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ABSTRACT 

The behavior of the overlap joint in a cold-formed trapezoidal sheeting used for roof decking is studied in 

this research. A Gerber-type connection is used, where an overlap joint is introduced in the second span. 

This joint acts as a hinge of zero-moment to achieve balanced field and support moments. However, this 

type of joint is sensitive to collapse in the event of sheet failure at the internal support. Due to this 

problem, a variant of the Gerber joint with an increased overlap length is developed. At normal snow load 

conditions, the system acts as a Gerber system, transferring minimal moments at the hinge; while at the 

event of the sheet failure at mid-support, the system acts as a continuous beam and provides a post-elastic 

load bearing capacity, avoiding sudden collapse. 

Due to the thinness of the material, local buckling often occurs in cold-formed sections which can cause 

drastic loss of stiffness and capacity. This research is also investigating the effects of this loss of stiffness 

to the internal forces in the overlap joint. 

The research is carried out using theoretical, numerical, and experimental approaches. Full-scale 

experimental tests are performed to observe the behaviour and failure modes of the trapezoidal sheet for 

two different overlap lengths.  

Full-scale finite element models are also developed. These numerical models are used to perform 

parametric analysis on the varying stiffness at mid-support. The internal forces at the overlap joint are 

determined, and how these forces change with the stiffness at mid-support. Finally, the overlap joint is 

checked for structural adequacy under maximum stresses at the ultimate load. 
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1 INTRODUCTION 

1.1 Background of the Study 

1.1.1 Gerber System 

Roof decking profiles can be installed in different ways. One of which is introducing a hinged connection 

in the span instead of the support as shown in Figure 1.1. The sheets overlap in the joint and are 

connected by screw fixings. This structural system is called a Gerber system.  

 

Figure 1.1. Gerber system in roof decking profiles  (Höglund & Johansson, 2015) 

Popularized in the 1800s by Heinrich Gerber for use in bridges, the Gerber system has also been used in 

roof framings, roof panels, curtainwall frames, and slabs. Multi-span Gerber beams are statically 

determinate structures that are made up of one-span beams connected by hinges.  

 

Figure 1.2. Simplest form of Gerber-Semikolenov beams (Karnovsky & Lebed, 2010) 

In the design of continuous spans, the moments at the support are always higher than the field moment. In 

this case, the design of the members is governed by the support moment which is considered more critical. 

The Gerber system, on the other hand, allows moving the point of zero-moment, and as a result, the span 

and the support moments can be optimized. This manipulation of moments results to efficient material use, 

and therefore, the product becomes more economical and competitive. 

As shown in Figure 1.3, the maximum bending moment of the Gerber beam subjected to uniform loading 

is only 69% of the maximum moments of the single and continuous spans. The maximum moment of the 

single span is located at the midspan with zero moments at the supports, while the continuous beam has 

maximum moment at the support. The point of zero moment at the continuous beam is at 0.21L, where L 

is the length of one span. In the Gerber system, this contraflexure point may be relocated and positioned 
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so that the maximum moments for the field and support are equal. For a two-span beam, the optimized 

location of the hinge is at 0.17L, assuming the cross-section properties of the top and bottom flanges are 

equal.   

 

Figure 1.3. Moment distribution of single span, double span, and Gerber system 

To generate statically determinate beams, the Gerber system has the following conditions for the 

distribution of hinges in beams with simply supported ends:  (Karnovsky & Lebed, 2010) 

a) Each span may contain no more than two hinges. 

b) Spans with two hinges must alternate with spans without hinges. 

c) Spans with one hinge may follow each other, providing that the first (or last) span has no hinges. 

d) One of support has to prevent movement in the horizontal direction. 

 

 

Figure 1.4. Distribution of hinges in a multi-span beam 
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1.1.2 Disadvantages of Gerber System 

The Gerber system in roofs is sensitive to collapse in case of sheet failure at the internal support. In many 

cases, it has been found to result in unacceptable large secondary damage after the occurrence of a local 

failure in the sheet (Höglund & Johansson, 2015). At the moment, the Gerber system has been deemed 

inefficient for use in roof systems. 

At the hinge location, there is no moment resistance and rotation is allowed. This causes a larger 

deflection at the joint compared, for example, to a continuous span without any hinge. This deflection 

could be even higher if the Gerber joint is subjected to uneven loading. With increasing loads, the sheet 

over the mid-support may initiate buckling leading to failure. Consequently, the overlap connection needs 

to resist additional moments that may be high enough for its capacity. Without enough overlap strength to 

secure the continuity of the span, the result can be total collapse of the system. 

 

Figure 1.5. Failure at the internal support causing collapse of the joint (Maeki, 2017) 

Progressive collapse is also critical for the Gerber system. In continuous Gerber beams, the sheet pieces 

are installed on top of the previous sheet. Once the first sheet collapses, the subsequent steel sheets can 

start to collapse in a domino effect even if the ultimate capacity is not yet reached.  
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Figure 1.6. Progressive collapse of a Gerber system (Sjölander & Tiderman, 2016) 

1.1.3 Maeki System 

To address the danger in sudden failure of the joint leading to total collapse of the system, a variant of the 

Gerber system called the Maeki system is studied in this research. Named after the pioneering engineer, 

Jan Christer Maeki, the design is modified to accommodate more deflection in the joint by increasing the 

overlap length and number of fixings in the overlap. These modifications to the joint are made to ensure 

the continuity of the beam after failure of the sheet at the mid-support, therefore increasing the ductility of 

the joint and the robustness of the entire system.  

 

Figure 1.7. The Maeki system (Maeki, 2017) 

The increased overlap length and adequate number of fixings can provide an additional load bearing 

capacity after failure. This post-failure capacity is very desirable to avoid sudden collapse of the roof 

decking, thereby increasing safety. Compared to the conventional Gerber system, the Maeki system can 

withstand additional deflection at the joint. This is important to convey warning for evacuation or to 

provide time to repair the joint in case of imminent failure.  
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1.1.4 Elastic and Post-Elastic Conditions 

Basically, the research is interested in both the elastic and post-elastic behaviour of the sheet. The study 

considers a two-span beam where an overlap joint is introduced in the second span. In the elastic stage, 

the overlap joint acts as a hinge to achieve a balanced field and support moments. Under normal snow 

loads, the sheets are not in contact with each other and the joint acts a pin where rotation is allowed. With 

the increasing loads, the sheet is expected to reach its load carrying capacity in the regions of the mid-

spans and the mid-support where the moments are highest. After the sheet reaches its capacity in the mid-

support, it undergoes a loss of stiffness and capacity. As a result, the sheets in the overlap joint gradually 

become in contact with each other as shown in Figure 1.8. With this interaction, the whole system 

becomes a continuous beam providing a higher post-failure load bearing capacity, avoiding sudden failure. 

To ensure this residual capacity of the joint, adequate number of fixings and overlap length are required. 

 

Figure 1.8. The beam before and after collapse at mid-support 

Cold-formed members have very limited plastic capacity, and elastic design is recommended in most 

cases. Because of the thinness of the material, the cold-formed sheet is prone to sectional buckling such as 

local and distortional buckling that leads to structural instability. With the appearance of these buckling 

modes, the sheet drastically loses stiffness. This loss of stiffness is exhibited in Figure 1.17 which shows 

comparison of the capacities of thick-walled and thin-walled cross-sections. The graph highlights the 

effect of local buckling to the stiffness of the material.  
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1.1.5 Objectives 

The general objective of the study is to understand the behaviour of the overlap joint in the elastic and 

post-elastic stages. This also entails the structural check of the joint under maximum stresses. The Gerber 

joint has been deemed inefficient because of the lack of reserve capacity after failure. Therefore, a variant 

of the Gerber joint called the Maeki joint is under study in this research. It is expected to observe an 

increase in ductility of the joint compared to the old Gerber system. 

The research also investigates the loss of stiffness of the sheet over the mid-support in a two-span beam. 

As the stiffness diminishes and the moment distribution changes, additional stresses are induced in the 

overlap joint. The study is interested in obtaining the shear and moments in the joint corresponding to 

different sheet stiffness in the mid-support. With the results obtained, it is aimed to structurally design the 

joint, which means checking the number of fixings and the overlap length. 

To achieve these objectives, theoretical, numerical and experimental studies are conducted. The 

numerical studies provide the parametric study of the varying stiffness of the sheet. 

1.1.6 Significance 

The use of the Gerber joint leads to more efficient material use due to the balanced support and field 

moments. With this economic design, the metal costs are driven down, potentially increasing future 

savings which is mostly beneficial to the manufacturing companies. In addition, the researchers would 

like to understand better the post-elastic behaviour of the cold-formed trapezoidal sheet, and how the joint 

can be optimized and improved further. The variant of the Gerber joint, the Maeki joint, is designed 

structurally to reflect an increase in joint ductility and safety.  

1.1.7 Limitations 

The study is focused only on two-span Gerber beams, with the hinge at the second span. The beam is 

subjected to uniform loading, and does not consider the uneven loading. The study also has a limitation in 

considering the effect of a continuous sheet in 3D, and assuming that the trapezoidal sheet acts as a beam 

in 2D. In the experiment, this limitation is addressed by attaching steel angles on each side to constrain 

the edge movement. The numerical model is assumed to have perfect geometry, and no imperfection is 

considered. In the structural checks, only the ultimate limit state is considered in the design. 
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1.2 Incidents of Roof Collapse 

In the Scandinavian winters of 2009-2010 and 2010-2011, several roof collapses occurred across Sweden. 

Most of the cases were located in the south-west part of the country and few cases in the north. From 

January 2010- January 2011, 179 reported cases of collapsed roofs have been listed (Erfarenheter från 

takras i Sverige vintrarna 2009/10 och 2010/11, 2011).  

It is found that the snow loads experienced by the collapsed roofs are generally lower than the design load, 

and the roofs should have not failed under the snow loading. However, the investigations suggest that the 

collapses may have been due to the unevenly distributed snow caused by excessive snow drifting. 

 

Figure 1.9. Map showing the locations of the collapsed roofs 

(Erfarenheter från takras i Sverige vintrarna 2009/10 och 2010/11, 2011) 

The results of the investigation show that the failure of the collapsed roofs is caused by varied factors. 

These factors range from the manufacturing of materials to the construction work to the design and 

planning (Hansson, 2017). Some of the factors that affected the collapses are the listed as follows: 

 Errors in the design, planning and execution 

 Errors in material 

 Flat roofs are more susceptible to damage 

 Longer spans allow for more varied distribution of snow loads 

 Age of the structure 
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 Highly nonsymmetrical loading resulting to snow pockets 

 Large difference in snow depth 

 Lack of maintenance 

Among the listed cases, 37 cases were investigated in more detail. Ten (10) of these cases are using 

trapezoidal sheeting, and seven (7) of which are using the old Gerber system. It was evident that the 

system needed to be further investigated. In addition, some collapses have even occurred during the 

manual removal of the snow from the Gerber roofs. This happened because the Gerber beam is sensitive 

to uneven loading, and moving the snow even contributed to the failure. Strong winds and blockades in 

the surface can also cause the snow to accumulate in one part of the roof causing asymmetric distributed 

loads. Snow removal may be done safely by clearing the snow in the order in which the roof is installed 

(Höglund & Johansson, 2015). 

1.3 Cold-formed Steel 

1.3.1 History and Trend in Construction 

The design of cold-formed steel profiles have always posed a challenge to designers because of its 

sensitivity to buckling which results to numerous failure modes that are not commonly found in the 

design of hot-rolled profiles.  

The advent of the use of cold-formed profiles in construction started in 1850s in United States and Great 

Britain. Until the 1940s, the utilization of the cold-formed steel is limited because there is no adequate 

design standard available. With the wide array of complex sizes and shapes of cold-formed profiles, it is 

also a challenge to devise a general design standard for all the occurring shapes. It wasn’t until the recent 

years that the cold-formed sections gain popularity in construction, where it is even being used as the 

primary framing component. For example, lipped channel sections may be assembled back-to-back to 

provide a stronger profile and act as wall studs. In usual cases, cold-formed sections are used as 

secondary structural systems in roofs, walls, and floors; or may also be used for building envelopes. 

Another use of cold-formed steel that has widely gained popularity in recent years is profile decking, 

which is a basic component used in composite steel-concrete slabs. With the developing technology, cold-

formed steel sections are now being manufactured to have thicker sections and higher yield strength. 

(Dubina, Ungureanu, & Landolfo, 2012) 
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Figure 1.10. Different shapes and sizes of cold-formed profiles (Dubina, Ungureanu, & Landolfo, 2012) 

1.3.2 Types of Cold-formed Sections 

The cold-forming process, which includes roll-forming and press braking, are applied to thin flat steel 

sheets to achieve varied shapes and sizes. There are two major types of cold-formed steel sections: 

1. Structural framing members which include single open sections, open built-up sections or closed 

built-up sections.  

 

Figure 1.11. Structural framing members (Dubina, Ungureanu, & Landolfo, 2012) 
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2. Panels and decks include profiled sheets and linear trays. 

 

Figure 1.12. Panels and decks (Dubina, Ungureanu, & Landolfo, 2012) 

The edge and intermediate stiffening elements are necessary to add stiffness to the section. Stiffeners are 

of different forms as shown in the figure below. 

 

Figure 1.13. Edge and intermediate stiffeners (Dubina, Ungureanu, & Landolfo, 2012) 

1.3.3 Advantages of Cold-formed Steel Sections 

The recent decades have seen the increasing use of cold-formed profiles. Cold-formed steel becomes 

more advantageous since steel has already the impressive carrying capacity for a structural material, and 

the use of cold-forming can help optimize the material. Aside from being efficient in stiffness and 

strength, the cold-formed steel offers a number of advantages for use in construction, some of which are 

listed below. 

 Cold-formed profiles are very lightweight. Thin-walled sections normally have thickness of less 

than 3mm. The strength to weight ratio is high which translates to cost efficiency in terms of 

material use. It is also ideal for use in conditions with relatively lights loads, and may form a 

built-up section to satisfy higher loads.  

 Complex forms and shapes may be produced using cold-forming compared to the hot-rolled 

process. Cold-formed profiles usually have stiffening elements to increase stiffness and prevent 



17 

 

buckling of the flanges or the webs. The forming process can allow more detailing in the profile, 

or allow the engineers to design more unusual sections that can be optimized for a specific 

purpose.  

 It is manufactured rather easily and may even be done on-site. Galvanized steel coils, coated with 

zinc or aluminum/zinc coatings, are formed into thin-walled sections by cold-forming process. At 

relatively low temperatures, these profiles are formed using roll forming or folding and press 

braking. The process of cold-forming has an increasing effect in the yield strength of the material, 

specifically in the zones of folds and bends.  

 Cold-formed profiles are easy to transport, store, assemble, and install. The construction is 

completed faster with fewer wastes, with a lead time can translate to financial savings. The 

sections can be stacked on top of each other which provide ease in transportation, and the 

compact packaging consumes less space for storage.  

 It is usually galvanized; making it weatherproof and corrosion-resistant giving longer design life 

for the structure. It is not sensitive to moisture, and does not rot and attract insects unlike timber. 

Also, it is not sensitive to time-dependent behaviour like shrinking and creeping unlike concrete. 

 Steel is the most recycled material. Being recyclable makes it a sustainable choice for 

construction. 

 Sections may be fire-protected using plaster boards with fire resistance. 

 Panels and decks can be used to resist in-plane loads, acting as a shear diaphragm. In addition, 

these sections allow for the passing of conduits. 

1.3.4 Buckling of Cold-formed Section 

Structural instability of cold-formed sections occurs due to the thinness of the material. There are four 

general types of buckling that a steel section may be subjected to: local, global, distortional, and shear. 

Shown in Figure 1.14 are the different buckling modes that can occur for a lipped channel subjected to 

compression. The figure exhibits sectional and global buckling modes for different buckling lengths, and 

how these types of buckling interact with each other resulting to more complex coupled modes.  
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Figure 1.14. Buckling modes for a lipped channel in compression (Dubina, Ungureanu, & Landolfo, 2012) 

a) local (L)   b) distortional (D)   c) flexural (F)  d) flexural-torsional (FT) 

e) L + D     f) F + L      g) F + D      h) FT + L       i) FT + D     j) F + FT  

 

Local buckling is a form of short wavelength buckling that appears in the local plate element. Distortional 

buckling is also a form of buckling of the cross-section. The global buckling considers the buckling along 

the length of the member, in this case is the flexural and the flexural-torsional buckling for columns, and 

lateral-torsional buckling for beams. Below is a graph of the wavelength against the buckling stress which 
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shows that the wavelength of the distortional buckling is generally in between of the local and global 

buckling. 

 

Figure 1.15 Elastic critical stress of different buckling modes (EN 1993-1-3) 

Figure 1.16 below displays the relationship of the member length to the increasing load, and the 

occurrence of the buckling modes. The graph provides a clear idea of the hierarchy of the buckling modes 

depending on the load applied and the buckling length. Shown in the dashed lines are the theoretical 

elastic buckling curves, and solid curves represent buckling resistances.  The graph shows how shorter 

members are prone to sectional buckling, such as local and distortional buckling modes, and the overall 

buckling is more prevalent for longer members.  

 

Figure 1.16. Elastic critical stresses and resistances as a function of member length (EN 1993-1-3) 

To further emphasize the effect of the local buckling to the total load-carrying capacity of the cold-formed 

section, shown in Figure 1.17 are two graphs comparing the behaviour of the thick-walled and thin-walled 

members in compression. It is observable that both the graphs did not achieve the critical load Ncr. The 
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thick-walled bar reaches first yield at B, and started to depart from the elastic line and enters the plastic 

range. The ultimate capacity is achieved at C, and the curve asymptotically reached the rigid plastic curve 

until failure. This goes the same for the thin-walled member, but instead it departs from the elastic line at 

an earlier point at L. The local plastic mechanism occurs at C which is also the ultimate capacity of the 

member. The graph goes down parallel to the rigid plastic line up until its total rupture at D. The 

theoretical rigid-plastic curve defines the limit of the load-carrying capacity of the member. The 

occurrence of the sectional buckling does not result to failure right away since it is characterized by a 

stable post-critical path, but instead, the material significantly lose stiffness.   

It is evident that the thin-walled member has significantly lower plastic reserve. This is mainly due to the 

local plastic mechanism that causes a significant drop in the stiffness of the material, thereby limiting its 

post-buckling load bearing capacity. 

 

Figure 1.17. Behaviour of (a) slender thick-walled and (b) thin-walled compression bar (Dubina, Ungureanu, & Landolfo, 2012) 

1.3.5 Plastic Design 

Even if the steel is a known ductile material and allows for plastic redistribution of stresses, the design for 

cold-formed steel is usually based in the elastic region only because of the slenderness of the elements. In 

hot-rolled steel design, the plastic capacity may be utilized depending on the class of the section, however, 

the cold-formed steel profiles are mostly governed by local buckling which limits its capacity, and results 

to limited inelastic reserve.  
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Class 4 sections, where thin-walled sections are generally classified, have to consider the effect of the 

local buckling to its plastic capacity. The flat plate of the webs or the flanges may start to buckle at stress 

levels below the yield point. Plates are known to have a stable post-critical behaviour which means that 

even if the section has reached the local buckling stress, it may still continue to resist additional loads.  

1.3.6 Effective Section 

The effective width of a plate in compression dictates its carrying capacity. Figure 1.18a shows the actual 

load distribution in a plate subjected to compression. The region of the plate that is closer to the edges 

carries a larger portion of the load compared to the central portion of the plate element. The real 

distribution of the stresses in the cross-section is non-uniform and therefore difficult to determine. To 

simplify this assumption, the maximum stresses are assumed to act uniformly on the two side strips at the 

edges of the plate, leaving the central region unstressed as shown in Figure 1.18b. 

    

a) Actual stress distribution   b) Simplified stress distribution over effective width 

Figure 1.18. Effective width concept (Design Procedures for Sheeting) 

The prevalence of local buckling in thin-walled sections is considered in design by using the effective 

section instead of the gross section of the member. In obtaining the effective cross-section, it is important 

to know which elements are subjected to compression since local buckling will occur in these plate 

elements. The part of the section that has buckled will be removed from the entire section, and therefore 

resulting to a reduced cross-section.  For elements in tension, the full section is used. 

A comparison of the effect of using the effective section with the gross section is shown in Figure 1.19. 

The graph for the effective section clearly has lower load-carrying capacity because of the erosion due to 
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imperfections and the local buckling effect.   

 

Figure 1.19. Effect of local buckling on the member capacity (Dubina, Ungureanu, & Landolfo, 2012) 

Figure 1.20 shows a sample of a reduced cross-section of a member in bending, where the top part of the 

neutral axis is under compression. There are several flat plates that are candidates for the reduction of the 

cross-section, both in the webs and the flanges. The sections are considered effective if they are adjacent 

to the corners and bends, or next to intermediate stiffeners as in the webs. 

  

Figure 1.20. Example of reduced cross-section  
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2 ANALYTICAL STUDY 

2.1 Load Calculation 

 Applied Loads 

The roof decking is generally subjected to dead, snow, wind, and maintenance loads. For the purpose of 

this study, only the effects of self-weight and snow loads are considered. The snow load depends largely 

on the shape of the roof, whether the shape will allow accumulation of the snow. Accidental load is also 

calculated. The entire system must be able to carry the loads in the accidental stage after an initial failure 

has occurred. 

The self-weight of the profiled sheeting is obtained from the technical manual of LHP 200.  For each 

thickness, the value of the load is computed. The main variable load used is the snow loads. The snow 

actions applied is calculated based on EN 1994 and EKS 10. The characteristic value for the ground snow 

load is 3 kPa. Exposure and thermal coefficients are assumed to be 1.0. In addition, the snow load shape 

coefficient which is higher when the surface is flat, is assumed as 0.8. The calculation is presented in 

Annex B.1.  

Load Combinations 

The load combination for the ultimate limit state is based on EN 1990 using the equation: 

   Eq. 2.1 

In addition to the equation, a safety factor of 0.91 is used which correspond to the safety class 2.  

The accidental load combination that is applied to the structure in the post-failure stage is based on the 

EN 1990 equation: 

   Eq. 2.2  

The complete calculation for the loads is presented in Annex B.1. Below is the summary of the calculated 

loads for the different thicknesses of the sheet: 
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  Thickness (mm) 

  0.85 1.00 1.25 1.50 

Permanent Load (kPa) 0.10 0.12 0.15 0.18 

Snow Load (kPa) 2.40 2.40 2.40 2.40 

ULS (kPa) 3.39 3.41 3.44 3.47 

ALC (kPa) 1.54 1.56 1.59 1.62 

Table 2.1 Summary of the calculated loads 

2.2 Properties of Trapezoidal Sheeting 

The trapezoidal sheet to be studied, the LHP 200, is used for structural decking for insulated roofs. It is a 

galvanized steel sheet with hot-dip zinc coating and is available in varying thicknesses: 0.85mm, 1.00mm, 

1.25mm, and 1.50mm. This self-supporting steel sheet is optimized for use in arenas and other large 

buildings. The profile also has good acoustic properties compared to other products in the same category.  

 

Figure 2.1. LHP 200 in IFU Arena in Uppsala, Sweden (www.lindab.com) 

Shown below are the gross dimensions of a single trapezoid, measured using its midline. 

       

Figure 2.2. Dimensional properties of LHP 200 
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Tabulated below are the gross dimensional properties of the sheet with different thicknesses. These values 

were gathered from Annexes A.1 to A.4. 

  Thickness (mm) 

  0.85 1.00 1.25 1.50 

Area (mm
2
) 956.67 1125.5 1406.87 1688.25 

Moment of Inertia (mm
4
) 4904502.22 5770038.65 7212639.64 8655301.51 

Distance of neutral axis to top flange (mm) 54.66 54.73 54.86 54.98 

Distance of neutral axis to bottom flange (mm) 145.19 145.27 145.39 145.52 

Table 2.2. Gross cross-section properties 

The calculation presented in Annex B.2 involves computation of the plastic strain to be used in the 

numerical model. Also presented are the gross dimensions of a single sheet, including areas and moments 

of inertia for the different thicknesses. The design moment and shear capacities obtained from the 

technical manual are also shown. 

Listed below are the characteristic material properties of the trapezoidal sheet obtained from the technical 

manual. The ultimate strength is obtained from a previous study of the LHP200 (Cardenas, 2017). The 

thickness used in the analyses is the nominal thickness. 

  Thickness (mm) 

  0.85 1.00 1.25 1.50 

Modulus of elasticity (GPa) 210  

Yield Strength (MPa) 420 420 420 350 

Ultimate Strength (MPa) 760 

Poisson’s ratio 0.3 

Table 2.3. Material properties for different thicknesses 

For the plastic properties of the material, the use of bilinear material properties with linear strain 

hardening from EN 1993-1-5 is employed in the model. 

 

Figure 2.3. Assumption for the plastic property of the sheet   
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2.3 Moment Distribution and Deflection in the Elastic Range 

When a prismatic beam is subjected to pure bending and bent into an arc of circle, within the elastic range, 

the curvature of the neutral surface is 

 

 
 

 

  
                                                             Eq. 2.3 

where M is the bending moment, E is the modulus of elasticity and I is the moment of inertia along the 

bending axis. 

The expression permits the determination of the elastic curve, or the deformed shape of the beam, by 

doing two successive integrations. The deflection at any point may be determined using this second-order 

linear differential equation: 

   

   
 

    

  
                                                        Eq. 2.4           

In the elastic stage, moment distribution and elastic curve can be obtained by analytical computation 

because of its statical determinacy. The two-span Gerber beam is broken down to a cantilever with an 

overhang for the left beam, and a simply supported beam in the right. 

 

Figure 2.4. Representation of the two-span Gerber beam (Karnovsky & Lebed, 2010) 

After the computation of the support reactions, the shear and moment diagrams are generated by use of 

singularity functions. The maximum values and their locations are obtained. The pre-failure stage allows 

for the Gerber system to be active. The premise that the moment at the joint is zero provides a necessary 

boundary condition for the calculation. The location of the hinge is computed to be at 0.21L when the 

design moment capacities at the support and the span are equal, considering the difference in the 

properties of the top and bottom flanges. After the moment equation has been established, the rotation and 

deflection equations are also derived and presented with graphs. The load is assumed to be uniformly 

distributed. The sheet of thickness 1.00mm is used computation of rotation and deflection.  
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a) Loading condition 

 

b) Shear Diagram 

 

c) Moment Diagram 
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d) Slope diagram  

 

e) Deflection Diagram 

Figure 2.5 Two-span Gerber system with uniform loading 

Further into the calculation is the derivation of the moment distribution for continuous beam and single 

span for the purpose of comparison. The result is a graph that compares the maximum moments at the 

support and the span of the different structural systems. The graph below proves that the Gerber system is 

an efficient system with regard to material use. The complete calculations are presented in Annexes B.3 

and B.4. 
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Figure 2.6. Comparison of bending moment diagrams for Gerber, double span, and single span 

2.4 Effective Section  

To consider the occurrence of the local buckling in the cross-section, Class 4 cross-sections need to be 

reduced. To reduce the cross-section, it is important to identify which parts of the member are under 

compression and tension. The research is concerned on the steel sheet over the mid-support, therefore 

looking at Figure 2.7, it is seen that the bottom flange (narrow flange) is in compression and the top 

flange (wide flange) is in tension at this location. This inverse is true for the spans, where the top is in 

compression and the bottom is in tension. Elements in tension need not to be reduced. Note that this stress 

configuration is valid only for a specific loading condition, which in this case are distributed snow loads. 

 

Figure 2.7. Regions in compression and tension 

For the purpose of computing the effective section and comparing with the values from the technical 

manual, the narrow flange section is considered in the calculation. The effective section calculation is 

based on EN 1993-1-3. 
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Figure 2.8. Effective cross-section computed as per Eurocode 

The sheets of thickness of 0.85mm and 1.00mm are used in the calculation example presented in Annexes 

B.5 and B.6. In the computation, it is assumed that the material is concentrated in the midline of the 

section and the corners are replaced by the intersections of flat elements. The elements in compression 

consist of a part of the web and the bottom flange. First, the flange is checked for local buckling. The 

check involves computation for the critical buckling stress of the central flange stiffener. The results show 

that the bottom flange is a fully effective section. Same with the flange computation, the critical buckling 

stress for the web intermediate stiffener needs to be calculated. The calculation for the web, on the other 

hand, shows that the web needs to be reduced. 

Since the web and flange both have intermediate stiffeners, the interaction between the distortional 

buckling of the stiffeners should also be considered. This is done by using a modified elastic critical stress 

        for both types of stiffeners. The neutral axis is recalculated and updated for the reduced section.  

Values from the gross cross-section and the technical manual are compared with the effective section 

properties. It shows that the effective section corresponds to less design moment resistance compared to 

the moment capacity listed in the manual.  

 
Effective Section Technical Manual Gross Section 

Area (mm
2
) 772.39 - 956.67 

Moment of inertia (mm
4
) 3213033.33 3568000.00 4904502.22 

Section modulus (mm
3
) 19632.37 25257.14 33877.89 

Design moment resistance (kN-m) 8.25 10.61 14.23 

Table 2.4. Comparison of effective section properties for 0.85mm thick sheet 

 
Effective Section Technical Manual Gross Section 

Area (mm
2
) 940.68 - 1125.50 

Moment of inertia (mm
4
) 4259114.36 4328000.00 5770038.65 

Section modulus (mm
3
) 26666.13 34914.29 39856.59 

Design moment resistance (kN-m) 11.20 14.66 16.74 

Table 2.5. Comparison of effective section properties for 1.00 mm thick sheet 
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2.5 Design of Cold-formed Steel under Bending 

Failure Modes 

At the support location, the bottom of the sheet is under compression while the top part is subjected to 

tension. The region in tension can fail in tension yielding with the maximum elastic load of 420 MPa. 

More complicated is the behaviour of the elements in compression. These elements are prone to buckling 

but there are stiffening elements both in the web and in the bottom flange to increase the capacity against 

buckling.  

During the calculation of the effective section, the critical stresses for these elements are computed. From 

the calculation of the 1.00mm thick sheet, the critical stress of the web is 219.31 MPa, and for the bottom 

flange is 1193.78 MPa. These values suggest that the bottom flange is 5.4 times more resistant to 

buckling than the web, and naturally, the web will buckle first. This buckling of the web is observed in 

the experimental study presented in Chapter 3. The modified critical stress considering distortional 

buckling is 312.24 MPa.  

 

Figure 2.9. Tension and compression in the cross-section 

Design 

Thin-walled sections are usually classified as Class 3 and Class 4 cross-sections. These slender cross-

sections are characterized by the local buckling limiting the moment resistance of the section. The 

sections buckle at stress levels less than the yield point of the material. Due to this phenomenon, Class 4 

sections have reduced post-elastic strength compared to the other section class as shown in Figure 2.10.  
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Figure 2.10. Cross-section behaviour classes (Dubina, Ungureanu, & Landolfo, 2012) 

Web crippling is also a phenomenon in thin-walled sections where loads are concentrated at a point, 

compressing the web. For cold-formed sections, the depth-to-thickness ratio is usually large and some 

webs have inclination that adds to the web crippling. For this case, web crippling is addressed by not 

fixing the bottom flange to the support, only the top flange. Cold-formed members also usually have low 

torsional rigidity, but profiled sheeting do not undergo this torsional failure mode.  

The design requirement for cold-formed steel is provided in EN 1993-1-3. The design value of the 

bending moment should satisfy the following: 

   

     
                                Eq. 2.5 

where     is the design internal moment for ultimate limit state and       is the design moment 

resistance. 

The moment resistance of a cross-section about the bending axis should be obtained from: 

       
        

   
                               Eq. 2.6 

where      is the effective section modulus and     is the basic yield strength. 

The calculation for the design of the cold-formed trapezoidal sheet is presented in Annex B.7.  
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3 EXPERIMENTAL STUDY 

3.1 Overview of the Experimental Study 

Complex and unusual shapes can be formed with the cold-forming process, where some aspects may not 

be covered by the design standards. The behaviour of the material, specifically in the post-elastic range, 

cannot be determined by analytical computations alone. In this case, design codes permit the use of 

testing procedures to validate the structural adequacy of the member.  

One of the primary objectives of the experimental study is to determine the reserve capacity of the sheet. 

From the experimental results, the effect of the overlap length with the post-elastic load bearing capacity 

of the joint can be established. The behaviour of the material, specifically in the post-elastic range, cannot 

be determined by analytical computations alone, therefore the experimentation is necessary. The post-

elastic rotational stiffness of the mid-support is also derived experimentally. This provides information on 

the loss of stiffness of the sheet in the plastic range. The structural integrity of the overlap joint is also 

observed from the series of tests. Finally, a visual inspection of the failed sheet can give insights on the 

possible mode of failures.  

This experiment aims to study closely the resistance of the bottom flange in the mid-support which is 

subjected to compression. The top flange only acts as a bridge to the narrow flange profiles and its 

resistance is not significant to this research.  

Full scale tests were conducted in the Steel Structures Laboratory of Luleå University of Technology. The 

materials were provided by Lindab. Three thicknesses of the sheet were tested, where there are two set-

ups per thickness for a total of six set-ups. Set-up 1 has 500 mm overlap length while Set-up 2 has 100 

mm overlap length. 
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Experimental Study 

0.85 mm 
Set-Up 1 

Set-Up 2 

1.00 mm 
Set-Up 1 

Set-Up 2 

1.50 mm 
Set-Up 1 

Set-Up 2 

Table 3.1 Number of experimental set-ups 

The first set-up mainly concerns the behaviour of the overlap joint connection until total collapse of the 

system. It is desired to design a connection that has a capacity to resist additional moments due to 

collapse of sheet at mid-support. For the first set-up, the behavior of the joint is observed, as well as the 

post-buckling reserve capacity of the whole system. Moreover, the second set-up is performed to 

determine the reserve capacity of the sheet after buckling at the internal support.  

For this experimental study, tensile tests were not performed on the samples pieces of the steel sheet to 

verify the properties of the samples. In this case, the nominal values of the thickness and the mechanical 

properties such as the yield strength are assumed in the analyses. 

The expected failure mechanisms in the experiment are presented in Figure 3.1, where it shows the plastic 

mechanism for Set-up 1 and Set-up 2. For the Set-up 1, the plastic hinges are formed at the support and 

the mid-span. This happens because of the redistribution of stresses in the mid-span after the capacity at 

the support has been reached. The redistribution is possible because the overlap joint refrains from acting 

as a hinge, instead it acts to bridge the sheets together and make a continuous beam. This is not the 

expected failure for the Set-up 2. In the Set-up 2, the overlap hinge, due to lack of overlap length, will 

remain a hinge throughout the experiment. This means that after the appearance of plastic hinges in the 

support, there will be a global failure in the system. The Gerber joint allows more deflection compared to 

the Maeki joint. This gives the Maeki system a higher load- bearing capacity and a ductile failure. 
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Figure 3.1 Formation of plastic hinges in Test Set-up 1 and Test Set-up 2 

3.2 Experimental Set-Up 

The entire experiment is composed of six full scale tests. The figure below shows the different 

components of the experiment for a single set-up: 

    

    

Figure 3.2. Components of the set-up: trapezoidal sheet, timber blocks for load application, support cleats,  

steel angle ties and self-drilling screws 
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Each set-up is composed of two spans, where each span is measuring 6 m for a total length of 12 m per 

set-up. Loads are applied on 4 points along the beam. The loads are originating from a single point, and 

distributed using series of loading steel beams. As mentioned, there are two set-ups for each thickness. 

Set-up 1 has 500 mm overlap length, and has an additional deflection sensor to measure the gap in the 

overlap, while Set-up 2 has only 100 mm overlap length. Everything else is kept constant. 

 

 

Figure 3.3. Set-up 1 and Set-up 2 

As shown in the figures above, the hinge joint is located at 0.22L in the second span. This value is used in 

the experiment, and not the theoretical value of 0.17L, because the theoretical value was obtained 

assuming that properties of the sheet at support and the span are the same. Updating these values 

considering an unequal moment capacities from the technical manual, a value of 0.212L is derived. This 

value when used, however, will reach both the support and span moment capacities at the same time. And 

since it is preferred for the support moment to govern and the sheet to fail at the support, the value used in 

the experiment is rounded up to 0.22L.   

The profile used for the set-up is one full trapezoid, with half trapezoids attached on each side by fixing 

their bottom flanges. The fixings at the narrow flange are at 500 mm distance on centers. However, in the 

support location, the narrow flange is subjected to compression. In this location, the fixing distance is 

reduced to 250 mm to lessen the buckling length at the bottom of the section. 
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Figure 3.4. Trapezoidal profile for the experiment 

For the support, the sheets are fixed to the 150-mm long support cleats at the ends and at the mid-support. 

There are two fixings each top flange to the cleat. The bottom flange is not fixed to the support to prevent 

web crippling. Steel angles are used as ties in the longitudinal and transverse directions to prevent the 

sheet from spreading and to keep the edges straight. 

 

Figure 3.5. Support cleats 

The timber blocks are used to apply the loads to the sheet. For each load applicator, two 75-mm long 

blocks are in contact with the sheet. The load goes directly to the bottom flange. The load is applied at a 

rate of 2mm/min until the sheet exhibits collapse or can no longer hold the loads being applied. On each 

side of the timber block is a trapezoidal transverse blocks to prevent it from tilting, see Figure 3.6.  

 

 

 

 

 

Figure 3.6. Timber blocks in position 
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The overlap joint is fixed using three screws, two on the sides and one on top, see Figure 3.7. This 

configuration is assumed to act as a hinge and allow rotation in the elastic stage.  

 

Figure 3.7. Overlap fixing 

The LVDT sensors are used to measure the deflection at different points in the beam shown in Figure 3.8. 

Sensors are put in the middle of each span, and additional sensors are placed in the overlap. Most of the 

sensors are intended to measure the global displacements at specific points. The sensor is attached to a 

steel post which allows it to measure the displacement with respect to the unmoving post. For the Set-up 1, 

there is an additional sensor right on the end of the overlap to measure the relative movement between the 

two sheets in the overlap. This sensor can measure the local deflection or the gap opening of the overlap. 

The opening of the overlap is of interest because large deflection may apply pressure on the insulation to 

be placed above the sheet. The sensor is placed in the center of a 260mm steel plate to get the average 

displacements between two points in each side of the flange. In Figure 3.9, the locations of all the LVDT 

sensors are shown. LVDTs 2-1 and 2-2 measure the local displacements. 
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a) Local displacement in the gap            b) Global displacement in the overlap  

Figure 3.8. Measuring local and global displacements 

 

Figure 3.9. Location of the LVDT sensors 

Figure 3.10 shows the complete set-up for the experiment before load is applied, where the location of the 

loads are indicated, as well as the spans.  
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Figure 3.10 Complete experimental set-up  
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3.3 Force Applied 

To obtain the force to be applied on the sheet, the theoretical moment distributions are obtained. The 

supports are assumed to be pinned, and the hinge allows full rotation. The figures below show the 

moment distribution, as well as shear distribution for the 0.85mm sheet. The load applied corresponds to 

the maximum moment capacity of the sheet at mid-support. The load is applied at 2 points every quarter 

point in the beam, representing the timber blocks in contact with the sheet. 

 

a) Load application 

 

b) Moment distribution 

 

c) Shear distribution 

Figure 3.11. Load application, moment, and shear for experimental configuration  

Table 3.2 summarizes the amount of load to be applied in the full scale tests for the different thicknesses. 

The load corresponds to the design moment resistance of the narrow flange from the technical manual. 

The design resistances are listed below considering a width of 800 mm for one profile. The final column 

corresponds to the total load applied by the hydraulic machine to the system that theoretically represents 

the maximum design moment resistance of the section. Note that there are two narrow flange profiles in 

the experiment set-up. The design moment resistance for the wide flange (field span) is also tabulated on 

Table 3.3 for reference. 
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Thickness (mm) 
Design Moment Resistance 

of Narrow Flange (kN-m) 

Total Load until Design 

Moment Resistance (kN) 

0.85 10.61 52.54 

1.00 14.66 72.60 

1.50 24.82 122.91 

Table 3.2. Load applied to achieve maximum moment capacity of sheet (narrow flange, one profile) 

Thickness (mm) 
Design Moment Resistance 

of Wide Flange (kN-m) 

Total Load until Design 

Moment Resistance (kN) 

0.85 7.74 38.33 

1.00 10.89 53.93 

1.50 17.63 87.30 

Table 3.3. Load applied to achieve maximum moment capacity of sheet (wide flange, one profile) 

3.4 Results of the Experiment 

3.4.1 Tests for 0.85 mm thick 

0.85mm - Set-Up 1 

The test underwent a premature failure due to the misalignment of the applied load. The loading beam is 

tilted more on one side causing failure of the loading timber blocks. The experiment was terminated 

before reaching the total collapse of the system. However, before the experiment ended, local buckling 

has appeared in the sheets in the mid-support and span near the loading point.  

   

a) Buckling at support                                          b) Failure of the loading timber blocks 

Figure 3.12. Failure of the 0.85mm Test Set-up 1 
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The force applied to the whole system is plotted and presented in Figure 3.13. The plot shows a linear 

load applied until a maximum load of 58.3 kN. Afterwhich, there is a slight decrease of load in the system 

corresponding to the occurrence of the local buckling, and then the system recovers again. The force-

deflection graphs of each LVDT points are also presented in Figure 3.14. Refer to Figure 3.9 for the 

location of the LVDT sensors along the beam. 

 

Figure 3.13. Force-Time graph – 0.85mm Test Set-up 1 

 

Figure 3.14. Force-Deflection graph of all LVDT sensors – 0.85mm Test Set-up 1 
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0.85mm - Set-Up 2 

The sheet at the mid-support completely buckled and the 100-mm overlap joint collapsed for this test. 

Looking at the failure, it can be seen that the screws at the overlap connection have excessively stretched 

the holes, corresponding to a bearing failure. The fixings on the overlap as well as the screw at the bottom 

flange have failed in pull-out.  
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Figure 3.15. Failure of 0.85mm Test Set-up 2 

Since this is the thinnest sheet, it is expected to be more difficult to predict its behaviour at failure because 

of the early appearance of buckling. The sudden failure of the sheet exhibits how the local buckling can 

affect the overall capacity of the section. The buckling is initiated in the support and consequently, the 

global failure follows. It is important to note that the mid-span has not yet reached the full elastic capacity 

before the total collapse at the mid-support. 

Figure 3.16 shows the load resisted by the sheet through the course of the experiment. It is clear that there 

is a linear relationship until the sheet experiences collapse at maximum load of 60.62 kN. The sheet and 

the joint together exhibited a brittle failure which is reflected by the sudden drop in the load after reaching 

its peak. 

 

Figure 3.16. Force-Time graph – 0.85mm Test Set-up 2 
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Figure 3.17. Force-Deflection graph of all LVDT sensors – 0.85mm Test Set-up 2 

Figure 3.17 shows the deflection plot for all the sensors. It is observed in this plot that the LVDTs 1-3 and 

2-3 underwent an excessive deflection compared to the other points in the beam. The LVDT 1-3 is at the 

overlap location while 2-3 is at the mid-span of the collapsed side. 

3.4.2 Tests for 1.00 mm thick 

1.00mm - Set-Up 1 

For this test, the failure is initiated on one side in the mid-support. It was then followed by buckling at the 

mid-span of the second beam. This buckled section is located at 775mm from the mid-span and right 

before the load applicator. Maximum load applied to the system is 85.16 kN. The overlap joint remains 

intact. It is observed that the buckling in the support occurred in the web. Meanwhile, the buckling in the 

span occurred in the top region of the profile. 
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Figure 3.18. Failure of 1.00mm Test Set-up 1 

Several peaks and downward curves are recorded on the force-time graph on Figure 3.19. These peaks 

correspond to the appearance of the buckling on one either side of the sheet. After the first peak, the plot 

goes down signaling a loss of stress measured by strain gauge. The plot recovers and steadily increases 

again showing that the system, even if one side has buckled, can still carry more loads. The last peak 

corresponds to the total collapse of the system where a plastic mechanism has already been formed due to 

the appearance of the buckling at the support and mid-span. At this time, the system can no longer carry 

additional load and therefore the plot goes down to zero. This failure shows a clear manifestation of 

plastic redistribution along the beam. The areas of the support and the mid-span reached their plastic 

capacities before total collapse of the whole system. Also, it is observable that the overlap joint ceased to 

act as a hinge and instead provided continuity on the sheet.  
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Figure 3.19. Force-Time graph – 1.00mm Test Set-up 1 

 

Figure 3.20. Force-Deflection graph of all LVDT sensors – 1.00mm Test Set-up 1 

1.00mm - Set-Up 2 

Same with the Test Set-up 1, the Set-Up 2 force-time plot shows a series of peaks indicating that there are 

series of buckling that has occurred. For this test, the first buckling occurred on the web at one side of the 

mid-support, followed by the buckling on the other side. Finally, total collapse of the system was 
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achieved when both of the sides have failed. The hinge on the 100mm overlap joint together with the 

introduction of the plastic hinges at the support led to total collapse. This phenomenon is not observed 

with the Test Set-up 1, where there is a redistribution of stresses in the support and mid-span. The 

maximum load is at 73.04 kN, and the overlap joint remains intact. 

 

 

Figure 3.21. Failure of 1.00mm Test Set-up 2 

In the graph below, Point A is the point of the maximum loading applied to the system before it 

undergoes instability, which is the buckling of one side at the mid-support. The graph highlights the 

reserve capacity of the sheet represented by the drop at Point B and increase of load to Point C, where the 

second buckling of the other side of the mid-support occurred. After the both sides have buckled, there is 



50 

 

ultimate collapse of the system. A video is uploaded at https://youtu.be/uigl4bIBpgg, showing the total 

collapse of the sheet. 

 

Figure 3.22. Force-Time graph – 1.00mm Test Set-up 2 

 

Figure 3.23. Force-Deflection graph of all LVDT sensors – 1.00mm Test Set-up 2 

 

 

https://youtu.be/uigl4bIBpgg
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3.4.3 Tests for 1.50 mm thick 

1.50mm - Set-Up 1 

The collapse of the system is not achieved in the Set-up 1. The maximum load/ stroke that the hydraulic 

machine can apply has been applied and only web buckling at the mid-support occurred, and not the 

ultimate failure. Under the high loads, the support cleats have also buckled, which is not expected in the 

test. The maximum load applied to the system is 152.15 kN. 

    

    

Figure 3.24. Failure of 1.50mm Test Set-up 1 

The force-time plot shows a linear increase. The deviation from linearity signals an occurrence of 

buckling. However, the system exhibited a steady load carrying capacity and shows a plateau at the 140-

150 kN range. Afterwhich, the test is terminated because the maximum load that can be applied by the 

machine has been reached. 
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Figure 3.25. Force-Time graph – 1.50mm Test Set-up 1 

 

Figure 3.26. Force-Deflection graph of all LVDT sensors – 1.50mm Test Set-up 1 
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1.50mm - Set-Up 2 

At the end of the test, buckling occurred for both profiles in the mid-support. For this case, both the web 

and the bottom flange exceeded their critical stress. The total collapse followed, after the plastic 

mechanism has been formed. The mechanism consisted of the hinge at the overlap joint and the hinge at 

the support. For this test, the support cleats have also buckled. The maximum load applied is 142.47kN, 

and the joint remains intact. 

 

    

    

Figure 3.27. Failure of 1.50mm Test Set-up 2 
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The plot shows a series of peaks corresponding to the appearance of instabilities in the system. Even the 

sheet has buckled, it can still carry additional load until total collapse.  

 

Figure 3.28. Force-Time graph – 1.50mm Test Set-up 2 

 

Figure 3.29. Force-Deflection graph of all LVDT sensors – 1.50mm Test Set-up 2 
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3.5 Analysis of Results 

3.5.1 Comparison of Maximum Load 

Shown below are the comparisons of the force-time plot for each thickness. Test Set-up 1 is compared 

with Test Set-up 2 for each thickness to determine if there is a notable difference in the load carrying 

capacity of the sheet after the overlap length is reduced. The last plot shows the force-time plots of all the 

thicknesses for a better view of the maximum loads that each sheet can carry. 

 

a) Comparison of 0.85mm thick sheet 
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b) Comparison of 01.00mm thick sheet 

 

c) Comparison of 1.50mm thick sheet 
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d) Comparison of all thicknesses 

Figure 3.30. Comparison of the force-time plots of different thicknesses 

The graph shows that the maximum loads are highest for the 1.50mm, which is the thickest sheet, and 

lowest for the 0.85mm thick sheet. In general, the failure of the 0.85mm thick sheet was more 

unpredictable compared to the thicker sheets. This is due to the early appearance of buckling in the sheet 

and failure of the timber blocks.  

In the linear plot of the graph, the sheets behave very similar, and the difference starts as they reach the 

peak loads. It is observed that the Set-up 1 (represented by solid lines), the one with the 500mm overlap 

length, has generally carried a larger amount of load judging by the area under the curve compared to the 

Set-up 2 (dashed lines), the system with only 100mm overlap. It is also observed that the peaks or the 

maximum loads were higher for Set-Up 1.  
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Tabulated below is the computation for the additional capacity of the sheets based on the design 

capacities in the technical manual. The critical section is the mid-support, and in this case, the design 

capacity at the mid-support is considered for the table below.  

Thickness 

Load until 

Design Moment 

Resistance (kN) 

Maximum Applied 

Load (kN) 

% Additional 

Capacity 

0.85 
Set-Up 1 

52.54 
58.30 10.96 

Set-Up 2 60.62 15.38 

1 
Set-Up 1 

72.60 
85.16 17.30 

Set-Up 2 73.25 0.90 

1.5 
Set-Up 1 

122.91 
152.15 23.79 

Set-Up 2 142.47 15.91 

Table 3.4. Comparison of the maximum load applied with the capacity from the technical manual 

The maximum values of the load applied are all higher than the design moment capacity found in the 

technical manual. These results are found to be very agreeable regardless of the different configurations 

of the overlap lengths. The additional capacity is ranging from 1% to 24%. The results suggest that all the 

sheets tested worked very well according to their design capacities. 

There is also a noticeable difference on the sheet capacities between Set-up 1 and Set-up 2.  For the 

1.00mm and the 1.50mm thick sheet, the Set-up 1 with the 500mm overlap length has clearly resisted 

higher loads than the Set-up 2 with 100mm overlap. It is important to note that the test for the 0.85mm 

thick sheet was terminated before it reached total collapse, and therefore the maximum applied load of 

58.3 kN is not the ultimate capacity. The 1.00mm Set-up 1 carried 11.91 kN more than the Set-up 2, 

meanwhile the 1.50mm Set-up 1 carried 9.68 kN more. This affirms the concept of the Maeki system that 

the capacity of the whole system can be improved by increasing the length of the lapped connection.  

As for the failure modes at the maximum loads, all of the specimens exhibited web buckling at the mid-

support. Stronger profiles such as the 1.50mm thick sheet also underwent buckling of the bottom flange. 

The overlap joint of 500mm was structurally intact under the maximum load.  

As mentioned in the Section 3.4.2, the Set-up 2 is observed to allow more rotation on the hinge. This 

causes a plastic mechanism to be achieved once the sheet at the mid-support has buckled. On the other 

hand, the Set-up 1 acts as a continuous beam after the sheet failure at mid-support leading to a 

redistribution of the stresses. This means that as the sheet at the support fails, the system does not totally 

collapse. Instead, the loads are transferred to the span, and it is possible because the overlap joint is no 

longer acting as a hinge. This is observed when the mid-span failed in the Set-up 1 but not in Set-up 2. 
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.  

 

Figure 3.31. Global mechanism for Test Set-up 1, 1.00mm thick sheet 

 

 

Figure 3.32. Global mechanism for Test Set-up 2, 1.00mm thick sheet 
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3.5.2 Comparison of Deflection 

The deflection of the beam in the elastic range is compared with the derived calculated values for the 

deflection. The analytical result assumes that the hinge transfers zero moment. The points of interest are 

the locations of the maximum moments which are the two mid-spans and the location of the joint. 

For this case, the deflection at the load when the first peak occurred is used for comparison. The 

experimental values for both sides of the sheet will be averaged and compared with the theoretical. The 

theoretical model is consisted of 3 pinned supports, with the Gerber hinge fully free to rotate. The 

moment of inertia used in the calculation is from the Technical Manual. 

There is an observed difference between the values from the experiment with the theoretical values. The 

deflection from all experiment set-ups are higher compared to their theoretical counterpart.  

   

Mid-span 1 

(Span w/o overlap) 
Overlap 

Mid-span 2 

(Span w/ overlap) 

0.85 

Set-up 1 
Theoretical 24.15 7.68 22.52 

Experimental 28.22 17.87 28.78 

Set-up 2 
Theoretical 25.11 7.99 23.42 

Experimental 27.77 19.18 31.37 

1 

Set-up 1 
Theoretical 29.10 9.25 27.13 

Experimental 33.31 20.51 34.49 

Set-up 2 
Theoretical 25.03 7.96 23.34 

Experimental 27.12 17.81 30.04 

1.5 

Set-up 1 
Theoretical 33.78 10.74 31.50 

Experimental 76.04 66.16 83.65 

Set-up 2 
Theoretical 31.63 10.06 29.50 

Experimental 33.52 22.07 35.38 

Table 3.5. Experimental values of deflection compared with theoretical 
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Figure 3.33. Deflection for the 0.85mm sheet 

 

Figure 3.34. Deflection for the 1.00mm sheet 
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Figure 3.35. Deflection for the 1.50mm sheet 

The deflection at the overlap is compared for Test Set-up 1 and 2 in Figure 3.36. The comparison clearly 

shows that the Set-up 2 has allowed more deflection in the overlap compared to the Set-up 1. Also, it can 

be seen from the figure below that after the first drop in the graph of Set-up 1, the capacity gained steadily 

until almost reaching the same initial capacity. By this time, the overlap is no longer a hinge and acting to 

provide continuity of the sheet, compared to the deflection of Set-up 1 which is increasing until ultimate 

failure. Also presented in Figure 3.37 are photos showing how much more deflection is in Set-up 2 

compared to Set-up 1.  

 

Figure 3.36. Comparison of deflection for Test Set-ups 1 and 2 for 1.00mm thick sheet 
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a) Set-up 1, 1.5mm sheet                                                      b) Set-up 2, 1.5mm sheet 

Figure 3.37. Overlap joint after the test 

3.5.3 Overlap Gap Opening 

The gap in the overlap is measured to see if it is significant enough to cause serviceability problems for 

the insulation that will be placed on top of the sheet. Theoretically, the gaps are expected to open during 

the elastic stage when the system is acting as Gerber beam, and close in the post-elastic stage when the 

system acts as a continuous beam (see Figure 1.8). 

The force-deflection plot of the sensor at the overlap exhibits an opening-closing of the gap. For this 

result, the positive deflection is a downward displacement (gap is closing) and negative means that the 

sensor is pushed upward (opening of the gap). At the start of the application of the load, the deflection 

measured negative. The deflection then becomes positive after the reaching the maximum load. This 

means that before reaching the elastic peak, the gap opens and then closes in the post-elastic stage. This 

affirms the assumption that the system behaves as a Gerber system – hinged at the overlap – during the 

elastic stage, and continuous system during the post-elastic stage. 
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Figure 3.38. Force-deflection plot of the overlap for 1.00mm thick (Set-up 1) 

From this experiment, it is observed that the gaps are opening very small to cause any major problem. The 

maximum measured openings are listed in Table 3.6 below. 

Thickness (mm) Maximum gap (mm) 

0.85  2.70 

1.00 2.68 

1.50 3.09 

Table 3.6. Overlap gap opening 

3.5.4 Rotational Stiffness 

The rotational stiffness is the ability of the sheet to resist a change in rotation. The sheet is expected to 

lose stiffness after the apearance of buckling. In the support, the rotational stiffness      of the sheet can 

be calculated using the relationship of the moment and rotation. 

                 Eq. 3.1 

The computation will be made for 1.0mm thick sheet. The moment is analytically derived using the load 

applied. The rotation is determined by computing for the angle of the sheet by knowing the deflection at 

the overlap joint and the distance of the sensor from the support. 
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Test Set-up 1 

 

Table 3.39. Moment-rotation curve for Set-up 1 

  Moment (kN-m) Rotation Rotational Stiffness (kN-m/rad) 

LVDT 1-3 Pt. A 17.20 0.015 1134.99 

Pt. C 16.96 0.046 372.45 

LVDT 1-4 Pt. A 17.20 0.016 1079.83 

Pt. C 16.96 0.052 323.08 

Table 3.7. Rotational stiffness values for Set-up 1 
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Test Set-up 2 

 

Table 3.40. Moment-rotation curve for Set-up 2 

  Moment (kN-m) Rotation Rotational Stiffness (kN-m/rad) 

LVDT 1-3 Pt. A 15.04 0.016 958.26 

Pt. C 12.06 0.079 153.14 

LVDT 1-4 Pt. A 15.04 0.013 1154.09 

Pt. C 12.06 0.018 653.49 

Table 3.8. Rotational stiffness values for Set-up 2 

The rotational stiffness, which is the slope of the moment-rotation plot, is initially large, and depending 

on the occurrence of instabilities, the stiffness changes. There is no constant stiffness from the initial to 

the ultimate load. The rotational stiffness for the support alone can be obtained from Set-up 2. For the 

succeeding calculations, the stiffness for LVDT 1-4 in Set-up 2 will be used. 

3.5.5 Reserve Capacity of the Sheet 

In all the tests conducted, the sheet always failed in the mid-support. In some cases, the mid-span also 

failed but the initial plastic hinge is always formed in the support. Even after this failure has occured, the 

distorted sheet still has some capacity to withstand additional load until ultimate failure of the whole 

system. This reserve capacity is an important measure of the robustness of the whole system to ensure a 

non-brittle collapse. This reserve capacity is determined in this section. 
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Test Set-up 1 

The reserve capacity of the sheet is derived based on the deformation plots of the Set-up 1 of 1.00mm 

thick sheet. It is difficult to obtain the reserve capacities from other thicknesses because they did not reach 

overall collapse. The Set-up 1 for the 0.85mm thick has failed prematurely due to tilting of the loading 

timber blocks, while the 1.50mm Set-up 1 did not reach ultimate collapse at all. 

 1.00mm thick 

Two scenarios are considered, the capacity of the section at the maximum elastic load (Figure 3.41.a) and 

the capacity of the section assuming that the mid-support has completely collapsed (Figure 3.41.b). When 

the system is under maximum loads, the internal support has nonzero moment at the support which is 

equal to the capacity of the sheet at the mid-support. On the other hand, the second scenario assumes no 

moment at the support since the sheet has totally collapsed in that location. Hinges are introduced in the 

internal support to recreate the simply supported condition. In this scenario, the capacity of the span is 

achieved. The load applied in both cases is the highest load applied in the test – 85.16 kN.  

 

a)  Moment distribution at maximum elastic load (k=100%) 

 

b)  Moment distribution assuming sheet at support totally collapsed (k=0%) 

Figure 3.41. Moment distribution for computation of reserve capacity 

To derive the reserve capacity, the maximum capacity of the sheet in the span is determined. Knowing the 

value of the applied moment, the excess bending moment that is applied at the support can be derived. 

Computation is presented below. The computed reserve capacity is 69%. 
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Figure 3.42. Bending moment diagram separately for the span and the support at maximum load (85.16kN) 

 

Test Set-up 2 

The reserve capacity for the Test Set-up 2 is determined by observing the deflection-force plots of the part 

of the sheet that has buckled. The deflection results from Test Set-up 2 on the overlap (LVDT 1-3, LVDT 

1-4) will be used for the computation of the reserve capacity. 

The idea is that one of the sides of the sheet will buckle first. This buckling, when occurred, will cause a 

tilt in the loading beams, following the deformed configuration. Meanwhile, the load is still being applied 

on both the deformed and undeformed sides of the sheet until total collapse is observed. This means that 

the buckled sheet can still carry an additional load until overall collapse.  

 Design moment capacity of single profile in the field span 

 Design moment capacity of single profile in the support 

 Moment at the single span when maximum load of 85.16 kN is applied 

 Excess moment at the span  

 Excess moment at the support (2*span) 

 Reserve capacity at the support 

Mdes.f 10.89kN m

Mdes.s 14.66kN m

Mapplied 15.97kN m

Mexc Mapplied Mdes.f 5.08kN m

Madd.sup 2 Mexc 10.16kN m

Mres

Madd.sup

Mdes.s

69.304%
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From the graphs below, the plot is linear until achieving the first peak which is the capacity of the two 

narrow profiles acting together. After the peak load is achieved, there is a drop in the capacities indicating 

that one of the sheets has buckled.  In this stage, the loads are still being applied. One side has higher 

deflection, but both sides have increasing deflection. The second peak in the plot is the load resisted right 

before the total collapse. This is also the ultimate capacity achieved by the undeformed sheet, and also the 

additional moment resisted by the buckled section. Table 3.9 lists the values for the reserve capacity of 

the sheets. 

 0.85mm thick 

 

Figure 3.43. Force-deflection plot at the overlap of 0.85mm sheet 
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 1.00mm thick 

 

Figure 3.44. Force-deflection plot at the overlap of 1.00mm sheet 

 1.50mm thick 

 

Figure 3.45. Force-deflection plot at the overlap of 1.50mm sheet 
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Thickness 

(mm) 

Capacity of 

both profiles 

(kN)* 

Capacity of 

single profile 

(kN)** 

Moment resisted 

after buckling 

(kN-m) 

Addl moment resisted 

by the buckled 

section (kN-m)  

Reserve capacity 

of the profile 

 0.85 60.62 25.75 37.04 11.29 43.84% 

1 73.25 35.4 58.84 23.44 66.21% 

1.5 142.47 60.3 112.01 51.71 85.75% 
*Load applied to achieve the capacities of the profiles acting together. The values are obtained from the experiment. 

** Load applied to achieve the capacities of single profile. The values are obtained from the technical manual. 

Table 3.9. Reserve capacity for Set-Up 2 

 

Figure 3.46. Plot of reserve capacity with thickness 

3.5.6 Overlap Joint under Residual Moment 

Additional Forces in the Overlap 

The overlap joint in Set-up 1 is closely examined in the series of tests. As aforementioned, the Set-up 1 

has the 500mm length of the overlap with three fixings. In all cases, the joint remained fixed and intact 

throughout the entire experiment. In some cases, it is observable that the fastener holes have been 

stretched due to bearing forces but not large enough to allow for screw disengagement. 

The design of the overlap joint is presented in Annex B.8. In theory, the overlap is supposed to be free of 

bending stresses because it is the point zero-moment. However, this is only true for the elastic stage. In 

the post-elastic stage, the residual moment due to the reserve capacity of the sheet generates additional 

moment in the joint. Therefore, the overlap joint must be checked for these additional stresses. 
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The additional moment due to the reserve capacity of the sheet is determined. The resulting moment in 

the overlap joint is 5.49 kN-m, which is obtained by getting the difference between 13.41 kN-m and 7.92 

kN-m from Figure 3.42.  

Similarly, the shear force is computed using the procedure in Section 3.5.5.  The shear at the joint at the 

collapsed stage would be equal to 3.63 kN, which is the difference of 5.32 kN and 1.69 kN, see Figure 

3.47. However, this value is smaller than the initial shear of 8.19 kN during the elastic stage, see Figure 

3.48. Therefore the value of the shear used for checking is the higher of the two. 

 

a)  Moment and shear distribution when system is acted upon by support moment alone 

 

b) Moment and shear distribution when system is acted upon by field moment alone 

Figure 3.47. Moment and shear distribution for the computation of shear at joint 
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Figure 3.48. Moment and shear distribution at initial stage 

Joint Fixings 

The fixings need to be checked for the maximum shear from the elastic and post-elastic conditions. In the 

elastic stage, the Gerber system will be active which constitutes that the screws act as a hinge. The hinged 

joint requires that the screws are placed close to each other to result to minimal transfer of moments. The 

fixings in the joint are stainless steel self-drilling screws with 6.3mm diameter. The properties are 

obtained from Lindab Technical Manual and EKS 10. The complete structural check of the screw is 

presented in Annex B.8. 

 

Figure 3.49. Self-drilling screws 

The fastener must never be the weakest link in a joint when subjected to shearing loads according to the 

Lindab Technical Manual. In addition, there should be at least 2 fasteners for load bearing screws for 

safety reasons. For the edge and centre distances under shear force, the minimum "a" distance is 3d and 

minimum "b" distance is 1.5d, where d is the diameter of the screw (see Figure 3.50).  
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Figure 3.50. Minimum distances 

The fastener must be checked for both shear and tension forces. For the tension forces, mode of failure 

could be extraction from surface (pull-out), pulling through or punching through of the screw, and tensile 

failure in the fastener. However, the screws on the side are assumed to be the active fasteners for this joint, 

and these are not subjected to tension but to shear forces. The top screw will be assumed to act as a 

placing screw only and not structural. The shear failure includes failure of the hole edge and shear failure 

of the fastener.  

The design of connection should observed that the governing mode of failure is ductile (ie. bearing of the 

sheet) and not the rupture of the screws. This is indeed the case in all the test specimens where the bearing 

failure is observed (see Figure 3.51).  

 

Figure 3.51. Screw holes disfigured due to bearing forces 
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Overlap Length 

To check the overlap length, the maximum loads that can be carried by the screw fixings are determined. 

These loads will determine the maximum force that can be applied to the joint and should be resisted by 

the appropriate overlap length. The force arm would be the length of the overlap, and basically the 

moment that the overlap length should carry is the product of force and distance. The calculation is 

presented in Annex B.8. The additional moment at the overlap length is compared with the moment 

resistance of the sheet in the table below. 

Thickness 

(mm) 

Design Moment 

Resistance of Wide 

Flange (kN-m) 

Moment in the 

Overlap (kN-m) 

0.85 7.74 4.22 

1 10.89 5.40 

1.5 17.63 9.92 

Table 3.10. Additional moment on the overlap 

After the structural check, it is concluded that the overlap joint is structurally adequate even after 

application of the maximum loads. 
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4 NUMERICAL STUDY 

4.1 Overview of the Numerical Study 

This chapter is particularly concerned on the stiffness of the sheet over the mid-support at the post-elastic 

stage. Full-scale models in the Abaqus software are developed for the 1.00mm thick sheet with 500mm 

overlap length. The numerical models are created to be as similar as possible to the experimental set-up, 

mainly for comparison purposes. The model is made to exhibit varying stiffness of the sheet above the 

internal support, which mirrors a spring with varying values of spring constant. To model the variation in 

stiffness, the model consists of three separate parts over the mid-support as shown in Figure 4.1. Parts 1, 2 

and 3 are partitioned parts in the model. These elements have the same properties, but Part 2 will be 

modified to have varying stiffness.  

 

Figure 4.1. Diagram for the numerical model  

Due to collapse over mid-support, Part 2 reaches elastic capacity and starts to plasticize. With the 

distribution of the plasticity, Part 2 undergoes loss of stiffness. Meanwhile, Parts 1 and 3 are still in elastic 

region and has full elastic stiffness. The stiffness at Part 2 is varied and the internal stresses at the overlap 

joint are obtained. The model was made for 1.00mm thick sheet, with seven different values of stiffness 

ranging from 100% to 0.5% of the original stiffness.  
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E1 k = 100% E = 210 GPa 

E2 k = 75% E = 158 GPa 

E3 k = 50% E = 105 GPa 

E4 k = 25% E = 53 GPa 

E5 k = 10% E = 21 GPa 

E6 k = 2.5% E = 5.25 GPa 

E7 k = 0.5% E = 1 GPa 

Table 4.1. Varying elastic stiffness used in the model 

4.2 Method of Analysis 

The purpose of the numerical simulation is to predict the internal forces and deflection of the sheet as 

accurate as possible to its real behaviour. A number of assumptions have been introduced to the model, 

and the results from the numerical analysis are compared to the experimental results to determine the 

accuracy of the model. 

The computational analysis used in the model is the Geometrically and Materially Non-linear Analysis of 

the perfect structure (GMNA). Since the research aims to determine the behavior of the sheet before and 

after failure, it is best to use the nonlinear properties of the material to capture its plastic behaviour. The 

plastic analysis assumes progressive yielding in the cross-section, leading to redistribution of stresses. 

The material is assumed to be free from imperfections, but the geometric nonlinearity is assumed in the 

model to take into account the full change in geometry. Shown in Figure 4.2 below is the load-

displacement curves of different computational models that can be used in numerical modeling. 

 

Figure 4.2. Comparison of the different computational analyses (Dubina, Ungureanu, & Landolfo, 2012) 
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4.3 Finite Element Model 

Using Abaqus 6.14, finite element analysis was performed on full scale models of the trapezoidal profiled 

sheeting. The units used for the numerical model is listed below: 

Length mm 

Force N 

Stress MPa 

Table 4.2. Units used in the model 

For a more efficient numerical computation, only half of the experimental profile is used for the 

numerical model. This simplification is based on the idea that the research is particularly concerned on 

the behaviour of the sheet when the narrow flange is in compression; therefore only a trapezoidal sheet 

with a single narrow flange is used.  

Shown in the figure below are the different profiles assumed in every step of the research. For the 

experimental study, a 1600mm width profile consisting of two narrow flanges are used. For the numerical 

and the analytical analysis, a single narrow flange is used. However in the numerical model, the top 

flange is omitted since it causes extreme deflection results in the model. This simplification is expected to 

increase the computational speed of the software while not compromising the results.  

 

a) Profile used for the experimental study 

 

b) Profile used for the numerical study 
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c) Profile used for the analytical study 

Figure 4.3. Profiles used for the different stages of the study 

4.3.1 Parts 

Part Definition 

Shell finite elements are used to model the trapezoidal sheet. Shell elements are chosen because it can 

give more efficient calculating process for thin-walled sections, where one dimension (width) is 

significantly larger than the other dimension (thickness). It is mentioned that the shell model is optimal 

for models with width-to-thickness ratio of 20. The sketch of the profile is imported from AutoCAD, and 

extruded up to the required length.   

 

Figure 4.4. Part used in the model 

Figure 4.4 shows half of the profile which is at the left part of the assembly. The right part of the 

assembly is fastened to the left part using point-based fasteners at the bottom flange. The top flange is 

decided to be cut and reduced to 50mm to avoid the instabilities in the edges.  

The appearance of the local buckling constitutes a stable path but causes a drastic loss of stiffness to the 

material. The loss of stiffness leads to a spring-like connection at the mid-support. Since there is no 
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accurate value yet for this spring constant, the model will employ the use of parts with varying modulus 

of elasticity. 

 

Figure 4.5. Partitioned part where stiffness is varied 

Properties 

The properties used in the model are found in Annex B.2. The values for the plastic strain input are: 

Yield Stress (MPa) Plastic Strain 

420 0 

760 0.162 

Table 4.3. Plastic strain input for model 

4.3.2 Mesh 

Mesh Definition 

The mesh size is constant at a global size of 40mm. The shape of the mesh is quad and S4R elements are 

used as the large-strain shell elements. S4R is a quadrilateral four-noded shell element with reduced 

integration. It can be used for general purpose, and is suitable for wide range of applications (Shell 

Elements in ABAQUS/Explicit, 2005). 
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Mesh Convergence Study 

A convergence study is performed to see the influence of the mesh sizes in the model. For this check, a 

simple one trapezoid model is used with plastic and geometrically nonlinear properties. The analysis is 

General Static and a uniformly distributed load is applied along the length of the beam. The force-

displacement curve is plotted for a single node in the middle of the span. The mesh sizes were varied with 

values 40mm, 30mm, 20mm, and 10mm, and all other variables are kept constant. 

 

Figure 4.6. Force-displacement plot of the different mesh sizes 

The force-displacement curve for the different mesh sizes is generated and shown in Figure 4.6. It is 

observed that the plots assume the same behaviour initially. Interestingly enough, the mesh sizes of 40mm 

and 10mm, deviated from linearity in the same direction, while mesh sizes 30mm and 20mm have a 

different nonlinear pattern. From the images in Figure 4.7 below, it is seen that the buckling patterns are 

not the same for all the mesh sizes. 30mm and 20mm have the same buckling mode, where a local 

buckling started to appear in the middle of the beam. While in the beam with 40mm and 10mm mesh 

sizes, the several local instabilities occurred at the same time in the midspan that caused for a premature 

failure of the beam. 
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a) 40mm mesh size     b) 30mm mesh size 

  

c) 20mm mesh size    d) 10mm mesh size 

Figure 4.7. Trapezoidal sheet model with different mesh sizes 

The convergence study shows that the mesh sizing has a significant influence to the inelastic behaviour of 

the sheet, and the ultimate carrying capacity of the model. It also shows that the results from the 

convergence study are not conclusive in choosing the mesh sizes. One suggestion to address this 

inconsistency is to validate the results with an experiment. According to the result, the 40mm mesh size 

has a similar behaviour with the 10mm mesh size, and therefore the 40mm is accepted by the user. This 

mesh size will also work well in expediting the result generation. 

4.3.3 Assembly 

The assembled configuration of the model is presented below. The full-scale model consists of two spans, 

where the left is an overhang beam and the right beam is lying on top of the left. Each span is measuring 

6m. The overlap length in the joint is 500mm located in the second span. There are three supports and 

four load points along the beam. 
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Figure 4.8. Assembly of the model 

4.3.4 Interaction 

The screws on the bottom flanges and the overlap joint are represented as point-based fasteners with 

6.3mm diameter. For the fixings at the bottom flange, the fasteners are constrained in all the degrees of 

freedom. This can represent the clamping effect of the screws on both the sheets being attached. However 

in the overlap, the fasteners are modeled as hinges, where the UR1 rotation is allowed. The configuration 

of the fasteners at the overlap follows the same configuration from the experiment, see Figure 4.9. 

 

Figure 4.9. Overlap screw fixings 
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The contact between sheets is also a vital part of the model. A surface-to-surface interaction is used for 

the sheet-to-sheet interaction. For the Normal Behaviour, the hard contact option is employed. This option 

minimizes the penetration of the slave surface into the master surface. It also does not allow transferring 

tensile stresses in the interface (ABAQUS Analysis User's Guide, 2014). For the Tangential Behaviour, 

an assumed friction coefficient is specified with the value of 0.5.  

4.3.5 Step 

Since the objective of the analysis is to capture the complete behaviour of the sheet, the Riks method is 

opted to be used. The arc-length method is an efficient method in solving non-linear systems, especially 

when there are one or more critical points. A critical point is characterized by an occurrence of instability 

when the loaded body can no longer support the increase of external forces (Vasios, 2015). Riks method 

is suitable for cases of buckling or collapse, because the arc-length can determine the response of the 

structure with significant change in stiffness. This method is chosen to capture the behaviour of the 

material after the failure where the stress-strain diagram starts deviate from linearity.  

4.3.6 Load and Boundary Condition 

The end supports are represented by coupling constraints. This entails that the movement of the reference 

point is followed by the slave points. The degrees of freedom of the points at the surface of the support 

are tied to a reference point. The reference point is chosen to be the center point of the surfaces. The 

support is idealized as pinned, which may not be the case in the experimental set-up.  

 

Figure 4.10. Support boundary condition 

There are also side boundary conditions in the experiment provided by the L-shaped angles acting as steel 

ties. These steel ties occur at several points along the length of the beam to prevent the sheet from 
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spreading or to become distorted. These are represented in the model by restricting the movement of the 

top flange in the horizontal direction. 

In the experiment set-up, timber blocks are used to apply the load along the beam. This is represented 

similarly in the numerical model. The loads are applied using coupling interaction. Figure 4.11 shows a 

plan view of the model with the surfaces used for load application. The points on these surfaces are tied to 

the reference point and the reference point is subjected to a -1000N force. There are four load reference 

points throughout the beam. 

 

Figure 4.11. Load application 

4.4 Analysis of Results 

The model converged until the elastic limit only, when the capacity for tension yielding in the mid-

support is reached. The stress and deflection results are extracted and compared with the other 

investigative approaches in this study. 

4.4.1 Stress Results and Comparison 

Maximum Load 

The maximum load in the numerical model is at 35.88 kN total load for a single profile. Comparing this 

value with the experimental and the design capacity from the technical manual, it can be seen that this 

maximum load in good agreement with them.   
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 Maximum Load (kN) 

Abaqus 35.88 

Technical Manual 36.30 

Experiment Setup 1 42.58 

Experiment Setup 2 36.63 

Table 4.4. Maximum load for numerical, theoretical, and experimental 

Maximum Stress 

The results of the 1.00mm thick sheet is presented, with uniform elastic stiffness (k=100%) throughout 

the beam. The von Mises stress values were generated from Abaqus. At the last increment of the model, 

the maximum stress is achieved at 420MPa. This corresponds to the tension yielding of sheet over the 

internal support. This maximum stress is observed on the edge of the constrained surface assigned as the 

support boundary condition, see Figure 4.12. It is also observable that other than the supports, the mid-

span locations also have an increased stress region indicating stress redistribution.  

 

 

Figure 4.12. Location of maximum von Mises stress 
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The averaged S22 stresses along the beam are obtained for both the top and bottom flanges. Plotted in 

Figure 4.13, the maximum stress is shown to occur in the mid-support and mid-spans. There is also a peak 

stress in the end supports resulting from restraining the end element. The location of the overlap joint 

shows a drop of stresses, which is expected since joint is acting as a hinge during the elastic phase. The 

sudden decrease of stresses in the location of the load application and at the mid-support are due to the 

constraint placed in the model, therefore these drops in stress are not significant in the analysis. 

 

Figure 4.13. S22 stress along the beam 

Stress in the Cross-Section 

The stresses in the cross-section at the mid-support and mid-spans are extracted from the model and 

compared with the theoretical values. The calculation for the theoretical stress is presented in Annex B.9. 

The theoretical and the numerical values are close with each other. However, the biggest difference occur 

in the midspan which may have been caused by the support condition that is not purely hinged, but rather 

takes some stresses as seen in the stress distribution on Figure 4.13.  
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 Stress at Mid-support (MPa) Stress at Span (MPa) 

Top Bottom Top Bottom 

Abaqus 380.13 -142.48 -84.46 207.92 

Theoretical 369.09 -139.05 -103.29 274.17 

Table 4.5. Comparison of the computed stresses with the numerical results 

 

Figure 4.14. Stress in the cross-section of the profile at the support 

 

Figure 4.15. Stress in the cross-section of the profile at the span 
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4.4.2 Deflection Results and Comparison 

The numerical model successfully generated results until maximum yield stress indicated in the material 

properties. Shown in Table 4.6 is the comparison of the deflection from the experimental results with the 

numerical results under the same stress. The locations of the deflection are the points where the deflection 

sensors were stationed along the beam in the experiment. The deflections in the same location were 

extracted from the numerical results. The maximum deflections in the model are located in the spans. 

Theoretical values for the deflection are also obtained and compared with the results of the numerical 

model.  

 

Figure 4.16. Deflection of the whole model 
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Table 4.6 shows the deflection from the two experiments, the numerical model and the theoretical 

analysis. For the analytical calculation, the moments of inertia of the gross section and from technical 

manual are used. The values for the experimental data are the average of the two sensors at that location. 

Deflections are in mm. 

  
Mid-span 1 

Overlap 
Mid-span 2 

Gap 
(Span w/o Overlap) (Span with Overlap) 

Experiment (Test 1) 26.59 15.73 27.21 -1.38 

Experiment (Test 2) 26.28 15.65 28.04 - 

ABAQUS 15.59 7.95 16.44 -0.20 

Analytical (Gross Section) 19.21 4.32 16.86 -1.50 

Analytical (Technical Manual) 24.53 7.80 22.87 -1.50 

Table 4.6. Deflection from experiment, numerical and theoretical analysis 

 

Figure 4.17. Bar graph of the different deflection for comparison 

As seen from the result, the difference of the deflection of the numerical model with the experimental 

values is significant. The discrepancy in the results may have stemmed from the modeling of the supports. 

The theoretical value with the gross moment of inertia is the closest to the numerical model. Moreover, 

the calculated deflection using the moment of inertia from the technical manual amounted to less 

deflection that the actual deflection in the experiment. It comes close to the experimental values for mid-

span locations.  
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From this comparison, it is seen that the experimental values have the same behaviour regardless of the 

overlap condition. This is because both set-ups have same stiffness up until the maximum elastic load 

from where the sheets start behaving differently. The consistency of the two experimental values is clear 

from the results.  

The gap opening is also computed by determining the rotation at the point of the hinge, assuming that the 

hinge allows perfect rotation. The gap opening for the experimental is close with the theoretical values. 

Below is the determination of the theoretical gap. 

 

 

 

 

Some other behaviour of the numerical model was also found comparable to the experimental results.   

  

Figure 4.18. Opening of the bottom sheet in the overlap at the end of the experiment, Test Set-up 1 for 1.00mm sheet 

2 0.009rad 0.516 deg

Computation for the theoretical gap opening 

 

 

 

 

 

 

1 0.012rad 0.688 deg

Lov 500mm

gap1 Lov tan 1  6mm

gap2 Lov tan 2  4.5mm

gap1 gap2 1.5mm
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Figure 4.19. Web buckling at k=0.5% 

4.4.3 Different stiffness over mid-support 

One of the objectives of the finite element model is to investigate the evolution of the stresses at the 

overlap as the system undergoes elastic to post-elastic behaviour. The model in Abaqus converged only 

up until the elastic limit. To capture the post-elastic loss of stiffness, the partitioned sheet in the mid-

support was assigned to have varying stiffness values ranging from 0% - 100%. The 100% stiffness 

corresponds to the stiffness of the original material which is 210 GPa. This study of the stiffness aims to 

give an understanding on how the stresses are developed in the overlap joint as the loads are increased 

until the ultimate failure.  

For the stresses in the overlap, the highlighted selections in Figure 4.20 are the elements selected for data 

extraction. These elements are chosen since they represent the peaks and lows of stresses in the overlap. 

Three elements are on the overlap edge: top, bottom and side; and one element away from the edge which 

correspond to the element with high increase of stress at the ultimate load. The von Mises stress is 

obtained for each of these elements and the evolution of the stress is studied and presented in Figure 4.21. 

The stresses in the section is also presented in Figure 4.24. 
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Figure 4.20. Elements selected for stress data 

 

Figure 4.21. Stress on the chosen elements for varying stiffness 

Interestingly, the results showed that the relationship of the stiffness at the support with the moments in 

the beam is not linearly proportional. It is observed that the stresses at the overlap joint are increasing / 

decreasing depending on the element chosen.  
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The plot for the element away from the edge is singled out and presented in Figrue 4.22. This plot shows 

that if the stiffness is reduced to as low as 20%, there are minimal and non-significant additional stresses 

in the overlap. The slope of the curve is mild in this region. However, for stiffness of less than 20%, huge 

amounts of additional stresses are observed in the profile. Plotting a trendline in the curve, a logarithmic 

relationship matches the results. This trend is also the same for deflection. 

 

Figure 4.22. Stress on the elements away from the overlap edge, plotted with trendline 

From the stress results, the moments are calculated. It is noticed that there is an initial moment for 

k=100% as shown in Figure 4.23. This is in contrast with the assumption of zero-moment for an ideal 

Gerber beam with perfect hinge. This moment at the overlap is not easy to verify since it is difficult to 

choose which elements to extract data from that will give the best representation of stress at the overlap. 

With this information, the stresses are obtained for the element away from the edge. This element has the 

increasing stress as the stiffness decreases, and is located at the bottom where the moment calculation is 

based. 
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Figure 4.23. Moment for the element away from the edge with varying stiffness 
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Figure 4.24. Evolution of the stresses at the overlap joint with varying k 
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4.5 Beam Model 

To validate these findings, another analytical model was developed where a spring is introduced in the 

support with varying rotational stiffness. The maximum stiffness used as input corresponds to the same 

moment distribution at elastic stage, and the lowest stiffness corresponds to a simply supported span.  

4.5.1 Model and Results 

In order to make a comparison with the results from the Abaqus model, a beam model using the 

engineering design software STAAD was created. The beam is made up of two spans but the Gerber joint 

is no longer present because the condition being observed is at the collapse stage. At the mid-support 

location, there will be an imposed rotational stiffness which will be varied. The moments at the overlap 

joint will be investigated as the stiffness at the mid-support ranged from 0% (simply supported) to 100% 

(initial stiffness of the system). 

 

Figure 4.25. Model in STAAD 

From Figure 4.25, there is a small circle right after the internal support, which represent the spring in the 

start of the beam. This spring is characterized by a spring constant derived from the experimental values. 

The stiffness of the mid-support comes from the Set-up 2 of 1.00 mm sheet, LVDT 1-4. The rotational 

stiffness is calculated using the deflection at the end of the overlap and the moment at the support.  

The initial stiffness of the system is at 1154.09 kN-m/rad, and the stiffness at collapse is 653 kN-m/rad, 

(see Section 3.5.4). Using these values of the stiffness and the maximum load applied to the system, the 

relationship of the stiffness with the overlap moment is determined and presented in the graph in Figure 

4.26. 
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Figure 4.26. Rotational stiffness at the support against the moment in the overlap (k=100%=1154.09kN-m/rad) 

The plot shows a nonlinear, almost logarithmic relationship of the stiffness with the moment in the 

overlap joint. If the end stiffness of 653 kN-m/rad is plotted in the same graph, the value of the moment 

on the overlap during the collapse would be 3.92 kN-m/rad. However, it should be noted that at k=100%, 

it is expected that the moment at the overlap is zero, but in this case it is not. It has some 2 kN-m at the 

initial stiffness. Comparing with the previously obtained values from the Abaqus, the trend of the plot is 

almost similar.  

To see the range of stiffness in the plot, a model was made and experimented to put extreme values of the 

rotational stiffness. For the initial stiffness, an arbitrary high value of 10000 kN-m/rad was used, which 

also correspond to zero moment at the hinge. It shows that to have zero moment at the hinge location, the 

value of the stiffness should be very high. For the lower value of stiffness, the rotational stiffness would 

be a very low value of 0.5 kN-m/rad. This plot is shown below in red. 
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Figure 4.27. Stiffness vs Moment in the overlap for an extremely high arbitrary value of k 

 

Figure 4.28. Moment-stiffness plot of the overlap overlays in the general plot 

Using the plot generated from STAAD results, Figure 4.29 shows the comparison with the moment 

calculated form Abaqus generated previously. Note that the element considered in the Abaqus is from the 

element away from the edge. It is interesting to observe that in both cases, the initial moment is not zero, 

which is the assumption for the Gerber joint. It is important to know that the zero moment in the hinge is 
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only theoretical, and in the real behavior, the overlap joint is expected to transfer minimal moments 

because of the attached fixings and the contact between sheets. 

Both values are increasing in almost similar trend, starting with a mild slope. However, the end moments 

are not in agreement. It is thought to be because of the assumed width of the partitioned element in 

Abaqus where the stiffness is varied. It is assumed to be 150mm corresponding to the width of the support 

cleats underneath. However, the experiment shows that the web buckling could have widths of 200-

490mm, see Figure 4.30.  

 

Figure 4.29. Moment at the overlap for STAAD and Abaqus 

 

Figure 4.30. Width of web buckling for 1.50mm sheet, Test Set-up 2 
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4.5.2 Moment and shear distribution 

The moment and shear distribution for the different rotational stiffness can also be generated from the 

STAAD model. The stiffness of 1154.09 kN-m/rad is assigned to be the k=100%, and k=0% corresponds 

to a simply supported span. The load applied in this distribution is the maximum load for the 1.00mm 

sheet Set-up 1, which is 85 kN. 

 Mz (kN-m) Fy (kN) 

k=100 -2.43 7.56 

k=75 -3.13 7.41 

k=50 -4.29 7.16 

k=25 -6.58 6.67 

k=10 -9.47 6.05 

k=0 -13.20 5.26 

Table 4.7. Internal forces at the overlap location for varying stiffness 

The graphs in Figure 4.31 demonstrate how the moment distribution changes with the varying stiffness in 

the mid-support. At the location of the overlap joint, the moment is minimum when k=100%. As the 

section in the mid-support starts to plasticize, the internal moments are redistributed. The overlap joint 

therefore undergoes an increase of internal moments as the moment distribution changes.  

Furthermore, the graphs in Figure 4.32 show the shear distribution for varying stiffness. It is observed that 

the shear is maximum during the elastic stage, and the decrease of stiffness in the mid-support causes 

reduction in shear force at the overlap. 
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Figure 4.31. Moment distribution for varying k 

 

Figure 4.32. Shear distribution for varying k 
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are also determined and listed on Table 4.8. These values do not necessarily agree with the values derived 

on Section 3.5.6. However, the forces in the aforementioned section are higher and more critical, 

therefore the check is conservative. 

 Mz (kN-m) Fy (kN) 

k=1154 kN-m/rad -2.43 7.56 

k=653 kN-m/rad -3.92 7.24 

Table 4.8. Internal forces for elastic and collapse stage, 1mm sheet Test Set-up 2 
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5 CONCLUSIONS AND RECOMMENDATIONS 

The experimentation on the six set-ups has verified the behaviour of the Maeki and Gerber systems. It 

was shown that there is redistribution of stresses in the Maeki system and not in the Gerber. This is 

suggested by the failure of the mid-span in the Set-up 1 and not in the Set-up 2. The load-bearing capacity 

of the Set-up 1 system is also higher, suggesting that the Gerber system fails earlier than the Maeki 

system. Furthermore, the allowed rotation at the overlap in Set-up 1 is less than in the Set-up 2. The 

Maeki system is better in accommodating rotations at the hinge. The brittle failure of the hinge is less 

likely to happen in the Set-up 1 because of the extended overlap length. Lastly, the experiment shows that 

the overlap gap opens and closes throughout the test which indicates that the hinge is active during the 

elastic stage. 

In the experiment, the failure is always initiated in the mid-support. It is found that the mid-support has 

some reserve capacity to resist additional stresses even after it has exceeded its design capacity. The 

reserve capacity increases with thickness of the sheet. This reserve capacity of the sheet at the mid-

support causes additional moment in the overlap joint.  

The overlap joint has also been checked for maximum moment and shear. The moment in the joint 

increases with the decreasing stiffness in the mid-support. On the other hand, the shear is maximum 

during the elastic stage. The structural capacity of the joint is important to provide ductility and increased 

robustness for the whole system. The joint has been shown to provide adequate structural capacity to 

carry the highest load at 1.50mm sheet test. This also confirms the use of 500mm overlap length to 

provide continuity during the post-elastic stage. It might be helpful to explore other overlap lengths in 

future studies. It is also recommended to study the possibility of placing the fixings in the middle of the 

section rather than the top of the section to reduce shear forces.  

The occurrence of the local buckling in the sheet above the mid-support causes reduced stiffness in the 

section. The decreasing stiffness has effects on the internal forces at the overlap joint. It was investigated 

how varying the stiffness at the mid-support will change the moment distribution along the beam. The 

numerical models show that the stiffness at the mid-support has nonlinear relationship with the stresses in 

the overlap. 
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GROSS CROSS-SECTION PROPERTIES
OF 1.50mm THICK TRAPEZOIDAL SHEET

 ----------------   REGIONS   ----------------
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145.52

54.98

200.50

400.00 400.00

800.00

Annex Page 5



Annex Page 6



Annex Page 7



S
ID

E
 V

IE
W

S
E

T
-U

P
 1

 - P
L

A
N

 V
IE

W

L
/2

L
/2

O
V

E
R

L
A

P
 L

E
N

G
T

H

L
V

T
D

 1-2

L
V

T
D

 1-1

L
V

T
D

 2-2

L
V

T
D

 2-1

L
V

T
D

 1-4

L
V

T
D

 1-3

L
V

T
D

 2-4

L
V

T
D

 2-3

S
E

T
-U

P
 2

 - P
L

A
N

 V
IE

W

L
/2

L
/2

L
V

T
D

 1-2

L
V

T
D

 1-1

L
V

T
D

 1-4

L
V

T
D

 1-3

L
V

T
D

 2-4

L
V

T
D

 2-3

L
O

C
A

T
IO

N
 O

F
 LV

T
D

 S
E

N
S

O
R

S

Annex Page 8



 

ANNEX B  

Calculation Sheets 

  

Annex Page 9



ANNEX B.1

CALCULATION OF LOADS FOR THE TRAPEZOIDAL SHEETING 
EN 1990 Basis of Structural Design (2002)
EN 1991-1-3 Actions on Structures - Part 1-3: General actions - Snow loads (2003)

ANNEX B.1

CALCULATION OF LOADS FOR THE TRAPEZOIDAL SHEETING 
EN 1990 Basis of Structural Design (2002)
EN 1991-1-3 Actions on Structures - Part 1-3: General actions - Snow loads (2003)

This section presents the load calculation for the trapezoidal sheeting. Loads include the permanent
and the snow loads. Load combinations are acquired for the ultimate limit state and the accidental
condition. 

Permanent Load·

ρsheet 0.102
kN

m
2

t 0.85mm=if

0.12
kN

m
2

t 1.00mm=if

0.15
kN

m
2

t 1.25mm=if

0.18
kN

m
2

t 1.50mm=if

:= Unit density of sheet 

Gk ρsheet:= Uniform dead load due to self-weight

Snow Load·
EN 1991-1-3  Snow Actions

μ 0.80:= Snow load shape coefficient 

Ce 1.0:= Exposure coefficient

Ct 1.0:= Thermal coefficient

sk 3
kN

m
2

:= Characteristic value of ground snow load

Sk μ Ce Ct sk 2.4 kPa=:= Characteristic snow load 

Load Combinations·
EN 1990 Section 6.4, Section 6.5

 Characteristic Loads

Gk Characteristic permanent load

Sk Characteristic normal snow load

 Partial Safety Factors

γG 1.35:= Permanent action

γQ 1.50:= Variable action 
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0.85 1.00 1.25 1.50
Permanent Load (kPa) 0.10 0.12 0.15 0.18
Snow Load (kPa) 2.40 2.40 2.40 2.40
ULS (kPa) 3.39 3.41 3.44 3.47
ALS (kPa) 1.54 1.56 1.59 1.62

Thickness (mm)

load 3kPa

 Ultimate Limit State Load Combination

The load combination to be considered is when the snow action is the dominating variable.

SafetyClass 2:= Safety class

γd 0.83 SafetyClass 1=if

0.91 SafetyClass 2=if

1.00 SafetyClass 3=if

0.91=:= Factor for safety class

ξ 0.89:= Factor for unfavourable condition

ULS γd ξ γG Gk γd γQ Sk+:= Permanent + Snow

ULS 3.388 kPa=

 Accidental Load Combination

ψ1 0.6:= For snow  

ALS Gk ψ1 Sk+:= Permanent + Snow

ALS 1.542 kPa= Accidental load

Summary of the loads for different thicknesses·

0.85 1.00 1.25 1.50
Permanent Load (kN/m) 0.16 0.19 0.24 0.29
Snow Load (kN/m) 3.84 3.84 3.84 3.84
ULS (kN/m) 5.42 5.45 5.50 5.56
ALS (kN/m) 2.47 2.50 2.54 2.59

Thickness (mm)

For width of 1600mm, the uniform loads are:
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ANNEX B.2

PROPERTIES OF TRAPEZOIDAL SHEET
EN 1993-1-5 Plated Structural Elements (2006)
Lindab Catalog - LHP200

This section includes the determination of the properties of the LHP200 trapezoidal sheeting. Some of
the peroperties were obtained from the technical manual such as the moment and shear resistances. The
section with the narrow flange is of more interest in this research because at midsupport, the bottom
flange is in compression.

Material Properties·

fyb 420MPa= Yield strength

fu 760MPa= Ultimate strength

Es 210GPa= Modulus of elasticity

ν 0.3= Poisson's ratio

εy

fyb

Es
0.002== Elastic strain

εp

fu fyb-

Es 100
0.162== Plastic strain

εs 0 0.001, εp..=

σs εs( ) Es εs( ) εs εyif

fyb Es 100( ) εs( )+  εs εy>if

=

0 0.05 0.1 0.15
0

200

400

600

800

Stress-Strain Graph of the Trapezoidal Sheet

σs εs( )
MPa

εs

Figure 1. Stress-Strain graph
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0.85 1.00 1.25 1.50

Area (mm
2
) 956.67 1125.5 1406.87 1688.25

Moment of Inertia (mm
4
) 4904502.22 5770038.65 7212639.64 8655301.51

Distance of neutral axis to top flange (mm) 54.66 54.73 54.86 54.98
Distance of neutral axis to bottom flange (mm) 145.19 145.27 145.39 145.52

Thickness (mm)

Cross-section properties·

hs 199.00mm= Height of the sheet

bs 800mm= Width of one trapezoidal section

ntr 1= Number of trapezoidal sections considered

btot ntr bs 800 mm== Total width of the trapezoidal sheet

Figure 2. Trapezoidal sheet cross-section

Listed below are the gross section properties for all the thickness:

 Cross-sectional Properties from Technical Manual

tber 0.782mm tnom 0.85mm=if

0.94mm tnom 1.00mm=if

1.162mm tnom 1.25mm=if

1.424mm tnom 1.50mm=if

= Steel core thickness

Ieff 4460
mm

4

mm
tnom 0.85mm=if

5410
mm

4

mm
tnom 1.00mm=if

6760
mm

4

mm
tnom 1.25mm=if

8330
mm

4

mm
tnom 1.50mm=if

= Moment of inertia in axis of bending 
(per mm width)
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Characteristic Capacities·

Mk.wide 9.67
kN m

m
tnom 0.85mm=if

13.61
kN m

m
tnom 1.00mm=if

18.95
kN m

m
tnom 1.25mm=if

22.04
kN m

m
tnom 1.50mm=if

= Characteristic moment capacity for wide flange -
compression on top (per meter width)

Mk.narrow 13.26
kN m

m
tnom 0.85mm=if

18.33
kN m

m
tnom 1.00mm=if

25.96
kN m

m
tnom 1.25mm=if

31.02
kN m

m
tnom 1.50mm=if

= Characteristic moment capacity for narrow
flange - compression on bottom 
(per meter width)

Vk 10.62
kN

m
tnom 0.85mm=if

17.93
kN

m
tnom 1.00mm=if

32.83
kN

m
tnom 1.25mm=if

59.39
kN

m
tnom 1.50mm=if

= Characteristic shear capacity (per meter
width)

Vf.k 14.2
kN

m
tnom 0.85mm=if

18.6
kN

m
tnom 1.00mm=if

27.2
kN

m
tnom 1.25mm=if

37.1
kN

m
tnom 1.50mm=if

= Characteristic shear buckling capacity for flange

Vw.k 18.9
kN

m
tnom 0.85mm=if

26
kN

m
tnom 1.00mm=if

40.7
kN

m
tnom 1.25mm=if

58.3
kN

m
tnom 1.50mm=if

= Characteristic shear buckling capacity for web
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Vb.k 1534
kN

m
m

2
 tnom 0.85mm=if

1998
kN

m
m

2
 tnom 1.00mm=if

2876
kN

m
m

2
 tnom 1.25mm=if

3850
kN

m
m

2
 tnom 1.50mm=if

= Characteristic global shear buckling capacity
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ANNEX B.3

MOMENT DISTRIBUTION AND DEFLECTION OF GERBER BEAM

This section provides analytical analysis of the gerber beam, showing the derivation of the shear,
moment, slope, and deflection equations accompanied by graphs. The values for moments of
continuous beam, and the single span are also computed and plotted in a single graph for comparison.
For this calculation, sheet of thickness 1.00mm is used.

Length Parameters·

Lspan 6m= Length of the single span

nspan 2= Number of spans

Ltot nspan Lspan 12000 mm== Total length

ahinge 0.2125 Lspan 1275 mm== Distance of the hinge from middle support

bhinge Lspan ahinge- 4725 mm=:= Distance of hinge from end support

L1 Lspan 6000 mm=:= Length of first span

L2 Lspan 6000 mm=:= Length of second span

Lhinge L1 ahinge+ 7275 mm=:= Location of the hinge from the left end support

Applied Load·

w 5.45
kN

m






0.5 2.725
kN

m
=:= Distributed load for 1.00mm thick sheet for

800mm width (based on Annex B.1)

Gerber Beam·

Figure 1. Gerber beam

 Computation of Support Reactions

Vhinge w
L2 ahinge-

2









 6.438kN=:= Shear at hinge

M2.ger Vhinge ahinge w ahinge
ahinge

2









+:= Moment reaction at midsupport

M2.ger 10.423 kN m=
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R1.ger

M2.ger-

L1

w L1

2
+ 6.438 kN=:= Force reaction at first support (left support)

R2.ger w ahinge Vhinge+( )
M2.ger

L1
0.5 w L1+









+:= Force reaction at midsupport

R2.ger 19.824 kN=

R3.ger R1.ger 6.438kN=:= Force reaction at third support (right support)

 Shear and Moment Diagrams

x 1mm 2mm, Ltot..:= Singularity functions

x1 x( ) max 0 x, ( ):=

x2 x( ) max 0 x L1-, ( ):=

x3 x( ) max 0 x L1 ahinge+( )-,  :=

x4 x( ) max 0 x L1 ahinge+
bhinge

2
+









-, 








:=

 Bending moment

 Left side of the hinge where 0 x Lhinge

Mger.l x( ) R1.ger x1 x( )( ) R2.ger x2 x( )( )+
w x1 x( )( )2



2
-







-:=

 Right side of the hinge where Lhinge Ltot

Mger.r x( ) Vhinge x3 x( )( )
w- x3 x( )( )2



2
+







-:=

 Moment equation for whole beam

Mger x( ) Mger.l x( ) 0 x Lhingeif

Mger.r x( ) Lhinge x< Ltotif

:=

 Shear

Vger x( )
x

Mger x( )d

d
:= Shear equation
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 Maximum shear and moment

xmax.s L1 6000 mm=:= Location of maximum moment (support)

xmax.ger.f root Vger x( ) x, 1mm, Lspan 1mm-, ( ):= Location maximum moment at span (at shear = 0)

xmax.ger.f 2362.5 mm=

Vmax.ger Vger Lspan 0.001mm-( ) 9.912kN=:= Maximum shear

Mmax.ger.s Mger xmax.s( ) 10.423 kN m=:= Maximum moment at support

Mmax.ger.f Mger xmax.ger.f( ) 7.605- kN m=:= Maximum moment at span

 Diagrams

10-

5-

5

10
Shear Diagram of Gerber Beam

Vger x( )

kN

Lhinge

x

mm

0 5000 10000

10-

5-

5

10

15
Bending Moment Diagram of Gerber Beam

Mger x( )

kN m

xmax.ger.f Lhinge

x

mm
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 Rotational Demand and Deflection

 Section and Material Properties

Es 210GPa:= Modulus of elasticity

Gross moment of inertia for 1.00mm thickness
Ig 5770038.65mm

4
:=

 Deflection equation

 Left side of the hinge where 0 x Lhinge

C1.ger.l

w L1
3



24

R1.ger L1
2



6
-:= Constants of integration

C2.ger.l 0:=

δger.l x( )
1

Es Ig

R1.ger x1 x( )( )3


6

R2.ger x2 x( )( )3


6
+

w- x1 x( )( )4


24
+ C1.ger.l x1 x( )( )+ C2.ger.l+







:=

 Right side of the hinge where Lhinge x< Ltot

δend.r δger.l Lspan ahinge+( ) 0.543- mm=:= Boundary condition

C2.ger.r δend.r Es Ig( ):= Constants of integration

C1.ger.r

Vhinge- bhinge
2



6

w bhinge
3



24
+

C2.ger.r

bhinge
-:=

δger.r x( )
1

Es Ig

Vhinge x3 x( )( )3


6

w- x3 x( )( )4


24
+ C1.ger.r x3 x( )( )+ C2.ger.r+







:=

 Deflection equation for whole beam

δger x( ) δger.l x( ) 0 x Lhingeif

δger.r x( ) Lhinge x< Ltotif

:=
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 Slope equation

 Left side of the hinge where 0 x Lhinge

θger.l x( )
1

Es Ig

R1.ger x1 x( )( )2


2

R2.ger x2 x( )( )2


2
+

w- x1 x( )
3



6
+ C1.ger.l+







:=

 Right side of the hinge where Lhinge x< Ltot

θger.r x( )
1

Es Ig

Vhinge x3 x( )( )2


2

w- x3 x( )( )3


6
+ C1.ger.r+







:=

 Slope equation for whole beam

θger x( ) θger.l x( ) 0 x Lhingeif

θger.r x( ) Lhinge x< Ltotif

:=

 Maximum deflection

xδ.max.ger.l root θger.l x( ) x, 0, Ltot, ( ):= Location of the maximum deflection in the left
span

xδ.max.ger.l 2643.333 mm=

xδ.max.ger.r root θger.r x( ) x, Lhinge 1mm+, Ltot, ( ):= Location of the maximum deflection in the right
span

xδ.max.ger.r 9619.199 mm=

δger xδ.max.ger.l( ) 18.983- mm= Maximum deflection in the left span

δger xδ.max.ger.r( ) 14.868- mm= Maximum deflection in the right span

δger Lhinge( ) 0.543- mm= Deflection in the hinge location

 Rotational Demand

θger Lhinge 0.001mm-( ) 0.002- rad= Rotational demand in the left side of the hinge

θger Lhinge 0.001mm+( ) 0.01- rad= Rotational demand in the right side of the hinge
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 Diagrams

0 5000 10000

0.02-

0.01-

0.01
Slope Diagram of Gerber Beam

θger x( )

xδ.max.ger.l Lhinge

x

mm

0 5000 10000

20-

15-

10-

5-

5
Deflection Diagram of Gerber Beam

δger x( )

xδ.max.ger.l Lspan ahinge+

x

mm
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ANNEX B.4

COMPARISON OF MOMENT DISTRIBUTION

To emphasize the optimization of the moments in the Gerber system, this section provides comparison of
moment distribution of gerber system with the single span and continuous beam.

Single Span·

 Bending Moment

x1 x( ) max 0 x, ( ):= Singularity functions

x5 x( ) max 0 x Lspan-, ( ):=

Rss 0.50 w Lspan( ) 8.18 kN=:= Reaction at supports

Bending moment
equation Mss x( ) Rss x1 x( )( ) 0.50w x1 x( )( )2

-



- 0 x Lspanif

Rss x2 x( )( ) 0.50w x2 x( )( )2
-



- Lspan x< Ltotif

:=

 Shear

Vss x( )
x

Mss x( )d

d
:= Shear equation

 Maximum shear and moment

xmax.ss.f root Vss x( ) x, 1mm, Lspan 1mm-, ( ):= Location maximum moment at span (at shear = 0)

xmax.ss.f 3000 mm=

Vmax.ss Vss Lspan 0.001mm-( ) 8.175kN=:= Maximum shear

Mmax.ss.f Mss xmax.ss.f( ) 12.262- kN m=:= Maximum moment at span

 Bending Moment Diagram

0 5000 10000

15-

10-

5-

Bending Moment Diagram of Single Span

Mss x( )

kN m

xmax.ss.f Lspan

x

mm
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Continuous Beam·

 Three-Moment Equation

0 M1 L1 2M2 L1 L2+( )+ M3 L2+
w L1

3


4
+

w L2
3



4
+=

M2.cont

w- L1
3

L2
3

+





8 L1 L2+( )
12262.5- N m=:= Moment at midsupport 

Note: Moments at end supports are zero, ie. M1 an M3 are zero.

 Reactions at Supports

R1.cont

M2.cont

L1

w L1

2
+ 6.131 kN=:= Reaction at first support

R2.cont
1-

L2

w- Ltot
2



2
R1.cont Ltot+







 20.438 kN=:= Reaction at second support

R3.cont R1.cont 6.131kN=:= Reaction at third support

 Shear and Moment Diagrams

x 1mm 2mm, Ltot..:=

x1 x( ) max 0 x, ( ):= Singularity functions

x2 x( ) max 0 x L1-, ( ):=

 Bending moment

Mcont x( ) R1.cont x1 x( ) R2.cont x2 x( )+
w x1 x( )( )2



2
-







-:= Bending moment equation 

 Shear

Vcont x( )
x

Mcont x( )d

d
:= Shear equation

 Maximum shear and moment

xmax.s 6000 mm= Location of maximum moment (support)

xmax.cont.f root Vcont x( ) x, 0, Ltot, ( ) 6000 mm=:= Location maximum moment at span (at shear = 0)

Vcont.max Vcont Lspan 0.001mm-( ) 10.219 kN=:= Maximum shear

Mmax.cont.s Mcont xmax.s( ) 12.262 kN m=:= Maximum moment at support

Mmax.cont.f Mcont xmax.cont.f( ) 12.262 kN m=:= Maximum moment at span
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 Diagrams

0 5000 10000

10-

5-

5

10

15
Bending Moment Diagram of Continuous Beam

Mcont x( )

kN m

xmax.cont.fLspan

x

mm

Comparison·

Comparison of the moment distribution of the gerber beam with the continuous beam and single span.

0 5000 10000

20-

10-

10

20
Gerber Beam
Continuous Beam
Single Span

Comparison of Bending Moment Diagram

Length of Beam (mm)

M
om

en
t (

kN
-m

)

Mger x( )

kN m

Mcont x( )

kN m

Mss x( )

kN m

Lhinge

x

mm

 Summary of maximum field and support moments

Gerber System Single Span Continuous Beam
Support Moment 10.42 kNm 0 kNm 12.26 kNm
Field Moment -7.6 kNm -12.26 kNm 12.26 kNm

This table shows that the gerber system has optimized support and field moments compared to the
continuous beam or the single span. With optimized moments, the material use becomes 30% more
efficient. Note that the considered width is 1600mm.
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ANNEX B.5

EFFECTIVE SECTION PROPERTIES OF 0.85mm TRAPEZOIDAL SHEET
EN 1993-1-3 General rules - Supplementary rules for cold-formed members and sheeting (2009)

One of the peculiarities of the cold-formed steel is its sensitivity to sectional buckling because of
the thinness of the material. In order to consider the effect of the local and distortional buckling in
the ultimate limit state design of the steel sheeting, the effective section of the profile is calculated
as per EN 1993-1-3.

This section provides the calculation for the effective section of the trapezoidal sheet in bending.
For this case, the bottom flange is subjected to compression, which occurs at the midsupport
under normal snow actions. The effective section is calculated for elements in compression
which are the bottom flange and part of the web until the neutral axis. Effective section properties
for thickness 0.85mm is calculated. Furthermore, the effective section properties calculated in
this section is compared with the values from the Technical Manual.

800.00

199.00

Figure 1. Midline dimensions of the trapezoidal sheet 
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Properties of Trapezoidal Sheeting·

 Dimensional properties

For simplicity of the analysis, it is assumed that the material is concentrated at the mid-line of the
sections and the corners are replaced by the intersections of flat elements.

144.77

199.85 199.00

23.46 27.93 23.46

54.23

74.85

R4.00

R7.00

R4.00R4.00

41.40

3.62

43.00

10.00

103.60

74°

162.18

Figure 2. Dimensions

 Gross cross-section properties

h 199.85mm:= Total height

t 0.85mm:= Nominal thickness

tber 0.782mm:= Steel core thickness

hw h t- 199 mm=:= Web height

r 4mm:= Internal radius

ztop 54.23mm:= Distance of the neutral axis to the top flange
(in tension)

zbot 144.77mm:= Distance of the neutral axis to the bottom flange
(in compression)

Ag 956.67mm
2

:= Gross cross-sectional area

Ig 4904502.22mm
4

:= Gross moment of inertia about the bending axis

Wg

Ig

zbot
33877.891 mm

3
=:= Section modulus of the gross cross-section
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 Bottom flange

bp 23.46mm:= Flat width in the bottom flange

br 27.93mm:= Width of the flange stiffener

bb 74.85mm:= Total width of the bottom flange

 Web

ϕ 74deg:=

hsa 3.62mm:=

ha 41.40mm:=

sa 43.00mm:=

sn 103.60mm:=

ssa 10.00mm:=

sc 162.18mm:=

Figure 3. Dimensions for the web

 Material properties

fyb 420MPa:= Basic yield strength

E 210GPa:= Modulus of elasticity

ν 0.3:= Poisson's ratio

γM0 1.0:= Partial factor for cross-section checks

γM1 1.0:= Partial factor for instability checks

Effective section·

 Check section geometry compliance with appropriate limts

The design method of EN1993-1-3 can be applied if the following conditions are satisfied:

bb 74.85 mm= Total width of flange in compression

t 0.85 mm= Steel core thickness

hw 199 mm= Web height

Annex Page 27



Figure 4. Maximum value for width-to-thickness ratio

bb

t
88.059=

bb

t
500 1= Condition satisfied

45deg ϕ 90deg 1= Condition satisfied

hw

t
234.118=

hw

t
500 sin ϕ( ) 1= Condition satisfied

 Effective section calculation for the bottom flange

Figure 5. Internal compression elements

For this calculation, the first case is applicable for the compressed bottom flange.
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σ1

fyb

γM0
420 MPa=:= Compressive stress at the compressed flange

Compressive stress at the compressed flange
σ2 σ1 420 MPa=:=

For internal compression elements,

Ratio of compressive stresses
ψ

σ1

σ2
1=:= for flange, but for web its not 1?

Buckling factor
kσ 4 ψ 1=if

8.2

1.05 ψ+
1 ψ> 0>if

7.81 ψ 0=if

7.81 6.29 ψ- 9.78 ψ
2

+ 0 ψ> 1->if

23.9 ψ 1-=if

5.98 1 ψ-( )
2

 1- ψ> 3-if

:=

kσ 4=

Strength parameter
ε

235MPa

fyb
:=

ε 0.748=

Plate slenderness
λp

bp

t

28.4 ε kσ
:=

λp 0.65=

ρ 1.0 λp 0.5 0.085 0.055 ψ-+if

λp 0.055 3 ψ+( )-

λp
2

1 λp> 0.5 0.085 0.055 ψ-+>if

:= Reduction factor

ρ 1=

Effective width
beff ρ bp ψ 1=if

ρ bp 1 ψ> 0if

ρ bp

1 ψ-( )
ψ 0<if

:=

beff 23.46 mm=
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Effective width of flat width adjacent to web
be1 0.5beff ψ 1=if

2

5 ψ-
beff 1 ψ> 0if

0.4beff ψ 0<if

:=

be1 11.73 mm=

be2 0.5beff ψ 1=if

beff be1- 1 ψ> 0if

0.6beff ψ 0<if

:= Effective width of flat width adjacent to stiffener

be2 11.73 mm=

Calculating the critical load for the one intermediate stiffener,

Figure 6. Dimensions considered for compression flange

0.5 beff 11.73 mm= Distance of flat width to be considered for area
computation

15 t 12.75mm= Distance of flat width to be considered for
moment of inertia computation
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11.730

Area:  55.8020

27.93

12.750 12.63727.93

0.5beff

15t 15t

Moment of inertia:   X: 1810.9472

6.76

12.60

3.90

11.730

0.5beff

Figure 7. Properties of intermediate stiffener in the flange

Moment of inertia of the stiffener
Is 1810.95mm

4
:=

Cross-sectional area of the stiffener
As 55.80mm

2
:=

bs 2 0.5 3.9 mm 12.6mm+ 6.76mm+( ) 42.62 mm=:= Stifener width measured around the perimeter

ec zbot 144.77 mm=:= Distance of the neutral axis to the compressed
flange

sw

hw

sin ϕ( )
207.02 mm=:= Slant height of the web

bd 2 bp bs+ 89.54 mm=:= Dimension parameters

bl bp 0.5 br+ 37.425 mm=:=

lb 3.07

4
Is bp

2
 2 bp 3 bs+( )

t
3

398.417 mm=:= Buckling wavelength

kwo

sw 2 bd+

sw 0.5 bd+
1.238=:= Coefficient for partial rotational restraint
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kw kwo

lb

sw
2if

kwo kwo 1-( )
2 lb

sw

lb

sw









2

-










-
lb

sw
2<if

:=

kw 1.204=

Elastic critical buckling stress for stiffener
σcr.s

4.2 kw E

As

Is t
3



4 bp
2

 2 bp 3 bs+( )
:=

σcr.s 1022.896 MPa=

 Effective section calculation for the web

σcom.Ed

fyb

γM0
:= Stress in compressed web when the capacity is

reached

σcom.Ed 420 MPa=

seff.0 0.76 t
E

γM0 σcom.Ed
:= Basic effective width

seff.0 14.445 mm=

seff.1 seff.0 14.445 mm=:= Effective widths

seff.2 1 0.5
ha

ec
+









seff.0 16.51 mm=:=

seff.3 1 0.5
ha hsa+

ec
+









seff.0 16.691 mm=:=

seff.n 1.5 seff.0 21.667 mm=:=

For stiffened web

seff.1 seff.2+ 30.955 mm= < sa 43 mm= Whole of sa needs to be reduced

seff.3 seff.n+ 38.359 mm= < sn 103.6 mm= Whole of sn needs to be reduced

Coefficient for partial rotational restraint
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Calculating for the critical stress of the stiffener,

kf 1:= Coefficient for partial rotational restraint,
conservatively assumed as 1

s1 0.9 sa ssa+ sc+( ) 193.662 mm=:= Dimension parameters

s2 s1 sa- 0.5 ssa- 145.662 mm=:=

16.51

16.69

10.00
14.45

14.45

10.00

Area:     36.2281 Moments of inertia:   X: 426.8466

Figure 8. Web stiffener properties

Asa 36.23mm
2

:= Effective area of the stiffener

Isa 426.8466mm
4

:= Moment of inertia of the stiffener

σcr.sa

1.05 kf E Isa t
3

 s1

Asa s2 s1 s2-( )
:= Elastic critical buckling stress of stiffener

σcr.sa 196.128 MPa=

Effective area considering distortional buckling for sheeting with both flange stiffeners
and web stiffeners:

βs 1
ha 0.5 hsa+( )

ec
- 0.702=:= Beta parameter for a profile in bending

σcr.mod

σcr.s

4

1 βs

σcr.s

σcr.sa


















4

+

:= Modified elastic buckling stress

σcr.mod 279.184 MPa=

Annex Page 33



λd

fyb

σcr.mod
1.227=:= Plate slenderness 

χd 1.0 λd 0.65if

1.47 0.723 λd- 0.65 λd< 1.38if

0.66

λd
λd 1.38if

:= Reduction factor for distortional buckling
resistance

χd 0.583=

 Reduced section

 Flange 

As.red min As χd As
fyb

γM1 σcom.Ed










, 








:= Reduced cross-sectional area of the stiffener

As.red 32.543 mm
2

=

ts.red t χd As.red As<if

t otherwise

:= Reduced thickness

ts.red 0.5 mm=

 Web 

Asa.red min Asa

χd Asa

1
ha 0.5 hsa+( )

ec
-













, 












:=

Reduced cross-sectional area of the stiffener

Asa.red 30.12 mm
2

=

tsa.red t χd Asa.red Asa<if

t otherwise

:= Reduced thickness

tsa.red 0.5 mm=
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 Effective section properties

 ----------------   REGIONS   ----------------
Area:                    772.3865
Perimeter:               1951.3507
Bounding box:         X: -399.9255  --  399.9257
                      Y: -164.0827  --  35.7673
Centroid:             X: 0.0000
                      Y: 0.0000
Moments of inertia:   X: 3213033.3317
                      Y: 37457035.1818
Product of inertia:  XY: -3.6730
Radii of gyration:    X: 64.4971
                      Y: 220.2162
Principal moments and X-Y directions about centroid:
                      I: 3213033.3317 along [1.0000 0.0000]
                      J: 37457035.1818 along [0.0000 1.0000]

163.66

35.34

Aeff 772.39mm
2

:= Effective area

Ieff 3213033.33mm
4

:= Effective moment of inertia

zc.eff 163.66 mm:= Distance of neutral axis to the compression flange

Weff

Ieff

zc.eff
19632.368 mm

3
=:= Section modulus with respect to the flange in

compression

Mc.Rd.eff

Weff fyb

γM0
8.246 kN m=:= Design moment resistance of the effective section

Comparison of the effective section values with the gross section values·

Ag 956.67 mm
2

= Gross cross-sectional area

Ig 4904502.22 mm
4

= Gross moment of inertia

Wg 33877.891 mm
3

= Section modulus of the gross cross-section

Mc.Rd.g

Wg fyb

γM0
14.229 kN m=:= Design moment resistance of the gross

cross-section
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Effective Section Technical Manual Gross Section

Area (mm
2
) 772.39 - 956.67

Moment of inertia (mm
4
) 3213033.33 3568000.00 4904502.22

Section modulus (mm
3
) 19632.37 25257.14 33877.89

Design moment resistance (kN-m) 8.25 10.61 14.23

%Ag

Aeff

Ag
100 % 80.737 %=:= Percentage of effective area

%Ig

Ieff

Ig
65.512 %=:= Percentage of effective moment of inertia

%Mc.Rd

Mc.Rd.eff

Mc.Rd.g
57.95 %=:= Percentage of design resistance

Comparison of the effective section values with the values from technical manual·

btot 800mm:= Width of the profile

Itech 4460
mm

4

mm









btot 3568000 mm
4

=:= Moment of inertia from the technical manual

Mc.Rd.tech 13.26
kN m

m






btot 10.608 kN m=:= Design moment resistance from the technical
manual

Wtech

γM0 Mc.Rd.tech

fyb
25257.143 mm

3
=:= Section modulus with respect to the flange in

compression

%Itech

Ieff

Itech
90.051 %=:= Percentage of the effective moment of inertia

%Mc.Rd.tech

Mc.Rd.eff

Mc.Rd.tech
77.73 %=:= Percentage of the design moment resistance

Summary of Comparison of Section Properties for 0.85mm thick sheet·
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ANNEX B.6

EFFECTIVE SECTION PROPERTIES OF 1.00mm TRAPEZOIDAL SHEET
EN 1993-1-3 General rules - Supplementary rules for cold-formed members and sheeting (2009)

Effective section properties for thickness 1.00mm is calculated in thos section.

Properties of Trapezoidal Sheeting·

 Dimensional properties

For simplicity of the analysis, it is assumed that the material is concentrated at the mid-line of the
sections and the corners are replaced by the intersections of flat elements.

144.77

199.85 199.00

23.46 27.93 23.46

54.23

74.85

R4.00

R7.00

R4.00R4.00

41.40

3.62

43.00

10.00

103.60

74°

162.18

Figure 2. Dimensions

 Gross cross-section properties

h 200mm:= Total height

t 1.00mm:= Nominal thickness

hw h t- 199 mm=:= Web height

r 4mm:= Internal radius

ztop 54.23mm:= Distance of the neutral axis to the top flange
(in tension)

zbot 144.77mm:= Distance of the neutral axis to the bottom flange
(in compression)

Ag 1125.50mm
2

:= Gross cross-sectional area

Ig 5770038.65mm
4

:= Gross moment of inertia about the bending axis

Wg

Ig

zbot
39856.591 mm

3
=:= Section modulus of the gross cross-section
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 Bottom flange

bp 23.46mm:= Flat width in the bottom flange

br 27.93mm:= Width of the flange stiffener

bb 74.85mm:= Total width of the bottom flange

 Web

ϕ 74deg:=

hsa 3.62mm:=

ha 41.40mm:=

sa 43.00mm:=

sn 103.60mm:=

ssa 10.00mm:=

sc 162.18mm:=

Figure 3. Dimensions for the web

 Material properties

fyb 420MPa:= Basic yield strength

E 210GPa:= Modulus of elasticity

ν 0.3:= Poisson's ratio

γM0 1.0:= Partial factor for cross-section checks

γM1 1.0:= Partial factor for instability checks

Effective section·

 Check section geometry compliance with appropriate limts

The design method of EN1993-1-3 can be applied if the following conditions are satisfied:

bb 74.85 mm= Total width of flange in compression

t 1 mm= Thickness

hw 199 mm= Web height
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Figure 4. Maximum value for width-to-thickness ratio

bb

t
74.85=

bb

t
500 1= Condition satisfied

45deg ϕ 90deg 1= Condition satisfied

hw

t
199=

hw

t
500 sin ϕ( ) 1= Condition satisfied

 Effective section calculation for the bottom flange

Figure 5. Internal compression elements

For this calculation, the first case is applicable for the compressed bottom flange.
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σ1

fyb

γM0
420 MPa=:= Compressive stress at the compressed flange

Compressive stress at the compressed flange
σ2 σ1 420 MPa=:=

For internal compression elements,

Ratio of compressive stresses
ψ

σ1

σ2
1=:=

Buckling factor
kσ 4 ψ 1=if

8.2

1.05 ψ+
1 ψ> 0>if

7.81 ψ 0=if

7.81 6.29 ψ- 9.78 ψ
2

+ 0 ψ> 1->if

23.9 ψ 1-=if

5.98 1 ψ-( )
2

 1- ψ> 3-if

:=

kσ 4=

Strength parameter
ε

235MPa

fyb
:=

ε 0.748=

Plate slenderness
λp

bp

t

28.4 ε kσ
:=

λp 0.552=

ρ 1.0 λp 0.5 0.085 0.055 ψ-+if

λp 0.055 3 ψ+( )-

λp
2

1 λp> 0.5 0.085 0.055 ψ-+>if

:= Reduction factor

ρ 1=

Effective width
beff ρ bp ψ 1=if

ρ bp 1 ψ> 0if

ρ bp

1 ψ-( )
ψ 0<if

:=

beff 23.46 mm=
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be1 0.5beff ψ 1=if

2

5 ψ-
beff 1 ψ> 0if

0.4beff ψ 0<if

:= Effective width of flat width adjacent to web

be1 11.73 mm=

be2 0.5beff ψ 1=if

beff be1- 1 ψ> 0if

0.6beff ψ 0<if

:= Effective width of flat width adjacent to stiffener

be2 11.73 mm=

Calculating the critical load for the one intermediate stiffener,

Figure 6. Dimensions considered for compression flange

0.5 beff 11.73 mm= Distance of flat width to be considered for area
computation

15 t 15 mm= Distance of flat width to be considered for
moment of inertia computation
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Figure 7. Properties of intermediate stiffener in the flange

Moment of inertia of the stiffener
Is 2274.18mm

4
:=

Cross-sectional area of the stiffener
As 65.54mm

2
:=

bs 2 0.5 3.9 mm 12.6mm+ 6.76mm+( ) 42.62 mm=:= Stifener width measured around the perimeter

ec zbot 144.77 mm=:= Distance of the neutral axis to the compressed
flange

sw

hw

sin ϕ( )
207.02 mm=:= Slant height of the web

bd 2 bp bs+ 89.54 mm=:= Dimension parameters

bl bp 0.5 br+ 37.425 mm=:=

lb 3.07

4
Is bp

2
 2 bp 3 bs+( )

t
3

373.363 mm=:= Buckling wavelength

kwo

sw 2 bd+

sw 0.5 bd+
1.238=:= Coefficient for partial rotational restraint
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kw kwo

lb

sw
2if

kwo kwo 1-( )
2 lb

sw

lb

sw









2

-










-
lb

sw
2<if

:=

kw 1.154=

Elastic critical buckling stress for stiffener
σcr.s

4.2 kw E

As

Is t
3



4 bp
2

 2 bp 3 bs+( )
:=

σcr.s 1193.784 MPa=

 Effective section calculation for the web

σcom.Ed

fyb

γM0
:= Stress in compressed web when the capacity is

reached

σcom.Ed 420 MPa=

seff.0 0.76 t
E

γM0 σcom.Ed
:= Basic effective width

seff.0 16.994 mm=

seff.1 seff.0 16.994 mm=:= Effective widths

seff.2 1 0.5
ha

ec
+









seff.0 19.424 mm=:=

seff.3 1 0.5
ha hsa+

ec
+









seff.0 19.636 mm=:=

seff.n 1.5 seff.0 25.491 mm=:=

For stiffened web

seff.1 seff.2+ 36.418 mm= < sa 43 mm= Whole of sa needs to be reduced

seff.3 seff.n+ 45.128 mm= < sn 103.6 mm= Whole of sn needs to be reduced

Coefficient for partial rotational restraint
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Calculating for the critical stress of the stiffener,

kf 1:= Coefficient for partial rotational restraint,
conservatively assumed as 1

s1 0.9 sa ssa+ sc+( ) 193.662 mm=:= Dimension parameters

s2 s1 sa- 0.5 ssa- 145.662 mm=:=

Figure 8. Web stiffener properties

Asa 48.48mm
2

:= Effective area of the stiffener

Isa 586.86mm
4

:= Moment of inertia of the stiffener

σcr.sa

1.05 kf E Isa t
3

 s1

Asa s2 s1 s2-( )
:= Elastic critical buckling stress of stiffener

σcr.sa 219.305 MPa=

Effective area considering distortional buckling for sheeting with both flange stiffeners
and web stiffeners:

βs 1
ha 0.5 hsa+( )

ec
- 0.702=:= Beta parameter for a profile in bending

σcr.mod

σcr.s

4

1 βs

σcr.s

σcr.sa


















4

+

:= Modified elastic buckling stress

σcr.mod 312.244 MPa=
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λd

fyb

σcr.mod
1.16=:= Plate slenderness 

χd 1.0 λd 0.65if

1.47 0.723 λd- 0.65 λd< 1.38if

0.66

λd
λd 1.38if

:= Reduction factor for distortional buckling
resistance

χd 0.631=

 Reduced section

 Flange 

As.red min As χd As
fyb

γM1 σcom.Ed










, 








:= Reduced cross-sectional area of the stiffener

As.red 41.387 mm
2

=

ts.red t χd As.red As<if

t otherwise

:= Reduced thickness

ts.red 0.63 mm=

 Web 

Asa.red min Asa

χd Asa

1
ha 0.5 hsa+( )

ec
-













, 












:=

Reduced cross-sectional area of the stiffener

Asa.red 43.639 mm
2

=

tsa.red t χd Asa.red Asa<if

t otherwise

:= Reduced thickness

tsa.red 0.63 mm=
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 Effective section properties

Aeff 940.68mm
2

:= Effective area

Ieff 4259114.36mm
4

:= Effective moment of inertia

zc.eff 159.72 mm:= Distance of neutral axis to the compression flange

Weff

Ieff

zc.eff
26666.13 mm

3
=:= Section modulus with respect to the flange in

compression

Mc.Rd.eff

Weff fyb

γM0
11.2 kN m=:= Design moment resistance of the effective section

Comparison of the effective section values with the gross section values·

Ag 1125.5 mm
2

= Gross cross-sectional area

Ig 5770038.65 mm
4

= Gross moment of inertia

Wg 39856.591 mm
3

= Section modulus of the gross cross-section

Mc.Rd.g

Wg fyb

γM0
16.74 kN m=:= Design moment resistance of the gross

cross-section
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Effective Section Technical Manual Gross Section

Area (mm
2
) 940.68 - 1125.50

Moment of inertia (mm
4
) 4259114.36 4328000.00 5770038.65

Section modulus (mm
3
) 26666.13 34914.29 39856.59

Design moment resistance (kN-m) 11.20 14.66 16.74

%Ag

Aeff

Ag
83.579 %=:= Percentage of effective area

%Ig

Ieff

Ig
73.814 %=:= Percentage of effective moment of inertia

%Mc.Rd

Mc.Rd.eff

Mc.Rd.g
66.905 %=:= Percentage of design resistance

Comparison of the effective section values with the values from technical manual·

btot 800mm:= Width of the profile

Itech 5410
mm

4

mm









btot 4328000 mm
4

=:= Moment of inertia from the technical manual

Mc.Rd.tech 18.33
kN m

m






btot 14.664 kN m=:= Design moment resistance from the technical
manual

Wtech

γM0 Mc.Rd.tech

fyb
34914.286 mm

3
=:= Section modulus with respect to the flange in

compression

%Itech

Ieff

Itech
98.408 %=:= Percentage of the effective moment of inertia

%Mc.Rd.tech

Mc.Rd.eff

Mc.Rd.tech
76.376 %=:= Percentage of the design moment resistance

Summary of Comparison of Section Properties for 1.00mm thick sheet·
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ANNEX B.7

ULTIMATE LIMIT STATE DESIGN OF TRAPEZOIDAL SHEET
EN 1993-1-3 General rules - Supplementary rules for cold-formed members and sheeting (2009)
Lindab Fasteners - Technical Information (2007) 
EKS 10 (2015)

This section presents the design computation for the ultimate limit state of the 1.00mm thick trapezoidal
sheet. 

Properties·

 Mechanical Properties

fyb 420MPa:= Basic yield strength

Est 210000MPa:= Elastic modulus 

γM0 1.0:= Partial safety factors

γM1 1.0:=

 Dimensional Properties

tnom 1.00mm:= Nominal thickness

hs 199mm:= Height of section

Ieff 4259114.36mm
4

:= Effective moment of inertia

zbot 159.72 mm:= Distance to the flange in compression

ztop hs zbot- 39.28 mm=:= Distance to flange in tension

Weff.top

Ieff

ztop
108429.592 mm

3
=:= Section modulus with respect to flange in tension

Section modulus with respect to flange in
compressionWeff.bot

Ieff

zbot
26666.13 mm

3
=:=

Weff min Weff.top Weff.bot, ( ) 26666.13 mm
3

=:= Governing section modulus

Design Loads·

The maximum bending moment and reactions are obtained using applied force. The aim of this section is
to check whether the maximum load applied satisfies the design requirement based on Eurocode.

MEd.s 7.60 kN m:= Maximum bending moment at mid-support

MEd.f 10.42 kN m:= Maximum bending moment at field

VEd 9.91kN:= Design shear
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Ultimate Limit State·

 Bending Moment 

 Support

MRd.s

Weff fyb

γM0
11.2 kN m=:= Design moment resistance

Comparing,

MEd = 7.6 kNm < Mc.Rd = 11.2 kNm

The design maximum moment is less than the design moment resistance, therefore,
THE TRAPEZOIDAL SHEET IS STRUCTURALLY ADEQUATE IN BENDING MOMENT.

 Field

MRd.f

Weff fyb

γM0
11.2 kN m=:= Design moment resistance

Comparing,

MEd = 10.42 kNm < Mc.Rd = 11.2 kNm

The design maximum moment is less than the design moment resistance, therefore,
THE TRAPEZOIDAL SHEET IS STRUCTURALLY ADEQUATE IN BENDING MOMENT.

 Shear

 Shear resistance

sw 207.02 mm:= Web slanted height 

t tnom 1 mm=:= Thickness 

ϕ 56.9deg:= Inclination of the web

hw hs tnom- 198 mm=:= Web height

λw 0.346
sw

t

fyb

Est
 3.203=:= Slenderness 

fbv 0.58 fyb λw 0.83if

0.48 fyb

λw
λw 0.83>if

62.934 MPa=:= Shear stress
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Vb.Rd

hw

sin ϕ( )
t fbv

γM0
14.875 kN=:= Design shear

Comparing,

VEd = 9.91 kN < VRd = 14.87 kN

The design maximum shear is less than the design shear resistance, therefore,
THE TRAPEZOIDAL SHEET IS STRUCTURALLY ADEQUATE IN SHEAR.

 Shear-moment interaction

0.5 Vb.Rd 7.437 kN= Limit for reduction in bending resistance

Comparing,

VEd = 9.91 kN > 0.50*VRd = 7.44 kN

The design maximum shear is greater than 50% of the design shear resistance, therefore,
THERE IS A REDUCTION DUE TO COMBINED ACTION.

• THEREFORE, THE TRAPEZOIDAL SHEET IS STRUCTURALLY ADEQUATE.
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ANNEX B.8

ULTIMATE LIMIT STATE DESIGN OF OVERLAP JOINT
EN 1993-1-3 General rules - Supplementary rules for cold-formed members and sheeting (2009)
Lindab Fasteners - Technical Information (2007) 
EKS 10 (2015)

Material Properties·

 Screw

d 6.3mm= Nominal diameter of fastener
ie. 4.8, 5.5, 6.3, 8.0 mm

Screw_Type "Self-Drilling":= Type of fastener
ie. Self-Tapping, Self-Drilling

Screw_Material "Stainless Steel":= Material of fastener
ie. Stainless Steel, Hardened Steel

Fv.Rk
4.6kN d 4.8mm=if

6.5kN d 5.5mm=if

8.5kN d 6.3mm=if

14.3kN d 8.0mm=if

Screw_Material "Stainless Steel"=if

5.2kN d 4.8mm=if

7.2kN d 5.5mm=if

9.8kN d 6.3mm=if

16.3kN d 8.0mm=if

Screw_Material "Hardened Steel"=if

:= Characteristic shear resistance
EKS 10 Table E-5

Fv.Rk 8.5 kN=

 Washer

dw 8mm:= Diameter of the washer or the head of fastener

 Base Material

Base_Material "Steel":= Base material

t 1.5mm:= Thickness of thinner connected part

t1 t 1.5mm=:= Thickness of thicker connected part

fy.b 420MPa:= Yield strength

fu 420MPa:= Ultimate strength

γM2 1.25:= Partial safety factor for plates in bearing
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Section Properties and Required Distances ·

 Edge Distances and Spacing
EN 1993-1-3 Chapter 8.3

Figure 2. Edge and spacing distances

 Minimum distances and spacing

e1 3 d 18.9 mm=:= Minimum end distances

e2 1.5 d 9.45 mm=:=

p1 3 d 18.9 mm=:= Minimum spacing

p2 3 d 18.9 mm=:=

 Actual distances and spacing

eact 25mm:= Actual distance to edge

pact 25mm:= Actual spacing

The actual distances are greater than the minimum distances. 
 Therefore, edge distances and spacing are satisfied for base material.

 Design Loads·

It is assumed that the side screws are resisting shear, while the top screw is not resisting any tension.

 Shear 

F1mm 85.16kN:= Maximum load in the 1mm test

F1.5mm 152.15kN:= Maximum load in the 1.5mm test

VEd.1mm 8.19kN:= Design shear stress on joint (1mm sheet)

VEd.1.5mm

F1.5mm

F1mm
VEd.1mm 14.633 kN=:= Design shear stress on joint (1.5mm sheet)

nV 4:= Number of fasteners resisting shear in one profile

nvp 1:= Number of shear planes

VEd.b

VEd.1.5mm

nV nvp
3.658 kN=:= Shear stress in each screw, 1.5mm sheet

 Tension

NEd.b 0kN:= Design tension stress on joint
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Ultimate Limit State·
EN 1993-1-3 Chapter 8.3, Table 8.2 Design resistances for tapping screws 

 Shear

 Bearing Capacity 

α min 3.2
t

d
 2.1, 









1.561=:= α-factor for sheets with equal thicknesses (t=t1)

Fb.Rd

α fu d t

γM2
4.958kN=:= Design bearing capacity

Comparing,

VEd = 3.66 kN < VRd = 4.96 kN

The design maximum shear is less than the design shear resistance, therefore,
THE SCREWS IS STRUCTURALLY ADEQUATE IN BEARING.

 Shear Capacity

Fv.Rk 8.5 kN= Characteristic shear resistance

Fv.Rd

Fv.Rk

γM2
6.8 kN=:= Design shear resistance

Comparing,

VEd = 3.66 kN < VRd = 6.8 kN

The design maximum shear is less than the design shear resistance, therefore,
THE SCREWS IS STRUCTURALLY ADEQUATE IN SHEAR.

 Checking condition

Comparing,

Fv.Rd = 6.8 kN > 1.2*Fb.Rd = 5.95 kN

The condition is satisfied.

 Tension
 Pull-through Capacity

Fp.Rd

dw t fu

γM2
4.032 kN=:= Pull-through resistance for static loads

Comparing,

NEd = 0 kN < Fp.Rd = 4.03 kN

The design maximum tension is less than the design pull-through resistance, therefore,
THE SCREWS IS STRUCTURALLY ADEQUATE IN PULL-THROUGH.
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 Pull-out Capacity

tsup t 1.5mm=:= Thickness of supporting member into which a
screw is fixed

fu.sup fu 420 MPa=:= Ultimate tensile strength of the supporting
member into which a screw is fixed

Fo.Rd

0.45 d tsup fu.sup

γM2
1.429 kN=:= Pullout design resistance

Comparing,

NEd = 0 kN < Fo.Rd = 1.43 kN

The design maximum tension is less than the design pull-out resistance, therefore,
THE SCREWS IS STRUCTURALLY ADEQUATE IN PULL-OUT.

 Tension Capacity

Ft.Rd 1.25 Fv.Rd 8.5 kN=:= Tension design resistance

Comparing,

NEd = 0 kN < Ft.Rd = 8.5 kN

The design maximum tension is less than the design tension resistance, therefore,
THE SCREWS IS STRUCTURALLY ADEQUATE IN TENSION.

 Checking condition

Comparing,

Ft.Rd = 8.5 kN > Fp.Rd = 4.03 kN

The condition is satisfied.

 Summary of Resistances

Shear

Bearing Capacity < Fb.Rd = 4.96

Shear Capacity < Fv.Rd = 6.80
Tension

Pull-through Capacity < Fp.Rd = 4.03

Pull-out Capacity < Fo.Rd = 1.43

Tension Capacity < Ft.Rd = 8.50

Design Load per 
Fastener (kN)

Design Strength per 
Fastener (kN)

VEd = 3.66

NEd = 0.00

• THEREFORE, THE SCREWS IS STRUCTURALLY ADEQUATE.

Annex Page 54



Overlap Length·

Found in the table below is the shear capacity for a single screw.

Thickness 
(mm)

Shear Capacity 
(kN)

0.85 2.11
1 2.70

1.5 4.96

Lov 500mm:= Length of overlap

nscrew 4:= Number of screws for single narrow profile

F0.85 nscrew Vscrew0
 8.44 kN=:= Maximum load in the sheet for 0.85mm

F1.00 nscrew Vscrew1
 10.8 kN=:= Maximum load in the sheet for 1.00mm

F1.50 nscrew Vscrew2
 19.84 kN=:= Maximum load in the sheet for 1.50mm

Mmax.0.85 F0.85 Lov 4.22 kN m=:= Maximum moment applied on the sheet 

Mmax.1.00 F1.00 Lov 5.4 kN m=:=

Mmax.1.50 F1.50 Lov 9.92 kN m=:=

Thickness 
(mm)

Design Moment 
Resistance of Wide 

Flange (kN-m)

Moment in the 
Overlap (kN-m)

0.85 7.74 4.22
1 10.89 5.40

1.5 17.63 9.92

• THEREFORE, THE OVERLAP LENGTH IS STRUCTURALLY ADEQUATE.
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ANNEX B.9

STRESSES IN THE CROSS-SECTION
EN 1993-1-5 Plated Structural Elements (2006)
Lindab Catalog - LHP200

This section provides computation for the stresses in the cross-section. The results are then used to
compare with the results from the numerical model. 

Properties of Trapezoidal Sheet·

tnom 1.00mm:= Nominal thickness of the sheet

fyb 420MPa:= Yield strength

Gross moment of inertia
Ig 5770038.65mm

4
=

ztop 54.73mm:= Distance of centroid to top flange

zbot 145.27mm= Distance of centroid to bottom

Wel.top

Ig

ztop
105427.346 mm

3
=:= Section modulus of the gross section (top)

Wel.bot

Ig

zbot
39719.41 mm

3
=:= Section modulus of the gross section (bottom)

z1 zbot- zbot 1mm-( )-, ztop..:= Distance along the height of the profile
(compressed top flange)

z2 zbot zbot 1mm-( ), ztop-..:= Distance along the height of the profile
(compressed bottom flange)

Stress Calculation·

 Stresses at support

MEd.s 14.66 kN m:= Design moment resistance (narrow flange)

σs.max.1.an

MEd.s

Wel.top
139.053 MPa=:= Stress on bottom of flange (compressed flange)

σs.max.2.an

MEd.s

Wel.bot
369.089 MPa=:= Stress on top of flange

Stress in sheet
σs.calc z2( )

MEd.s

Ig

z2









:=
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 Stresses at field

MEd.f 10.89 kN m:= Design moment resistance (narrow flange)

σf.max.1.an

MEd.f

Wel.top
103.294 MPa=:= Stress on top of flange

σf.max.2.an

MEd.f

Wel.bot
274.173 MPa=:= Stress on bottom of flange 

Stress in sheet
σf.calc z1( )

MEd.f

Ig

z1









:=

Stress from Abaqus·

 Stresses at support

σs.max.1.ab 142.48MPa:= Stress on bottom flange (compression)

σs.max.2.ab 380.13MPa:= Stress on top flange (tension)

Ms.ab σs.max.1.ab Wel.top 15.021 kN m=:= Calculated moment from Abaqus

Stress in sheet
σs.ab z2( )

Ms.ab

Ig

z2









:=

 Stresses at field

σf.max.1.ab 207.92MPa:= Stress on bottom flange

σf.max.2.ab 84.46MPa:= Stress on top flange 

Mf.ab σf.max.2.ab Wel.top 8.904 kN m=:= Calculated moment from Abaqus

Stress in sheet
σf.ab z1( )

Mf.ab

Ig

z1









:=
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 Comparison of Stress at Support (Analytical vs Numerical)

200- 0 200 400

100-

100

200

Analytical
Abaqus

z2

mm

z2

mm

σs.calc z2( )
MPa

σs.ab z2( )
MPa

, 

 Comparison of Stress at Mid-span (Analytical vs Numerical)

300- 200- 100- 0 100 200

200-

100-
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Analytical
Abaqus

z1

mm

z1

mm

σf.calc z1( )
MPa
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, 
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