
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague March 14, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Analysis of Data from a Network of Pixel Detectors

 Student: Petr Fiedler

 Supervisor: doc. Dr. André Sopczak

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2019/20

Instructions

A network of 16 pixel detectors (Timepix devices) were installed in the ATLAS experiment at CERN (atlas.ch)
to measure particle fluxes and the intensity of the proton beam collisions at the Large Hadron Collider. The
analysis of these data is performed by the IEAP at the Czech Technical University in Prague. The current
system stores data produced by the Timepix devices to the local storage server at IEAP. The project is
carried out in an international collaboration and offers the possibility to travel to CERN.

Design, implement and document a program that transfers and stores periodically the data from the IEAP
server to world-wide grid wlcg.web.cern.ch. Installation of software needs to access the grid on a local
server based on the “rucio” package and transfer of the current data to the grid.

References

Will be provided by the supervisor.

Bachelor’s thesis

Analysis of Data from a Network of Pixel
Detectors

Petr Fiedler

Department of software engineering
Supervisor: Doc. Dr. André Sopczak

May 14, 2018

Acknowledgements

I would like to thank my supervisor, Doc. Dr. André Sopczak, for all advises
and active involvement during the work. I also would like to thank my family
and my girlfriend for the encouragement during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 14, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
© 2018 Petr Fiedler. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Fiedler, Petr. Analysis of Data from a Network of Pixel Detectors. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2018.

Abstrakt

Tato práce se zabýva návrhem a implementaćı baĺıčku skript̊u, slouž́ıćıch k au-
tomatizaci nahráváńı dat pomoćı middleware Rucio ze serveru atlastpx2
.utef.cvut.cz, patř́ıćı Ústavu technické a experimentálńı fyziky na Českém
vysokém učeńı technickém, na Worldwide LHC Computing Grid koordinovný
Evropskou organizaćı pro jaderný výzkum. Dı́ky tomuto nahráváńı jsou tato
data dostupná pro všechny, kdo je potřebuj́ı a maj́ı př́ıstup na zmı́něný grid.
Nav́ıc software poskytuj́ıćı nástroje potřebné pro připojeńı a použ́ıváńı zmı́ně-
ného gridu byl nainstalován a nakonfigurován v rámci této práce.

Kĺıčová slova přenos dat, Rucio, WLCG, instalace, CernVM-FS, ÚTEF

vii

Abstract

This thesis deals with design and implementation of a bundle of scripts au-
tomating the upload of specific files using Rucio middleware from server
atlastpx2.utef.cvut.cz at Institute of Experimental and Applied Physics
at Czech Technical University to Worldwide LHC Computing Grid coordi-
nated by European Organization for Nuclear Research. Thanks to the up-
load, the data are available to everyone who needs them and has access to
that Grid. Furthermore, installation and configuration of software providing
access to tools necessary to connect and use the Grid are part of this thesis.

Keywords data transfer, Rucio, WLCG, installation, CernVM-FS, IEAP

ix

Contents

Introduction 1

1 Technologies 3
1.1 Worldwide LHC Computing Grid 3
1.2 Rucio . 3

2 Getting access to the Rucio 5
2.1 CernVM File System . 5
2.2 Installation and configuration 6
2.3 User credentials for VOMS . 7

3 Uploading to Worldwide LHC Computing Grid 9
3.1 Getting data path . 10
3.2 Merging the files . 12
3.3 Uploading . 17
3.4 Setting up Rucio clients . 25

Conclusion 29

Bibliography 31

A Acronyms 33

B Contents of enclosed CD 35

xi

List of Figures

2.1 CernVM-FS installation . 6

3.1 Use cases of the TPX bundle . 10
3.2 Structure of the bundle . 11
3.3 Process of getting the data path 12
3.4 Directory structure of the data . 13
3.5 Usage of tpx merge . 14
3.6 Process of merging files . 15
3.7 Process of uploading to the WLCG 19
3.8 Process of checking if a file is up-to-date 21
3.9 Process of detaching old files . 23
3.10 Invocations during the upload . 24
3.11 Decisions made during setting up the Rucio clients 27

xiii

Introduction

Particle physics attracts more and more attention, new discoveries are made,
which revolutionary change our view of the world. Although research in this
field cannot be done without computer technologies. Computer systems pro-
cess an enormous amount of data during a research. In the Large Hadron Col-
lider (LHC) in European Organization for Nuclear Research (CERN) bunches
of protons collide and thousands of particles are produced. About every parti-
cle very precise information is collected. Every second, petabytes of raw data
are collected. These data are comprised, filtered, stored and processed so they
can be used for further analysis. Processed data have to be shared.

At Institute of Experimental and Applied Physics (IEAP) at Czech Tech-
nical University in Prague (CTU), the data are transferred from CERN servers
to IEAP servers, where they are stored. That also applies to server atlastpx2
.utef.cvut.cz, where data from Timepix detectors from A Toroidal LHC
Apparatus (ATLAS) are stored and analyzed. Timepix installed in the AT-
LAS cavern is a pixel detector for particle imaging and detection. An analysis
of these data takes a lot of time because there are terabytes of the data per
year and the server does not have enough computing power to analyze them
fast. Moreover, if it is necessary to some external scientists work with these
data, they need access to the server and that means a lot of paperwork, which
takes some time.

The output of this work will speed up the research at IEAP using the
technology of the Worldwide LHC Computing Grid (WLCG). It is global
computing infrastructure coordinated by CERN and providing resources to
store, distribute and analyze the data from LHC.

This thesis has three individual goals. The first goal is to get an overview
of what the WLCG and Rucio are and how to use them to accomplish following
goals. The second goal is to find a way how to connect from IEAP server to
the WLCG and manage data on it using Rucio middleware. The third and
the ultimate goal is to analyze processes, that need to be done, so the data
from IEAP server can be uploaded to WLCG, and to design and implement

1

Introduction

program that transfers and store the data from the IEAP server to WLCG.
In the first chapter, I explain what the WLCG and Rucio are. In the

next chapter, I analyze possible way of getting access to Rucio and other tools
necessary to connect to the WLCG. Once there is access to the necessary
tools, a program transferring data to IEAP server can be used. In chapter
three I deal with analysis and design of this program. The IEAP server is
accessible via domain atlastpx2.utef.cvut.cz.

2

Chapter 1
Technologies

In this chapter, the technologies I have to work with are described. The terms
are explained and basics of the technologies are described.

1.1 Worldwide LHC Computing Grid

The WLCG project is coordinated by CERN. The WLCG is global computing
infrastructure providing computing resources. As the project is a collaboration
of more than 170 computing centers in 42 countries all around the world, it is
the largest computing grid on the world and serves to store, distribute and
analyze the data from LHC. The data on the WLCG are equally available to
all partners no matter their physical location. [1]

In order to use the WLCG, a user must be registered in an LHC-recognized
Virtual Organization (VO) [2]. The Virtual Organization Membership Service
(VOMS) enables VO to authorize and is at the core of the WLCG authoriza-
tion [3].

The VOs are sets of identifiers. These identifiers are organized in groups
and these groups have roles assigned to individuals. These are groups of people
at different locations working to achieve a common goal. [4]

1.2 Rucio

Rucio is a project developed by the ATLAS experiment. It provides services
and associated libraries for management of large volumes of data spread across
facilities, institutions and organizations, and countries. Rucio is highly scal-
able and modular. [5]

Because data are physically stored in files, Rucio’s smallest operational
unit is the file. Files can be grouped into named sets of files, datasets, these
can be grouped into named sets of datasets, containers, and even these can be
grouped into other containers. All three types use the same naming scheme

3

1. Technologies

composed of a scope and a name. The combination of a scope and a name is
called data identifier (DID). So the Logical File Name (LFN), a term used in
data grid terminology is equivalent to the DID in Rucio. The scope divides
the namespace into several sub-namespaces. By default, users can read from
all scopes but write only into their own. The DIDs are unique over all time,
so once the DID is used, it can never be reused to refer to anything else. [6]

The smallest unit of storage space addressable in Rucio is a Rucio Storage
Element (RSE). It is a logical representation of storage system for physical
files. The RSEs are grouped into sites. The RSEs in a site have different
purposes. The most common RSEs are scratch disks, local group disks, and
data disks. [7]

Every user has a quota of 30% of each scratch disk RSE. A user which is
registered in relevant VO has 95% quota on all local group disk RSEs in the
corresponding country. Data disk RSEs serve for special purposes and only
special services or admin accounts can write to these RSEs. [8]

File replicas are managed according to replication rules. A replication rule
defines the minimum number of file replicas on a set of RSEs. It is owned by
an account and every account can set multiple replication rules. Rules can
have a limited lifetime and can be added, modified or removed at any time.
The file replicas can be deleted in two different modes: greedy and non-greedy.
The greedy mode deletes immediately all replicas not protected by replication
rule. The non-greedy mode deletes the replicas when storage policy dictates
that space must be freed. [9]

Accounting is the measure of how much resource an account has used.
A quota is a policy limit applied to an account by the system. Rucio accounts
are accounted only replicas requested by replication rules. If two users set a
replication rule on the same file and request replica on the same RSE, they
are both accounted for the file, even though there is only one physical copy of
the file. [10]

4

Chapter 2
Getting access to the Rucio

In this chapter, the technologies used to get an access to the Rucio and the
WLCG are briefly described and why I decided to use them is explained.
Also, the process of an installation and configuration of the technologies is
described.

An easy way how to control data on the WLCG using Rucio middleware
is to use Rucio client. It is an application written in python and it removes
the complexity of raw HTTP requests sent to Rucio’s REST API [11].

To use the WLCG and therefore the Rucio, the VOMS must be used to
authorize. A simple way to do so is to use the VOMS proxy. It is used
to request an Attribute Certificate (AC) from VOMS server and to create a
proxy that is used to control authentication and authorization when accessing
third party services. The AC carries the attributes that a person holds in a
certain VO. [3, 12]

I found two ways how to make these tools available. The first one is to
install the software directly on the local machine. The problem is that on the
server, where the software had to be installed, the operating system Scientific
Linux 7.3 is running. It is relatively new system and every guide how to
install the VOMS proxy is only for the Scientific Linux 5 and 6. So I choose
the second way, to use the technology of CernVM File System (CernVM-FS).

2.1 CernVM File System

The CernVM-FS is a read-only file system delivering software onto virtual ma-
chines and physical computers in a fast, scalable, and reliable way. Files and
metadata are downloaded on demand and cached. The CernVM-FS ensures
data authenticity and integrity of the data. In contrast to general-purpose
network file systems such as NFS or AFS, the CernVM-FS is optimized for
running and compiling software. Software installed in CernVM-FS does not
need to be further packaged as it does in virtual machine images or Docker
images. The software is versioned and distributed file-by-file. [13]

5

2. Getting access to the Rucio

The CernVM-FS automatically mounts repositories when they are accessed
and automatically unmounts them after some system-defined idle time [14].

2.2 Installation and configuration

To install the CernVM-FS, I used the package manager yum, which is built in
Scientific Linux. The CernVM-FS is configured to mount repositories atlas
.cern.ch, atlas-condb.cern.ch and grid.cern.ch. The repository atlas
.cern.ch contains various software and some of it uses data in the repository
atlas-condb.cern.ch. The repository grid.cern.ch contains various grid
software which is used to work with the WLCG [15]. The last part of the
configuration is to prepare the environment for use of so-called setupATLAS,
which prepares the environment for other software setups such as Rucio clients
setup.

1 # CernVM -FS
2 yum install 'https :// ecsft.cern.ch/dist/cvmfs/cvmfs -

release /cvmfs -release - latest . noarch .rpm '
3 yum install cvmfs cvmfs -config - default cvmfs -auto -

setup
4
5 cvmfs_config setup
6
7 CVMFS_CONFIG_FILE ='/ etc/cvmfs/ default .local '
8 echo 'CVMFS_REPOSITORIES =atlas.cern.ch ,atlas -condb.

cern.ch ,grid.cern.ch ' > $CVMFS_CONFIG_FILE
9 echo 'CVMFS_HTTP_PROXY =DIRECT ' >> $CVMFS_CONFIG_FILE

10
11 cvmfs_config reload
12 cvmfs_config probe
13
14 # setupATLAS
15 echo '' >> /etc/ bashrc
16 echo 'export ATLAS_LOCAL_ROOT_BASE =/ cvmfs/atlas.cern.

ch/repo/ ATLASLocalRootBase ' >> /etc/ bashrc
17 echo 'alias setupATLAS =" source ${

ATLAS_LOCAL_ROOT_BASE }/ user/ atlasLocalSetup .sh"'
>> /etc/ bashrc

Figure 2.1: CernVM-FS installation

As seen in figure 2.1 the configuration of the CernVM-FS is stored in the
file /etc/cvmfs/default.local and the tool cvmfs_config to work with

6

2.3. User credentials for VOMS

the configuration of the CernVM-FS. The environment is set up for use of the
setupATLAS using the /etc/bashrc.

The cvmfs_config is utility providing commands used to set up the system
in order to use the CernVM-FS. The command cvmfs_config setup does the
base setup, such as creating a user for CernVM-FS and allowing all users to
access the CernVM-FS mount points. The command cvmfs_config reload
hotpaches the CernVM-FS instance in a way, that active code is unloaded and
the new code is loaded from the currently installed binaries. The CernVM-
FS is re-initialized and therefore the configuration is re-read. The command
cvmfs_config probe accesses the mount point of every repository. [16]

2.3 User credentials for VOMS

To use the VOMS proxy, user credentials must be passed to it during initial-
ization. User credentials can be put anywhere and their location passed via
appropriate options, but there is also the default setup. The credentials should
be put in the user’s home directory. The certificates can be encoded in PKCS
#12 or PEM formats. If the PKCS #12 credentials are used, the default path is
∼/.globus/usercred.p12 and the file permissions must be 600. If the PEM
is used, the default path of the certificate is ∼/.globus/usercert.pem and
the default path of the private key is ∼/.globus/usercert.pem. The per-
missions of the certificate file must be 644 and the permissions of the private
key file must be 400. If both formats are present, the PEM takes priority. [12]

7

Chapter 3
Uploading to Worldwide LHC

Computing Grid

In this chapter, the analysis of processes necessary to upload the Timepix data
in a specific form is described. Also, analysis, design, and implementation of
each process are described in this chapter.

The data should be uploaded in a form of measured data per day. To achie-
ve this, more steps are needed to be done. I analyzed the processes and found
few common ones. The first one is to locate where the data are stored.
There are more data disks on the server and the data can be stored on
whichever of them. The second one is to merge the data. It is good to
have data stored in per day files but some are in per hour files. The third and
also the last one is the upload itself. The files should be uploaded only when
there is a reason for it, such reason can be that the data are not yet uploaded
or that the uploaded data are not up-to-date.

All these processes are mostly a work with files, so I decided to implement
them as a bundle of Bash scripts. The bundle works with the data from
Timepix devices, so I called it simply tpx. It provides commands for getting
the path of the data, merging files and uploading to the WLCG. As seen in
figure 3.1, some commands use the bundle itself. Both the upload and the
merge need to locate the data path and the upload sometimes needs to merge
the files first.

The bundle contains more than just three scripts, one for each use case,
tpx_path, tpx_merge, and tpx_upload. It contains three more scripts. One of
them, rucio_connect, serves for setting up the ATLAS environment, the
Rucio clients, and the VOMS proxy. Another one, tpx_claim, serves for a
transition of ownership. Every file operations by this script are made purely
on the WLCG, but this script is not part of this thesis, it is there only for a
future possible use. Next one, tpx, covers up the bundle as a whole. It provides
help with a short summary of available commands and invokes them when the
command is provided as the first argument. It is done the way the symbolic

9

3. Uploading to Worldwide LHC Computing Grid

«includes»

«extends»

«includes»
User

Upload to WLCG

Merge "per hour" files

Get path

TPX bundle

Figure 3.1: Use cases of the TPX bundle

links pointing to this script can be used. As seen in figure 3.2, the script,
tpx_config, serves as a base for any of those scripts. It contains functions for
setting up help message, providing temporary storage and managing exits.

The scripts in the bundle use four exit codes, these are number 0 for a
successful exit, number 40 for invalid input, number 44 when data to work with
were not found and number 50 when some other error occurs. Various scripts
can have various reasons why to fail, but all of them print info into the error
output. The error codes are inspired by HTTP status codes. The first and
last digits of the HTTP status codes are used.

The temporary files are not stored in /tmp as it usually does. When the
files had to be merged there, it failed because of not enough space, so I made
another temporary storage on one of the data disks. The path to the storage
is /data7/tmp and the storage directory has set the same permissions as the
original /tmp directory. Every instance of the scripts in the tpx bundle creates
its own temporary directory. It does so by creating a new temporary file in
/tmp using the command mktemp. It uses the file name and creates a directory
with the same name in /data7/tmp. The temporary file is removed afterward.

3.1 Getting data path

There are more data disks on the server. They are called /data<N> where <N>
is a number, for now between 1 and 8. The Timepix data are stored on disks
/data6 and higher. On these disks is a directory ATLASTPX_root containing
directory structure with the Timepix files. The directory ATLASTPX_root con-

10

3.1. Getting data path

:tpx_claim

+ SOURCE_DIR { readOnly, leaf }
+ OWNER { readOnly, leaf }
+ OLD_SCOPE { readOnly, leaf }
+ NEW_SCOPE { readOnly, leaf }
+ DATASET_GLOB : = "*_TPX*" { readOnly, leaf }
+ DATASET_PATTERN { readOnly, leaf }
+ OLD_DATASET_GLOB { readOnly, leaf }
+ OLD_DATASET_DID_GLOB { readOnly, leaf }
+ OLD_DATASET_PATTERN { readOnly, leaf }
+ OLD_DATASET_DID_PATTERN { readOnly, leaf }
+ NEW_DATASET_GLOB { readOnly, leaf }
+ NEW_DATASET_DID_GLOB { readOnly, leaf }
+ NEW_DATASET_PATTERN { readOnly, leaf }
+ NEW_DATASET_DID_PATTERN { readOnly, leaf }
+ FILE_PATTERN : = "\d{4}_\d{2}_\d{2}_TPX\d{2}\.root" { readOnly, leaf }
+ DATE_PATTERN { readOnly, leaf }
+ OLD_DATASETS { readOnly, leaf }
+ NEW_DATASETS { readOnly, leaf }
+ DATASET_NAME
+ NEW_DATASET
+ NEW_DATASET_DID
+ OLD_CONTENT
+ NEW_CONTENT
+ FILE_NAME
+ NEW_FILE
+ OLD_DATE
+ NEW_DATE

Responsibilities
— Copies datasets of given user

:tpx_upload

+ SOURCE_DIR { readOnly, leaf }
+ HASH_TYPE : = 'sha512' { readOnly, leaf }
+ RSE : = 'PRAGUELCG2_LOCALGROUPDISK' { readOnly, leaf }
+ DATE { readOnly, leaf }
+ YEAR { readOnly, leaf }
+ TPX { readOnly, leaf }
+ SINGLE : = false
+ MONTH
+ DAY
+ DIR { readOnly, leaf }
+ CODE
+ SCOPE { readOnly, leaf }
+ DATASET { readOnly, leaf }
+ LOGSET { readOnly, leaf }
+ DATASET_DID { readOnly, leaf }
+ LOGSET_DID { readOnly, leaf }
+ LOGDIR { readOnly, leaf }
+ ROOT_TEMPLATE { readOnly, leaf }
+ FILE_TEMPLATE { readOnly, leaf }
+ ROOT
+ DID
+ LOGSCOPE { readOnly, leaf }
+ FILES
+ FILE
+ SEEN : associative array
+ GLOB { readOnly, leaf }
+ MONTH_CUT { readOnly, leaf }
+ DAY_CUT { readOnly, leaf }
+ LOG { readOnly, leaf }
+ SOURCES

+ hash_cmd
+ detach
+ is_up_to_date

Responsibilities
— Check a need of the upload
— Upload files to WLCG
— Detach old files from datasets
— Attach new files to datasets

:tpx_merge

+ SOURCE_DIR { readOnly, leaf }
+ YEAR { readOnly, leaf }
+ TPX { readOnly, leaf }
+ DIR { readOnly, leaf }
+ CODE
+ TARGET_DIR : = '.'
+ SINGLE : = false
+ MONTH
+ DAY
+ TARGET_TEMPALTE { readOnly, leaf }
+ MONTH_CUT { readOnly, leaf }
+ DAY_CUT { readOnly, leaf }
+ GLOB_TEMPLATE { readOnly, leaf }
+ GLOB
+ TARGET
+ FILES { readOnly, leaf }
+ FILE

+ validate_date
+ validate_target_dir

Responsibilities
— Merge files per hour to files per day

:tpx_path

+ SOURCE_DIR { readOnly, leaf }
+ YEAR { readOnly, leaf }
+ TPX { readOnly, leaf }
+ DIR
+ TPX_TEMPLATE : = 'tpx%02d' { readOnly, leaf }
+ DATA

Responsibilities
— Check existence of the data path
— Return the data path

:rucio_connect

- __QUIET
- __INFO

- __exists

Responsibilities
— Set up the environment
— Create proxy

:tpx

+ SOURCE { readOnly, leaf }
+ SOURCE_DIR { readOnly, leaf }
+ COMMAND { readOnly, leaf }

Responsibilities
— Provide summary about bundle
— Invoke other scripts

:tpx_config

+ EXIT_SUCCESS : = 0 { readOnly, leaf }
+ EXIT_INVALID_INPUT : = 40 { readOnly, leaf }
+ EXIT_NOT_FOUND : = 44 { readOnly, leaf }
+ EXIT_ERROR : = 50 { readOnly, leaf }
+ TMP { readOnly, leaf }
- __INPUT_ORDER : array
- __INPUT_DESCRIPTION : associative array
- __MAX_INPUT_LENGTH : = 3
- __EXIT_DESCRIPTION : array
- __COMMAND
- __USAGE
- __DESCRIPTION

+ usage
+ err_print
+ throw
+ finish
+ trim_zeros
+ str_cut
_set_command
_set_usage
_set_description
_add_input
_add_exit_code
_remove_all_inputs
_remove_all_exit_codes
- __last_index
- __array_empty

Responsibilities
— Manage help/usage message
— Manage temporary storage
— Manage exits

Figure 3.2: Structure of the bundle

tains directories of data per year. Their name corresponds to the year number.
In these directories, the directories representing each individual detector are
stored. They are called tpx<M> where <M> is a number formatted to two digits,
so the <M> has to be between 01 and 16. For the purpose of locating the data,
I created the tpx_path script.

The script first checks if the first argument is --help, if it does then the
help message is printed to error output and the script exits with zero code,
otherwise, the script continues. Then it is checked if the arguments are valid,

11

3. Uploading to Worldwide LHC Computing Grid

[directory does
not exist]

[TPX number is given]

[directory does
not exist]

TPX path

Get disk number by year
[else]

[arguments
are not valid] [else]

[else]

Figure 3.3: Process of getting the data path

that means that the number of arguments equals one or two, the year argument
consists of four digits and if the detector number argument is passed it is a
number. If the arguments are not valid, the script exits with code 40, and the
help message is printed to the error output. If the arguments are valid the
data path can be processed.

The data per one year should be all on one disk, so the script decides on
which disk to look for by the year. The 2015 data are stored on /data6, the
2016 data on /data7 and the 2017 and 2018 data on /data8. Then the script
checks if the data are really there. It does so by checking the path existence,
e.g. for the 2016 data the path /data7/ATLASTPX_root/2016 should exist,
otherwise, it is considered that no data for the year exists and script exits with
the code 44. If a path of the detector directory is requested it is checked if the
year directory contains it, e.g. for the detector 3 for the 2016 data the path
/data7/ATLASTPX_root/2016/tpx03 should exist, otherwise it is considered
that no data for the detector in given year exists and script exits with the
code 44. If everything goes well the path is printed to standard output and
the script exits with the code 0.

3.2 Merging the files

It is good to have the data stored in per day files but some data are stored
in per hour files. The forms file per day and file per hour are even mixed
together. They are mixed together so much that for example in the directory
for 2016 data from detector 2, there are data from some days in per day files
and some in per hour files mixed without any rule or pattern. It makes harder
to process these data. For this purpose, I created script tpx_merge.

The basic idea of the script is to filter out the per hour files and merge
them together by days. Because the files are ROOT files, the merge must be
done accordingly, using the tool called hadd. The ROOT is a data analysis
framework and it stores data in binary files called as ROOT files. These files
contain histograms and trees. Good custom is to add the suffix .root to the
file name, so it is easily recognizable. The ROOT also provides the hadd to
merge these files. Its usage is simple, it is used like hadd target.root file1
.root file2.root ... fileN.root.

12

3.2. Merging the files

root

data6

ATLASTPX_root

2015

tpx01

...

tpx16

data7

ATLASTPX_root

2016

tpx01

...

tpx16

data8

ATLASTPX_root

2017

tpx01

...

tpx16

2018

tpx01

...

tpx16

Figure 3.4: Directory structure of the data

The idea of usage of the script is to provide more freedom in use. The script
accepts all information as arguments. It can accept up to five arguments but
only two are mandatory. The first argument has to be the year of origin of
the data and the second one the detector number. With this configuration,
the script merges all per hour files stored in directory determined by these two
arguments to per day files stored in a current working directory. Then another
two arguments can be provided, a month and a day in the month. These make

13

3. Uploading to Worldwide LHC Computing Grid

tpx merge

--help

<YEAR> <TPX>

<MONTH> <DAY>

<PATH>

--direct

<PATH>

--direct

<MONTH> <DAY>

<MONTH> <DAY>

Figure 3.5: Usage of tpx merge

the script to merge only per hour files from the given day to a single file.
To manipulate where the data are stored another argument can be provided.
The argument can be a path or the option --direct. If the path is provided,
it is used as the place to store the merger files. If the argument is --direct
the merger files will be stored in the same directory where the source files are
stored, in other words, the per day files will be stored in the same directory as
the per hour files. The target directory argument can be used even without
the single day specifying arguments and even does not matter in which order
they are provided.

The script first needs to ensure that the user does not ask for help. It does
so by checking if the first argument is equal to the --help. If it does, the
script exits with zero code and prints the help message to the error output.
If the user does not ask for help, then the script needs to ensure that the
mandatory arguments are valid. The validation process corresponds to the
validation process in script tpx_path mentioned earlier in section 3.1.

Then using the command tpx path the data path of given year and given
detector number is retrieved. If the tpx path failed, its exit code is processed.
It the code equals to 40, which means that the arguments for the tpx path
are not valid, the script exits also with the code 40 and the help message is
printed to the error output. However, this situation should never happen,
because the validation processes of both scripts are the same. It the exit code
equals to 44, which means no data for given detector number and given year
exits, the script exits also with the code 44 and the content of error output of
the tpx path is printed to the error output of the script.

14

3.2. Merging the files

[else]

[merger file
does not exist]

Merge files

[else]

[else]

[else]

[merger file
does not exist]

[no files for
given day]

[else]

 «iterative»

[given path is invalid]

[arguments
are not valid]

[else]

[else]

[else]

[given date
is invalid]

[single day is
 given]

[target path
is given]

[else]

[single day
is given]

Merge files

Glob files

List per hour files

TPX path

TPX merge

File

File

Figure 3.6: Process of merging files

Then a validation of the arbitrary arguments happens if some are passed.
If at least four arguments are provided and the third one is a double-digit
number it is considered that the third and fourth arguments are month and
day specifying files from a single day to merge. If the fifth argument is pro-
vided it is considered as the target path argument. If there are only three
arguments or the third one is not a number, the third argument is considered
as target path argument. If there are five arguments and the third one is

15

3. Uploading to Worldwide LHC Computing Grid

considered as the target path argument, the fourth and fifth arguments are
considered as the month and day arguments. The month and day arguments
are validated using the command date. If the date command refuses the
arguments, they are considered as invalid because it means that the provided
date is not valid. The target path argument is invalid if it is not equal to
--direct and it is not an existing directory. Again if any of the validation
fails, the script exits with code 40, and a message describing the problem
is printed to the error output together with the message “Try 'tpx merge
--help'”. When the validation is done the control flow of the script continues
in one of two branches, the branch for merging per hour files from a single
day or the branch for merging all per hour files.

If the month and day are provided, the branch for merging per hour files
from a single day is chosen. The branch starts with building a globing string
and a merger file name. Then it is checked if the string matches some files or
not. If it does not match any files, the script exits with the code 44 and prints
a message, that there are no requested per hour files, to the error output.
If the string matches some files, it is checked that the merger file does not
exist, otherwise the script exits with the zero code and prints a message, that
the merger file already exists, to the error output. If the merger file does
not exist, the globed per hour files are merged. If the merging fails, the
uncompleted merger file is deleted and the script exits with the code 50 and
prints a message, that the merger file could not be created a thus has been
deleted, to the error output.

If the month and day are not provided, the branch for merging all per
hour files is chosen. The branch starts with listing all per hour files. The files
are then iterated one by one. For each file, the month and day are cut off
the file name and are used to build a globing string and a merger file name.
If the merger file exists and was not tested before, the script prints a message,
that the merger file already exists, to the error output. If the merger file
does not yet exist, the files are merged. In this case, the testing that the
globing string matches some files is useless because the globing string is built
from file names of those files which it has to match. If the merging fails, the
uncompleted merger file is deleted and the script exits with code 50 and prints
a message, that the merger file could not be created a thus has been deleted,
to the error output. The script exits though there are still files that could be
merged because I use the policy “if it should crash, do it fast”. I use the policy
because when the script is integrated into other scripts, the ignorance of an
error could lead to undefined behavior.

The detection of merging failure is little misleading. The hadd always exits
with the zero code and prints all information including error messages to stan-
dard output. If the standard output and the error output points to the same
file, nothing is printed to error output and only to standard input is printed.
But if the standard output and the error output points to different files, all
information is still printed to the standard input and only error messages are

16

3.3. Uploading

printed to the error output. So I decided to check if the error output contains
the word error, which is on the beginning of all hadd error messages.

3.3 Uploading

The ultimate goal of this thesis is to make a program that automatically
uploads the Timepix data to the WLCG. The files should not be uploaded
unless there is a reason for it otherwise it is just waste of time and resources.
Such reasons are that file is not yet uploaded or that the content of the file
or content of one of the files has changed. The detection that the file is not
yet uploaded is easy, it suffices to list the files on WLCG and check that the
file there. The detection that the content of the file or content of one of the
files has changed is not so easy. The file could be downloaded but that is
inefficient, moreover, if the file is a merger there is no easy way how to check
if it is up-to-date.

To check if a data file is up-to-date, I decided to create checksum files.
To use checksum files one must choose a hash function creating sums. There are
various hash functions to choose from, the standard ones such as the MD4 and
MD5 or various types of the SHA, or the less know hashes provided by the
tool rhash. I chose the SHA-512 because it is known standard with widely
spread support and also because of the length of the output. It is the 512-bit
long digest, which provides a lot of possibilities and thus small chance of col-
lision. A collision of checksums is critical because then there is no way how
to distinguish if a content of the file or content of one of the files it is merged
from has been changed, except downloading the file. Another bonus of using
the SHA-512 is that there is the tool sha512sum which enables to easily create
and check the checksum files.

When a list of files is passed to the sha512sum, it prints pairs of a checksum
and a file name. If the output is stored in a file, it can be used later to check
that the files have not been modified. This can be done using options -c or
--check. It returns the code 0 when no file from the list has been modified
and the code 1 when some of them do. I decided for one checksum file per
one uploaded file so it can be easily checked if the file has been modified.
The checksum files for per day files contain a single checksum of that file, but
the checksum files for the mergers of the per hour files contains checksums for
every per hour file it is merged from.

Once the file is uploaded to the WLCG it cannot be modified. At the
beginning of the upload, the record about the file is added to a Rucio catalog.
The record contains the DID, the GUID, file size, and Adler-32 checksum.
None of these can change, so once the record is created only the file with the
same content can be uploaded, otherwise, the file size or the checksum do not
match. But when a data file is modified there is a need to re-upload it or its
merger file, so I decided to use a specific naming convention. The date of the

17

3. Uploading to Worldwide LHC Computing Grid

upload is appended at the of the DID.
How I mentioned in section 1.2, the DID is composed of a scope and a file

name delimited by a colon. A user without any special privileges can write
only to his own scope. The user scope is a string user.<USER>, where the
<USER> is a username of the user. When the scope is on the beginning of a
filename and the scope is not provided, the Rucio guess it by the filename and it
makes better compatibility with similar older software, Don Quijote 2. So the
final DID of a file looks like user.<USER>:user.<USER>.<YEAR>_<MONTH>
_<DAY>_TPX<TPX>.root.<DATE>, where the <USER> is the username, the se-
quence <YEAR>_<MONTH>_<DAY> is a date of the origin of the data, the <TPX>
is a number of a detector where the data were measured and the <DATE> is
the date of the upload.

Because there is a lot of files in the scope and it is not trivial to filter
from them the ones with the highest number (the latest date) at the end,
I decided to create a dataset for every combination of a year and a detec-
tor number. The datasets, unlike the files, can be modified, so the files
can be attached and detached as you wish. In these datasets are attached
only the latest files. I chose a similar naming convention for the dataset as
for the files. The dataset DIDs look like user.<USER>:user.<USER>.<YEAR>
_TPX<TPX>, where again the <USER> is the username, the <YEAR> is a year of
the origin of the data and the <TPX> is a number of a detector where the data
were measured.

The checksum files are stored also on the WLCG and they are also attached
to datasets to make easy to identify and manipulate with the latest files.
The checksum files have their own datasets. These are similar to those ones
to which data files are attached. There is one checksum file per one uploaded
file, so the content of the datasets of checksum files is almost the same as
the content of the datasets of the data files, but instead of data files, the
corresponding checksum files are attached to them. I also decided to use a
similar naming convention. The DIDs of the datasets of the checksum files
are equal to the DIDs of the corresponding datasets with data files with the
suffix equivalent to the hash type so in this case the .sha512. So the DIDs of
the datasets of checksum files looks like user.<USER>:user.<USER>.<YEAR>
_TPX<TPX>.sha512, where again the <USER> is the username, the <YEAR> is
the year of the data origin and the <TPX> is a number of a detector. I decided
to use the same naming principle to checksum files, so the DID of a checksum
file is equal to the DID of corresponding data file with the suffix .sha512
appended.

The script has two mandatory arguments and one pair of arbitrary argu-
ments. The mandatory arguments are the same as at the script tpx_merge ex-
plained in section 3.2 and their validation process is also the same. That means
that they are a year and a detector number specifying the data to work with
and that the process is also the same as in script tpx_path which is described
and explained in section 3.1. The arbitrary pair of arguments is a month and

18

3.3. Uploading

TPX pathRucio connect

[else][file is up-to-date]

[file is from
processed day]

[else]

 «iterative»

[file is up-to-date] [else]

 «iterative»

[single day is given]

[dataset with checksum
 files does not exist]

[dataset does not exist]

[else]

[else]

[else]

[else]

[arguments are
not valid]

Add dataset

Attach checksum file to dataset

Attach file to dataset

Detach old files

Upload checksum file

Upload file

Download single checksum file Download checksum dataset

Create checksum file

Create checksum file

TPX merge

List per hour files

Rucio connect

Attach checksum file to dataset

Attach file to dataset

Detach old files

Upload checksum file

Upload file

Rucio connect

List per day files

Add checksum dataset

TPX upload

File

File File

File

Figure 3.7: Process of uploading to the WLCG

19

3. Uploading to Worldwide LHC Computing Grid

a day specifying data from the single day. These have to be one or two digit
numbers, otherwise, the arguments are not valid. If the arguments are not
valid, the script exits with the code 40 and prints the help message to the error
output. Instead of mandatory and arbitrary arguments, only one argument
can be provided. This argument is the --help option. If this argument is
provided, it means that a user is asking for help. In such case, the script exits
with the zero code and prints the help message to the error output.

Then the data path is retrieved using the script tpx_path. If the script
exits with the code 40, the current script exits with the code 40, too, and
prints the help message to the error output. However, this should not ever
happen, because both scripts use the same validation techniques. If the script
exits with the code 44, the error message from the script is printed to the
error output together with the message “Try 'tpx upload --help'” and the
upload script exits with the code 44 as the script tpx_path does.

Because the script needs to use the Rucio and using it communicate with
the WLCG. The Rucio clients and the VOMS proxy must be set up. This is
done using the script rucio_connect which is described and explained in
section 3.4. If it fails, that is if the user enters an invalid passphrase, the error
message from the script rucio_connect is printed and the script exits with
the code 50.

Then the existence of the dataset of data files and the dataset of checksum
files is checked. If one of them does not exist, it is created. If the creation
fails, the script exits with the code 50 and prints error message, which tells
that the dataset and which dataset could not be created, to the error output.
Since after the check it is sure that both datasets exist, the script can start to
use them.

The next step depends on the argument passed to the script. If a single
day is specified it checked if a corresponding checksum file is attached to the
dataset of checksum files. If it does it is downloaded and the scope is parsed
out. Is it so because the script is prepared for a future possibility of ownership
transition made by the script tpx_claim. If the download fails, the script exits
with the code 50 and prints an error message, which tells that the checksum
file could not be downloaded. If it is downloaded successfully, it is downloaded
into the temporary directory into a directory with the name of the scope of
the checksum file. The directory is then renamed to the name of the dataset,
so it can be used the same way as if the whole dataset is downloaded.

If a single day is not specified the dataset of checksum files is simply
downloaded as a whole. If the download fails, the script exits with the code 50
and prints error message, which tells that the dataset could not be downloaded.
The files are downloaded into the temporary directory into the directory with
the name of the dataset, that is the DID without the scope part.

When the checksum files are downloaded, everything is prepared to start
iterating over the files and evaluating if there is a need to upload them and
eventually upload them. This is done in two phases, the first phase goes

20

3.3. Uploading

through the per day files and the second one through per hour files. If data
from some days are stored in both, the per day files and the per hour files,
the per day files have higher priority and the per hour files are not merged
and neither uploaded.

In the first phase, the per day files are listed. If the single day is specified,
the list contains only the specified file, but if data from that day are stored
only in per hour files, that means no per day file exists for the specified day,
the list is empty. If the single day is not specified the content of the directory
retrieved using the script tpx_path is filtered and per day files are stored in
the list.

Then the script starts iterate over the files in the list. Because there
can be up to hundreds of files containing terabytes of data, each iteration is
ensured that the VOMS proxy is not yet expired and will not happen during
the upload. This is again done using the script rucio_connect described in
section 3.4. Because the environment is already set up by the first invocation,
it skips the setting up part and only works with the VOMS proxy. If the
proxy for the user does not exist or it is expired or less then hour has left until
expiration, it is re-initialized.

Each file is checked if it is up-to-date or not. It is important to re-upload
the file if the uploaded one is obsolete. So I decided to use strict criteria
to consider it up-to-date. There are five of them. They can be seen if the
figure 3.8. To consider a file up-to-date, the flow must go through one of the
“check the checksum” activity and have a positive output from it.

[per day file

does not exist]

[else]

[else]

[per day file
exists]

[checksum file
contains one line][checksum file

is not attached
the dataset]

[data file is
not attached

to dataset] [else]

[checksum file
is empty] [checksum file

contains more

then one line]

Check the checksums

Up-to-date check

[number of
per hour files

is not equal to
number of lines in

checksum file]

[else][else]

Check the checksum

List data files in dataset

Figure 3.8: Process of checking if a file is up-to-date

The first one is of course that the file is attached to the dataset, otherwise,
it is considered it is not even uploaded. The second one is that the correspond-
ing checksum file is attached to the corresponding dataset, otherwise, there is
an inconsistency between the dataset of data files and the dataset of checksum

21

3. Uploading to Worldwide LHC Computing Grid

files and it has to be fixed. A certain way how to fix it is to re-upload the file.
The third one is that the checksum file is not empty, otherwise, there is

something wrong about the file and it has to be fixed and again a certain way
how to fix it is to re-upload the file. In the cases, when the checksum file
is missing or it is empty, is highly probable that there is a problem with the
WLCG and it might be also possible that there is a problem with the data file,
too, and it is unnecessary to download it and it could be not even possible to
download it, for example when the file replicas are lost. Therefore the certain
and easy way is to re-upload the files, the data file, and the checksum file.

The fourth criteria is that if the checksum file contains only one line,
the per day file exists and its checksum matches, because if the checksum
file contains only one line, it means that when the file was uploaded the per
day file was present, and if it does not exist anymore, the file structure of
data from that day has changed and it cannot be reliably checked if the data
are up-to-date.

The fifth one is that if the checksum file contains more than one line,
the per day file does not exist, the number of lines in checksum file is equal
to a number of per hour files and their checksums matches. The reason for
the non-existence of the per day file is analogical to the reason of the previous
criteria, but with the difference not only that it cannot be reliably checked
if the data are up-to-date, but without the download, it is not even possible.
If the number of lines in the checksum file does not equal to the number of
per hour files, it means that the merger file cannot be the same, because there
are more, or fewer files than there were earlier and no matter the type of the
change the result cannot be the same. If in the fourth or in the fifth criteria
the checksums do not match, it means that some of the files were modified
and so it has to be re-uploaded.

If the iterated file is up-to-date, the day it is from is just marked as pro-
cessed and a next file goes on a turn. The more interesting is if the file is not
up-to-date. Then the checksum file is created and upload starts. Because from
the user perspective it is more important to have uploaded the data file than
the checksum file, which is there only for checking purposes, as the first the
data file is uploaded and the checksum file is uploaded afterward. If one of the
uploads fails, the script immediately exits with the code 50 and prints an error
message, which tells that the file and which file could not be uploaded, to the
error output. If the upload of the data file fails, the upload of the checksum
file does not even start, because it is gratuitous.

When both files are uploaded, there are just a few operations left to do.
They are to detach old files from the datasets and attach the new ones.
These file manipulations happen purely on the WLCG, but first must be
determined on exactly which data the operations have to happen or if they
even have to happen. The situation when the operations should not happen
occurs during the detachment of old files. As seen in figure 3.9, a situation
when no file is detached from any dataset can occur.

22

3.3. Uploading

[else]
[dataset contains data file]

[else]
[dataset contains checksum file]

Detach checksum file

Detach checksum file

Detach old files

Figure 3.9: Process of detaching old files

During the detachment, data files attached to the dataset are listed. If the
list contains file from the same day as was just uploaded. It is detached from
the dataset. The same happens even for the checksum files. The important
thing is that both steps are done independently of each other, so if there were
some inconsistencies between the data files and the checksum files, in this step
they are fixed. The checksum is detached as the first for similar reasons as it
is uploaded as the second. From the user perspective, it is better to have at
least old data file rather than no data file. However, if one of the detachments
fails, the process of the detaching of old files is immediately interrupted. If it
happens so, the script exits with the code 50 and prints an error message
to the error output, which tells that the files and which files could not be
detached from which dataset but not exactly which file, if the data one or the
checksum one.

After the detachment, the newly uploaded files can be attached to the
datasets and so they are. Again, the data file has priority to be attached.
If one of the attachments fail, the script exits with the code 50 and prints an
error message to the error output, which tells that the file and which file could
not be attached to which dataset. At the end of each iteration, the checksum
file is deleted so it does not waste a space.

Almost the same iteration process is done for per hour files. There are just
a few differences, these can be seen in figure 3.7. First one is that before any
operation as the first thing each iteration it is checked whether the file is from
some already processed day. If it does, nothing happens and a next file goes
on the turn. If it is not from an already processed day, the day it is from is
marked as processed. The second difference is when the uploaded file is not
up-to-date, the per hour files from the same day are merged together using

23

3. Uploading to Worldwide LHC Computing Grid

sd Upload

:rucio_connect :tpx_path:rucio :tpx_merge:tpx_upload:tpxUser

opt

[uploaded
file is not
up-to-date]

opt

[corresponding
per day file
is not yet
processed]

loop

[for each
per hour file]

opt

[uploaded file
is not up-to-date]

loop

[for each
per day file]

opt

[checksum file
is uploaded]

alt

[upload single day]

[else]

opt

[dataset with
checksum files
does not exist]

opt

[dataset with data
files does not exist]

rucio attach

rucio attach

rucio detach
opt

[dataset
contains
data file]

rucio list-files --csv

opt

[dataset
contains
checksum file]

rucio detach

rucio list-files --csv

detach

rucio upload

rucio upload

source tpx_path

tpx path

source tpx_merge
tpx merge

rucio list-files --csv

is_up_to_date

source rucio_connect -q

rucio attach

rucio attach

rucio list-files --csv

opt

[dataset
contains
data file]

rucio detach

rucio detach
opt

[dataset
contains
checksum file]

rucio list-files --csv

detach

rucio upload

rucio upload

rucio list-files --csv

is_up_to_date

source rucio_connect -q

rucio download

rucio download

rucio list-files --csv

rucio list-dids --short

rucio list-dids --short

rucio add-dataset

rucio add-dataset

source tpx_path
tpx path

source rucio_connect
source tpx_upload

tpx upload

Figure 3.10: Invocations during the upload24

3.4. Setting up Rucio clients

the script tpx_merge described in section 3.2, and the resultant merger file is
stored in the temporary directory. The third difference is that the checksum
file is not created from the merged per day file, but from the per hour files,
which it is merged from. The fourth and the last difference is that at the end
of each iteration not only the checksum file is deleted but the merger file is
deleted, too.

The uploading script is the biggest one and the most complex one of the
scripts in the bundle. As seen in figure 3.10, it also uses all of them, except
the tpx_claim (that is why it is not part of this thesis). There is also seen
how much it communicates with the Rucio. It seems like the uploading script
uses the other one only rarely, but the bodies of the loops can be executed
hundreds of times. The uploading loops can have even thousands of iterations,
but because there is one iteration per every per hour file and only the per day
files are uploaded, most of the iterations are just skipped.

The numerous communication cannot limit the functionality. However,
every communication with the Rucio is a network communication, so it has
enormous overhead, not mentioning that during every request the Rucio has
to work with enormous data, where terabytes of data are stored in form of
records. For example, a listing of files takes up to few seconds and uploading
of a small simple file such as the checksum one can take up to few minutes.
The same applies for the download. That is one of the reasons why I tried
to use so few uploads and downloads as far as it is possible. The problem
is not in the volume of the data but in the overhead of the communication
and Rucio.

There is also another problem associated with using the Rucio. I do not
know how it works elsewhere but the Prague site is uncomfortably unstable.
The Prague site is part of the WLCG managed by Institute of Physics of the
Czech Academy of Sciences [17, 18]. Every moment some service necessary
to upload or download the files is not available. The problem is that if some
necessary service is not available, the upload fails and thus the uploading
script exits. So during the initial upload, until the all currently available
data are uploaded, it has to be re-invoked many times, so it could finish.
Each invocation part of the directory is uploaded. I recommend to re-invoke
it till it returns the zero code.

3.4 Setting up Rucio clients

The guide [8] recommends using three commands in specific order to set up Ru-
cio clients and initialize VOMS proxy. These three commands are setupATLAS,
localSetupRucioClients and at the end voms-proxy-init -voms atlas.

The command setupATLAS is just an alias for command source /cvmfs/
atlas.cern.ch/repo/ATLASLocalRootBase/user/atlasLocalSetup.sh wh-

25

3. Uploading to Worldwide LHC Computing Grid

ich sets up an environment for cluster user. It does so by using setting
aliases and variables. One such alias is the localSetupRucioClients, which
is an alias for source /cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase
/utilities/oldAliasSetup rucio. The command is used to set up any-
thing with correct dependencies, in this case, the Rucio clients. It also mod-
ifies the PATH variable and so makes the VOMS proxy accessible. After that,
the command voms-proxy-init -voms atlas can be executed. It creates
a proxy and includes an AC containing user attributes in the proxy certifi-
cate. The proxy has a default lifetime of 12 hours, which can be extended to
24 hours.

Because the upload should start by a single command, the setups and
initialization of the VOMS proxy have to be automatic, but re-invoking of
the setups might cause problems and re-initializing of the VOMS proxy is
needless, so I created a Bash script which automatically decides which steps
need to be done and which do not.

The script at first exports the variable ATLAS_LOCAL_ROOT_BASE, which
represents the root base of the repository “atlas.cern.ch”, that is located at
path /cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase. The variable is re-
quired by following setups. After the export, it checks if the necessary tools
are available. These tools are rucio, voms-proxy-init and voms-proxy-
info. If one of them is not available, the Rucio clients must be set up.
But before this setup, the ATLAS environment must be set up. The good
identifier whether the ATLAS environment is set up is to check whether the
variable ALRB_availableTools is set. This variable is set during the AT-
LAS setup, so if it is not set the command source $ATLAS_LOCAL_ROOT_BASE
/user/atlasLocalSetup.sh is invoked.

The Rucio clients are not set up by source $ATLAS_LOCAL_ROOT_BASE
/utilities/oldAliasSetup.sh as they are in the guide, because the script
just removes arguments equal to two dashes and the rest passes as argu-
ments to another command. So I decided to skip the oldAliasSetup.sh
step and invoke directly the command source $ATLAS_LOCAL_ROOT_BASE

/packageSetups/localSetup.sh rucio.
If the Rucio clients are set up the VOMS proxy comes into play. The VOMS

proxy is initialized only when there is no VOMS proxy present for the user or
when the proxy expires in less than hour or it is already expired. These checks
are done using the voms-proxy-info. It fails if there is no VOMS proxy
present, otherwise, various information is printed. One such information is
time left to expiration. The VOMS proxy initialization needs a passphrase for
the user certificate. If a file ∼/.globus/passphrase exists and its permissions
are 400 or 600, its content is used as the passphrase, otherwise, the user is
asked to enter the passphrase. If the user enters an incorrect passphrase
the script exits with a code 1. If the user wants to upload a lot of data,
I recommend to save the passphrase in the file, so the VOMS proxy can be
automatically re-initialized when there is the need.

26

3.4. Setting up Rucio clients

In the end, if the script is not launched in quiet mode, it prints time left
to the VOMS proxy expiration and path to the proxy. These are information
provided by voms-proxy-info.

[else]

[else]

[else]
[quiet

mode]

[else]

[ATLAS environment
is not set up] [VOMS proxy

does not exist
or less than
hour have left]

[rucio,
voms-proxy-info
or voms-proxy-init
is not set up]

Setup ATLAS environment

Print user info

Initialize VOMS proxy

Setup Rucio clients

Export altas root base

Rucio connect

Figure 3.11: Decisions made during setting up the Rucio clients

27

Conclusion

This thesis had three individual goals. The first goal was to get an overview
of what WLCG and Rucio are and how to use them to accomplish following
goals. The second goal was to find a way how to connect from IEAP server
to the WLCG and manage data on it using Rucio middleware. The third and
the ultimate goal was to analyze processes, that need to be done, so the data
from IEAP server can be uploaded to WLCG, and to design and implement
a program that transfers and store the data from the IEAP server to WLCG.

The fulfillment of the first goal is proved by the chapter 1 and by the
fact that I successfully accomplished the next two goals. The second goal is
accomplished using the technology of the CernVM-FS, which provides software
I use to connect to the WLCG using Rucio. The software is Rucio clients and
the VOMS proxy used by the Rucio to authorize. I accomplished the third
goal by design and implementation of a bundle of Bash scripts, which locates
the data files, merges the per hour files into the per day merger files and
uploads the per day files onto the WLCG.

The use of the bundle during the upload of 2015, 2016 and 2017 data, which
have together about 13.7 terabytes, prove that the bundle works. However,
there are always things to improve. The bundle could be optimized, so it does
fewer operations and fewer iterations during the upload. The reasons of fails
of the upload could be distinguished and decisions, if to try again or quit,
could be made.

29

Bibliography

[1] Welcome |Worldwide LHC Computing Grid. [online], [Cited 2018/04/17].
Available from: http://wlcg-public.web.cern.ch

[2] Getting Started | WLCG. [online], [Cited 2018/04/18]. Available from:
http://wlcg.web.cern.ch/getting-started

[3] VOMS home. [online], [Cited 2018/04/18]. Available from: http://
italiangrid.github.io/voms/index.html

[4] De Stefano, J. S. Joining a VO — RACF. [online], Apr. 2013, [Cited
2018/04/24]. Available from: https://www.racf.bnl.gov/docs/howto/
grid/joinvo

[5] Welcome to Rucio’s documentation! — Rucio 1.2 documentation. [on-
line], [Cited 2018/04/22]. Available from: https://rucio.readthedocs.
io/en/latest/

[6] Files, Datasets and Containers — Rucio 1.2 documentation. [online],
[Cited 2018/04/22]. Available from: https://rucio.readthedocs.io/
en/latest/overview_File_Dataset_Container.html

[7] Rucio Storage Element — Rucio 1.2 documentation. [online], [Cited
2018/04/22]. Available from: https://rucio.readthedocs.io/en/
latest/overview_Rucio_Storage_Element.html

[8] Chudoba, J. RucioClientsHowTo < AtlasComputing < TWiki. [online],
Aug. 2017, [Cited 2018/04/22]. Available from: https://twiki.cern.
ch/twiki/bin/viewauth/AtlasComputing/RucioClientsHowTo

[9] Replica management with replication rules — Rucio 1.2 documenta-
tion. [online], [Cited 2018/04/22]. Available from: https://rucio.
readthedocs.io/en/latest/overview_Replica_management.html

31

http://wlcg-public.web.cern.ch
http://wlcg.web.cern.ch/getting-started
http://italiangrid.github.io/voms/index.html
http://italiangrid.github.io/voms/index.html
https://www.racf.bnl.gov/docs/howto/grid/joinvo
https://www.racf.bnl.gov/docs/howto/grid/joinvo
https://rucio.readthedocs.io/en/latest/
https://rucio.readthedocs.io/en/latest/
https://rucio.readthedocs.io/en/latest/overview_File_Dataset_Container.html
https://rucio.readthedocs.io/en/latest/overview_File_Dataset_Container.html
https://rucio.readthedocs.io/en/latest/overview_Rucio_Storage_Element.html
https://rucio.readthedocs.io/en/latest/overview_Rucio_Storage_Element.html
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/RucioClientsHowTo
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/RucioClientsHowTo
https://rucio.readthedocs.io/en/latest/overview_Replica_management.html
https://rucio.readthedocs.io/en/latest/overview_Replica_management.html

Bibliography

[10] Accounting and quota — Rucio 1.2 documentation. [online], [Cited
2018/04/22]. Available from: https://rucio.readthedocs.io/en/
latest/overview_Accounting_and_quota.html

[11] Rucio Clients — Rucio 1.2 documentation. [online], [Cited 2018/04/18].
Available from: https://rucio.readthedocs.io/en/latest/clients.
html

[12] VOMS Client Guide. [online], [Cited 2018/04/18]. Available from:
http://italiangrid.github.io/voms/documentation/voms-
clients-guide/3.0.3/

[13] Overview — CernVM-FS 2.4.3 documentation. [online], [Cited
2018/04/18]. Available from: http://cvmfs.readthedocs.io/en/
stable/cpt-overview.html

[14] CernVM-FS Client Quick Start | cernvm.web.cern.ch. [online], [Cited
2018/04/18]. Available from: http://cernvm.cern.ch/portal/
filesystem/quickstart

[15] Manzi, A. WLCGCVMFSGridArea < LCG < TWiki. [online], Mar. 2016,
[Cited 2018/04/25].

[16] Client Configuration — CernVM-FS 2.4.3 documentation. [online],
[Cited 2018/04/25]. Available from: http://cvmfs.readthedocs.io/
en/stable/cpt-configure.html

[17] ATLAS Grid Information System. [online], Feb. 2018, [Cited 2018/05/11].
Available from: http://atlas-agis.cern.ch/agis/site/detail/
praguelcg2/

[18] Welcome to our website | Fyzikálńı ústav Akademie věd ČR. [online],
[Cited 2018/05/11]. Available from: https://www.fzu.cz/en

32

https://rucio.readthedocs.io/en/latest/overview_Accounting_and_quota.html
https://rucio.readthedocs.io/en/latest/overview_Accounting_and_quota.html
https://rucio.readthedocs.io/en/latest/clients.html
https://rucio.readthedocs.io/en/latest/clients.html
http://italiangrid.github.io/voms/documentation/voms-clients-guide/3.0.3/
http://italiangrid.github.io/voms/documentation/voms-clients-guide/3.0.3/
http://cvmfs.readthedocs.io/en/stable/cpt-overview.html
http://cvmfs.readthedocs.io/en/stable/cpt-overview.html
http://cernvm.cern.ch/portal/filesystem/quickstart
http://cernvm.cern.ch/portal/filesystem/quickstart
http://cvmfs.readthedocs.io/en/stable/cpt-configure.html
http://cvmfs.readthedocs.io/en/stable/cpt-configure.html
http://atlas-agis.cern.ch/agis/site/detail/praguelcg2/
http://atlas-agis.cern.ch/agis/site/detail/praguelcg2/
https://www.fzu.cz/en

Appendix A
Acronyms

ÚTEF Ústav technické a experimentálńı fyziky.

AC Attribute Certificate.

AFS Andrew File System.

API Application Programming Interface.

ATLAS A Toroidal LHC Apparatus.

Bash Bourn Again Shell.

CERN European Organization for Nuclear Research.

CernVM CERN Virtual Machine.

CernVM-FS CernVM File System.

CTU Czech Technical University in Prague.

DID data identifier.

GUID globally unique identifier.

HTTP Hypertext Transfer Protocol.

IEAP Institute of Experimental and Applied Physics.

LFN Logical File Name.

LHC the Large Hadron Collider.

33

Acronyms

MD Message-Digest algorithm.

NFS Network File System.

PEM Privacy-enhanced Electronic Mail.

PKCS Public-Key Cryptography Standards.

REST Representational State Transfer.

RSE Rucio Storage Element.

SHA Secure Hash Algorithm.

VO Virtual Organization.

VOMS Virtual Organization Membership Service.

WLCG Worldwide LHC Computing Grid.

34

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
tpx bundle.....................the directory with the bundle of scripts

tpx the script covering up the whole bundle
tpx path...............................the script locating data files
tpx merge..........................the script merging per hour files
tpx upload the script uploading data to the WLCG
tpx claim............. the script for ownership transition of datasets
tpx config.................... the parent script for all scripts above
rucio connect..........the script setting up environment and proxy

thesis src.............. the directory of LATEX source files of the thesis
*.pdf...the thesis figures
*.tex....................... the LATEX source code files of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
assignment.pdf the thesis assignment

35

	Introduction
	Technologies
	Worldwide LHC Computing Grid
	Rucio

	Getting access to the Rucio
	CernVM File System
	Installation and configuration
	User credentials for VOMS

	Uploading to Worldwide LHC Computing Grid
	Getting data path
	Merging the files
	Uploading
	Setting up Rucio clients

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

