabited. Finally, the difficulties when executing identification experiments in a
building are emphasized by the fact that the time constants of a typical building are often
in the range of dozens of hours or even several days. It is all these issues accompanying
the deployment of MPC in the building climate control area that stood for the motivation
for the majority of the research presented in this thesis.

Linking up the thesis with this overview, the thesis focuses mainly on the identification
problems that occur in real applications such as the above mentioned inability of performing
an extensive open-loop identification experiment and the consequent insufficient excitation
and data correlation problems. Even though one of the strongest motivations originated
in the building climate control applications, this thesis attempts to provide a general and
comprehensive framework enabling efficient identification of models for MPC under the
real-life conditions for a broad spectrum of control engineering applications.

1.1 Structure of the Thesis

This doctoral thesis takes the format of a thesis by publication, thereby it presents pub-
lications of the author relevant to the topic of the thesis. This thesis format is approved
by the Dean of Faculty of Electrical Engineering by the Directive for dissertation theses
defense, Article 1.

The rest of this thesis is organized as follows: Chapter 2 describes the current state of
the art in both main topics of the thesis—model predictive control relevant identification
and persistently exciting model predictive control. The main contributions of this thesis
are introduced in Chapter 3. Two subsequent chapters go into detail and elaborate more
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on each subtopic with a special emphasize put on author’s principal publications related to
the particular subtopic. Chapter 4 focuses on contributions in the area of model predictive
control relevant identification while Chapter 5 presents the results achieved for the model
predictive control with guaranteed persistent excitation. Last of all, Chapter 6 reviews the
results of the work, discusses potential directions for further research and concludes the
thesis.
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Chapter 2

State of the Art

This chapter covers the state-of-the-art knowledge of the topics elaborated in this thesis.
As already mentioned, the thesis focuses on two main problems that are related to process
of obtaining a mathematical model for MPC in case of real operation and therefore, also
this chapter is divided into two main parts.

The first part of this chapter discusses a specific class of the identification methods that
are collectively referred to as model predictive control relevant identification methods. The
acronym MRI has become a synonym for those identification approaches that—unlike the
traditional identification procedures—minimize multistep prediction errors of the obtained
model, which enables them to find models that are capable of providing accurate predictions
even for several steps ahead and are thus especially suitable for use with MPC.

The second part of this chapter addresses a process of obtaining suitable closed-loop
identification data within the model predictive control framework. The available ap-
proaches are explained and the means of providing data that are sufficiently rich on in-
formation avoiding costly experiments and not degrading the MPC optimal performance
inadmissibly are debated.

2.1 Model Predictive Control Relevant Identification

It belongs to common control engineering knowledge that for proper behavior of a predictive
controller, the availability of both sufficiently simple and satisfactorily accurate model
of the controlled system is of crucial importance. In order to achieve that the internal
MPC model is suitable and accurate enough, the fact that it is intended to be used as
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a predictor for a predictive controller needs to be considered far before the design of the
identification procedure. Here, the most appropriate approach providing models tailored to
use with MPC is to minimize multistep prediction error. It should be mentioned that the
commonly used identification methods coming out of the prediction error method [Ljung,
1999], however, minimize only one-step prediction error and thus, predictions of their
models are sufficiently precise only for couple of steps ahead while the quality of their
multistep predictions is mediocre which results in the suboptimal behavior of the MPC.

The available literature offers several different approaches to handle the problem of
multistep prediction error minimization properly. The first sprouts are dated back to early
’90s—at that time, the authors of [Shook et al., 1991] and [Shook et al., 1992] proved
the equivalence of the multistep prediction error minimization and the pre-filtration of
the input-output data using a noise-model-dependent filter with subsequent use of one-
step prediction error minimization. While in these first pioneering works, the authors
considered only simple single-input/single-output (SISO) model structure, this method
was later extended also for more general ones, e.g. Box-Jenkins [Huang and Wang, 1999].
Due to the crucial importance of the knowledge of the process noise model, these methods
have never been applicable for the practical use.

These works were followed by [Gopaluni et al., 2003], [Gopaluni et al., 2004] and [Potts
et al., 2014]. In these papers, the authors introduced a two-stage algorithm; during the
first stage, the deterministic part of the model was estimated while in the second one,
coefficients of the noise model were obtained using the deterministic part of the model
from the previous step. Employing the second stage, perfect knowledge of the system noise
model became unnecessary, nevertheless, at least a correct structure of the noise model—
an information that is neither available in real applications—had to be at disposal and
strongly conditioned the performance of this method. Another drawback discriminating
this approach from spreading wider is the fact that the estimation of the noise model
coefficients is a highly challenging task especially when dealing with multi-input/multi-
output (MIMO) systems since it includes involved polynomial matrix operations.

The next way to tackle the problem of multistep prediction error minimization was
given in [Rossiter and Kouvaritakis, 2001] where multiple models were used to generate
the predictions. Thus, a separate model specifically optimized for each of the k-step predic-
tions was estimated. Although providing very accurate predictions for the entire inspected
horizon, the number of parameters involved can rise very steeply—especially for MIMO
processes—already for moderate prediction horizons. Since the variance of the parameter
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estimation error is proportional to the ratio between the number of the estimated pa-
rameters and the dataset length, this approach usually requires large identification data
volumes.

Published several years later, [Laurı et al., 2010] formulated the multistep prediction
error minimization as an optimization problem. For models with MIMO ARX (auto-
regressive with external input) structure considered also in this thesis, this results in a
nonlinear programming task. Later, the authors of the mentioned paper provided an ex-
tension of their own original work [Lauŕı et al., 2010] where the so-called partial least
squares algorithm was used for the model parameters estimation. Let us note that the
proposed algorithm can help in avoiding issues with ill-conditioned data which are typical
for the industrial processes. Besides that, these two publications discussed not only theo-
retical aspects but practically oriented matters and phenomena as well. Still, the models
resulting from the aforementioned optimization procedure have input-output structure and
these models (such as ARX) might not be particularly suitable for the MPC, since usually,
the control requirements are formulated such that they involve also the internal states of
the controlled system.

The common problem of the available works is the fact that they consider only black-
box models with unconstrained parameters. This might be inappropriate since the real
operation data often suffer from lack of information—a bottleneck that can be eliminated
or at least remedied as simply as by taking advantage of some additional knowledge about
the system model. A methodology for identification of state-space grey-box models was
provided in [Rehor and Havlena, 2010] where the authors based their approach on mini-
mization of a weighted combination of the prediction error and the output error.

It should be mentioned that during the last years, a significant boom in the area of
nonlinear model predictive control has been witnessed fostering novel contributions in the
field of identification for MPC with some noteworthy algorithms for identification of special
classes of nonlinear systems provided in [Quachio and Garcia, 2014] or [Quachio and Garcia,
2017].

Last of all, let us remind that the original contributions of this thesis related to this
topic are presented in Chapter 4.

7



2.2 MPC with Guaranteed Persistent Excitation

A very common situation that occurs in industrial practice is that the system is already
controlled by certain advanced controller whose control performance starts to deteriorate.
This is usually caused by the mathematical model which might loose its ability to describe
the system dynamics in a reliable manner and in such case, perhaps the most appropriate
step is to re-identify the model.

It has already been noted that in many industrial applications, performing an identifi-
cation experiment is not admissible due to various reasons. Then, the only available data
come from closed-loop operation and these are known to be not persistently excited and
suffer from noise-input cross-correlation, in which case the classic open-loop identification
methods are not capable of providing models with reasonable quality [Ljung, 1999], [Ljung,
2001]. It can be shown that the accuracy of a model obtained under closed-loop conditions
can be improved by a proper choice of the “identification cost function” and also consid-
ering constraints on the model parameters. Nevertheless, it is still important to pay much
attention to a very delicate nature of the closed-loop data, e.g. input-noise correlation and
insufficient excitation.

Following the categorization presented in [Forssell and Ljung, 1998], the traditional
closed-loop identification approaches can be divided into three groups as follows:

1. direct methods: the feedback presence is ignored and the estimation is performed
using unaltered input/output signals;

2. indirect methods: the closed-loop system is identified using measurements of the
reference r and the output y and the plant model is retrieved making use of an
information about the controller structure (use of this method is, however, restricted
to situations when the controller is known and linear);

3. joint input-output methods: the original inputs and outputs are used as outputs and
the reference signal is considered to be an input from the identification point of view.
Consequently, an open-loop model is found based on the knowledge of the augmented
system with the mentioned inputs and outputs. In case of a linear controller, a two-
stage method can be applied, otherwise a more complex projection method [Van
Den Hof and Schrama, 1993], [Forssell and Ljung, 2000] is needed. Here, it should
be remarked that when using the joint input-output method, the inaccuracy of the
estimates increases with the nonlinear character of the controller as well.
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Since the MPC brings a piecewise affine feedback into the system [Alessio and Bem-
porad, 2009] whose parameters depend on the measurements of the current states of the
system and also on the future references and/or disturbances acting on the system, even
the use of the second two (joint input-output method and indirect method) of the closed-
loop identification approaches might not bring the desired results [De Klerk and Craig,
2002].

In the author’s paper [A.11], several examples of special de-correlation procedures hav-
ing the potential to improve the identifiability of the model significantly (even in case of
the feedback introduced by the MPC) were presented. However, these and similar proce-
dures that are designed ad hoc for particular process are not versatile, they can not be
automated and, moreover, they require considerable amount of time and engineering effort
which might complicate the real-life deployment of the whole concept.

A proper way in case of closed-loop identification of an MPC-controlled system might be
to use the direct identification method ignoring the presence of the input-noise correlation
and rather focus on the second problem causing that the identification methods fail with
closed-loop data—(in)sufficient excitation of the data. Here, one should realize that both
bottlenecks (insufficient data excitation and input-noise correlation) are strongly related
and therefore, correlation between noise and inputs can be significantly reduced making
the input signal “sufficiently rich” (the data are much more excited) and in this way, the
inaccuracy of the closed-loop estimates can be remedied [Forssell and Ljung, 1998].

A noteworthy and promising concept is the one that makes use of the controller itself
to execute a kind of closed-loop identification experiment during the course of operation of
the system in order to gather more information about the process and help the subsequent
identification. A straightforward way to improve MPC closed-loop data informativeness is
to add a constraint that guarantees persistence of excitation of the input calculated by the
controller. To be more specific, this means that the MPC cost function is extended with
such additional term that the persistent excitation condition [Bitmead, 1984] is satisfied.

A simple and intuitive way of incorporating the persistent excitation condition into the
standard MPC formulation1 is to add it directly as an additional constraint, an idea that
was explained in [Shouche, 1996], [Genceli and Nikolaou, 1996] and [Shouche et al., 2002].
The authors of these works used an approximation of the information matrix with the
outputs being omitted from the regressor. This approximation, unfortunately, does not
ensure persistance of excitation in every direction and leads to biased estimates of those

1By standard MPC formulation, minimization of squares of the input effort and reference tracking error
over the prediction horizon is meant.
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parameters that correspond to the omitted outputs. Even with the mentioned approxi-
mation, the resulting optimization problem is still non-convex (thanks to the quadratic
constraints), which is usually relaxed and solved as a semi-definite programming task.

An alternative solution was provided in [Aggelogiannaki and Sarimveis, 2006] where
the approximation with just inputs being considered to affect the information matrix was
adopted as well. Here, the authors used a two-stage procedure: in the first step, an optimal
value for the data excitation level was obtained and in the second step, the MPC opti-
mization problem with persistent excitation condition serving as an additional constraint
was solved. This solution helped to ensure the optimization problem feasibility, the overall
optimization problem was still non-convex similarly to the previous works, though.

Likewise, the authors of [Larsson et al., 2016] and [Larsson et al., 2013] added persistent
excitation condition as a constraint to the original MPC optimization problem. Unlike the
previous works, a full information matrix including also the system outputs was considered.
To solve the underlying non-convex optimization task efficiently, several relaxations were
utilized.

Yet another approach reported in [Marafioti et al., 2010] made use of the MPC with
receding horizon. Following this paradigm, at each time step, only the first sample of the
computed input sequence is applied and therefore, for certain class of the systems (e.g.
finite input response models), it is possible to solve two quadratic programming problems
instead of one semi-definite programming task. This approach, however, suffers from a
few disadvantages caused by a cumbersome formulation of the problem since it does not
consider the fact that the applied input influences the information brought by the future
system outputs. Omitting the rest of the input sequence, the excitation is aggressive in
several short “burst” segments and is effective in one direction only, which degrades the
results of the original MPC formulation.

The work published in [Rathousky and Havlena, 2011] is also worth mentioning. The
authors’ approach consisted of a two-step procedure where in the first step, the classical
MPC problem was solved. In the second one, the task of the maximization of the in-
formation matrix increase was solved such that the control performance did not deviate
from the original MPC by more than a predefined threshold. Compared with the previous
approaches, this one has one huge advantage: the tuning parameter corresponds to the
allowed perturbation and its choice is thus much simpler than just choosing “the required”
excitation level. The next indisputable advantage is the fact that with this formulation,
the real information matrix increase is handled instead of its approximation, which enables
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to optimize the excitation in the output directions as well. The optimization task solved in
the second step is non-convex, though. Moreover, in their another publication [Rathousky
and Havlena, 2013], the authors provided a so-called ellipsoid algorithm which offered an
elegant way to solve this non-convex optimization task for low-order systems.

A considerable number of dual-MPC formulations have occured in the last several years.
For example, [González et al., 2014], [Anderson et al., 2018] and others construct a target
invariant set where the excitation is possible and thanks to this, both the stability of the
closed-loop system and persistently exciting property of the input are ensured. [Heirung
et al., 2013] incorporates also minimization of the future parameter error covariance into
the original MPC cost function and [Bustos et al., 2016] provides a robust approach guar-
anteeing recursive feasibility of the MPC task on the one hand and uncorrelated inputs
and outputs on the other hand. A self-reflective MPC formulation was proposed in [Feng
and Houska, 2018] where the authors aimed at improving the accuracy of the state and
parameter estimates by expanding the MPC formulation with a term quantifying how the
impreciseness of their estimates influences the MPC performance.

Another way to ensure persistently excited data in an efficient manner without the
need to execute costly experiments was described in [Larsson et al., 2011] and [Ebadat,
2017]. The main idea of the approaches described therein was to design input signal
maximizing data informativeness while satisfying the MPC requirements. This can be
realized either in an open-loop or in a closed-loop fashion. Usually, the solved optimization
task consists in maximizing a chosen parameter related to the richness of the input signal
subject to requirements of the original MPC, i.e. cost function and constraints. This
optimization task is similar to the cases mentioned above: it is non-convex and various
relaxations and approximations need to be employed, e.g. a graph-theory-based approach
was used in [Ebadat et al., 2017]. While the previously mentioned publications considered
mostly classic linear MPC and the identification of relatively simple linear models, several
works [Lucia and Paulen, 2014], [Telen et al., 2016] take also presence of certain type of
nonlinearity into account.

The author’s contributions related to the MPC providing guarantees of persistence of
excitation are scrutinizingly discussed in Chapter 5.
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Chapter 3

Contributions

The main motivation of this thesis was the fact that although substantial progress in the
area of model predictive control has been witnessed recently, still there is at least one
aspect significantly complicating its serial deployment in the industry. This showstopper
is the process of finding a proper mathematical model, an essential component of the
framework, which still remains the most time-consuming and at the same time also the
most challenging part of the predictive controller design.

The main goal of this thesis is to provide a methodology for obtaining the mathematical
models in real life conditions in such a way that i) the identified models are appropriate for
use with MPC (i.e. they have bounded complexity and attractive prediction behavior); and
ii) considering economical, operational and time aspects, the whole identification process
is as modest as possible.

The thesis contributions can be divided into the following two fields that can help to
improve the procedure of the model identification for MPC and are closely related:

1. Model predictive control relevant identification. Extensions of the existing
method for the minimization of the multistep prediction error were developed. These
enhancements consist in adapting the method such that it can handle different linear
state-space structures and even a broad class of nonlinear systems. The developed
identification methods were tested also with data obtained from high-fidelity building
models and data from real building operation. Some of the models were successfully
used as predictors for MPCs operating as governors in several real buildings. A
more detailed discussion of the contributions related to the model predictive control
relevant identification is provided in Chapter 4.

12



2. MPC with guaranteed persistent excitation. Being another part of the re-
search conducted within this thesis, a two-stage procedure for persistently exciting
MPC problem was provided. In the first step of this procedure, an input sequence
that is optimal in the sense of the original MPC cost function is computed. Dur-
ing the second stage, the data excitation quantified by the smallest eigenvalue of
the information matrix increase is maximized such that the newly obtained control
performance does not deviate from the original one (corresponding to the inputs cal-
culated in the previous step) by more than a chosen threshold. Two methods solving
the second-stage optimization task were presented in several publications: either i) a
specific relaxation was used, or ii) a gradient-based optimization method was em-
ployed to handle the full non-convex optimization task. These methods were first
developed for the standard MPC formulation (minimization of a weighted sum of
squared input efforts and reference tracking errors over the whole prediction horizon)
and were later extended for more complex MPC problems and model structures. A
detailed description of this contribution can be found in Chapter 5.
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Chapter 4

Model Predictive Control Relevant
Identification

This chapter discusses the first contribution of the thesis (see Chapter 3). The main goal
of this part of the research was to design a methodology for identification of models that
would be optimal with respect to minimization of multistep prediction errors. The outcome
of the underlying research can be divided into two parts: the first one presented in Chapter
4.1 pertains to MRI for linear systems and in the second part covered in Chapter 4.2, novel
results related to identification of nonlinear systems are presented.

4.1 MRI for Linear Systems

Design of MRI identification methods based on direct minimization of the multistep pre-
diction error represents one of the contributions of this work. The approach proposed in
this thesis originated as an extension of [Laurı et al., 2010] and the adaptations standing
for the partial contributions of this thesis can be summarized as follows:

• An algorithm for grey-box identification of mutli-input/multi-output state-space
models performing minimization of the multistep prediction error was provided. Hav-
ing added physical constraints on the model parameters, considerable a apriori in-
formation was brought to the identification procedure. The developed method was
used for the identification of a simplified representation of a high-fidelity building
model created in Trnsys software [Klein, 1988] and the obtained models were used
as predictors for a linear and also for a switched-linear MPC for building climate
control in [A.6] and [A.7].

14



• The same method was verified when a mathematical model of the building of Michi-
gan Technological University was acquired. The available data came from real oper-
ation and on a series of simulations, the estimated model was tested as a predictor
for an MPC manipulating the air-handling unit. Subsequently, the data gathered
from the simulations employing the designed MPC were used to “teach” a feedback
controller. More details including simulation results are available in [A.8].

• A method combining minimization of the multistep prediction error and partial least
squares was utilized for identification of the building of the Czech Technical University
in Prague (CTU). For the identification purposes, closed-loop data collected during
real operation were exploited. A more detailed evaluation and discussion of the
obtained results can be found in [A.9] and in Section 4.3 of [A.2].

• Models identified using the developed MRI identification algorithm were used in
the role of internal system dynamics predictors for the MPC controlling the indoor
temperature inside the CTU building. With the MPC controller involved, the energy
consumption was decreased by more than 20 %. This part of the author’s research is
described in [A.10] and [A.11], respectively.

As the principal contribution related to the linear MRI identification, the process of
identifying a set of mathematical models of a 4-floor office building in Hasselt (Belgium)
can be designated. First of all, a linear model structure based on the RC-network modeling
approach was proposed and subsequently, the parameters of the structure were estimated
by a two-stage approach. At first, several one-step prediction error optimizing grey-box
models were identified and then, the parameters from the first stage were used as initial
estimates for the second stage during which multistep prediction errors were minimized.
This procedure helped in remedying the otherwise significant computational complexity of
the optimization of the multistep prediction error by making use of the qualified estimates
from the first stage. Despite the questionable data quality, a complex model of the whole
building with 8 outputs and 11 inputs could be identified in a very reasonable time with
sufficient accuracy.

One of the obtained models was utilized together with MPC for the building climate
control of the mentioned office building in situ in Haaselt. After the deployment of this
model-based controller, about 20 % decrease of the energy consumption was reported
[A.22]. The paper [A.3] published in Applied Energy goes into much more detail about
the overall process of identification starting from data processing procedure and proceed-
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ing with model parameters estimation up to model selection and validation. Starting on
the next page, the mentioned paper is presented in the original formatting.
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a b s t r a c t

Modern control methods such as Model Predictive Control (MPC) are getting popular in recent years in
many fields of industry. One of the branches that have witnessed great increase of interest in use of
the MPC over the last few years is the building climate control area. According to the studies, the energy
used in the building sector counts for 20—40% of the overall energy consumption. Almost half of this
amount consists of heating, ventilation and air-conditioning (HVAC) costs which implies that energy con-
sumption decrease in this area is one of the most interesting challenges today.

Besides enormous potential in reduction of energy consumed by heating, ventilation and air condition-
ing (HVAC) systems brought by such controller, it suffers from a bottleneck being the necessity of having
a reliable mathematical model of the building at disposal. By finding a mathematical model appropriate
for the MPC, it is meant to obtain such a model that is able to predict the behavior of the building suffi-
ciently accurately for several hours ahead, which is an especially delicate task. This task is getting even
more complicated in case of a real-life application.

In this paper, we are looking for a reliable model of a huge three-storey office building in Hasselt, Bel-
gium. For parameter estimation, an advanced identification approach is used – its advantage is that it
attacks the problem of minimization of multi-step prediction error and in this way, it corresponds to
MPC requirements for a good multi-step predictor. Moreover, we discuss not only the identification
approach itself but we also focus on accompanying problems with real-operation data acquisition, pro-
cessing and special treatment which is an indispensable step for achieving satisfactory identification
results. The chosen model is now used in real operation with MPC at Hollandsch Huys.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the last years, significant emphasis on the energy savings can
be observed – this effort is strongly supported by the strategy of
the European Union called ’’20-20-20’’ [1]. This long-term strategy
proposed for the whole Europe and lasting until year 2020 encour-

ages the reduction of the greenhouse gases emission of 20%, the
renewable energy sources should provide 20% of the consumed
energy and also 20% reduction of the primary energy is expected.
Out of the overall primary energy consumption, up to 40% is con-
sumed in the building sector [2] and more than half of this energy
is spent on heating/cooling of the building complexes. All these
numbers are self-speaking and the necessity of search for the sav-
ing opportunities especially in the area of building climate control
is more than evident. One of the very promising ways to achieve
the savings is the use of advanced control techniques such as
Model Predictive Control (MPC).
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Although there is an intensive interest of academicians demon-
strated by a huge number of publications on building climate con-
trol using MPC (see e.g. [3–10]), the number of applications of the
predictive controller for control of real buildings is still very limited
[11–14].

One of the possible reasons can be the fact that together with
number of benefits and vast potential, the MPC brings also several
drawbacks. The most crucial of them is the fact that for its proper
functioning, MPC needs a mathematical model of the controlled
system which should be able to predict the behavior of the system
as accurately as possible as based on these predictions, MPC opti-
mizes the input applied to the system.

While model creation is mentioned only marginally in majority
of the academical works dealing with the MPC and these usually
assume that the model of the system is either perfectly known or
found in literature, the task is much more complicated and time
consuming in case of real application – sometimes, it can be even
more complex and involved than the controller design itself [15,16].

It has been already mentioned that the predictive controller
makes use of the model of the controlled system to predict its future
behavior over the prediction horizon. Therefore, the chosen model
must be able to accurately predict the behavior of the system for
sufficiently long time ahead. However, majority of the commonly
used identification methods provide model optimized only in the
sense of one-step ahead prediction error [17,18]. Predictions of such
models are sufficiently accurate only for couple of steps ahead. Their
multi-step predictions are usually not accurate enough which
results in the suboptimal behavior of the MPC. The solution can be
obtained by the use of the identification methods directly minimiz-
ing the multi-step prediction error being able to offer models with
good multi-step predictions appropriate for the use within MPC.
These approaches are collectively called Model Predictive Control
Relevant Identification (MRI) methods [19–21].

The available literature offers several different approaches to
handle the problem of multi-step prediction error minimization
properly. The first sprouts are dated back to early 1990s – at that
time, the authors of [20,19] proved the relevance of the multi-step
prediction error minimization and pre-filtration of the input–out-
put data using a noise-model-dependent filter with a subsequent
use of one-step prediction error minimization. Due to the impor-
tance of the knowledge of process-noise-model, these methods
have never been suitable for practical use. These works were later
followed by [21–23]; the ideas were improved significantly but the
results were still far from practical usability. A few years ago, the
task of multi-step prediction error minimization was formulated
as an optimization task in [24,25] and attractive properties of the
results were shown in an example from chemical industry. The
authors extended this method in [26,27] and they successfully
used it for identification of the building model from real data.

Current paper describes a real-life application – therefore, we
discuss not only the identification approach but we also focus on
the accompanying problems as well. The typical situation when
dealing with the real-operation data is that even though many
variables might be measured, only a very limited number of them
can be really exploited for identification purposes. This can be due
to either inconvenient sensor placement or bad sensor conditions.
These and similar issues appear in industrial applications very
often and their solution demands as much attention as the prob-
lem of model identification – therefore, one of the objectives of this
paper is to show how to improve the practical applicability of the
theoretical concepts under real-life conditions and help them to
overcome these difficulties.

The paper is organized as follows. Section 2 provides a descrip-
tion of Hollandsch Huys – the building of interest of this paper. In
Section 3, the quality of the available data is discussed together
with frequent sensor drop-outs as well as pre-filtration and other

phenomena which are crucial for real-data identification. Section
4 deals with system identification itself, it describes the choice of
model structure and the used identification algorithms. Section 5
summarizes the results of the proposed methods and discusses
selection and validation of the resulting models. Finally, Section
6 concludes the paper.

2. Hollandsch Huys building – technical introduction

Hollandsch Huys (Fig. 1) is a large office building in Hasselt
(Belgium) which is monitored and studied in the framework of
the Geotabs project. This building consists of 5 floors: underground
garages, 3 floors with occupied offices and an under-roof apart-
ment. The area of each office floor is approximately 1500 m2. The
building itself is a light-façade (two main façades are oriented
south-west and north-east). This building is equipped with triple
glazing windows which are not directly on the surface of the faç-
ade but are retreated by 40 cm. Each of them is equipped with
an external slat shading device that is retracted when there is no
incident direct solar radiation and of which the slats angle is
adjusted automatically to the solar position. The total window-
to-wall ratio is 0.36.

Both the floors and the ceilings are equipped with so-called dou-
ble layer thermally activated building systems (TABS) where water
piping circuits are integrated into the concrete core itself, one circuit
at the upper part of the concrete, the other deeper in the concrete.
Each layer consists of four separate thermal circuits (Fig. 2 left)
which can be controlled independently by two-way valves. The
ground floor and the apartment are exceptions – both of them
consist of floor-heating. Actual space distribution of the thermally
activated building components can be seen in (Fig. 2 right).

A speciality of this building consists in a seasonal ground ther-
mal energy storage – a storage effect is achieved using a series of
closed-loop vertical heat exchangers. The bore field consists of 2
linear arrangements of 14 and 8 single U-tube ground heat
exchangers at both sides of the building with a 75 m depth and
approximately 5 m spacing in between. The heat and cold water
for the TABS, the main air handling unit (AHU) and the floor heat-
ing on the ground floor are generated by a ground coupled heat
pump (GCHP). It can operate in heating and active cooling mode,
in which the GCHP is active. So-called ‘‘free cooling’’ or passive
cooling is a third possible mode in which heat is injected into the
ground through direct heat exchange between a brine and a cold
storage tank. In addition to the heat pump system, two modulating
gas-fired boilers are present in the building. One boiler with a rated
thermal output of 35 kW provides heat to the heating coil of the
apartment AHU and the apartment floor heating. The other boiler
with a rated thermal output of 60 kW is a back-up heat production
mainly for the AHU. All three office floors are equipped with VAV-
boxes to control the ventilation air flow rate, except in the sanitary
zones. The VAV-boxes are on/off controlled based on time
schedules.

3. Data acquisition and processing

3.1. Process data acquisition

Design and application of advanced control techniques always
require an interface between numerical tools and the building
management system. There is a wide variety of such systems
providing the users with a Matlab data acquisition tool usually
realized by Matlab OPC Toolbox,1 Matlab Database Toolbox or

1 OPC Toolbox provides a connection to OPC DA and OPC HDA servers, giving you
access to live and historical OPC data directly from MATLAB.
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possibly by a different software tool/driver. In this paper, we
consider the RcWare building control and management system
[28] for process data acquisition in any desired form necessary for
analysis and subsequent system identification and validation.

3.2. Measured variables and disturbances

As mentioned in Section 1, TABS is the main exchanger of ther-
mal energy between the thermal medium and the zone. Each TABS
contains four heating circuits (Fig. 2), each equipped with a pump
ensuring constant nominal mass flow rates through the particular
heating circuit. The mass flow rate within each heating circuit can
then be controlled independently through the position of the par-
ticular valve. One can therefore obtain particular mass flow rates
by measuring the positions of valves only. Further measured vari-
ables on the Hollandsch Huys follows, Table 1 offers an overview of
all measurements. As long as Hollandsh-Huys being a multi-storey
administrative building contains more than 80 sensors, it is practi-
cally impossible to provide the readers with figures showing exact
position of each of them.

� Supply water temperatures (�C) – There are 2 main distribution
circuits. One supplies all TABS and the second one delivers the
water into the floor heating on the ground floor only. The main
reason is that the ground floor is used as a clinic, so its thermal
requirements have to be met (to a certain extent) indepen-
dently of the rest of the building.
� Return water temperatures (�C) – These temperatures are mea-

sured at the end of each circuit in the shaft where all pipes from
the corresponding heating circuit are collected.
� Concrete core temperatures (�C) – There are as many sensors as

heating circuits, one sensor per each circuit. The sensors are
placed several centimeters deep in the concrete core.
� Zone air temperatures (�C) – As the heating circuits geometri-

cally split the building into 12 possible zones, each zone was
supposed to have at least one temperature sensor. Due to the
original control strategy, there are more sensors in the building
whilst the above mentioned requirement is satisfied. Graphical
depiction of the location of the zone temperature sensors can be
found online at https://provoz.rcware.eu:9998/geotabs_hol-
landsch_huys (username ‘‘geotabs’’, password ‘‘hasselt’’).

Fig. 1. Hollandsch Huys building.

Fig. 2. Hollandsch Huys building – heating circuits and scheme of TABS components. A;C labels in description of pipes stand for marking the shaft with main water piping (it
was taken from the project, marking as east and west could serve as well). Red and blue colors mark supply and return pipes, respectively, the green pipes are heating coils.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Table of measured variables.

Measured variables (units) Number of measurements

Total # of sensors Usable in Spring 2012 Usable in Winter 2012 Sensitivity

Concrete core (�C) 20 12 16 0.1 �C
Zone air (�C) 25 17 15 0.1 �C
Return water (�C) 21 8 8 0.1 �C
Valve position (%) 20 20 20 –
Supply water (�C) 2 2 2 0.1 �C
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Except of the measured variables, it was necessary to obtain
predictions of disturbances. In the case of Hollandsch Huys
building, long-term predictions of the following disturbance vari-
ables were at disposal and therefore could be used as additional
(uncontrolled) inputs:

� Outside air temperature (�C) – Here, weather forecast provided
by NOAA agency2 for the corresponding area was employed.
� Global solar radiation (W m�2) – Forecast of global solar radia-

tion on horizontal surface provided by NOAA agency was used.
� Occupancy and internal gain profile (W m�2) – This merged dis-

turbance variable covers heating power emitted by occupants,
computers and lights. Hollandsch Huys is an office building
where different floors are occupied by different companies
and therefore, the ‘‘occupancy schedule’’ varies a lot over the
day from zone to zone. The typical profiles were created based
on the information provided by the building owner and
personal investigation.

The last two disturbances were normalized by the area of the
particular zone for the identification purposes. It should be noticed
that all significant disturbances were measured/predicted and
incorporated into the identification procedure as the (uncontrolla-
ble) inputs acting on the building.

Despite the fact that quite a wide range of the available measure-
ments were at disposal, many of them turned out to be unusable.
Some sensors were showing unreasonable (constant, physically
impossible or saturated) values over a long period and, moreover,
several concrete core temperature sensors were short-circuited.
Several measurements of the return water temperatures were quite
problematic as well mainly due to the improper sensors placement.
Namely, these return water temperatures were measured in a shaft
where both supply and return water pipes are placed one next to the
other. This caused that the measured temperatures were strongly
affected by each other. Table 1 also shows the number of measure-
ments that were at disposal during Spring 2012 and after a general
revision and replacement/maintenance of several wrong sensors
during Winter 2012.

3.3. Data pre-processing

The main challenge after the data acquisition is the fact that
some of available measurements were of such low quality that
they were not suitable for the identification procedure at all.

Measured values are quantified with certain sensitivity which
can consequently cause some difficulties with the direct utilization
within the system identification. Let us illustrate the problem on
an example from a real office building. The zone temperature is
measured by Pt1000 sensor with sensitivity of 0:1 �C, so the tem-
peratures between 23:05 �C and 23:15 �C are quantified as
23:1 �C. If the real temperature varies closely around 23:05 �C,
undesirable oscillations of the measured value between 23:0 �C
and 23:1 �C occurs. Additionally, the hysteresis of the sensor can
make it more significant. Such phenomena significantly increase
the high frequency portion of the signal which can in turn decrease
the quality of the model.

Fig. 3 demonstrate the problem. The light blue range deter-
mined mostly by the sensitivity3 of the sensor is drawn around
the dark blue measured value. The real temperature can thus lie
anywhere within that range. This enables the user to approximate
the measurement and therefore offers possibility to suppress the

undesired fast oscillations. The simplest approximation that elimi-
nates the oscillations is a piece-wise affine approximation which
changes only when necessary (red line in Fig. 3 left). However, the
temperature (as a physical quantity) is expected to change smoothly.
Therefore, except of the oscillations suppression, one should enforce
the smoothness of the signal with respect to the real measurements
and expected dynamics of the measured quantity as well. Such
example is depicted in Fig. 3 right. Smooth approximation need
not to lie fully within the light blue range, however (if performed
appropriately), the error is insignificant and can be attributed to
the measurement noise. For example in Fig. 3 right, the quantifica-
tion of this error ends up in more than 98% of the data points with
the absolute error lower than 0:01 �C (10% of sensitivity of the sen-
sor) and the maximum approximation error of 0:06 �C.

4. Building modeling and identification

4.1. Model structure

Since the main objective of the MPC in the Hollandsch Huys
building is to control the zone temperature, the model suitable
for control has to have zone temperatures as outputs. In [29],
making a black box model of building for control purposes was
reasoned as not so good approach since it usually spoils the real
system structure. Therefore, Grey box (GB) approach exploiting
the model structure was decided to be used. Based on the thermo-
dynamic laws, one can come up with the following general equa-
tion [30] describing time derivative of the temperature of interest:

Ck
_Tk ¼

X
i

ðTi � TkÞ
Ri;k

þ
X

j

_Q j; ð1Þ

where i stands for the ith source of temperature Ti; j stands for the
jth source of heat flux _Qj; Tk and Ck are measured temperature and
heat capacity of the entity of interest, respectively, and Ri;k is the
thermal resistance of the mass between measurement points of Ti

and Tk. _Qj are usually those heat fluxes which cannot be expressed
as linearly weighted difference of two temperatures. Moreover, they
can include some type of nonlinearity, e.g. heat flux caused by radi-
ation. Constants Ri;k can have different physical meanings depend-
ing on the considered ways of heat transfer. A detailed
thermodynamic RC network model of a zone is depicted in Fig. 4.

Very important task related to the model structure in our case is
how to compute the energy delivered to the zone by the supply
water. Section 3.2 mentioned that the return water temperature
measurements were mostly unreliable, therefore we decided to
approximate the heat delivered into the jth zone as
_Qf=c;j � _mj;specpjcwðTSW � Tf=c;jÞ, where _mj;spec; Tf=c;j and pj are meant
to be the specific mass flow rate, floor/ceiling core temperature
and the valve position, all corresponding to the jth zone. TSW repre-
sents supply water temperature and cw stands for the specific heat of
water flowing in pipes.

To put the way of estimation (return water temperature vs. con-
crete core temperature) straight, it should be mentioned that this
estimation was based on the analysis performed on the available
data – for several zones, both the return water temperature and
concrete core temperature measurements were at disposal (for
more information, see Table 1) and the differences between them
were negligible. Moreover, the concrete temperature sensors were
placed deeply in the concrete core only several centimeters from
the water piping (they were always placed near the place where
the piping exits particular zone) and therefore, it can be expected
that the dynamic behaviors of these two (return water and con-
crete core) temperatures are almost the same.

A general zoning was considered so far and the particular zon-
ing of the Hollandsch Huys building follows. At first, the model had

2 http://www.noaa.gov/.
3 Note that the light blue range might not be given by sensor’s accuracy only but

can include the covariance of the measurement noise as well.
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been intended to contain one zone per each heating circuit, i.e. 12
zones in total. Nevertheless, due to an inadequate complexity of
such model (in this configuration, the model would have had 25
outputs and approximately 30 inputs) and mainly due to missing
or unreliable measurements, the intended zoning had to be chan-
ged. Current model represents each floor as a single zone and takes
into account 8 outputs (3 zone air temperatures and 5 tempera-
tures of TABS), 6 manipulated variables (temperature of supply
water delivered into the ground floor and heat fluxes delivered
to the TABS) and 5 disturbance variables (1 ambient temperature,
1 solar radiation and 3 internal loads).

For the sake of completeness, let us note that the zoning with
one zone representing the entire floor was chosen mainly because
of the lack of quality and accurate measurements (see Table 1).
However, besides the considerable simplification, it brings also
some problems with dissimilarity of temperatures in the particular
building zone. The main problem which could be caused by such
zoning is the fact that in this configuration, an undesired situation
can occur when certain part of the floor is underheated while some

other can be overheated. This was treated by the design of the low
level controller which was implemented in such a way that the
temperature distribution over the particular floor was balanced.

4.2. Identification approaches

The aim of the following text is to describe the estimation of the
parameters of the model structure which is described in Section
4.1. As was told at the beginning of this paper, the proper methods
to obtain a model suitable for MPC are the MRI identification
methods.

In the literature, these methods were tested on a wide variety of
theoretical examples and the ability to outperform the traditional
methods minimizing the one-step prediction error was shown
(see e.g. [25,21,20]). One of the approaches is to formulate the min-
imization of the multi-step prediction error as an optimization task
[24,25]. These methods were used by the authors of this paper for
identification of a building model for MPC in [31,26] where it was
also demonstrated that the minimization of multi-step prediction
error can significantly improve the quality of the model not only
in case of theoretical systems but in case of real application as well.

However, this optimization task is non-convex and therefore it
is necessary to find a good initial guess. To accomplish this, we for-
mulated a two stage identification procedure which consisted of
the search for the initial guess being the first step and the estima-
tion of the parameters of the final model being the second step.

Note that based on the model structure, to obtain model
parameters using the first principle method seems to be an appar-
ent approach. Nevertheless, such an estimation of unknown
parameters is not easy from several reasons. The zone thermal
capacity covers not only the inner air but the zone equipment
together with eventual interior walls as well. Next, the orientation
of the TABS with respect to the position of the sensor (see Fig. 4) is
not known, thus all thermal resistances as well as the TABS heat
capacities are cumbersome to obtain. Additionally, the knowledge
of the construction composition is necessary which is not always
available. All above mentioned reasons together with comfort of
parameters identification from the measured data resulted in def-
inite choice for system identification. On the other hand, we admit
that experienced user can estimate the model parameters reliably
and sufficiently accurately, however, we believe that data driven
modeling always re aches higher model precision and, further-
more, the user can involve aging and evolution of the model into
the whole identification process.

4.2.1. First step – GB as an initial model estimate
Consider that the true system is a linear, time invariant system,

that all outputs are also the state variables and that all of them are
measured. The discrete formulation of such a system is

xkþ1 ¼ Axk þ Buk þ ek; ð2Þ
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Fig. 3. Realistic approximation of the measured data.

Fig. 4. RC network of 1 zone. Subscripts f ; z; c stand for floor, zone, ceiling,
respectively, and subscript i stand for number of floor. T stands for temperature
(analogous to voltage) and _Q stands for heat flux (analogous to electric current). The
sources represent constant temperature and constant heat flux sources.
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where k is the discrete time, x 2 Rn;u 2 Rm; e 2 Rn are system state
(or output), input and measurement noise vectors, respectively. A
and B are system matrices of appropriate dimensions. For the time
line, it can be written as

XN
1 ¼ AXN�1

0 þ BUN�1
0 þ EN�1

0 ;

XN
1 ¼ A B½ �

XN�1
0

UN�1
0

" #
þ EN�1

0 ;
ð3Þ

with N þ 1 being the number of samples and XkþN�1
k ;UkþN�1

k ; EkþN�1
k

being the matrices of state, input and noise values defined as
follows

XkþN�1
k ¼ xk xkþ1 . . . xkþN�1½ �

UkþN�1
k ¼ uk ukþ1 . . . ukþN�1½ �

EkþN�1
k ¼ ek ekþ1 . . . ekþN�1½ �:

ð4Þ

Eq. (3) can be rewritten as

vecXN
1 ¼

XN�1
0

UN�1
0

" #
� In

 !T

vec A B½ � þ vecEN�1
0 ð5Þ

with In being n� n identity matrix, n represents system order, (vec�)
is vectorization of a matrix and ð� � �Þ is the Kronecker product.

The deterministic model of considered system is
xkþ1 ¼ bAxk þ bBuk and its structure is determined by linear differen-
tial equations in Eq. (1) written for each considered zone and dis-
cretized using Euler’s discretization [32], which preserves the
structure of the matrices A;B. When writing the model structure,
one can see that only some of elements of matrices bA; bB are to be
found while the others are zero, which is the point where the
strength of the vectorization comes up. Moreover, other none-zero
elements can be constrained as well, usually in order to satisfy
physical presumptions or demand on the stability. Let S stand for
the model structure including both the structure and constraints
and let AðSÞ;BðSÞ be sets of all matrices bA; bB with the structure
S. Then one-step ahead prediction error is written as follows [18].

vecXN
1 � vecbXN

1 ¼ vecXN
1 �

XN�1
0

UN�1
0

" #
� In

 !T

vec bA bBh i
and the unknown structured model matrices bA; bB can be estimated
via quadratic programming as

bA; bB ¼ arg minbA;bB vecXN
1 �

XN�1
0

UN�1
0

" #
� In

 !T

vec bA bBh i������
������

2

2

subject to : bA 2 AðSÞ;bB 2 BðSÞ:
4.2.2. Second step – model predictive control relevant identification

In the second step, the estimates from the first step are used as
the initial conditions. Let us consider a cost function corresponding
to minimization of the multi-step prediction error over the whole
prediction horizon [24]

JMRI ¼
XN�P

k¼0

XP

i¼1

yðkþ iÞ � ŷðkþ ijkÞ½ �2; ð6Þ

ŷðkþ ijkÞ is the i-step output prediction created from data up to
time k;N corresponds to the number of samples and P (P < N)
stands for prediction horizon considered in identification. The
multi-step output prediction can be expressed as

ŷðkþ ijkÞ ¼ Zðkþ iÞĥ; i 2 1;2; . . . ; P; ð7Þ

where regressor ZðlÞ ¼ ½uðl� ndÞ; . . . ;uðl� nbÞ; yðl� 1Þ; . . . ; yðl� naÞ�
and ĥ ¼ ½b̂nd

; . . . ; b̂nb
; â1; . . . ; âna �

T
. na denotes the number of past out-

puts in the regressor, nb is the number of inputs in the regressor and
nd represents their delay compared to the outputs. Note that having
all the states at disposal and na ¼ nb ¼ 1 (which holds for the above-
mentioned GB identification), there exists a direct transformation
between h and matrices A; B : h ¼ B A½ �T .

It is important to note that not every output contained in
regressor Zðkþ iÞ is available at time k, thus the multi-step predic-
tions yðkþ ijiÞmust be obtained recursively by applying i-times the
expression ŷðkþ 1jkÞ ¼ Zðkþ 1Þĥ with initial conditions yk. Now,
the estimate of matrix of parameters ĥ can be obtained as a solu-
tion of the following optimization task:

ĥ	 ¼ arg min
h

XP

i¼1

XN�i

k¼0

½yðkþ iÞ � Zðkþ i; hÞh�2 ð8Þ

subject to : h0 ¼ bB bAh iT
;

h 2 hðSÞ;

where hðSÞ is set of all matrices B A½ �T with A 2 AðSÞ;B 2 BðSÞ.
Matrices bA and bB were obtained by Grey box identification in Sec-
tion 4.2.1.

As the regressor Z from Eq. (8) depends on the optimized
parameters h, the optimization task is nonlinear in parameters
and must be solved by a proper algorithm of nonlinear optimiza-
tion. In our case, the optimization based on Levenberg–Marquardt
algorithm was used [33]. It is very important to choose a suitable
initial condition for the parameter vector h0, which, in our case,
was obtained from the first step of the algorithm.

5. Model selection and verification

In this section, we evaluate the results achieved applying the
procedures described in the previous sections on the available
data.

The ultimate objective of the Geotabs4 project was the H.H.
building to be controlled by MPC by the beginning of the heating
season 2012=2013. First attempts on modeling and identification
were made as soon as possible at the beginning of 2012 despite
the disastrous sensors conditions. As can be found in Table 1, only
about half of all needed measurements were at disposal for identifi-
cation purposes. Besides this, we needed to deal with poorly excited
data – H.H. is an administrative building where the temperature is
kept by the original controller at a certain pre-set reference, and
therefore, the available data were not very rich in information. More-
over, they were correlated (AHU was turned on at the occupants arri-
val) and so the first identification attempts failed. A long-term
identification experiment could not come into consideration due to
both high energy consumption increase and the fact that the
building is used permanently over the whole year, which means that
thermal comfort has to be guaranteed continuously. Therefore,
3 days during the Easter period (when the building was not occu-
pied) were used for a simple and energy non-demanding experi-
ment. At the beginning of the Easter holidays, all valves were
closed and the AHU was turned on (temperature and mass flow rate
of supply air were chosen as in normal operation). During the second
part, the AHU was shut down and the valves and supply water were
set to normal regime.

Having performed this short experiment, identification
attempts were made. The available data were divided into 4 iden-
tification sequences (I—IV , a more detailed description is available
in Table 2), prepared as described in Section 3 and re-sampled with

4 http://www.geotabs.eu/.
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the sampling period Ts ¼ 30 min. Having prepared the data for the
identification, GB models were identified first and they were used
for subsequent MRI identification, where several models were
identified assuming various identification prediction horizons P.
Let us note that the analysis of the building performance for vari-
ous identification prediction horizons is highly important and as
shown in [21], the prediction horizon for the identification chosen
to be equal to the prediction horizon of the MPC itself might not be
the best choice (this phenomena will be discussed later in detail).
GB model identified using data set III was used because it was the
only GB model showing reliable predictions for the 1st and the 2nd
floor.

From this set of the identified models, the most suitable model
for the control was needed to be chosen. As the model was
intended to be used within the MPC strategy, one of the criteria
was the accuracy of the predictions over the prediction horizon
of the MPC – this was quantified as the root mean square error
RMSE applied to the multi-step predictions:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðN � PÞP

XN�P

k¼0

XP

i¼1
yðkþ iÞ � ŷðkþ ijkÞ½ �2

s
ð9Þ

where N is the number of samples of verification data. We chose
prediction horizon of the MPC as P ¼ 96 samples which with the
sampling period Ts ¼ 30 min corresponds to two days. In the role
of the verification data, all the available data were used except of
the sequence which was used for the identification of the model.

However, for a properly designed identification method, the
main goal should not be to only have the smallest possible predic-
tion error – it is much more important to have a physically reliable
model at disposal. Even a model that is able to fit the measured
profiles very satisfactorily can be physically unreliable. In case of
use of such model in real operation, the controller performance
can be unsatisfactory (e.g. with a negative coefficient correspond-
ing to the input variable influence, the controller could try to heat
up the building by using water of lower temperature than the tem-
perature of the concrete/air). Such situation (overfitting) is more
likely to occur in case that the model contains larger number of
parameters (which basically means that the identification algo-
rithm can ‘‘exploit’’ large number of degrees of freedom). This
can be also the case of a real building identification and therefore,
the risk of overfitting should not be underrated.

As long as the very important property which should be satis-
fied by the model for the MPC is to correspond to the physical nat-
ure of the controlled system, therefore the step responses were
evaluated for each of the identified models. Here, it should be
noted that only the first 2 days of the responses were of interest
as the MPC does not take longer predictions into account. Further-
more, the relative influences of particular inputs were compared,
e.g. a model predicting that the concrete core would be heated
up faster by occupants than by hot water flowing through the pipes
is inappropriate for the MPC. Similarly, models with oscillatory
modes were considered undesirable.

The RMSE comparison of particular models can be found in
Table 3(a) (in this table symbol 1 means unstable model) which
shows the prediction errors for all occupied floors – the ground
floor, the 1st floor and the 2nd floor. The models which were

excluded due to unreasonable step responses are marked by red
color. The models that were not identified are marked by �.

It is obvious that the initial model identified using GB identifi-
cation was unable to provide sufficiently accurate multi-step pre-
dictions, especially in the case of the ground floor temperature.
Its predictions diversed from the real measurements and the model
contained unstable mode describing the heat transfer from the
floor heating to the ground floor zone temperature. On the other
hand, the models obtained by MRI approach resulted in much more
accurate prediction properties especially for the longer prediction
horizons. In fact, all models obtained by MRI identification were
not only able to predict the evolution of the ground floor zone tem-
perature quite accurately (here, the GB model failed) but a signifi-
cant improvement can be noticed in case of the 1st and the 2nd
floor as well. While the mean prediction error (Eq. (9)) of the GB
model was 0:5 �C for the 1st floor and 0:42 �C for the 2nd floor,
using MRI this error was reduced to 0:17 �C and 0:31 �C, respec-
tively. Let us note that these and all other RMSEs were calculated
using validation data gathered from the real operation where the
outputs stayed within 21—24 �C range. This can be seen in Figs. 6
and 7 showing part of the validation sets. Improved prediction
ability of the models identified by MRI methods is demonstrated
also by Fig. 5 showing two-days prediction errors5 of various mod-
els depending on the data set used for the identification and the
choice of the identification prediction horizon P.

Most of the MRI models successfully passed the step response
test and their step responses appeared to be much closer to the
behavior of the real building – no oscillatory or unstable modes
were observed and the time constants corresponded to the
character of the building. It can be also noticed that the models
corresponding to the data sets III and IV clearly provided more
accurate predictions than the others since both of these sets con-
tained data from the Easter experiment. The fact that the predic-
tions of the models identified from the mentioned data sets were
more accurate can be observed also looking at Fig. 5. In case of
identification data sets III and IV , darker color representing lower
RMSE can be seen. This demonstrates that even a simple, econom-
ically and operationally non-demanding heating up and cooling
down test (which was performed during the Easter holidays) can
help to improve the identification significantly and leads to obtain-
ing a better model.

Finally, the model providing the most accurate predictions and
showing physically reasonable step responses was chosen to be
used within the MPC. The comparison of the predictions of this
model with the real data6 is shown at Fig. 6. It can be argued that
the models for longer horizons (up to the MPC prediction horizon)
should have been identified (due to the expected improvement in
the model accuracy). However, from certain value of the prediction

Table 2
Datasets for identification.

Dataset First identification Second identification

From To # Days # Samples From To # Days # Samples

I 02/25/2012 03/11/2012 15 720 11/15/2012 12/02/2012 18 864
II 03/12/2012 03/25/2012 14 672 12/05/2012 12/20/2012 16 768
III 03/26/2012 09/04/2012 15 720 01/03/2013 01/15/2013 15 720
IV 05/04/2012 19/04/2012 13 624 – – – –

5 The darker the color, the lower the RMSE. The errors in �C are visualized by the
colorbar on the right side. The white fields express that the model could not be
identified.

6 Two-days predictions in this case mean that in time 0, ŷðtwodaysj0Þ and
yðtwodaysÞ are depicted while in time 1, ŷðtwodays þ 1j1Þ and yðtwodaysþ 1Þ are
shown, etc. As long as the MPC works with prediction horizon corresponding to two
days, this comparison shows the worst-case accuracy of the predictions used by the
MPC.
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horizon P, the quality of the model improves only a little (which is
supported by the Table 3(a) while the computational complexity incr
eases, therefore the MRI algorithm had not to be executed for higher
prediction horizons. More detailed analysis of this problem can be
found in [21].

As was already mentioned, during Winter 2012, maintenance of
several sensors was performed and since then, more measure-
ments were available which resulted in the effort to re-identify
the current model. For this purpose, new extensive identification
Christmas holiday experiment was designed. Unfortunately, due
to a database failure on the side of the company maintaining the

H.H. building, the data from this experiment were not stored into
database and they could not be used for identification. The avail-
able 6-weeks data sequence was divided into three subsequences
and several models were identified using these data sets. Similarly
to the first Spring identification, RMSE properties and step
responses computed from the whole data sequence were com-
pared and chosen results are summarized in Table 3(b). One GB
model was identified from each of the available identification data
set I—III and model identified using data set II which appeared to
be t he best was chosen as the initial model for MRI procedure.
The decision to use this model as the initial one for the second
stage was influenced not only by the fact that it showed slightly
better prediction features (see Table 3(b)) but also the step
responses of the model matched the expected behavior of the
building.

As in the case of the first identification, it can be observed that
the quality of the models depended significantly on the data set
that had been used for the identification – the best model was
identified from the data set II (not only these models had lower
values of RMSE but also all the identified responses possessed reli-
able physical properties, none of the corresponding rows in the
table is marked with red color).

This phenomena can be explained such that the data set II con-
tained the days when the ambient temperature rose and dropped
abruptly which resulted in the MPC heating up wildly and per-
forming something like cool down experiment. This situation again
confirms that also such a pseudo-experiment can help and improve
the quality of the model significantly and therefore it yields better
performance of the MPC. It is quite obvious that the new models
performed much better (smaller prediction errors and more mod-
els corresponding to the physical nature of the H.H. building).

Table 3
Mean multi-step prediction error RMSE (�C). MRIm means that MRI with P ¼ m was used.

Data set floor I II III IV

0 1 2 0 1 2 0 1 2 0 1 2

(a) Results from the first (Spring) identification
GB 1 1 1 1 1 1 1 0.50 0.42 1 1 1
MRI10 0.63 0.43 1.15 0.29 0.18 0.32 � � � � � �
MRI20 0.34 0.26 0.43 0.28 0.19 0.29 0.27 0.20 0.31 0.27 0.20 0.31
MRI40 0.45 0.32 0.74 0.29 0.19 0.29 0.31 0.22 0.40 0.34 0.18 0.26
MRI60 � � � � � � 0.27 0.18 0.31 0.27 0.18 0.37

Data set floor I II III

0 1 2 0 1 2 0 1 2

(b) Results from the second (Winter) identification
GB 0.25 0.16 0.26 0.23 0.17 0.26 0.24 0.21 0.27
MRI10 0.23 0.16 0.27 0.18 0.15 0.25 0.19 0.18 0.27
MRI20 0.25 0.17 0.27 0.19 0.14 0.25 0.19 0.18 0.27
MRI40 0.24 0.18 0.26 0.19 0.14 0.27 0.19 0.13 0.26
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Fig. 6. Comparison of 2 days room temperatures predictions (blue line – real data,
red line – model predictions) – the first (spring) identification. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Moreover, it can be noticed that the least accurate predictions were
provided for the 2nd floor where only 1 out of 5 installed sensors
seemed to measure reliable values.

The next fact that can be found to be very interesting is that
after the second identification, GB-identified models also per-
formed quite satisfactorily and they predicted relatively accurately
(for none of the models the mean prediction error exceeded 0:3 �C)
and they successfully passed the step response test. MRI identifica-
tion did not improve the prediction properties of these models
significantly. This can be explained such that in case of the first
identification attempts, only a very limited number of the concrete
core temperature measurements (only 12 out of 20) were at
disposal and it was hardly possible to quantify the delivered heat
which resulted into considerable uncertainty into the identifica-
tion process. Among the identified models, the model MRI40 iden-
tified from data set II was chosen and the comparison of its 2 day
prediction are shown in Fig. 7.

This is related to what was shown in [20,19] in 90s that the
minimization of the multi-step prediction error is equivalent to
the pre-filtration of the input/output data by a noise model and
subsequent ‘‘common’’ identification minimizing only one-step
prediction error. MRI identification (unlike the GB identification)
optimizes the model in the sense of the multi-step prediction error,
it ‘‘can see’’ all the uncertainties and disturbances more clearly and
deals with them in a better way which enables it to provide models
of a higher quality even in case of poorly excited data.

6. Conclusions

In this paper, a very detailed description of the identification
process of an office building intended to be controlled by the
MPC is provided. Huge attention is paid not only to the estimation
procedure itself but the data collection/pre-processing (and num-
ber of problems associated with that) and the choice of a model
structure (which was quite restricted due to the faulty sensors)
are discussed in details as well. These problems are often omitted
in literature despite the fact that their solution demands at least as
much effort as the identification itself. In this paper, MRI identifi-
cation approach is used and it is shown that this kind of identifica-
tion procedure is appropriate for real-life applications in case that
the models for MPC are sought. The models obtained by MRI meth-
ods are (despite of poor quality of data) able to provide models that
predict the zone temperature for 2 days ahead with a mean error
approximately 0:3 �C or less even in a situation that the GB
minimizing one-step prediction error fails and provides unstable

models. This supports the claim that a properly chosen identifica-
tion method can improve the overall behavior of the MPC and help
to spare more energy.

The finally chosen model is now used in real operation with
MPC at Hollandsch Huys and according to the comparison, this
controller leads to 17% energy consumption reduction in average
compared to the original control strategy [34,35].
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within the control relevant identification for buildings. Control Eng Pract 2013.

[27] Záceková E, Prívara S. Control relevant identification and predictive control of
a building. In: Control and decision conference (CCDC), 2012 24th Chinese.
IEEE; 2012. p. 246–51.
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4.2 MRI for Nonlinear Systems

While at the beginning of the millennium, mostly linear MPCs were discussed in the
literature, during the last years, also nonlinear MPCs have gained popularity among the
researchers. Implementing a nonlinear MPC, one can leverage the full potential of the
predictive control concept since it uses a nonlinear internal model that is usually capable
of predicting the future system responses more precisely and, moreover, it can optimize
with respect to a nonlinear cost function enabling to cover a much broader and more general
class of optimization tasks. Counting up all these aspects, a significant improvement in
control performance can be expected. However, the available literature contains only few
entries devoted to identification of nonlinear models using MRI approach and, moreover,
these works focus just on certain classes of models.

In [A.4], two methods for MRI identification of nonlinear system models were provided.
The first of them computes and optimizes multistep prediction errors of the whole non-
linear system while the second one adopts the following simplification. The parameters
corresponding to the nonlinear part of the system model are optimized focusing only on
one-step prediction error and just the linear part is identified such that the multistep pre-
diction error is minimized. This simplification reduces the complexity of the underlying
problem from general nonlinear optimization task to only polynomially nonlinear one thus
alleviating the computational burden of the identification routine.

The publication [A.4] describing the aforementioned contributions is presented in the
original formatting on the next page et seq. Here, it should be mentioned that the identi-
fication procedure is discussed mainly in Section 3 of this paper.
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a b s t r a c t

The linear model predictive control which is frequently used for building climate control benefits from
the fact that the resulting optimization task is convex (thus easily and quickly solvable). On the other
hand, the nonlinear model predictive control enables the use of a more detailed nonlinear model and it
takes advantage of the fact that it addresses the optimization task more directly, however, it requires a
more computationally complex algorithm for solving the non-convex optimization problem. In this pa-
per, the gap between the linear and the nonlinear one is bridged by introducing a predictive controller
with linear time-dependent model. Making use of linear time-dependent model of the building, the
newly proposed controller obtains predictions which are closer to reality than those of linear time in-
variant model, however, the computational complexity is still kept low since the optimization task re-
mains convex. The concept of linear time-dependent predictive controller is verified on a set of nu-
merical experiments performed using a high fidelity model created in a building simulation environment
and compared to the previously mentioned alternatives. Furthermore, the model for the nonlinear
variant is identified using an adaptation of the existing model predictive control relevant identification
method and the optimization algorithm for the nonlinear predictive controller is adapted such that it can
handle also restrictions on discrete-valued nature of the manipulated variables. The presented com-
parisons show that the current adaptations lead to more efficient building climate control.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Presently, energy savings and reduction of energy consumption
in buildings are some of the most challenging issues facing the
engineering community. The reason is straightforward and the
numbers speak for themselves – up to 40% of the total energy
consumption can be owed to the building sector (Perez-Lombard,
Ortiz, & Pout, 2008). More than half of this 40% is consumed by
various building heating/cooling systems. Therefore, the recent
significant emphasis on the energy savings in this area is right on
target and can be observed in recent years. For example, the
strategy of the European Union called “20–20–20” (European
Economic & Social Committee, 2005) should be mentioned. In-
tended to be followed by all of Europe through the year 2020, this
strategy aims at 20% reduction of the use of primary energy
sources and production of the greenhouse gas emissions, and the

renewable energy sources are expected to provide 20% of the
consumed energy. With the clearly evident need for savings in the
area of the building climate control, improvements can be found
when considering the latest control techniques.

Model Predictive Control (MPC) is one of the most promising
candidates for an energetically efficient control strategy (Pčolka,
Žáčeková, Robinett, Čelikovský, & Šebek, 2014a, 2014b). This was
also demonstrated within the framework of the Opticontrol pro-
ject. One research team at ETH Zurich (Switzerland) showed via
numerous simulations that using MPC instead of the classical
control strategies achieves more than 16% savings (Gyalistras &
Gwerder, 2010; Oldewurtel et al., 2010) depending on the building
type. If one considers real operational conditions, these savings
can be even higher when the MPC is modified appropriately for
the conditions. This was shown by teams from Prague (Prívara,
Široký, Ferkl, & Cigler, 2011; Žáčeková & Prívara, 2012 and UC
Berkeley (Ma, Kelman, Daly, & Borrelli, 2012) where the actual cost
savings were even better than the theoretical expectations (27%
and 25% reduction of the energy consumption, respectively).

However, MPC suffers from several drawbacks including the
complexity of the optimization routine and the need for a reliable
mathematical model of the building. In order to be feasible and
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computable, simplified formulations are often considered. More-
over, linear models are usually assumed and exploited by the
optimizer. Therefore, in the majority of the MPC applications, the
overall task is formulated as a linear/convex optimization problem
easily solvable by the commonly available solvers for quadratic or
semidefinite programming (Verhelst, Degrauwe, Logist, Van Impe,
& Helsen, 2012; Prívara et al., 2011). Although being computa-
tionally favorable and able to find the global minimum in case of
the convex formulation of the optimization task, their dis-
advantage is that they do not enable minimization of the non-
linear/nonconvex cost criteria and therefore, only certain approx-
imation of the real cost paid for the control is optimized. More-
over, they resort to the optimization of either the setpoints or the
energy delivered to the heating/cooling systemwhile leaving all its
distribution to the suboptimal low-level controllers which can
lead to a significant loss of the optimality gained by the MPC.

In several recent works, the effort to take the nonlinearities
(caused either by the dynamical behavior of the building or by the
control requirements formulation) into account within the opti-
mization task can be found (Ma et al., 2012, 2011). In this paper,
we discuss both possibilities for the zone temperature control (the
linear and the nonlinear MPC) and moreover, we bridge the two
banks of the gap between the nonlinear and the linear variant of
the MPC by introducing linear model that changes in time. Such
model can describe the building dynamics in a more reliable and
flexible way than the original linear model while it still keeps the
low complexity of the optimization task (since with the linear
model, the optimization task to be solved remains convex). The
way of obtaining a time-varying model is described and the results
of the linear predictive controller with linear model that changes
in time are compared with the results of the original (linear and
nonlinear) MPCs.

It should be mentioned that a good predictive controller relies
on a good system dynamics predictor and therefore, we focus on
the identification of such reliable multi-step predictors as well.
The MPC employs optimization over certain given prediction
horizon and this fact should be taken into consideration also in the
design of the identification procedure. Unlike the commonly used
identification methods (PEM, Ljung, 1999) which provide models
that are able to predict well only over short horizons, the methods
based on minimization of multi-step prediction errors (MRI –

model predictive control relevant identification, Laurí, Salcedo,
Garcia-Nieto, & Martínez, 2010) offer models with more attractive
prediction properties. Therefore, we exploit the MRI for identifi-
cation of both linear and nonlinear models. While several pub-
lished works deal with application of MRI for estimation of para-
meters of linear models (Chi, Fei, Zhao, Zhao, & Liang, 2014; Shook,
Mohtadi, & Shah, 1991; Zhao, Zhu, & Patwardhan, 2014), no ex-
tension, to the best knowledge of the authors of this paper, has
been provided for estimation of parameters of nonlinear models.
Moreover, even the linear version of MRI in the literature is usually
validated only on simple artificial examples. On the other hand,
this paper presents application of both the linear and the newly
proposed nonlinear MRI versions on much more complex and
realistic example of building model identification.

Furthermore, a very important practical aspect of the building
temperature control is addressed in this work as well. In real-life
building applications, water pumps are a crucial part of the ac-
tuators used to manipulate the optimized input variables. These
water pumps possess nonlinear output dynamics where the
amount of mass flow rate which can be provided by the pump is
often quantized. Therefore, the achievable water mass flow rates
belong to a countable set of discrete values rather than to a con-
tinuous interval. The appropriately designed control algorithm
should take this information properly into account. This can be
performed in several ways: (1) mixed-integer programming

techniques can be employed, (2) additional postprocessing after
the calculation of the optimal inputs can be applied, or (3) the
(originally continuous-valued) optimization procedure itself can
be adapted such that discrete-valued input profiles are obtained.

First of all, the mixed-integer programming approach is the
most suitable one in case that one of the manipulated variables
should belong to countable set of discrete values. However, the
mixed-integer programming problems are known to be NP-hard
(Bussieck & Vigerske, 2010; Lenstra, 1983; Pancanti, Leonardi,
Pallottino, & Bicchi, 2002) and their solution using mixed-integer
programming solvers requires massive computational power.
Furthermore, the majority of reliable currently available mixed-
integer solvers able to handle nonlinear system description/non-
linear optimization criterion are not free for industrial use. Since
the computational burden caused by solving the mixed-integer
programming task is huge and it is in direct opposite to the ex-
tensive effort to simplify the control schemes and systems used in
buildings, this direction is not suitable. Instead of formulating the
building temperature control problem as a mixed-integer pro-
gramming task, the other two mentioned options (additional
postprocessing and adaptation of the continuous-valued optimi-
zation procedure) are elaborated in the current paper.

The paper is organized as follows: Section 2 illustrates the
problem of the building climate control on a simple example. Both
the building and the heat delivery system description are pro-
vided. Furthermore, control performance criterion, comfort re-
quirements and restrictions are introduced. In Section 3, the
models supplying predictions to the model-based controllers are
described. The nonlinear model is derived in Section 3.1 based on
the thermodynamics while for the linear model, the assumed
simplifications are presented in Section 3.2. The linear time-
varying model is presented in Section 3.3. A new approach to es-
timating parameters of the nonlinear model with respect to the
multi-step prediction error minimization criterion proposed in
Section 3.4. Two alternative versions of this approach are pre-
sented which are some of the main contributions of this paper. All
models are verified on the data set obtained from TRNSYS en-
vironment and their results are discussed. Section 4 describes the
controllers including the low level re-calculation (for the linear
MPC) and the nonlinear optimization routine (for the nonlinear
MPC). In order to address the discrete-valued nature of part of the
considered actuators, the nonlinear MPC optimization routine is
changed in two ways: either a naive additional post-processing is
employed or the mid-processing iteration (which is another main
contribution of this paper) is incorporated into the routine. In
Section 5, building behaviors of all proposed controllers are in-
vestigated and their results are presented and examined. Section 6
draws conclusion of the paper.

2. Problem formulation

In this section, the description of the building, constraints and
the evaluative performance criterion are formulated.

2.1. Building of interest

The building under our investigation is a simple medium
weight one-zone building modeled in the TRNSYS16 (University of
Wisconsin-Madison, 1979) environment, which is a high fidelity
simulation software package widely accepted by the civil en-
gineering community as a reliable tool for simulating the building
behavior.

The building considered in this paper is a medium sized one
with a size of 5�5�3 m and a single-glazed window (3.75 m2)
placed in the south-oriented wall. The Heating, Ventilation and Air
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Conditioning (HVAC) system used in the building is of the so-
called active layer type. Technically, the HVAC system consists of
TABS (thermally activated building system) – a set of metal pipes
encapsulated into the ceiling distributing the supply water which
then enables thermal exchange with the concrete core of the
modeled building consequently heating the air in the room. This
configuration corresponds to the commonly used building heating
system in the Czech Republic. Ambient environmental conditions
(ambient temperature, ambient air relative humidity, solar radia-
tion intensity and others) are simulated using TRNSYS Type15 with
the yearly weather profile corresponding to Prague, Czech
Republic.

Fig. 1 shows a sketch of the building HVAC system configura-
tion, the “building” variables and the environment variables. Re-
garding the building inner variables, four of them are considered
to be available – zone temperature TZ, ceiling temperature TC,
temperature of the return water TR and temperature of the south-
oriented wall TS. From the environmental influences, solar radia-
tion Q̇ S and outside-air temperature TO are taken into account as
disturbances while the supply water temperature TSW and the
mass flow rate of the supply water ṁ are the controlled input
variables. The TRNSYS model in this configuration offers a good
numerical test-bed to compare the control approaches, and the
results obtained with this model can be generalized without any
loss of objectivity.

The next step is to describe the heat distribution system. In the
application presented in this paper, the configuration of the
heating system as shown in Fig. 2 is considered. Clearly, the sto-
rage tank plays a key role as the sole heat supplier in this system.
In fact, having obtained the requirements for the supply water
temperature TSW and the supply water mass flow rate ṁ, these two
values are “mixed” using the return water with the temperature TR
flowing into the building inlet pipe through the side-pipe at the
mass flow rate ṁs and the water from the storage tank which is
kept at certain constant value TSt (in this paper, = °T 60 CSt is
considered) and can be withdrawn from the tank at mass flow rate
ṁSt . Based on this, the following set of equations can be written for
the upper three-way valve:

̇ = ̇ + ̇
̇ = ̇ + ̇ ( )

mT m T m T

m m m . 1
SW St St S R

St S

which can be further rewritten into an expression for the

calculation of the storage water mass flow rate,

̇ = ̇ ( − )
( − ) ( )m m
T T
T T

.
2St

SW R

St R

Having the return water temperature values at disposal and
extracting the storage water with the temperature of TSt at the
mass flow rate ṁSt , both the supply water temperature and supply
water mass flow rate related to the heating requirements can be
achieved.

2.2. Control performance requirements

Considering the building climate control, one of the most im-
portant tasks is to ensure the required thermal comfort which is
specified by a pre-defined admissible range of temperatures re-
lated to the way of use of the building (office building, factory,
residential building, etc.). Under the weather conditions of middle
Europe with quite low average temperatures where heating is
required for more than half of year, the thermal comfort satisfac-
tion requirement can be further simplified such that the zone
temperature is bounded only from below. Since an office building
with regular time schedule is considered, the lowest admissible
zone temperature ( )T tZ

min whose violation will be penalized is
defined as a function of working hours as

( ) = °
° ( )

⎧⎨⎩T t
22 C from 8 a. m. to 6 p. m .,

20 C otherwise. 3
Z
min

Then, the thermal comfort violation is expressed as

( ) = ( ( ) − ( )) ( )CV t T t T tmax 0, . 4Z
min

Z

Besides the comfort violation CV(t), the price paid for the op-
eration of the building is penalized in the cost criterion as well.
Coming out of the considered structure of the building and its
energy supply system, the monetary cost includes the price for the
consumed hot water and the electricity needed to operate the two
water pumps. While the hot water price PW is considered constant
(see Table 1), the electricity price PE(t) which applies to the op-
eration of the supply and storage water pumps is piece-wise
constant and similar to the lowest admissible zone temperature

Fig. 1. A scheme of the modeled building.

Fig. 2. A scheme of heat distribution system.

Table 1
List of the specific parameters.

TZ
min (°C) 22/20 PW (–) 2.6199

HT (€/kWh) 0.1168 α0 (–) 9
LT (€/kWh) 0.0502 α1 (–) × −9.25 10 3

TSt (°C) 60 α2 (–) × −1.875 10 6

[ ̇ ̇ ]m m, [15,60] ΔT (°C) 5
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profile, it depends on the working hours as follows:

( ) = ( )
⎧⎨⎩P t

HT

LT

from 8 a. m. to 6 p. m .,

otherwise. 5
E

In order to bring the presented case study closer to reality, the
values of high and low tariff (HT and LT) have been chosen in ac-
cordance with the real prices approved by the Regulatory Office
for Network Industries of Slovak Republic (R.O. for Network In-
dustries, 2011). The exact values of HT and LT in €/kWh are listed in
Table 1.

Thus, the overall performance criterion over a time interval
〈 〉t t,1 2 is formulated as

∫ ∫ ( )ω= ( ) + ( )( ( ̇ ) + ( ̇ )) + ̇ ( )J CV t t P t P m P m P m td d .
6t

t

t

t

E C C St W St
1

2

1

2

Here, ω is the virtual price for the comfort violation CV(t) which is
defined by Eq. (4) and ̇P mW St represents the cost paid for the
consumed hot water. Time-varying electricity price is expressed as
a function of time by Eq. (5) and the power consumptions of the
water pumps corresponding to ṁ and ṁSt can be calculated as a
quadratic function of the particular mass flow rate,

α α α

α α α

( ̇ ) = + ̇ + ̇
( ̇ ) = + ̇ + ̇ ( )

P m m m

P m m m

,

. 7

C

C St St St

0 1 2
2

0 1 2
2

The parameters α0,1,2 are listed in Table 1.
Let us note that since the criterion (6) specifies the control

requirements for the control of a building in a very compact form,
all considered controllers will be evaluated and compared ac-
cording to this criterion.

2.3. Constraints

In order to ensure proper functionality of the heat distribution
system depicted in Fig. 2, the following technical constraints im-
posed on the manipulated variables need to be taken into account.

First of all, the constraints on mass flow rates which can be
achieved by both the supply water pump and storage water tank
pump need to be respected. The upper bound of the mass flow
rates is given by the maximal power of the considered pumps.
Technically, the lower bound on the supply water mass flow rate ṁ
and storage tank mass flow rate ṁSt is zero, however, the supply
water pump is required to always maintain some nonzero supply
water mass flow rate. To prevent the supply water pump from
damage resulting from water overpressure potentially caused by
the storage tank pump, the storage tank mass flow rate must never
exceed the supply water mass flow rate. Due to this, the mass flow
rate of the supply water and the storage tank mass flow rate are
bound together by the relation ̇ ≤ ̇m mSt . The last mass flow rate
constraint results from a common feature of the water pumps that
are very often multi-valued and cannot set the mass flow rate with
arbitrarily small sensitivity. Therefore, the mass flow rate values
must belong to a countable admissible set of discrete values.

The second group of constraints is imposed on the supply
water temperature. Since the storage tank is the only source of hot
water and no additional heater that could increase the water
temperature to values higher than TSt is considered, it is obvious
that the highest required supply water temperature must be lower
than or equal to storage water temperature. However, the heat
losses caused by the transportation of the storage water should be
also reflected and therefore, it is more realistic to consider the
upper constraint for the supply water temperature to be several
degrees lower than the storage water temperature. Last of all, let
us note that a situation which requires a value of TSW to be lower
than the return water temperature TR would mean negative sto-
rage water mass flow rate ṁSt , which can not be practically

realized. On the other hand, it is also obvious that such TSW re-
quirement really cannot be satisfied as only the hot water storage
is considered in this configuration. With no cold water storage
neither water chiller provided, the temperature of the supply
water cannot be decreased below the return water temperature
and the active cooling mode is not allowed.

Since the storage water mass flow rate is not an independent
variable and is uniquely given by the supply water mass flow rate
ṁ and supply water temperature TSW, the constraints for storage
water mass flow rate can be omitted. To sum up, the above
mentioned technical constraints are mathematically formulated as
follows:

̇ ≤ ̇ ≤ ̇
̇ ∈ ̇ = { ̇ | ̇ = × ∈ }

{ } ≤ ≤ − Δ ( )


m m m

m M m m a q a

T T T T T

, ,

max , . 8
st

R SW SW St

adm a a

Parameters ṁ, ṁ and ΔT are provided in Table 1. Several dif-
ferent values of quantization steps qst were considered in this
work and their exact values are specified later.

3. Modeling and identification

In this section, the derivation of models for the particular var-
iants of the MPC (being one of the crucial part of the whole control
approach) is described and explained. A special emphasis is put on
explanation and description of Model Predictive Control Relevant
Identification (MRI) approach, the identification procedure pro-
viding mathematical models with good prediction behavior on
wider range of prediction horizons.

3.1. Nonlinear model (NM)

In the current paper, the methodology that is widely used for
modeling of heat transfer effects in buildings (ASHRAE, 2009;
Barták, 2010; Lienhard, 2013) is followed. As explained in the
dedicated literature, several physical phenomena need to be con-
sidered to obtain an appropriate structure reliably describing the
building behavior. The most crucial aspects influencing the ther-
modynamics within the inspected zone are:

1. Convection from walls: This phenomenon occurs when fluid (in
this case the zone air) moves along the body (wall) with dif-
ferent surface temperature. It affects both the heated wall TC
and the unheated wall TS and the zone temperature TZ. Derived
from the well known Newton's cooling law, the heat flux qW ,conv
caused by convection can be expressed as

= ( − )q h T T .W W W Z,conv ,conv

In this expression, hW ,conv denotes the convection heat transfer
coefficient and TW refers to temperature of one of the con-
sidered walls, i.e. TC or TS.
In case that the fluid is externally forced to move, the convec-
tion heat transfer coefficient hW ,conv is independent of the
temperature difference −T TW Z . However, in case that the fluid
motion is caused solely by buoyant forces arisen from different
temperatures of the fluid and the body (and thus temperature-
dependent density of the fluid) and the gravitational effects, the
convection heat transfer coefficient hW ,conv is expressed as a
function of this temperature difference (ASHRAE, 2009; Lien-
hard, 2013). A common and empirically proven choice is to
express the convection heat transfer coefficient hW ,conv as a
weak function of the temperature difference Δ = −T T TW Z ,
typically ∝ |Δ |h TW ,conv

1/4 or ∝ |Δ |h TW ,conv
1/3 (Lienhard, 2013;

Zmrhal & Drkal, 2006). Based on the technical specification of
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the building examined in this paper (absence of the ventilation
fan), the forced convection is neglected and the convection heat
transfer coefficient is in accordance with ASHRAE (2009), Barták
(2010), and Lienhard (2013) modeled as

= −h h T T ,W W W Z,conv ,conv

1
3

where hW ,conv accounts also for influence of the surface area of
the convecting wall AW,conv. Then, the convection heat flux
qW ,conv from particular wall can be summarized as

= − ( − ) ( )q h T T T T .
9W W W Z W Z,conv

1
3

2. Mutual interactions of the walls: Out of the three possible heat
transfer phenomena – conduction, radiation and convection –,
the first two might apply when inspecting the mutual interac-
tions between the considered walls (ASHRAE, 2009; Lienhard,
2013). Conduction heat flux qcond occurs due to the presence of
common edges and vertices of the walls and being the simpler
one, it is expressed by a formula resembling Newton's cooling
law (Balmer, 2010; Lienhard, 2013),

= ( − )q h T T .W S C,cond cond

Here, the conduction heat transfer coefficient hW ,cond is propor-
tional to the surface area of the walls and inversely proportional
to the distance between the points at which the temperatures
TC and TS are provided.
Regarding the radiation, the well known Stefan–Boltzmann law
applies:

= ( − )q h T T ,S Crad rad
4 4

with hrad embracing (besides the effect of the Stefan–Boltzmann
constant) various influences such as view factor between the
two irradiating objects, emissivity/absorptivity and the surface
area (Balmer, 2010). In case that the temperature difference
between the two objects is relatively small (which holds true
also for the heated and unheated wall temperatures), radiation
heat flux qrad can be with sufficient accuracy approximated by a
linear function of the temperature difference,

≈ = ( − )q q h T TS Crad rad rad

and the joint conduction/radiation heat flux can be then
expressed as

= + = ( − ) ( )q q q h T T . 10W S Ccd,rd ,cond rad cd,rd

3. Effects of ambient environment: Here, influences of solar radia-
tion and ambient temperature are considered. The values of the
first of them (solar radiation) are provided in terms of the cor-
responding heat flux and therefore, no further derivations are
necessary, = ̇q Q Ssol . The latter one is assumed to be “measured”
on the outer surface of the unheated wall and is assumed to
vary only negligibly across the wall surface. Then, the heat flux
resulting from the different inner and outer surface tempera-
tures of the wall is described in terms of conduction through the
wall as

= ( − ) ( )q h T T . 11O O O S,cond

Since the heated wall contains metal piping filled with hot
supply water, the effect of the ambient temperature TO on the
temperature TC of its inner surface is neglected.
Due to the presence of the window and possible associated gaps
and interstices, the ambient temperature is assumed to directly
influence the zone temperature according to the following ex-
pression:

= ( − ) ( )q h T T , 12O Z O Z O Z, ,

where the heat transfer coefficient hO Z, reflects all the above
mentioned window-related leakage effects.

4. Thermal energy supplied by the manipulated variables: In the
currently presented case, this energy is provided by the hot
supply water of the temperature TSW circulating at mass flow
rate ṁ in the metal piping encapsulated in the concrete core of
the building. The thermal energy that is transferred from the
supply water into the concrete core can be quantified as fol-
lows:

= ̇ ( − ) ( )q c m T T . 13w SW Rin

Furthermore, based on the low thermal resistivity of the metals,
it is assumed that the metal piping in which the water circulates
has temperature TP only negligibly different from the return
water, ≈T TP R. Therefore, the return water temperature can be
used for expression of the conductive heat transfer from the
concrete core to the heated wall surface,

= ( − ) ( )q h T T , 14R R R C,cond ,cond

with the heat transfer coefficient hR,cond covering the effects of
the different piping and wall materials and the distance from
the water piping to the heated wall surface.

Based on this, thermodynamics of each of the considered inner
variables of the building can be summarized:

� dynamics of the zone temperature TZ is positively influenced by
the convection from both considered walls and the heat flux
coming from the ambient environment. Furthermore, the zone
temperature is also increased due to the presence of solar ra-
diation entering the room directly through the window,
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O Z
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� heated wall surface temperature TC is decreased by the amount
of heat that is transferred into the zone air via convection while
it is increased by the heat resulting from mutual interaction
with the unheated wall and also by the heat transferred from
heated supply water piping,
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� similar to the heated wall, the unheated wall is cooled down by
the convection into the zone air. Moreover, the unheated wall
surface temperature TS decreases due to the thermal exchange
with the heated wall while it is increased due to the effects of
the ambient environment (ambient temperature TO and solar
radiation qsol),
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� finally, the return water temperature TR is affected by the sup-
plied thermal energy and further heat transfer with the surface
of the heated wall,

∝ − ∝ ( )
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R
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For further use in a mathematical model, all the building inner
variables are considered as the state variables of the mathematical
model of the building thermodynamics, = [ ]x T T T T, , ,Z C S R .
Moreover, inputs = [ ̇ ]u T m,SW stand for the manipulated variables
being supply water temperature and the mass flow rate of the
supply water and = [ ]d T q,O sol correspond to the predictable
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disturbances, namely the temperature of the ambient environ-
ment and the solar radiation. Then, the above mentioned phe-
nomena described by Eqs. (15)–(18) are captured by the following
set of differential equations:

̇ = − ( − ) + − ( − ) + ( − ) +

̇ = − − ( − ) + ( − ) + ( − )

̇ = − − ( − ) − ( − ) + ( − ) +
̇ = − ( − ) + ( − ) ( )

x p x x x x p x x x x p d x p d

x p x x x x p x x p x x

x p x x x x p x x p d x p d

x p x x p u u x . 19

1 1 2 1

1
3

2 1 2 3 1
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3

3 1 3 1 1 4 2

2 5 2 1

1
3

2 1 6 3 2 7 4 2

3 8 3 1

1
3

3 1 9 3 2 10 1 3 11 2

4 12 4 2 13 2 1 4

To ensure admissible computational complexity of the pre-
dictive controller exploiting the nonlinear model, the structure
(19) was discretized using Euler discretization method considering
fixed a priori known sampling time ts (Stetter, 1973). In this paper,
ts¼15 min is considered. The discretization procedure results in a
series of difference equations expressing the one-step predictions
of the system behavior,

( )

= + − ( − ) + − ( − )
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1
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3, 1 3, 8 3, 1,

1
3

3, 1, 9 3, 2,

10 1, 3, 11 2,

4, 1 4, 12 4, 2, 13 2, 1, 4,

which are more suitable for implementation of the predictive
controller than the continuous-time model (19). To obtain esti-
mates of the parameters p of the discretized structure (20), MRI
approach (whose explanation is provided later in this Section)
belonging to advanced identification techniques was employed.1

3.2. Linear model (LM)

In order to simplify the model (19), let us adopt the assumption
that the cubic roots of the temperature differences related to the
heat convection are constant over the whole range of the oper-
ating points of the building. This simplifies the nonlinear terms as
follows:

( )| − | − ≈ ( − ) ( )p x x x x a x x . 21i j i j i j

1
3

Furthermore, = ̇ ( − )q c m T Tw SW Rin is assumed to be the control
input instead of the pair ṁ and TSW. Based on these assumptions,
the linear version of the model Eq. (20) can be summarized as a
discrete-time state space model as follows:

= + + ( )+x Ax Bu B d 22k k k d k1

with the state matrices having the following structure:
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In this model, state and disturbance variables correspond to the

previously mentioned ones and =u qin refers to the optimized
input. The sampling period of the system has been chosen as

=t 15 mins . The model parameters a, b, bd have been estimated by
a multistep prediction error minimization procedure (MRI). For
further details on this method, the readers are referred to Žáče-
ková & Prívara (2012).

3.3. Switched linearly approximated model (SLM)

The main idea of this approach is that for a combination of
inputs u, disturbances d and state variables x, a linear time-varying
approximation of model (20) can be found by replacing particular
nonlinearities with time-varying terms. In case of a building, this
approach is even more natural and expected as the nonlinear
mathematical description of the building contains terms depend-
ing on the differences between two state variables, namely

− ( − )p x x x xi j i j

1
3 which are likely to vary much less than the

temperatures themselves. As an opposite to the linear models
described earlier where the nonlinear terms are linearized “before
the identification” and having the gathered data at disposal,
parameters of linear time invariant model are estimated con-
sidering the purely linear character of the model, in this case, the
nonlinear model is identified off-line and using its parameters, the
nonlinearities are continuously approximated on-line depending
on the actual values of the chosen auxiliary variables which leads
to a time-varying linear model.

In order to get rid of the nonlinear terms coupling the states, let
us propose an approximation procedure based on the auxiliary
variables as follows.

Let us introduce two auxiliary variables, δx k,1,2 and δx k,1,3 defined
such that

δ

δ

= | − |
= | − | ( )

x x

x x , 24

x k k k

x k k k

, 2, 1,

, 3, 1,

m m

m m

1,2
3

1,3
3

where ≥k km refers to discrete time and km indicates the time
instant when the last available values of the state variables arrived.
The derived model shall predict the behavior of the building over
certain prediction horizon during which no current values of the
state variables are available. Therefore, at each “measurement”
time instant, the values of δx k,1,2 and δx k,1,3 are calculated and they
are used by the optimizer over the whole prediction horizon. The
necessity of realizing the difference between the real-life time (in
which the model is time-varying) and the internal time of the op-
timizer (in which the model stays constant over the prediction
horizon) is obvious.

Then, the nonlinear terms appearing in the model Eq. (20) can
be approximated as

δ

δ

| − | ( − ) ≈ ( )( − )
| − | ( − ) ≈ ( )( − ) ( )
x x x x x x x

x x x x x x x

,

25

x k k

x k k

2 1 2 1 , 2 1

3 1 3 1 , 3 1

m

m

3
1,2

3
1,3

for all ≥k km. Here, the expressions δ ( )xx k k, m1,2 , δ ( )xx k k, m1,3 are used
to emphasize the fact that the values of auxiliary variables depend
only on the last available state values.

The bilinear term in the last differential equation is (similar to
the previous approaches) considered as the new controlled input
qin while the vector of disturbances d remains unchanged. The
linearized difference equations can be now summarized as:

= ( ) + + ( )+x A x x B u B d , 26k app k k app k d k1 m

where

1 Let us note that the parameters pi of the discrete time model (20),
∈ { … }i 1, 2, , 13 , differ from the parameters pi of the continuous time model (19)

since they incorporate also the effect of the chosen sampling period ts.
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At this point, the whole algorithm of obtaining the linear ap-
proximated model of the building can be summarized.

At each discrete sample =k km, the values of the state variables
x are provided and the auxiliary variables δ ,x k,1,2 δx k,1,3 , are eval-
uated according to Eq. (24). Making use of the calculated auxiliary
variables, a linear discrete-time model (26) of the building is
created with the corresponding matrices. This approximated
model is used until the new state values arrive, which means that
at each discrete time sample, a new model is approximated and
used by the optimizer over the following prediction horizon

∈ { … }k P1, 2, , of the internal time of the optimizer.
The readers interested in theoretical properties of the linear

MPC exploiting model belonging to widely used family of linear
time-/parameter-varying models (which SLM also belongs to) are
warmly referred to Falcone, Borrelli, Tseng, Asgari, & Hrovat (2008)
where the stability and feasibility of such formulation are dis-
cussed in detail. It should be noticed that one of the crucial as-
sumption is that on constancy of the model over the prediction
horizon, which is satisfied also by the SLM model and therefore,
the results obtained in Falcone et al. (2008) hold also for the case
of LMPC with SLM model.

3.4. MRI identification for nonlinear models

Having the model structures at disposal, it is necessary to es-
timate the parameters of these structures from the available input/
output data. Since the obtained models are expected to be used by
the predictive controllers as system dynamics predictors, this fact
needs to be taken into account as early as at the point of choosing
of the identification procedure. Instead of classical identification
methods performing minimization of one-step prediction error
(the so-called prediction error methods or PEMs Ljung, 2007),
advanced approach focusing directly on minimization of multi-
step prediction error is exploited since it provides models with
better long-term prediction performance which is highly re-
quested when considering use of the model with MPC. The ob-
jective is to find such parameters of the given model structure
which minimize the multi-step prediction error (Laurí et al., 2010)
over the whole prediction horizon,

∑ ∑= − ^
( )=

−

=
+ + |

⎡⎣ ⎤⎦J y y ,
30

MRI
k

N P

i

P

k i k i k
0 1

2

where ^ + |yk i k is the i-step output prediction constructed from data
up to time k, N corresponds to the number of samples and P stands
for prediction horizon considered for identification. In case of
linear model structures which is also the case of structure (22),
several reliable approaches can be found. Therefore, one particular

algorithm that has already been successfully used for building
model parameters identification (interested readers are referred to
Žáčeková & Prívara, 2012) will be used also in this paper to esti-
mate the parameters of the linear structure (22).

When talking about identification of models with nonlinear
structure performing minimization of (30), no methods of solving
of the arisen problem can be found in the available literature ac-
cording to authors' best knowledge. The proposed extension of the
MRI identification methods (Žáčeková & Prívara, 2012) for non-
linear systems is described in the following text.

Without any loss of generality, let us assume nonlinear systems
where the multi-step predictor ^ + |yk i k can be formulated in the
following way:

θ θ^ = ^ + ^ ∈ … ( )+ | + +y Z Z i P, 1, 2, , , 31k i k L k i L NL k i NL, ,

where = [ … ]+ + − + − + − + −Z u u y yL k i k i nd k i nb k i k i na, 1 and θ̂ = [^ … ^ ^ … ^ ]b b a aL nd nb na1

are regression matrix and the vector of unknown parameters de-
scribing the linear part of the model dynamics, respectively. na
denotes the number of past outputs in the regressor, nb is the
number of inputs in the regressor and nd represents their delay
compared to the outputs. The nonlinear part of the system dy-
namics is described by θ θ θ θ^ = [ ^ ^ … ^ ]NL n1 2

T with n being the number
of identified parameters and = [ (·) (·) … (·)]+Z f f fNL k i n, 1 2 .In general,

(·)fi are functions of …+ − + −u u, ,k i k i n1 b NL, and …+ − + −y y, ,k i k i n1 a NL,

with parameters na NL, specifying the number of past outputs in the
nonlinear dynamics and nb NL, representing the number of inputs in
the nonlinear structure.

It is important to note that not every output contained in re-
gression matrices +ZL k i, and +ZNL k i, is available at time k, thus the
multi-step predictions ^ + |yk i k must be obtained recursively by ap-

plying i-times the expression θ θ^ = ^ + ^
+ | + +y Z Zk k L k L NL k NL1 , 1 , 1 with in-

itial conditions yk. Now, the estimate of matrix of parameters θ̂ can
be obtained as a solution of the following optimization task:

∑ ∑θ θ θ θ

θ θ θ θ

[ ^ ^ ] = [ − − ]
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θ θ
⁎

[ ] = =
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, 1 0
, ,

2

L NL

where L and NL correspond to the sets of all admissible estimated
parameters. These constraints enable the user to incorporate certain
a priori information into the identification procedure, for example
to ensure that certain parameters are nonnegative or lie in a con-
strained interval, etc. In the currently presented case, two different
methods of obtaining of ^ + |yk i k were exploited:

� variant A – for computing of ^ + |yk i k, the output predictions are
used only for recursive calculation of ZL and for calculation of
ZNL, the available output data are exploited. In such case, the
optimization task (32) is polynomial in parameters and can be
solved employing standard solver for nonlinear programming.
This is certain kind of approximation where the nonlinear part
of the system dynamics is basically identified just in sense of
minimization of one-step prediction error while the linear part
is still identified with respect to the multi-step prediction error
minimization criterion.

� variant B – for computing of ^ + |yk i k, the output predictions are
used for recursive calculation of ZL as well as ZNL. In this case,
the parameters of both the linear and nonlinear part of the
system dynamics are searched such that the multi-step pre-
diction errors are minimized. It should be noted that in this
case, the optimization task (32) is again a nonlinear program-
ming problem, however, it might not be only polynomial in the
estimated parameters any more.
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3.5. Identification results

Making use of the above mentioned identification procedures,
the parameters of all model structures presented in the current
Section were identified from the available identification data set.

At first, the comparison of the nonlinear models obtained using
variant A and variant B of the nonlinear MRI identification (de-
noted as nMRIa and nMRIb, respectively) is presented in Fig. 3. For
identification purposes, prediction horizon P¼20 samples was
considered which with sampling period ts¼15 min corresponds to
duration of 5 h. It can be argued that the prediction horizon is
shorter than the real prediction horizon of the predictive con-
trollers (in the current application, the predictive controllers per-
form optimization calculations over 12 h corresponding to 48
samples), however, in Žáčeková, Váňa, & Cigler (2014) and Gopa-
luni, Patwardhan, & Shah (2004) it was shown that from certain
prediction horizon threshold, the increase of the identification
prediction horizon can lead to degradation of the performance of
the obtained model.

It is obvious that both obtained nonlinear models fit the ver-
ification data very well also on longer verification interval with
slight superiority of the model identified making use of nMRIb.
nMRIa variant provides model with performance which is only
slightly worse than that of the model obtained by (seemingly)
more computationally demanding variant nMRIb. It is true that
within the nMRIb, a more general nonlinear programming task
needs to be solved (which is undoubtedly more computationally
demanding than just solving of polynomially nonlinear pro-
gramming performed within nMRIa), however, the overall opti-
mization which is solved within nMRIb takes less computational
time than optimization performed within nMRIa. Although one
iteration of nMRIb is slower (due to solving of the more general
optimization problem), on the other hand less iterations are
needed to converge to the solution of the optimization problem.
This can be explained such that the task formulated within
nMRIb brings the chosen nonlinear structure closer to reality and
thus also to the verification data – this of course holds well only
in case that a reasonable model structure was chosen. Therefore,
it might be more advantageous to choose identification of non-
linear model in variant nMRIb which can be ultimately faster and
provides a more accurate and reliable model. Based on this, the
model obtained by nMRIb was chosen to be used with the non-
linear predictive controller in the role of the system dynamics
predictor.

Now, the graphical and numerical comparison of all above
described models follow. Since the models are intended to be used
with the MPC, one of their most important features is the ability to
provide reasonable predictions over the whole prediction horizon.
In this paper, the prediction horizon =T 12 hP is considered which
with 15-min sampling corresponds to P¼48 samples. Let us re-
mind that in the role of the nonlinear model, nMRIb was chosen.

Fig. 4 shows several weeks of comparison of the models which
are used for the building behavior predictions with the linear time
invariant (LM model), linear time-varying (SLM model) and non-
linear MPC (NM model). At each discrete time sample (ts¼15 min),
12-h predictions are calculated based on the provided state values.
All the predictions of the models are plotted together with the
verification data.

Looking at Fig. 4, it is clear that while the NM behavior con-
straints the quality of the prediction behavior from above with the
smallest deviations from the verification data and the LM behavior
exhibits the highest prediction errors, the performance of the
performance of the time-varying model is somewhere in the
middle between these two “limit” cases. The most obvious are the
differences in the behavior when looking at the 200-th and the
300-th hour of the comparison. While the absolute value of pre-
diction errors for the off-line identified linear model reaches up to
2 °C, the error obviously decreases through the switched linearly
approximated time-varying model down to the nonlinear model
which provides the predictions with the least prediction error out
of the three compared models, which in turn justifies the use of
the predictive controller with the more complex nonlinear model.

In order to compare the models in a more complete way, the
statistical comparison of the models is provided in Table 2. The
length of the evaluated period was nearly 3 months. In the table,
LM specifies the linear model, SLM stands for the switched linearly
approximated model and NM represents the nonlinear model. For
each model, εav being the average prediction error over the whole
12-h prediction horizon and the maximum prediction error εmax

over the prediction horizon are inspected.
The table clearly demonstrates that the most reliable predic-

tions are provided by the NM model. However, this is not a sur-
prise as this model takes the whole dynamics of the building into
account including the nonlinearities. On the other hand, it can be
seen that considering the linear time-dependent model, the
quality of the predictions fairly improves compared to the linear
time invariant model. With SLM model, the reduction of εav is
almost 40% and the reduction of εmax is nearly 37%.

4. Model predictive control

In this section, the considered MPC variants are briefly ex-
plained and the optimization routines used to solve the corre-
sponding optimization problems are presented. At the end of this
Section, the quantized nonlinear predictive control algorithm is
proposed.

4.1. Linear MPC

The control requirements which have been chosen for the lin-
ear MPC to be satisfied (minimization of both the thermal comfort
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Fig. 3. Comparison of nMRIa ( ) and nMRIb ( ) models with the verification data ( ).
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violation and the energy consumption) can be mathematically
summarized as follows:
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This formulation considers a combination of linear and quadratic
penalization indicated by the index ∈ { }p 1, 2 which enables us to
shape the penalization criterion conveniently. Time-varying
weighting matrices W reflecting the time dependence of the
electricity tariffs and prediction horizon P stand for the tuning
parameters of the controller. Comfort violation is calculated based

on the difference between the zone temperature prediction T̂Z and
its lowest acceptable bound TZ

min and the hard constraints are
relaxed employing an auxiliary variable CV. Exact values of the
optimization problem settings can be found in Table 3.

As the linear version of MPC optimizes supplied heat qin, a post-
processing procedure is needed to obtain the particular values of TSW
and ṁ which correspond to the true control inputs of the thermally
activated building system (TABS). This straightforward postprocessing

holds the mass flow rate fixed ̇ = ̇m mpp and it calculates the supply
water command as = ̇ +T q mc T/SW w Rin . Should the calculated supply
water command be higher than TSW , =T TSW SW is set and the mass
flow rate command is calculated as ̇ = ( − )m q c T T/ SW Rin . If the heating
effort is lower than a threshold value q trin, , the TABS manipulated
variables are set to =T TSW R and ̇ = ̇m m. The settings of the post-
processing procedure are listed in Table 3.

4.2. Nonlinear MPC

Thanks to the use of nonlinear programming optimization
method, the nonlinear MPC can exploit the more reliable non-
linear discrete-time state-space description of the building beha-
vior and address directly the minimization of the evaluative cri-
terion (6). To obtain computationally tractable solution, also the
criterion (6) needs to be discretized in time. This results in the
following nonlinear MPC cost criterion:
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where ts represents the chosen constant sampling period, P stands
for the prediction horizon, (·)PC corresponds to Eq. (7) and u3 re-
presents a virtual input which corresponds to the storage water
mass flow rate ṁSt ,
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−u u

u x
T x

.
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3 2
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4

The obtained optimal profiles u1, u2 are required to satisfy the
technical limitations which are formulated as box constraints,
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Last but not least, the dynamics of the building must not be
violated which is represented by the satisfaction of the model
dynamics (20).

In the role of the optimization routine, gradient optimization
algorithm (Zhou, Doyle, & Glover, 1996; Bryson, & Ho, 1975) with
variable step length is employed. This approach is able to address
optimization problems in the following form:
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Fig. 4. Comparison of TZ predictions of the LM ( ), SLM ( ) and NM ( ) models with the verification data ( ).

Table 2
Statistical comparison of the models.

LM SLM NM

ε (° )Cav 0.57 0.34 0.30
ε (° )Cmax 1.89 1.20 1.08

Table 3
Table of controller parameters.

W1,1 (high tariff) 0.01 W1,2 (high tariff) 1.6

W1,1 (low tariff) 0.005 W1,2 (low tariff) 0.8

W2,1 ×2 106 qin ×90 104

W2,2 104 q trin, 700

T SW 20 TSW 50

P 48 ṁpp 20
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∑ ϕ= ( ) + ( )

∈ 〈 〉 ( )
=

J L x u x u

u u u

minimize , ,

such that , . 36

i

P

i i P P

i

1

To find the solution of (36), the following idea is employed:
starting from an initial estimate of the optimal input profile u0, the
opposite direction of the gradient of the minimization cost cri-
terion is iteratively followed until convergence to the optimal in-
put vector,

α= − ∂
∂ ( )−u u

J
u

. 37
l l l1

Here, l represents the iteration of the gradient algorithm and αl is
the step length at l-th iteration.

To obtain computationally tractable solution of this optimiza-
tion task, the Hamiltonian

λ= + ( ) ( )+L f x u, 38k k k k1
T

is created. Here, Lk is the integral or in discrete-time case the
summation part of the criterion J, ( )f x u,k k is the vector field re-
presenting the dynamics of the controlled system and λ is the so-
called co-state vector with the backwards dynamics

λ λ= ∂
∂ ( ) ( )+
H
x

x u, , 39k k k k 1

and the terminal condition

λ = ∂
∂ ( )

J
x

.
40

P
P

It can be shown that the gradients of both the cost criterion J and
the Hamiltonian H with respect to the input vector u are equal,
∂ ∂ = ∂ ∂J u H u/ / , and therefore, the iterative search (37) turns into

α= − ∂
∂ ( )−u u
H
u

. 41
l l l1

To satisfy the input constraints, the input profile ul is at each
iteration projected on the admissible input interval 〈 〉u u, . The
iterative search (41) is used until convergence which is usually
defined as

| ( ) − ( )| ≤ ϵ ( )−J u J u 42l l 1

with some reasonably chosen nonnegative tolerance ϵ > 0.
As can be expected, the search step length α significantly in-

fluences the convergence properties of the algorithm. In order to
provide smooth and uniform convergence to the optimum, α
should be small in case that the cost criterion J decreases rapidly
and it should increase in case that the change of the cost criterion
| ( ) − ( )|−J u J ul l 1 is small. To satisfy these requirements, the following
formula for the search step length is proposed:

α β γ= − ( Δ ) ( )Jlog . 43l l

Here, Δ = | ( ) − ( )|−J J u J ul l l 1 is the change of the cost function value
and β > 0, γ > 0 are some suitably chosen constants. Last of all, the
step length αl is constrained at each gradient algorithm iteration,

α α α≤ ≤ ( ). 44l

Parameters α > 0 and α > 0 are together with β and γ considered
to be the tuning parameters of the presented optimization
algorithm.

4.3. Quantized MPC

As was mentioned earlier, the mass flow rate should belong to the

admissible set of discrete values Ṁadm. In case of the linear MPCs
which calculate optimal amount of energy that should be delivered
into the zone and subsequently perform the postprocessing to obtain
the values of mass flow rate and supply water temperature, the
discrete-valued nature of the mass flow rate can be very straight-
forwardly taken into account. However, the situation is more com-
plicated in case of nonlinear MPC. As already mentioned in the In-
troductory Section, two ways how to obtain discrete-valued mass
flow rate sequence are considered in this work.

The first of them consists in use of additional postprocessing
which is performed after the continuous-valued optimization is
finished. The most straightforward postprocessing routine is pure
rounding of the obtained continuous-valued mass flow rate se-
quence u2 away from zero to the nearest multiple of the quanti-
zation step,

= · ( )
⎛
⎝⎜

⎞
⎠⎟u q

u
q

round ,
45

q st
st

2,
2

with (·) = (·)⌈|·|⌉round sgn . Major advantage of this approach is its
simplicity – the a posteriori quantization can be performed by a
hardware component and therefore, no increase of the computa-
tional complexity occurs. However, it can be expected that such
naive approach significantly degrades the control performance of
the original controller since the fact that the manipulated variable
will be quantized a posteriori is not taken into account in the used
optimization routine.

This drawback is solved by the adaptation of the original Ha-
miltonian-based method representing the second way of achiev-
ing that discrete-valued mass flow rate profile is obtained. Here, a
regular mid-processing iteration is performed each I-th iteration of
the gradient search. Thanks to this, the information about the
discrete-valued nature of one of the manipulated variables is in-
corporated into the optimization procedure and the optimality of
the original continuous-valued optimization technique is
preserved.

The mid-processing is performed at particular iterations
= ×l m I, ∈ +m after the gradient step is made and it can be

described as follows: first of all, the quantized mass flow rate se-
quence ○ul

2, is obtained by projecting the continuous-valued mass

flow rate vector û
l

2 on the admissible set Ṁadm given by (8) with
respect to the chosen quantization step qst,

= ·
^

( )
○

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟u q

u
q

round .
46

l
st

l

st
2,

2

These P predicted quantized mass flow rate samples are connected
with nf past mass flow rate samples = [ … ]←

− − − −u u u u, , ,k n k n k2 2, 2, 1 2, 1f f

with k representing the current time step, and vector = [ ]
↔ ←

○U u u, l
2 2 2, is

received. The vector
↔
U2 represents all mass flow rate samples that will

have been applied into the system until time +k P and have influence
on the frequency properties of the manipulated variable u2 .

Then,
↔
U2 is filtered with a suitably defined low-pass filter with

order nf which helps us to suppress the undesired high frequencies
and decrease oscillations in the last P-sample subvector re-
presenting the currently optimized input sequence. This P-sample
subvector is extracted and after quantization and projection on its
admissible range is used for the next iteration of the gradient
search.

The overall control algorithm is then summarized as follows:

Algorithm agqNPC
1. obtain current values of the state variables xcurr k,

2. consider input profiles from the previous iteration
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{ }− −u u,l l
1

1
2

1 and obtain state trajectories = [ … ]X x x x, , , P0 1

according to the model (20) with =x xcurr k0 , ;
3. according to the co-state dynamics (39), obtain the co-

state trajectory Λ λ λ λ= [ … ], , , P0 1 with terminal condition
(40);

4. calculate gradients ∂ ∂H u/ 1, ∂ ∂H u/ 2, and perform gradient

step (41), obtain u1
l and û

l
2;

5. if ( ) =l Imod , 0
then perform the mid-processing:

(i) quantize mass flow rate û
l

2 according to (46) with

chosen qst, obtain ○ul
2, ,

(ii) create sequence = [ ]
↔ ↔

○U u u,
l

l
2 2 2, ,

(iii) filter
↔
U

l

2 using a low-pass filter of order nf with the

chosen characteristics, obtain
↔
U

l

2,filt,

(iv) quantize
↔
U

l

2,filt with chosen qst, obtain
↔

○U
l

2,filt, ,

(v) extract u2l as the last P samples of
↔

○U
l

2,filt, ;

else = ^u ul l
2 2;

6. project the sequences u1
l and u2

l on the admissible inter-
vals 〈 { } 〉T x Tmax , ,SW SW4 and 〈 ̇ ̇ 〉m m, ;

7. if | ({ }) − ({ })| ≤ ϵ− −J u u J u u, ,l l l lI I
1 2 1 1

then terminate,
else = +l l 1, repeat from (2);

8. apply the first sample of the calculated input profiles into
the system, in the next time instance repeat from (1).

The performance of both the naive a posteriori quantization
and the algorithm employing the mid-processing iteration is ver-
ified in the following section. In order to provide a better com-
parison, the results of the original continuous-valued nonlinear
MPC are provided together with the results of the linear versions
of predictive controller.

5. Results

First of all, visual comparison of the thermal comfort perfor-
mance is presented in Fig. 5.

Fig. 5 shows the zone temperature profiles over a 6-day period
for the linear predictive controllers with LM and SLM and the
nonlinear continuous-valued predictive controller. From this figure,
it can be seen that all controllers are carefully tuned to achieve

satisfactory thermal comfort performance since all of them are able
to satisfy the room temperature requirements and maintain the
zone temperature within the admissible zone above the zone tem-
perature threshold. This feature is very crucial since a controller that
does not fulfill the thermal comfort requirements and violates the
zone temperature threshold significantly is literally useless for
building temperature control. Out of all considered controllers, the
nonlinear MPC (NMPC) exhibits the most superior performance – it
satisfies the required thermal comfort keeping the zone temperature
within the admissible range and on the other hand, it obviously does
not waste too much energy keeping the zone temperature just as
high above the threshold as needed. This result could have been
expected as the NMPC combines the model with the best prediction
performance out of the considered set and it also directly addresses
the minimization of the optimization criterion corresponding to the
ultimate evaluative performance criterion (6).

Fig. 6 provides the second part of the visual comparison – it
depicts the monetary cost that is being paid for the control at each
time instance.

All profiles exhibit sinusoidal-like trends – this is caused by the
consideration of time-varying price of the electricity. The higher
parts of the profiles correspond to low-tariff hours while the lower
parts match the non-working hours with cheap electricity. Also
from this figure, the monetarily more economical nature of the
NMPC can be observed. The NMPC spares significant amount of
expenses compared to its linear counterparts. This superiority
comes from the use of more precise nonlinear model and it is of
course caused also by the nonlinear cost function of the NMPC
which directly corresponds to the amount of money that is paid
for the control. It can be also seen that the SLM model which is
closer to the nonlinear one enables also the controller with ap-
proximated cost function to achieve better economical perfor-
mance than the original linear model. For further illustration, the
cumulative sum of the monetary cost of the control is depicted in
Fig. 7. The provided profiles are normalized with respect to the
total price TPLM that is paid by the linear MPC with the ordinary
time-invariant linear model.

The statistical comparison of the energy consumption can be
found in Table 4. TP expresses the overall price paid for zone
temperature control. Moreover, the particular energy consump-
tions normalized with respect to the consumption of the linear
MPC using the ordinary off-line identified linear model are ex-
pressed. Furthermore, also the comparison of the average com-
putational time Tav and the maximum computational time Tmax

per discrete time instance is provided.
The superiority of the NMPC is demonstrated once again. It can

be seen that although the comparison of the identified models was
very optimistic in the case of linear time-dependent model versus
the linear time-invariant one, the resulting effect of the good
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Fig. 5. Zone temperature control ( – linear MPC with LM, – linear MPC with SLM, – nonlinear continuous-valued MPC with NM, – TZmin).
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model on the overall monetary cost of the control is not so at-
tractive. This can be simply explained by the fact that although the
good predictor is crucial for the proper functioning of the MPC
(either linear or nonlinear), so is the properly chosen optimization
criterion. Based on this observation, in the building climate con-
trol, the need for the use of nonlinear MPCs which are able to
address the task of the real-life price minimization in a direct way
instead of using certain approximation is obvious. However, one
more aspect needs to be taken into account when choosing the
controller type – its computational complexity. Table 4 shows two
factors related to the computational demands of the particular
control strategy: Tav being the average computational time needed
for the calculation of the optimal input and Tmax corresponding to
the maximum calculation time. Let us mention that this calcula-
tion time includes also the time needed to obtain the model which
(as will be shown) might contribute considerably to the overall
calculation time. The comparison is evaluated depending on the
type of the model which is used by the optimizer. The simplest
controller being the LMPC with LM needs the shortest time to
calculate the optimal input. As this variant does not consume any
time to obtain the model and the same optimizer is used also by
second member of the family of the linear MPCs (the controller
with SLM model), one can get a very good insight into how long
does it take to obtain the SLM model for the predictions. As the
SLM variant performs the approximation of the nonlinear model at
each sampling instant, the increase of the average computational
time is understandable. Although in case of the LMPC with SLM,
the average calculation time is longer than in case of the LMPC
with LM, this is compensated by the better control performance.

Let us summarize the performance of the particular variants.
Regarding the control performance and the energy consumption,
the NMPC is the best candidate for the real-life application. On the

other hand, the LMPC with the simplest off-line identified model is
able to provide the fastest calculation of the optimal input se-
quence. Looking for a trade-off between the optimality and the
time complexity, the presented time-varying approach exploiting
SLM model is able to bridge the gap between these two and
therefore, it stands for a promising candidate for the real-life ap-
plication especially in case of large buildings complexes where it
can be expected that the nonlinear optimization task can take too
long to be solved.

Since one of the main objectives of this paper was to adapt the
nonlinear MPC such that it provided discrete-valued mass flow
rate profile, let us present a comparison of the performance of the
following alternatives – the naive a posteriori quantization that is
referred to as nqNPC and the adaptation of the gradient algorithm
named agqNPC are compared with the continuous-valued NMPC
from the previous comparison. At first, the situation with 7 ad-
missible values for mass flow rate was considered. All three
compared controllers (continuous-valued NMPC, nqNPC and
agqNPC) were tuned to achieve approximately the same thermal
comfort and therefore, only the economical part of the criterion
might be focused on. At first, the calculated mass flow rate profiles
are presented in Fig. 8.

Based on the visual comparison, it can be expected that the
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Fig. 6. Overal price of the control effort ( – linear MPC with LM, – linear MPC with SLM, – nonlinear continuous-valued MPC with NM).
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Fig. 7. Normalized cumulative price of the control effort ( – controller with LM , – controller with SLM, – controller with NM).

Table 4
Comparison of the energy consumption and computational complexity.

LM SLM NM

TP 83.7 77.0 66.8
TP TP/ LM (%) 100 92 80

( )T sav 0.81 0.93 4.41
( )T smax 1.20 1.49 6.21

M. Pčolka et al. / Control Engineering Practice 53 (2016) 124–138 135

39



nqNPC pays the most for the operation of the building. On the
other hand, the agqNPC with advanced handling of the quantiza-
tion phenomena behaves more similar to the original continuous-
valued NMPC. This demonstrates the fact that while within the
agqNPC, the mid-processing iteration enables us to adapt the
calculation of the mass flow rate inside the optimization procedure
and take the quantization into account, the naive quantization
does not provide such possibility and therefore, significant part of
the optimality is lost. Moreover, a posteriori quantization ob-
viously leads to more oscillatory profiles which stands for another
drawback of such approach. Since the mass flow rate is not the
only manipulated variable, it might be interesting to inspect how
much affected is u1 by the quantization of u2. Such comparison is
provided in Fig. 9 where the profiles of supply water temperature
applied by the inspected controllers are shown.

Comparing Figs. 8 and 9, a waterbed effect of the quantization
can be observed since the quantization of one manipulated vari-
able causes oscillatory performance that “leaks” into the other
manipulated variable profile. The situation might seem a little bit
paradoxically – although the mass flow rate is the manipulated
variable that is quantized, the other manipulated variable also
strongly oscillates when comparing the quantized version with the
original continuous-valued version of the controller. This is more
significant in case of the nqNPC where the oscillations of the
supply water temperature are much more aggressive than the
oscillations of the mass flow rate. This can be explained by the fact
that while the quantization of the mass flow rate projects the
values belonging to particular interval to the same quantized va-
lue, no such “damping” applies to the supply water temperature
and therefore, its oscillations fully develop.

The last part of the comparison is the numerical evaluation of the
economical aspects of the control under the quantization conditions

provided in Table 5. Besides the total control cost (denoted as NMPC,
nqNPC and agqNPC according to the evaluated control algorithm)
shown in euros, also percentage increases of energy consumption
normalized with respect to the consumption achieved by con-
tinuous-valued NMPC are provided (in Table 5, the increases are
referred to as EInqNPC and EIagqNPC, respectively). To obtain a more
reliable comparison, situations with 3 up to 8 quantization steps Nqst

were compared. The range of quantization levels ∈ { … }N 3, , 8qst

was chosen based on the actual market research – it turned out that
none of the currently available water pumps offers use of more than
8 pre-programmed different speeds/mass flow rates and therefore,
values of Nqst higher than 8 were not considered. On the other hand,
the theory of optimal bang-bang (2-valued) control is nearly as
mature and elaborated as the optimal control theory itself (Anderson
& Moore, 1971; Kaya & Noakes, 1996; Ledzewicz & Schättler, 2002;
Wonham & Johnson, 1964) – therefore the optimization problem
with 2-valued valve was omitted and the lowest number of quanti-
zation levels was chosen as =N 3qst .

Inspecting Table 5, it is obvious that the increase of the quanti-
zation steps Nqst leads to decrease of the cost paid for the control –
this holds for both the naive and advanced quantization handling.
However, a considerable difference can be observed in the actual
value of the control cost increase. While for the naive quantization
algorithm nqNPC the control cost can be increased by as high portion
as 28%, the control cost increase never exceeds 17% with the use of
advanced agqNPC algorithm. The difference can be nicely illustrated
on an example of =N 4qst steps. The advanced quantization algo-
rithm agqNPC consumes only about 10% more energy than the
continuous-valued NMPC while the naive quantization algorithm
nqNPC cost increase is nearly twice as high – moreover, even with

=N 6qst quantization steps, the nqNPC algorithm achieves worse
control cost. The difference between the two algorithms turns
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Fig. 8. Mass flow rates, =N 7qst ( – continuous-valued NMPC, – nqNPC, – agqNPC).
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Fig. 9. Supply water temperatures, =N 7qst ( – continuous-valued NMPC, – nqNPC, – agqNPC).
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insignificant only for the highest number of quantization steps
=N 8qst . However, although the control cost increase might not be

significant, the difference in handling the oscillatory effects should
not be forgotten as documented in Fig. 10 which clearly shows that
the high-frequency portion of both the mass flow rate and the supply
water temperature signals is decreased by the agqNPC and brought
closer to the continuous-valued NMPC.

Last but not least, the computational complexity should be
mentioned. Since the naive quantization algorithm nqNPC involves
only a post-processing procedure to handle the quantization, vir-
tually no computational time increase compared with the con-
tinuous-valued NMPC is observed. In case of the advanced quan-
tization algorithm agqNPC, the mid-processing iteration causes a
constant average increase of the computational complexity
Δ = 0.28 sct representing about 6% of the average computational
time of the continuous-valued NMPC. Here, it should be high-
lighted that the computational complexity increase introduced by
the use of the agqNPC is independent of the number of quantiza-
tion levels Nqst which strongly distinguishes it from the commonly
used mixed-integer programming methods where the computa-
tional time rises very steeply even when using massive compu-
tational power (Causa et al., 2008; Geyer, Larsson, & Morari, 2003;
Lenstra, 1983; Pancanti et al., 2002).

Given the combination of less oscillatory and more economical
performance (compared with the naive quantization) and constant
trifling time complexity increase, it can be concluded that the
agqNPC is the better and more attractive choice for the industrial
application of control with discrete-valued input variables.

6. Conclusion

The task of advanced building climate control was formulated,
several ways how to solve it using model based predictive control
paradigm (namely linear MPC with ordinary linear model, non-
linear MPC and linear MPC with time-varying linear model) were

presented and chosen practically oriented aspects were discussed
in this paper.

Since the modeling and the estimation of the unknown para-
meters of the model structures is crucial for proper functionality of
the predictive controller, the first part of the paper was devoted to
the related problems. MRI method that is known to be the ap-
propriate choice for the identification for predictive controllers
with linear model was used for identification of the linear model
structure and furthermore, it was adapted for use in case of non-
linear model structures. With both presented variants of the
nonlinear MRI algorithm, models with good prediction properties
were obtained. Furthermore, a bridge between the nonlinear and
linear model structure was introduced by a switched linear ap-
proximated model (SLM). All identified models (linear model,
nonlinear model and SLM model) were tested on a series of ver-
ification data and the achieved results certified them for use
within the MPC scheme.

The next part of the paper covers the design of the predictive
controller. The algorithm for both linear and the nonlinear MPC
were provided. According to the specifications of the control sys-
tems presented in the Introductory Section, one of the manipu-
lated variables might not be set with infinite resolution. Therefore,
certain adaptations of the predictive controllers were necessary.
For the linear MPCs, the adaptation consisted only in change of
admissible post-processing values for mass flow rate and there-
fore, it was not discussed in the paper. However, the adaptation of
nonlinear MPC was more delicate. Out of the three possible op-
tions (use of mixed-integer programming, naive a posteriori
quantization and inclusion of mid-processing iteration into the
optimization routine), the first one was abandoned due to its high
computational requirements. While the naive a posteriori quan-
tization represents only another post-processing procedure, the
last option with the mid-processing iteration of the optimization
algorithm adapts the original continuous-valued optimization and
incorporates the information about the quantization directly into
the optimization routine.

All the presented controllers were compared with respect to
the pre-defined evaluative criterion based on the real-life re-
quirements and costs. The results demonstrate that although the
nonlinear continuous-valued predictive controller addresses the
minimization of the given evaluative criterion in the best way, it
was also quite time consuming. Therefore, the linear MPC ex-
ploiting the SLM model can be regarded as a reasonable trade-off
between the optimality of the solution and the time complexity of
the underlying optimization, especially in case of huge centrally-
controlled building complexes where the complexity of the opti-
mization task can be very high.

Table 5
Comparison of the energy cost.

Nqst NMPC nqNPC EInqNPC agqNPC EIagqNPC

3 66.8 85.6 28.1 78.1 17.0
4 66.8 80.2 20.1 73.6 10.2
5 66.8 76.1 13.9 72.5 8.5
6 66.8 75.2 12.6 69.0 3.3
7 66.8 72.4 8.3 67.6 1.2
8 66.8 67.5 1.0 67.1 0.4

Fig. 10. Frequency spectra of the optimized variables, =N 8qst ( – continuous-valued NMPC, – nqNPC, – agqNPC).
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The other part of the comparison was focused on evaluation of
the performance of the nonlinear controllers under the restrictions
on the discrete-valued nature of the mass flow rate. The provided
comparison shows that the advanced of the inspected methods
agqNPC is not only able to keep the economical aspects of the
control closer to standard of the original continuous-valued con-
trollers but also helps us to reduce the oscillations of the ma-
nipulated variables for the cost of a negligible constant time
complexity increase. Therefore, it can be suggested that the ad-
vanced agqNPC algorithm be used in practice instead of naive but
commonly frequently used a posteriori quantization.

Regarding the future work, it would be interesting to examine
the effect of incorporation of the persistent excitation condition
into the predictive controller procedure. Based on the available
literature, if the persistent excitation condition is included, more
informative data are obtained which then turns into a better
ability to estimate the model parameters accurately. The suggested
procedure should be compared with the advanced Kalman filter-
ing algorithms such as Extended or Unscented Kalman filtering.
Moreover, a procedure for the model parameter update should be
designed for the nonlinear model. Last but not least, based on the
performed numerical experiments the authors suggest the stra-
tegies be tested on a building in real operation.
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Chapter 5

MPC with Guaranteed Persistent
Excitation

In this chapter, the second contribution of the thesis (see Chapter 3) related to the per-
sistently exciting MPC is addressed. It starts with an explanation of fundamental results
for the standard MPC formulation given in Chapter 5.1. Than, an enhancement of the
algorithm tailored for zone MPC is discussed in Chapter 5.2 and finally, an adaptation for
predictive control for a class of nonlinear systems—namely bilinear systems— is presented
in Chapter 5.3.

5.1 Standard MPC

In the previous chapter, it has been shown that applying a proper identification proce-
dure, one can obtain a model suitable for the MPC even in case that the identification is
performed using imperfect identification data suffering from quantization, correlation or
strong noisiness. However, if more information can be “encoded” into data already when
gathering them (ideally by means of an inexpensive identification experiment), the model
identification process could be even further simplified and the resulting MPC performance
could be considerably improved. In this thesis, one of a variety of possible procedures
trying to accomplish this goal is provided. Apart from satisfying the classic MPC require-
ments, the presented MPC design ensures that the collected data are persistently excited,
which is particularly beneficial for the subsequent re-identification.

The author’s research devoted to this area started with the basic MPC formulation for
which two novel algorithms leading to a persistently exciting MPC were developed. Both
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of the designed methods are based on the following two-stage procedure:

1. In the first stage, the original MPC problem is solved which in case of the standard
MPC formulation consists in minimization of squared input effort and squared refer-
ence tracking error subject to input inequality (box) constraints. This can be solved
by any standard quadratic programming solver [Boyd and Vandenberghe, 2004].

2. The second stage aims at maximizing the future data informativeness quantified
by the smallest eigenvalue of the information matrix increase. This optimization is
performed in such a way that the original MPC performance corresponding to the
input sequence obtained in the previous step is not violated by more than certain
predefined value.

In total, three different variants of solving the optimization task formulated in the
second stage of the aforementioned procedure were provided:

• One-sample algorithm. This candidate for the second-stage optimization takes
advantage of the fact that the industrial MPC utilizes the receding horizon prin-
ciple1. Based on this, the smallest eigenvalue of the information matrix increase
calculated over an “excitation” horizon of M future steps is maximized, but only the
first input sample is considered free and available for optimization with the rest of
the input sequence being fixed and equal the original MPC input profile obtained in
the previous step. Thanks to looking into the M -step future, the ability to excite
also output directions is preserved and while the resulting optimization problem still
remains non-convex, its dimension reduces to a single one and its globally optimal
solution can be found executing a line search with reasonable time complexity. More
details were given in [A.13].

• Gradient algorithm. To find the whole input sub-sequence of length M maximiz-
ing the smallest eigenvalue of the future increment of the information matrix, an
algorithm based on the gradient search was designed. This approach benefits from
more degrees of freedom available for informativeness maximization and even though
finding the global optimum of the posed optimization task cannot be ensured, higher
values of the informativeness quantifier can be reached than with the one-sample

1At each time instant, an input sequence for the entire prediction horizon is computed, but actually
only the first input sample is applied to the system.
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approach. The price to be paid, however, is the corresponding increase in computa-
tional complexity and longer calculation times. This approach was presented in [A.1]
and [A.17].

• Semi-receding horizon principle algorithm. The last of the variants relies on
a relaxation of the feedback the MPC introduces by obeying the receding horizon
paradigm. The bottom line is as follows: having computed the input sequence op-
timizing the MPC cost function (stage 1), optimize M input samples with respect
to the provided excitation criterion and then apply the whole M -sample sequence.
Thanks to this relaxation, it is ensured that the inputs that are applied to the sys-
tem are indeed those chosen as optimal with respect to bringing enough information.
It can be argued that this might slightly degrade the closed-loop performance due
to loosening the feedback, but for stable systems with M � P (i.e. the excitation
horizon is much shorter than the prediction horizon, which holds in most cases),
the control performance is not harmed noticeably. This algorithm was introduced in
[A.17].

A more detailed description of the first two mentioned algorithms (one-sample algorithm
and gradient algorithm) including two comprehensive case studies and a comparison of
their results was published in [A.1] while the algorithm applying the semi-receding horizon
principle was presented in [A.17]. Both these papers are provided in the the original
formatting and follow starting on the next page.
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a  b  s  t  r  a  c  t

Model  Predictive  Control  framework  is currently  used  in  many  different  fields  of  expertise.  The  inherent
part  and very  often  also  the  main  bottleneck  is  the  model  of a process  used  for the  computation  of
predictions.

Due  to many  reasons  e.g.  ageing,  from  time  to time  there  exists  a  need  to adjust/re-identify  (if there
was  already  some  kind  of  a model-based  controller)  or to construct  a brand  new  model  (in other  cases).
Frequently,  the process  generating  the data  is  under  some  kind  of control,  imposing  thus  problems  when
classical  open  loop  identification  methods  are considered.  The  need  for  models  identified  from  the  data
gathered  in  a closed-loop  fashion  and  a request  for possible  re-identification  of the  model  parameters
lead  to  the  emerge  of  dual  control  where  the  problems  of control  and system  identification  are  addressed
simultaneously.

In this  paper,  we present  a new  algorithm  based  on the  persistent  excitation  condition  when  the
minimal  eigenvalue  of the  information  matrix  is  maximized  in order  to  have  sufficiently  exciting  optimal
control  signal  satisfying  the  control  requirements.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Advanced control algorithms based on a system model such as
Model Predictive Controller (MPC) have been a standard solution in
many different fields and industries such as process [1], chemical
[2], automotive [3,4], electronics [5] or even in so conservative field
as building climate control [6–10].

The MPC  possesses a number of advantages, e.g. it is able to
handle constraints, has a capability of controlling the multivariable
plants, incorporate model uncertainties, and moreover, it is easy to
tune [11,12]. The main bottleneck of this framework is the necessity
of a good mathematical model of the controlled process.

1.2. Closed-loop identification

It is a very frequent case that the data gathered for identifica-
tion come from the operation under feedback conditions. The other
usual case is a need for adaptive changes or the reconfiguration of
model parameters. Standard open loop identification techniques

∗ Corresponding author at: Department of Control Engineering, Faculty of Elec-
trical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Praha
6,  Czech Republic. Tel.: +420 22435 7689.
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samuel.privara@fel.cvut.cz (S. Prívara), matej.pcolka@fel.cvut.cz (M. Pčolka).

usually fail in providing the model with a reasonable quality which
could be subsequently used for predictive control. This is mostly
caused by the input-noise correlation or the input being insuffi-
ciently excited [13,14].

Closed-loop identification was  first introduced rather as a the-
oretical concept [15] but the motivation eventually changed [16]
with possible use of the model for optimization in some advanced
control technique [17]. There is a large amount of papers dealing
with the problem of closed-loop identification, see e.g. [18–20] and
especially nice overview of the whole range of possible approaches
by [21], where the closed-loop identification approaches are based
on (i) direct method in which the feedback is completely ignored
and just the standard estimation is employed; or (ii) indirect
method when a closed-loop system is identified using measure-
ments of the reference input rk and the output yk. The plant
model is retrieved using the known structure of the controller.
This approach, however, requires a linear feedback and is there-
fore improper to use when MPC  is considered; and finally, (iii) joint
input–output method which uses yk and uk as outputs and rk as
an input for identification. Such an augmented system makes it
possible to find an open loop model. A two-stage method [22] can
be readily used in case that the controller is linear, otherwise the
projection method [23] is available.

Later, the simultaneous control and identification formulations
became the objective of the research. The pioneering work [24,25]
showed that certain way  of control of a process enriches the
informative content of control input, improving thus subsequent
adjustments/re-identification of the model of that process. The so

0959-1524/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jprocont.2013.08.004
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called dual control (DC) concept when control and identification
problems are solved in parallel was introduced by [26]. However,
the problem is analytically unsolvable [27] and numerical algo-
rithms are usually computationally extensive [28–30]. One possible
approximation modifies the MPC  formulation such that the persis-
tent excitation (PE) condition becomes one of the MPC  constraints
[31,32]. Unfortunately, this formulation results in a non-convex
optimization task as well. Another approach presented in [33] util-
izes the MPC  with the receding horizon (RH) and the non-convex
optimization is reformulated resulting in two quadratic program-
ming (QP) tasks. The full regressor in this approach is replaced
by inputs only leading to a poorer excitation in directions corre-
sponding to the outputs. A partial solution was proposed by [34]
where the maximization of the information matrix increment is
considered such that the performance does not deviate from the
original MPC  by more than certain predefined bound, however,
this approach leads again to a non-convex optimization. Moreover,
the formulation is effective only for those single input single out-
put (SISO) systems which are of the first order with autoregressive
external input (ARX) model structures.

1.3. Contribution of the paper

In this paper, we introduce an algorithm which modifies the
standard MPC  formulation with RH to enable the effective incorpo-
ration of the PE condition. Compared to the current solutions, the
presented algorithm is faster and enables identification of more
complex systems.

It comprises two stages. In the first stage, a constrained opti-
mization problem is solved providing thus the explicit solution to
the second stage. The PE condition is included into the MPC  crite-
rion in the form of the maximization of the minimal eigenvalue of
the information matrix increase. The optimal input u maximizes
the information matrix increase and guarantees that the value of
control criterion stays within the pre-defined range. An efficient
implementation solving the DC problem is provided as well.

1.4. Organization of the paper

The paper is structured as follows. The formulation of a typical
MPC  problem is introduced in Section 2. Section 3 reviews the prob-
lem of the PE condition and its specifics within the DC framework.
The key part of the paper is presented in Section 4 where the for-
mulation of the maximization of the information matrix (MIM4DC)
algorithm is provided. Moreover, a numerical algorithm GNA4DC
being an alternative to the algorithms presented in the literature is
proposed in this section. The case study in Section 5 demonstrates
the properties of the MIM4DC algorithm and compares it to the
numerical algorithm GNA4DC while the last section concludes the
paper.

2. Problem formulation

In the following, we will formulate models used for the sub-
sequent control problem, namely the standard ARX and the state
space models.

2.1. Models used within the MPC  framework

In the rest of the paper, we will use ARX(na, nb, nd) for the ARX
model

yk = −
na∑

i=1

aiyk−i +
nb∑

i=1

biuk−nd−i+1 + εk (1)

with na, nb and nd denoting numbers of lagged inputs and outputs
and the relative delay of the outputs w.r.t. the inputs, respectively
and yk, uk and εk referring to the system output, input and white
zero-mean Gaussian noise sequences. The predictor for parameters
estimation in Eq. (1) can be written as:

yk|k−1 = ZTk �̂, (2)

with the parameters � = [b̂nd , . . ., b̂nb , −â1, . . .,  −âna ]
T

and regres-

sor Zk = [uk−nd , . . .,  uk−nb , yk−1, . . .,  yk−na ]
T and yk|k−1 denoting one

step-ahead predictions in time k based on information up to time
k − 1. Representation (1) is equivalent to the well-known state-
space description [35]

xk+1 = Axk + Buk + Wwk,

yk = Cxk + Duk + wk,
(3)

where k is the discrete time, x ∈ Rn, u ∈ Rm, w ∈ Rv, y ∈ Rp and A, B, C,
D, W are the matrices of appropriate dimensions.

2.2. Formulation of the control problem

The typical formulation of the MPC  can be readily expressed as
follows

JMPC,k =
P∑

i=1

∥∥∥Q (yk+i − yref
k+i)

∥∥∥
2

2
+
∥∥Ruk+i

∥∥2

2

s.t. : linear dynamics (3),

xk = xinit,

umin
k+i ≤ uk+i ≤ umax

k+i ,

�umin
k+i ≤ �uk+i ≤ �umax

k+i .

(4)

with yref
k

specifying the reference trajectory, Q and R are the control
algorithm tuning matrices of the appropriate size and P is the pre-
diction horizon. Formulation (4) can be readily solved by commonly
available solvers.

The classical MPC  is usually used with the receding horizon
(RH) where at each time step k, the optimization task (4) is solved,
that is, the optimal input sequence on the horizon P is computed,
however, only the first sample uk is applied and the procedure
is repeated. This formulation ensures constraints satisfaction and
attractive performance compared to the alternative methods. The
bottleneck of the approach is its dependence on the model qual-
ity (here, the model refers to a mathematical description of the
system used by MPC  to obtain the future predictions), i.e. its abil-
ity to predict the future behavior of the controlled process. In
many cases, it is necessary to re-identify model parameters. As
the data are gathered from the real operation—from the process
which is under control—the commonly used identification methods
fail, mostly due to the input-noise correlation and/or insufficient
excitation.

The insufficient excitation is problematic and especially urgent
when the reference changes slowly (causing a very low information
content of the data). One possible approach to tackle this problem in
the MPC  framework is to include the PE condition into the cost func-
tion (4). If the PE is guaranteed, the input-noise correlation problem
is partly solved. The input-noise correlation has an influence on
the accuracy of the identified parameters as well, i.e. the accuracy
of the estimation depends on the signal-to-noise ratio (SNR). In
the following, we will discuss the problem of incorporating the PE
condition into the MPC  cost function.
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3. Persistent excitation condition within the dual control
problem

In the current paper, we consider the model-based control
approaches when a model-plant mismatch has direct consequences
on the quality of predictions causing thus control performance
degradations. The use of the closed-loop (CL) system identification,
i.e. identification with the running controller, can lead to a better
model [34]. On the other hand, to apply this approach, a sufficiently
informative input (PE condition) is required, which unfortunately
can not be attained by a standard formulation (e.g. Eq. (4)) of the
control problem. DC is an approach that formulates identification
and control problems in a unified manner. Unfortunately, the DC
problem can not be (in general) solved analytically [27].

There is a number of approximative solutions and some of them
are based on the PE condition. As the new algorithm presented in
this paper is based on the PE condition, a short introduction is pro-
vided here. Considering the model given by Eq. (2), the increment of
information matrix from the time k to the time k + M can be written
as:

�Ik+M
k

=
k+M∑

t=k+1

ZtZ
T
t . (5)

Then, the PE condition can be formulated in the following form:

�Ik+M
k

≥�I > 0 (6)

where � is a scalar specifying the level of the required excitation,
I is a unit matrix of corresponding dimensions. The most straight-
forward solution is to include the condition (6) as one of the MPC
constraints (4). This approach, however, suffers from several draw-
backs, e.g. Eq. (6) comprises the output predictions (besides the
inputs) which are problematic to formulate within Eq. (4). One
way how to solve this problem which can be found in the avail-
able literature [36,37] is to use the following approximation of the
information matrix increase:

�Ĩk+M
k

=
k+m∑

t=k+1

 t 
T
t (7)

with  t = [ut−nd · · ·ut−nb ]T. This approximation, unfortunately, does
not ensure PE in every direction and leads to a biased estimate of
parameters a1, . . .,  ana in �. Note that Eq. (7) introduces a quadratic
matrix inequality which can be transformed into a linear matrix
inequality [32] and then, a semi-definite programming task can be
solved.

Yet another approach by [33] utilizes the MPC  with RH. The
non-convex optimization problem is thus significantly simplified.
At each time step, only the first sample of the computed input
sequence is applied and therefore, it is possible to replace a semi-
definite program with a doubly solved QP problem. This approach,
however, suffers from a few disadvantages caused by the very
obscure formulation of the problem as it does not consider the fact
that the applied u influences the information brought by the future
system outputs. Omitting the rest of the input sequence, the exci-
tation is aggressive in a few short segments and it is effective in one
direction only which perturbs the results of the original MPC formu-
lation. An alternative solution was proposed by [34]. This approach
consists of a two-step procedure where in the first step, the clas-
sical MPC  problem Eq. (4) is solved. In the second step, the task of
the maximization of the information matrix increase is solved such

that the performance does not deviate from the original MPC by
more than certain predefined bound as follows:

U∗ = argmax
U

�

s.t. : �Ik+M
k

≥�I,
JMPC,k(U∗) ≤ J∗

MPC,k
+ �J,

umin
k

≤ uk ≤ umax
k
,

�umin
k

≤ �uk ≤ �umax
k
,

(8)

where �J  specifies the maximum allowed increment of the original
MPC  cost function (4). Compared to the previous approaches, this
one has one huge advantage: here the tuning parameter is directly
the allowed perturbation—its choice is simpler than the choice of
the required excitation level � . This increase can be (depending on
Q and R) simply transformed into control costs increase and/or the
reference deviation which is advantageous especially in practical
applications. The next indisputable advantage is the fact that in
this formulation, the real information matrix increase �I  is han-
dled directly instead of its approximation �Ĩ which enables to
optimize the excitation in the output directions as well. However,
the main drawback of this approach is the fact that the optimiza-
tion task solved in the second step is non-convex and search for
the global optimum is very time consuming. The authors of [38]
used so called ellipsoid algorithm to solve the optimization task
(8). This algorithm is based on the idea of constraining the smallest
eigenvalue of the inverse of the information matrix from above by
a specific quadratic form. As the authors note, the disadvantage of
this approach is the fact it can be effectively used only for systems
of lower orders.

4. Algorithms for maximization of information matrix

The new algorithm for solving the DC problem is proposed here.
This approach comes out of the one provided by [34], however, it
makes the original algorithm more effective, less time consuming
and also able to cope with higher order systems.

First, let us remark that the industrial MPCs usually work with
RH repeating the optimization procedure from the beginning at
each step of the iterations using the current measurements which
brings the desired feedback into the concept. Trying to solve the
optimization task (8), the authors of [38,34] optimize k + M ele-
ments of the input sequence to maximize the information matrix
increase. However, as only the first element of the calculated
sequence is to be applied, the actual information matrix increase
might not correspond to the one calculated by their algorithm.

In the current paper, we extend the mentioned algorithm such
that we  only look for the uk element and next elements of U are
the same as calculated by the MPC. This adaptation enables us to
reduce the complex non-convex problem into a one-dimensional
optimization which can be effectively solved via exhaustive search.
Assuming that the remaining elements of the U sequence are close
to those calculated by the MPC, this formulation leads to a better
algorithm performance.

In the following, the proposed algorithm is described in more
detail in Section 4.1. Then, a numerical solution to the problem (8)
is presented in order to compare the presented algorithm with the
original formulation from [34].

4.1. MIM4DC algorithm

Now, the MPC-based procedure solving the DC problem can
be formulated. After choosing proper values of �J and M,  the
two-stage MIM4DC algorithm is able to solve the problem of
the sufficient excitation in all directions at the cost of minimal
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perturbation of the original MPC  cost function (4). This solution
outperforms the existing algorithms. Detailed description of both
stages of MIM4DC follows.

4.1.1. Stage I
In the first stage, the optimization task (4) is solved

resulting into the optimal control sequence U∗
MPC =

[uMPC,k uMPC,k+1 · · · uMPC,k+P]T. Then, the cost function
J∗
MPC,k

= JMPC,k(U∗
MPC ) is evaluated and its value becomes the

threshold for the second stage. Afterwards, the maximal allowed
�J  perturbation is chosen. In order to solve the maximization of
the information matrix increment easily, it is possible to rewrite
the constraint JMPC,k(U) ≤ J∗

MPC,k
+ �J  into a form Umin ≤ U ≤ Umax.

Recall that only the first element uk of U is applied. Only u∗
k

instead
of U∗ is needed and the rest is fixed as:

u∗
k+i = uMPC,k+i for i ∈ {1, · · ·, M − 2}. (9)

Now, the constraints JMPC,k(U) ≤ J∗
MPC,k

+ �J  can be transformed

into umink ≤ uk ≤ umaxk , where umaxk and umink are the values for which
the cost function JMPC,k reaches values J∗

MPC,k
+ �J  assuming that

Eq. (9) holds. It could appear that the following matrix quadratic
equation needs to be solved:

1
2
UTHU + jU − (J + �J)  = 0, (10)

in order to obtain umink and umaxk . In Eq. (10), H is a symmetric positive
definite P × P matrix and j is a row vector of length P, obtained by
rewriting the MPC  formulation (4) into the quadratic programming
problem [39].

However, realize that due to Eq. (9), all the elements of U except
for uk are known, the following simple scalar quadratic equation
can be solved instead of Eq. (10):

au2
k + buk + c = 0, (11)

where

a = 1
2
hk,k,

b = 1
2

P−1∑

i=1

uMPC,k+ih1,k+i + jk,

c =
P−1∑

i=1

uMPC,k+ijk+i +
1
2

P∑

j=k

P−1∑

i=1

uMPC,k+ihk+i,j − (J + �J).

(12)

Symbol hm,n refers to the element of H in the m-th row and in the
n-th column. umink and umaxk are then found as the roots of Eq. (11). In
order to satisfy constraints given by Eq. (4), the found constraints
umink and umaxk should be compared with the original constraints
umax
k

and umin
k

. Finally, the constraints to use in the second stage are
computed as follows:

ũmaxk = min{umaxk , umaxk }, (13)

ũmink = max{umink , umink }. (14)

The process of looking for ũmax
k
, ũmin
k

is depicted in Fig. 1.

4.1.2. Stage II
The goal of the second stage is to find u∗

k
that ensures the best

excitation in all directions by the maximization of the information
matrix increment (8). ũmax

k
, ũmax
k

obtained in the first step are used
to restrict the perturbation of the original MPC  cost function (4). It is
possible to formulate the maximization of the information matrix
increment as the minimal eigenvalue maximization. The general
problem (8) can be then formulated as the following simple task:

u∗
k

= arg max
uk

(
�min

(
�Îk+M

k

))

s.t. : ũmin
k

≤ uk ≤ ũmax
k
,

uk+i = uMPC,k+i, for i ∈ {1, · · ·,  M − 2}.

(15)

Note that M < P + 1. To make Eq. (15) unambiguous, Ẑt is defined
as follows:

Ẑt =
[
ut−nd · · · ut−nb y˛t−1 · · · y˛t−na

]T
, (16)

where

y˛t =
{
ŷt|k−1 if t > k − 1,

yt if t ≤ k − 1.
(17)

It follows that ŷt|k−1 is in the form of Eq. (2) with Eq. (16).
The remaining issue is to solve this non-convex optimization

problem for which it is generally difficult to obtain a global opti-
mum.  However, given the optimization task reformulated as a
one-dimensional optimization on a bounded interval and a con-
strained solution from above and below Uadd = {u∗

k
: ũmin
k

≤ u∗
k

≤
ũmax
k

}, the most straightforward approach is to search through the
whole interval Uadd. This is usually not that demanding from the
computational time point of view as the tightness of the boundaries

Fig. 1. Search for ũmin
k

and ũmax
k

.
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of u∗
k

rise (the computational demand decreases) with the decrease
of the maximal allowed perturbation �J.  Additional computa-
tional relaxation can be achieved by choosing a proper sampling
of the admissible input set Uadd, which can be easily accomplished
considering the resolution of the sensors measuring u in practical
applications.

In case of higher significance of the PE compared to the perfor-
mance quality given by Eq. (4), the maximal allowed perturbation
�J is larger and the computational cost of the search grows. In
that situation, the following hint for the search of u∗

k
is suggested.

Consider Uadd: in such case, it undoubtedly holds that the small-
est eigenvalue of the matrix rises towards the boundaries of the
interval (Uadd, ±∞). Thus, if the chosen �J  is sufficiently large and
the interval Uadd is sufficiently broad (which does not necessar-
ily mean it is infinite), the boundary values of the interval ensure
maximization of the minimal eigenvalue of the information matrix
increment.

This property can be explained intuitively (for sufficiently large
Uadd) as well. As the MPC  drives the system into a certain stationary
point where the information increase is minimal, the input maxi-
mizing the information increase corresponds to the boundary value
that is farthest from the optimal value computed by the MPC.

4.2. Gradient Numerical Algorithm for Dual Control (GNA4DC)

In this subsection, the numerical solution to the problem Eq.
(8) is described. The algorithm GNA4DC is based on the classical
gradient approach which is well known in the area of numerical
optimization [40].

The initialization of this algorithm is quite similar to the ini-
tialization of the previously mentioned MIM4DC algorithm. First
of all, the optimization task Eq. (4) is solved and the opti-
mal  input sequence U∗

MPC = [uMPC,k uMPC,k+1 · · · uMPC,k+P]T and the
corresponding MPC  cost function value J∗

MPC,k
= JMPC,k(U∗

MPC ) are
obtained. The first M samples of the input sequence U∗

MPC are further
used as the initial guess U0 for the gradient search while the corre-
sponding MPC  cost function value J∗

MPC,k
serves as the constraint in

the further procedure.
Basically, the main idea of this numerical algorithm can be for-

mulated as follows: at each sampling instant k, we are looking for
such input sequence that the amount of provided information con-
tained in the corresponding input/output data is maximal while the
behavior of the original MPC  should not be degraded of more than
�J. To examine this amount, the smallest eigenvalue of the infor-
mation matrix increase is inspected. Then, assuming a performance
criterion J = �min being the smallest eigenvalue of the information
matrix increase, the optimal input sequence U∗ maximizing this
criterion,

U∗ = arg max
U

(
�min

(
�Îk+M

k

))
(18)

can be found iteratively starting from an initial guess U0. The itera-
tive procedure can be explained as a search in the direction of the
gradient of the performance criterion �min and mathematically, it
is formulated as:

Ui+1 = Ui + ˛∇�min. (19)

Here,  ̨ is the gradient search step and ∇�min stands for gradient of
the �min with respect to the optimized sequence U.  The algorithm
is terminated if the improvement of the optimized criterion �min is
less than a chosen tolerance. Last but not least, let us note that as
the initial guess U0, the corresponding subsequence of the optimal
input calculated by the original MPC  is used.

Regarding the convergence and performance quality, both the
choice of the search step  ̨ and calculation of the gradient ∇�min
are of crucial importance. Firstly, the gradient of the optimization

criterion might be sometimes very difficult to calculate analytically
which requires alternative ways of its computation. Secondly, even
the already calculated gradient is valid only in a small region in the
multidimensional space of the samples of the optimized sequence
U around the “operating point” at which it was calculated. In the
current paper, both these aspects are taken into consideration and
a simple yet very effective solution is proposed.

First of all, let us recapitulate the optimization task which is to
be solved: we are looking for such input sequence U which maxi-
mizes the smallest eigenvalue �min of the information matrix (being
the quality criterion for this optimization task) while the MPC  cost
function perturbation is smaller than a pre-defined value and the
original input constraints are satisfied. Mathematically, this task
can be formulated as follows:

U∗ = arg max
U

(
�min

(
�Îk+M

k

))

s.t. : Umin ≤ U ≤ Umax,

JMPC (U∗) ≤ J∗
MPC,k

+ �J,

(20)

M is the number of input samples that can be optimized.
It has been already mentioned that the analytical calculation

of the gradient ∇�min of the quality criterion might be very cum-
bersome and this is exactly the case of the maximization of the
smallest eigenvalue. Instead of analytical calculation, a numerical
alternative is proposed as follows:

Let us assume that at each iteration i of this algorithm, the
starting (unperturbed) input sequence uunp represents the input
sequence found at the end of the previous iteration and its appli-
cation to the system results in the information matrix with the
smallest eigenvalue �min,unp. Here, we  recall that the smallest
eigenvalue is directly the optimized performance criterion in this
optimization task. At every iteration, each of the input samples (one
by one) ul can be perturbed with some set of additive perturba-
tions �AP being a set of multiples of a chosen least perturbation
step LPS. Then, a set Sl of the input vectors can be created rep-
resenting a group of such input vectors [u1, u2, . . ., u�

l,q
, . . .,  uM]1

where the l-th sample u�
l,q

= ul + �ap,q is perturbed with certain
perturbation �ap,q from the chosen set. In this application, the set
of perturbations �AP = {�ap,q} is considered as follows:

�AP = {[−20, −4, −2, −1, 0, 1, 2, 4, 20] × LPS}.

Let us note that the rest of the input samples remains unchanged
(equal to their values in the starting input sequence uunp). Then,
assuming particular Sl, the set of smallest eigenvalues �l result-
ing from application of each vector from the group Sl to the system
can be calculated. Here, the superscript l refers to the position of the
perturbed input sample. In our case, the set �l has 9 members, each
of them corresponding to particular perturbation element from the
set �AP while the middle member (corresponding to �ap,5 = 0) is
in fact equal to the “unperturbed” smallest eigenvalue �min,unp and
therefore, it is not necessary to evaluate it once again at that itera-
tion.

Having done this, it can be seen that considering particular l
the changes of the smallest eigenvalue are caused only by the per-
turbation of the l-th input sample ul and therefore, the obtained
values of �l can be used to approximate �l as a piecewise polyno-
mial function of the input perturbation � using spline interpolation
technique,

�l = sl(�).

1 Here, M is the number of the input samples that can be optimized.
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As the explanation of the principles and the practical realization
of the spline interpolation is beyond the scope of this paper, inter-
ested readers are referred to [41]. The piecewise polynomial nature
of the spline interpolation can be used with advantage to find such
value of perturbation �∗

ap for which the improvement of the small-
est eigenvalue is maximal. Note that this extreme point might not
belong to the original set �AP, however, it should be searched for
only within the interval 〈 min(�AP), max(�AP)〉. The mentioned
spline interpolation and subsequent choice of the extreme point
can be performed for each position l of the perturbed input sam-
ple and the obtained perturbation values �∗,l

ap can then be stored in

a vector G = [�∗,1
ap , �∗,2

ap , . . .,  �∗,M
ap ]. The vector G has a very inter-

esting property – as it was chosen as a set of extreme points for
various position l of the perturbed input sample, it can be directly
substituted for the expression  ̨ ∇ �min in the iterative procedure
Eq. (19) which is then changed as follows:

Ui+1 = Ui + Gi. (21)

Here, the subscript i in Gi refers to particular iteration of the iterative
procedure.

In order to satisfy the input constraints, a simple projection of
the input profile on the admissible interval is performed,

Ui+1 = max(Umin, min(Umax, Ui + Gi)) (22)

ensuring that at each iteration i, the values of the samples of input
profile lie within the acceptable interval 〈Umin, Umax〉.

The constraint for the original MPC  cost function violation are
handled evaluating also the MPC  cost function JMPC (Ui) at every
iteration i of this iterative gradient search algorithm and comparing
it to the maximal allowed perturbation �J.  If at certain iteration i
such situation occurs that the current MPC  cost function JMPC (Ui) is
higher than J∗

MPC,k
+ �J,  the iterative gradient search algorithm is

terminated. By choosing sufficiently small least perturbation step
LPS → du and by assuming continuous and smooth dependence of
the original MPC  cost function violation on the change of the input
samples, the MPC  cost function violation constraint is effectively
and satisfactorily handled using this approach.

Last of all, let us mention that unlike the algorithm proposed
in [38], GNA4DC algorithm is able to solve the task of information
matrix maximization for arbitrarily large systems and is therefore
more general and applicable than the mentioned one.

5. Case study

First we provide the comparison of MIM4DC, GNA4DC and clas-
sical MPC  algorithms and discuss the choice of settings on a simple
example. Second, we introduce an example representing the sys-
tem with varying parameters to demonstrate the ability of the
MIM4DC algorithm to perform well in the role of an adaptive con-
troller which can handle the change of the system parameters while
satisfying the required control performance.

5.1. Scholar example

To show the basic properties and to demonstrate the perfor-
mance of the MIM4DC, a simple SISO system with ARX structure
was chosen

yk = ZT
k
� + �k

yk = 0.01uk−1 + 0.0008uk−2 + 0.00087uk−3 + 0.996yk−1

+ 0.36yk−2 − 0.376yk−3 + �k

(23)

with y, u, � being output, input and white noise sequences. In fact,
this example was not chosen arbitrarily as it mimics a simplified
heat transfer model between the heating medium and zone air in

a one-zone building with the constant ambient temperature and
sampling period Ts = 15 min.

This model is used for the design of the controller implemented
within the MPC  framework with the objective of minimizing sup-
plied energy (temperature of the heating medium u) and satisfying
thermal comfort (to keep the output y as close to reference value
as possible). Following Eq. (4), the MPC  cost function is formulated
as

Jk =
P∑

i=1

∥∥∥Q (ŷk+i − yref
k+i)

∥∥∥
2

2
+
∥∥Ruk+i

∥∥2

2
(24)

subject to

linear dynamics (3)

20 ◦C ≤ uk+i ≤ 55 ◦C,

−1 ◦C ≤ �uk+i ≤ 1 ◦C,

(25)

where the required outputs yref are generated in accordance with
the seven-day schedule with night and weekend setbacks:

yref = 22 ◦C, work days 8 : 00 am − 6 : 00 pm

yref = 20◦C, weekend, holidays 6 : 00 pm − 8 : 00 am.
(26)

The chosen prediction horizon P = 60 steps corresponds to 15 h
(Ts = 15 min). Weighting matrices are Q = 1000 and R = 1. Initially,
the closed loop data with length N = 10000 was generated control-
ling the system Eq. (23) with noise variance �e = 0.015 using the
MPC  described earlier. Note that in order to get closer to the real
situation and to simulate the model inaccuracy, the model of the
system used by MPC  did not fully correspond to the real model
Eq. (23) but it was slightly changed â1 = −0.99, â2 = −0.359, â3 =
0.372, b̂1 = 0.01, b̂2 = 0.00079, b̂3 = 0.0009. The same set-up is
used also for MIM4DC for several tuning parameter settings M = 6,
. . .,  12 and �J  = 60, 80, 100 and for parameter settings M = 6, . . .,  12 a
�J = 80, 100, 120. These choices of �J  were picked up intentionally
to obtain controllers with the closest settings as in both algorithms,
the choice of �J  is of different meaning - while in case of MIM4DC,
the whole maximal perturbation �J is caused only by uk, in case of
GNA4DC is this perturbation divided amongst all M input samples.
Let us remark that we  intentionally chose M such that M ≥ na + nb as
if M < na + nb then na + nb − M eigenvalues of the information matrix
increase �Ik+M

k
are equal to zero as we sum M multiplications vvT

where v is a vector (na + nb) × 1.
All three algorithms MPC, MIM4DC and GNA4DC were then

compared from two points of view. The first factor we were inter-
ested in was how well the particular algorithm satisfied the control
performance defined by the cost function JMPC. Here, we  inspected
both the average reference tracking error ey = 1

N

∑N
k=1|yk − yref

k
|

and the energy consumption of both MIM4DC and GNA4DC com-
pared to the classical MPC. The energy consumption comparison is
expressed as

IE =
∑N

k=1u
2
M,k∑N

k=1u
2
MPC,k

(%), (27)

where uM,k stands for the input generated by one of the proposed
algorithms for dual control with tuning parameter M.  Finally, we
evaluated also the overall increase of the cost function for the cases
of the proposed algorithms compared to the original MPC  which we
expressed using the following relations.

Let us consider the overall value of the cost function over the
whole experiment:

Jres = 1
N

N∑

k=1

∥∥∥Q (yk − yref
k

)
∥∥∥

2

2
+
∥∥Ruk

∥∥2

2
. (28)
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Table  1
Results for MIM4DC with different parameter settings.

�J  = 60 �J = 80 �J  = 100

ey Ie(%) �J  �min(�IN1 ) qe ey Ie(%) �J  �min(�IN1 ) qe ey Ie(%) �J  �min(�IN1 ) qe

M = 6 0.089 0.93 21.4 1.26 669.1E−9 0.098 1.21 28.1 1.61 172.2E−9 0.097 1.57 34.9 1.92 804.3E−10
M  = 7 0.078 1.07 20.3 1.30 146.5E−10 0.082 1.42 27.1 1.62 220.3E−8 0.088 1.83 34.0 1.94 256.7E−10
M  = 8 0.074 1.21 21.6 1.47 120.1E−8 0.076 1.64 28.5 1.86 725.8E−9 0.081 2.06 35.3 2.27 855.9E−9
M  = 9 0.077 1.19 21.6 1.23 279.9E−8 0.081 1.57 28.8 1.48 815.3E−9 0.086 1.92 35.8 1.65 260.1E−9
M  = 10 0.079 1.14 22.4 0.90 947.7E−10 0.084 1.57 29.2 1.08 874.7E−10 0.088 1.92 35.9 1.28 535.2E−9
M  = 11 0.080 1.14 22.7 0.94 990.5E−11 0.085 1.57 30.1 1.10 147.3E−8 0.090 2.00 37.3 1.30 140.6E−9
M  = 12 0.076 1.21 22.8 1.03 648.5E−9 0.081 1.64 30.2 1.21 669.2E−9 0.086 2.06 37.5 1.44 645.8E−9

MPC  0.068 0.00 0.0 0.28 240.0E−5 0.068 0.00 0.0 0.28 240.0E−5 0.068 0.00 0.0 0.28 240.0E−5

Then,

�J  = Jres,MPC − Jres,M (29)

where the subscript MPC  specifies the value of the cost function
of the original MPC  while the subscript M denotes the particular
setting of the dual control algorithm (MIM4DC or GNA4DC).

Besides the evaluation of the control performance satisfaction,
we are also interested in how much information contains the data
and if it is possible to identify the parameters well. To evaluate the
information content of the data generated by the respective algo-
rithms, the smallest eigenvalue of the information matrix increase
is taken and evaluated at each k (denoted as �min(�IN1 )). In fact, by
this parameters we measure how well are we able to identify the
parameters with the worst identifiability. In order to measure how
the amount of gathered information improves the identifiability of
the particular parameters, we introduce qE expressing the quality
of parameter estimation as follows:

qE = (E(	̂) − �T
0)S(E(	̂) − �T

0)
T
, (30)

where

S = 1
n − 1

(	̂ − E(	̂))
T
(	̂ − E(	̂)) (31)

is a sample covariance matrix. Here, 	̂ = [�̂1 . . . �̂n]
T
. Parameters

�i specify identified parameters from i-th set of data and n is the
number of identified models.

Before summing-up the results, recall that the main objective
is to acquire (provided by the controller) data with a rich infor-
mation content while not to deteriorate control by more than the
predefined value.

Tables (1) and (2) compare the behavior of the classical MPC,
MIM4DC and GNA4DC for various settings. Looking at the energy
consumption, it can be observed that both dual control algorithms
consume slightly more energy than the classical MPC, however,
the energy consumption increase Ie stays within 0.5–2% depending
on the current setting. For the reference tracking, one can observe
the same result being a negligible aggravation in case of each of the
dual control algorithms. However, the most important factor in this

comparison is the satisfaction of the sufficient excitation require-
ment. The outcome is that both proposed dual control algorithms
provide data which are much more excited than those provided
by the classical MPC  for all the settings. While for the classical
MPC, �min((�IN1 )) is approximately 0.28, it is 4–8 times higher with
the dual control algorithms. The superior ability of MIM4DC and
GNA4DC to identify parameters � accurately is demonstrated by
qE which measures inaccuracy of the estimation – this value is
significantly lower for an arbitrary setting of these algorithms.

The next phenomenon that can be observed is that increasing
�J, both dual control algorithms consume more and more energy
(measured by Ie) and this is accompanied by the increase of deliv-
ered information. This was of course expected as increase of �J
basically offers more freedom for excitation which is reflected by
the data of higher quality. The next interesting thing is the compar-
ison of the dual control algorithms—the novel MIM4DC algorithm
utilizing RH nature on one hand and the numerical algorithm as
an alternative solution to the algorithm presented in [38]) on the
other. From Tables (1) and (2), it can be seen that MIM4DC usually
consumes slightly more energy, has a little bit higher tracking error
and thus, it perturbs the MPC  cost function with higher �J.  How-
ever, this slightly worse control performance is almost negligible.
On the other hand, comparing the data excitation and the subse-
quent ability to identify the system parameters, MIM4DC algorithm
clearly proves its superiority as the values of qe expressing the inac-
curacy of the estimates are usually of one order lower than in the
case of the GNA4DC.

We are ready to show both the comparison of the estimated
parameters of the models identified from the data using the dual
control algorithms and the classical MPC  with the real system
parameters from Eq. (23). We  also add the comparisons of the
step responses of all these models. We chose such settings of dual
control algorithms for which both perturb the original MPC  cost
function equivalently. For GNA4DC we chose �J  = 120 and M = 8
and for MIM4DC �J  = 60 and M = 10. Both dual control algorithms
result in estimated models that are much closer to the real ones
than those identified from the data provided by the classical MPC
(see Fig. 2 and 3).

Table 2
Results for GNA4DC with different parameter settings.

�J  = 100 �J  = 120 �J  = 140

ey Ie(%) �J  �min(�IN1 ) qe ey Ie(%) �J  �min(�IN1 ) qe ey Ie(%) �J  �min(�IN1 ) qe

M = 6 0.074 0.45 8.9 0.91 441.5E−8 0.076 0.53 10.6 1.03 501.6E−8 0.076 0.61 11.4 1.11 405.2E−8
M  = 7 0.071 0.92 15.6 1.18 423.6E−9 0.071 1.09 18.6 1.34 116.2E−8 0.071 1.26 20.4 1.50 788.6E−8
M  = 8 0.065 1.20 18.6 1.70 367.6E−8 0.066 1.46 22.6 2.04 148.9E−9 0.067 1.66 25.5 2.27 249.1E−8
M  = 9 0.068 1.00 16.6 1.39 305.0E−9 0.068 1.17 18.6 1.55 154.6E−8 0.069 1.38 21.8 1.77 184.1E−8
M  = 10 0.068 0.77 12.6 0.95 107.4E−8 0.068 0.92 15.6 1.07 736.3E−8 0.068 1.04 16.8 1.15 280.5E−8
M  = 11 0.073 0.76 13.6 0.82 725.9E−8 0.074 0.93 16.6 0.96 800.2E−8 0.075 1.07 18.7 1.05 251.9E−8
M  = 12 0.070 0.78 12.9 1.25 711.8E−8 0.071 0.93 15.6 1.44 168.9E−8 0.070 1.09 17.4 1.62 991.7E−9

MPC  0.068 0.00 0.0 0.28 240.0E−5 0.068 0.00 0.0 0.28 240.0E−5 0.068 0.00 0.0 0.28 240.0E−5
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Fig. 2. Comparison of the identified parameters. Black cross – true values, blue squares – clasical MPC, red triangles – GNA4DC M = 8 �J = 120, green rings – MIM4DC
M  = 10 �J  = 60. (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of the article.)
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Fig. 3. Step plots of identified models, blue – true system, red – estimated models. (For interpretation of the references to color in this figure legend, the reader is referred
to  the web version of the article.)

Table 3
Time consumptions of algorithms [s] (M = 9).

�J  60 80 100
MIM4DC 0.054 0.058 0.060

�J  100 120 140
GNA4DC 2.24 2.59 3.72

MPC  0.039

Following the discussion above, it should not be a surprise that
given the same perturbation of the original cost function, MIM4DC
is able to provide data which enable even more accurate estimates
than GNA4DC (see Figs. 3 and 2). Realize that besides the fact that
MIM4DC slightly outperforms the GNA4DC (as an alternative to
the algorithm presented in [38]), it brings also other advantages as
it performs exhaustive search over a small set of values which in
this case is easy to implement and is computationally time-friendly
while ensuring that the global optimum is always found.

In the Table 3, we present the average duration of one run2 of
the particular algorithm for M = 9 (this setting was chosen because
it is in the middle of the considered scale) and for various �J.  It
shows that while one iteration takes approximately 60 ms  in the

2 The simulations were performed on a computer with 2.4 GHz CPU.

case of MIM4DC (which is the same value as the duration of one
iteration of the classical MPC), the duration is approximately 3 s
in the case of GNA4DC. From the Table 3, it can be seen that the
computational complexity of the algorithms rises with increasing
�J which is quite natural as the space to be explored gets wider as
well.

The next advantage of MIM4DC is that except for M and �J, no
other additional parameters need to be specified. This is not the
case of GNA4DC algorithm, where (except for M and �J) besides
the LPS parameter (which can be chosen the same for all the
excited/optimized input samples), also the whole perturbation vec-
tor (namely the multiples of LPS) needs to be chosen. On one hand,
by increasing the density and extent of the perturbation vector,
a better spline approximation can be found, on the other hand,
the duration of the optimization per one sampling period gets
increased as well. The question that could come into one’s mind is
what is the “best” choice of the tuning parameters of the algorithm
M a �J. Unfortunately, in neither case it can be said explicitly what
are the rules for the “best” choice. It has been already mentioned
that M < na + nb is not suitable at all. Of course, the algorithm can be
used also with this setting, however, some of the eigenvalues stay
zero and thus, the corresponding directions remain unexcited. On
the other hand, M should not be chosen to be very high as it is not
exactly known what inputs will be actually applied to the system
from the time k + 1 ahead (the calculated values are only estimates)
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Fig. 4. Changes of the parameters.

Fig. 5. Parameter estimations – Case A.

and with increasing M,  the number of these inputs rises as well and
so does the uncertainty. The next reason against too high M is the
eventual inaccuracy of the multistep predictions.

In Tables (1) and (2) no significant performance improvement
or degradation can be observed with changing M.  As the best choice
for both algorithm, medium-height M should be chosen which in
this case corresponds to M = 8 or M = 9. As already mentioned, the
exact formula for the choice of M does not exist, nevertheless, it is a
reasonable choice to pick up M slightly higher than na + nb but not
too high as it can be observed from Tables (1) and (2) that for higher
M,  the resulting behavior is not adequately improved. Regarding
the choice of �J,  it is mainly up to the user preferences and it also
depends on how big degradation of the original controller perfor-
mance can be accepted. As the tuning parameter here is directly
related to the increase of the cost function (and not to the excita-
tion level as in the case of [32,33]), based on the knowledge of the
weighting matrices Q and R and model of the process, the impact
of this perturbation on the change of the inputs and outputs can be
estimated.

5.2. MIM4DC as an adaptive controller

Now we are ready to focus on MIM4DC in the role of an adaptive
controller. As in the previous subsection, we adapt the system (23)
with parameters varying during the experiment. In the first case,
the change is slow (see Fig. 4, Case B) while in the second case, the
change is abrupt (see Fig. 4, Case A). The goal is to design a predictive
controller which is able to satisfy the requirements defined by the
cost function (24) and constraints (25) even when the parameters of
the system alter. To be able to respond to the change of parameters,
the controller needs a model with parameters being re-identified
periodically. To satisfy this request, the controller optimizes cost
function (24) given

linear dynamics (3)

20 ◦C ≤ u ≤ 55 ◦C,

−1 ◦C ≤ �u  ≤ 1 ◦C,

(32)
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Fig. 6. Parameters estimations – Case B.

where

�̂(k) =

⎧
⎪⎪⎨
⎪⎪⎩

(

Ni∑

i=1

�iZk−iZT
k−i)

−1 Ni∑

i=1

ZT
k−iyk−1 if mod(k, 500) = 0,

�̂k−1 elsewhere,
(33)

with � being the forgetting factor, � ∈ (0, 1).
With this MPC  settings, an experiment similar to the one

described in the previous sections with � = 0.99 and Ni = 700 was
performed. This time, MIM4DC was tested with �J  = 80 and M = 7.
As can be seen in Figs. (5) and (6) (in both cases the reference is
changing), MIM4DC is able to react to the changes of parameters
and tracks both abruptly and slowly varying parameters during
the whole experiment. The classical MPC  has slight problems with
adaptation to parameter changes, especially, the estimates of a1,
a2, a3 are considerably biased.

6. Conclusions

In this paper, we have introduced a new algorithm MIM4DC
for solving the problem of dual control. Moreover, we have pre-
sented an alternative solution to the dual control problem by
introducing a numerical gradient-based algorithm. Both of these
algorithms ensure a rich information content of the generated opti-
mal  input enabling thus accurate estimation of the time invariant
system parameters. The newly presented algorithms outperforms
the classical MPC  in the sense of information content of the data
(thus accuracy of parameter estimation) at a price of a small (and
predefined) deterioration of the reference tracking and energy con-
sumption.

Our new formulation utilizes receding horizon principle when
MIM4DC is not only able to find the global optimum during approx-
imately 60 ms  but also slightly outperforms more complex and
time consuming GNA4DC. MIM4DC was also tested as an adap-
tive controller with a system with time varying parameters with
encouraging results. Moreover, unlike to the solution proposed in
the literature, both of the presented algorithms have the ability to
solve the posed problem for arbitrarily large systems.
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Semi-receding Horizon Algorithm for “Sufficiently Exciting” MPC with
Adaptive Search Step

Eva Žáčeková, Matej Pčolka, Sergej Čelikovský, Michael Šebek

Abstract— In this paper, the task of finding an algorithm
providing sufficiently excited data within the MPC framework
is tackled. Such algorithm is expected to take action only when
the re-identification is needed and it shall be used as the “least
costly” closed loop identification experiment for MPC. The al-
ready existing approach based on maximization of the smallest
eigenvalue of the information matrix increase is revised and
an adaptation by introducing a semi-receding horizon principle
is performed. Further, the optimization algorithm used for the
maximization of the provided information is adapted such that
the constraints on the maximal allowed control performance
deterioration are handled more carefully and are incorporated
directly into the process instead of using them just as a
termination condition. The effect of the performed adaptations
is inspected using a numerical example. The example shows
that the employment of the semi-receding horizon brings major
improvement of the identification properties of the obtained
data and the proposed adaptive-search step algorithm used for
the “informativeness” optimization brings further significant
increase of the contained information while the aggravation of
the economical and tracking aspects of the control are kept at
acceptable level.

I. INTRODUCTION

Over the few decades since its introduction, model pre-
dictive control (MPC)—being perhaps the most perspec-
tive member of the broad family of the advanced control
approaches—has been cured of most of the “childhood”
diseases, its theoretical properties have been well-proven and
therefore, it has gained much popularity within both the
theoretically- and practically-oriented branches of the control
community. Thanks to numerous advantages, the areas in
which MPC is employed have accrued rapidly and nowadays,
its practical use is no more restricted to chemical engineering
where it started [1]. The evolution in the field of numerical
optimization [2] enabling implementation of MPC algorithms
on low-demand industrial computers and PLCs and their use
for control of the fast systems opens the door for more and
more challenging industrial applications of MPC.

However, not all drawbacks related to the deployment of
MPC have been eliminated satisfactorily. The crucial role
played by the mathematical model of the controlled system
still restricts its usage. Furthermore, it is usually the process
of obtaining of the suitable model candidate which is the
most time-consuming part of the whole procedure of bringing
MPC to life and requires much more time than the design,
implementation and tuning of the controller itself. Actually,
some references indicate that the identification phase may
take up to 90 % of the overall time [3]. Taking this enormous
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of Control Engineering, Faculty of Electrical Engineering, Czech Technical
University in Prague. Their work has been supported from the state budget
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percentage into account, it is desirable to pay sufficiently
much attention to the identification of the model for MPC.

The identification aspects of MPC use are very often
omitted in the literature. Usually, it is assumed that certain
identification experiment has been performed to obtain a
suitable model. This, however, does not correspond to the
real life situation – in industrial practice, it is generally
impossible to execute such experiment due to numerous
economical and operational reasons. In such case the only
data which are available for identification purposes are those
from ordinary closed-loop operation of the controlled pro-
cess. Such data suffer from lack of contained information and
from negative aspects related to input-to-noise correlation.

So far, several methods for closed-loop identification have
been introduced [4], [5]. The main disadvantage of these
approaches is that while they work well for simple controllers
with properties which are favorable from the identification
point of view (causality, linearity), they do not work properly
in case of advanced optimization based controllers [6]. The
most effective way how to tackle this task in case of MPC
seems to be simultaneous control and excitation of the
system. If performed carefully, such approach has the po-
tential to provide well-excited data suitable for identification
purposes while also satisfying the given performance criteria.

The first approaches mentioned in the literature come up
with adding of an external so-called dithering signal [7]
to the control input while the next group of approaches is
based on use of sufficiently excited reference signal. Both
these branches can lead to a situation that the resulting
closed-loop behavior will be far away from the desired
control performance. In several other works [8], [9], an
alternative method has been presented. The requirement on
informativeness of the data has been added to the MPC cost
function as an additional constraint. This demands solving of
a complicated nonconvex task which is solved by the authors
using a suitable relaxation as the semi-definite programming
task. This approach suffers from one serious drawback – the
excitation in the output directions is usually omitted.

In [10], [11], the authors have utilized the receding horizon
principle which has enabled them to split the process of
solving of the originally non-convex problem into two steps
by solving twice the quadratic programming task. However,
the output excitation has been omitted as well.

The approach published recently in [12] offers another al-
ternative. It works in two stages – in the first one, the original
MPC task is solved and in the second step, the maximization
of the information matrix is performed while the maximal
allowed perturbation of the original MPC cost function is
employed as the constraint. To simplify the second-stage
optimization, elliptic approximation is exploited.

The authors themselves have also contributed to the lastly
mentioned two-stage branch. Unlike [12], they performed no
approximation and optimized directly the quantization of the
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provided information contained in data. In [13], two algo-
rithms have been provided: the first of them considers only
the first input sample for the optimization of informativeness
while the second based on gradient optimization optimizes
certain chosen subsequence of the whole optimal input
sequence pre-calculated by MPC. According to comparison
provided in [13], the two algorithms are equivalent for the
class of the reference-tracking MPCs. In [14], the second
(gradient-optimization-based) approach has been tested for
the rapidly spreading class of zone MPC. Its versatility with
respect to the used optimization criterion and considered
constraints has been shown.

In the current paper, the authors provide several improve-
ments of the existing methodology. First of all, in order to
fully exploit the pre-calculated input samples ensuring suffi-
cient excitation, semi-receding horizon approach is proposed.
The authors provide also improvement of the optimization
algorithm that is employed at the second stage in the view
of constraints handling. Instead of keeping the optimization
steps constant, the distance from the constraints on the
allowed MPC performance deterioration is taken into account
and the optimization steps are adapted accordingly. The
semi-receding horizon approach together with the adaptive
step provide major increase of the information gathered from
the system.

The paper is organized as follows. In Section II, the
problem to be solved is introduced including the model
description, control requirement formulation and quantifi-
cation of the amount of the information contained in the
obtained data. Section III presents the proposed solution.
Firstly, constraints-dependent step adaptation of the two-
stage algorithm is provided and secondly, semi-receding
horizon approach is introduced. Section IV presents the case
study on which the performance of the proposed improve-
ments is demonstrated. After the brief description of the
considered system and the comparison quantifiers, the results
are summarized and corresponding discussion is provided.
The paper is concluded by Section V.

II. PROBLEM FORMULATION

In the following paragraph, the necessary background is
provided. The descriptions of the model and the considered
controller follow.

A. Model under investigation
In this paper, a simple linear time-invariant (LTI) model is

considered. Such model can be described by the well-known
ARX structure as

yk = ZT
k θ + εk, (1)

where yk and uk are the system output and input sequences
and εk stands for zero-mean white noise. The vector of
parameters θ is considered in the following form:

θ = [bnd
. . . bnb

− a1 . . .− ana ]
T (2)

while Zk = [uk−nd
. . . uk−nb

yk−1 . . . yk−na ]
T is the regres-

sor. Parameters of the structure na, nb, nd specify numbers
of lagged inputs and outputs and a relative input-to-output
delay (nd = 0 means direct input-output connection).

B. Model predictive control
The objective of MPC is to find the optimal input se-

quence that minimizes the given performance criterion. The
model of the system is used for predictions of the future
behavior. Typical MPC formulation penalizes both the energy
consumed for the control and the deviation of the outputs
from the pre-defined reference trajectory. Such formulation
can be mathematically expressed as:

JMPC ,k =

P∑
i=1

∥∥∥Q(yk+i − yrefk+i)
∥∥∥2
2

+ ‖Ruk+i‖22

s.t.: linear dynamics (1),
umin
k+i ≤ uk+i ≤ umax

k+i , (3)

with yrefk specifying the reference trajectory, Q and R being
the control algorithm tuning matrices of the appropriate size
and P being the prediction horizon. Formulation (3) can be
solved by common solvers for quadratic programming.

Although MPC possesses many favorable properties, its
potential and utilization crucially depend on the availability
of a high accuracy mathematical model with good prediction
behavior. In the real-life operation, it oftentimes happens
that a model that used to work properly and reliably looses
its accuracy and ability to provide good predictions and
then, it is inevitable to obtain a new one. This illustrates
the need for designing such controllers that are able to
generate data which are sufficiently rich and contain enough
information that can enable the occasional re-identification.
Still, the overall control performance must not be signif-
icantly degraded and the resulting behavior should meet
the requirements defined by the cost function (3). This
might be a welcomed alternative to lengthy, complicated and
(often also) cumbersome identification experiments which
sometimes might not even be realizable due to either eco-
nomical or operational reasons. The very first straightforward
question before formulating the problem itself is how the
“informativeness” of a set of data should be evaluated. One
way is to quantify the information content of the data set
based on the so-called information matrix [15] and the
persistent excitation condition.

C. Persistent excitation condition
Let us consider ARX model structure (1). Then, the matrix

∆Ik+M
k defined as

∆Ik+M
k =

k+M∑
t=k+1

ZtZ
T
t . (4)

represents the increment of the information matrix from the
time k to the time k + M and quantifies the amount of
the gathered information. Knowing this matrix, the so-called
persistent excitation condition can be formulated as follows

∆Ik+M
k ≥ γE > 0, (5)

where γ is a scalar specifying the level of the required
excitation and E is a unit matrix of corresponding dimension.

III. PERSISTENT EXCITATION WITHIN MPC
As already mentioned, the goal of this paper is to provide

algorithm for the MPC which will be able to not only satisfy
the control requirements but also to provide sufficiently
excited data making the re-identification easier. Similarly
to the recent work [12], we propose a two-stage algorithm
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based on the maximization of the information matrix. The
procedure is as follows: firstly, the original MPC task (3) is
solved and then the maximization of the information matrix
is performed in the second step while the maximal allowed
perturbation of the original MPC cost function is employed
as the constraint:

U∗ = arg max
U

γ

s.t.:
k+M∑
t=k+1

ZtZ
T
t ≥ γE,

JMPC ,k(U) ≤ J∗
MPC ,k + ∆J,

umin
k+i ≤ uk+i ≤ umax

k+i , i = 1, . . . , P (6)

Here, ∆J specifies the maximum allowed increment of the
original MPC cost function J∗

MPC ,k. Note that in [12],
the involved non-convex task which is to be solved in the
second step is approximated using an elliptic approximation
which works reliably only for simple low-order systems.
On the other hand, we try to propose an algorithm that
is able to solve the second-stage optimization task without
any approximations with acceptable computational demands
and favorable performance independent of the order of the
system. The following subsection brings a more detailed
description of the algorithm.

A. Optimization with adaptive constraints-dependent step
In the following text, the two-stage procedure that leads

to the solution of the task of persistent excitation within
the MPC is described. In the first stage, the original MPC
problem is solved while in the second stage, numerical
optimization algorithm with adaptive constraint-dependent
search steps is employed to attack the optimization task (6).

First stage
The first step of the algorithm can be viewed as a kind of
initialization for the second stage. The MPC task formulated
by (3) and supplied by the corresponding constraints on the
inputs is solved. As the output of the first stage, both the
optimal input sequence U∗

MPC = [uk+i], i = 1, 2, . . . , P
and the corresponding cost function value JMPC,k(U∗

MPC)
are obtained. While the optimal input sequence U∗

MPC
is used for the initialization of the numerical gradient
search algorithm as the initial guess of the optimal input
sequence U0 = U∗

MPC , the optimal cost function value
JMPC,k(U∗

MPC) is used as a constraint.

Second stage
In the second stage, the optimization task related directly to
the maximization of the gathered information is solved. The
performance criterion to be optimized is formulated as:

J (U) = max (min eig(∆Ik+M
k )) (7)

where ∆Ik+M
k corresponds to (4). Here, let us mention

that several other choices of the maximization criterion (e.g.
determinant or the trace of the increment of the information
matrix) can come to mind. The reason why the minimal
eigenvalue has been chosen is that it corresponds to the
direction in the gathered data which contains the least
information. In other words, the criterion (7) reflects that the
identifiability of the most difficultly identifiable parameter
shall be improved.

The direct input constraints umin
k+i ≤ uk+i ≤ umax

k+i
that are to be satisfied ensure that the calculated control
action is practically realizable. Moreover, the optimizer in
the second stage is allowed to perturb the original MPC
criterion by at most ∆J which is mathematically expressed
as JMPC,k(U) ≤ J∗

MPC,k + ∆J, i = 1, 2, . . . , P .
The optimal input sequence from the first stage U∗

MPC is
then split into two parts –the first M samples are available
for the optimization of the informativeness while the rest
P −M samples are kept fixed and with the first M samples,
they are used to evaluate the original MPC cost function.
The reason to optimize more than just 1 sample in the sense
of data excitation is very pragmatical. Optimizing just 1
particular input sample, only a single direction corresponding
to particular estimated parameter can be excited. The more
parameters are to be identified, the more input samples
should be taken into account. The numerical optimization of
these samples is then performed utilizing a modified gradient
search as follows.

The first M samples of the input sequence calculated by
the MPC in the previous step are used as the initial guess
U0 of the profile which is optimized iteratively following the
direction of the increase of the cost function (7),

U l+1 = U l + β ? Gl, (8)

where Gl is the search direction for the l-th iteration of the
gradient search, β is the vector of lengths of the performed
steps and ? denotes element-wise multiplication of vectors.
The gradient of the criterion (7) is calculated numerically:
one by one, all M samples of U l are gradually perturbed
with chosen ∆u. Performing this, a set of M perturbed input
vectors is obtained,

U = {Ui = [u1, u2, . . . , ui + ∆u, ui+1, . . . , uM , ],

i = 1, 2, . . . ,M}. (9)

Then, evaluating the change of the performance criterion for
the second stage defined by (7) for each of the perturbed
input profiles

∆Ji = J (Ui)− J c

with J c denoting the current criterion value, the vector of
numerical gradients G can be obtained as follows:

G =

[
∆J1
∆u

,
∆J2
∆u

, . . . ,
∆Ji
∆u

, . . . ,
∆JM
∆u

]
. (10)

Now, let us return to the search step vector β. While in
the previous work, all samples of the vector β had the same
magnitude (the movements in all M optimized dimensions
was uniform), adaptive constraint-dependent search steps β
are employed in the current paper. In the previous work, the
maximal deterioration of the MPC performance was used
as one of the terminating conditions – at each iteration,
the actual deterioration was calculated and if it was higher
than ∆J , the gradient algorithm was terminated and the
input subsequence from the previous iteration (which did
not violate the MPC performance condition) was used as the
output of the algorithm. In the current work, we combine
the MPC-performance constraints with the search for the
optimally excited inputs and the MPC performance criterion
is directly incorporated into the optimization. In case that the
perturbation of i-th input sample should cause deterioration
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close to the ∆J , the gradient search step βi in the corre-
sponding i-th dimension is decreased and the movement in
that corresponding direction is slowed down.

To accomplish that, the search steps are adapted using
hyperbolic tangent function with the argument being the dif-
ference between the actual and maximal allowed degradation
of the MPC cost function. In order to prevent the algorithm
from “falling back” in case that the expected deterioration
should be greater than ∆J , the steps are restricted to be
greater than or equal to 0. The resulting search steps βi then
correspond to

βi = max(0, tanh(w(∆J −∆Ji))). (11)
where ∆J specifies the maximal allowed perturbation and
∆Ji corresponds to the violation of the MPC cost function
considering i-th perturbed input sequence Ui. The parameter
w is used to shape the expression for the search step
appropriately and is considered as the tuning parameter of the
algorithm. With lower w, the algorithm is more “careful” and
pays more attention to the distance from the maximal allowed
perturbation. With w → ∞, the expression (11) approaches
max(0, sign(∆J − ∆Ji)) and only the input perturbations
causing unacceptable deteriorations ∆Ji ≥ ∆J are banned
while the others are not handled at all. Let us note that at
each iteration l of the gradient search algorithm, a new set
of search steps β is obtained.

The box-constraints for the values of the particular input
samples are satisfied performing a simple projection on the
admissible input interval 〈umin, umax〉. The iterative search
is terminated if the improvement of the criterion (7) is less
than a chosen threshold.

B. Semi-receding horizon approach
In the following text, the adaptation of the usually fol-

lowed methodology is proposed and explained.
Freely spoken, the main idea of the above mentioned

approaches based on optimization can be summarized as
follows: first, let us calculate the optimal input minimizing
the MPC cost function. Then, let us consider that the first
M samples of the optimal sequence are available for the
optimization of the excitation and can be perturbed in order
to maximize the obtained information. Meanwhile, the rest
(P −M ) of the original input sequence calculated by MPC
is considered fixed. The restrictions on the perturbation of
these M samples are given by the original hard constraints
on the applied inputs and by the maximal deterioration
of the optimal value of the cost function calculated by
MPC (here, the deterioration is obviously calculated for
the whole prediction horizon of MPC). Following the well-
known receding horizon control principle, once the second-
stage optimization is accomplished, the first perturbed input
sample is applied and the whole procedure is repeated.

Unfortunately, it can be expected that as long as the
last M–1 samples optimized in the second stage are never
applied to the system, the achieved excitation might not reach
the calculated level. From this perspective, the difference
between optimizing the whole subsequence of length M and
optimizing just the first applied input might be negligible.

In the current work, we come up with a semi-receding
horizon approach which decreases the gap between the
expected and achieved excitation level and therefore obtains
more informative data. The procedure is as follows:

1) calculate the input sequence optimizing the MPC cost
function

2) optimize the first M samples of the P -sample sequence
with respect to the provided excitation

3) apply the whole M -sample sequence, go to 1).
Obviously, this approach makes use of the receding hori-

zon principle in order to ensure sufficient feedback which
is necessary to satisfy the control/safety requirements while
it also introduces certain type of relaxation which favors
the data excitation effort. Moreover, for stable systems with
M � P such relaxation of the feedback does not bring
observable control performance degradation compared to the
receding horizon approach which is also demonstrated in the
following Section.

IV. CASE STUDY
A. Description

To show the properties and demonstrate the performance
of the proposed algorithm, we consider a SISO system with
ARX structure with the parameters na = 3, nb = 3, nd = 1,
and θ0 = [0.01 0.0008 0.00087 0.996 0.36 0.376]

T

and with white noise with variance σe = 0.05.
In fact, this example has not been chosen arbitrarily – it

mimics a simplified heat transfer model between the heating
medium (heating circuits in concrete ceiling) and zone air
in a building with the constant ambient temperature and
sampling period Ts = 15 min. Let us mention that rather
than providing a procedure to design a controller for the
building control, the objective of this illustrative example
is to demonstrate the properties of both the newly proposed
methodology and the improved numerical optimization algo-
rithm. Therefore, certain level of simplification of both the
model and controller is adopted.

The system is controlled by the MPC corresponding to
(3) minimizing the supplied energy (u corresponds to the
temperature of the heating medium) and satisfying thermal
comfort (to keep the output y as close to reference value
as possible) with constraints umax = 50◦C, umin = 20◦C
while yref is generated according to the following 7 days
schedule with night and weekend setbacks:

yref =

{
22◦ C from 8 a.m. to 6 p.m.,
20◦ C otherwise.

(12)

Weighting matrices are chosen as Q = 10000 and R =
1, the prediction horizon P = 40 steps (with the sam-
pling period Ts = 15 min, it is equivalent to 10 h) is
assumed. In order to bring the example as close to reality
as possible, the model which is used by the MPC for
the predictions does not perfectly match the real system
but its parameters are slightly shifted and are considered
as θ̂ = [0.99 0.35 0.37 0.01 0.0007 0.0009]

T. The
comparison is based on a numerical example with length
N = 10000 samples (for the above mentioned sampling
period, this corresponds to 3 months). The tuning parameters
have been set as: input perturbation ∆u = 0.1, search step
shaping parameter w = 0.02, number of samples optimized
in the second stage M = 6 and maximal allowed MPC
function deterioration ∆J = 1500. For a more detailed
discussion of the tuning of the parameters, see [13].

B. Results
Let us remind the objective of the current work which

is to develop an algorithm that is able to both satisfy the
control performance defined by (3) and provide the data
containing such amount of information that is sufficient for
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the re-identification. The evaluation of the performance can
be found in the following table. In Table I, first the over-
all “informativeness” of data quantified by the normalized
value of the smallest eigenvalue of the increment of the
information matrix λmin,n is listed. The smallest eigenvalues
for each particular algorithm are normalized with respect to
the eigenvalue achieved by the original gradient algorithm
making use of the ordinary receding horizon principle [13].
In the table, this algorithm is referred to as GA and the
normalization basically means that the GA approach provides
1 “unit of information”. The algorithms belonging into RH
class make use of the classical receding horizon principle
(contrary to GA, the second-stage optimization performed
within the aGA algorithm employs adaptive search step)
while algorithms listed in SRH class are those following the
newly introduced semi-receding horizon approach (GASRH

algorithm employs constant search step, the aGASRH em-
ploys the adaptive search steps proposed in the current pa-
per). Regarding the last abbreviation, MPC refers to classical
MPC control without sufficient excitation condition.

The tracking performance of the algorithms is evaluated
using the absolute value of the overall tracking error,

ey =
1

N

N∑
k=1

‖yrefk − yk‖,

while the consumed energy is evaluated using the quantifier:

IE =

( ∑N
k=1 u

2
k∑N

1 u2k,MPC

− 1

)
(%).

Here, uMPC represents the input applied by the classi-
cal MPC without the sufficient excitation condition. Here,
the question of why a comparison with the original non-
exciting MPC is provided could arise. The reason is that
the proposed excitation-optimizing algorithm is supposed to
restrict the deviation of the control performance from the
ordinary operational conditions. Providing such comparison,
it can be checked that our algorithm for the identification
experiment does cause only negligible deviation from the
ordinary regime, however, it is able to provide more excited
data and therefore, it offers better conditions for the re-
identification.

TABLE I
RESULTS COMPARISON.

RH SRH MPCGA aGA GASRH aGASRH

IE(%) 0.9 2.1 1.5 2.2 0
ey(◦C) 0.03 0.04 0.05 0.07 0.02
λmin,n 1 1.9 2.4 4.2 0.2

As shown in Table I, the energy consumption increase
for each of the tested algorithms compared to the original
MPC never exceeds 2.2 %. Here, it should be noted that this
aggravation is expected only during the performance of the
excitation algorithm until the sufficiently informative data
appropriate for the model re-identification are gathered. This
together with hardly observable violation of the average ref-
erence tracking guarantees very satisfactory control behavior
even during the performance of the excitation experiment
for which the algorithms have been developed. Even for the
semi-receding horizon approaches, the deviation from the

ordinary operational regime is insignificant which supports
the claim that for M � P , the relaxation of the feedback
does not cause serious degradation. The control performance
is even more promising when realizing that nonzero noise
and imperfect MPC model have been considered.

Regarding the “informativeness” of the provided data, it
can be witnessed that the proposed improvements clearly
fulfill their purposes – while the incorporation of the adaptive
search step within the second-stage optimization improves
the information quantifiers almost twice, the employment of
the semi-receding horizon leads to even higher improvement
ratio. As a result, when combined both adaptations, the
results of the original GA algorithm have been improved
by the aGASRH algorithm by a factor greater than 4.

In order to visualize how the improvement of the smallest
eigenvalue of the information matrix increase affects the
identifiability, another comparison is provided. All 5 sets
(one for each of the algorithms listed in Table I) of the
obtained data containing N = 10000 samples have been used
for identification. More than 100 models have been identified
per each provided data set and their step responses have been
confronted with the step response of the original system. The
graphical comparison of all of them is shown in Fig. 1.
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Fig. 1. Comparison of the step responses (red - identified models, blue
dashed - real system).

Comparing the two step responses either in one row or
one column, it can be observed that they get improved both
when employing semi-receding or the adaptive search step
proposal. In accordance with Table I, the biggest deviations
from the real system step response occur for the GA algo-
rithm while the models identified from the data provided
by aGASRH algorithm match the real step response almost
perfectly. Here, the green dashed line marks the prediction
horizon of the MPC being 10 h. Freely spoken, the prediction
performance of the model on the horizons larger than P
are of small interest as the behavior of the system for such
horizons is not taken into account within the controller and
neither the input is optimized for these horizons.

Fig. 2 compares the ultimate deviations from the real
step response for the three most interesting candidates –
MPC, GA and aGASRH . While in the previous work, the
improvement which was provided by the GA algorithm cut
the deviations from the real system response in half in
average, very similar improvement has been obtained also
in the current work. As can be seen, the deviations for the
aGASRH algorithm are condensed more tightly around zero
and also the magnitude of the worst case deviation is at most
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Fig. 2. Deviations from the real step response (black - MPC, red - GA,
blue - aGASRH ).

one half of the worst case deviation for the GA. Again, green
dashed line marks the horizon of 10 h.

As long as considerable part of the presented improvement
can be owed to the incorporation of the adaptive search
step exploited during the second stage, Fig. 3 illustrates its
performance at the chosen sampling instance.
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Fig. 3. Adaptive constraints-dependent step algorithm – illustration.

The subfigure in the left upper corner depicts the value of
the smallest eigenvalue of the information matrix increase
as the function of algorithm iterations. In each subfigure,
two significant points (iterations) where its slope changes
considerably are marked. Looking at the subfigures located
in the right upper and right lower corner showing the actual
violation of the MPC cost function ∆J l at l-th iteration,
it is obvious that these two points are strongly related to
the distance from the maximal allowed perturbation ∆J
(represented by the red dashed line). For the better clarity,
the subfigure located in the right lower corner shows a detail
of the subfigure located above it – here, the second point is
clearly visible. In case that the algorithm approaches con-
siderably the ∆J threshold, the adaptive search step should
“slow down” the movement in the most critical dimension.
This can be witnessed inspecting the subfigure placed in the
lower left corner which shows the evolution of the particular
perturbed input samples ui, i = 1, 2, . . . , M . Here, it can be
also seen that while at the first marked point, all optimized
input samples “slow down”, at the second marked point not
all input samples are affected (apparently, the one plotted
in dark green is not affected at all) which illustrates the
performance of the incorporated adaptive step. Here, let us
note that with the constant search step, the original algorithm
would be terminated soon after the first marked point, the
current improved algorithm continues in optimization and
is able to improve the value of λmin approximately twice
compared to the value at the first marked point.

Last of all, let us note that the computational demands are
kept admissibly low – in average, the calculations that need
to be performed at particular sampling instance do not take
more than 4 s.

V. CONCLUSION

Two improvements of the approach for sufficiently excit-
ing MPC have been proposed. First of them modifies the
utilization of the input samples optimized for the sufficient
excitation. Instead of commonly considered receding horizon
principle, its relaxed version called semi-receding horizon
principle is employed. Second improvement introduces adap-
tive constraint-dependent search step for algorithm used in
the second stage of the whole procedure. The adaptive step
reflects the actual distance from the maximal allowed per-
turbation of the original MPC cost function. As long as both
of them are able to provide approximately twofold increase
of the information contained in the data, their combination
improves the “informativeness” quantifier by a factor of
more than 4 compared to the previously used algorithm. The
control performance degradation has been also inspected –
with the average energy consumption increase of no more
than 2.2 % and negligible average tracking error, the solution
presented in the current paper is highly suitable for utilization
as a closed loop experiment for MPC.
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5.2 Zone MPC

As already mentioned, many problems tackled in this thesis were inspired by issues occur-
ring when an MPC is deployed to control a heating/cooling system in a building. Likewise,
motivation to focus on the so-called zone MPC arose from the building climate control area.

With the standard MPC formulation, the deviation of the output from a predefined
reference trajectory is penalized in the cost criterion. On the other hand, when satisfaction
of thermal comfort in a building is expected, a formulation with the indoor temperature
preferably kept inside an output zone is chosen instead. Such formulation where the
reference tracking requirement is replaced with the requirement to keep the system output
within some range is referred to as zone MPC and—similarly to the original MPC—can
be solved by the quadratic programming solvers.

Enhancement of the persistently exciting MPC algorithm for a class of the zone MPCs
represents another contribution of this thesis. To tailor the one-sample algorithm to the
zone MPC, a specifically designed algorithm searching for the so-called breakpoint was
added to its second stage [A.15]. Aiming at the same target, an adaptation of the gradient
algorithm was provided as well; further information and debate about the algorithm itself
and its results can be found in [A.16].

Next phenomenon observed when deploying the MPC in real operation is the fact that
the behavior of the system is also affected by external (partially) predictable disturbances
(e.g. solar radiation or ambient temperature when the building climate control area is
considered). The presence of the predictable disturbances does not affect the design of the
identification procedure itself, but from the excitation point of view, the difference between
the predictable disturbances and the manipulated inputs is substantial. While the system
input can be influenced to excite the data, the disturbances are determined by external
factors and are uncontrollable. Since they are often correlated with the manipulated vari-
ables, their influence should be taken into account not only when trying to solve the control
problem but also when the excitation is optimized.

The variants of both the one-sample algorithm and the gradient algorithm for the zone
MPC for linear systems with predictable disturbances were elaborated in a manuscript
submitted for review to Journal of the Franklin Institute [A.5]. This contribution examines
the specifics of the system under the influence of the predictable disturbances from the data
excitation point of view. A discussion of the problem solvability and guidelines for choosing
a suitable value of the algorithm tuning parameters and cost function are provided including
several theoretical findings. The validations are performed using an auxiliary example and
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a high-fidelity building model created in Trnsys software as well. The mentioned article is
presented starting on the next page.
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Zone MPC with guaranteed identifiability in presence of predictable
disturbances
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Abstract

In this paper, a task of ensuring sufficiently excited data for the subsequent re-identification of a model
used within the model predictive control framework is tackled. It introduces two algorithms that are devel-
oped specifically for the so-called zone MPC for systems with external disturbances, which is a commonly
encountered control engineering task. Both of them work in two steps and exploit the original zone MPC
solution, which enables that the degradation of their control performance is limited by a user-defined
threshold. Moreover, a new optimization criterion quantifying data informativeness is introduced. Both
proposed algorithms are described in detail, their theoretical properties are discussed and they are success-
fully verified on an artificial example and also considering a real-life building climate control task using
a high-fidelity testbed model. The results show that they significantly outperform the classic zone MPC
while maintaining acceptable zone violation and energy consumption.

1. Introduction

During the last years, modern control methods relying on use of model of the controlled system have
witnessed significant boom. Being popular not only among the academicians [1, 2], these approaches of
which the most noticeable one is the Model Predictive Control (MPC) have started to be more and more
appreciated also by the community of process control engineers [3, 4].

MPC brings wide variety of new possibilities and advantages, the most significant of which are the
ability to handle constraints and control multivariable plants and capability of formulating control require-
ments in a comprehensive and compact form of the optimization cost function. Except of plenty of undis-
putable benefits, several problems arise with use of this type of controller. The main bottleneck of this
framework is the necessity of a good mathematical model of the controlled system by which the favorable
controller performance is conditioned. It is actually the search for such appropriate model that is many
times more time-demanding than the controller design itself [5].

A very common situation that occurs in industrial practice is that the system is already controlled by
some kind of advanced controller whose control performance starts to deteriorate. This is usually caused
by the mathematical model which might loose its ability to describe the system dynamics in a suitable
manner and the appropriate step is to re-identify the model. Classic open-loop identification experiments
might be inadmissible due to operational and/or economical reasons. In such cases, the commonly used
identification methods tend to fail and are not able to ensure models of reasonable quality. This is usually
caused by failing to satisfy the basic conditions of the open loop identification methods such as no input-
noise correlation or persistently exciting input [6, 7].
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A broad spectrum of special identification methods able to handle also closed-loop identification data
has been developed so far [8, 9, 10], however, most of these methods work well only for simple linear
controllers. On the other hand, the MPC framework results in much more complex controller structure
and therefore, it is desirable to search for alternative variants of solving this task.

A very promising perspective is to focus on methods where the controller itself can bring some ad-
ditional information and thus improve the model of the process – in such case, the controller performs
certain kind of closed-loop identification experiment. Several works can be found in the available litera-
ture that have addressed this problem [11, 12, 13, 14, 15]. So far, mainly their theoretical properties have
been discussed [16] and these methods have been validated mostly on simple auxiliary examples [14, 15].

One of the most emerging application areas where the MPC has been steadily gaining popularity is un-
doubtedly building climate control. According to the available literature, overall expenses spent on heat-
ing/cooling of building complexes reach as high as half of the total energy consumption in the building sec-
tor which represents about 40 % of the global energy consumption. It has turned out that use of advanced
control methods such as MPC opens door to up to 30 % energy consumption reduction [17, 18, 19, 20, 21, 22].
This supplements the motivation of the current paper in which the already presented theoretical methods
[23, 24] are extended to enable solving the above-mentioned task of MPC for zone temperature control
providing sufficient data excitation. Zone temperature control task is quite specific – unlike the traditional
and most frequently used MPC formulation where the given reference is to be tracked, the controller is
designed such that the output is kept within a pre-defined zone. This even reduces the effect of natural
control-action-induced excitation and provides data of less information quality than the traditional track-
ing MPC. On the other hand, zone formulation provides certain freedom which–if exploited wisely–can be
used for potential system excitation thus improving its identifiability. The next important phenomenon is
the fact that besides the manipulated inputs, the output dynamics is influenced also by the predictable dis-
turbance variables (e.g. ambient environment effects). The currently available methods, however, consider
only use of classic ARX model structure where the disturbance variables are omitted.

1.1. Contribution of the paper
The algorithm presented in this paper makes use of the receding horizon framework and comprises

two stages. In the first stage, a zone control problem is solved providing the explicit solution. This is then
passed to the second stage in which the persistent excitation condition is optimized with respect to chosen
control performance deterioration allowance. This formulation leads to the optimal input u maximizing
the information matrix increase and guaranteeing not to deteriorate the control criterion more than the
pre-defined fixed value. As a result, the data used for re-identification are sufficiently excited and the
estimate of the system parameters is better than in case of poorly excited data gathered during the operation
of the classic zone MPC. Regarding the optimization criterion, a new more robust alternative consisting
in maximization of a pre-defined number of smallest eigenvalues of the information matrix increase is
presented alongside with the maximization of just the smallest eigenvalue. In addition, the standard MPC
formulation using reference tracking control (set-point control) is replaced by “set-range” control (funnel
control or zone MPC) since in many practical applications, it is more appropriate to maintain the controlled
variable in some predefined range—this is also the case of building climate control chosen as a practical
verification testbed. An efficient implementation solving the dual control problem is provided as well.

Compared with the available state-of-the-art methods, the current paper presents several improve-
ments: i) external disturbances are considered and their handling in the data excitation task is discussed in
detail; ii) an alternative optimization criterion especially suitable for the disturbance presence is proposed;
iii) practically oriented verification of the theoretical concepts is provided using an in-silico example ex-
ploiting a high fidelity model of a building.

1.2. Organization of the paper
The paper proceeds as follows. Section 2 introduces the task to be solved, including the used model,

MPC formulation and also a description of the PE condition. The main contribution of the paper is pre-
sented in Section 3, where two algorithms (one-step algorithm and multi-step algorithm) for the persis-
tently exciting MPC are presented and a suitable choice of the optimization criterion especially focusing on
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the disturbance presence is discussed. Section 4 brings a detailed verification of the theoretical concepts:
both an artificial and a real-life example are presented and a detailed comparison is provided. Section 5
concludes the paper.

2. Task formulation

This section explains the task this manuscript attempts to solve. At first, the considered model rep-
resenting the basic system dynamics is described. Then, the formulation of the MPC control problem is
provided and finally, the persistent excitation condition is introduced.

2.1. Considered model
Let us consider an extension of the most widely used LTI model for MPC with external disturbances:

yk =
na

∑
i=1

aiyk−i +
nb

∑
i=1

biuk−i +
nd

∑
i=1

didk−i + ek (1)

where yk, uk and dk are the system output, input and disturbances sequences and ek zero-mean white noise
and na, nb, nd specify number of lagged inputs, outputs and disturbances. Then, the model structure (1)
can be reformulated as

yk = ZT
k θ + ek, (2)

with the parameters vector

θ =
[
a1 . . . ana b1 . . . bnb d1 . . . dnd

]T

and regressor
Zk =

[
yk−1 . . . yk−na uk−1 . . . uk−nb

dk−1 . . . dk−nd

]T .

From identification point of view, the disturbances d are equivalent to the manipulated inputs u and the
provided structure can be handled as a MISO (Multiple Input - Single Output) one. The representation (1)
is then equivalent to the well-known state-space description [25]

xk+1 = Axk + Buk + Bddk + Wek,
yk = Cxk + Duk + Dddk + ek, (3)

where k is the discrete time, x ∈ Rn, u ∈ R, d ∈ Rp, e ∈ Rv, y ∈ R are system state, input, noise and output
vectors, A, B, Bd, W, C, D and Dd are system matrices of appropriate dimensions and n, v, p specifies
number of states, independent sources of noise and disturbances. For the sake of simplicity and with no
harm to generality, let us assume that D, Dd are zero matrices thus can be omitted in the subsequent text.

Here, it should be noted that both structures are provided intentionally—while the advantages of struc-
ture (1) are exploited the identification, structure (3) is more suitable for implementation with the MPC
controller, which is described in more detail in the following section.

2.2. Predictive control
MPC is a modern control technique, that is able to handle constrained optimal control problems. It

is usually formulated in a receding horizon (RH) fashion meaning that at each time step, a constrained
optimization problem over finite horizon is solved for the current state of the system and the solution—
actually, only the first element of the whole optimal input sequence—is then applied to the plant. In the
building context, at each time step, a plan for heating, cooling, ventilation, etc. is computed for the whole
optimization horizon based on predictions of future weather conditions and other disturbances (e.g. occu-
pancy or internal gains). The usual MPC objectives in the building environment control are minimization
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of the energy consumption (input effort) and satisfaction of the requirements on technical constraints and
user comfort—these are usually required to stay within certain range in contrast to the classic set-point
formulation.

In order to satisfy the above-mentioned requirements, the following cost function to be minimized is
chosen:

JMPC,k =
P

∑
i=1

W1‖uk+i‖p +
P

∑
i=1

W2‖ψk+i‖p (4)

s.t. : linear dynamics (3)

umin
k+i ≤ uk+i ≤ umax

k+i , i = 1, . . . , P

ymin
k+i ≤ ŷk+i|k + ψk+i

where ymin is the minimal required output value, umin and umax are input constraints. Weighting matrices
are denoted as W1, W2 and P specifies the prediction horizon. Symbol ψ represents auxiliary variables
used to relax the output constrains and p denotes the norm of the weighting of particular terms in the
cost function. If p = 1 or p = 2 is considered (1- or 2-norm penalization), it is possible to rewrite (4) to a
quadratic programming problem [26]:

minUTHU + jTU (5)

w.r.t.

linear dynamics (3)


−IP×P 0P×Pn

IP×P 0P×Pn
−CB −IPn×Pn


U ≤




Umin

Umax

CAxk + CBdD−Ymin


 (6)

where U =
[
UT ΨT]T is a vector of optimized variables. Throughout the paper,

U =
[
uk uk+1 . . . uk+P−1

]T

is a vector of inputs over the whole prediction horizon and

Ψ =
[
ψ1,k . . . ψn,k ψ1,k+1 . . . ψn,k+1 . . . ψ1,k+P−1 . . . ψn,k+P−1

]T

is a vector of zone violations. Similarly, the other vectors D, Umax, Umin and Ymin are created. Matrices
A, B, Bd, C depend on the system dynamics, serve for the computation of the output predictions and the
way they are constructed is described in [26]. Matrices H and j are used to shape the penalty function and
IP×P, IPn×Pn and 0P×Pn specify identity and zero matrices of the corresponding dimensions.

The above mentioned approach ensures the attractive properties of the controller such as desirable
control performance and constraints satisfaction. However, the resulting performance depends on model
quality, particularly on its ability to predict the future behavior. In many cases, the performance of the
currently used model is not sufficient (e.g. gradual changes to the plant, aging, etc.) and it is necessary
to re-identify the process. In this situation, commonly used identification methods fail, mostly due to two
reasons: input-noise correlation and insufficient excitation. The insufficient excitation problem is especially
urgent if the controlled variable is required to stay within a certain range during a long period and the
data does not contain enough information. Considering the use of MPC, one of the possible and especially
efficient approaches is to extend the cost function (4) with a term ensuring sufficiently informative data and
in turn also good identifiability of the model. Such term comes out of the sufficient excitation condition,
whose formulation is provided in the following text.
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2.3. Persistent excitation condition
As already mentioned, one of the goals is to develop such an approach that leads to both control re-

quirements satisfaction and sufficiently informative data generation. To be more specific, the obtained
input-output data should enable exponential convergence of the parameter estimation error to zero.

Let us consider model structure (2) and let us use linear regression to estimate the parameters of this
structure. Then, the identifiability of the parameters of this structure from a given set of measured input-
output data is defined as follows.

Definition 1 (Information Matrix Increment). Having measured data {Zi}, i ∈ {1, . . . , T }, at disposal, the
increment of information matrix over period T , T ∈N+, is defined as

T
∑
i=1

ZiZT
i (7)

Definition 2 (Persistent Excitation Condition). For a set of measured data {Zi}, there exist T ∈N+, σ1 ∈ R+,
σ2 ∈ R+, σ1 < σ2, such that

σ1 I ≤
T
∑
i=1

ZiZT
i ≤ σ2 I, (8)

where I is an identity matrix of the corresponding dimension.

Definition 3 (Sufficiently Excited Data). Measured data {Zi}, i ∈ {1, . . . , T }, satisfying (8) for some T , σ1
and σ2 are said to be sufficiently excited.

Definition 4 (Parameters identifiability). Parameters θ of structure (2) are said to be identifiable from measured
data {Zi}, i ∈ {1, . . . , T }, satisfying condition (8) for some T , σ1 and σ2.

Remark 1. As already noted in [27], the upper bound σ2 in PE condition (8) is not crucial for obtaining of
sufficiently excited data and thus, the further text focuses on the satisfaction of the lower bound σ1.

All three ingredients presented above, namely model of the system, predictive control framework and
persistent excitation condition, constitute a sufficiently-exciting MPC whose description and a detailed
discussion is provided in the next section.

3. MPC with guaranteed persistent excitation condition

In this paper, the model-based control approach is considered. In such case, a model-plant mismatch
has direct consequences on the quality of predictions causing control performance degradation. The use
of closed-loop (CL) system identification, i.e. identification with the running controller, can lead to a more
precise model [28], however, use of this approach assumes sufficiently excited data, which, unfortunately,
cannot be attained by the standard formulation of the control problem, e.g. (4). To make this assump-
tion valid, not only control requirements but also the PE condition (8) should be taken into account. The
first straightforward solution presented in the literature [29, 11] consists in adding the PE condition as an
additional constraint into the MPC problem formulation. Here, the main bottleneck is that the resulting
optimization task us too complex, difficult to solve and to finish the calculations in reasonable time, various
approximations need to be employed. Most of the later works devoted to this problem alleviate the com-
putational complexity by solving the task in two stages [30, 16, 31, 12, 32, 33], however, the simplistic basic
MPC formulate they consider (penalizing only the reference tracking error) limits their usability. For zone
MPC formulation, which is requisite and wide-spread not only in building control but also in chemical
industry, only a few works dealing with this task can be found [34, 24, 23, 35].

In this Section, descriptions of our own algorithms are provided. These algorithms lead to zone MPC
with guaranteed sufficiently excited data generation for systems with structure (1).

The presented algorithms are adaptations and extensions of the previous ones [24, 23]. It is necessary to
remark that in this paper, we consider an improved and a more realistic model structure. In our previous
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work, a simple SISO ARX structure was assumed while in the current manuscript, a structure with both
controlled inputs and predictable disturbance variables is considered. Similarly to the MPC control task,
these disturbance inputs can not be optimized, but their predictions are taken into account.

Both algorithms work in two steps as follows: in the first step, the solution to the original zone MPC
problem (4) is found and in the second step, the following optimization task is solved:

U∗ = arg max
U

J

subject to :

umin
k+i ≤ uk+i ≤ umax

k+i , i = 0, . . . , P− 1

dk+i = d̂k+i, i = 0, . . . , P− 1
JMPC,k(U) ≤ J∗MPC,k + ∆J,

(9)

where J∗MPC,k is the optimal MPC cost function value corresponding to the solution obtained in the first
step, ∆J is a user-defined maximal allowed degradation of the original MPC cost function (4), J quantifies
the data excitation and d̂ stands for disturbance prediction.

More detailed descriptions of the algorithms follow.

3.1. Algorithm I. – One-sample approach
This algorithm relies on the fact that MPC controller works according to the receding horizon principle,

which can be explained as follows: at each discrete time step k, the optimal control sequence for P steps
ahead is calculated but only the first element uk of the calculated input sequence is exploited and applied
to the system. Coming out of the receding horizon principle, the one-sample approach manipulates only
the first sample uk when optimizing data excitation expressed by (9). However, the excitation is calculated
over a horizon of M samples where the last (M − 1) samples (2-nd up to M-th one) correspond to the
samples calculated by the original MPC. Similarly, deterioration of the control performance is limited by
evaluating the original MPC cost function over the whole prediction horizon P. The resulting procedure is
described as follows.

Algorithm 1 (One-sample algorithm).

Stage I
1) minimize (4), obtain the optimal input sequence U∗MPC =

[
uMPC,k uMPC,k+1 · · · uMPC,k+P−1

]T
and the optimal value of MPC cost function J∗MPC,k = JMPC,k(U∗MPC);

2) find constraints ūmin
k and ūmax

k for Stage II;
(a) find values u and u by Algorithm (2) such that

JMPC,k(Ũ) ≤ J∗MPC,k + ∆J ∀Ũ =
[
ũk uMPC,k+1 · · · uMPC,k+P−1

]T ; ũk ∈ 〈u, u〉
(b) perform the following projection

ūmax
k = min{u, umax

k },
ūmin

k = max{u, umin
k }.

Stage II
1) compute J (Ũ) with Ũ =

[
ũk uMPC,k+1 · · · uMPC,k+M−1

]T for all ũk = w su where su ∈ R+ is a

user-defined parameter and w ∈ Z, ūmin
k
su
≤ w ≤ ūmax

k
su

;
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2) find ũ∗k such that Ũ∗ = arg maxJ (Ũ), Ũ∗ =
[
ũ∗k uMPC,k+1 · · · uMPC,k+M−1

]T;
3) terminate Stage II; apply ũ∗k to the system; wait for new measurements at time k + 1, repeat from 1)

of Stage I.

The crucial part of the algorithm is to find the constraints u and u for Stage II, which corresponds to search
for such values uk that the MPC cost function (4) equals J∗MPC,k + ∆J. With the classic MPC formulation
penalizing the reference tracking error, this collapses to a search for intersections of a parabola with a line
parallel to the horizontal axis. In the case discussed in this paper with zone MPC formulation, the cost
function remains quadratic, nevertheless, it is necessary to find intersections of two distinct parabolas.
This results from the asymmetry introduced by the zone penalization, where only certain range of output
values is penalized. Before the zone MPC algorithm looking for u and u can be described, it is suitable to
provide the following definition.

Definition 5 (Breaking point). Such input sample ub,k that

ub,k = max{uk : ∃i : ŷk+i|k(uk)− ymin
k+i ≤ 0}, i ∈ {1, 2, . . . , P}, (10)

is called breaking point.

Freely spoken, ub,k is such value that lower values of the first input sample cause the output zone to
be violated at certain point of time during the prediction horizon P. Now, the following theorem can be
formulated.

Theorem 1. Consider ub,k given by Definition (5). Next, consider Uk =
[
uk uk+1 · · · uk+i

]T, i ∈
{0, 1, . . . , P− 1}, with uk+i fixed for i , 0. Then, the following holds:

JMPC,k(Uk) u ĴMPC,k(uk) =

{
pl

2u2
k + pl

1uk + pl
0 uk ∈

〈
umin

k , ub,k
)
,

pr
2u2

k + pr
1uk + pr

0 uk ∈
(
ub,k, umax

k
〉
,

(11)

with pl
2, pl

1, pl
0, pr

2, pr
1, pr

0 ∈ R.

Proof. First of all, it is obvious that with Uk =
[
uk uk+1 · · · uk+i

]T where only uk is allowed to change,
the original multivariable function JMPC,k(Uk) collapses into a function of a single variable. Similarly,
output predictions ŷk+i depend on uk and yk only.

Next, it can be shown that JMPC,k(Uk) can be expressed as a piece-wise quadratic function of uk with up
to P sections. Then, all sections where ŷk+i|k(uk)− ymin

k+i ≤ 0 for some i ∈ {0, 1, . . . , P} are unified into a
single interval

〈
umin

k , ub,k
)

or
(
ub,k, umax

k
〉

and the MPC cost function is approximated by a single quadratic
function over that interval. In the rest of the input range, the MPC cost function is expressed by a quadratic
function precisely.

As a result, a piecewise quadratic expression of ĴMPC,k(uk) with two intervals can be obtained. This
completes the proof.

To obtain u and u used in Algorithm 1, the following efficient algorithm is proposed.

Algorithm 2 (Search for u and u).

1) Find value ub,k satisfying Definition (5) using Algorithm 3 and compute JMPC,k(UB,k), where

UB,k =
[
ub,k uMPC,k+1 · · · uMPC,k+P−1

]T .

2) Compute values of MPC cost function JMPC,k(U+∆) and JMPC,k(U+2∆) where

U+∆ =
[
ub,k + ∆u uMPC,k+1 · · · uMPC,k+P−1

]T
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and
U+2∆ =

[
ub,k + 2∆u uMPC,k+1 · · · uMPC,k+P−1

]T ,

∆u ≥ 0. Use JMPC,k(Uub), JMPC,k(U+∆), JMPC,k(U+2∆) to estimate parameters pr
2, pr

1, pr
0.

3) Compute roots rr
1, rr

2 of equation pr
2u2

k + pr
1uk + pr

0 − (JMPC,k + ∆J) = 0.
4) if ub,k = umin

k
then
5a) Set u = min{rr

1, rr
2} and u = max{rr

1, rr
2}; terminate.

else
5b) Compute values of MPC cost function JMPC,k(U−∆) and JMPC,k(U−2∆) where

U−∆ =
[
ub,k − ∆u uMPC,k+1 · · · uMPC,k+P−1

]T

and
U−2∆ =

[
ub,k − 2∆u uMPC,k+1 · · · uMPC,k+P−1

]T ,

∆u ≥ 0. Use JMPC,k(Uub), JMPC,k(U−∆), JMPC,k(U−2∆) to estimate parameters pl
2, pl

1, pl
0.

6b) Compute roots rl
1, rl

2 of equation pl
2u2

k + pl
1uk + pl

0 − (JMPC,k + ∆J) = 0.
7b) Set u = min{rl

1, rl
2} and u = max{rr

1, rr
2}; terminate.

To complete all necessities for Algorithm 1, ub,k appearing in Algorithm 2 is found following the proce-
dure below. The procedure is illustrated by Fig. 1.

Algorithm 3 (Search for the breaking point ub,k).

1) Set uL = umin
k , uR = umax

k , In = uL.
2) Divide the considered interval 〈uL, uR〉 into 6 single-sub-intervals Ii as follows:

Ii = 〈ui−1, ui〉, i ∈ {1, 2, . . . , 6},

uj =

(
uR − uL

6
j + uL

)
, j ∈ {0, 1, . . . , 6}. (12)

Next, create double-sub-intervals Id
h as follows:

Id
h = Ih ∪ Ih+1 = 〈uh−1, uh+1〉, h ∈ {1, 2, . . . , 5}. (13)

3) Compute approximations of the second derivative Ĵuu,h of JMPC,k over Id
h as follows:

∂2 JMPC,k

∂u2
k

∣∣∣∣
Id

h

≈ JMPC,k(uh+1)− 2JMPC,k(uh) + JMPC,k(uh−1)

uh+1 − 2uh + uh−1
= Ĵuu,h. (14)

4) Find the longest sub-sequence sL consisting of m almost equal elements Ĵuu,

sL = { Ĵuu,n| ∀o ‖ Ĵuu,o − Ĵuu,o+1‖ ≤ ε; n ∈ {1, 2, . . . , m}, o ∈ {1, 2, . . . , m− 1}, ε ∈ R, ε > 0}. (15)

5) if the length m of sL is 5, i.e. ub,k < (uL, uR)
then set ub,k = (

⋃
sL) ∩ {min(In), max(In)} and terminate

else continue
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6) Find the closest admissible neighboring single-sub-interval In ∈ {Ii} such that:

In ∩ (
⋃

sL) = ubd, ubd ∈ bd(In), ubd ∈ bd(sL), In\ubd , ∅,

where bd(A) denotes boundary of A.
7) Set uL = min(In) and uR = max(In)
8) if |uR − uL| < 2su

then set ub,k =
uR−uL

2 and terminate
else go to step 2)

u
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double−sub−intervals corresponding to s
L

central points
of double−sub−intervals

Figure 1: Search for ub,k .

Remark 2. Considering one breaking point ub,k and cost function JMPC consisting of two sub-parabolas, it
can be shown that 6 is the smallest sufficient number for which the longest sub-sequence sL (see the step
4) of Algorithm 3) has at least two elements, thus the single-sub-interval containing the breaking point can
be uniquely determined. For better illustration, see Fig. 1 where the most crucial elements of Algorithm
3 are graphically presented. Last of all, let us mention that using the proposed procedure, the error in
determining the breaking point ub,k is never higher than the user-defined parameter su.
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3.2. Algorithm II – Multi-sample approach
As an alternative to the above described one-sample approach minimizing only the first one of the M

input samples evaluated with respect to data excitation, one can optimize all M input samples. In that case,
however, a simple exhaustive search does not even come into consideration due to potential time complex-
ity. To make the data excitation optimization for M samples tractable, a gradient-based algorithm described
below is used. In Stage II, an iterative procedure is performed as follows: one by one, all input samples
are perturbed and the relative changes of the excitation criterion are gathered to form the numerical gra-
dient that is used to update the first M samples of the input vector. Control performance degradation is
guarded by an adaptive search step β whose particular element decreases as the deterioration of the MPC
cost function value caused by the corresponding input sample approaches the user-defined threshold ∆J.
The procedure is terminated if the improvement is less than a chosen tolerance ε. Let us remark that as
in the previous case, data excitation is evaluated over the horizon of M while the MPC cost function is
inspected for all P samples. The formulation of the algorithm follows.

Algorithm 4 (Multi-sample algorithm).

Stage I
1) minimize (4) and obtain optimal input sequence U∗MPC =

[
uMPC,k uMPC,k+1 · · · uMPC,k+P−1

]T;
2) compute optimal value of MPC cost function J∗MPC,k = JMPC,k(U∗MPC);

3) calculate J0 = J (U∗MPC,M) for U∗MPC,M =
[
uMPC,k uMPC,k+1 · · · uMPC,k+M−1

]T, initialize the
iteration counter l = 1;

Stage II
1) obtain a set of M perturbed input vectors

{Ũi = [uMPC,k, . . . , uMPC,k+i−1 + ∆u, . . . , uMPC,k+M−1]
T ,

i ∈ {1, 2, . . . , M}, ∆u ∈ R+};

2) evaluate excitation criterion J (Ũi) for each perturbed vector;
3) calculate numerical gradient

Gl =

[
∆J1

∆u
,

∆J2

∆u
, . . . ,

∆Ji
∆u

, . . . ,
∆JM
∆u

]T
,

where ∆Ji = J (Ũi)−J0;

4) calculate search step βl =
[

βl
1, βl

2, . . . , βl
M

]T
as follows:

βl
i = max(0, tanh(s(∆J − (J∗MPC,k − JMPC,k(Ũi,P))))),

where Ũi,P = [uMPC,k, . . . , uMPC,k+i−1 + ∆u, . . . , uMPC,k+P−1]
T, i ∈ {1, 2, . . . , M}, and s ∈ R+ is a

user-defined tuning parameter;
5) update the input vector in the direction of the gradient Gl using step βl

Ûl = Ul−1 + βl ? Gl ;

here, ? denotes element-wise multiplication;
6) project the updated input vector on the admissible interval,

Ul = max{umin, min{Ûl , umax}};
10
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7) if |J (Ul)−J (Ul−1)| ≤ ε, ε ∈ R+

then terminate Stage II; set uk = Ul
1 and apply it to the system; wait for new measurements in time

k + 1, repeat from step 1) of Stage I,
else set J0 = J (Ul), l = l + 1, repeat from step 1) of Stage II.

Despite its more compact formulation, the multi-sample algorithm is more computationally demanding
than the one-sample approach. However, it profits from enhanced optimization “freedom” provided by
optimizing all M samples, which can be expected to turn into better parameter estimation results. More-
over, both these aspects (time consumption and accuracy of the parameter estimates) can be adjusted using
a suitably chosen data excitation criterion, whose choice is discussed in the next subsection.

3.3. Data excitation criteria
One of the key aspects of both algorithms is how the data excitation J is quantified. The quantifier for-

mulation should reflect that the amount of information contained in the acquired data is to be maximized.
Several formulations can be exploited [36] ranging from maximization of trace of the information matrix
increase through maximization of its determinant up to maximization of its smallest eigenvalue. In this
paper, the following quantifier based on the last mentioned is considered:

J = λmin

(
Wp

k−1

∑
i=k−MP

ZiZT
i +

k+M

∑
i=k

ZiZT
i

)
. (16)

Here, parameters MP, M, WP ≥ 0 are user-defined tuning parameters. Parameters M and MP specify how
many future/past time steps are taken into account and parameter Wp expresses the relative importance
of the information brought by the past obtained data compared with the future ones. With no harm to
generality, let us define that MP = 0 is equivalent to WP = 0, i.e. the past samples are ignored.

Considering J calculated using formula (16) means that the algorithm maximizes the smallest eigen-
value λmin of the information matrix increase. In other words, the algorithm tries to bring as much infor-
mation as possible in the data direction which has been least informative.

Such choice turns out to be correct in case that the system is of the traditional ARX structure (without
any external disturbances). However, if the structure (1) is considered with both the controlled inputs
u and disturbance variables d coming to play, the above mentioned quantifier definition J might not be
suitable. The samples dk being part of the regression vector Zk and thus possibly influencing also the
smallest eigenvalue of the information matrix increase cannot be manipulated. Under certain “lucky”
conditions, the data might be informative enough even when it comes to estimation of the disturbance
parameters.

However, a situation can occur in which the smallest eigenvalue is strongly related to the disturbance
variable and cannot be efficiently affected by the manipulated variables. The ultimate scenario is that all
nd samples of dk are identically zero. Then, also the corresponding elements of Zk summed in (16) will
be zero. Recall that the information matrix increase is calculated as a sum of dyadic products and as
such, its rank is equal to the number of the nonzero linearly independent dyads entering (16). In case nd
disturbance samples are zero, the sum appearing in (16) can be re-ordered and transformed such that nd
zero dyads appear. Then, the rank of J decreases by nd. Since the rank of a matrix corresponds to number
of nonzero eigenvalues and J is a positive semi-definite matrix having only non-negative eigenvalues,
thus nd smallest eigenvalues will also be zero. The most worrying fact is that this happens no matter the
control actions applied to the system and the optimization performed during Stage II would not be effective
in such case. An intuitive explanation is that if the disturbance parameters are multiplied by disturbance
samples all being identically zero, their values cannot be effectively estimated and, moreover, the data even
cannot be excited enough since the disturbances cannot be manipulated.

Therefore, in this paper we propose the following adaptation of the data excitation quantifying criterion:
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Jnd+1 =
nd+1

∑
j=1

λj

(
Wp

k−1

∑
i=k−MP

ZiZT
i +

k+M

∑
i=k

ZiZT
i

)
, (17)

where λj are sorted eigenvalues such that

λ1 ≤ λ2 ≤ · · · ≤ λm

with m being the size of the information matrix increase. Loosely speaking, such formulation of Jnd+1
represents the sum of nd + 1 smallest eigenvalues of the information matrix increase.

In this way, we provide robust efficiency of the Stage II optimization by guaranteeing that the algorithm
does not try to optimize the single least eigenvalue since–as mentioned above–it might correspond to the
disturbance and might not be effectively affected by the manipulated input. It can be shown that maximiz-
ing the sum of nd + 1 smallest eigenvalues instead ensures that at least one element of the sum can be made
nonzero and thus the control effort is exploited in a more effective way. Thus, we provide a criterion that is
a compromise between maximizing certain function of all eigenvalues (e.g. determinant), which is effective
but prone to favoring the highest eigenvalues excessively, and maximizing just the smallest one, which fo-
cuses on the most “problematic” part of the model but might be ineffective in case that disturbances come
to play.

Let us discuss another important effect of choosing an “unlucky” optimization criterion which is a
degradation of the convergence properties of the optimization routine. This phenomenon, fortunately,
does not affect the convergence speed of the one-sample approach since its Stage II optimization consists
in an exhaustive search over a predefined interval/set of discrete values and as such, depends only on the
size of the explored space. However, the multi-sample approach exploits a numerically computed gradient
∆J /∆u of the optimization cost function. Gradient-based algorithms work satisfactorily only in case that
the change of the optimized variable(s) can cause a meaningful change of the optimization criterion, i.e.

∃ ∆u s.t.
∣∣∣∣
δJ
δu

∣∣∣∣ ≈
∣∣∣∣
∆J
∆u

∣∣∣∣ ≥ σ, σ� 0 (18)

otherwise, the convergence to an optimum can be harmed significantly. Recall that also unaffectable distur-
bance variables influence the system whose model is to be identified and as mentioned above, the smallest
eigenvalue of the information matrix increase can correspond to estimation of certain disturbance parame-
ter. Then, it is obvious that maximizing only the smallest eigenvalue expressed by criterion (16), such a
situation can occur that this eigenvalue cannot be effectively influenced by the optimized input samples,
i.e. |∆J /∆u| < σ ∀∆u, and the performance of the gradient search can be aggravated. This drawback,
however, is overcome by criterion (17) since it focuses on optimizing nd + 1 smallest eigenvalue and even
in the ultimate case that all disturbance samples are zero i.e. nd smallest eigenvalues are zero, it still ensures
that condition (18) for good gradient algorithm convergence is satisfied. Therefore, it can be expected that
the gradient search looking for an optimum of (16) is slower and also might provide worse results than
the gradient search optimizing (17). All these expectations are discussed in the following section using a
numerical example.

Now, let us formulate several assumptions related to the proposed algorithms, theoretical expectations
and their consequences for the ability to solve the persistent excitation task.

Assumption 1. For the meta-parameters of the algorithms, it holds that

(stronger version) Mp + M ≥ na + nb + nd,

(weaker version) Mp + M ≥ na + nb,

where Mp is the number of the past considered samples and M denotes the future considered samples.
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Assumption 2. The algorithms are initialized such that

(stronger version) if Mp + M ≥ na + nb + nd and M < na + nb + nd, then

rank

(
k−1

∑
i=k−MP

ZiZT
i

)
= min{Mp, na + nb + nd};

(weaker version) if Mp + M ≥ na + nb and M < na + nb, then

rank

(
k−1

∑
i=k−MP

ZiZT
i

)
= min{Mp, na + nb}.

Assumption 3. The disturbance samples are linearly independent, i.e.

rank
(
∑ Zi,dZT

i,d

)
= nd,

where Zi,d is a subvector of Zi consisting of the last nd samples corresponding to the disturbance samples,
Zi,d = [di−1, . . . , di−nd ], Zi = [. . . , ZT

i,d]
T.

Based on these assumptions, let us formulate the following theorems.

Theorem 2. Satisfaction of Assumptions 1 (stronger version), Assumption 2 (stronger version) and As-
sumption 3 is a necessary condition for the task of maximization of criterion (16) to be well-posed.

Theorem 3. Satisfaction of Assumption 3 is not a necessary condition for solvability of maximization of cri-
terion (17). Satisfaction of Assumptions 1 (weaker version) and 2 (weaker version) is a necessary condition
for the task of maximization of criterion (17) to be well-posed.

Following the discussion of the assumptions presented above, let us provide a combined proof as fol-
lows.

Proof (of Theorem 2 and 3). For the task of maximization of criterion (16) to be well-posed, it must be possible
to influence the smallest eigenvalue of the information matrix increase. This requires that:

i) At least na + nb + nd dyadic products are summed (Assumption 1, stronger version).
If less than na + nb + nd products are summed, there will always be some zero eigenvalues that cannot
be increased and thus the optimization task solved by the algorithms is not well-posed.

ii) If less than na + nb + nd future dyadic products are summed, the sum of the past dyadic products
must be of sufficient rank (Assumption 2, stronger version).
In case that M ≥ na + nb + nd, the sum of the past dyadic products need not have any specific
rank since the summation of M future dyadic products can theoretically ensure that the information
matrix increase has full rank and thus, no unaffectable zero eigenvalues appear. Otherwise, the sum
of Mp past dyadic products must be added and moreover, it must have such rank that the resulting
information matrix increase can be made to have full rank na + nb + nd.

iii) The disturbance acting on the system must be sufficiently excited (Assumption 3).
The disturbance variable cannot be influenced externally and to enable that the information matrix
increase has full rank, the disturbance samples must be linearly independent.

Since (nd + 1) smallest eigenvalues are considered in maximization of criterion (17), the last condition
(Assumption 3) is not crucial and has no influence on solvability of the considered optimization task. The
necessity of satisfying the weaker versions of Assumption 1 and 2 can be proven following the same rea-
soning as in case of maximization of criterion (16).

This completes the proof.
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4. Case study

In this section, the behavior of the proposed algorithms (multi-sample and one-sample) is investigated.
The first part (Section 4.1) demonstrates attractive theoretical properties and inspects the performance of
the algorithms with an artificial example. The second part (Section 4.2) focuses on a practical example—a
building model created in Trnsys (high-fidelity modeling environment) is used to show that the proposed
algorithms represent a promising perspective for the real-life applications.

4.1. Artificial example
In this part of the case study, the behavior of the proposed algorithms is investigated considering a

system with the following dynamics

yk = 0.4yk−1 + 0.15yk−2 + 0.1yk−3 + 0.4uk−1 + 0.15uk−2 + 0.1uk−3

+ 0.42dk−1 + 0.05dk−2 + εk
(19)

εk ∈ N (0, 0.012), and controlled by an MPC with the cost function and constraints formulated as follows:

JMPC,k =
P

∑
i=1

W11‖uk+i‖1 +
P

∑
i=1

W12‖uk+i‖2 +
P

∑
i=1

W21‖ψk+i‖1 +
P

∑
i=1

W22‖ψk+i‖2 (20)

w.r.t. : linear dynamics (19),
0 ≤ uk+i ≤ 5, i = 1, . . . , P,

ymin
k+i ≤ ŷk+i|k + ψk+i.

Here, the lower boundary for the system output ymin
k was generated according to the following schedule:

ymin
k =

{
4 103q+1 ≤ k < 103(q+1) + 1, q is even
6 103q+1 ≤ k < 103(q+1) + 1, q is odd.

(21)

Regarding the disturbances in this artificial example, perfect knowledge of the disturbance (d̂ = d) was con-
sidered for both the MPC and the identification. The weighting matrices were chosen as W11=10−2, W12=
9× 103, W21 = 105 and W22 = 103 while the prediction horizon P = 30 steps was considered. With these
settings, a simulation with the length of N = 15× 103 samples was performed.

Similarly, the simulations were run also for both algorithms (one-sample and multi-sample algorithm)
developed in this paper with various settings as follows. For Mp = 0, the following M = 9, 10, 11, 12
were used, while for Mp = 20, M = 4, 6, 8, 10 were considered. Next, four different maximal allowed
perturbations ∆J1 < ∆J2 < ∆J3 < ∆J4 were considered to inspect the control aspects (energy consumption
and zone violation) of the evaluated algorithms. Last of all, both optimization criteria mentioned in the
previous section (Jnd+1 and J ) were examined.

The obtained data were then split into N = 30 smaller 500-samples subsets and each of them was used
to estimate the parameters of the considered structure. The evaluation of the performance of the inspected
algorithms is presented in the subsection below.

4.1.1. Results
Let us remind that the objective of the current work was to develop an algorithm able to both satisfy the

control performance and provide the data containing amount of information sufficient for the successful
re-identification. Therefore, we provide a comparison of the presented algorithms with the original MPC
to demonstrate that for the price of only small control performance degradation, the presented algorithms
are able to generate data that are much richer on information.

Two viewpoints were considered when evaluating the results of the algorithms presented in the paper,
namely i) the possibility of system re-identification (parameter adjustment); and ii) the control performance
quality requirements and restrictions imposed by the MPC problem formulation.
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To evaluate the satisfaction of the first sub-objective, the following quantifiers were used. Since the main
goal of our algorithms was to maximize the smallest or (nd + 1) smallest eigenvalue(s), the cumulative sum
of the smallest eigenvalue (∑J ) and the cumulative sum of the (nd + 1) smallest eigenvalues (∑Jnd+1)
during the whole experiment were computed. To be more illustrative, the values are normalized with
respect to the cumulative sums achieved by the classic MPC.

Recall that the chosen optimization criteria–i.e. certain kind of maximization of the information matrix
increase–were chosen to reflect the true objective being the effort to provide the most accurate possible
estimates of the parameters of the ARX structure (19). Parameter estimation accuracy was quantified using
εAB and εABd defined as follows:

εAB =
1
N∑
N

(
na

∑
i=1

‖âi − ai‖
ai

+
nb

∑
i=1

‖b̂i − bi‖
bi

)
,

εABd =
1
N∑
N

(
na

∑
i=1

‖âi − ai‖
ai

+
nd

∑
i=1

‖d̂i − di‖
di

)
,

where {ai, bi, di} and {âi, b̂i, d̂i} stand for the system parameters and their estimates andN is the number of
data subsets used for estimation. According to their definition, εAB and εABd represent the normalized esti-
mation error for the {output, input} and {output, disturbance} parameters averaged over all N estimated
models.

To inspect the ability to satisfy the original MPC requirements, the following two evaluators were con-
sidered. ∆E being the first of them calculates the difference between the total energy consumption EPE of
the persistently exciting MPC and the total energy consumption EMPC of the original MPC expressed in per
cents of the original MPC consumption, ∆E = (EPE− EMPC)/EMPC. The second of the MPC-requirements-
satisfaction evaluators is the mean of the normalized zone violation ZV over the whole simulation,

ZV =
1
N

N

∑
k=1

max
(
ymin

k − yk, 0
)

ymin
k

.

Last of all, average computational time tcomp normalized with respect to average computational time of
the pure MPC being a measure of computational complexity and the convergence properties of the Stage
II optimization routine is provided as well.

The obtained results are summarized in Table 1 - Table 4. In the tables, most cells contain two values of
the inspected evaluator. Here, the first value corresponds to the lowest and the second one to the highest
achieved value of the evaluator for the whole inspected range of allowed perturbations {∆J1, ∆J2, ∆J3, ∆J4}.

First of all, the tables confirm the basic expectations: increasing maximal allowed perturbation ∆J, the
control performance gets worse (both the zone violation and the energy consumption increase), on the
other hand, the ability to estimate the parameters improves (the parameter estimation error εAB decreases
and the smallest eigenvalue/sum of (nd + 1) smallest eigenvalues increases).

Inspecting the satisfaction of the MPC control requirements, for both provided algorithms it can be
observed that in vast majority of the inspected cases, the energy consumption increase (compared with
the classic MPC) is not higher than several per cents while the average zone violation is below 0.4 %. This
control performance degradation is compensated by significant decrease of the estimation error. In some
cases, the parameter estimation error εAB for the algorithms presented in the current paper is as low as 10×
less than in case of the MPC. Similarly, the cumulative sums of the smallest eigenvalue/(nd + 1) smallest
eigenvalues are several times higher.

Inspecting the presented tables, also a very interesting observation can be made. Even with the most
strict ∆J1, the average {output, input} estimation error εAB combining inaccuracy of estimating the ai and
bi parameters is several times smaller for the algorithms presented in this paper than in case of the classic
MPC. However, this does not hold for εABd expressing the combined error in estimating the ai and di
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Table 1: Comparision of the results - one-sample algorithm, Mp = 0

∆E(%) ZV(%) εAB εABd ∑J ∑Jnd+1 tcomp

m
ax
J M=9 0.61/1.92 0.00/0.00 1.96/1.34 8.90/ 9.71 5.83/12.95 2.91/5.18 2.01

M=10 2.00/3.44 0.00/0.00 1.60/1.47 8.47/ 9.60 6.59/14.57 3.12/6.06 2.08
M=11 3.25/4.47 0.01/0.00 1.68/1.22 9.11/11.70 6.86/15.77 3.21/6.45 2.12
M=12 4.29/5.42 0.01/0.00 1.87/1.20 8.57/ 8.87 7.14/16.59 3.21/6.64 2.15

m
ax
J n

d+
1 M=9 5.08/15.28 0.04/0.04 2.05/1.73 9.01/8.85 3.36/4.15 1.39/1.71 1.98

M=10 5.05/15.82 0.03/0.04 2.07/1.80 9.35/8.86 3.91/4.48 1.38/1.64 2.02
M=11 4.85/16.03 0.04/0.04 1.77/1.62 8.90/8.93 4.76/4.94 1.41/1.61 2.10
M=12 4.59/16.09 0.04/0.04 1.80/1.66 8.97/8.58 4.84/5.66 1.44/1.58 2.18

MPC 0 0.00 7.99 11.17 1 1 1

Table 2: Comparision of the results - one-sample algorithm, Mp = 20

∆E(%) ZV(%) εAB εABd ∑J ∑Jnd+1 tcomp

m
ax
J M=4 0.80/4.16 0.03/0.04 1.52/1.10 8.75/9.87 5.62/16.69 2.55/6.50 2.11

M=6 0.54/3.98 0.03/0.03 1.71/1.15 8.83/9.00 6.33/17.07 2.56/6.36 2.24
M=8 0.55/3.94 0.03/0.03 1.77/1.11 8.83/8.89 5.89/17.30 2.66/6.39 2.33
M=10 0.66/3.94 0.03/0.03 1.65/1.36 8.89/8.45 5.89/19.44 2.65/6.46 2.40

m
ax
J n

d+
1 M=4 0.85/ 9.19 0.06/0.07 2.05/1.26 8.06/9.20 4.90/19.16 1.99/6.83 2.18

M=6 1.26/10.06 0.06/0.07 1.96/1.26 8.87/9.28 4.50/20.01 1.94/7.17 2.27
M=8 1.75/13.38 0.06/0.07 1.80/1.30 8.91/9.29 4.36/19.30 1.88/7.22 2.38
M=10 2.32/16.06 0.06/0.07 1.84/1.19 8.84/9.23 4.44/20.07 1.81/7.20 2.42

MPC 0 0.00 7.99 11.17 1 1 1

Table 3: Comparision of the results - multi-sample algorithm, Mp = 0

∆E(%) ZV(%) εAB εABd ∑J ∑Jnd+1 tcomp

m
ax
J M=9 2.06/7.91 0.31/0.40 1.30/1.11 12.44/8.71 25.61/47.60 10.54/19.45 20.51

M=10 1.22/5.27 0.32/0.42 1.22/0.99 12.68/8.48 23.66/35.11 9.80/14.67 22.43
M=11 0.32/3.31 0.26/0.35 1.22/0.95 12.90/9.27 17.75/28.63 7.46/11.97 23.91
M=12 0.15/1.09 0.20/0.27 1.07/0.97 12.98/8.95 19.58/24.76 6.62/ 9.39 26.48

m
ax
J n

d+
1 M=9 0.87/8.79 0.13/0.19 1.06/0.91 9.47/8.74 31.91/69.81 13.18/37.96 9.38

M=10 0.44/7.45 0.11/0.17 1.26/0.84 9.51/8.93 30.56/63.81 12.52/33.71 9.62
M=11 0.10/5.60 0.12/0.18 1.46/0.93 9.41/9.09 31.31/68.61 12.86/36.44 10.82
M=12 0.01/4.17 0.13/0.18 1.40/0.91 9.54/9.15 26.73/61.16 10.91/31.27 11.51

MPC 0 0.00 7.99 11.17 1 1 1

parameters. For our algorithms, the value of εABd is usually only slightly lower than for the classic MPC
and sometimes, it gets even higher. Moreover, this error does not strictly decrease with the increase of
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Table 4: Comparision of the results - multi-sample algorithm, Mp = 20

∆E(%) ZV(%) εAB εABd ∑J ∑Jnd+1 tcomp

m
ax
J M=4 3.89/13.70 0.16/0.19 1.15/0.77 9.97/10.16 26.24/44.65 11.04/22.43 18.32

M=6 1.33/ 7.89 0.23/0.30 1.20/1.02 10.10/10.01 23.05/35.62 9.04/17.04 19.68
M=8 0.14/ 8.50 0.15/0.22 1.37/1.00 10.01/10.11 18.40/39.12 7.55/18.16 20.81
M=10 0.01/ 3.33 0.13/0.19 1.63/1.01 10.15/ 9.91 11.79/27.95 5.16/11.67 22.51

m
ax
J n

d+
1 M=4 6.46/19.22 0.23/0.30 1.22/1.15 11.14/10.16 21.58/31.91 11.96/17.70 7.32

M=6 1.01/ 5.78 0.21/0.27 1.41/1.21 11.35/ 9.32 18.81/27.23 9.40/13.23 7.72
M=8 0.40/ 1.31 0.15/0.19 1.81/1.57 11.14/ 9.78 12.63/17.13 6.49/ 8.64 8.16
M=10 0.01/ 0.50 0.11/0.14 2.13/1.74 11.59/ 9.52 9.61/13.38 5.14/ 6.95 9.65

MPC 0 0.00 7.99 11.17 1 1 1

∆J. This can be explained as follows: Stage II optimization of our algorithms can directly improve the
estimation of the input parameters bi and indirectly affect the estimation accuracy of the output parameters
ai, however, no change of the input values can influence the values of the disturbance variables. The best
that can be achieved is that a suitable choice of the input values decorrelates the disturbances from both
the inputs and the outputs which in turn slightly increases the accuracy of the disturbance parameters di.

The ability of both our algorithms to provide more precise parameter estimates is demonstrated also
by Fig. 2 and Fig. 3 where the estimation errors for the model parameters considering chosen algorithm
settings are depicted. Looking at the pictures, it is obvious that our algorithms yield ai and bi estimation
errors with significantly smaller variance and also mean value than the MPC with no additional excitation.
On the other hand, the improvement in accuracy of the disturbance parameters estimates is only marginal,
which confirms the discussion presented above.
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Figure 2: Parameter estimation errors – one-sample algorithm (magenta – MPC, blue – {Mp = 0, J }, green – {Mp = 20, J }, cyan –
{Mp = 0, Jnd+1}, black – {Mp = 20, Jnd+1}).
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Figure 3: Parameter estimation errors – multi-sample algorithm (magenta – MPC, blue – {Mp = 0, J }, green – {Mp = 20, J }, cyan –
{Mp = 0, Jnd+1}, black – {Mp = 20, Jnd+1}).

Another interesting observation to be made based on the provided pictures is how the accuracy im-
provement is spread among the estimated parameters. First of all, the most significant improvement of the
one-step algorithm estimates corresponds to the b1 parameter. This following explanation can be provided:
during its Stage II optimization, only a single input sample is optimized. Therefore, the algorithm tries to
achieve the whole informativeness increase by suitable major changes of the first input sample. This turns
into the most evident enhancement of the estimates of the first input parameter b1 corresponding to this
input sample. Of course, the algorithm makes use of the mathematical model and thanks to large M, it
improves the excitation also in the directions appertaining to the rest of the parameters. This statement is
supported by the depicted estimation errors of the a1,2,3 and b2,3 parameters – their accuracies have also
been ameliorated compared with the MPC case, although not in such significant way. Since just one de-
gree of freedom is available, the gain in the rest of the parameters is not as distinguished as in case of
the multi-sample algorithm. The multi-sample algorithm has more degrees of freedom at disposal since
it optimizes as much as M input samples. The ability to distribute the excitation effort among multiple
input samples considerably improves the identifiability of all output/input parameters and as shown in
the corresponding pictures, the decrease in the estimation inaccuracy is spread more evenly among all of
them as well.

Now, let us compare the table pairs with MP = 0 and MP = 20 for the introduced algorithm i.e. Ta-
ble 1 with Table 2 and Table 3 with Table 4. Such comparison provides an interesting insight into how the
performance of the algorithms changes when they are provided with information about the past system
excitation. Recall that MP = 0 means that the algorithm takes only the future excitation into account while
with MP = 20, also the information about the past system excitation is exploited. Comparing Table 1 with
Table 2, it is obvious that such information improves the performance of the one-sample algorithm and the
data excitation is better, which leads to more accurate parameter estimates. On the other hand, no such
enhancement of the multi-sample algorithm behavior can be seen inspecting Table 3 and Table 4. This is
related to the number of the input samples that can be manipulated by the algorithms. The one-sample
algorithm manipulates only with a single input sample and therefore, when provided with additional in-
formation about the past measured data, this input sample can be used in a more suitable way. On the
other hand, the multi-sample algorithm optimizes a much broader set of the input samples (9− 12 with
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MP = 0). Thus, even with MP = 0, enough maneuverability freedom is at disposal and the system excita-
tion can be laid out quite appropriately even looking only into the future. This means that the information
about the past excitation of the system does not pose such advantage as for the one-sample algorithm and
therefore, also the positive effect on the obtained results is lesser.

Last of all, let us inspect the average computational time tcomp for various settings of the algorithms.
Based on the values listed in the tables, the one-sample algorithm can be generally regarded as faster and
apparently also less computationally demanding than the multi-sample algorithm. This results from the
fact that the one-sample algorithm optimizes only a single input sample compared with M samples op-
timized by the multi-sample algorithm. Furthermore, as discussed in the previous section, maximizing
(nd + 1) smallest eigenvalues instead of the single smallest one does not bring any improvement in time
complexity of the one-sample algorithm since the explored interval does not change with the change of the
optimization criterion. However, the situation is completely different in case of the multi-sample algorithm
where maximization of Jnd+1 yields several times shorter computational time compared with maximiza-
tion of J and thus, the time requirements of the multi-sample algorithm maximizing criterion (17) become
more comparable to those of the one-sample algorithm. Let us also have a look at the calculation time
of the variants that do “look back” and those that do not (i.e. MP = 0 vs. MP = 20). Speaking about
the one-sample algorithm, no significant difference can be observed between the two variants. This can
be attributed to the fact that the time consumption is mainly determined by the length of the inspected
input values interval, while the number of input samples considered in calculation of the informativeness
increase influences it only marginally. For the multi-sample algorithm, however, the situation is completely
different. Since the complexity of the optimization task is directly given by the dimension of the optimiza-
tion space, the higher M is, the longer the calculation takes. Here, let us remind that the variant with
MP = 0 require higher M to preserve the full rank of the information matrix increase. As a result, MP = 0
yields generally longer computational times than MP = 20.

To conclude this case study, the observations can be summarized as follows: the multi-sample algo-
rithm provides the best performance in the sense of data informativeness, however, it is also more com-
putationally demanding. This can be improved exploiting the newly introduced data excitation criteria.
The one-sample algorithm, on the other hand, is more suitable for situations with limited computational
resources. It still significantly outperforms the original zone MPC, however, at only a gentle increase of
computational time.

4.2. Building modeling example
In this part of the case study, the persistently exciting MPC framework was applied to temperature zone

control in a one-zone building. This more practical example is provided not to show only good theoretical
properties of the persistently exciting MPC framework but also to demonstrate the fact that it is sufficiently
robust and capable of performing well even under imperfect real-life conditions. Here, the one-sample
algorithm was chosen due to several reasons. In industrial practice, the available hardware resources and
computational time are often very limited. For rather small-scale tasks (e.g. one-zone building climate
control), the limitations are even more strict. This favors the one-sample algorithm being the less computa-
tionally demanding variant. Moreover, as presented in the previous example, even the simple one-sample
algorithm provides sufficiently excited data leading to a significant improvement in parameters identifia-
bility compared with the use of non-exciting MPC.

Building model considered in this work was created in Trnsys, an engineering simulation software [37].
Trnsys is a frequently used tool for a wide range of purposes [38], which can be mostly attributed to the fact
that particular physical phenomena are modelled in detail ensuring a very high level of fidelity. Therefore,
such building model can be exploited as a sufficiently accurate simulator of a real building.

The used model is schematically depicted in Fig. 4. It represents a medium weight building with one
zone. Its sizes are 5 × 5 × 3 m and the south oriented wall contains a window of area of 3.75 m2. The
pipes encapsulated into the ceiling referred to as thermally activated building system (TABS) distribute
supply water which then performs thermal exchange with the concrete core of the building consequently
heating the air in the room. Time-step of the simulation was set to Ts = 15 min, which guarantees proper
convergence of Trnsys internal algorithms.
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Figure 4: A scheme of the modelled building

First, the Trnsys model was utilized as a generator of data used for identification of a linear model
exploited by the MPC as a predictor. From the gathered data, the parameters of a model with the following
structure were estimated:

TZ,k = −
na

∑
i=1

aiTZ,k−i +
nb

∑
i=1

biQk−i +
nd

∑
i=1

diTamb,k−i + ek, (22)

where TZ, Q̇ and Tamb specify the zone temperature (output), the energy supplied by the TABS system
(optimized input) and the predictions of the ambient temperature (disturbance variable). Models with this
structure are commonly used as a simplified expression of the building dynamics for the control purposes.
The chosen set of variables was picked up to represent the real application as reliably as possible – in vast
majority of the MPC applications for real buildings, these variables are usually available as measurements
and/or predictions. To estimate the parameters of the presented structure, identification method used
in [39] for building model identification was employed. Following a procedure given in [39], the meta-
parameters of this structure were chosen as na = nb = nd = 3.

Trying to bring this case study even closer to reality, real outdoor temperature profiles for Prague were
used as the ambient temperature Tamb. It should be noted that the predictions were not perfect and at the
beginning of each day, a 2-day forecast of certain accuracy was provided to both the classic MPC and our
sufficiently exciting algorithm. At each discrete step, the algorithms extracted a 12-hour subsequence out
of this forecast, which they used as the disturbance prediction.

This identified model was then incorporated into the MPC controller optimizing energy supplied to the
system while satisfying thermal comfort restrictions in the building zone over the prediction horizon P.

The controllers optimized over a prediction horizon of 12 hours resulting in P = 48 samples. Tmin
Z was

generated in accordance with the following 7-days schedule with night and weekend setbacks:

Tmin
Z =

{
22◦C work days from 8 a.m. to 6 p.m
20◦C weekends, holidays, work days from 6 p.m. to 8 a.m..

(23)

The following tuning was used: for thermal comfort, the quadratic and the linear weight were set to
1000 and 10000, respectively, while for the consumed energy, the quadratic and the linear weight of 50 and
0.1 were considered.

At first, the classic zone MPC with these settings was used to control the testbed building over a 3-
month period (starting at the beginning of January). The same simulation was then performed using the
exciting MPC with various settings for maximal allowed perturbation ∆J = 1000 and ∆J = 1300 and
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various excitation horizon M = {2, 4, 6, 8}. This enabled to compare the behavior of the non-exciting MPC
formulation and the persistently exciting MPC algorithm with different choice of the tuning parameters.
Note that both algorithms used the same model (without any adjustments or re-identification) over the
whole 3-month simulation. This model was identified from a 2-week period from 1 January to 15 January.

4.2.1. Results
Similarly to the artificial example case, two viewpoints can be considered when evaluating the provided

algorithms, namely i) the possibility of system re-identification; ii) the original MPC requirements and
restrictions satisfaction.

Since the primary goal is to re-identify the parameters of the model for the predictive controller using
the closed-loop data, the first comparison is focused on the amount of information contained in the data
quantified by J . Here, higher amount of information–a result of the data being excited in a more appro-
priate way–enables identification of better and more accurate models. Estimation of the model parameters
was performed with the 3-month data set in a “receding horizon” fashion as follows: for every run of the
identification routine, a 500-sample data subset was used and then, the beginning of the identification pe-
riod was shifted by 100 samples. Using this approach, a sufficiently rich set of models was obtained for
both the traditional non-exciting MPC and for each setting of the sufficiently exciting MPC as well.

To inspect the quality of the identified models, a validation data set of 30 days was exploited while
both Tamb and Q̇ were excited by a pseudo-random binary signal with a sufficient bandwidth in order to
investigate the accuracy of the model on the frequencies corresponding to those of the implemented control
strategy. Considering the prediction horizon of 12 h, frequencies higher than approximately 10−5 Hz are of
the main interest.

Besides the ability to re-identify the model, it is also important to verify how well do the designed con-
trollers satisfy the control requirements, respect the imposed constraints and how much “do they cost”.
To investigate the control performance, the following aspects were considered: average control zone viola-
tion CV (underheating), maximal control zone violation over the whole simulated period MCV and energy
consumption EC. Dealing with building climate control applications, both the energy consumption and the
control zone violation have their own reasonable physical interpretations: the overall energy consumption
can be measured in kWh and the control zone violation represents the violation of the user thermal comfort
(underheating in this case) and can be given in Celsius degrees. This is the reason why unlike the artifi-
cial example, the energy consumption increase and the control zone violation are presented in absolute
numbers instead of being normalized.

The obtained results for both the classic zone MPC formulation and the sufficiently exciting MPC algo-
rithm with different settings are presented in Table 5.

Table 5: Building climate control – results

MIM4DC MPC
M=2 M=4 M=6 M=8

∆
J=

10
00 CV (◦C) 0.01 0.01 0.01 0.01 0.02

MCV (◦C) 0.16 0.17 0.16 0.16 0.12
EC (kWh) 1567 1574 1568 1574 1482
J 1.596 1.747 1.745 1.784 1

∆
J=

13
00 CV (◦C) 0.005 0.006 0.006 0.006 0.021
MCV (◦C) 0.18 0.19 0.18 0.19 0.12
EC (kWh) 1625 1637 1639 1726 1482
J 1.523 1.766 1.798 1.838 1

At first, let us have a look at the consumed energy. From Table 5, it is obvious that the classic MPC con-
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sumes the smallest amount of energy among all the tested controllers, however, note that the consumption
increase due to incorporation of the persistent excitation condition is not dramatic; usually, it is not higher
than 10 %. This demonstrates that for a low price (i.e. little energy consumption increase), sufficiently
excited data that enable to re-identify the parameters of the system more accurately are obtained.

Inspecting the thermal comfort violation, it can be observed that in some cases, the classic MPC vio-
lates the comfort requirements even more than the sufficiently exciting MPC (see Table 5), which can be
explained in a simple way. For zone control strategy, the cost function is assymetric and the constraints for
the second stage obtained in the first stage of the algorithm are assymetric with respect to the original u∗MPC
as well. In other words, ūmax is usually further away from u∗MPC than ūmin. Moreover, from the information
gain point of view, it is usually also more advantageous to choose the optimal ũ∗k closer to ūmax which re-
sults in gentle zone temperature increase. Nevertheless, the violations are negligible for both MPC variants
and in most cases, they lie bellow the sensitivity threshold of majority of the temperature sensors. There-
fore, it can be concluded that the persistent excitation condition incorporated into the presented algorithm
does not have a significant negative impact on the thermal comfort.

From the comparison given in Table 5, a dependence of J representing the minimal eigenvalue of the
information matrix increase and quantifying the data informativeness on maximal allowed perturbations
∆J = 1000, ∆J = 1300 can be observed. From the obtained values, it can be seen that although the maximal
allowed perturbation increase comes hand in hand with increase of gathered information (better conditions
for the required re-identification), it causes also higher energy consumption.

As in real life, also in case of a high-fidelity building model the parameters of the structure are not
known exactly. Since the Trnsys testbed is a highly complex model with a detailed and complicated non-
linear structure, it was not possible to determine how close the estimated parameters to the true system
parameters were. Unlike the first part of case study presented in Section 4.1.1, we thus decided to evaluate
the model quality by comparing a normalized root mean square error (NRMSE) fitness value defined as

fitNRMSE =

(
1−

N

∑
k=1

∥∥TZ,k − T̂Z,k
∥∥

2∥∥TZ,k − E(TZ)
∥∥

2

)
[100%]. (24)

In this formulation, E stands for the mean value operator. Fig. 5 compares fitNRMSE of the models identified
from data provided by sufficiently exciting MPC for M = 6 and both allowed values of ∆J with the fitNRMSE
values of the models identified from the data gathered from the classic MPC. The figure demonstrates the
ability of our algorithm to excite the data in a more appropriate way thus leading to better re-identification
of the model with average fitNRMSE about 90%. The same evaluation applied to the classic MPC results
only in 80% fitness value. Looking at the trend of the gathered information (see Table 5), better results–i.e.
models with better prediction properties–are achieved by the sufficiently exciting algorithm with higher
allowed perturbation.

5. Conclusions

In this paper, two algorithms for MPC with guaranteed identifiability were provided for a class of
problems commonly encountered in control engineering practice, namely for zone MPC for linear systems
with external predictable disturbances. Both algorithms are based on a two-stage procedure where in
the first stage, the original zone MPC problem is solved, while in the second stage, the data excitation is
optimized by manipulating either the first one or M first input samples.

Apart from attractive theoretical properties that were demonstrated on an example of artificial system,
also validation using a high-fidelity building model was provided. Both of the proposed algorithms signif-
icantly outperform the classic zone MPC without excitation and the obtained results make them promising
candidates for energy efficient closed loop experiment design for predictive control.

The future ambition is to use these algorithms in combination with methods for detection of model
deviation as follows: the system would be controlled by the classic MPC and if a significant deviation of
the model predictions from the measured data is detected, a short-term switch to either of the provided
algorithms ensuring sufficiently excited data for the re-identification would be performed.
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[23] E. Zacekova, S. Privara, Z. Vána, J. Cigler, L. Ferkl, Dual control approach for zone model predictive control, in: Control Confer-
ence (ECC), 2013 European, IEEE, 1398–1403, 2013.

23

87
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5.3 Bilinear and Polynomial Systems

Thanks to a better availability of high computational power, nonlinear MPCs are getting
more attention and have become usable also in real-life tasks and therefore, algorithms for
persistent excitation of nonlinear systems are discussed in this thesis as well focusing on a
special class of bilinar/polynomial nonlinear systems. Again, the inspiration came from the
building sector where the bilinearity is commonly encountered and should be considered in
this regard since very often, the manipulated variables “enter” the system being multiplied
by its internal variables.

In [A.18], modifications of both the one-sample and the gradient algorithm for persis-
tently exciting MPC for bilinar systems were designed and tested. The first-stage “MPC”
optimization was formulated as a quadratic programming problem with quadratic con-
straints (QPQC). Regarding the second stage, both the one-sample and the gradient al-
gorithm were still applicable for the data excitation optimization. Moreover, the class of
the systems to be handled by these two approaches was extended to include also systems
with polynomial nonlinearities. Under this assumption, the first-stage optimization still
remains a QPQC task (although of a higher dimension depending on the degree of the
polynomial), however, the second-stage optimization changes slightly. While the gradient
algorithm remains more or less the same, the one-sample approach requires finding roots
of a squared polynomial instead of a parabola and the subsequent one-dimensional search
gets also slightly more involved.

To conclude the current chapter, the aforementioned paper is presented on the next
page et seq.
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MPC for a Class of Nonlinear Systems with Guaranteed Identifiability

Eva Žáčeková1, Matej Pčolka1, Michael Šebek1, Sergej Čelikovský1,2

Abstract— This paper addresses the problem of model predic-
tive control for a class of nonlinear systems which satisfies per-
sistent excitation condition. The conditions under which a non-
linear system description can be handled are specified and two
algorithms (one optimizing the first input sample and the other
considering optimization of an M -sample subsequence of the
input profile) solving the persistent excitation condition within a
predictive controller for nonlinear systems are developed, both
maximizing the smallest eigenvalue of the information matrix
increase. The numerical experiments performed on a test-bed
system demonstrate that the algorithms are able to successfully
improve identifiability of a nonlinear system description while
keeping the original controller performance degradation lower
than arbitrarily chosen level.

I. INTRODUCTION

During the last years, modern control methods have wit-
nessed significant boom. Being popular not only among the
academicians, these approaches of which the most noticeable
one is the Model Predictive Control (MPC) have started to
be more appreciated also by the control engineers.

MPC brings wide variety of new possibilities and advan-
tages, it can simply handle various input/state/output con-
straints and simplifies the way the multi-input/multi-output
systems are controlled. Except of plenty of undisputable
benefits, several problems arise. Their main disadvantage
is the crucial necessity of a good mathematical model by
which the favorable controller performance is conditioned.
It is actually the search for such appropriate model that is
many times more time-demanding than the controller design
itself [1].

A very common situation that occurs in industrial practice
is that the system is already controlled by some kind of
advanced controller whose control performance starts to
deteriorate. This is usually caused by the mathematical model
which might loose its ability to describe the system dynamics
in a suitable manner and the appropriate step is to re-identify
the model. Classical open-loop identification experiments
might be inadmissible due to operational and/or economical
reasons. In such case, commonly used identification methods
fail and are not able to ensure that the identified models
reach reasonable quality [2], [3]. Although relatively wide
variety of methods are able to cope with the closed-loop
identification data, they work reliably only for simple linear
controllers [4]. Since the MPC structure is much more
complex, it is inevitable find alternative way of dealing with
this problem.

Therefore, it is useful to focus on methods where the
controller itself brings additional information and thus im-
proves the model of the process – in such case, the controller
performs some kind of closed-loop identification experiment.
Several works can be found in the available literature that

1Department of Control Engineering, Faculty of Electrical Engineering
of Czech Technical University in Prague, Technická 2, 166 27 Praha 6,
Czech Republic

3Institute of Information Theory and Automation, Czech Academy of
Sciences, Pod Vodárenskou věžı́ 4, 182 08 Praha 8, Czech Republic

have addressed this problem [5], [6], [7], [8]. Their common
drawback is that they provide solution valid only for linear
systems.

Since majority of the industrial processes possess a non-
linear dynamics and thanks to the progress in numeri-
cal optimization which makes the nonlinear-programming
solvers more affordable and usable in real operation, it is
not uncommon to design an MPC making use of nonlinear
system model. Therefore, this paper focuses on design of
such predictive controller that ensures sufficiently excited
data suitable for identification of a class of polynomial non-
linear systems. Of a special interest is a sub-class containing
bilinear systems since such system dynamics description ap-
pears in many areas of biochemical engineering [9], building
control [10], electrical engineering [11] and elsewhere [12].

This paper provides adaptation and extension of the al-
gorithms that have already been successfully validated on
examples of linear systems [8], [13]. The adaptations make
the algorithms suitable for use also in case that nonlinear
system description is assumed. As already indicated, the
extensions focus on bilinear systems and possibilities of
use of the adapted algorithms for more general polynomial
nonlinear systems are discussed.

The paper is organized as follows. Sec. II introduces
the considered problem and the necessary background. In
Sec. III, the problem of persistently exciting MPC for the
class of nonlinear systems specified in Sec. II is discussed
and two algorithms solving this task are developed – both
the one-sample and the multi-sample algorithm are described
in detail. The performance of the proposed algorithms is
demonstrated in Sec. IV. Sec. V concludes the paper.

II. PROBLEM STATEMENT

In this Section, the necessary background is provided.

A. Model of the system

In this paper, single-input/single-output (SISO) nonlinear
systems with the following description [14] are considered:

yk = β0(uk−1, . . . , uk−n) +

n∑

i=1

βi(uk−1, . . . , uk−n)yk−i + εk,

(1)
where yk and uk are the system output and input sequences,
εk represents zero-mean white noise and βi are such poly-
nomials of arguments uk−1, . . . , uk−n that

βi(uk−1, . . . , uk−n) = θTi Zk,i + αi, (2)

where θi are constant real vectors, αi are constant real scalars
(with α0 = 0) and Zk,i are vectors of scalar monomials
of uk−1, . . . , uk−n. Parameter n specifies number of lagged
inputs in structure (1). Then, the model structure (1) can be
reformulated as

yk = θTZk + εk, (3)
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where θ =
[
θT0 θT1 α1 θT2 α2 . . . θTn αn

]T and

Zk =
[
ZT
k,0 ZT

k,1yk−1 yk−1 . . . ZT
k,nyk−n yk−n

]T
.

Parameters of structure (3) can be straightforwardly es-
timated by linear regression θ̂ = Y \ZT, where Y =[
y1 y2 . . . yN

]T,Z =
[
Z1 Z2 . . . ZN

]T and N is
the length of identification data [2].

Example. Let us consider the following system with the
structure corresponding to (1):

yk = ayk−1 + byk−2 + cuk−1yk−1 + duk−2yk−1

+ eu2k−1 + fu2k−1yk−1 + guk−2yk−2.
(4)

Let us denote θ0 =
[
e
]
, θ1 =

[
c d f

]T, θ2 =
[
g
]
, Zk,0 =[

u2k−1

]
, Zk,1 =

[
uk−1 uk−2 u2k−1

]T
, Zk,2 =

[
uk−2

]
, α1 =

a, α2 = b. Then, the system (4) can be reformulated into the
compact form (3) with

Z =[u2k−1 uk−1yk−1 uk−2yk−1

u2k−1yk−1 yk−1 uk−2yk−2 yk−2]
T

and
θ =

[
e c d f a g b

]T
.

B. Persistent excitation condition

One of the sub-objectives of the successful closed-loop
experiment algorithm is to provide the control engineer with
sufficiently informative data. By this it is meant to provide
input-output data which enable (in ideal case with Gaussian
white zero mean noise, etc.) exponential convergence of the
parameter estimation error to zero. First of all, it is necessary
to formulate requirements related to the data informativeness.

Let us consider the model structure (3). If linear regression
is to be used to estimate the parameters of this structure, the
convergence of the estimates of the parameters is equivalent
to existence of such parameters M ∈ N+, σ1 ∈ R+ and σ2 ∈
R+ for which the data satisfy the following condition [15]:

σ1I ≤
k+M∑

i=k

ZiZ
T
i ≤ σ2I, (5)

where I is a unit matrix of the corresponding dimension.
The expression (5) is referred to as persistent excitation (PE)
condition. If the input-output data satisfy this condition, they
are sufficiently excited, they ensure unique estimates of the
parameters of the structure (3) and the parameters of such
structure are then identifiable.

Let us remark that the upper bound σ2 in condition (5) is
not crucial for obtaining of sufficiently excited data [15] and
thus the further text focuses on the satisfaction of the lower
bound σ1.

C. Controller

Besides the sufficiently excited data, one of the require-
ments is the satisfactory control performance specified by
the chosen control performance criterion. The objective of
the MPC is then to minimize the given criterion by finding
the optimal input sequence. Typically, the MPC criterion
includes both the penalization of the tracking error with
respect to a reference trajectory y

ref
k

and the penalization

of the energy consumption, which can be summarized as:

JMPC ,k =

P−1∑

i=0

∥∥∥Q(yk+i − y
ref
k+i

)
∥∥∥
2

2
+
∥∥Ruk+i

∥∥2
2

s.t.: dynamics (3), umin
k+i ≤ uk+i ≤ umax

k+i , (6)

with weighting matrices Q and R and prediction horizon P .
In case that the dynamics of the controlled system is

linear, the optimization problem formulated in this way
is convex and it can be simply and quickly solved by
any available quadratic programming solver. For nonlinear
model structure (1), the above formulated optimization task
represents minimization of a quadratic criterion with respect
to nonlinear constraints.

Definition 1. Let us define the extended degree of the i-th
sub-regressor δ̄i ∈ N+ as δ̄i = δi + 1, where δi is the highest
monomial degree of all entries of sub-regressor Zk,i for
i ∈ {1, 2, . . . , n}.
Let us define the degree of the absolute sub-regressor δ̄0 ∈
N+ as the highest monomial degree of all entries of the
absolute sub-regressor Zk,0.
Then the total regressor degree D ∈ N+ is defined as the
highest sub-regressor degree, D = max{δ̄i|i = 0, 1, . . . , n}.

Lemma 1. Let us consider optimization task with quadratic
cost criterion and polynomial model structure (3) with to-
tal regressor degree D. Such optimization task can be re-
formulated as a quadratic programming task with quadratic
constraints (QPQC) introducing p suitable auxiliary vari-
ables.

The number of auxiliary variables p can be calculated as

p = d0 − 1 +

n2∑

i=1

i di,

where the coefficients di ∈ {0, 1} satisfy

D =

n2∑

i=0

di2
i.

Then, every optimization problem (6) with system dynam-
ics (1) is re-formulated as:

minX
T
HX + jTX (7)

subject to

X
TQiX + qTi X + ri ≤ 0 for i = 1, 2, . . . ,m, (8)

where the vector of optimized variables is

X = [XT u1,k . . . u1,k+P−1 . . . up,k . . . up,k+P−1]
T

with m = P (p+ 2). Here,

X =
[
uk . . . uk+P−1 yk . . . yk+P−1

]T

is the vector of original optimized variables and u1, . . . , up
are the auxiliary variables.

Even though the problem (7) with constraints (8) is in
general a non-convex one, there exists wide variety of convex
relaxations of such problems [16], [17]. Furthermore, there
are even several freely-available solvers able to find the
global optimum of such problem in reasonable time [18].
Remark 1. It should be remarked that for systems with
D ≤ 2, p = 0 and thus no auxiliary variables are added
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which means that the complexity of the optimization task
does not increase. Indeed, it can be straightforwardly shown
that systems with D = 1 are linear systems while D = 2

means either systems where the inputs are multiplied by
each other or by other lagged inputs or the output of the
system is multiplied by certain (eventually lagged) input.
Allowing also quadratic constraints, no additional auxiliary
variables are needed to handle such tasks. As was already
indicated in the introductory part of the paper, many real-life
applications include bilinear system dynamics and therefore,
such systems are of great practical interest. Since all bilinear
systems belong to the group with D = 2, the fact remarked
in the above paragraph is especially beneficial from the
computational point of view.

III. MPC WITH GUARANTEED PERSISTENT EXCITATION

Even though the currently available literature offers several
works discussing either the identifiability of certain classes of
nonlinear systems [19], [14] or the optimal experiment design
for nonlinear systems [20], [21], there are no algorithms
dealing with the design of nonlinear MPC respecting the
PE condition. The situation is very different in case of linear
systems where significant number of relavant works offers
algorithms for PE-MPC [6], [5], [7].

In this Section, descriptions of our own algorithms are
provided. The objective of the algorithms is to not only sat-
isfy the control requirements but also to provide sufficiently
excited data and in such way enable accurate estimation
of the parameters of the controlled nonlinear system with
polynomial dynamics. The presented algorithms are adap-
tations and extensions of the previous ones (which work
satisfactorily for linear systems [13], [8]) for the class of
nonlinear systems.

Both algorithms work in two steps as follows: in the first
step, the solution of the problem (6) is found and in the
second step, the following optimization task is solved:

U∗ = argmax
U

J

s.t.: umin
k+i ≤ uk+i ≤ umax

k+i , i = 0, . . . , P − 1

JMPC ,k(U) ≤ J∗MPC ,k +ΔJ,

(9)

where ΔJ is the user-defined maximal allowed degradation
of the original MPC cost function (6) and J quantifies the
data excitation. In the current paper,

J = λmin

⎛
⎝Wp

k−1∑

i=k−MP

ZiZ
T
i +

k+M∑

i=k

ZiZ
T
i

⎞
⎠ (10)

is assumed. Here, parameters MP , M, WP ≥ 0 are user-
defined tuning parameters. In other words, J represents the
smallest eigenvalue of the information matrix increase which
means that by maximizing J , the algorithm tries to bring as
much information as possible in the direction which has been
least informative. Parameter Wp expresses how important
is the information brought by the past obtained data and
parameters M and MP specify how many past/future time
steps are take into account.

The two designed algorithms differ mainly in the way they
address the optimization task (9). Their descriptions follow.

A. Algorithm I. – One-sample approach
This algorithm relies on the fact that MPC controller

usually works according to the receding horizon principle.
This principle can be explained as follows: at each discrete
time step k, the optimal control sequence for P -step ahead is
calculated but only the first element uk of the calculated
input sequence is exploited and applied to the system.
Due to the use of the receding horizon principle, the one-
sample approach considers only uk for optimization of the
data excitation expressed by (9). The whole procedure is
described as follows.

One-sample algorithm
Stage I

1) minimize (6) and obtain optimal input sequence
U∗MPC =

[
uMPC,k uMPC,k+1 · · · uMPC,k+P

]T;
2) compute optimal value of MPC cost function J∗MPC,k =

JMPC,k(U
∗
MPC );

3) find constraints ūmin
k and ūmax

k for Stage II;
a) find values u and u such that ũk ∈ 〈u, u〉 and

JMPC,k(Ũ) ≤ J∗MPC,k +ΔJ are equivalent for

Ũ =
[
ũk uMPC,k+1 · · · uMPC,k+P

]T
;

b) perform the projection

ūmax
k = min{u, umax

k }, ūmin
k = max{u, umin

k }.

Stage II
1) compute J (Ũ) =̂ J (ũk) with

Ũ =
[
ũk uMPC,k+1 · · · uMPC,k+P

]T

for all

ũk ∈ {ūmin
k , ūmin

k + su, ū
min
k + 2su, . . . , ū

max
k },

where su is a user-defined parameter;
2) find ũ∗k = argmaxJ (ũk);
3) terminate Stage II; set uk = ũ∗k and apply it to the

system; wait for new measurements in time k+1, repeat
from Stage I 1).

The crucial part of the algorithm is to find the constraints
ūmin
k and ūmax

k for Stage II. In order to solve this task,
let us define the i-step prediction degree and the maximal
prediction degree as follows.

Definition 2. Let us consider yk to be given and fixed and
let us express all (k+1)- up to (k+P )-step predictions yk+1|k,
yk+2|k, . . . yk+P |k as polynomials in uk. The i-step prediction
degree 	i ∈ N is the degree of uk in the i-step ahead prediction
yk+i|k. Then the maximal prediction degree 	 ∈ N is the
maximal degree of uk that appears in (k + 1)- up to (k + P )-
step predictions, 	 = max{	i|i = 1, 2, . . . , P}.

Lemma 2. Quadratic MPC cost function (6) can be ex-
pressed as a polynomial of uk of degree 2	.

The proof of Lemma 2 is straightforward by substituting
all i-step predictions yk+i|k for i ∈ {k + 1, . . . , P} into the
MPC criterion (6).

Lemma 2 gives us an indication how to find the values u

and u from step 3) of Stage I. Since all but the first sample
in Ũ are fixed and equal to the corresponding samples in
U∗MPC , JMPC is a polynomial in uk of order 2	. Considering
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a bilinear system, JMPC (uk) is a 2-nd order polynomial.
In such case, u and u are found as roots of the quadratic
equation α2u

2
k + α1uk + (α0 −ΔJ) = 0 where the coefficients

α{0,1,2} are obtained by substituting i-step predictions yk+i|k
into (6).

This approach works also for polynomial systems with
	 > 1. The only difference from the case with 	 = 1 is that
instead of finding roots of a quadratic function, roots of a
polynomial of order 2	 are searched for. Having obtained
2	 roots ur,1, ur,2, . . . , ur,2�, they split the domain of the
polynomial JMPC (ũk) into 2	+ 1 subintervals I1, I2, . . . , I2�
out of which the proper subintervals satisfying

JMPC,k(ũk) ≤ J∗MPC,k +ΔJ, ũk ∈ Ii

for i ∈ {1, 2, . . . , 2	+ 1} can be straightforwardly chosen.
Since the optimization performed in Stage II is only a

1-dimensional task, it can be quickly and globally solved
by direct optimization approach. This holds even in case
that several discontinuous intervals I are found. Here, su
is usually equivalent to the resolution with which the input
uk can be set.

B. Algorithm II – Multi-sample approach
Unlike the first alternative presented in the previous Sub-

section where only the first input sample uk was available
for the Stage II optimization of (10), the second proposed al-
gorithm considers that the whole M-sample sub-sequence of
inputs can be used for optimization of (10). The description
of Algorithm II. follows.

Multi-sample algorithm
Stage I

1) minimize (6) and obtain optimal input sequence
U∗MPC =

[
uMPC,k uMPC,k+1 · · · uMPC,k+P

]T;
2) compute optimal value of MPC cost function J∗MPC,k =

JMPC,k(U
∗
MPC );

Stage II
1) obtain a set of M perturbed input vectors

{Ũi =
[
uMPC,k . . . uMPC ,k+i +Δu . . . , u∗MPC,k+M

]
,

i = 1, 2, . . . ,M};

2) evaluate criterion J for each perturbed vector;
3) calculate numerical gradient

Gl =

[
ΔJ1
Δu

,
ΔJ2
Δu

, . . . ,
ΔJi
Δu

, . . . ,
ΔJM
Δu

]T
;

4) follow the gradient

U l = U l−1 + βl 
 Gl,

where βl is step length computed in the following way

βli = max(0, tanh(w(ΔJ − (J∗MPC,k − JMPC,k(Ũi)))))

and 
 denotes element-wise multiplication;
5) if |J (U l)− J (U l−1)| ≤ ε

then terminate Stage II; set uk = U l
1 and apply it to the

system; wait for new measurements in time k+1, repeat
from Stage I 1),
else l = l + 1, repeat from Stage II 1).

The second proposed algorithm performs a gradient-search

with iteration-varying search step length. Here, w is a user-
defined tuning parameter related to the caution with which
the algorithm proceeds in the space of the optimization
parameter – the smaller w is, the more carefully the algorithm
handles the MPC cost function constraint and the further
from the boundary (J∗MPC,k − JMPC,k(Ũi)) = ΔJ it starts to
slow down.

Here it can be remarked that in case of the multi-sample
algorithm, the implementation and the maximization of the
informativeness is the same for systems with 	 = 1 and 	 > 1.

IV. CASE STUDY

In this Section, the results of the proposed algorithms are
presented.

In order to show the properties and demonstrate the
performance of the proposed algorithms, the following SISO
system with bilinear dynamics was considered:

yk = 0.4yk−1 + 0.15yk−2 + 0.1yk−3

+ 0.42uk−1yk−1 + 0.05uk−2yk−2 + εk.
(11)

This model structure can be reformulated into the form (3)
with

θ = [0.4 0.15 0.1 0.42 0.05]T

and

Zk =
[
yk−1 yk−2 yk−3 yk−1uk−1 yk−2uk−2

]T
.

The variance of the noise εk was σe = 0.01.
The system was controlled by the MPC (6) minimizing

the supplied energy and the reference tracking error with
constraints umax = 1, umin = 0. The reference trajectory y

ref
k

was generated according to the following schedule:

y
ref
k

=

{
1 103q+1 ≤ k < 500(q+1), q is even
0.5 103q+1 ≤ k < 500(q+1), q is odd.

(12)

Weighting matrices were chosen as Q= 1000 and R= 1, the
prediction horizon P and the sampling time Ts were P =

15 steps and Ts = 1 s. In order to bring the example closer
to reality, the model which was used by the MPC for the
predictions did not perfectly match the real system but its
parameters were slightly shifted to

θ̂ =
[
0.35 0.38 0.08 0.12 0.12

]T
.

With this setting, a simulation with the length of N = 10×103

samples was performed. Similarly, the simulations were run
also for the algorithms developed in this paper with settings
provided in Tab. I. The obtained data were then split into
several smaller sub-sets with length 500 samples and each
data sub-set was used to estimate the parameters of the
considered structure.

TABLE I
NOTATION AND SETTINGS.

Notation Algorithm ΔJ M MP WP

AlgI. One-sample 20 5 – 0
AlgII. Multi-sample 25 5 – 0
AlgI.P One-sample 20 5 15 1/3
AlgII.P Multi-sample 25 5 15 1/3

Let us remind the objective of the current work which
is to develop an algorithm that is able to both satisfy the
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control performance and provide the data containing certain
amount of information that is sufficient for the successful re-
identification. Therefore, we provide the comparison of the
presented algorithms with the original MPC to demonstrate
that for the price of just relatively small control performance
degradation, the presented algorithms are able to generate
data which are much more rich on information.

A. Results
Two viewpoints are considered when evaluating the results

of the algorithms presented in the paper, namely: i) possi-
bility of system re-identification (parameter adjustment); and
i) the quality requirements and restrictions imposed by the
MPC problem formulation. To evaluate the satisfaction of
the first sub-objective, the following quantifiers are used.

First of all, the smallest eigenvalue λmin(ΔIN1 ) of the
information matrix increase calculated cumulatively over the
whole numerical experiment is inspected since this was the
quantifier chosen to express the data informativeness. In
order to validate the choice of this data informativeness quan-
tifier, determinant of sample covariance matrix of parameters
estimation error det(S) (see [2]) is also investigated. This
evaluator is proportional to the size of the ellipsoid which
the identified parameters lie in. Investigating both quantifiers,
it can be verified whether the maximization of the smallest
eigenvalue of the information matrix increase is equivalent
to improvement of the parameter identifiability.

Not only the ability to provide data ensuring successful
model re-identification but also the satisfaction of the origi-
nal MPC requirements is interesting. Several evaluators are
introduced to provide a comprehensive comparison of the
control performance. The first one – relative tracking error
eref – expresses how well the controller tracks the pre-
defined reference profile yref ,

eref =
1

N

N∑

k=1

∣∣∣∣∣
y
ref
k

− yk

y
ref
k

∣∣∣∣∣ .

The second important question is “how much does it cost to
have sufficiently informative data?”. Since even the use of
pure non-exciting MPC controller results in some non-zero
energy consumption, the question should be reformulated as
“how much more does it cost to have sufficiently informative
data instead of poor data?”. To quantify the additional energy
which was used to have the possibility to identify the model
parameters more precisely, let us introduce a relative energy
consumption ΔEC normalized with respect to the MPC-
consumption:

ΔEC =

⎛
⎝

√∑N
k+1 u2

PE,k√∑N
k+1 u2

MPC,k

−

⎞
⎠× 100 (%),

where uMPC and uPE denote the inputs generated by the
MPC and PE algorithms, respectively. Last but not least,
value Jres of the MPC cost function (6) evaluated over the
whole duration of the numerical experiment,

Jres =

N∑

k=1

(∥∥∥Q(yk − y
ref
k

)
∥∥∥
2

2
+ ‖Ruk‖22

)
,

was calculated and expressed with respect to the nominal
MPC,

ΔJres =

(
Jres,PE

Jres,MPC
− 1

)
× 100 (%).

Here, the subscripts MPC and PE indicate the original non-
exciting MPC and one of the provided persistently-exciting
MPC algorithms, respectively.

The summary of the results is given in Tab. II. From the
provided tables it is obvious that the algorithms presented in
this paper are able to generate data which are much richer on
information. The smallest eigenvalues λmin,norm are several
times higher than 1 for the presented algorithms while nor-
malized determinants det(Snorm) are much lower than in case
of the nominal MPC. Here, let us remark that the smallest
eigenvalue λmin as well as det(S) are normalized with respect
to the MPC, e.g. λmin,norm = λmin,PE/λmin,MPC .

The possibility to estimate model parameters with better
accuracy is illustrated also by Fig. 1 and 2, where the
estimates of the particular parameters of the structure (11)
are depicted. Red asterisks denote parameters identified from
data provided by pure non-exciting MPC, green circles
show parameters identified from one-sample algorithm data,
parameters identified from multi-sample algorithm data are
represented by blue crosses and the real values of the
parameter are marked by black x-marks. It can be observed
that the parameters estimated from the data provided by the
MPC are usually quite far from the real parameter value.
On the other hand, estimates are more precise in case of
one-sample and multi-sample algorithm, respectively.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
θ

2

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
θ

4

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
θ

5

0.3 0.35 0.4 0.45 0.5 0.55
θ

1

−0.05 0 0.05 0.1 0.15
θ

3

Fig. 1. Parameter estimates (WP = 0).

However, such improvement does not come for free and
the price to pay is reflected in the controller performance.
Still, from Tab. II it can be seen that the energy con-
sumption increase stays between 1.2 and 2.3 % depending
on the algorithm variant. Also reference tracking error eref
is not critical in case of the presented PE algorithms and
stays within 3 – 4 % range with respect to the reference
profile. The cost function values Jres are also presented
– again, no critical increase can be witnessed in case of
the PE algorithms. Furthermore, it should be realized that
the degradation of controller performance is only a short-
term affair and therefore, this degradation might not be
critical even in the industrial practice. The reason is that
the closed-loop identification experiment is needed only
in case that the controller that makes use of the model
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Fig. 2. Parameter estimates (WP = 1/3).

does not work reliably due to inaccurate model predictions.
In such situation, the model needs to be re-identified and
the closed-loop identification experiment is performed only
during a limited amount of time until sufficiently excited data
are gathered and the model (and thus also the controller)
performance is acceptable. Having accomplished that, the
ordinary MPC can be used again.

To summarize the performance of the proposed algorithms,
all variants provide more informative data for the price of
non-critical deterioration of the controller performance. Here,
slightly better informativeness results are obtained by the
multi-sample approach. This can be attributed to the fact
that when performing the informativeness optimization, this
approach has more degrees of freedom at disposal since it
optimizes M-sample subsequence of the input profile instead
of optimizing just the first sample. However, the one-sample
approach is more advantageous when looking for the better
controller performance specified by the MPC cost criterion.

TABLE II
RESULTS COMPARISON.

eref ΔEC ΔJres det(Snorm) λmin,norm

AlgI. 4.1 2.3 3.0 5×10−4 2.68
AlgII. 3.0 1.2 3.6 2×10−4 3.54
AlgI.P 3.75 2.2 3.16 1.3×10−5 2.46
AlgII.P 3.8 2.2 6.0 1×10−5 3.56
MPC 1.3 0 0 1 1

V. CONCLUSION

In this paper, identifiability of a class of nonlinear systems
with polynomial system dynamics controlled by a model pre-
dictive controller was studied. Bilinear systems were focused
on and several formulations particularly advantageous for
(but not restricted to) model predictive control tasks includ-
ing bilinear system description were derived. PE condition
was incorporated into the two-stage optimization procedure
to ensure that the predictive controller provides sufficiently
informative data and at the same time does not deteriorate the
control performance compared to the nominal (non-exciting)

controller by more than a user-defined value. Two algorithms
were developed and described in detail and their perfor-
mance was verified on a set of numerical experiments. The
resulting comparison shows that both developed algorithm
successfully optimize the data informativeness which leads
to significant improvement of the identifiability of the model
parameters while respecting the maximal allowed controller
performance deterioration.
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Chapter 6

Conclusions

6.1 Summary

This thesis has summarized the author’s research conducted on the development of al-
gorithms handling the problem of identification for model predictive control under real-
operation conditions. It has been divided into two part: in the first part, MRI techniques
have been discussed while in the second one, contributions related to MPC with guaranteed
persistence of excitation have been presented.

In the first part of this thesis, the algorithm for optimization of the multistep predic-
tion has been developed. The identification procedure has been designed with respect to
the issues occurring when tackling the task of identification from the real-life data. Unlike
the methods available in the state-of-the-art literature, the method provided in this thesis
has considered identification of multiple-input/multiple-output state-space structures and
also constraints for the parameters of the identified structures have been handled.

The developed identification routines have been customized and exploited for identifi-
cation of several models of the building of the Czech Technical University. Subsequently,
the models have been deployed with the real-operation MPC, which also thanks to their
use has spared more than 20 % of the energy consumed for heating as reported in [A.10]
and [A.11].

The original procedure has been further extended and used for a medium-size office
building in Hasselt, Belgium. Using a special two-stage procedure combining grey-box
modeling and minimization of the multistep prediction error, a large model with 8 outputs
and 11 inputs has been identified. Similarly to the previous story, the obtained model has
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been employed as a predictor for the MPC controlling the temperature in the mentioned
office building in real operation [A.3], [A.22]. In this case, the energy savings have reached
about 20 % as well. The work published in Applied Energy [A.3] has brought, inter alia,
a detailed discussion of the process of model validation and selection. For the analysis
purposes, several identification datasets have been exploited differing from one another in
number of available measurements, quality of the records and also in data richness. The
analysis carried out in this publication has brought the following interesting revelations.
While the predictions of the models identified by the MRI procedure have been sufficiently
precise regardless of the identification dataset, the traditional grey-box method minimizing
only one-step prediction error has been able to provide accurate long-term models mostly
when fed with data of higher quality. Low-quality data, on the contrary, have yielded
unreliable models with considerable prediction errors. This investigation has proven the
theoretical analysis given in several pioneering works [Shook et al., 1991], [Shook et al.,
1992] where the authors showed that the improvement in the predictions accuracy con-
sidering multistep prediction error minimization is proportional to size and complexity of
the noise model and the unmodelled part of the system dynamic, respectively. This also
makes the MRI identification a good candidate for the situations when data of questionable
quality from the closed-loop operation are considered as the identification dataset.

Furthermore, this thesis has brought also a contribution in the area of nonlinear MRI
identification. A novel method for identification of a broad class of nonlinear systems has
been designed and successfully tested with results published in [A.4].

In the second part of the thesis, the topic of MPC guaranteeing perstistance of excita-
tion has been studied. Two novel algorithms handling this problem have been designed.
Both of them employ the following procedure: at first, the input sequence extremizing
the original MPC cost function is computed and then, the excitation maximization task
is solved with additional user-defined constraints on the deterioration of the performance
with respect to the MPC cost function.

The first of them—the one-sample algorithm—takes advantage of the receding horizon
principle and thanks to that, it solves a non-convex problem with the dimension reduced
from M to 1. The second one—the gradient algorithm—utilizes local optimization. Both
algorithms have been presented in several versions adapted to particular controller require-
ments and the structure of the identified system:

• the core version of the algorithms for linear systems governed by the standard MPC
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minimizing a weighted combination of the control energy and reference tracking error
[A.1], [A.13], [A.17].

• extension covering the zone MPCs (the control objective is to keep the output tra-
jectory within the predefined zone) with linear system structure [A.15], [A.16].

• algorithm for a special class of systems with predictable disturbances controlled by a
zone MPC; the manuscript [A.5] provides a detailed discussion about the choice of the
tuning parameters. Moreover, it includes a rigorous debate on the conditions ensuring
the problem feasibility and also a realistic case study representing optimization of
the temperature control with use of a high-fidelity building model.

• adaptation of the algorithms for a class of nonlinear systems with polynomial non-
linearity governed by the standard version of the MPC [A.18].

All variants of the two designed algorithms for the persistently exciting MPC have
been successfully tested. Thanks to the additional optimization of the data excitation,
closed-loop data with considerably increased informativeness have been generated. Esti-
mation errors of the model parameters obtained from these data have been several times
lower and both the step and also frequency responses have been closer to the real ones
than in case where common (non-excited) closed-loop data have been exploited. Despite
substantial improvement in the parameters identifibility, only a modest degradation of the
MPC performance has been observed. To be specific, the energy consumption increase has
usually reached only several per cent and the reference tracking error or the zone violation,
respectively, has been negligible.

Trying to compare the two algorithms, the following summary can be provided. When
evaluating the performance (either from the control requirement degradation or the pa-
rameter identifibility point of view), the two alternatives are fairly equivalent. A more
interesting is the comparison focusing on the computational complexity and adaptability.
The one-sample algorithm is very fast and simple to implement especially for linear sys-
tems with the standard MPC since the “heart” of the algorithm consists in a line search.
Increasing the complexity of either the model or the controller, the pre-processing phase
preceding the one-dimensional optimization itself becomes more complicated. On the con-
trary, the complexity of the gradient algorithm is higher from the very beginning since the
M -dimensional non-convex optimization has to be solved. However, it is also considerably
versatile since with no special modifications, it can be used for a broad spectrum of the
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controller/model structures. To sum up, both of them can be considered as good candi-
dates for least costly closed-loop experiment design and the final choice strongly depends
on the particular application and user preferences and requirements.

6.2 Future work

Speaking about the future research that could extend the work presented in this thesis,
the following suggestions can be be made:

• Combination of MRI and the persistently exciting MPC. In the first part
of this work, it has been shown that replacing the traditional identification methods
with those minimizing multistep prediction error, significant improvement of the
prediction properties of the identified models can be gained. It should be emphasized
that especially the prediction properties are of key importance for the models that are
intended to be used with MPC. However, the new algorithms proposed in the second
part of the work consider only the common identification methods minimizing one-
step prediction error. Therefore, the persistently exciting MPC algorithms should be
tested in combination with the MRI method and they should be accordingly modified
to enable the use of the MRI method in the role of the identification routine.

• Combination of persistently exciting MPC and model mismatch detection
methods. To exploit the full potential of any model-based controller, it needs to
be provided with an accurate model of the controlled system, which usually means
that a continual maintenance is required. Although several algorithms capable of
solving the problem of closed-loop identification experiment in an effective way with
minimal expenses have been proposed in this thesis, when such experiment is actually
necessary and when the use of the “pure” MPC suffices still remains to be answered.
An extension of the current algorithm enabling detection of the model mismatch
and therefore requesting excited data only when necessary (e.g. the model used by
MPC becomes inaccurate and unusable) is one of the most peculiar future challenges.
Such extension would lead to a fully automated re-identification and consequently
to a maintenance-less MPC, which would be of huge interest for industrial control
engineering practice.

• Application in the fault detection area. Since sufficient excitation is crucial
not only for the needs of system identification but also for fault detection algorithms
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that likewise need well-excited data for their proper functioning, the next area to be
explored is the verification and potential adaptation of the algorithm in case that a
failure in the controlled system occurs and needs to be detected and isolated.
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