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Abstract 

Bridges play essential role in the infrastructure network and are covered with the significant 

investment volume. In comparison to buildings, bridges are long-living structures and are 

designed for the minimum service life of 100 years according to Eurocode. Consequently, it 

draws the special focus on the sustainability of bridge construction. 

In a global term, benchmarking is used as a project management tool. It found its particular 

application to bridges in measuring the level of structural performance of its structural 

components at operation stage or assessing the “reasonable” cost of its critical components 

when comparing with projects of similar size and scope. 

Despite the effort for sustainability studies in buildings, the sustainable benchmarking of 

infrastructural network, and, particularly, bridges, remains understudied. 

Here in this work the sustainable benchmarking of the motorway bridges is proposed. Based 

on the certified methodology of the life cycle assessment and being compliant with the 

prescriptions of Eurocodes, the results can be easily incorporated to the whole concept of 

sustainable bridge design. 

The work can be split in two main parts. First one is dedicated to the compilation of the case 

studies and assessment of the environmental and social life cycle performance of the bridges 

using the methodology of the integral life cycle assessment, developed in [1] and valorized in 

[2] and [3]. Three different types of reference bridges were studied over the entire life-cycle. 

Second part of the thesis is dedicated to the establishment of the reference values 

(benchmarks) of the environmental and social sustainable indicators of the life cycle 

performance of the selected bridges. 

The summary of the results of life cycle assessment and sustainable benchmarks are the 

quantitative outcome of present research work. The conclusions for three types of motorway 

bridges are given along with the recommendations for the potential improvement and 

development. 

Established values may be used by designers and authorities for the assessment of 

sustainable environmental and social life cycle performance gap for the considered bridge, 

giving the quantitative esteem. The provided benchmarks can also be used guiding the 

designers in the setting targets for the potential improvement in the sustainable performance 

of the bridge under consideration. 
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1 Introduction  

1.1 Overview  

“If you can’t measure it, you can’t manage it” 

Peter Drucker 

Construction sector has a major share in the global economy. According to recent surveys, 

construction market reached more than 13% of global GDP counting for US $ 9.5 trillion in 

2015, out of which US $ 2.5 trillion was spent on infrastructure development [4], [5]. Within the 

global construction market, infrastructure accounts for 26% [5], but yet sustainability 

implementation in this sector remains understudied, giving a major focus for buildings. 

Bridges have an important role in the transportation network, assuring functionality and 

providing uninterrupted traffic flow. Violation of this requirements can lead to traffic interruption 

and congestion, inducing additional environmental burdens as well as causing a high impact 

on economy and society. For example, in 2014, The Economist analyzed the cost of imposed 

by traffic jams caused by accidents, poor infrastructure, peak hours and variation of the traffic 

speeds on congested roads [6]. Three types of cost were analyzed, namely (i) how sitting in 

traffic reduces productivity of the labour force; (ii) how inflated transport costs push up the price 

of goods; and (iii) the carbon equivalent cost of the fumes. It was concluded that expenses 

from congestion accounted for total of US$ 200 billion (0.8% of GDP) among the investigated 

countries (United Kingdom, Germany, France and United States) [6]. 

Further, contrast to buildings, bridges are long living structures, having the lifespan of 100 

years, which draws special focus when talking about sustainable development. Therefore, 

infrastructure projects, and specifically bridges, require sustainability management strategies 

aimed on the minimization of the negative environmental, economic and social impacts. 

In construction, benchmarking is typically used as a project management tool, providing the 

equivalent assessment of the performance of the project in question. This way, it gives a 

possibility for construction companies to trace the improvement in the organizational 

performance as it is important part of management of the cross company competition.  

To date, benchmarking of bridges is considered from different perspective. Last decades, the 

extensive studies were conducted in United Stated by American Association of State Highway 

and Transportation Officials (AASHTO) and were dedicated to the detailed benchmarking of 

the bridge conditions at operation stage aiming to establish its structural performance by 

examining nearly 100 “commonly recognized structural elements” [7]. This measures are 

implied to be further incorporated to maintenance plans considering the cost of each action in 

order to rate the extent to which they are structurally deficient or obsolete. 

Other benchmarking approaches address problems like overlooked items, poor engineering 

and planning, which cause work repetition or delays and lead to the increase of the initial cost. 

This issues are dealt by comparison of the project in question with the existing ones of similar 

size and scope. Such benchmarking strategy was implemented by McKinsey for establishing 

the “reasonable” bridge costs, by categorising bridges according to its length, number of lanes, 

location etc. and comparison with existing projects available in database [8]. This way the 
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benchmark of the cost of critical components can be assessed and further used as a powerful 

negotiation tool. 

Having addressed the issues related to the project cost and structural performance, yet there 

is no standardized methodology for sustainable benchmarking of bridges. Further, the existing 

rating systems (e.g. BREEAM, LEED, HQE, SBTool, DGNB, etc) are developed for the 

assessment of the sustainability levels of buildings by estimation of the selected criteria and 

comparing it with pre-defined reference values or thresholds. Giving a special focus to the 

energy efficiency issues and indoor quality of buildings, the issues related to the traffic flow 

and social impact intrinsic for bridges remain out of the scope [9]. The first step towards the 

implementation of sustainable benchmarking of bridges using the rating systems was made by 

Whittemore [10]. Having analysed the LEED design goals, he defined a set of questions to 

guide designers in the areas of Sustainable Sites, Water Efficiency, Energy and 

Transportation, Material and Resources and Innovation in Design resulting in remarkable 

advance in sustainability. It is worth mentioning, that the aforementioned rating systems are 

developed by national and international green council organizations and are voluntary 

certification schemes. 

To date, the Life Cycle Analysis (LCA) becomes increasingly popular among the scientific 

community when referring to the sustainable performance of constructions, as it enables to 

evaluate the performance of the objects of infrastructure throughout the whole service life. 

Thus, it has got its particular focus considering the sustainable bridge design [1] and well as 

has been extensively used for life-cycle management of civil infrastructure considering risk and 

sustainability as a whole [11].  

Currently, the implementation of the benchmarking of Life Cycle Analysis (LCA) faces its early 

development in the construction sector. Recent studies show the successful implementation 

of such a strategy for the buildings [12], making the sustainable benchmarking of bridges based 

on the Life Cycle Analysis (LCA) the central topic of present master’s thesis. 

1.2 Goals and scope  

The thesis has two main goals (i) to perform the sustainability benchmarking of the of life cycle 

assessment bridges and (ii) to compile the study cases considered in projects SBRI+ [3] and 

SBRI [2]. The employed methodology of the life cycle assessment was developed in the 

framework of a research work [1] and adopted according to the purpose of present thesis. The 

benchmarking is focused on motorway bridges supporting dual carriageway and based on the 

case studies presented in the research work carried out in the framework of the European 

research projects SBRI: Sustainable Steel-Composite Bridges [2] in Built Environment and 

SBRI+: Valorization of Knowledge for Sustainable Steel-Composite Bridges in Built 

Environment [3]. 

The main objectives of the thesis are: 

1. To analyse the case studies considered in the projects SBRI+ [3] and SBRI [2] as well 

as examples presented in related publications [1]. 

2. To carry out the life cycle sustainability assessment of selected case studies according 

the methodology developed in [1] and adopted in the projects SBRI + and SBRI. 
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3. To perform the benchmarking of the environmental and social sustainability indicators. 

4. To discuss the life cycle performance in light of benchmarking procedure.  

5. To identify potential improvements for the evaluation of the sustainable performance of 

bridges. 

1.3 Thesis outline 

The present master’s thesis is organized as presented further. 

Current Chapter 1 intends to familiarize the reader with the benchmarking and its role in the 

sustainable construction management along with the state of art of the ongoing scientific 

studies and its implementation in industry. 

Chapter 2 entails to introduce the methodology of the integral life cycle analysis of bridges in 

light of purpose of this thesis. 

Chapter 3 contains representation of the case studies considered in [3], [2] and [1], highlighting 

main design considerations governing the life cycle performance. The case studies were 

analysed and compiled. Special focus was given to the harmonization of the life cycle 

assumptions to enable further benchmarking on a common basis as it is required by the 

procedure. 

Chapter 4 presents the description of the approach adopted for the sustainable benchmarking 

of the life cycle assessment. 

Chapters 5 and 6 are dedicated to the detailed discussion of the results of the life cycle analysis 

along with established benchmarks. 

Finally, Chapter 7 presents the conclusions of this work as well as identifies potential 

improvements for the evaluation of the sustainable performance of bridges. 
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2 Life cycle sustainability assessment of the bridge 

2.1 General 

This chapter describes the main principles of the life cycle assessment of a bridge from the 

perspective of sustainable design. Bridges are long living structures with the life span of 100 

years, when the stage of operation takes the major role. Three pillars of sustainability are 

defined for bridges and formulated in the holistic approach.  

The main stages of life of bridges are defined and the concept of the integral life cycle analysis 

developed in the frame of PhD thesis [1] is presented. In order to perform the sustainability 

benchmarking of bridges, it is essential to present the methodology of the assessment of each 

type of integral life cycle analysis. 

2.2 Principles of sustainable bridge design 

The main principle of sustainable bridge design is the consideration of the structural 

performance not only in the stage of construction, when the reliability is ensured by compliance 

with the Eurocodes, but taking into account the whole service life of 100 years. The particular 

feature of this type of structures is that they start deteriorating immediately after entering the 

service life. Several degradation processes, mainly, fatigue, corrosion and carbonation [2] 

affect the details and, consequently, the structure as a whole, see Figure 2.1. Thus, 

contradictory preserving measures, namely maintenance or repair actions are foreseen 

depending on maintenance strategy, decided upon the results of the inspection. 

 

Figure 2.1 – Life cycle of the bridge [2]. 

The consideration of the whole life cycle also aims to balance the traffic management in an 

effective way, which is strongly related to the bridge typology itself. The possible traffic growth 

can be foreseen by the proper modifications in the initial design, paying forward towards the 

improvement the transportation networking problems in congested locations. 

Moreover, sustainable bridge design gives the possibility to evaluate the performance of the 

structure in the end of life when the deposition or recycling of the materials takes place, 

bringing additional environmental and economical expenses. Thus, in contrast to the traditional 

design, governed by requirements of safety, sustainable bridge design aims to consider the 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

5 

performance of the whole life span of the structure, starting from production of raw material 

and followed by stages of construction, operation and end-of-life. 

2.3 Holistic approach 

The holistic approach developed in [1] and adopted in [2] and [3] aims to address the three 

pillars of sustainability to the life cycle assessment, see Figure 2.2. 

 

Figure 2.2 – Holistic approach to life cycle analysis (adopted from [2]). 

To begin with, the environmental quality is represented by the analysis of emissions in the 

frame of the environmental Life Cycle Assessment (LCA). The Life Cycle Costs (LCC) 

represent the economic quality and entails the costs emerging over the entire life cycle of the 

bridge. The social quality is represented by the user costs and analysed in the Life Cycle Social 

Assessment. The main difference between the life cycle cost and user cost is that first one is 

related to the bridge itself and is the expense of the bridge owner, while social cost is related 

to the expenses of users of the bridge and result from the traffic limitation or disruption due to 

activities carried out on the bridge. 

All three dimensions of the holistic approach are interrelated in life cycle assessment of the 

bridge. Thus, initial design defines the content and frequency of maintenance events, which 

may lead to an additional emissions (LCA), related costs (LCC), as well as may cause traffic 

limitations or disruptions (LCS). Moreover, the initial design defines the allocation of the 

materials in the end-of-life stage, which leads to related environmental and financial burdens. 

The holistic approach is the fundamental concept for the definition of the Integral Life Cycle 

Analysis and a basis for the transmission from the traditional construction cost based design 

to a sustainable design taking into account the long term advantages of durability, efficient 

material use along with the social quality. 

2.4 Integral Life Cycle Analysis 

 General procedure 

An integral life cycle approach for the assessment of motorway bridges was developed in the 

framework of the project SBRI [2] and valorised in the Design Manual I of project SBRI+ [3]. 

The aim of the approach is the performance of the life cycle assessment from the point of view 

of sustainable constructions, considering all three dimensions of sustainability. 

 
Lifecycle Social 

(LCS) 

Social quality 
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To date, there is no standardize procedure for the performance of the integral life cycle analysis 

of a construction system [1], therefore the structure of well-described methodology of the 

environmental life cycle assessment (LCA), standardized by the series of ISO [13] and [14], 

was used to establish the generalized framework of integral life cycle assessment and was 

further adopted to accommodate the assessment of the life cycle cost (LCC) and user costs 

(LCS). 

The generalised framework of integral LCA consists of four main steps aligned with the ISO 

14040 [13]: goal and scope; inventory analysis; impact assessment; interpretation step. As it 

was mentioned, this scheme was modified in order to adopt the integration of economic and 

social aspects in the life cycle analysis. 

In this approach the initial safety of the structure is assumed to be fulfilled and compliant with 

the requirements of rules and codes. Yet, in the life cycle approach the maintenance and 

rehabilitation events need to be foreseen in order to keep the structure above the admissible 

performance level, due to its degradation at different rate soon after entering the service life. 

The consideration of this events is of an importance since each time interventions to the bridge 

case emissions coming from the new materials and its transportation, traffic interruptions and 

monetary expenses that need to be considered in the life cycle analysis [2]. Consequently, all 

three type of life cycle assessment are interrelated and directly depend on the life span of the 

bridge, as presented in Figure 2.3.  

 

Figure 2.3 – Life cycle integral analysis (adopted from [2]). 

It is implied that all three analyses share the same goal and scope and are based on the same 

inventory analysis, though the impact assessment is done separately for each criteria. The 

combination criteria depend on the goal of the analysis. Since the particular purpose of this 

thesis is to perform the sustainability benchmarking, all three criteria were assessed and 

interpreted separately. 

 Life Cycle Environmental Assessment (LCA) 

2.4.2.1 General 

The framework for Lifecycle Environmental Analysis (LCA) adopted in this project is according 

to ISO standards 14040 [13] and 14044 [14]. These standards specify the general framework, 

principles, and requirements for conducting and reporting lifecycle assessment studies. 

Life-cycle Economic 

Assessment (LCS) 

Life-cycle Social 

Assessment (LCS) 
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According to these standards, the lifecycle assessment shall include (i) definition of goal and 

scope, (ii) inventory analysis, (iii) impact assessment, (iv) normalization and weighting, and (v) 

interpretation of results. The step of normalization and weighting is considered to be optional 

in ISO standards and will not be addressed in the lifecycle environmental analysis. Thus, the 

complete flowchart for the environmental lifecycle analysis is detailed in Figure 2.4. 

 

Figure 2.4 – Flowchart for environmental Life Cycle Assessment (LCA) [2]. 

Sustainability requires lifecycle thinking. In the context of sustainable construction, the design 

of a bridge goes beyond the traditional requirements of safety and initial costs. It comprehends 

the lifecycle of the bridge, from raw material acquisition to the bridge’s decommissioning [1]. 

This implies the prediction of the structural behavior of the bridge over its lifespan, the 

estimation of bridge maintenance and repair, etc. Moreover, non-traditional aspects of 

environment, economy, and society shall be considered together with traditional ones and 

currently, most engineers are not prepared for these new requirements. 

Lifecycle analyses are usually time-consuming and thus costly, and the lack of data is a 

problem often encountered. In addition, the benefits brought by a sustainable perspective are 

often perceived only in the long-term, which makes its effective implementation difficult to 

promote. 

Finally, lifecycle methodologies have been developed for the analysis of simple products. The 

application of such approaches to more complex systems, like a construction system, entails 

specific problems that need to be addressed in order to make them feasible [1]. 

2.4.2.2 Goal and Scope of the LCA 

The goal of the LCA is to evaluate the environmental performance of composite motorway 

bridges over their lifecycle. The period of analysis is assumed to be 100 years. The lifecycle 

analysis will highlight main advantages and disadvantages of this kind of structures and will 

allow providing recommendations for further improvements. 

The system boundaries determine which unit process shall be included within the LCA [13]. 

Several factors determine the system boundaries, including the intended application of the 

study, the assumptions made, cut-off criteria, data and cost constraints, and the intended 

audience. 

The system boundary adopted in this project is introduced in Figure 2.5. All stages of the 

complete lifecycle of the bridges, from raw material extraction until end-of-life procedures, are 
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included; the analysis takes into account the cradle-to-cradle approach. Furthermore, the 

transportation of materials and equipment are also within the system boundary.  

When the composite bridge is built (assuming that the motorway is under service) or it goes 

under repair, traffic congestion results from delays over the construction work zone. This 

construction-related delay results in additional fuel consumption and related emissions. The 

effects of traffic congestion were also taken into account in the LCA. 

 

Figure 2.5 - System boundary of the LCA [2]. 

2.4.2.3 Methodology for Impact Assessment 

The impact assessment stage of an LCA is aimed at evaluating the significance of potential 

environmental impacts using the results of the lifecycle inventory analysis. In general, this 

process involves associating inventory data with specific environmental impact categories, and 

is made in two parts (i) mandatory elements, such as selection of environmental indicators and 

classification; and (ii) optional elements, such as normalization, ranking, grouping, and 

weighting. 

The classification implies a previous selection of appropriate impact categories, according to 

the goal of the study, and the assignment of inventory results to the chosen impact categories. 

Characterization factors are then used representing the relative contribution of an inventory 

result (mi) to the impact category indicator result, as expressed by the following equation: 

 
i

icaticat factorcharactmimpact ._    (1) 
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The environmental indicators used in the lifecycle approach are adopted from ISO 14044 [14] 

and listed in Table 1. 

Table 1- Environmental indicators for LCA [3] 

Indicator  Unit Timescale 

Abiotic Depletion Potential, 
fossil fuels 

ADPfossils MJ.  

Acidification Potential AP Kg SO2 eq. ∞ 

Eutrophication Potential EP Kg PO4 eq. ∞ 

Global Warming Potential GWP Kg CO2 eq. 100 years 

Ozone Depletion Potential ODP Kg CFC eq. ∞ 

Photo Ozone Creation Potential POCP Kg C2H4 eq. - 

2.4.2.4 Environmental Indicators 

2.4.2.4.1 Abiotic Depletion Potential (ADP) 

The indicator abiotic depletion aims to evaluate the environmental problem related to the 

decreasing availability of natural resources. By natural resources, it is understood the minerals 

and materials found in the earth, sea, or atmosphere and biota, that have not yet been 

industrially processed [15]. 

The model [15] adopted for abiotic depletion in this work, assumes that ultimate reserves and 

extraction rates together are the best way to represent the seriousness of resource depletion. 

This model is a global model based on ultimate reserves in the world combined with yearly 

depletion on a world level. 

2.4.2.4.2 Acidification Potential (AP) 

Acidification in one of the impact categories in which local sensitivity plays an important role. 

The characterization factors adopted in this work are based on the model RAINS-LCA, which 

takes fate, background depositions and effects into account [16]. This indicator is expressed 

in kg of SO2 equivalents. 

2.4.2.4.3 Eutrophication Potential (EP) 

The eutrophication indicator is given by the aggregation of the potential contribution of 

emissions of N, P and C (given in terms of chemical oxygen demand, COD) to biomass 

formation [17]. The Eutrophication Potential of substance i reflects its potential contribution to 

biomass formation. This indicator is expressed in kg of PO4 equivalents. 

2.4.2.4.4 Global Warming Potential (GWP) 

The global warming indicator measures the impact of human emissions on the radiative forcing 

of the atmosphere. GWPs are defined as the ratio of the time-integrated radiative forcing from 

the instantaneous release of 1 kg of a trace substance relative to that of 1 kg of a reference 

gas [18]. For the definition of GWPs, the reference gas is carbon dioxide (CO2). 
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2.4.2.4.5 Ozone Depletion Potential (ODP) 

An ozone depletion indicator is derived from several properties of a gas, which include its 

stability to reach the stratosphere and the amount of bromine or chlorine the gas carries. These 

properties are then compared to CFC-11 (although CFC-11 is now banned by the Montreal 

Protocol in industrialized nations, it is still manufactured in many developing economies). The 

properties of each gas are then compared to the properties of CFC-11 and converted into CFC-

11 equivalents. Then the individual equivalents are added together for the overall ozone 

depletion indicator score, which represents the total quantity of ozone-depleting gases 

released. 

2.4.2.4.6 Photochemical Ozone Creation Potential (POCP) 

Photo-oxidants may be formed in the troposphere under the influence of ultraviolet light, 

through photochemical oxidation of volatile organic compounds (VOCs) and carbon monoxide 

(CO) in the presence of nitrogen oxides (NOx) [17]. This chemical reaction is "non-linear," 

meaning that sometimes the NOx concentration will drive the reaction, and other times, it’s the 

VOC that drive the reaction. Various indicators take low, average and high NOx concentrations 

to calculate an overall score. Photochemical ozone creation potentials assess various 

emission scenarios for VOCs. Therefore, the photochemical ozone creation potential of a VOC 

(POCP) is given by the ratio between the change in ozone concentration due to a change in 

the emission of that VOC and the change in the ozone concentration due to a change in the 

emission of ethylene (C2H4) [17]. 

 Life Cycle Cost Assessment (LCC) 

2.4.3.1 Goals and scope 

The traditional structural design is focused on the optimization of the cost on the construction 

stage only, while the cost of inspection, operation and end-of-life may represent the significant 

portion of the total life cycle cost. Thus a conventional design concepts are reconsidered here 

to make shift to the life cycle level, which gives a possibility to take into account the costs 

emerging at different stages of the over the whole life span of the structure. 

Lifecycle cost (LCC) is an economic evaluation method that takes account of all relevant costs 

over the defined time horizon (period of study), including adjusting for the time value of money 

[3]. The total lifecycle costs include not only construction costs but also other costs such as 

design, maintenance and dismantlement which may represent a significant portion of the total 

lifecycle costs as illustrated in Figure 2.6.  
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Figure 2.6 - Lifecycle stages/costs from design to bridge end-of-life [2]. 

The ISO 15686-5 methodology [19] defines the lifecycle costing as a technique which enables 

systematic economic evaluation of the lifecycle costs over the period of analysis. Figure 2.7 

summarises the concept of whole life and Lifecycle cost. One important motivation to use 

lifecycle cost analysis (LCC) is to balance the decrease of operation and maintenance costs 

with a possible increase of initial costs [2]. 

 

Figure 2.7 – Total life cycle cost [2]. 

Following the concept presented in Figure 2.7, the  LCC analysis methodology can be expressed 

as in the equation (2): 

C =  Cc +  Co +  Cd (2) 

where Cc - construction (initial) costs, Co - operation costs, and Cd - demolition. 

All three categories of cost are described further in subchapters 2.4.3.2, 2.4.3.3 and 2.4.3.4. 

By considering all these costs in the decision process and ensuring performance constraints 

are satisfied, solutions that may be more expensive than others at the construction stage can 

finally be more attractive when considering the overall life service of the structure Figure 2.8. 

Whole Life 
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Figure 2.8 - Schematic representation of the life cycle costs [2]. 

2.4.3.2 Construction stage 

Expenses associated with steel-concrete composite bridge construction mainly include costs 

for (i) foundation, (ii) substructure with abutments, piles and bearings, (iii) superstructure with 

steel girder/box (for composite bridge), concrete deck and equipment (expansion joints, road 

surface, waterproofing layer, metal cornice gutter, railing and protection). It is noted that these 

costs should include all materials and work costs needed for each component  

It is noted that most construction materials consume energy for production and transportation. 

This aspect is taken into account in [20] by multiplying all costs for materials for construction 

and repair with some factor due to energy consumption for manufacturing and transportation. 

The use of non-renewable materials is also considered by involving costs for reproducing or 

reusing materials when the structure is decommissioned. 

2.4.3.3 Operation stage 

All structures have to be inspected and maintained. In particular, bridge inspections are 

essential for the determination of intervention strategies. The time intervals between these 

measures depend on the type of bridge, the experience in the different countries, the economic 

resources available, the average daily traffic value, the use of de-icing salt and so on. Also, 

inspection strategies (intensities and frequencies of inspections) may be different in each 

country based on climate conditions and prioritization strategies proper to each country 

(Woodward 1997).  

During the bridge operation stage, some maintenance activities are taken into account, the 

objective ensuring that the bridge performance (associated with serviceability and safety 

concepts) always remains above a minimum threshold. This point corresponds to the end of 

the service life if no other rehabilitation action is conducted.  

2.4.3.4 End-of-life 

In the end-of-life stage, it is assumed that the bridge is demolished and that the materials are 

sorted in the same place before being sent to their final destination. For steel-composite 

bridges, it is assumed that the steel structure is going to be reused. The remaining parts, which 
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are generally concrete and bitumen materials, are cut down and transported to waste disposal 

areas. In this context, end-of-life costs should take into account the cost of bridge 

dismantlement (labour work, equipment, road warning signage), cost of transportation and cost 

for deposition of materials and/or revenue due to recycling of materials. 

2.4.3.5 Economic Evaluation Method for LCC 

Life cycle costs occur at different time of the service life, therefore they need to be converted 

to a common time point taking into account the money depreciation over time. 

Understanding the time value of money and the fact that the costs reflected in an LCC analysis 

are incurred at varying points in time, a need to convert all cost values into a value at a common 

point in time arises. Several methods exist to lead to LCC. Here in this work the net present 

value approach was adopted. It implies direct application of discount factors to the cost 

emerging in corresponding year. 

The net present value approach mentioned above is one of the most used methods to compare 

past and future cash flows with those of today. To make costs time-equivalent, the approach 

discounts them to a common point in time, the discount rate of money reflecting the investor's 

opportunity costs of money over time. The net present value can be calculated as follows: 

𝑁𝑃𝑉 = ∑
𝐶𝑘

(1 + 𝑟)𝑘

𝑁

𝑘=1

 (3) 

where 

𝑁𝑃𝑉 lifecycle costs expressed as a present value, 

𝑘 year considered, 

𝐶𝑘 sum of all cash flows in year K, 

𝑟 discount rate, 

𝑁 number of actions to be considered during the service lifetime. 

The yearly profile of one unit of money is shown for illustration in Figure 2.9. It is noted that a 

steep drop in the discounted costs is observed for high discount rate values. Also, it is shown 

that choosing r = 6 or 8% leads to a monetary value close to zero after sixty years.  
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Figure 2.9 - Profile of one unit of money for different values of r. 

The value of the yearly discount rate used is crucial since the current worth of money (NPV) is 

highly sensitive to this parameter. Indeed, the higher the discount rate, the more importance is 

given to the near-present. Choosing a high discount rate may then promote management 

strategies with low initial costs and a costly end-of-life. Therefore, the choice of the discount 

rate is delicate and has to be in agreement with the time horizon. 

 Life Cycle Social Assessment (LCS) 

Contrary to the owner costs that are directly measurable costs, the user costs are indirect and 

hardly measurable. In the case of highway bridges, these costs are those incurred by the users 

due to maintenance operations of highway structure causing congestion or disruption of the 

normal traffic flow. These costs are not directly measurable but the traffic delays that lead to 

them can be measured. 

The evaluation of the social criteria fully respects the boundary system of the integral analysis 

(see Figure 2.5). Social criteria enable us to quantify the impacts of the bridge on its direct users 

and surrounding population. Users of the bridge are all people traveling through the roads, 

beneath and above the bridge.  

Originally, to perform the life cycle social analysis, two types of indicators are assessed: 

mandatory, those which are recommended to be always included in the life cycle analysis; and 

optional, those that can be included or not, depending on the aim of the analysis [3]. Here in 

this work, only the mandatory indicators were assessed; optional ones, namely noise and 

aesthetics, were left out of the scope. 

Mandatory indicators aim to quantify the impacts due to any construction activity on the users 

of the bridge. In this case, three types of indicators are considered: driver’s delay cost, vehicle 

operation cost, and road accident cost. Another impact could be included in this group, which 

is the impact on users due to detours. If for any specific reason, the traffic over and/or beneath 

the bridge has to be stopped for a certain period of time, then traffic needs to be diverted to an 

alternative road. In this case, the additional time spent by drivers and the additional length of 

road travelled can also be taken into consideration by the three indicators referred before. Thus 

in the LCS presented in this chapter, only the three basic indicators are considered.  
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2.4.4.1 Driver’s delay cost 

The cost of the time lost by a driver while traveling through a work zone is here denominated 

as Driver’s Delay Cost (DDC). This cost is given by the difference between the cost of the time 

lost by a driver while traveling at normal speed and the time lost while traveling at a reduced 

speed due to construction works on the same length of the motorway. 

2.4.4.2 Vehicle operation costs 

A vehicle traveling through a work zone is subjected to delays. These construction-related 

delays result in additional costs for the owner of the vehicle. These additional costs are hereby 

denominated Vehicle Operating Costs (VOC). This cost is given by the difference between the 

cost of the operation of the vehicle while traveling at normal speed and the operation of the 

vehicle while traveling at a reduced speed due to construction works on the same length of the 

motorway. 

2.4.4.3 Accident costs 

Accident costs represent the additional costs due to a work zone in a road or motorway; thus, 

they are calculated by the difference between the cost of accidents in a length of motorway 

with no work activity and the cost of accidents in the same length when there is work activity. 
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3 Case studies 

This chapter describes the case studies considered in the projects SBRI+ [3], SBRI [2] and in 

a PhD thesis [1] as well as the assumptions made in order to perform the integral life cycle 

analysis and benchmarking. 

3.1 General 

Topology of motorway bridges may vary significantly depending on its structural scheme 

defined by its use and choice of material. Modern motorway bridges are built in a lot of various 

configurations, starting from small motorway overpasses to a long span highway bridges, 

leading to the differences in the initial design and further maintenance strategies. Thus, 

following the practice established in reference projects [2] and [3], all the examples were 

distributed between three groups (Type A, B or C) according to its span length as well as cross 

section outline and operational purpose. 

Type A is represented by small motorway bridges with the span length up to 60 meters with 

still concrete composite or pre-stresses concrete girders. Bridges of type B are similar to those 

of Type A, however being a crossings of motorways are distinguished by the presence of the 

traffic also underneath the bridge. Span lengths up to 120 meters are the scope of big 

motorway bridges and are located to type C with box-girder composite sections. 

All case studies are motorway bridges supporting dual carriage way. 

3.2 Bridge types 

Here in this section the detailed description the design solutions of the considered cases 

studies is given. In total, 21 bridge were gathered from the projects [2] and [3] and research 

work [1]. The case studies are allocated as presented in Table 2. 

Table 2 – Allocation of the case studies 

Original 
project/research 

Case studies 

SBRI+ [3], 
2018 

A1, A2, A3, A4 
B1, B2, B3 

C1 

SBRI [2], 
2013 

A5, A6 
B4 – B11 

C2 

PhD thesis [1] 
Helena Gervasio, 

2010 
B12, B13 

The bills of quantities were analysed for each case study and are presented in the comparative 

form for each bridge type. 

 Bridges of Type A 

Bridges allocated to the Type A are characterised by span length up to 60 meters. All cases 

considered for the Type A designed with two independent structures, one for each direction of 

traffic. Each bridge of type A supports a highway with two or three 3.5 m wide lanes per traffic 
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direction. The whole roadway is bordered by normalised safety barriers. All bridges have a 

symmetrical structure. Six bridges were considered in this group and described as following. 

Case A1 describes a single span motorway bridge with theoretical length equal to 34.80 m 

and deck width of 12.14 m. The composite deck solution consists of two welded I-shaped 

girders S355-N, with 1.85 m high, with a centre-to-centre spacing equal to 7.00 m, placed on-

site by light cranes. The bridge is located in Albania. The design solution is presented in the 

Figure 3.1 and Figure 3.2.  

 

Figure 3.1 - Case A1: Longitudinal section [3]. 

 

 

Figure 3.2 - Case A1: Typical cross section [3]. 

 

Case A2 is a concrete solution, which consists of 4 precast pre-stressed I-shaped girders, 2.20 

m high, with a centre-to-centre spacing equal to 3.50 m, placed on-site also by cranes. This 

bridge was designed (not built) for the purpose of the comparison with case A1. The design 

solution for the case A2 is presented in Figure 3.3 and Figure 3.4. 
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Figure 3.3 - Case A2: Longitudinal section [3]. 

 

 

Figure 3.4 - Case A2: Typical cross-section [3]. 

The structural typology of the Case A3 is a continuous beam with a total length of 308 m 

distributed over nine spans of 28 m+7x36 m+28 m and has a total width of 36.40 m. Each deck 

consists of a composite section made up of a reinforced concrete slab supported by two "I-

shape" steel plate girders of 1750 mm high. Cross-girders, placed every 4m, provide additional 

support to the concrete slab allowing it to span in two directions. In these alignments, cantilever 

cross-girders were used for the same purpose. Every support is provided with load bearing 

stiffener arrangements on both sides of the webs. The construction of the reinforced concrete 

slab is carried out with precast concrete planks used as lost formwork. The bridge is located 

in Portugal. The design solution for the case A3 is illustrated in Figure 3.5 and Figure 3.6. 

 

Figure 3.5 - Case A3 Longitudinal section [3]. 
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Figure 3.6 - Case A3 Typical cross-section [3]. 

 

The structural typology of the Case A4 is similar to the previous one. It is also a continuous 

beam with a total length of 308 m distributed for nine spans of 28 m + 7x36 m +28 m and has 

a total width of 37.12 m. Each deck consists of a classical post-tensioned reinforced concrete 

section. The deck slab between girders has a variable thickness of 0.45 m to 0.30 m. The 

cantilever slabs also have a variable thickness of 0.45 m to 0.20 m. All girders have constant 

height of 2.70 m. The deck was constructed with a launching girder. The bridge is located in 

Portugal. The design solution for the case A4 is presented in Figure 3.7 and Figure 3.8. 

 

Figure 3.7 - Case A4: Longitudinal section [3]. 

 

 

 

Figure 3.8 - Case A4: Typical cross-section [3]. 

Case A5 is a symmetrical structure with three spans of 50 m, 60 m and 50 m; the deck is 

represented by steel-concrete main girders of constant height 2400 mm. The total slab width 

is 12 m. For the construction, the structural steel is first installed by launching and then the 16 

concrete slab segments (10 m long each) are poured on-site. The design solution is specified 

in the Figure 3.9. 
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Figure 3.9 – The design solution for the Case A5 [2]. 

 

Figure 3.10 – Case A5. A6: span distribution [2]. 

The design solution of the Case A6 is based on the solution used for the case A5 and entails 

the consideration of three lanes instead of two forecasting the possibility of traffic growth and 

use of HSS. This variant allows reducing potential maintenance and strengthening actions or 

reconstruction of the structure (durability loss). This case was designed (not built) for the 

comparison with the case A5. 

The comparative bills of quantities used for the calculation of LCA of the bridges of Type A are 

presented in Table 3. 

Table 3 - Quantities of case studies A1-A6 considered in LCA [3]. 

Description Unit 
Case A1 

 
Case A2 

 
Case A3 

 
Case A4 

 
Case A5 

 
Case A6 

 

Substructure        

Excavation [m3] 2200 2400 3310 11077   

Backfilling [m3] 530 600 1810 2846   

Formwork - for abutments 
and columns 

[m2]   8395 12387   

Reinforcement steel - except 
concrete deck 

[kg] 22530 26180 897600 1210090,30   

Concrete 
 - C16/20 
 - C12/15 
 - C25/30 
 - C30/37 

[m3] 

 
 
 

300 
 

 
 
 

350 
 

 
 

89 
 

3386 

 
191 

 
 

7893 

  

Superstructure        

Structural steel S355 N/NL [kg] 94000  1521000  405 000 430000 

Formwork [m2]   1325 18161   

Reinforcement steel - 
concrete deck 

[kg] 37350 41790 371400 511481,70 124000 124000 

Pre-stressing steel   8460     

Concrete - light weight [m3]   96 170107,03   

Concrete precast beams 
C30/37 

[m3]  148     

Concrete slab C 30/37 [m3] 210 212     

Concrete slab C 35/45      624 624 

Concrete for safety barriers 
C 35/45 

     32 32 

Concrete C 40/50 [m3]   3095 7049   
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Description Unit 
Case A1 

 
Case A2 

 
Case A3 

 
Case A4 

 
Case A5 

 
Case A6 

 

Steel connectors including 
Implementation and quality 
control 

[kg]   31655 45 1500 1500 

Left-in-place formwork 
planks C40/50 with 
reinforcement steel A500NR 

[m2]   9850 691   

Concrete or steel cornice [m]   620 24   

Pot-bearings and elastomeric 
reinforced bearings 

[pcs] 4 8 40 44   

Lamelle (roadway slats steel/ 
plastic and similar) 

[pcs]   108 112   

Corrosion protection [m2] 720    3000 3000 

Roadway        

Surface levelling with 
concrete bituminous & single 
bituminous surfacing 

[m2] 2x340 2x345 22360 19036 1833 1833 

Waterproofing [m2] 418 422   1792 1792 

Protective device - guardrail   [m]   637 5847   

Covering of buried elements [m2]    1323   

Protective equipment - 
railings 

[m]   637 691   

Safety barriers, S235 JR [kg]     20800 20800 

Expansion joint [m] 24,30 24,30 72 74 24 24 

The summary of the case studies with essential design considerations is presented in Table 

4. 

Table 4 – Description of the case studies allocated to the Type A. 

Case Cross section and topology description 
Selective data 
regarding the 

design solution 
Number of lanes  

A1 
 

Single span,34.8 m 
 

Composite bridge. 
Welded girders 

2x2 

A2 
 

Single span, 34.8 m 
 

Concrete bridge. 
Precast pre-stressed 

girders 
2x2 

A3 

 
9 spans, 28-7x36-28 m 

 

Composite bridge. 
Concrete slab, Steel 

plate girder 
3x2 

A4 

 
9 spans, 28-7x36-28 m 

 
 

Concrete bridge. 
Post tensioned deck 

3x2 
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Case Cross section and topology description 
Selective data 
regarding the 

design solution 
Number of lanes  

A5 

 
3 spans, 50-60-50 m 

Composite bridge. 
Prefabricated slab, 
rolled steel girder 

2x2 

A6 

 
3 spans, 50-60-50 m 

Composite bridge. 
Prefabricated slab, 
rolled steel girder 

(HSS) 

3x2 

 

 Bridges of Type B 

Bridges of type B are supposed to be representative for short span bridges (under 60 m) 

spanning over a motorway of dual carriage 4 lanes each. In the initial projects there were 

difference in the traffic intencity and number of lanes of the motorway lying under the bridge. 

However, to make a comparison on the common basis, it was assumed that all bridges 

overpass the motorway of 8 lanes with given traffic intensity. 

The span distribution can possibly take into account an intermediate support in the middle of 

the highway between the two directions of traffic. For this bridge type steel concrete composite 

and typical solutions in concrete have been considered. Cases B1, B9 and B10 are integral 

composite bridges; meaning that no intermediate support is provided (single span bridge) and 

no bearings needed. Cases B3, B7 and B8 are 2 span composite and B2, B5, B6 and B12 are 

concrete bridges, and case B11 and B13 are 3 span composite and concrete bridges 

respectively. More detailed description of the bridges of Type B and are described as following. 

Case B1 is an integral bridge with a 45.25 m single span and has integral abutments. The 

deck consists of four composite girders, which are made of plated steel with variable height 

ranging from 0.93 m at mid-span to 2.18 m in the abutments. The girders are transversally 

separated. The deck slab consists of a layer of concrete cast in-situ on precast slabs. The 

bridge is located in Germany. The design solution of the case B1 is presented in Figure 3.11. 
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a1) 

 
a2) 

 

b) 

Figure 3.11 - Case B1: Integral composite bridge: a1) and a2) Longitudinal view; b) Cross section with 
girders of variable height [3]. 

Case B2 is a pre-stressed concrete bridge the original dimensions were two spans of 25.20 m 

and 26.70 m and a slab width of 7.9 m. But it was scaled for the comparison, the total length 

between abutments of 51.90 m to 45.25 m. The slab has been scaled to 11.75 m. The deck 

consists of rectangular cast in-situ girders. On the girders, a 25 mm thick concrete cast in-situ 

slab is lying. The bridge is located in Germany. The design solution of the case B2 is presented 

in Figure 3.12. 

 

a1) 
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a2) 

 

b) 

Figure 3.12 - Case B2: Prestressed cast in-situ concrete girder. a1) and a2) Longitudinal view; b) Cross 
section with girders of variable height [3]. 

Case B3 is a four girded steel-concrete composite bridge. The bridge has a symmetrical 

structure with two spans of 22.62 m (i.e. a total length between abutments of 45.25 m). The 

total slab width is 11.55 m. The girders are HL 1000 A S355 J2 G3 steel profiles. The deck 

slab consists of a 0.25 m layer cast in-situ on precast slabs. The bridge is located in Germany. 

The design solution for the case B3 is presented in Figure 3.13. 

 

a1) 

 

a2) 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

25 

 

b) 

Figure 3.13 - Case B3: Composite bridge. a1) and a2) Longitudinal view; b) Cross section [3]. 

Case B4 is a steel-concrete composite twin-girder bridge. The bridge has a symmetrical 

structure with two spans of 22.5 m (i.e. a total length between abutments of 45 m) and the total 

slab width of 11.70 m. For the construction, the structural steel is first installed with a crane 

and then the 23 pre-cast concrete slab segments (1.95 m long each) are installed and keyed.  

Case B5 is a concrete bridge cast in place. The bridge has a symmetrical structure with two 

spans of 22.5 m (i.e. a total length between abutments of 45 m). The total slab width is 13.10 m. 

Case B6 is a pre-cast concrete bridge. The bridge has a symmetrical structure with two spans 

of 27 m (i.e. a total length between abutments of 54 m). The total slab width is 12.50 m. 

Case B7 is a steel-concrete composite multiple-girder bridge. Girders are made of steel grade 

S355. Girders are rolled girders HE 900 A. The bridge has a symmetrical structure with two 

spans of 22.5 m (i.e. a total length between abutments of 45 m). The total slab width is 13.40 m. 

Case B8 is design variation (not built) of the case B7 with the uses HSS (steel grade S460 for 

girders), which leads to reduction of steel weight (girders are rolled girders HE 800 A). 

Case B9 is a design variation (not built) of the case B4. It represents the design case with 

integral abutments with a 40.8 m single span. Main girders are made of plated steel. This 

variant is 9.3 % shorter than case B4, but allows saving of structural steel and concrete (mainly 

due to the elimination of the intermediate pier). Moreover, it eliminates some maintenance 

actions: replacement of expansion joints and bearings. 

Case B10 consists of the use of integral abutments with a 40.8 m single span, and main girders 

made of high strength (S460) rolled steel. This variant is 9.3 % shorter than case B4, but 

requires 55.9 % more structural steel. This case was designed (not built) for the comparison 

with the case B4. 

Case B11 consists of the use of "counterweight" spans instead of integral abutments. The 

bridge has a symmetrical structure with three spans of 18.50 m, 40.80 m and 18.50 m (i.e. a 

total length between abutments of 77.80 m). This design solution allows building a central span 

with almost the same dimensions than the case B9 single span, that is to say no support in the 

middle of the highway is needed. Compared to the case B9, this case has simple abutments 

but the bridge is twice as long. The bridge is located in Portugal. The design solution is 

presented on the Figure 3.14. 
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Figure 3.14 - Design solution for the Case B11 [2]. 

Case B12 is a concrete bridge of two spans of 29 and 31 m and a cross-section of 7.14 m 

wide. The cross-section of the deck is made of one longitudinal precast concrete girder with a 

“U” shape and a cast “in-situ” concrete slab. The concrete slab is cast on top of precast 

concrete forms that act as a composite slab. The bridge is built in Portugal. The design solution 

is presented in Figure 3.15 and Figure 3.16.  

 

Figure 3.15 - Case B12: Elevation view [1]. 

 

Figure 3.16 - Case B12: Typical cross-section [1]. 

 

Finally, Case B13 has a three spans of 16.6 m, 48.5 m and 16.6 m. The deck is fully supported 

over the middle piers and simply supported at the abutments. The deck is composed of two 

longitudinal pre-stressed concrete girders and concrete slab, both cast “in-situ”. The beams in 

the middle span are hollowed in order to reduce the self-weight of the structure. The bridge is 

built in Portugal. The design solution is presented in Figure 3.17 and Figure 3.18. 
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Figure 3.17 – Case B13: Elevation view [1]. 

 

 

Figure 3.18 – Case B13: Typical cross-section [1]. 

The comparative bills of quantities used for the calculation of LCA of the bridges of Type B are 

presented in the Table 5 - Quantities of case studies B1-B3 considered in LCA .Table 5, Table 

6 and Table 7. 

Table 5 - Quantities of case studies B1-B3 considered in LCA [3]. 

Description Unit Case B1 Case B2 Case B3 

Substructure     

Foundations’ concrete C25/30 [m3] 254 223,81  

Abutments’ + piles concrete C30/37 [m3] 746,20 681,97 969,6 

Reinforcement S500 [kg] 90600 90690 64326,6 

Superstructure     

Structural steel S355 J2 G3 [kg] 81800   

Structural steel S355 J2 G3 in 
HL1000A 

[kg]   58084,35 

Corrosion protection [m2] 896  575,58 

Concrete precast C30/37 [m3] 58  52,26 

Concrete C35/45 [m3] 144,20 571,20 130,66 

Concrete C45/55 [m3]  172,82  

Reinforcement S500 [kg] 44600 63038,3 44266,58 

Steel connectors [kg] 1382 - 748,7 

Bearings Elastomeric [pcs]  12 12 
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Description Unit Case B1 Case B2 Case B3 

Bearing Calote [pcs]  2 2 

Roadway     

Pavement’s asphalt layers [m2] 309 309 309 

Pavement’s waterproofing member [m2] 309 309 309 

Safety barriers [kg] 7429,20 7429,20 7429,20 

 

Table 6 Quantities of case studies B4-B8 considered in LCA, adopted from [2]. 

Description Unit Case B4 Case B5 Case B6 Case B7 Case B8 

Substructure       

Abutment C35/45 [m3] 522.7 522.7 522.7 522.7 522.7 

Reinforcement S500 [kg] 45784.5 45784.5 45784.5 45784.5 45784.5 

Superstructure       

Structural steel (main girders + 
bracing frames) S355 N/NL 

[kg] 63500   56500  

Structural steel (main girders) S460 
M/ML 

[kg]     50300 

Corrosion protection - paint [m2] 450   584 540 

Concrete precast C30/37 [m3]      

Concrete C35/45 – main slab [m3] 152   152 152 

Concrete C30/37 – main slab [m3]  409.3 192   

Light-weight concrete [m3]   42   

Pre-stressed beams [m3]   230   

Concrete C35/45 – support for 
safety barriers 

[m3] 29   29 29 

Pre-stressed steel [kg] 0 6839.5 1664.0   

Reinforcement S500 - concrete slab [kg] 31000 82621.5 40577.0 31000 31000 

Reinforcement S500 - concrete 
support for the safety barriers 

[kg] 5700   5700 5700 

Steel connectors [kg] 680   680 680 

Roadway       

Pavement’s asphalt layers [m2] 375 359 349 375 375 

Pavement’s waterproofing member [m2] 503 590 675 503 503 

Safety barriers [kg] 4500 4500 4500 4500 4500 

 

 

Table 7 Quantities of case studies B9-B13 considered in LCA, adopted from [2], [1]. 

Description Unit Case B9 Case B10 Case B11 Case B12 Case B13 

Substructure       

Foundations’ concrete C25/30 [m3]  78000 223  387 

Foundations’ concrete C30/37 [m3]    91.33  

Abutment C35/45 [m3] 370 72    

Abutment C30/37 [m3]   1561 54.331  

Abutment C25/30      96 

Piers C30/37      29 

Reinforcement S500 [kg] 50000 18000 575952   
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Description Unit Case B9 Case B10 Case B11 Case B12 Case B13 

Superstructure       

Structural steel (main girders + 
bracing frames) S355 N/NL 

[kg] 56500  145678   

Structural steel (main girders) HL 
1100B 

[kg]  99000    

Corrosion protection - paint [m2] 530 814.2 2292   

Concrete precast C35/45 [m3]   161   

Concrete precast C45/55     33.12  

Concrete C35/45 – main slab [m3] 131 153 164   

Concrete C30/37 – main slab [m3]    157.88 779 

Light-weight concrete [m3]   38 14.09 44 

Pre-stressed beams, C45/55 [m3]    74.26  

Concrete C35/45 – support for 
safety barriers 

[m3] 26     

Pre-stressed steel [kg]    4275 21666 

Reinforcement S500 - concrete slab [kg] 26000 30000 76.177 334713 824143 

Reinforcement S500 - concrete 
support for the safety barriers 

[kg] 5400     

Steel connectors [kg] 710  3328   

Bearings [pcs]   8   

Roadway       

Pavement’s asphalt layers [m2] 339 316 622.4 297.7  

Pavement’s waterproofing member [m2] 456 393    

Safety barriers [kg] 4100 4100    

1 – including piers; 2 – the quantity of the reinforcement of all elements except the deck; 3 – the total value of the 

reinforcement used per bridge. 

The summary of Type B cases and its representative cross-sections are presented in the Table 

8. 

Table 8 - Description of the case studies allocated to the Type B. 

Case Cross section and topology description 
Selective data 

regarding the design 
solution 

Number of lanes 
(over/under the 

bridge) 

B1 

 
Integral bridge, 45.25 m 

Composite bridge. 2/8 

B2 

 
2 spans, 25.2-26.7 m 

Concrete bridge. 
Pre-stressed RC, 

cast in situ 
2/8 

B3 

 
2 spans, 22.6-22.6 m 

Composite bridge. 2/8 
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Case Cross section and topology description 
Selective data 

regarding the design 
solution 

Number of lanes 
(over/under the 

bridge) 

B4 

 
2 spans, 22.5-22.5 m 

Composite bridge. 
Prefabricated slab, 
plated steel girder 

2/8 

B5 

 
2 spans, 22.5-22.5 m 

Concrete bridge. 
Cast in-situ 

2/8 

B6 

 
2 spans, 27-27 m 

Concrete bridge. 
Precast 

2/8 

B7 

 
2 spans, 22.5-22.5 m 

Composite bridge. 
Prefabricated slab, 

concrete cross girder, 
Rolled steel girder 

S355 

2/8 

B8 

 
2 span, 22.5-22.5 m 

Composite bridge. 
Prefabricated slab 

and girder, 
Rolled steel girder 

(HSS) 

2/8 

B9 

 
Integral, 40.8 m 

Composite bridge. 
Prefabricated slab 
and girder, plated 

steel 

2/8 

B10 

 
Integral, 40.8 m 

Composite bridge. 
Prefabricated slab 
and girder, plated 

steel 

2/8 
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Case Cross section and topology description 
Selective data 

regarding the design 
solution 

Number of lanes 
(over/under the 

bridge) 

B11 

 
3 span, 19-41-19 m 

Composite bridge. 
prefabricated slab and 

girder,  
rolled cross beams, 
plated steel girder 

2/8 

B12 

 
2 span, 29-31 m 

Concrete bridge. 
Precast girder, cast 
in-situ slab+precast 

forms 

2/8 

B13 

 
3 spans, 16.6-48.5-16.6 m 

Concrete bridge. 
Prestressed cast in-

situ girder, cast in-situ 
slab 

2/8 

 Bridges of Type C 

Bridges of Type C are supposed to be representative for long span bridges (up to 120m) for 

which a box girder design is classically preferred. Similar to the Type A, only traffic over the 

bridge is implied, however, significant length of the span requires different conceptual 

solutions. In this work, only two bridges were allocated to the type C. Both of them are steel 

concrete composite bridges. 

Two independent structures for each direction of traffic were considered in the Case C1. The 

structure is a three-span highway bridge with theoretical length equal to 

44.00+77.50+44.00=165.60 m and deck width equal to 11.50 m. The steel-concrete composite 

deck consists of 3 welded I-shaped steel girders, placed on-site by launching. The deck slab 

consists of a 0.20 m layer cast in-situ on precast slabs 0.10 m thick. The bridge is located in 

Greece. The design solution is presented in Figure 3.19 - Case C1 Longitudinal view .Figure 3.20. 

 

 
Figure 3.19 - Case C1 Longitudinal view [3]. 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

32 

 

 

Figure 3.20 - Case C1 Typical cross section [3]. 

Case C2 supports a highway with 4 lanes (2 per each direction of traffic). The bridge has a 

symmetrical structure with five spans of 90 m, 3x120 m and 90 m. The total slab width is 21.50 

m. For the construction, the structural steel is first installed by launching and then the 45 

concrete slab segments (12 m long each) are poured on-site. The design solution and span 

distribution is presented on Figure 3.21 and Figure 3.22. 

 

Figure 3.21 - Design solution for the Case C2 [2]. 

 

 

Figure 3.22 – Case C2: span distribution [2]. 

The summary of Type C cases and its representative cross-sections are presented in the Table 

9. 
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Table 9 - Description of the case studies allocated to the Type C. 

Case Cross section and topology description 
Selective data 
regarding the 

design solution 
Number of lanes  

C1 

 
3 spans, 44-77.5-44 m 

Composite bridge. 
Plated steel box 

girder 
2x2 

C0 

 
5 spans, 90-3x120-90 m 

Composite bridge. 
Plated steel box 

girder 
4 

 

3.3 Assumptions and design consideration 

This chapter mentions main design considerations and assumptions, as well as noteworthy 

remarks related to the performance the benchmarking. 

For each case study the following information was gathered from the projects SBRI and SBRI+ 

( [2] and [3]) as well as from [1] for case B12 and B13, and adopted according to the purpose 

of present work. 

 Considerations for the life cycle cost (LCC) 

Special considerations were made regarding the life cycle cost (LCC). It was observed, that 

since bridges are coming from different parts of Europe, the unit cost of the materials or non-

structural equipment may vary significantly. Even comparing projects coming from the same 

country, different manufacturers provide different rates. 

In the same time, to proceed with the benchmarking, the normalization of the unit cost is 

required to ensure functional equivalence of the compared case studies. Such a process 

require additional studies, as established unique cost data base should also ensure that the 

results achieved with such a cost database would not compromise the results achieved for the 

original case studies when they were considered as individual cases in the reference projects 

[2] and [3] as well as examples considered in [1]. 

In this regard, it was decided to leave the benchmarking of the sustainable indicators of the life 

cycle cost (LCC) beyond the scope of present work, suggesting it as one of the main 

possibilities for the future improvement and development. 

 Inspection and maintenance 

After entering the service life, bridges start deteriorating immediately. Consequently, 

renovation countermeasures should be foreseen throughout the whole life of the structure in 

order to maintain its performance above an admissible level. This leads to the implementation 

of the inspection and maintenance strategies through the whole service life of bridge. The 
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frequency of inspection and maintenance evens depend on the bridge type, its location and 

climate, thus, requirements differ from country to country. 

During the operation phase of a bridge, regular inspections are necessary to allow the 

continuous monitoring of the bridge condition, evaluation and eventual need for maintenance 

and rehabilitation actions. The definition and aim of each the types of inspections are: 

Routine inspection – visual observation to detect small damage that can be promptly 

repaired; The team is formed by one or two members of the maintenance staff with 

specific training; 

Principal inspection – detailed visual inspection with special means of access. The aim is 

the assessment of the bridge condition rating evolution, with the definition of potential 

repair/rehabilitation actions; 

Special inspection – detailed inspection when there is a need for a specific repair plan for 

the complete or partial rehabilitation of the bridge. Tests and laboratory analysis are 

also used to help evaluate damage conditions and allow recommendations for damage 

repairs. 

Following the approach adopted in [1], [2] and [3], the inspection types and respective 

frequencies were defined based on the comparison of the inspection actions established for 

countries involved in the project. The frequency assumed for each type of inspection for the 

standard scenario is shown in Table 1. 

Table 10 - Standard scenario - Inspection frequency and average occurrence [3]. 

Type 
of Inspection 

Inspection 
frequency 

Average occurrence during 100 
years 

Routine annually 100 

Principal 6 years 17 

Special 2 in 100 years 2 

Maintenance events are coming as a direct consequence of the inspection actions. As 

inspection actions, the content of maintenance events depends on the local regulations. 

Different maintenance strategies were collected and compared. The adopted frequency of the 

maintenance events is based on the average service life of the structural and non-structural 

elements. Thus, standards maintenance scenario, related to capacity rates and units, allow 

the elaboration of the adequate maintenance strategy. 

Regarding maintenance/repair, in the standard scenario, it is assumed that maintenance 

actions take place before the end of the average service life of the elements of the bridge. 

Structural elements are replaced when the average service life is reached. 

Further differentiation was made according to the time when maintenance events should take 

place. The life cycle assessment and further benchmarking was performed assuming a day 

work scenario, meaning that maintenance events carried out during the day (6:00 AM. to 10:00 

PM). 
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Table 11 - Average service life assumed for bridge elements [3]. 

Element Average service life (years) 

Superstructure concrete 100 

Concrete edge beam 40 

Safety barrier 40 

Superstructure steel 100 

Steel corrosion protection 35 

Expansion Joints 40 

Road surface 20 

Water Proofing Layer 40 

Metal cornice gutter 25 

Elastomeric bearing 35 

Railing 40 

 

Table 12 - Standard scenario - average maintenance/repair work frequency [3]. 

Element Maintenance action 
Standard maintenance 

frequency (years) 

Superstructure concrete Small area repairs 25 

Concrete edge beam Minor repairs 25 

Safety barrier Partial replacement 25 

Steel corrosion protection Repainting of corrosion protection 25 

Expansion Joints Partial replacement 10 

Road surface Minor repairs 10 

Water Proofing Layer No maintenance actions * 0 

Metal cornice gutter No maintenance actions * 0 

Elastomeric bearings Clean, painting, lubricating 20 

Railing Painting 20 

(*) - Elements with no maintenance actions. Total replacement takes place when the element’s service life is 

reached. 

 

 Traffic 

Traffic analysis plays essential role in the life social analysis. Traffic congestion due to 

restrictions in the work zone lead to the driver’s delays, affect the vehicle operational capacity 

and increase the rate of the accidents. 

Moreover, traffic congestion causes additional environmental burdens, subjected to the 

environmental LCA. Thus, the traffic intensity as well as restrictions of the working zone during 

maintenance (Type A, B and C), as well as construction and demolition of the bridge (Type B 

only) should be properly described. 

The value of the average daily traffic (ADT, vehicles/day) depends on the location of the bridge 

as defined by the traffic density of the place where the bridge is supposed to be built. The 

current value of ADT should be acquired from the traffic monitoring section. 
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Such factors, as population growth and economic prosperity cause the traffic growth. The 

yearly increase of the traffic was estimated as: 

  


  
0

1
tyear year

t tgADT ADT r  (3) 

ADTt is the average daily traffic to be used in the analysis at year t (vehicles/day), 

rtg  is the expected traffic growth rate, 

yeart is the year in which the ADT is to be calculated, 

year0 is the year in which the ADT is measured. 

Coming from the different partners, initially case studies were calculated according to the real 

traffic data. Thus, the ADT over the bridge considered in the projects was varying significantly 

depending on data provided by the partners; for the Type A the data were varying from 8000 

to 36254 vehicles per day (vpd), from 4528 to 9064 vpd for Type B, and was recorded as 

12000 vpd for the Type C. However, to perform benchmarking is it required to make an 

assessment on the common basis. Thus, taking into account the fact of the variation in the 

design solutions of the considered bridges, in this work it was decided to normalize the value 

of ADT taking into account the lane capacity of the bridge by assuming weighted ADT of 4000 

vpd per lane. Regarding the traffic under the bridge, the value of ADP=49485 vpd was adopted, 

as given in [3]. The specific value of the ADT adopted for the cases considered in this thesis 

are specified in Table 13.  

Table 13 - Average daily traffic. 

Number of 
lanes 

Cases ADT base year, vpd 

2 All cases of Type B 8000 

4 
A1, A2, A5, A6 

All cases of Type C 
16000 

6 A3, A4 24000 

Traffic under the 
bridge 

All cases of Type B 49485 

Another important characteristic associated with the traffic is the traffic flow over the working 

zone. It is assumed that during the performance of the construction works the traffic may be 

restricted according to the working scenario (day or night work) and number of days of 

construction work. 

Traffic congestion due to work activity in the surrounding area of the bridge has two major 

types of impacts: (i) the impacts due to direct emissions from vehicles, and (ii) the impacts due 

to the amount of fuel consumed. The impacts due to direct emissions from vehicles are 

quantified based on the QUEWZ-98 model [21]. The Queue and User Cost Evaluation of Work 

Zones model analyses traffic flows through motorway work zones and allows to estimate the 

traditional road user costs and air pollution on various lane closure strategies. In both cases, 

the quantification of the impacts is given by the difference between the impacts of the vehicles 

passing through the work zone and the impacts of the vehicles passing through the same zone 

but without any delays due to work activity. 

Here in this work it was assumed that only one lane of traffic would be closed per each direction 

of traffic. 
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 Transportation 

Transportation of the materials take place during the stage of construction and operation 

(transporting of new materials) as well as end-of-life (transporting of the debris to the recycling 

plant/landfill).  

Construction materials assumed to be transported to the construction site by tracks. The 

traveling distances estimated for each case are indicated in Table 14. The consumption of diesel 

is also calculated based on the travel distances displayed in this table. 

Table 14: Transportation of materials for the construction stage [3] 

Activity Distance (km) 

Transportation of steel structure 50 

Transportation of reinforcement steel 50 

Transportation of fresh concrete 10 

Transportation of precast concrete 10 

Transportation of asphalt 20 

Transportation of waterproof layer 20 

In the end-of-life stage, it is assumed that the bridges will be demolished and the resulting 

materials will be sorted right at the demolition site. After sorting, materials were assumed to be 

loaded on trucks and transported to their final destination according to their respective end-of-

life scenario. The estimated traveling distances between the sorting place and the final 

destination of the materials are indicated in Table 15.  

Table 15: Transportation of materials for the end-of-life stage [3] 

Activity Distance (km) 

Recycling of structural steel 50 

Recycling of steel reinforcement 50 

Landfill of inert materials 50 

Landfill of asphalt pavement (& bitumen) 20 
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4 Benchmarking of bridges 

This chapter describes the general framework of the benchmarking as well as the evaluation 

method employed for the statistical treatment of the data. 

The definition of the benchmarking is given and the benchmark levels are defined. Further, the 

choice of the life cycle assessment as the basis for the sustainable benchmarking is justified 

with its advantages and compliance criteria fulfilled. 

Finally, the comprehensive guidelines explaining the assessment of the chosen benchmarks 

is provided. 

4.1 General framework 

Nowadays the concept of the benchmarking is frequently used in different areas of the 

economy and defined differently depending on the goals and scope of the assessment. In 

construction sector, the closest definition can be defined according to the standard BS EN 

16231 – Energy Efficiency Benchmarking Methodology [22], which is been developed to 

provide the guidance for the analysing energy data and comparing energy efficiency of 

buildings, the benchmarking is defined as “process of collecting, analysing and relating 

performance data of comparable activities with the purpose of evaluating and comparing 

performance between or within entities”. Hence, a benchmark can be defined as a “reference 

or standard value for comparison derived from the benchmarking”. 

To date, there are only a few available definitions of benchmarking levels as limit or target 

values in literature [23, p. 191]. According to [23, p. 192] the most commonly used benchmark 

levels are: 

 Limit value – value representing the minimum acceptable performance. Thus value 

can be considered as optional, as it guides the designer whether the whole 

sustainability assessment should be accepted or not. It is worth noticing, that this 

value may vary depending whether the structure is new or already built. 

 

 Reference value (conventional practice) – value, which represents the current state 

of art and can be described as the mean or the median value. 

 

 Best practise – value, that actually have been reached or measured in the 

experimental or demonstration projects according to the current level of 

technological advancement. 

 

 Target value – the highest theoretically possible level to be achieved in the medium- 

or long term prospective according to the available level of the technology. 

 

Established values may be used for the assessment of the performance gap for the considered 

project. The provided benchmarks can also be used as a quantitative target for the potential 

improvement of the performance. 

Conceptually, the benchmarking levels and where do they take place in the project 

performance can be illustrated as in Figure 4.1. It should be noted that better level of 

performance corresponds to the lower values of indicators. 
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Figure 4.1 The concept of the benchmarking, adopted from [22]. 

Regarding the sustainable benchmarking of the life cycle assessment in construction, it is a 

common trend, that there are not statistically significant references values available, as the 

development of the benchmarks goes in parallel with the development of the evaluation 

methods. 

The establishment of the sustainable benchmarks based on the life cycle have two main 

advantages over the benchmarking based on the rating systems: 

 Benchmarking of the indicators is based on the life cycle assessment methodology 

compliant with the existing ISO [13], [14] and [19], which ensures a strong scientific 

basis for the evaluation; 

 As the proposed model of the life cycle assessment goes in line with the design rules 

and reliability requirements of the Eurocodes, it ensures the genuine compliance of 

structural and sustainability criteria in the design process. 

Central role in the benchmarking plays functional equivalence, thus special attention to this 

aspect was paid in this thesis. The functional equivalence implies that (i) the inputs and 

provided outputs are related; (ii) evaluation was done based on the common assumptions; (iii) 

the reference values are expressed in the reference units which would enable comparison of 

different case studies and (iv) reference values respect design considerations and local 

conditions. 

In light of considered case studies, these requirements were fulfilled on the stage of the 

performance of the life cycle assessment, namely: 

 The same input categories were considered for each case, except of cases A5, A6 and 

C2 when the substructure was not considered due to the lack of data; 

 The maintenance plans were based on the average of service life of respective bridge 

elements, common operation types and rate of maintenance work as specified in 

Tables A1 and A4 in the Annex; 

 The plans of the traffic restrictions due to execution of the maintenance events were 

established for each bridge type as specified in Tables A2 and A3;  

 The distances used for the assessment of the transportation of the material to the site 

during the stage of construction and operation as well as its allocation for the 

recycling/landfilling in the end of life are assumed to be common for all cases, as 

explained in the Capter 3; 

 to ensure the same traffic density, the traffic was weighted and normalized with a value 

of ADT per lane, giving possibility to assess bridges located in different areas and 

having different number of lanes; 
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 to enable the comparison of bridges with different geometry, all indicators used for 

benchmarking were normalised per m2 of the area of the deck. 

The correlation of the inputs and outputs are ensured by the fact that inventory analysis 

performed in the early stage of the life cycle assessment and is in accordance with the 

prescriptions of ISO standards. 

4.2 Evaluation of the benchmarks 

The scope of the present benchmarking is to define and analyse the values for common and 

best practice for the life cycle environmental and life cycle social assessment indicators defined 

in Chapter Life cycle sustainability assessment of the bridge2. 

It is considered that the conventional practice is given by median of the values and the best 

practice is given by the first quartile (25%) as lower boundary means the minimisation of the 

investigated parameters [12], [23]. 

According to the design considerations specified in Chapter 3, the results were analysed in 

groups defined by the bridge type: 6 bridges of Type A, 13 bridges of Type  B and 2 bridges of 

Type C, which means that the size of the sample is 6, 13 and 2 variables respectively. 

Taking into account relatively poor sample size, it was decided to treat the data as a discrete 

random variables using the methods of the descriptive statistics. 

To represent the benchmarks, a five-number summary or box-and-whiskers plot was used. It 

gives a possibility simultaneously describe several important features of dataset, intrinsic for 

the processing of the data as well as the definition of the common and best practice, as three 

quartiles and the minimum and maximum of the data. The quartiles are enclosed in the box, 

while whiskers represent the error bars. Despite the simplicity, box-and-whiskers plots give 

high visual impact along with the comprehensive representation of all necessary statistic 

characteristics, as described in the Figure 4.2. 

 

Figure 4.2- Five-number summery (box-and-whiskers plot), adopted from [23]. 

The lower and upper extremes represent the minimum and maximum value of the indicator 

observed in the sample. 

The lowest (first) quartile (Q1) is the median of the lower half of the data set. This means that 

about 25% of the numbers in the data set lie below Q1 and about 75% lie above Q1.  
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The second quartile (Q2) is the median, which is the centre of the data. 

The upper (third) quartile (Q3) is the median of the upper half of the data set. This means that 

about 75% of the numbers in the data set lie below Q3 and about 25% lie above Q3. 

Hence, the common practice is represented by the median of the sample, while the best 

practice is presented by the value of lower (first) quartile, as it represents the 25% boundary 

for the lowest values. 

The outliner/single data point is not considered in the present evaluation; however, it shows a 

great example of the case when results of the assessment of a single performance is beyond 

the scope of the established sustainable values.  
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5 Results of the integral Life Cycle Analysis 

The results of the integral life cycle assessment are analysed in this chapter. The indicators of 

the environmental life cycle assessment (LCA) and life cycle social assessment (LCS) were 

evaluated, as the life cycle cost assessment (LCC) was left out of the scope of present work. 

To enable the comparison of the bridges of different geometrical outline, the indicators were 

normalized per m2 of the deck. 

The calculations were performed using the integral life cycle assessment tool developed in the 

framework of the project SBRI+ [3]. The results are grouped according to the bridge types 

established in Chapter 3. 

5.1 Bridges of Type A 

Overall, it was observed, that the environmental and social performance of the case studies of 

Type A are comparable for the bridges of similar size and scope, which are bridges A1 and 

A2, A3 and A4, and A5 and A6. It should be noted, that due to the lack of data, the 

waterproofing was not considered in the bill of quantities for the cases A3 and A4; for the same 

reason the quantities of the reinforced concrete used for the abutments were missed in the life 

cycle assessment of the cases A5 and A6. 

 Environmental Life Cycle Assessment (LCA) 

5.1.1.1 Material production stage 

This stage takes into consideration the production of all the materials needed to build the 

bridge, which means that it is directly affected by the content and quantities of the material 

considered for the assessment. At the material production stage the environmental impacts 

due to the production of reinforced concrete, structural steel, coating, asphalt layer and 

waterproofing are assessed [3]. 

Overall, it can be clearly seen, that the lack of data about the quantities of the materials, which 

lead to its omission from the analysis, affects the overall performance of the case studies. 

Thus, having comparable quantities of steel and concrete per m2 of the deck for cases A1 and 

A3 (composite bridges) and A2 and A4 (concrete bridges), the normalized emissions evaluated 

for cases A1 and A2 are considerably higher compared to one obtained for cases A3 and A4, 

which is caused by omission of the waterproofing in the bill of quantities for the latter cases. 

The impacts of the composite bridges A5 and A6 is always lower than one of the bridge A1, 

since for the cases A5 and A6 the quantities of the reinforced concrete used in the substructure 

was omitted in the bill of quantities. 

The performance of the indicators ADPfossils, AP, ODP and POCP is dominated by the 

composite bridges, as at the stage of production steel has a major environmental impact 

(according to the database of the values of the impacts per unit quantity established in the life 

cycle assessment tool developed in [3]), also considering the ratio of the quantity versus impact 

intensity. 
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The performance of the indicators EP and GWP has greater influence of the emissions caused 

by the production of concrete, which causes the comparative increase in the level of emissions 

for bridges A2 and A4. 

The values of the indicators assessed for the material production stage are presented in Figure 

5.1. The values are normalised per m2 of the deck. 

  

  

  

Figure 5.1- Results of material production stage normalised per m2 of the deck 
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5.1.1.2 Construction stage  

The construction stage covers all the processes needed for and affected by the construction 

of the bridge. Hence, the emissions due to the construction and transportation of materials to 

the construction site is considered. 

The results show similar pattern observed at the material production stage, as they are 

affected by the quantities of materials used for the erection of the bridge. For the stage of 

construction, steel has a higher impact in both processes erection and transportation [3], 

which is also amplified by the longer transportation distance of this material. Thus, the results 

see the relative overall drop in the level of the emissions estimated for the concrete bridges 

A2 and A4 compared to its performance at the stage of material production. 

The values of the indicators assessed at the construction stage are presented in Figure 5.2. 

The values are normalised per m2 of the deck. 
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Figure 5.2 - Results of construction stage normalised per m2 of the deck 

 

5.1.1.3 Operation stage 

The operation stage is directly influenced by the established maintenance events. Each time 

the bridge undergoes an activity of maintenance or rehabilitation, the new materials have to 

be produces and transported to the bridge site. The traveling distances considered at this stage 

are the same as in the construction stage unless indicated otherwise. Secondly, the traffic 

restrictions due to the performance of the maintenance works causes additional emissions due 

to traffic congestion. 

For the calculation of fuel consumption and vehicles’ emissions for each combined activity, 

different scenarios are considered. In all cases, there will always be (at least) one lane of traffic 

open in each direction. When it is required to close a lane, work during the day (from 6:00 AM 

to 10:00 PM) is considered.  

The maintenance schemes provided in Annex A indicate the traffic restraints over the bridge 

over the years in which maintenance activities take place. 

Here it can be clearly seen, that overall the maintenance of concrete causes higher 

environmental impact, as the emissions caused by the concrete bridges A2 and A4 dominate 

the performance when comparing to the cases A1 and A3 respectively. 

The significant difference of approximately 400% in the emissions assessed for bridges A3 

and A4 accounted for the indicator ODP is caused by the fact that the waterproofing layer was 

not considered in the bill of quantities for this case, which causes significant environmental 

burden according to its quantity, level of the emissions related to its production and frequency 

of the replacement, although it is too low. 

Considering the performance of the cases A5 and A6, it is worth noticing, that even being 

different by only slightly higher quantity of the steel, at the stage of operation case A6 shows 

lower level of the emission among all indicators. This highlights the clear influence of the lane 

capacity on the traffic congestion, as the bridge A6 has three lanes per each direction of traffic, 

compared to the case A5 which has two. 

The values of the indicators assessed at the operation stage are presented in Figure 5.3. The 

values are normalised per m2 of the deck. 
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Figure 5.3 - Results of operation stage normalised per m2 of the deck 
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The negative values in the figure represent the credits given to the recycling process. It is 

assumed that all credits are allocated to the present system. 

The performance of the bridges A1, A3, A5 and A6 clearly shows the benefits of the composite 

design solutions of the deck due to the benefits coming from the recycling of the steel. The 

degree of benefit depends on the relative influence of the steel to a specific indicator. 

The reverse trend is seen for the indicator ODP, where the emissions caused by the 

dismantlement and post treatment of the components of the concrete bridges A2 and A4 has 

the best performance. 

The values of the indicators assessed at the end of life stage are presented in Figure 5.4. The 

values are normalised per m2 of the deck. 
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Figure 5.4 – Results of end of life stage  normalised per m2 of the deck 
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Figure 5.5 - Aggregate results normalised per m2 of the deck 
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Figure 5.6 – Results of the LCS for bridges of Type A normalised per m2 of the deck 
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considering the level of the emission per unit quantity and quantities of steel and concrete 

considered [3]. 

The values of the indicators assessed for the material production stage are presented in Figure 

5.7. The values are normalised per m2 of the deck. 
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Figure 5.7 – Results of material production normalised per m2 of the deck 
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Table 16 – The number of days of construction and days with the limited lane capacity for the case 
studies of the Type B. 

Case study 

Number of 
days of 

construction 

 

Number of 
days with 

limited lanes 
under bridge 

Case study 

Number of 
days of 
construction 

 

Number of 
days with 

limited lanes 
under bridge 

B1 154 154 B8 87 87 

B2 273 273 B9 87 87 

B3 196 196 B10 87 87 

B4 87 87 B11 87 87 

B5 87 87 B12 133 133 

B6 87 87 B13 93 93 

B7 87 87 

The values of the indicators assessed for the construction stage are presented in Figure 5.8. 

The values are normalised per m2 of the deck. 
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Figure 5.8 - Results of construction stage normalised per m2 of the deck 

5.2.1.3 Operation stage 

The operation stage is directly influenced by the established maintenance events. Each time 

the bridge undergoes an activity of maintenance or rehabilitation, the new materials have to 

be produces and transported to the bridge site. The traveling distances considered at this stage 

are the same as in the construction stage unless indicated otherwise. Secondly, the restriction 

of the traffic over the bridge due to the performance of the maintenance works causes 

additional emissions due to traffic congestion. 

For the calculation of fuel consumption and vehicles’ emissions for each combined activity, the 

standard maintenance scenario is considered. It is implied that, there will always be (at least) 

one lane of traffic open in each direction. When it is required to close a lane, work during the 

day (from 6:00 AM to 10:00 PM) is assumed.  

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

GWP 251.16 385.91 293.42 146.16 123.69 102.75 121.94 121.01 153.28 153.06 98.25 224.65 97.85

0.00

100.00

200.00

300.00

400.00

500.00

K
g 

C
O

2
 e

q
Construction

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

ODP 4.71E- 1.89E- 3.52E- 9.96E- 1.42E- 8.08E- 2.72E- 2.52E- 1.05E- 4.72E- 9.53E- 5.55E- 8.29E-

0.00E+00

1.00E-07

2.00E-07

3.00E-07

4.00E-07

5.00E-07

K
g 

R
1

1
 e

q

Construction

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

POCP 0.17 0.28 0.21 0.10 0.08 0.07 0.08 0.08 0.11 0.11 0.06 0.17 0.07

0.00

0.05

0.10

0.15

0.20

0.25

0.30

K
g 

C
2

H
4

 e
q

Construction



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

55 

The maintenance schemes provided in Annex A indicate the traffic restraints over the bridge 

over the years in which maintenance activities take place. 

Overall, the performance of the case studies of the bridges of Type B is quite homogeneous, 

showing the comparable level of emissions for all cases. 

The performance of the cases B1, B2, B3 and B11, B12, B13 shows distinct results of the 

ODP. The four order of magnitude drop in the results is directly related to the fact that 

waterproofing layer was not considered for this cases in the respective bills of quantities, 

though the value is too low. 

The values of the indicators assessed for the operation stage are presented in Figure 5.9. The 

values are normalised per m2 of the deck. 
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Figure 5.9 - Results of operation stage normalised per m2 of the deck 
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5.2.1.4 End-of-life stage 

In the end-of-life stage, it is assumed that the bridges are demolished and that the materials 

are sorted in the same place before being sent to their final destination. Hence, no transport is 

necessary between the demolition place and the sorting plant. For steel-composite bridges, it 

is assumed that the steel structure is going to be reused. The remaining parts, which are 

generally concrete and bitumen materials, are cut down and transported to waste disposal 

areas. The credits given to the recycling process is assumed to be allocated to the present 

system. 

Due to the lack of data, the same number of days of deconstruction was assumed for all the 

cases. 

It is assumed, that deconstruction affects the traffic under the bridge, thus traffic congestion is 

taken into account. 

Overall, it was observed, that, as for the stage of construction, the impact due to the traffic 

congestion is governing the environmental performance of the case studies of Type B at the 

end-of-life stage. 

For all of the indicators, except ODP, the composite solutions show comparatively lower level 

of emissions due to the environmental benefits from the recycling of the steel. Conversely, the 

concrete bridges B2, B5, B6 and B12, B13 show the lowest impact on ODP, as steel has a 

major contribution to the environmental burdens for this indicator. 

Due to the fact, that the values of indicators were normalized per m2 of the deck including the 

emissions caused by the interruption of the traffic, the results are considerably lower for the 

case B11 as it has almost twice bigger are of the deck. 

The values of the indicators assessed for the end-of-life stage are presented in Figure 5.10. 

The values are normalised per m2 of the deck. 
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Figure 5.10 - Results of end-of life stage normalised per m2 of the deck 

 

5.2.1.5 Aggregate results 

The overall aggregate results are highly affected by the performance at the stage of production 

and end-of-life, as the interruption of the traffic took place for the latter. 

Thus, overall performance shows higher level of emission for the concrete bridges among all 

indicators except ODP, when the concrete solution appeared to be the most favourable 

The aggregate results are presented in Figure 5.11. The values are normalised per m2 of the 

deck. 
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Figure 5.11 - Aggregate results normalised per m2 of the deck 

 Life cycle social analysis (LCS) 

The results of the life cycle social assessment are expressed in three indicators representing 

user costs, namely Driver’s Delay Cost (DDC), Vehicle Operation Cost (VOC) and Accidental 

Cost (AC); the Total user cost was estimated as the sum of aforementioned costs. 

The user costs are caused by the traffic congestion. For the bridges of the Type B, the user 

costs occur due to the restriction of traffic under the bridge for the stage of construction and 

end-of-life and when the maintenance events take place at operation stage. 

All user costs exhibit a quite strong correlation, as all of them are traffic depended and rely on 

the same assumptions for the maintenance planning. 

It is noticeable, that user costs of the case B11 is distinctly higher, which is related to the fact 

that more maintenance is required for this case compared to the other case studies. 

The values of the indicators of life cycle social assessment are presented in Figure 5.12. The 

values are normalised per m2 of the deck. 
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Figure 5.12 – Results of LCS of bridges of Type B normalised per m2 of the deck 

5.3 Bridges of Type C 

Only two bridges were considered for the Type C. Both case studies are composite bridges 

with box girder deck and same lane capacity. 

Due to the lack of data, the materials used for the substructure of the case C2, namely for 

abutments and foundation, was not considered. 

 Environmental Life Cycle Assessment (LCA) 

5.3.1.1 Material production stage 

This stage takes into consideration the production of all the materials needed to build the 

bridge, which means that it is directly affected by the content and quantities of the material 

considered for the assessment. At the material production stage the environmental impacts 

due to the production of reinforced concrete, structural steel, coating, asphalt layer and 

waterproofing are assessed [3]. 

Having an overall trend of higher level of emissions for the case C2, the significant drop at the 

level of ODP is related to the fact that plated steel has zero influence on this indicator and in 

the same time has a significant share in the quantity of steel used for this case. 

The values of the indicators assessed for the material production stage are presented in Figure 

5.13. The values are normalised per m2 of the deck. 
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Figure 5.13 - Results of material production stage normalised per m2 of the deck 

5.3.1.2 Construction stage  

The construction stage covers all the processes needed for and affected by the construction 

of the bridge. Hence, the emissions due to the construction and transportation of materials to 

the construction site is considered. 

The results show similar pattern observed at the material production stage, as they are affected 

mostly by the quantities of materials used for the erection of the bridge. Thus, similar drop in 

the level of OPD related to the use of plated steel is observed for the case C2. 

The values of the indicators assessed for the construction stage are presented in Figure 5.14. 

The values are normalised per m2 of the deck. 
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Figure 5.14 - Results of construction stage normalised per m2 of the deck 

5.3.1.3 Operation stage 

The operation stage is directly influenced by the established maintenance events. Each time 

the bridge undergoes an activity of maintenance or rehabilitation, the new materials have to 

be produces and transported to the bridge site. The traveling distances considered at this stage 

are the same as in the construction stage unless indicated otherwise. Secondly, the traffic 

restrictions due to the performance of the maintenance works causes additional emissions due 

to traffic congestion. 

For the calculation of fuel consumption and vehicles’ emissions for each combined activity, the 

standard maintenance scenario is considered. It is implied that, there will always be (at least) 
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one lane of traffic open in each direction. When it is required to close a lane, work during the 

day (from 6:00 AM to 10:00 PM) is assumed. 

The maintenance schemes provided in Annex A indicate the traffic restraints over the bridge 

over the years in which maintenance activities take place. 

The values of the indicators assessed for the operation stage are presented in Figure 5.15. 

The values are normalised per m2 of the deck. 
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Figure 5.15 – Results of operation stage normalised per m2 of the deck 
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The values of the indicators assessed for the end-of-life stage are presented in Figure 5.16. 
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Figure 5.16 – Results of end-of-life stage normalised per m2 of the deck 

5.3.1.5 Aggregate results 
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The aggregate results are presented in Figure 5.17. The values are normalised per m2 of the 

deck. 

  

  

  

Figure 5.17 – Aggregate results normalised per m2 of the deck 
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All user costs exhibit a strong correlation, as all of them are traffic depended and rely on the 

same assumptions for the maintenance planning. The results of the life cycle social 

assessment are presented in Figure 5.18. The values are normalised per m2 of the deck. 

  

Figure 5.18 – Results of LCS of bridges of Type C normalised per m2 of the deck   

C1 C2

DDC 95.46 145.26

0.00

50.00

100.00

150.00

200.00

EU
R

DDC 

C1 C2

AC 0.96 1.46

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

EU
R

AC 

C1 C2

VOC 139.63 212.50

0.00

50.00

100.00

150.00

200.00

250.00

EU
R

VOC 

C1 C2

TOTAL 236.05 359.22

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00

EU
R

TOTAL 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

71 

6 Results of the sustainable benchmarking 

The results of the sustainable benchmarking are analysed in this chapter. The results are 

presented per each bridge Type and reflect the variability of the emissions observed in each 

group. 

The excel calculation tool was developed in order to perform the statistical treatment of the 

data. To enable the comprehensive interpretation of the results, the box-whiskers plots are 

provided along with the relative results of the life cycle assessment. The benchmarks are 

established for the indicators normalized per m2 of the area of the deck. 

6.1 Bridges of Type A 

 Benchmarking of life cycle environmental assessment  

6.1.1.1 Material production stage 

The environmental benchmarking of the material production stage of the bridges of the Type 

A reflects the overall variability of the results of life cycle analysis. It also shows overall 

symmetry of the established values, as well as moderate values of the error bars. Less 

symmetry can be observed for the indicators of EP and GWP, while values for the AP are 

unfavourably skewed, which signifies, that greater effort for the achievement of the potential 

improvements towards the best practice should be made. 

The results of the benchmarking along with the results of the life cycle environmental 

assessment at the material production stage are presented in Figure 6.1. The values are 

normalised per m2 of the deck. 
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Figure 6.1 – Benchmarking of material production stage normalised per m2 of the deck 
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6.1.1.2 Construction stage  

In comparison to the stage of the material production, the results for the POCP draw the special 

attention, as they show significant scatter. For this indicator the value of the common practice 

is more than doubled in comparison to the best practice established. 

The results of the benchmarking along with the results of the life cycle environmental 

assessment at the construction stage are presented in Figure 6.2. The values are normalised 

per m2 of the deck. 
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Figure 6.2 – Benchmarking of construction stage normalised per m2 of the deck 

6.1.1.3 Operation stage 

The benchmarks established for the operation stage show overall quite smooth distribution 

and moderate scatter, reflecting the distribution of the values established for the life cycle 

environmental assessment. 

However, the considerably low ODP performance of the cases A3 and A4 lead to the significant 

skew of the data, quadrupling the value of the common practice, which otherwise would be 

quite homogeneous comparing with rest of the cases. 

A1 A2 A3 A4 A5 A6

GWP 69.26 37.18 23.02 16.77 50.88 53.23

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

K
g 

C
O

2
 e

q
Construction

0.00

20.00

40.00

60.00

80.00

GWP

Type A - Construction

A1 A2 A3 A4 A5 A6

ODP 1.05E 2.23E 3.38E 1.02E 9.20E 9.71E

0.00E+00

2.00E-07

4.00E-07

6.00E-07

8.00E-07

1.00E-06

1.20E-06

K
g 

R
1

1
 e

q

Construction

0.00E+00

2.00E-07

4.00E-07

6.00E-07

8.00E-07

1.00E-06

1.20E-06

ODP

Type A - Construction

A1 A2 A3 A4 A5 A6

POCP 0.02 0.00 0.01 0.00 0.02 0.02

0.00

0.01

0.01

0.02

0.02

0.03

K
g 

C
2

H
4

 e
q

Construction

0.000

0.005

0.010

0.015

0.020

0.025

POCP

Type A - Construction



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

75 

It is noteworthy, that the operation stage governs the life cycle performance, thus the 

bemchmarks established at this stage may be considered as one of the leading levels of the 

sustainable performance. 

The results of the benchmarking along with the results of the life cycle environmental 

assessment at the operation stage are presented in Figure 6.3. The values are normalised per 

m2 of the deck. 
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Figure 6.3 – Benchmarking of operation stage normalised per m2 of the deck 
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The results of the benchmarking along with the results of the life cycle environmental 

assessment at the end-of-life stage are presented in Figure 6.4. The values are normalised 

per m2 of the deck. 
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Figure 6.4 – Benchmarking of end-of-life stage normalised per m2 of the deck 

6.1.1.5 Aggregate results 
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of the common practice, which implies significant effort to be made in order to potentially 

improve the sustainable performance of the bridge. 

The results of the benchmarking along with the results of the aggregate results of the life cycle 

environmental assessment are presented in Figure 6.5. The values are normalised per m2 of 

the deck. 

  

A1 A2 A3 A4 A5 A6

ODP 7.70E 6.18E 2.52E 2.83E 7.10E 7.52E

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

7.00E-06

8.00E-06

9.00E-06

K
g 

R
1

1
 e

q
End-of-life

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

ODP

Type A - End-of-life

A1 A2 A3 A4 A5 A6

POCP -0.07 0.14 -0.02 0.09 -0.02 -0.03

-0.10

-0.05

0.00

0.05

0.10

0.15

K
g 

C
2

H
4

 e
q

End-of-life

-0.100

-0.050

0.000

0.050

0.100

0.150

0.200

0.250

POCP

Type A - End-of-life

A1 A2 A3 A4 A5 A6

ADP Fossils 43809 41547 18753 22677 31598 28879

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

M
J

Aggregate

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

ADP Fossils

Type A - Aggregate



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

79 

  

  

  

   

A1 A2 A3 A4 A5 A6

AP 6.71 6.53 2.32 3.29 4.95 4.83

0.00

2.00

4.00

6.00

8.00

Aggregate

0.00

2.00

4.00

6.00

8.00

AP

Type A - Aggregate

A1 A2 A3 A4 A5 A6

EP 0.85 0.90 0.29 0.44 0.61 0.59

0.00

0.20

0.40

0.60

0.80

1.00

K
g 

P
O

4
 e

q

Aggregate

0.0000

0.0000

0.0000

0.0001

0.0001

0.0001

EP

Type A - Aggregate

A1 A2 A3 A4 A5 A6

GWP 2307. 2247. 785.7 1082. 1577. 1546.

0.00

500.00

1000.00

1500.00

2000.00

2500.00

K
g 

C
O

2
 e

q

Aggregate

0.00

500.00

1000.00

1500.00

2000.00

2500.00

GWP

Type A - Aggregate

A1 A2 A3 A4 A5 A6

ODP 4.80E 2.37E 9.62E 2.43E 4.36E 4.51E

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

K
g 

R
1

1
 e

q

Aggregate

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

ODP

Type A - Aggregate



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

80 

  

Figure 6.5 – Benchmarking of aggregate results of the life cycle environmental assessment normalised 
per m2 of the deck 

 

 

 Benchmarking of life cycle social assessment  

The results of the life cycle social benchmarking show the same pattern for all of the indicators, 

as the same trend was observed for the results of the life cycle assessment The established 

benchmarks for the bridges of type A show significant variability, as the established value for 

the common practice more than twice greater, then its respective best practice, meaning that 

greater effort should be put for the potential improvement of the results. However, this pattern 

can be justified by the fact that the case studies considered for the type A is represented by 

the bridges with quite different design considerations, namely the materials considered for the 

maintenance as well as the number of lanes. 

The results of the benchmarking along with the results of the life cycle social assessment are 

presented in Figure 6.6. The values are normalised per m2 of the deck. 
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Figure 6.6 – Benchmarking of the life cycle social assessment normalised per m2 of the deck 

 

6.2 Bridges of Type B 

Overall, the benchmarking of the results of both, life cycle environmental and life cycle social 

analysis show the small difference between common and best practice, meaning that following 

current design considerations, the high level of sustainable performance can be achieved. 
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Such level of vicinity of the common and best practice was achieved despite the high deviation 

of the results, as can be seen from the significant value of the error bars of the box plot. 

 Environmental Life Cycle Assessment (LCA) 

6.2.1.1 Material production stage 

The stage of material production shows relatively close values for the conventional and best 

practice as the results of the moderate variability of the recorded emissions. However, the 

results exhibit significant deviation, comparing to the minimum and maximum values of the 

considered samples. 

The results of the benchmarking along with the results of the life cycle environmental 

assessment at the material production stage are presented in Figure 6.7. The values are 

normalised per m2 of the deck. 

 

 

 

 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

ADP Fossils 124 834 988 774 569 393 560 540 749 674 786 275 435

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

M
J

Material production

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

AP 3.5 2.7 2.9 2.1 1.6 1.2 1.5 1.5 2.0 1.7 2.1 0.8 1.3

0.00

1.00

2.00

3.00

4.00

K
g 

SO
2

 e
q

Material production

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

ADP Fossils

Type B - Material Production

0.00

1.00

2.00

3.00

4.00

AP

Type B - Material Production



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

83 

 

 

 

 

 

 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

EP 0.3 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.00

0.10

0.20

0.30

0.40

K
g 

P
O

4
 e

q
Material production

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

GWP 149 132 127 935 775 613 704 686 858 654 834 415 627

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

K
g 

C
O

2
 e

q

Material production

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

ODP 9.4 3.8 7.0 4.9 5.9 4.6 7.9 7.5 4.9 1.2 1.9 1.1 1.6

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

1.40E-05

K
g 

R
1

1
 e

q

Material production

0.0000

0.1000

0.2000

0.3000

0.4000

EP

Type B - Material Production

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

GWP

Type B - Material Production

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

1.40E-05

ODP

Type B - Material Production



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

84 

  

Figure 6.7 – Benchmarking of material production stage normalised per m2 of the deck 

 

6.2.1.2 Construction stage  

Similarly to the benchmarking of the indicators at the stage of material production, the results 

for the stage of construction show close values for the conventional and best practice. Here, 

at this stage, the upper limit is affected by the distinctly high values of the emissions evaluated 

for the cases B1, B2 and B3. 

The results of the benchmarking along with the results of the life cycle environmental 

assessment at the construction stage are presented in Figure 6.8. The values are normalised 

per m2 of the deck. 
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Figure 6.8 – Benchmarking of construction stage normalised per m2 of the deck 

 

6.2.1.3 Operation stage 

The results at the stage of operation show overall moderate scatter and relatively small 

deviation.  

The great difference between common and best practice observed for the ODP is related to 

the fact, that nearly half of the cases show drastically lower values of the emissions. 

The results of the benchmarking along with the results of the life cycle environmental 

assessment at the operation stage are presented in Figure 6.9. The values are normalised per 

m2 of the deck. 
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Figure 6.9 – Benchmarking of operation stage normalised per m2 of the deck 

6.2.1.4 End-of-life stage 

Overall, the results show quite close values for common and best practice. The great deviation 

is caused by the fact, that concrete and composite bridges have controversial performance 

from the point of view of recycling and disposal, which is escalated the most for the case of 

ODP. 

The results of the benchmarking along with the results of the life cycle environmental 

assessment at the end-of-life stage are presented in Figure 6.10. The values are normalised 

per m2 of the deck. 
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Figure 6.10 – Benchmarking of end-of-life stage normalised per m2 of the deck 

6.2.1.5 Aggregate results 

As it was observed for all stages, the aggregate results show close values for common and 

best practice, meaning that average performance is of a high level and minimal actions would 

be taken in order to improve the performance. 

Higher variability is observed for the ODP due to the influence of the performance at the stage 

of operation. 

The results of the benchmarking along with the aggregate results of the life cycle environmental 

assessment are presented in Figure 6.11. The values are normalised per m2 of the deck. 
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Figure 6.11 – Benchmarking of the aggregate results normalised per m2 of the deck 
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 Life cycle social analysis (LCS) 

Being dependent on the same assumptions for the maintenance and traffic and having the 

same lane capacity, the results show overall quite homogeneous distribution, exhibiting close 

values for the common and best practice and moderate deviation for the upper and lower 

extremes. 

The upper boundary is affected by the alternated performance of bridges B1, B2 and B3 and 

bridge B11. 

The results of the benchmarking along with the results of the life cycle social assessment are 

presented in Figure 6.12. The values are normalised per m2 of the deck. 
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Figure 6.12 – Benchmarking of the life cycle social assessment normalised per m2 of the deck 

6.3 Bridges of Type C 

Overall, the results of the sustainable benchmarking of the bridges of the Type C are (i) 

symmetrical and (ii) show relatively close values for both environmental and social 

benchmarks. It can be explained by the fact that only two cases were considered in this bridge 

type, being of the similar scope, namely solution (composite), traffic intensity and lane capacity. 

 Environmental Life Cycle Assessment (LCA) 

6.3.1.1 Material production stage 

The results of the benchmarking along with the results of the life cycle environmental 

assessment at the material production stage are presented in Figure 6.13. The values are 

normalised per m2 of the deck. 
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Figure 6.13 – Benchmarking of material production stage normalised per m2 of the deck 
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6.3.1.2 Construction stage  

The results of the benchmarking along with the results of the life cycle environmental 

assessment at the construction stage are presented in Figure 6.14. The values are normalised 

per m2 of the deck. 
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Figure 6.14 – Benchmarking of construction stage normalised per m2 of the deck 
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6.3.1.3 Operation stage 

The results of the benchmarking along with the results of the life cycle environmental 

assessment at the operation stage are presented in Figure 6.15. The values are normalised 

per m2 of the deck. 
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Figure 6.15 – Benchmarking of operation stage normalised per m2 of the deck 
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6.3.1.4 End-of-life stage 

The results of the benchmarking along with the results of the life cycle environmental 

assessment at the operation stage are presented in Figure 6.16. The values are normalised 

per m2 of the deck. 
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Figure 6.16 – Benchmarking of end-of-life stage normalised per m2 of the deck 

 

6.3.1.5 Aggregate results 

The results of the benchmarking along with the aggregate results of the life cycle environmental 

assessment are presented in Figure 6.17. The values are normalised per m2 of the deck. 
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Figure 6.17 – Benchmarking of aggregate results normalised per m2 of the dec 
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 Life cycle social analysis (LCS) 

The results of the benchmarking along with the results of the life cycle social assessment are 

presented in Figure 6.18. The values are normalised per m2 of the deck. 

 

 

 

 

 

 

Figure 6.18 – Benchmarking of the life cycle social assessment normalised per m2 of the deck  
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7 Conclusions and future developments 

7.1 Conclusions 

The goal of this thesis was to perform a sustainable benchmarking of motorway bridges, based 

on the integral life cycle assessment as well as the analysis of the evaluated benchmarks are 

intended to be used as the levels of sustainability performance guiding potential users in the 

pursuit of sustainable bridge design, helping to evaluate performance gaps and set design 

goals for the potential improvement. 

In the course of the literature review, it was concluded that to date, benchmarking of bridges 

is considered as a project management tool, mainly providing guidance for the assessment of 

the structural performance during the inspections or considered when establishing the 

“reasonable” cost of the project by considering the comparison of the cost of the critical bridge 

element with those of projects of similar size and scope. Being well established for buildings, 

the sustainable benchmarking of bridges is described conceptually and no standardized 

procedure is established. 

The first part of the thesis was dedicated to the evaluation of the sustainability indicators of the 

integral life cycle analysis of the motorway bridges. The integral life cycle analysis of bridges 

aims to convey the performance in all three dimensions of sustainability through the mutual 

consideration of the Life Cycle Environmental Assessment (LCA), Life Cycle Social (LCS) and 

Life Cycle Cost (LCC). The methodology was developed in PhD thesis [1] was further adopted 

in present thesis in order to make a quantitative assessment of the sustainable life cycle 

performance of bridges. The sustainability indicators of the life cycle environmental (LCA) and 

life cycle social assessment (LCS) were evaluated. 

The case studies considered in this work were taken from the research projects SBRI+, SBRI 

and the PhD thesis [1] and were re-evaluated according to the assumptions made for the 

further performance of the sustainable benchmarking as it is required to make the assessment 

ensuring the functional equivalence. As bridges were designed for different countries, special 

attention was payed to the inspection and maintenance strategies, normalization of the traffic 

density and assumed transportation distances. The bills of quantities were closely analysed in 

order to ensure that the materials are taken into account considering the same structural 

groups. While analysing the unit cost, it was observed that unit cost depends on the location 

of the bridge as also experience significant variability even for projects executed in the same 

countries. Thus, it was decided to exclude the life cycle cost assessment (LCC) and 

benchmarking of its indicators from the scope of the present thesis as the establishing of the 

unique values for unit cost to be applied for all cases requires more detailed investigations. 

The second part of the thesis is dedicated to the performance of the sustainable benchmarking 

of bridges. As currently only some general recommendations regarding the framework of the 

sustainable benchmarking of bridges were found to be available, the suggested benchmarking 

levels and methodology of the assessment were developed relying of the previous experience 

of the sustainable benchmarking of buildings. In the frame of present work, the values of 

common and best practice were established for the sustainability indicators defined from the 

integral life cycle assessment. 
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The extensive discussion of the results of the life cycle assessment and benchmarking were 

offered in the Chapters 6 and 7. Overall, it was observed that the results of the life cycle 

environmental assessment and life cycle social analysis follow different trends among all 

bridge types. The variability of the results was highly affected by the fact, that there were 

presented bridges from the design families (concrete and composite), having different number 

of lanes or relatively different number of spans along with different degree of design 

optimization.  

The results of the life cycle social assessment exhibit the same trend for all four indicators, 

which can be explained by the fact that, contrast to the environmental indicators, all three 

parameters of the life cycle social analysis are based on the same assumptions for the traffic 

restrictions. It was also observed, that the main criteria for the life cycle social performance is 

the frequency and timeframe of the maintenance interventions as well as the available number 

of lanes for all cases. The vehicle operation cost is proved to be the indicator exhibiting the 

biggest share in the total user costs. 

Regarding the benchmarking, it can be seen, that the scatter of the results highly sensitive to 

the precision of the functional equivalence achieved for the considered case studies.  

The results of the benchmarking of the bridges of the Type A overall characterised by the 

significant gap between the value of common and best practice, as the results of the life cycle 

assessment vary significantly due to the variability in the size and scope of assigned case 

studies. 

Bridges of the Type B characterised by the relatively big number of examples, when comparing 

to the case studies of Type A and C. The benchmarking shows the values for common and 

best practice to be relatively close for most of the cases, however also characterised by the 

significant value of errors, highlighting the overall scatter of the values of sustainable indicators. 

The benchmarking of the bridges of the Type C always shows symmetric results, which is 

derived from the fact, that only two bridges of the similar scope were considered for this case. 

7.2 Future developments 

While progressing on this thesis, several areas for further development and improvement were 

identified. There aspects provided as a basis for the further development and improvement. 

One of the main considerations to be taken into account is the implementation of the life cycle 

cost assessment as it directly addresses the dimension of the sustainable performance. As 

case studies belong from different countries and composed from materials provided by 

different suppliers, the unit cost exhibited a significant variance, which require additional 

studies to ensure that the established values would not compromise the data achieved in 

original projects where the bridges were analysed as individual cases. 

Second group of the considerations is related to the assumptions regarding operation and 

traffic. As this work was the first attempt to the establishing the benchmarks, the focus was 

giving to the comparison to be made on the common basis. Since current work presents the 

assessment performed for the one type of maintenance scenario (standard maintenance 

scenario) and only day work was considered, following the consideration of the SBRI+ project, 

further benchmarks can be established for the Lack-of-money and Prolonged life scenarios, 
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taking into consideration the possibility of performance of the maintenance works over night 

hours. 

Thirdly, here in this work the benchmarks were established for the fixed traffic density. Going 

further, the normalization of the ADT can be done, establishing the values for low, medium and 

high traffic intensity, and the influence of different ADT can be studies. 

By its nature, the life cycle assessment is subjected to a high degree of uncertainties, the 

probabilistic studies can be made aiming to minimize the influence of uncertainties on the final 

results. 

Finally, the present set of case studies can be expanded with new examples, as it would 

improve the accuracy of the results in the future. 
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ANNEX A: Supplementary data for LCA 

Table A1: Standard Maintenance Scenario 
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Over the bridge Under the bridge

Steels

Steel girder - used up demolition / replacement Road Closed -

Corrosion (small points/small areas) partial surface corrosion protection No restrictions -

Corrosion (complete renewal) complete renewal corrosion protection No restrictions -

Concrete

concrete slab - used up demolition / replacement Road Closed -

Corrosion of the reinforcement deck plate partial renewal 1 lane closed per day -

Concrete edge beam total surface treatment Speed reduction -

Concrete edge beam partial renewal of surface treatment Speed reduction -

Concrete edge beam total replacement Speed reduction -

Concrete edge beam repairs partial renewal Speed reduction -

Expansion joints

broken modules (considering a modular joint) total replacement 1 lane closed per day -

broken concrete header (repair) total/partial replacement 1 lane closed per day -

tightening  of bolts/ partial module replacement total/partial replacement 1 lane closed per day -

Cleaning 1 lane closed per day -

Bearings

Elastomeric bearing - used up total replacement Speed reduction -

Elastomeric bearing (repair) partial replacement Speed reduction -

Calote bearing - used up total replacement Speed reduction -

Calote bearing - maintenance total/partial replacement Speed reduction -

Corrosion of metalic elements (Sa2/St3) painting of metalic elements Speed reduction -

Road surface

cracks, ruts, excavation total replacement 1 lane closed per day -

cracks, ruts, excavation total survival road surface layer * 1 lane closed per day -

cracks, ruts, excavation minor repairs 1 lane closed per day -

Water proofing layer

cracks, ruts, excavation total replacement 1 lane closed per day -

Railings

used up total replacement of railings No restrictions / speed reduction -

painting painting of metalic elements No restrictions / speed reduction -

damage caused by corrosion partial replacement No restrictions / speed reduction -

Gutters

replacement dewatewring total replacement No restrictions / speed reduction -

Safety barrier

used up total replacement of safety barrier 1 lane closed per day -

safety barriers - minor repairs due to corrosion total/partial replacement 1 lane closed per day -

damage caused by accident (steel) partial replacement 1 lane closed per day -

* scarse layer of asphalt containing a large amount of betumen that is placed on top of the existing damaged surface layer (and waterproofing layer)

Traffic Restrictions

Damage Maintenance Actions

Table A2: Traffic restriction for Cases A and C 
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Over the bridge Under the bridge

Steels

Steel girder - used up demolition / replacement Road Closed -

Corrosion (small points/small areas) partial surface corrosion protection No restrictions No restrictions

Corrosion (complete renewal) complete renewal corrosion protection No restrictions 1 lane closed per day

Concrete

concrete slab - used up demolition / replacement Road Closed 1 lane closed per day

Corrosion of the reinforcement deck plate partial renewal 1 lane closed per day 1 lane closed per day

Concrete edge beam total surface treatment Speed reduction 1 lane closed per day

Concrete edge beam partial renewal of surface treatment Speed reduction 1 lane closed per day

Concrete edge beam total replacement Speed reduction 1 lane closed per day

Concrete edge beam repairs partial renewal Speed reduction 1 lane closed per day

Expansion joints

broken modules (considering a modular joint) total replacement 1 lane closed per day No restrictions

broken concrete header (repair) total/partial replacement 1 lane closed per day No restrictions

tightening  of bolts/ partial module replacement total/partial replacement 1 lane closed per day No restrictions

Cleaning 1 lane closed per day No restrictions

Bearings

Elastomeric bearing - used up total replacement Speed reduction No restrictions

Elastomeric bearing (repair) partial replacement Speed reduction No restrictions

Calote bearing - used up total replacement Speed reduction No restrictions

Calote bearing - maintenance total/partial replacement Speed reduction No restrictions

Corrosion of metalic elements (Sa2/St3) painting of metalic elements Speed reduction No restrictions

Road surface

cracks, ruts, excavation total replacement 1 lane closed per day No restrictions

cracks, ruts, excavation total survival road surface layer * 1 lane closed per day No restrictions

cracks, ruts, excavation minor repairs 1 lane closed per day No restrictions

Water proofing layer

cracks, ruts, excavation total replacement 1 lane closed per day No restrictions

Railings

used up total replacement of railings No restrictions / speed reduction No restrictions

painting painting of metalic elements No restrictions / speed reduction No restrictions

damage caused by corrosion partial replacement No restrictions / speed reduction No restrictions

Gutters

replacement dewatewring total replacement No restrictions / speed reduction No restrictions

Safety barrier

used up total replacement of safety barrier 1 lane closed per day No restrictions

safety barriers - minor repairs due to corrosion total/partial replacement 1 lane closed per day No restrictions

damage caused by accident (steel) partial replacement 1 lane closed per day No restrictions

* scarse layer of asphalt containing a large amount of betumen that is placed on top of the existing damaged surface layer (and waterproofing layer)

Traffic Restrictions

Damage Maintenance Actions

Table A3: Traffic restriction for Case B 
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Table A4: Operation types and rates of maintenance work  

Maintenance 
Rate of work 

To Type 

Bearings Repair 1,5 day/un 

Bearings Replacement 2 day/un 

Concrete deck Refurbishment 0,08 days/m² 

Concrete edge beams Replacement 0,225 days/m 

Edge beams Refurbishment 0,225 days/m 

Expansion joints Repair 0,75 m/h 

Expansion joints Maintenance 40 m/day 

Expansion joints Replacement 3,5 m/day 

Gutters Replacement 0,1 days/m 

Railings Refurbishment 4 m²/h 

Railings Replacement 1,75 m/h 

Road surface Repair 0,02 days/m² 

Road surface Replacement 0,02 days/m² 

Safety barriers Replacement 1,3 m²/h 

Steel girders Refurbishment 0,02 days/m² 

Steel girders Repair 0,02 days/m² 

Water proofing layer Replacement 0,02 days/m² 

 


