
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 13, 2017

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Designing WYSIWYG Web Forms

 Student: Radek Buša

 Supervisor: Ing. Marek Skotnica

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2018/19

Instructions

- Design a data representation of the DEMO Fact Model: model and instances.
- Design a method of assigning web forms to individual C-Acts and their data representation. Consider the
relation to the Action Model.
- Demonstrate the designed data structures on the Rent-a-car case study.
- Design, implement and test a web WYSIWYG editor for the data structures.
- Design, implement and test a web user environment for displaying the forms and storing the data into a
relational database.
- Again, demonstrate on the Rent-a-car case study.
- Document your solution.

References

Jan L.G. Dietz. (2012). The Essence of Organization - an Introduction to Enterprise Engineering. Sapio bv.

Bachelor’s thesis

Designing WYSIWYG Web Forms

Radek Buša

Department of Software Engineering
Supervisor: Ing. Marek Skotnica

May 8, 2018

Acknowledgements

In the first place, I would like to thank my supervisor Ing. Marek Skotnica
who proved to be a patient and erudite mentor. Next, I would like to thank
my family for their unconditional and endless support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 8, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c⃝ 2018 Radek Buša. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Buša, Radek. Designing WYSIWYG Web Forms. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2018.

Abstrakt

Tato práce se věnuje tvorbě prototypu webové aplikace pro navrhováńı we-
bových formulář̊u na základě model̊u podnikových proces̊u. Z takové aplikace
by mohla mı́t užitek každá společnost, která by chtěla vymodelovat své pod-
nikové procesy a na základě nich rychle vytvořit formuláře na web.

Kĺıčová slova navrhování WYSIWYG webových formulář̊u, webová ap-
likace, modelování v metodice DEMO, modelování podnikových proces̊u, návrh
webové aplikace, implementace webové aplikace, testování webové aplikace,
JavaScript, C#

Abstract

This thesis is dedicated to creating a proof-of-concept prototype web applica-
tion for designing web forms based on business process models. Such solution
will help every company which would like to model their business processes
and quickly create forms based on the business process models.

Keywords WYSIWYG form design, web application, DEMO methodology
modelling, enterprise modelling, web application design, web application im-
plementation, web application testing, JavaScript, C#

vii

Contents

Introduction 1
State-of-the-art . 1
Thesis Goals and Result . 1
Motivation . 1

1 Theories Used 3
1.1 Business Process Management (BPM) 3
1.2 DEMO Methodology . 3

2 Analysis 7
2.1 Goals . 7
2.2 Non-Goals . 7
2.3 Functional Specification . 8
2.4 Data Model . 16

3 Existing Solutions for Designing Web Forms 23
3.1 Popular Services with WYSIWYG Form Editing 23
3.2 Open Source Plugins . 25
3.3 Commercial Plugins . 28
3.4 Conclusion . 29

4 Technical Design 31
4.1 Software Architecture . 31
4.2 Technologies . 35
4.3 Module Structure . 36
4.4 Client-Server Communication 38
4.5 Testing . 41

5 Proof of Concept 43
5.1 Rent-A-Car Case Study . 43

ix

5.2 Demonstration . 47
5.3 Conclusion . 58

Conclusion 61
Thesis Goals . 61
Evaluation . 61
Future Development . 62

Bibliography 63

A Acronyms 67

B Contents of Enclosed CD 69

x

List of Figures

1.1 DEMO aspect models [1] . 5

2.1 Standard Transaction Pattern [1] 8
2.2 Process Designer interface wireframe 9
2.3 Process Designer pop-up window interface wireframe 9
2.4 Data Designer interface wireframe 10
2.5 My Forms interface wireframe . 11
2.6 Form Creator interface wireframe 11
2.7 Form naming and assignment interface wireframe 13
2.8 Form to Fact Model connection interface wireframe 13
2.9 Process Workspace interface wireframe 14
2.10 Add Process interface wireframe 15
2.11 Form Filler interface wireframe . 16
2.12 Domain diagram of Fact Model data model 17
2.13 Domain diagram of Fact Model instance model 19
2.14 Domain diagram of Form Model 20

3.1 Google Forms . 24
3.2 Cognito Forms . 24
3.3 jQuery formBuilder . 25
3.4 Formeo . 26
3.5 form.io Form Builder Application 27
3.6 fl-form-builder . 28
3.7 Form Designer . 29

4.1 Component structure the application 33
4.2 Component structure of the application 33
4.3 NgModules of FormDesignerFrontend and their dependencies . . . 37
4.4 NgModules of FormDesignerFrontend depending on CoreUI 37

5.1 Primary processes of Rent-A-Car, part one [1] 46

xi

5.2 Primary processes of Rent-A-Car, part two [1] 46
5.3 Secondary processes of Rent-A-Car [1] 47
5.4 OFD drawn in Data Designer . 48
5.5 Construction Model of Rent-A-Car [1] 48
5.6 Declared business processes in Process Designer 49
5.7 Sample Rent-A-Car action rule (event part) [1] 49
5.8 Form designed using Form Creator based on the action rule 50
5.9 TPT of Rent-A-Car domain [1] . 50
5.10 Form assigned to T1/rq using Form Creator 51
5.11 Generated form example . 52
5.12 Process instantiation interface . 54
5.13 Requesting rental order transaction 55
5.14 Reviewing T1/rq C-fact . 56
5.15 Action rule for T1/rq (assess and response parts) [1] 56
5.16 Requesting rental payment transaction 57
5.17 Promising rental payment transaction 57
5.18 Action rule for T2/pm . 58

xii

List of Tables

5.1 C-facts and their corresponding C-acts 51

xiii

Listings

4.1 Error envelope structure . 41
5.1 Form generator setup example 52
5.2 Entity populating APIs usage example 53

xv

Introduction

State-of-the-art
Information systems in present-day companies are in most cases custom-made,
which brings problems of being time-taxing to produce and often expensive to
maintain. In recent years, low code platforms, BPM systems and collaborative
platforms such as Microsoft SharePoint have been emerging, allowing its users
to support many important tasks of information systems.

Thesis Goals and Result
The primary goal of this thesis is to design, implement and test a proof-of-con-
cept web application for designing web forms based on business process models
with additional functionalities to draw DEMO Fact Models and submit the
forms to a relational database. Secondary goal is to design a data model for
DEMO Fact Model and related forms which the application will take advan-
tage of. Both goals will be demonstrated on the Rent-A-Car case study from
the book The Essence of Organisation.

The result of this thesis is intended to help everyone who wants to model
their business processes or already has DEMO models and would like to use
their models to generate web forms from them.

Motivation
I chose this topic because nobody implemented such solution for DEMO
methodology before. Implementing such solution will remove the obstacles of
creating web forms from scratch while already having complete DEMO mod-
els and might possibly increase market share of DEMO methodology among
other enterprise modelling methodologies.

1

Chapter 1
Theories Used

1.1 Business Process Management (BPM)
Mathias Weske in his book [2] briefly explains what is Business process man-
agement:

Business process management includes concepts, methods, and
techniques to support the design, administration, configuration,
enactment, and analysis of business processes. The basis of busi-
ness process management is the explicit representation of business
processes with their activities and the execution constraints be-
tween them. Once business processes are defined, they can be
subject to analysis, improvement, and enactment.

1.2 DEMO Methodology
Akiyoshi Araki and Junichi Iijima [3] will help with brief introduction to De-
sign & Engineering Methodology for Organizations (DEMO) to fellow reader:

DEMO is a methodology for the engineering and implementation
of organizations. It can reveal the essential structure of business
process and simplify the structure of organization by an ontologi-
cal model which describes the core of the organizations. DEMO is
based on the Performance in Social Action theory, PSI- or ψ-the-
ory. The ψ-theory consists of four axioms and one theorem, i.e. the
operation axiom, the transaction axiom, the composition axiom,
the distinction axiom and the organization theorem.

• The operation axiom states that the operation of the or-
ganization consists of the activities of actors who perform
two kinds of acts; production acts (P-acts) and coordination
acts (C-acts). By performing P-acts, the actors contribute

3

1. Theories Used

to achieving the purpose or the mission of the enterprise.
By performing C-acts, the actors enter into and comply with
commitments towards each other regarding the performance
of P-acts.

• The transaction axiom states that C-acts are performed in
transactions that always involve initiator and executor. They
aim to achieve a particular result, the P-fact.

• The composition axiom states that transactions are related
to each other, i.e., a transaction is enclosed in another trans-
action, or a transaction is self-activated.

• The distinction axiom states that there are three distinct hu-
man abilities playing a role in the operation of actors, i.e.,
performa, informa and forma ability which relates to onto-
logical action, infological action and documental action, re-
spectively. Actors who use the performa ability to perform
P-acts are called business actors (B-actors). The performa
ability is the essential human ability for doing business. Ac-
tors who use the informa and forma ability to perform P-acts
are called intellectual actors (I-actors) and documental actors
(D-actors), respectively.

• The organization theorem states that the organization of an
enterprise is an integrated social system of B-organization,
I-organization and D-organization.

The ontological model of an organisation is composed of four aspect models
(submodels), each capturing the organisation from different aspect, as illus-
trated in Figure 1.1:

• Construction Model (CM),

• Action Model (AM),

• Process Model (PM),

• Fact Model (FM). [1]

The aspect models this thesis will work with will be described in the fol-
lowing chapters.

1.2.1 Fact Model

Alicia Perinforma in the book The Essence of Organisation [1] sums up the
purpose of Fact Model among other DEMO aspect models:

4

1.2. DEMO Methodology

transaction kinds
actor roles

response links
wait links

entity kinds,
product kinds,
property kinds,
attribute kinds

PRODUCTIONCOORDINATION

work instructionsaction rules

OPERATION

PROCESS PRODUCT

CONSTRUCTION

transaction kinds, actor roles
initiator links, executor links, information links

FM

CM

PM

AM

Figure 1.1: DEMO aspect models [1]

The Fact Model shows the fact kinds in the production world of
the organisation and their interrelationships. In current practice,
they are called business objects and business facts. In addition, the
FM contains the laws that must be obeyed in order to keep every
state and every state transition of the production world lawful. As
these laws are the declarative version of the (imperative) business
rules, as specified in the AM, they are called business laws.

1.2.2 Action Model

Alicia Perinforma [1] in the book also describes the purpose of Action Model
among other DEMO aspect models:

The Action Model (AM) is the most comprehensive aspect model,
in the sense that the other three may be derived from it. The
AM of an organisation consists of the action rule specifications for
every internal actor role. Action rules are guidelines for dealing
with the events that actors have to respond to. In current practice,
they are often referred to as business rules. In addition, the AM
may contain work instructions. These regard the execution of pro-
duction acts. Work instructions may be useful if the production

5

1. Theories Used

acts are material, like baking pizzas. However, also for immaterial
products, like judgments and decisions, there can be work instruc-
tions. In practice, quite complicated judgment or decision rules or
protocols may apply.

6

Chapter 2
Analysis

This section elaborates on analyzing thesis requirements.
Based on the requirements, a comprehensive functional specification with

wireframes of the application in section 2.3 and implementation independent
specification of DEMO Fact Model data model and Form Model in section 2.4
are defined.

2.1 Goals
• Implementing a subset of DEMO Fact Model specification sufficient for

capturing the Rent-A-Car case study.

• Implementing a WYSIWYG diagram editor for drawing Object Fact Di-
agram which will save model represented by the diagram to a relational
database.

• Implementing a WYSIWYG web form designer for designing web forms
based on given Fact Model.

• Implementing a simple interface for rendering and submitting filled-out
forms designed by the form designer to a relational database.

2.2 Non-Goals
• Implementing multi-domain solution.

• Implementing the Revocation Patterns.

• Implementing the user interface to comply with the best practices of
UX.

• Performance.

7

2. Analysis

• Security.

• Implicit propagation of Object Fact Diagram changes to the forms.

2.3 Functional Specification

DEMO Form Designer will be used for specifying Fact Model by drawing an
Object Fact Diagram of given domain and designing WYSIWYG web forms
based on attributes and properties of Fact Model mentioned earlier. Further-
more, the application will be able to assign the forms to C-acts in the Standard
Transaction Pattern depicted in Figure 2.1.

qt

dc

rqrq

pm pm

ac

rj

sp

stst

initiator executor

dc

ac

rj

in

initiator executor

sp

qt

in

>

in

>

Figure 2.1: Standard Transaction Pattern [1]

The application will also provide a testing interface for submitting the data
from completed forms into a relational database.

8

2.3. Functional Specification

2.3.1 Process Designer

Process Designer will be used for assigning transaction kinds discovered from
the Fact Model to business processes. It will serve as a simplified substitution
of full Construction Model implementation.

The interface of Process Designer designated in Figure 2.2 will consist of
a panel and boxes where each of them represents a single business process.

Process Designer Add Process Kind

Default Process

No transactions

Product Shipping

T1 T2

Delete

Figure 2.2: Process Designer interface wireframe

By default, all the transaction kinds discovered from the Fact Model will
be assigned to a process called Default Process.

The user will be able to define additional business processes using the
Add Process Kind button. After clicking it, a pop-up window illustrated in
Figure 2.3 for specifying new business process name will be presented to the
user.

Add Process Kind

Form Kind name:

Add

Figure 2.3: Process Designer pop-up window interface wireframe

Apart from creating a custom business process, the user will also be able
to delete them using the Delete button which every process box possesses,
except for Default Process box, which will be reserved for newly discovered
transaction kinds from the Fact Model.

Transactions themselves will be assigned to a certain business process by
drag-and-drop method to a box representing given business process.

Process boxes which will not have any transaction kinds assigned will warn
the user about this fact.

9

2. Analysis

2.3.2 Data Designer

Data Designer will be used for drawing Object Fact Diagram of given domain.
Data Designer interface illustrated in Figure 2.4 will consist of a canvas with
diagram preview and two toolbars – upper toolbar with action buttons and
left toolbar with diagram element picker and edge toggle switch.

Data Designer Save

Concern

Generalisation

Aggregation

Property

External Entity

Event Entity

Event

Internal Entity

Zoom in Zoom out Remove

Figure 2.4: Data Designer interface wireframe

The elements on the canvas will be able to be moved around the canvas,
further adjusted (e.g. size, position or content), connected together, deleted
from or moved around the canvas. When done drawing the diagram, the user
will be able to save it. Saving the diagram will imply that any other content
of the application (i.e. forms and processes) will be deleted.

2.3.3 Form Editor

My Forms

After entering the Form Editor section, the My Forms screen designated in
Figure 2.5 will automatically open, containing a list of all user-defined forms.
The list will contain the name of the form, and form assignment to a trans-
action kind and C-act pair. The user will be able to create, edit or delete his
forms on this screen.

• If the user decides to create a new form, the Form Creator screen de-
scribed in section 2.3.3 will open with an empty editing area.

• In case the user will want to edit a form, the Form Creator screen will
open with requested form.

10

2.3. Functional Specification

Form Name Assigned To

Rental Order Editrequest

Rental Statement state Edit Delete

Order Confirmation promise Edit Delete

Order Cancellation declineT2 Edit Delete

T0

T0

T2

Delete

My Forms Create Form

Figure 2.5: My Forms interface wireframe

Form Creator

This screen depicted in Figure 2.6 will serve as a WYSIWYG form editor for
creating or editing selected form. The Form Creator interface will comprise
of editing area and field area.

The field area will contain two types of fields:

• Generic Fields – fields which will be used to supply additional useful
information and elements to the form for submitters such as headings,
paragraphs, etc.

• Model Fields – fields which will correspond to the attributes and prop-
erties of Fact Model data model described in section 2.4.1.

Form Creator Save Discard

Car Rental Order Heading

Paragraph

RENTAL::ending day

RENTAL::rental charge

PERSON::day of birth

PERSON::name

Select

Car Manufacturer:

Drag a field to this area

Figure 2.6: Form Creator interface wireframe

The user will be able to drag and drop any of present fields from the field
area into the editing area which serves as a live preview of the form. The

11

2. Analysis

user will be able to arrange and further customize the fields within this area.
After done editing, the user will be able to return to the My Forms screen by
pressing either the Save or Discard button.

• After clicking the Save button, the procedure of saving the form de-
scribed in section 2.3.3 will commence.

• After clicking the Discard button, all unsaved work in the Form Creator
will be lost.

Saving the form

The process of saving the form will consist of following consequential phases:

1. Checking for inconsistencies.
The inconsistencies are:

• There are two fields belonging to the same Model Field.

If any inconsistencies are detected, the user will be warned by a warning
message and will be given a chance to correct them. The process of
saving the form will not continue until the form does not contain any
inconsistencies.

2. Naming the form and assigning it to a transaction and C-act.
The user will be presented an interface like in Figure 2.7 where the form
can be assigned to a pair consisting of a transaction and C-act from the
Standard Transaction Pattern of DEMO transactions.
If another form will be assigned to a pair (Transaction, C-act), the user
will not be able to assign the form to the same pair and those assignment
options will be disabled in the interface. After assigning the form to an
available pair, the Accept button becomes available. After the user clicks
the Accept button, the process will continue to step 3.

3. Connecting the form to a Fact Model entity.
An interface designated in Figure 2.8 will serve the user to connect the
form to a single entity in Fact Model data model if needed. Only when
connected to Fact Model, the form will read from the database when
opened and write to the database when submitted.
There are two options how to connect the form to an entity:

• Instantiate new entity option will instantiate selected entity and
add it to a list of selected transaction entities if not already present
there, and fill its attributes and properties with form field data
when submitted.

12

2.3. Functional Specification

Save Form [1/2]

Form assignment:

Form name:

Rental Order

Transactions

T1

T2

T3

C-acts of T1

request

promise

decline

quit

state

accept

reject

stop

Accept

Figure 2.7: Form naming and assignment interface wireframe

• Take existing entity option will find selected entity among transac-
tion entities of selected transaction and fill it with form field data
when submitted.

Save Form [2/2]

Form entity:

Form to Entity connection:

Do not connect this form to an entity

Instantiate new entity and fill it using this form

Take existing entity and modify it using this form

ORDER

Form entity transaction kind:

T1

Save

Figure 2.8: Form to Fact Model connection interface wireframe

4. Persisting the form into the database.

13

2. Analysis

2.3.4 Form Tester

This section will serve as a testing interface for filling out user-defined forms
created in the Form Editor section of the application described in section 2.3.3.

Process Workspace

The Process Workspace screen depicted in Figure 2.9 will be available right
after opening the Form Tester section. It comprises of process instance tabs,
transaction tabs, list of available forms to fill in, C-fact inspector, transaction
state dropdown and an Add Process button.

HelloDEMO Test

requestedT1 State:

Add ProcessX X

Rental Order Show

Executor

Available Forms

C-Fact

Form Name C-act State

Rental Confirmation promise Fill OutUntouched

Decline Rental decline Fill OutUntouched

T1 T2 T3 T4 T5

Figure 2.9: Process Workspace interface wireframe

If the workspace will be empty either because the user removed the pro-
cesses from the workspace or there are no processes instantiated, process in-
stances can be added to the workspace using the Add Process button. Clicking
this button will open a simple interface depicted in Figure 2.10 where the user
can either create a new process, or open an existing one.

• Existing processes panel allows the user to put an existing process to
Process Workspace or delete it.

• New process panel allows the user to create a new process with given
name and type and add it to the workspace afterwards.

Each process instance tab can be removed from the screen if necessary
using the X button inside its tab. Under the process instance tab, there will
be another set of tabs with transactions of given process instance. In the
transaction tab body, there will be a drop-down menu where the user will be

14

2.3. Functional Specification

Add process to Process Workspace

Existing processes

Add Delete

rental test

helloworld

New process

Process name

Create and Add

Order Shipping

Process type

Figure 2.10: Add Process interface wireframe

able to explicitly set the state of selected transaction, a list of available forms
by current transaction state and if the transaction will not be in initial state,
a C-fact inspector.

States of the transactions will correspond to C-facts of Standard Transac-
tion pattern depicted in Figure 2.1.

The list of forms will contain the following information:

• Form name which was set by the user in the Form Creator interface.

• Assignment to a transaction kind and C-act.

• State:

– Filled Out: The form has been filled out and thus has created a
C-fact. The user can either review the information of the C-fact
or change the entered information using the Change button which
will take the user to Form Filler described in section 2.3.4.

– Untouched: The form has not yet been filled out and is waiting to
be filled out to advance the transaction to the next state. The Fill
Out button will take the user to Form Filler where the form can be
filled out.

Form Filler

Form Filler illustrated in Figure 2.11 will serve as a form renderer for the
user-defined forms in Form Editor described in section 2.3.3.

The user will be able to:

• Fill in the fields of the form and submit the form using the Submit
button. After submitting the form, provided all the fields are correctly

15

2. Analysis

Form Filler

Car Rental Order

Select

Car Manufacturer:

Car Production Year:

Submit Discard

Figure 2.11: Form Filler interface wireframe

filled in, the user will be taken to Process Workspace screen described
in section 2.3.4.

• Leave the form and go to Process Workspace by pressing the Discard
button.

2.4 Data Model

This section contains implementation-independent specifications of all data
models used within the application.

Fact Model data and instance models were influenced by DEMOSL Fact Model
metamodel. [4]

2.4.1 Fact Model (Model)

Entities of this part of the model represent elements of DEMO Object Fact
Diagram.

Domain model in Figure 2.12 depicts Fact Model data model. It consists
of following classes:

EntityKind

EntityKind represents an entity type of OFD.
Each EntityKind can have multiple generalisations and multiple

specialisations of type EntityKind; these associations are navigable from
both ends.

Each EntityKind possesses definitions of its attributes using the
attributes association.

In order to represent properties between EntityKinds, each EntityKind
has properties and inverseProperties associations.

16

2.4. Data Model

EntityKind

+name: string[1]
+isInternal: boolean[1]

EventEntityKind

+transactionKind: TransactionKind[1]

EntityKindProperty

+name: string[1]
+domainMultiplicityLow: number[1]
+domainMultiplicityUp: number[0..1]
+rangeMultiplicityLow: number[1]
+rangeMultiplicityUp: number[0..1]

EntityKindAttribute

+name: string[1]
+optional: boolean[1]
+defaultValue: any[0..1]

Type

+name: string[1]
+unit: string[0..1]
+baseType: BaseType[1]
+typeSort: TypeSort[1]

+generalisations

0..*

+specialisations

0..*

+type

1

+properties

0..*

+domain

1

+inverseProperties

0..*

+range

1

+attributes 0..*

+domain
1

«enumeration»
BaseType

Integer
Real
Boolean
String

«enumeration»
TypeSort

Ordinal
Interval
Ratio
Absolute
Boolean

Figure 2.12: Domain diagram of Fact Model data model

Attributes:

name represents name of the entity.

isInternal determines whether the entity is internal or external.

EventEntityKind

EventEntityKind is a specialisation of EntityKind. It represents a product
kind.

Attributes:

transactionKind determines which transaction kind this product kind is
associated to.

EntityKindAttribute

EntityKindAttribute represents an attribute of EntityKind.
Each EntityKindAttribute has a domain association – i.e. which

EntityKind it belongs to. Moreover, it incorporates, by the type associa-
tion, which value dimension will its instance have.

Attributes:

name represents name of the attribute.

optional represents whether the value of an attribute is optional.

defaultValue represents default value of the attribute.

17

2. Analysis

EntityKindProperty

EntityKindProperty represents a property of EntityKind.
Using the domain and range associations, the direction of the property

association can be inferred.
Note: Because implementing multiplicities is a non-goal of this thesis, the

attributes domainMultiplicityLow, domainMultiplicityUp,
rangeMultiplicityLow and rangeMultiplicityUp are included in the model
only for completeness sake and their behaviour will not be implemented.

Attributes:

name represents name of the property.

domainMultiplicityLow denotes lower bound of the multiplicity range on
the domain side.

domainMultiplicityUp denotes upper bound of the multiplicity range on
the domain side.

rangeMultiplicityLow denotes lower bound of the multiplicity range on the
range side.

rangeMultiplicityUp denotes upper bound of the multiplicity range on the
range side.

Type

Type represents value dimension of the value attribute of EntityAttribute.
Attributes:

name represents name of the type.

unit represents units of given type.

baseType denotes which primitive type will the value attribute of
EntityAttribute contain.

typeSort denotes scale sort of the value dimension.

2.4.2 Fact Model (Instances)

Domain model of Fact Model instance model is illustrated in Figure 2.13. It
comprises of following classes:

18

2.4. Data Model

Entity

+model: EntityKind[1]

EntityAttribute

+value: any[0..1]
+model: EntityKindAttribute[1]

EntityProperty

+model: EntityKindProperty[1]

+properties
0..*

+domainEntity
1

+rangeEntity

+inverseProperties
0..*

1

+entity

1

+attributes

0..*

Figure 2.13: Domain diagram of Fact Model instance model

Entity

Entity represents an entity, i.e. an instance associated with EntityKind.
Each Entity has associated instances of its attributes and also instances

of its properties and inverseProperties.
Attributes:

model denotes which EntityKind is this Entity instance of.

EntityAttribute

EntityAttribute represents instance associated with EntityKindAttribute.
Each EntityAttribute has an association called entity determining which

Entity it belongs to.
Attributes:

value bears value of the attribute.

model denotes which EntityKindAttribute is this EntityAttribute in-
stance of.

EntityProperty

EntityProperty represents a property association between two Entity ob-
jects.

Attributes:

model denotes which EntityKindProperty is this EntityProperty instance
of.

2.4.3 Form Model

The main purpose of Form Model is to represent processes, their transactions
and forms of given transactions.

19

2. Analysis

Form Model domain diagram is portrayed in Figure 2.14. It consists of
following classes:

FormKind

+name: string[1]
+cAct: CAct[0..1]
+formContents: object[1]

TransactionKind

+name: string[1]
+onCompletion: any[1]

ProcessKind

+name: string[1]
+isDefault: boolean[1]

Process

+name: string[1]

Transaction

+state: CFact[0..1]
+transactionEntities: Entity[0..*]

Form

+formData: any[1]

+model
1

+model
1

+model
1

+transactionKinds

0..*
+formKinds
0..*

+transactionKind
0..1

+transactions

0..*

+transaction
1

+forms
0..*

«enumeration»
CFact

Requested
Declined
Quit
Promised
Stated
Accepted
Rejected
Stopped

«enumeration»
CAct

Request
Decline
Quit
Promise
State
Stop
Accept
Reject

«enumeration»
Actor

Initiator
Executor

«enumeration»
EntityAction

CreateEntity
UseFromTransaction

Figure 2.14: Domain diagram of Form Model

ProcessKind

ProcessKind represents a business process.
Its transactionKinds association represents a collection of transaction

kinds it incorporates.
Attributes:

name represents name of the process, e.g. Order Shipping.

isDefault represents whether given ProcessKind is Default Process described
in section 2.3.1.

Process

Process represents an instance of a business process.
Each Process refers to its ProcessKind using the model association and

stores its transactions using the transactions association.
Attributes:

name represents name of the process instance, e.g. John’s rental arrange-
ment.

20

2.4. Data Model

TransactionKind

TransactionKind represents a transaction kind. It stores a collection of
FormKinds it incorporates using an association called formKinds.

Attributes:

name represents ID of the transaction kind, e.g. T1.

onCompletion represents product kind formulation of product kind associ-
ated to given transaction kind.

Transaction

Transaction represents a transaction as an instance of a transaction kind.
It aggregates its forms by its forms association and refers to its transaction

kind using the model association.
Attributes:

state represents state of the transaction as a C-fact.

transactionEntities collection stores Entity objects created within scope
of this transaction.

FormKind

FormKind represents a form prototype1.
Using the transactionKind association, the FormKind object knows about

its assignment to a certain transaction kind.
Attributes:

name represents name of the form, e.g. Rental concluding request.

cAct represents a C-act this FormKind is assigned to.

formContents represents a definition of form structure – an array of ob-
jects representing Model Fields and Generic Fields characterized in sec-
tion 2.3.3.

Form

Form represents a form instance2. It contains concrete form field data after
filling the form in.

1Form prototype is a declaration of form fields without concrete field values and concrete
form-to-model bindings. It is composed of Form Fields and Generic Fields which are bound
to EntityKindAttribute and EntityKindProperty objects. Form prototype will, when serving
the form for filling out, be transformed to form instance.

2Form instance is a form with concrete values and concrete form-to-model bindings.
When serving the form for filling it out, it will have field values filled in from the data model
and its fields will be bound to EntityAttribute and EntityProperty objects.

21

2. Analysis

Attributes:

formData represents values of form fields. This attribute will not be per-
sisted into the database – instead will be populated based on other data
model values on the fly when serving the form.

22

Chapter 3
Existing Solutions for Designing

Web Forms

The objective of this chapter is to select an appropriate JavaScript plugin
for the application with WYSIWYG web form design capabilities. Firstly,
section 3.1 scrutinizes today’s most popular online services for designing forms
aimed at ordinary users. After researching the services for ordinary users and
stating the most important features of them from the usability standpoint,
the following sections 3.2 and 3.3 compare distinct plugins potentially usable
in the application utilizing both criteria acquired in section 3.1 and criteria
important for implementation.

3.1 Popular Services with WYSIWYG Form
Editing

3.1.1 Google Forms

Google Forms [5] illustrated in Figure 3.1 are a free online service for creating
survey forms that can be shared with target audience via web links. Filled
out forms are sent to the service and form author is afterwards able to visu-
alize the data from respondents. Among the features of Google Forms are:
drag-and-drop form editing, wizard creation, simple form validation interface
with custom error messages and image or video embedding features.

3.1.2 Cognito Forms

Cognito Forms [6] captured in Figure 3.2 are a free online form builder with
extra paid functionality. It supports advanced column layouts in conjunction
with drag-and-drop form editing. It is business oriented, with a variety of
payment oriented functionality, such as signature fields and integration with

23

3. Existing Solutions for Designing Web Forms

Figure 3.1: Google Forms

payment services. It also supports advanced form elements, such as live cal-
culations or conditional hiding of form fields.

Figure 3.2: Cognito Forms

3.1.3 Conclusion

To sum this section up, today’s popular services with WYSIWYG form design-
ing functionalities for ordinary users are from usability standpoint generally
easy to use by utilizing drag-and-drop form design capabilities along with sim-
ple user-friendly graphical interfaces consisting of easy to understand icons,
options and dialogues.

24

3.2. Open Source Plugins

3.2 Open Source Plugins

3.2.1 jQuery formBuilder

As of December 2017, an open source, MIT licensed jQuery formBuilder [7]
depicted in Figure 3.3 is today’s most popular plugin for building web forms
among developers, according to the number of stars on GitHub among re-
searched open source plugins [8][9][10][11]. As its name suggests, it depends
on jQuery. As a companion for formBuilder, there is a separate plugin called
formRender which serves as a renderer for the forms created using jQuery
formBuilder [12].

Figure 3.3: jQuery formBuilder

Advantages

• Exhaustive documentation.

• Bootstrap ready but does not depend on it.

• Easily extendable using custom API.

Disadvantages

• Does not support column layouts.

3.2.2 Formeo

Another open source MIT licensed plugin [9], similar to jQuery formBuilder
mentioned in section 3.2.1. Figure 3.4 depicts user interface of the plugin.

25

3. Existing Solutions for Designing Web Forms

Unlike jQuery formBuilder, this plugin, however, features advanced column
layouts for the form fields.

Figure 3.4: Formeo

Advantages

• The plugin has no dependencies.

• Supports column layouts.

• Easy drag-and-drop form layout adjustment.

Disadvantages

• Form builder and renderer are not separate plugins.

• Poor documentation – most importantly there are no examples on how
to customize the plugin.

• As of January 2018, the project received last minor update in May 2017 [9].

3.2.3 form.io Form Builder Application

This open source MIT licensed plugin [10] is illustrated in Figure 3.5 and is
developed by the provider of commercial service form.io which is a form-ori-
ented data management platform for serverless web applications [13]. Com-
pared to similar plugins, this plugin has advanced features, namely advanced
form validation, custom error messages and CSS styling. This plugin also
offers a variety of separate renderers for different clients written in different
frameworks (Angular 2, React).

26

3.2. Open Source Plugins

Figure 3.5: form.io Form Builder Application

Advantages

• Has built-in form validation and other advanced features.

• Supports column layouts.

• Supports wizard creation.

• Various renderers are available for the plugin, namely for Angular 2 and
React.

Disadvantages

• Depends on AngularJS (1.x) – restricts framework to use for the Form
Creator interface frontend to AngularJS.

• The plugin is tightly coupled to form.io services, thus would require
heavy modifications.

• There is no advanced documentation about how to customize the plugin.

3.2.4 fl-form-builder

The last open source MIT licensed plugin featured in this chapter called fl-
form-builder [11] is compared to other open source and commercial solutions
basic in terms of form field types and other features, such as form validation.
This plugin comes with no renderer.

27

3. Existing Solutions for Designing Web Forms

Figure 3.6: fl-form-builder

Disadvantages

• Does not support column layouts.

• Insufficient number of built-in components (most importantly no head-
ings, no paragraphs and no buttons).

• Does not support localization.

• No form renderer provided.

3.3 Commercial Plugins

3.3.1 Form Designer

Paid tool for building web forms portrayed in Figure 3.7 which generates
HTML, CSS and JavaScript code. Costs $17 for use in non-commercial
projects or $85 otherwise. [14] Supports basic form controls and has form val-
idation features. Compared to open source solutions mentioned section 3.2,
this web form editor does not support drag-and-drop form editing.

Advantages

• Has built-in support for form templates.

28

3.4. Conclusion

Figure 3.7: Form Designer

Disadvantages

• Does not support drag-and-drop form editing.

• Generates HTML code, which might limit portability of the forms only
to web-based environments.

3.4 Conclusion
No plugin mentioned above is ideal for the needs of the application. jQuery
formBuilder is close, though. It will, therefore, be used in the application as
WYSIWYG form editor component.

The main reasons for choosing jQuery formBuilder are:

• It has useful documentation describing all the aspects of plugin’s API.

• It can be easily adjusted and extended.

• It does not depend on any framework, so framework for the application
can be selected freely.

• It has minimalistic separate form renderer.

29

Chapter 4
Technical Design

Technical design is an important aspect of application development which
often determines technical quality, clarity, maintainability and many other
aspects of the application for its whole lifetime. This chapter will state the
most important technical design decisions while also justifying why were they
used.

Section 4.1 will cover the most important design decisions, regarding the
structure of the application in terms of layers, components and modules, and
distribution of those among physical devices and runtime environments.

Section 4.2 will briefly introduce chosen implementation technologies to
the reader.

Sections 4.3 and 4.4 will be more of documentational nature – they will
capture what do modules and packages of the application exactly contain and
how do client and server communicate.

Section 4.5 will conclude this chapter by stating software testing methods
used when developing the application.

4.1 Software Architecture

4.1.1 Design Approach

In order to achieve user experience similar to a desktop application, single-page
application (SPA) design approach will be preferred over more traditional
approach – server-side rendering design.

The main difference between SPA and server-side rendering is that pre-
sentation layer of SPA is contained within the client, i.e. rendering of the
views happens on the client, but the server still plays a significant role for the
application as it will retrieve data from a database and send data to the SPA
or process transactions for the SPA. [15, p. 7]

31

4. Technical Design

Among the most significant advantages of SPAs are:

• Reduction of round-trips between client side and server side, as view
changes are processed on the client side which results in less distracting
page reloads. [15, p. 7]

• Presentation layer contained within SPA is decoupled from other layers
on the server. This also means that client or server can be updated
separately. [15, p. 13]

4.1.2 Architectural Style

The Client and Server components of the application will use Multitier Busi-
ness microarchitectures. Figure 4.1 illustrates tiers of the application as a
whole.

Tier responsibilities:

Presentation Layer will present the data provided by Client Service Layer
to the user. It will contain View and ViewModel.

Client Service Layer will contain Model and also fetch the data from Ser-
vice Layer located on the server side.

Service Layer will expose a web service interface and will retrieve the data
from Data Layer, or in some cases process transactions using artefacts
located in Business Layer.

Business Layer will process any data requests more complex than simple
CRUD operations, such as business process simulation, data model pars-
ing. After decomposing resolved problems, it will delegate simple CRUD
operations to Data Layer.

Data Layer will contain data model definitions and process CRUD data op-
erations.

According to Martin Fowler [16], such architectural style offers better testa-
bility because each of the layers can be mocked. Last but not least, this ar-
chitectural style allows to easily create another client for the application or to
swap data source.

4.1.3 Components

UML component diagram describing component structure of the application
can be found in Figure 4.2.

32

4.1. Software Architecture

Client

Server

Presentation Layer

Data Layer

Business
Layer

Service Layer

HTTP

Client Service Layer

Relational Database

TCP/IP

Figure 4.1: Component structure the application

Database

«executionEnvironment»
Relational Database

ServerClient

«executionEnvironment»
Kestrel

FormDesignerData

FormDesignerApi

«executionEnvironment»
Web Browser

FormDesignerFrontend
HTTP

«schema»
Data ModelTCP/IP

Figure 4.2: Component structure of the application

Client

Since SPA design approach moves presentation logic from the server side to
client side and presentation logic will consume the data from the web service
the server side will provide, the client component will consist of a single mod-
ule named FormDesignerFrontend, containing Presentation Layer and Client
Service Layer depicted in Figure 4.1.

Server

The server which will mainly process data will provide an interface for XHR
calls from the client and will communicate with a DBMS which will provide
data to it.

33

4. Technical Design

The server component will be divided into two modules:

• FormDesignerData will contain Data Layer and Business Layer.

• FormDesignerApi will contain Service Layer.

The division into such modules allows for easy reuse of FormDesignerData
for different types of clients, such as a desktop or mobile client.

4.1.4 User Interface Patterns

Because the application will contain a considerable amount of code related to
user interfaces, the Presentation Layer will take advantage of a few patterns
known for improving code quality.

MVVM

Emmit Scott in his book [15, p. 24] briefly summarizes the MVVM pattern:

Model-View-ViewModel (MVVM) was proposed by John Gossman
in 2005 as a way to simplify and standardize the process of creating
user interfaces [. . .]. It’s another design pattern that emerged to
try to organize the code associated with the UI into something sen-
sible and manageable, while still keeping the various components
of the process separate.

• Model – The model typically contains data, business logic,
and validation logic. [. . .] The model is never concerned
with how data is presented.

• View – The view is what the user sees and interacts with. Its
a visual representation of the models data. [. . .]

• ViewModel – The ViewModel is a model or representation
of the view in code, in addition to being the middleman be-
tween the model and the view. Anything needed to define and
manage the view is contained within the ViewModel. This in-
cludes data properties as well as presentation logic. Each data
point in the model that needs to be reflected in the view is
mapped to a matching property in the ViewModel. [. . .] It’s
aware of changes in both the view and the model and keeps
the two in sync.

Presentational and Container Components

Presentational and Container Components, also known as Smart and Dumb
Components or Fat and Skinny Components is a pattern which resolves sepa-
ration of concerns among code written in frameworks utilizing UI components,

34

4.2. Technologies

including but not limited to Angular, Vue.js and React – today’s major frame-
works for SPA development.

Presentational Components consume data and render something based
on received data. They typically do not depend on the rest of the ap-
plication, thus are reusable.

Container Components specify the behaviour of a part of the application
and provide data fetched from data layer to their descendant presenta-
tional components.

Benefits of the approach include more understandable code and better
reusability of components. [17]

4.2 Technologies

4.2.1 Client

Because the application will be an SPA with jobs consisting of mainly pre-
sentating or manipulating the data, a template rendering solution with data
binding capabilities will be preferred over manual DOM manipulation. Such
solution will greatly decrease application code complexity and increase testa-
bility [18, p. 34].

Angular 5

Angular 5 is a cross-platform MVW framework for SPA development, provid-
ing the developers with the essentials for SPA development, including REST
client, template rendering system, data binding functionalities, and many
more features. TypeScript is preferred language to write Angular 5 appli-
cations with. [19]

CoreUI

CoreUI is an Open Source Bootstrap 4 based administration interface tem-
plate featuring useful add-ons, transparent code and file structure. It offers
versions for all of today’s popular JavaScript frameworks. [20] The Angular 5
version will be used for the application.

TypeScript

“TypeScript is a typed superset of JavaScript that compiles to plain JavaScript”
compliant with ECMAScript 3 specification.

35

4. Technical Design

TypeScript allows web developers to:

• Use highly productive development tools, such as refactoring and static
analysis.

• Use interfaces and decorators to deliver higher quality object-oriented
code.

• Use the latest ECMAScript specification features, such as async/await
syntax, which greatly increases asynchronous code readability. [21]

MxGraph

“mxGraph is a JavaScript diagramming library that enables interactive graph
and charting applications to be quickly created that run natively in any major
browser that is supported by its vendor.” [22]

4.2.2 Server

ASP.NET Core 2.0

“ASP.NET Core is a web development platform built on .NET Core, which is
a cross-platform version of the .NET Framework without the Windows-specific
application programming interfaces (APIs).” Unlike its predecessors .NET and
ASP.NET, the new .NET Core and ASP.NET Core are fully open source. [23,
p. 5]

Entity Framework Core

Entity Framework Core is an ORM framework designed specifically for use in
.NET Core applications. It abstracts tables, columns and rows from relational
databases to plain C# objects. [23, p. 208]

4.3 Module Structure

4.3.1 Client

Client module utilizes NgModules which are provided by Angular 5 out of the
box. Each NgModule is reusable as a whole, provided that its dependencies
are satisfied.

FormDesignerFrontend

Figures 4.3 and 4.4 illustrate NgModules of FormDesignerFrontend module
and their dependencies.

36

4.3. Module Structure

«ngModule»
DataDesigner

«ngModule»
FormEditor

«ngModule»
FormTester

«ngModule»
DataModel

«ngModule»
FormBuilder

«ngModule»
SharedComponents

«ngModule»
ProcessDesigner

«library»
mxGraph

«library»
formBuilder

«ngModule»
GraphEditor

Figure 4.3: NgModules of FormDesignerFrontend and their dependencies

«ngModule»
SharedComponents

«ngModule»
DataDesigner

«ngModule»
FormEditor

«ngModule»
FormTester

«ngModule»
ProcessDesigner

«library»
CoreUI

Figure 4.4: NgModules of FormDesignerFrontend depending on CoreUI

• DataDesigner module contains the Data Designer section of the appli-
cation.

• DataModel module contains data model definitions, DTOs and HTTP
client classes for invoking the web service endpoints.

• FormBuilder module contains integration of jQuery formBuilder library
for the Angular application.

• FormEditor module contains the Form Editor section of the application.

• FormTester module contains the Form Tester section of the application.

• GraphEditor module contains integration of MxGraph library for the
Angular application.

• ProcessDesigner module contains the Process Designer section of the
application.

• SharedComponents module contains Angular presentational components
which are shared by multiple other modules.

37

4. Technical Design

4.3.2 Server

Server modules are further divided into namespaces to simplify navigation
across their respective source code files. Each namespace corresponds to a
directory in given project.

FormDesignerData

• DataAccess namespace contains DAOs for executing CRUD operations
on the data in the relational database.

• DataControl namespace contains classes which manipulate the data in
relational database in non-CRUD matters.

• DataTransfer namespace contains DTOs for necessary operations.

• FormProcessing namespace contains classes for form-to-model bind-
ing – i.e. populating form field values, mapping form fields to the data
model and handlers for submitting the forms.

• Model namespace contains data model entity classes, their associated
interfaces and database context for querying the database directly.

• ModelManagement namespace contains classes for managing Fact Model
instances – i.e. instantiating entities, loading existing entities, etc.

• ModelProcessing namespace contains data model parser, command
classes and related interfaces.

FormDesignerApi

• Controllers namespace contains definitions of RESTful web services.

4.4 Client-Server Communication
The server will expose a RESTful web service API for the client.

RESTful web service style was chosen in order to reduce client’s direct
coupling to remote procedures on the server by using standard HTTP methods
for CRUD operations [24, p. 38]. The resources were designed in order to
satisfy use-cases of the application and with data bandwidth conservation in
mind.

4.4.1 Resources

/api/assignments

This resource represents an assignment between ProcessKind and
TransactionKind.

38

4.4. Client-Server Communication

POST method creates an assignment.

DELETE method detaches specified ProcessKind from specified
TransactionKind.

/api/dataModel

This resource represents specification of Fact Model data model as a whole.
Since the application supports only one domain at a time, only one data model
is supported by the API, so this resource does not take advantages of routing
by ID.

GET method retrieves current state of the model.

POST method updates the model according to request body content.

/api/entityKinds

This resource represents a collection of all EntityKind entities present in
Fact Model data model.

GET method retrieves the collection.

/api/formFields

This resource represents a set of Model Fields to be used in the interface
of Form Creator. The Model Fields themselves can be created, updated or
deleted using the POST method of the /api/dataModel resource mentioned
earlier.

GET method retrieves the set.

/api/formKinds

This resource represents a collection of FormKind entitities.

GET method retrieves the collection.

POST method adds a FormKind to the collection of FormKind entites.

/api/formKinds/{id}

This resource represents a single entity of collection of FormKind entitities.

PUT method updates the entity.

DELETE method removes the entity from the collection.

39

4. Technical Design

/api/forms/{id}

This resource represents a single Form entity.

GET method retrieves given Form entity.

POST method updates the Form entity but has nonstandard behaviour, as
it is intended for submitting the form – thus request body will contain
only contents of the formData attribute of the Form entity with given
ID.

/api/processes

This resource represents a collection of entities of type Process.

GET method retrieves the collection.

POST method adds a Process entity to the collection.

/api/processes/{id}

This resource represents a single Process entity as a member of the collection
of Process entities described in the previous section.

GET method retrieves the collection.

/api/processKinds

This resource represents a collection of entities of type ProcessKind.

GET method retrieves the collection.

POST method adds a ProcessKind entity to the collection.

/api/processKinds/{id}

This resource represents an entity from the collection of ProcessKind entities.

GET method retrieves the entity.

/api/transactionKinds

This resource represents a collection of entities of type TransactionKind.

GET method retrieves the collection.

POST method adds a TransactionKind entity to the collection.

40

4.5. Testing

4.4.2 Status Codes and Error Handling

The API handles common situations with standardized HTTP status codes.
However, when an internal exception in FormDesignerData occurs, the server
will return a response with status code 500 and a custom envelope containing
exception message as response body illustrated in Listing 4.1.

{
"message": "<exception message>"

}
Listing 4.1: Error envelope structure

4.5 Testing

4.5.1 Unit Testing

Since the Data Layer uses a third-party well-tested Entity Framework Core
library mentioned in section 4.2.2 and Service Layer just delegates all its calls
to either Business Layer or Data Layer directly, only Business Layer with its
non-trivial responsibilities will be covered by unit tests.

Classes and their responsibilities covered by the unit tests:

• FormFilter, FormKindFilter, FormSubmitter and ModelManager –
form-to-model binding will be tested.

• ProcessTransactionAssigner – assigning transactions to business pro-
cesses will be tested.

• XmlModelParser – model parsing from XML generated by the Data
Designer will be tested.

4.5.2 Testing by Developer

The modules, especially the client component of the application, i.e.
FormDesignerFrontend, will be tested using this testing method every time
after implementing a new functionality.

Generally, the steps of this testing method will be:

• visual examination of the user interface,

• testing user interaction with parts of the application that are both di-
rectly and indirectly affected by the new functionality using scenarios
defined by the developer.

The scenarios mentioned above will be designed according to tested user
interface structure.

41

Chapter 5
Proof of Concept

The last chapter of this thesis will demonstrate capabilities of the application
on a real use-case – Rent-A-Car case from the book The Essence of Organi-
sation.

Section 5.1 will describe the case and depict the Fact Models vital for the
demonstration.

Section 5.2 will describe the whole process of the demonstration – from
redrawing the Fact Model of the domain to simulating business processes using
user-defined forms.

5.1 Rent-A-Car Case Study

Alicia Perinforma in the book The Essence of Organisation describes the case
DEMO Form Designer will demonstrate upon:

Rent-A-Car (or RAC for short) is a company that rents cars to
persons, both private ones and representatives of legal bodies, like
companies. It was founded by the twin brothers Janno and Ties
back in the eighties. They started to hire out their own (two) cars,
and they were among the first companies that allowed cars to be
dropped off in a different location than where they were picked up.
To this end, Janno and Ties had made agreements with students in
several cities. For a small amount of money, a student would await
the arrival of a rented car, e.g. at an airport, and drive it back to
the office of RAC, after which the student would go home by public
transport. Currently, RAC operates from over fifty geographically
dispersed branches in Europe. Many cities have a branch, some
even several, and there are branches located near all airports. One
of the branches is the original office where Janno and Ties started
and where both are still around. Being mechanical engineer by

43

5. Proof of Concept

education, they have kept loving to drive and maintain cars, even
since they are the managing directors of a million euro company.
The head of the front office of the home branch is Chiara. There
are two more desk officers working in this department. Customer
orders are placed through several channels: walk-in, telephone,
fax, and e-mail. Walk-in customers are usually people who want to
rent a car immediately. Through the other channels one makes in
general advance reservations. These can be made up to 200 days in
advance, called the rental horizon. In all cases, an electronic rental
form is filled out by one of the desk officers, as input to RACIS
(RAC Information System). The next groups of data must be
provided:
RENTAL: identification number (automatically generated), start
date, end date, issuing branch, return branch, car group.
RENTER: identification (passport or driving license), first name,
last name, address, date of birth, place of birth.
DRIVER: driving license (also for identification), first name, last
name.
FINANCIAL: rental rate per day (basically determined by the car
group).
Although it is the task of the desk officers to take the orders for
renting a car, Janno or Ties may drop by and help a walk-in cus-
tomer or pick up the telephone. Chiara does not really like these
distortions but she thinks she cannot do much about it. The prob-
lem with these spontaneous actions of Janno and Ties is that they
often forget to record things properly, resulting in misunderstand-
ings and even disputes with customers afterwards. Next, they
sometimes act against the rules, for example by promising a car
for a lower rate than the listed one.
The cars of RAC are divided in car groups. A car group may
contain several types (brands and models). The common feature
of the cars in a group is that they have the same rental rate per day.
The board of directors, i.e. Janno and Ties, decide which brands
and models belong to which group as well as what the rental rate
is for every group. Normally they do this once a year.
For a walk-in customer the starting day is usually the same day
as on which the contract is established. Advance reservations have
some future day as the starting day. RAC applies a maximum
rental period (currently 10 days).
After the renter has signed the contract, the rental is concluded by
the desk officer (Note: the signing by the renter counts as promis-
ing to pay the rental charge, which is the contracted duration

44

5.1. Rent-A-Car Case Study

times the daily rental rate. Because the rental may be an advance
reservation, the payment may be delayed until the starting day).
On the starting day, the driver can pick up a car at the distribution
department, located at the backside of the building, on presenta-
tion of a copy of the contract. There are three employees working
in this department: Mik, Ferre, and Carlo, but not all of them are
always present, as we will see. As soon as a driver shows up, one
of them checks whether there is a car available of the contracted
group. If there is one, he will allocate the car to the rental con-
tract and sign the contract as being picked up. If there is no car
available of the contracted group, he will upgrade the contract and
select a car from the next higher car group. The driver will get
this upgraded car, for the price of the contracted group.
After the car of a rental has been dropped off at some branch, the
possibly incurred fines have to be paid. There may be a penalty
charge for returning the car after the contracted end date. It
amounts to the number of extra days times the late return penalty
rate. In addition, the car may have been dropped off at another
branch than the contracted return branch. In that case a loca-
tion penalty charge has to be paid. This amounts to the distance
between the actual and the contracted drop off branch times the
penalty rate per kilometer.
The distribution department is also responsible for transporting
cars between branches because cars may be dropped off at other
locations, as we have seen. To this end, Mik schedules every morn-
ing the transportations that have to be performed that day. The
transportations are carried out by all three of them, so also by
Ferre and Carlo. That is why often some of them are away from
the office.

5.1.1 Fact Model

Along with case description listed above, Alicia Perinforma also provides Ob-
ject Fact Diagrams of the case study:

Primary processes

Fact model of primary processes of the Rent-A-Car case study is present in
Figures 5.1 and 5.2.

Secondary processes

Fact model of secondary processes of the Rent-A-Car case study is present in
Figure 5.3.

45

5. Proof of Concept

RENT-PAID RENTAL

[YEAR]

max rental duration [NUMBER]
rental horizon [NUMBER]

CAR GROUP * [YEAR]

daily rental rate [MONEY]*

the isuing location
<

of Rental is Branch

the return location
<

of Rental is Branch

BRANCH

CAR GROUP
the car group of Rental

<
is Car Group

paid rental amount [MONEY]

the rent of Rental is paid

P2

RENTAL

starting day [DAY]
ending day [DAY]
rental charge* [MONEY]

Rental is concluded

P1

the renter of Rental is Person
>

PERSON

day of birth [DAY]
the driver of Rental is Person

>

the payer of Rental is Person
>

Figure 5.1: Primary processes of Rent-A-Car, part one [1]

the car of Issued Rental is Car
<CAR

BRANCH

location [LOCATION]
the actual return location

<
of Returned Rental is Branch

the car of Rental
is issued

P3

ISSUED RENTAL

the car group of Car
is Car Group

>

CAR GROUP

RENTAL

DRIVING
LICENSE

the driving license of the driver
<

of Issued Rental is Driving License

the penalty of Rental is paid

P5

paid penalty amount [MONEY]

PENALTY-PAID RENTAL

the car of Rental is returned

P4

RETURNED RENTAL

location penalty charge* [MONEY]
late return penalty charge* [MONEY]

[YEAR]

max rental duration [NUMBER]
rental horizon [NUMBER]
location penalty [MONEY]
late return penalty [MONEY]

Figure 5.2: Primary processes of Rent-A-Car, part two [1]

5.1.2 Action Model

Due to the considerable length of the action rules, only parts of action rules
concerning the case study will be used later when demonstrating method-

46

5.2. Demonstration

from-branch of Transport is Branch
<

the car of Transport is Car
>

to-branch of Transport is Branch
<

Transport is completed

P6

CARBRANCH

location (LOCATION)

[DAY]

TRANSPORT

car group (CAR GROUP)

transport management
for Day is done

P7

day of transport [DAY]

Figure 5.3: Secondary processes of Rent-A-Car [1]

ologies of determining the structure of the forms and assigning the forms to
transactions and C-acts.

5.2 Demonstration

5.2.1 Drawing the Fact Model

Since the Data Designer section of the application is all graphical and straight-
forward to use, all the parts of supplied OFD were just redrawn to the canvas
to create a single diagram.

Please note that in order to make the demonstration more sensible later,
some attributes have been added to the OFD, namely:

• location and name attributes for BRANCH entity type,

• brand, model and year attributes for CAR entity type,

• name attribute of CAR GROUP entity type,

• license number attribute of DRIVING LICENSE entity type,

• name attribute of PERSON entity type.

The result is depicted in Figure 5.4.

5.2.2 Declaring Business Processes

Discovered from the construction model of the domain in Figure 5.5, there are
three business processes:

• Rental Order which consists of T1 and T2;

• Car Manipulation which consists of T3, T4 and T5;

47

5. Proof of Concept

Figure 5.4: OFD drawn in Data Designer

• Transport Management which consists of T6 and T7.

rental paying

T2

persons
facts AT1 AT2

RAC branch

car issuing

T3

A3

car
issuer

car returning

T4

CA2

driver

RAC
facts

rental concluding

T1

A1

rental
concluder

T5

penalty paying

T6

transport

T7

manager

A6

transporter

operational
facts other

branches
AT3

CA1

renter

A2

payer

transport completing

Figure 5.5: Construction Model of Rent-A-Car [1]

The processes mentioned above were declared in the application and trans-
actions were assigned to them afterwards, as seen in Figure 5.6.

48

5.2. Demonstration

Figure 5.6: Declared business processes in Process Designer

5.2.3 Designing Web Forms

Determining Form Structure

Determining form structure is understood to mean defining which form fields
will be put to given form based on action rule contents.

There is an event part of a sample Rent-A-Car action rule in Figure 5.7
for demonstrating the methodology for determining form structure.

when rental concluding for new Rental is requested (T1/rq)
with the starting day of Rental is some day

the ending day of Rental is some day
the renter of Rental is some person
the payer of Rental is some person
the driver of Rental is some person
the car group of Rental is some car group
the issuing location of Rental is some branch
the return location of Rental is some branch

Figure 5.7: Sample Rent-A-Car action rule (event part) [1]

The form fields will be put to the form according to the fact types within
the with clause of the event part of the action rule.

Only original fact types (i.e. non-derived fact types) will be included in
the form, since in Object Fact Diagram itself, there are no derived fact types.

Given the rules for determining form structure, a sample form for has been
specified in Figure 5.8.

49

5. Proof of Concept

Figure 5.8: Form designed using Form Creator based on the action rule

Placing model fields to the form in the application, however, implies that
the form will need to be connected to a RENTAL entity of the Fact Model.

Assigning the Forms to a Transaction Kind and C-act

When saving the form, it will be assigned to:

• transaction kind specified in the when clause of the event part of the
action rule – transaction kind ID can be found in the TPT of the domain,
TPT of the case study is located in Figure 5.9;

• C-act corresponding to a C-fact in the when clause of the event part of
the action rule.

transaction kind product kind
T1 rental concluding
T2 rental paying
T3 car issuing
T4 car returning
T5 penalty paying
T6 transport completing
T7 transport management

P1 Rental is concluded
P2 the rent of Rental is paid
P3 the car of Rental is issued
P4 the car of Rental is returned
P5 the penalty of Rental is paid
P6 Transport is completed
P7 transport management for Day is done

Figure 5.9: TPT of Rent-A-Car domain [1]

Table 5.1 can be used to find a C-act corresponding to given C-fact.

50

5.2. Demonstration

C-fact Corresponding C-act

requested request
declined decline

quit quit
promised promise

stated state
stopped stop
accepted accept
rejected reject

Table 5.1: C-facts and their corresponding C-acts

With the rules formulated above, given an action rule in Figure 5.7, the
form will be assigned to transaction kind T1 and C-act request. The assign-
ment interface in the application with the assignment setup is illustrated in
figure 5.10.

Figure 5.10: Form assigned to T1/rq using Form Creator

Generating Placeholder Forms

Because a great number of Rent-A-Car action rules lack the with clause within
their event part and all transactions must have all their C-acts assigned to a
form for business process simulation to work properly, a simple form generator

51

5. Proof of Concept

has been created which generates forms with a question dialogue similar to
the one in Figure 5.11.

Figure 5.11: Generated form example

The generator is located in file /src/tools/form-generator.js on en-
closed CD.

The user is required to fill the transactionKinds array in with informa-
tion about transaction kinds and skipCActs array with information about
which pairs of transaction kind and C-act to skip as described in Listing 5.1.

const transactionKinds = [
{ // T1

name: "rental concluding",
dbId: 1

}
];

const skipCActs = [
{ // T1/rq

transactionKind: transactionKinds[0],
cAct: cActs[0]

}
];

Listing 5.1: Form generator setup example

52

5.2. Demonstration

The transactionKinds array contains objects with the following attributes:

name represents transaction kind name.

dbId represents numeric transaction kind ID from the database (transaction
kinds are located in the TransactionKinds table).

The skipCActs array contains objects with the following attributes:

transactionKind represents reference value referring to an object of the
transactionKinds array.

cAct represents reference value referring to an object of the cActs array
located in the generator.

After both arrays being filled in with correct information, the script can
be run using Node.js.

After running the script, SQL INSERT statements for all transaction
kind – C-act pairs will be generated to be executed using database client
of choice.

5.2.4 Simulating Business Processes

Populating External Entities

Prior to the simulation itself, the external, out-of-scope entities should be
added to the database in order to demonstrate how the forms work with
out-of-scope entities. To simplify the process, the classes located in FormDesignerData
module expose their public APIs which accomplish the task.

A simple stand-alone tool called FormDesignerEntityPopulator built
around the APIs mentioned above located on enclosed CD in
/src/application directory is able to populate external entities in the database.

User is encouraged to change the lines designated by comments according
to his or her needs. An example usage of the APIs for entity populating can
be seen in Listing 5.2.

// mgr is an object of ModelManager type
var carGroupKind = mgr.GetEntityKind("CAR GROUP");
var carKind = mgr.GetEntityKind("CAR");

var g1 = carGroupKind.Instantiate();
g1.SetAttributeValue("name", "SUVs");

var c1 = carKind.Instantiate();
c1.SetAttributeValue("brand", "BMW");
c1.SetAttributeValue("model", "X5");
c1.SetAttributeValue("year", "2010");

53

5. Proof of Concept

c1.AddProperty("car group", g1);

// ctx is an object of DataContext type
ctx.Entities.Add(c1);
ctx.Entities.Add(g1);

Listing 5.2: Entity populating APIs usage example

Usage of the APIs is rather simple:

1. Fetch entity types using ModelManager API.

2. Instantiate the entity types – this creates entities from them.

3. Set entity attributes, eventually properties.

4. Save the entities to the database using DataContext API.

Instantiating Business Processes

Rental Order business process will be demonstrated, so it will need to be
instantiated first. The instantiation is done using the dialogue depicted in
Figure 5.12.

Figure 5.12: Process instantiation interface

54

5.2. Demonstration

Simulating Business Processes

Simulated actors will now act in compliance with the action rules of the do-
main. Actors will have to evaluate the assessments in the assess part manually
and respond to the actions according to the response part by filling out ap-
propriate forms.

Happy path of the Rental Order business process declared in section 5.2.2
will now be simulated:

1. Requesting T1 (rental concluding):

Renter requested the transaction by filling out the form in Figure 5.13.

Figure 5.13: Requesting rental order transaction

Rental concluder will receive the request, review the C-fact as seen in
Figure 5.14 of it and will assess it in compliance with the action rule in
Figure 5.15. Let’s assume that the assessment is complied with. Thus
rental concluder will request rental payment as the next step.

2. Requesting T2 (rental payment):

Rental concluder requested the rental payment with payment amount
as seen in Figure 5.16.

3. Promising T2 (rental payment):

Payer promised the payment using a generated form as illustrated in
Figure 5.17.

55

5. Proof of Concept

Figure 5.14: Reviewing T1/rq C-fact

assess justice: the performer of the request is the renter of Rental;
the addressee of the request is a rental concluder;

sincerity: < no specific condition >
truth: the starting day of Rental is in the Rental Horizon of the year of

the starting day of Rental;
the ending day of Rental is in the Rental Horizon of the year of
the ending day of Rental;
the ending day of Rental is equal to or greater than the starting day of Rental;
the duration of Rental is less than or equal to
the max rental duration in the year of the starting day of Rental;
the number of cars in the car group of Rental on every day in the rental period
of Rental is greater than zero

if complying with the assessment is considered justifiable
then request rental paying for Rental [T2/rq]

with the addressee of the request is the payer of Rental;
the requested production day of rental paying for Rental
is less than or equal to the starting day of Rental;
the requested paid rental amount of Rental is equal to the rental charge of Rental;

else decline rental concluding for Rental [T1/dc]
with the addressee of the decline is the renter of Rental

Figure 5.15: Action rule for T1/rq (assess and response parts) [1]

Rental concluder will now, after complying with the assessment, promise
rental concluding according to the action rule designated in Figure 5.18.

56

5.2. Demonstration

Figure 5.16: Requesting rental payment transaction

Figure 5.17: Promising rental payment transaction

4. Promising T1 (rental concluding):
Rental concluder promised rental concluding – T1 now holds up until
rental payment is accepted.

57

5. Proof of Concept

when rental concluding for Rental is requested (T1/rq)
while rental paying for Rental is promised (T2/pm)

assess justice: the performer of the request is the renter of Rental;
the addressee of the request is the rental concluder of Rental;

sincerity: < no specific condition >
truth: the promised paid rental amount of Rental is equal to

the requested paid rental amount of Rental;
the promised production day of rental paying for Rental
is less than or equal to the starting day of Rental

if complying with the assessment is considered justifiable
then promise rental concluding for Rental [T1/pm]

with the addressee of the promise is the rental concluder of Rental
else decline rental concluding for Rental [T1/dc]

with the addressee of the decline is the renter of Rental

Figure 5.18: Action rule for T2/pm

5. Stating T2 (rental payment):
Payer paid for the order stated the payment using a generated form.
Rental concluder will now assess the action rule for T2/st. Assuming
the assessment is complied with, i.e. the payment amount is correct and
is in time, rental concluder will accept T2.

6. Accepting T2 (rental payment):
Rental concluder accepted the payment using a generated form.
Accepting rental payment implies that rental the execution phase of
rental order transaction can continue and thus it can be stated.

7. Stating T1 (rental concluding):
Rental concluder stated the order to renter using a generated form.

8. Accepting T1 (rental concluding):
Renter accepted the order using a generated form.

The Rental Order business process is done simulating.

5.3 Conclusion
Fact Model of the Rent-A-Car case study and related forms described in sec-
tion 5.1 have been demonstrated:

• Data structures designed in section 2.4 are able to fully represent Rent-A-Car
case study Fact Model and related forms.

• WYSIWYG editors of all the data structures were demonstrated and
are capable of operating with the data structures.

58

5.3. Conclusion

• Testing interface for filling out the forms is able to save form field values
to a relational database and retrieve the values of form fields back later.

• Proposed concept of business process simulation works for the use case.

59

Conclusion

Thesis Goals

The primary goal of this thesis was to design, implement and test a proof-of-con-
cept web application for designing web forms based on business process models
with additional functionalities to draw DEMO Fact Models and submit the
forms to a relational database. The secondary goal was to design a data model
for DEMO Fact Model and related forms which the application will take ad-
vantage of. Both of these goals had to be demonstrated on the Rent-A-Car
case study from the book The Essence of Organisation.

Evaluation

In the thesis, all thesis goals were analyzed and based on the requirements,
application wireframes and functional specification have been created.

Based on DEMO Fact Model specification, the data model for model and
instances of Fact Model were designed with relational database principles in
mind.

Besides, a data model for representing forms and subset of Process Model
was designed in order to assign designed forms to C-acts.

When choosing implementation technologies for the application, special at-
tention was paid to adopting a convenient WYSIWYG drag-and-drop JavaScript
component for designing web forms, therefore multiple solutions solving this
task were researched.

The application itself was implemented using the SPA (single-page appli-
cation) design approach, meaning the application was split into two compo-
nents – client and server. The client component of the application was tested
by the developer, and for testing business layer logic of the server component,
unit testing was used.

61

Conclusion

After the implementation was complete, the application demonstrated its
features on the Rent-A-Car case study from the book The Essence of Organ-
isation.

Future Development
As a next development milestone, the application could be extended with
support for Process Model and Construction Model modelling which could re-
markably improve quality of business process structure declaration and sim-
ulation. Such extension might make the application ready for production
environments.

Since the application is modular and already has integrated a multi-pur-
pose diagramming solution, the application could be extended quickly.

62

Bibliography

[1] Perinforma, A. The essence of organisation: an introduction to enterprise
engineering. Netherlands: Sapio Enterprise Engineering, third revised
edition, 2017, ISBN 978-90-815449-4-8.

[2] Weske, M. Business process management: concepts, languages, architec-
tures. Berlin: Springer-Verlag Berlin Heidelberg, second edition, 2012,
ISBN 978-3-642-28615-5.

[3] Araki, A.; Iijima, J. A Pension System Redesign Case – Limitations and
Improvements on DEMO. In Advances in enterprise engineering VIII
: 4th Enterprise Engineering Working Conference, EEWC 2014, Fun-
chal, Madeira Island, Portugal, May 5-8, 2014. Proceedings, edited by
D. Aveiro; J. Tribolet; D. Gouveia, Cham: Springer Berlin Heidelberg,
2014, ISBN 978-3-319-06504-5, pp. 31–45, doi:10.1007/978-3-319-06505-
2. Available from: https://www.springer.com/us/book/9783319065045

[4] Dietz, J. DEMOSL-3 : Demo Specification Language: Version
3.6 [online]. 2017, [cit. 2018-04-30]. Available from: http://www.ee-
institute.org/download.php?id=207&type=doc

[5] Google. Google Forms [online]. 2018, [cit. 2018-01-05]. Available from:
https://docs.google.com/forms

[6] Cognito LLC. Cognito Forms [online]. 2018, [cit. 2018-01-05]. Available
from: https://www.cognitoforms.com/

[7] Kevin Chappell and Kelly Brent and Ismo Vuorinen. jQuery formBuilder
— Drag & Drop Form Creation [online]. 2018, [cit. 2018-01-05]. Available
from: https://formbuilder.online/

[8] Kevin Chappell and Kelly Brent and Ismo Vuorinen. jQuery formBuilder
GitHub Project Page [online]. 2018, [cit. 2018-01-05]. Available from:
https://github.com/kevinchappell/formBuilder

63

https://www.springer.com/us/book/9783319065045
http://www.ee-institute.org/download.php?id=207&type=doc
http://www.ee-institute.org/download.php?id=207&type=doc
https://docs.google.com/forms
https://www.cognitoforms.com/
https://formbuilder.online/
https://github.com/kevinchappell/formBuilder

Bibliography

[9] Draggable llc. Formeo GitHub Project Page [online]. 2018, [cit. 2018-01-
05]. Available from: https://github.com/Draggable/formeo

[10] Form.io LLC. Form.IO Form Builder Application GitHub Project Page
[online]. 2018, [cit. 2018-01-05]. Available from: https://github.com/
formio/ngFormBuilder

[11] Four Labs. fl-form-builder GitHub Project Page [online]. 2018, [cit. 2018-
01-05]. Available from: https://github.com/fourlabsldn/fl-form-
builder

[12] Kevin Chappell and Kelly Brent and Ismo Vuorinen. jQuery form-
Builder Docs [online]. 2018, [cit. 2018-01-05]. Available from: http:
//formbuilder.readthedocs.io/en/latest/

[13] Form.io LLC. Form.io Front Page [online]. 2018, [cit. 2018-01-05]. Avail-
able from: https://form.io

[14] Dotcomfactory. Form Designer - A JQuery Form Builder Tool [online].
2018, [cit. 2018-01-05]. Available from: https://codecanyon.net/item/
form-designer-a-jquery-form-builder-tool/17765354

[15] Scott, E. SPA Design and Architecture: Understanding single-page web
applications. Shelter Island, NY: Manning Publications Co., 2016, ISBN
978-1-6172-9243-9.

[16] Fowler, M. Presentation Domain Data Layering. martinFowler.com
[online], August 2015, [cit. 2018-03-30]. Available from: https://
martinfowler.com/bliki/PresentationDomainDataLayering.html

[17] Abramov, D. Presentational and Container Components.
medium.com [online], March 2015, [cit. 2018-04-02]. Available from:
https://medium.com/@dan_abramov/smart-and-dumb-components-
7ca2f9a7c7d0

[18] Freeman, A. Pro Angular. United States New York, NY: Apress, second
edition, 2017, ISBN 978-1-4842-2306-2.

[19] Google. Angular Project Front Page [online]. 2018, [cit. 2018-04-05].
Available from: https://angular.io/

[20] Lukasz Holeczek et al. CoreUI GitHub Project Page [online]. 2018,
[cit. 2018-04-17]. Available from: https://github.com/coreui/coreui-
free-bootstrap-admin-template

[21] Microsoft Corporation. TypeScript Project Front Page [online]. 2018, [cit.
2018-03-31]. Available from: https://www.typescriptlang.org/

64

https://github.com/Draggable/formeo
https://github.com/formio/ngFormBuilder
https://github.com/formio/ngFormBuilder
https://github.com/fourlabsldn/fl-form-builder
https://github.com/fourlabsldn/fl-form-builder
http://formbuilder.readthedocs.io/en/latest/
http://formbuilder.readthedocs.io/en/latest/
https://form.io
https://codecanyon.net/item/form-designer-a-jquery-form-builder-tool/17765354
https://codecanyon.net/item/form-designer-a-jquery-form-builder-tool/17765354
https://martinfowler.com/bliki/PresentationDomainDataLayering.html
https://martinfowler.com/bliki/PresentationDomainDataLayering.html
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://angular.io/
https://github.com/coreui/coreui-free-bootstrap-admin-template
https://github.com/coreui/coreui-free-bootstrap-admin-template
https://www.typescriptlang.org/

Bibliography

[22] JGraph Ltd. mxGraph 3.9.3 Project Front Page [online]. 2018, [cit. 2018-
04-05]. Available from: https://jgraph.github.io/mxgraph/

[23] Freeman, A. Pro ASP.NET Core MVC. Berkeley, CA: Apress, sixth edi-
tion, 2016, ISBN 978-1-4842-0398-9.

[24] Daigneau, R. Service design patterns fundamental design solutions
for SOAP/WSDL and restful Web services. Upper Saddle River, NJ:
Addison-Wesley, 2012, ISBN 978-0-321-54420-9.

65

https://jgraph.github.io/mxgraph/

Appendix A
Acronyms

API Application Programming Interface

CRUD Create, Read, Update, Delete

CSS Cascading Style Sheets

DAO Data Access Object

DBMS Database Management System

DEMO Design & Engineering Methodology for Organizations

DOM Document Object Model

DTO Data Transfer Object

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

MVVM Model-View-ViewModel

MVW Model-View-Whatever

OFD Object Fact Diagram

ORM Object-relational mapping

REST Representational State Transfer

SQL Structured Query Language

TPT Transaction Product Table

UX User Experience

WYSIWYG What you see is what you get

67

A. Acronyms

XHR XmlHttpRequest

XML Extensible Markup Language

68

Appendix B
Contents of Enclosed CD

README.md.........................the file with CD contents description
src the directory with source codes

application implementation sources of the application
README.md... instructions for building and running the application

thesis..............the directory of LATEX source codes of the thesis
tools........................... implementation sources of the tools

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

69

	Introduction
	State-of-the-art
	Thesis Goals and Result
	Motivation

	Theories Used
	Business Process Management (BPM)
	DEMO Methodology

	Analysis
	Goals
	Non-Goals
	Functional Specification
	Data Model

	Existing Solutions for Designing Web Forms
	Popular Services with WYSIWYG Form Editing
	Open Source Plugins
	Commercial Plugins
	Conclusion

	Technical Design
	Software Architecture
	Technologies
	Module Structure
	Client-Server Communication
	Testing

	Proof of Concept
	RentnobreakAnobreakCar Case Study
	Demonstration
	Conclusion

	Conclusion
	Thesis Goals
	Evaluation
	Future Development

	Bibliography
	Acronyms
	Contents of Enclosed CD

