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Abstrakt

Tato práce se zabývá knihovnou pro modelování protivníka za použití umělé
inteligence a strojového učení. Knihovna je navržena pro umělou inteligenci
hrající počítačovou hru Starcraft, ovšem nabízená řešení základních problémů
při modelování oponenta se dají uplatnit nejen ve hře Starcraft, ale i v celé
rovině real-time-strategy her.

Klíčová slova Implementace knihovny, Modelování opponenta, Starcraft,
Umělá inteligence, Strojové učení, Neuronová síť
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Abstract

This thesis implements a library for opponent modelling problem using arti-
ficial inteligence and machine learning methods. The library is designed for
AI modules playing computer game Starcraft. However, provided solutions of
fundamental opponent modelling problems can be used not only in Starcraft,
but in the sphere of all real-time-strategy games.

Keywords Library implementation, Opponent modeling, Starcraft, Artifi-
cial intelligence, Machine learning, Neural network
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Introduction

Computer games have large impact on todays entertainment and also on sci-
ence researches, especially in section of artificial intelligence. Not only players
compete against each other. Special tournaments allow to programme own AI
bot. Those bots then compete in the tournament instead of humans. Great
example is an SSCAIT (Student StarCraft AI Tournament and Ladder) [5].
Generally, AI tournaments have special added value. It is a brilliant way how
to improve skills and knowledge of machine learning and artificial intelligence
for the programmers.

Undoubtedly, Starcraft is one of the most difficult real-time-strategy games.
Players must perform hundreds of actions every single minute of the game and
even the best still have room for improvements. Human players are simply not
possible to control each single unit separately every second of the game. How-
ever, computers can. Computers can give commands to all units every second.
Moreover, it can give tasks to its units every frame of the game. They simple
dominate over humans with mechanics and unit control but they struggle with
decision making and strategy moves. Starcraft is a very complex game with
many specific areas of skill and knowledge players or AI agents have to cover in
order to be successful. One of the main areas to cover is modelling opponents
moves and adapting strategies as a reaction on scouting information. Imag-
ine playing chess without considering opponents moves on the board, nearly
impossible.

Implementing an opponent modelling tool for AI modules is a challenge
which requires a good knowledge not only about artificial intelligence, but
also about the game itself. Opponent modelling in Starcraft is this thesis
topic. We will analyse scouting information AI agents acquire, separate key
and redundant information, deduce opponents state and predict the state for
next few minutes in the game.
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Introduction

Thesis structure
The first chapter summarizes the aim of the thesis. The second chapter fo-
cuses on theoretical background about Starcraft AI research, introduces re-
lated works and extendable bots, which programmers can use as a starting
point for their Starcraft AI research. The third chapter describes implemen-
tation details, used technologies and programming solution to the aim of the
thesis. It also explains the ideas behind chosen design and class structure. The
fourth chapter provides a brief introduction into artificial neural networks and
its usage in our implementation. The fifth chapter analysis measured results
and evaluates correct model for our problem.
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Chapter 1
Aim-of-thesis

The main goal of this thesis is to create a strong tool for AI agents that will
help in keeping track of their opponents and provide essential information
necessary for future game plan. If we try to summarize main conditions for
making an accurate model of an opponent, we basically get the assignments
of this thesis.

First of all, we must keep track of all known units and their location. Based
on those collected data, we can automatically infer additional information
about opponent. It will maximize accuracy of the model and make it closer to
real situation. Built on current opponent’s model, we can predict game state
in near future using machine learning methods. After each game, Starcraft
allows to save replay of the game. We can use this feature to study past games
and carry some information into next games in order to predict opponents
strategy and moves even more accurate.

The aim of the theoretical part is to introduce technologies for writing
an AI agent in Starcraft, analyse thesis tasks and current methods used in
Starcraft AI programming for opponent modelling.

Practical section will focus on creating an opponent modelling library writ-
ten in C++ on top of BWAPI framework. We will describe necessary func-
tionalities for saving information about an opponent and the ability to predict
game states in next few minutes of the game.
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Chapter 2
State of the art

In the context of Starcraft AI development there are various libraries and
existing frameworks to support the research or provide tools for creating own
AI module. In this chapter are introduced the most essential works, which
names became almost a synonym with Starcraft AI.

2.1 Starcraft AI development
2.1.1 BWAPI
According to [6], The Brood War Application Programming Interface (BWAPI)
is a free and open sourced framework written in C++ used to interact with
computer game Starcrat: Broodwar. BWAPI only reveals the visible parts of
the game state to AI modules by default. Information on units that have gone
back into the fog of war is denied to the AI. This enables programmers to
write competitive non-cheating AIs that must plan and operate under partial
information conditions. BWAPI also denies user input by default, ensuring
the user cannot take control of game units while the AI is playing. Each unit
in the game has a unique Unit object identified by a numeric value. Unit
objects are not deleted until the end of the match [7].

Although, C++ is not the only programming language, which supports
Starcraft AI development. An alternative for Java developers might be BWMir-
ror API. It allows programmers to treat native BWAPI C/C++ objects as if
they were Java objects [8] or JNIBWAPI, which provides a Java interface for
the Brood War API (BWAPI), using Java Native Interface (JNI) to commu-
nicate over a shared memory bridge [9].

2.1.2 BWTA
Broodwar Terrain Analyzer (BWTA) is an add-on for BWAPI which analyses
the current starcraft map and returns the set of expansion locations, regions,

5



2. State of the art

and choke points. Built on BWTA a new fork called BWTA2 was programmed.
It offers more functionalities and compatibility with BWAPI 4.

Figure 2.1: BWTA ilustration of Starcraft map divided into regions. Choke
points are located between adjacent regions [1].

2.1.3 BWME

Brood War Easy Map (BWME) is a C++ library that analyses Brood War’s
maps and provides relevant information such as areas, choke points and base
locations. It is built on top of the BWAPI library. It first aims at simplifying
the development of bots for Brood War, but can be used for any task requiring
high level map information. It can be used as a replacement for the BWTA2
add-on, as it performs faster and shows better robustness while providing
similar information [2]. On the other hand, it doesn’t provide any geometric
description (polygon) of the computed areas like BWTA.
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2.2. Extendable AI modules

Figure 2.2: BWEM ilustration of regional split [2].

2.2 Extendable AI modules
BWAPI comes with an AIModule virtual class which allows any programmer
to implement own Starcraft AI module. It offers 17 virtual methods called
when an appropriate event occurs. Adding source code into those methods
enables AI module perform actions.

Developing AI module from the ground up is long and very difficult pro-
cess. Thus, usual way is to extend a source code of already existing bot.
Probably the most known Starcraft AI bot is an UAlbertaBot bot written in
C++. It has competed in most major StarCraft AI Competitions since 2010
and won the 2013 AIIDE StarCraft AI Competition. It is written by David
Churchill, Assistant Professor of Computer Science at Memorial University of
Newfoundland and co-organizer of the AIIDE StarCraft AI Competition [10].
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Chapter 3
Implementation

This chapter describes library design and its most important implementation
details. We will go through library classes, modelling problems with their
solutions and introduce external libraries used in the implementation.

3.1 Library design
Library was designed as statically-linked library due to direct compilation
into bot final executable file. Starcraft is a game which doesn’t require drastic
memory usage. However, dynamically-linked library might use some extra
CPU time during the game, which could be used by the AI modules for other
purposes. Although, library is released with all the source code, because
prediction in the library implementation uses neural network. In case pro-
grammer would like to change the topology and train his own neural network
or extend functionalities of the library, he needs to adjust the source code to
satisfy his requirements. Although, library was constructed using Microsoft
Visual Studio 2015 available from [11] and it is recommended to use it for
external development of the library.

3.1.1 Classes

CPlayerModel is a parent class describing common data for all three races
in the games. If an instance of this class is created, it is considered there are
no information about opponent available and he chose a random race.

CPlazerZerg, CPlayerProtoss and CPlayerTerran are child classes
of CPlayerModel. Naturally, class represents a player with one of Starcraft
races. Each class overrides virtual methods from parent class and adjust them
to fit inheritance for the race it is describing.

CNeuralNetworkModel represents model of neural network. It is a
parent class which implements training, testing and validating functionalities
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3. Implementation

for the network. Using its methods, programmers are able to set parameters
for the network or print training and testing results into files.

Figure 3.1: Opponent modelling library class diagram.

CNNZerg, CNNTerran and CNNProtoss are child classes of CNeu-
ralNetworkModel. Similarly as CPlayer classes, CNN classes represent neu-
ral network model for each Stracraft race. Their inherited methods and in-
stance variables are adjusted to fit the corresponding race. Importance of
separated networks for each race is evident as each race has its own unique
units and design.

CNeuralNetworkHandler gathers all neural networks created for game
prediction of the future game state. The idea behind is the ability to set the
parameters and manipulate with models of neural networks using only one
object.

CFileIOHandler handles input and output operations with files. It can
read and save files in JSON format, which simplifies reading for humans and
uses conventions that are familiar to programmers of the C-family of languages
[15].

CEconomicManager separates Economics from physical objects (units
and buildings). It stores information about amount of minerals and gas op-
ponent have lost during the game.

10



3.2. Unit database

COpponentModelling connects together all pieces of the library. Through
COpponentModelling instance, programmers are able to use features li-
brary provides.

3.1.2 External libraries
In the implementation are used two external libraries. The first one, Niels
Lohmann's JSON [12], is used for input and output operations with files using
JSON format. The second one, Tiny_dnn [13], is used for creating neural
networks and learning them the ability to predict opponent’s future unit com-
position. Both of them are introduced and described in this section.

• Niels Lohmann's JSON is written for Modern C++ and C++11 as
header-only JSON class. It is very intuitive for usage, especially be-
cause it works similarly as C++11 STL containers. In fact, it even
satisfies the ReversibleContainer requirement [14]. Usage in Opponent
Modelling is for saving data into files in JSON format in order to make
it easy for humans to read and for machines to parse and generate [15].

• Tiny_dnn is a C++14 implementation of deep learning. It is suitable
for deep learning on limited computational resource, embedded systems
and IoT devices. Tiny_dnn is pure C++ portable and header-only im-
plementation which requires no installation of any additional software.
It has clear understandable documentation with tutorial guide and usage
explanation on various examples. All of the advantages are the reason
why it has been chosen for implementing neural network in Opponent
Modelling library.

3.2 Unit database
Knowledge of opponent’s units and buildings is the very basic information in
every RTS computer game. Without proper scouting, players or AI modules
are left blind to guess countless probabilities of opponent’s tactic, game plan
or unit composition. Thus, scouting opponent’s units is necessary in order to
build own game plan, which naturally counters the opponent’s one. Scouting
only doesn’t provide information about current situation. Build on current
situation, we can infer additional units and buildings opponent needed to reach
the current game state.

As mentioned in section 2.1.1, BWAPI does not allow AI agents to access
any unit covered by the fog of war, even though the unit was previously seen.
It follows AI modules must keep their own database of all scouted enemy
unit in order to track opponents steps. AI agents have a decent advantage
compared to humans. Because every unit has unique numeric ID available
through BWAPI while the unit is visible, AI agent can determinate whether
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3. Implementation

the unit that showed, went back to fog of war and appeared again is still the
same unit or not.

Opponent modelling library has three essential pieces for representing the
unit database. It is CObjectInfo structure, vector AllUnitsStored and
UnitsMap. Our implementation saves every unit seen during game as it’s
own new object defined as an instance of CObjectInfo structure. We copy
BWAPI’s unit all available data and place it into newly created unique ob-
ject representing the unit in our model. Whenever there is a request for all
previously seen units, library can provide them as CObjectInfo instances.
Those instances are stored in two containers. The first one is a vector called
AllUnitsStored. It stores all units and buildings sorted by their ID. The
second one is a UnitsMap, which stores all units in vectors sorter by their
type according to BWAPI::UnitTypes. In the event of request for all units
of given type, map returns them in a single vector. It allows programmers
to access units directly or get their number by calling a size method on the
vector.

Figure 3.2: Ilustration of zerg technology tree [3].

3.3 Inference

Sometimes we can add units to the database even without seeing them and
still be sure they exists. According to each race technology tree [3], we can
deduce additional information about opponent’s current situation whenever a
unit is spotted. The idea behind is, find the unit in technology tree, get all

12



3.4. Prediction

previous requirements for building this unit, check if they are already in our
database and add those, who are not.

For instance, it is fourth minute of the game. AI agent scouted the first
enemy unit and it is a Zerg hydralisk. Technology tree describes hydralisk
as a unit created for 75 minerals and 25 gas units, after building hydralisk
den was built by the player. It means the player must have built at least one
hydralisk den, spawning pool, extractor, and overall must have mined at least
375 minerals and 75 gas units. Our library must deduce and record those
information, if we want to provide reliable data model.

3.4 Prediction
Prediction in RTS games is the alpha and the omega factor for wining. Our
goal is to provide accurate information about opponent in the near future,
based on current situation and scouted or inferenced knowledge. To achieve
our goal, we use machine learning methods, specifically neural network, to pre-
dict numbers of units and building in next three minutes. There are countless
opportunities for various combination of the army and building composition,
but based on collected information from previous games, we can train the net-
work to recognize situations and provide as accurate prediction as possible.
The whole process of training and evaluating is described in 4.2.
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Chapter 4
Neural network

Artificial neural network is a computational model of connected nodes (neu-
rons) inspired by the biological neural networks. Neural nets are a means of
doing machine learning, in which a computer learns to perform some task by
analyzing training examples. To each of its incoming connections, a node will
assign a number known as a “weight.” When the network is active, the node
receives a different number from each of its connections and multiplies it by
the associated weight. It then adds the resulting values together, yielding a
single number [16].

4.1 Introduction to neural networks
There are several types of neural networks currently being used in machine
learning. In this thesis, we cover only basics on feedforward type of network,
evaluation of input values and measuring error of output values.

4.1.1 Feedforward neural network

As stated in [4], feedfoward neural networks are artificial neural networks
where the connections between units do not form a cycle. The information
only travels forward in the network (no loops), first through the input nodes,
then through the hidden nodes (if present), and finally through the output
nodes. Feedforward neural networks compute a function f on fixed size input
x such that f(x) ≈ y for training pairs (x, y). Generalized artificial neural
network consists of an input layer, some number (possibly zero) of hidden
layers, and an output layer. Neurons in each layer are fully connected with
neurons in neighbouring layers, but not with neurons in the same layer. Each
connection is specified by a numeric value called weight. Whenever an input
is proceed into the network, each neuron sums all the inputs from previous
layer multiplied by the weigh of connection, use the activation function on the
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4. Neural network

sum and passes the output to next layer. Process is repeated in next layer
until result reaches the output layer.

Figure 4.1: A four layer feedforward neural network example [4].

4.1.2 Activation function
Activation function defines the output of neuron. It is a mathematical func-
tion giving corresponding output value for each possible input value. Used
activation function differ from type of problem neural network is programmed
to solve.

4.1.3 Classification and regression
There two types predictive modelling. Classification and regression. Classifi-
cation predictive modelling is the task of approximating a mapping function
(f) from input variables x to discrete output variables y. The output variables
are often called labels or categories. The mapping function predicts the class
or category for a given set of data. It is common for classification models to
predict a continuous value as the probability of a given example belonging to

16



4.2. Prediction model

each output class. On the other hand, regression is the task of approximating
a mapping function (f) from input variables x to a continuous output variables
y. The output variables are a real-value, such as an integers or floating point
values. These are often quantities, such as amounts and sizes [17].

4.1.4 Loss functions and training
Typically, the learning process requires the definition of an error function that
quantifies the difference between the computed output of the network and the
true value for a given input. In our implementation of neural network, we use
mean squared error function (MSE), defined for a set of N input-output pairs
as:

E(X) = 1
N

N∑
i=1

(oi − yi)2 =
N∑

i=1
(g(w · xi) − yi)2 (4.1)

where oi denotes the network output, w represents the weights, g stands for
an activation function and yi denotes the desired output for given xi input.
Training neural network means adjusting the weights of the network in order
to minimize the error of loss function. For this purpose, we use gradient
descent to correct the parameters, which yields into following delta equation
for each iteration:

∂wk
ij = −α

∂E(X)
δwk

ij

(4.2)

where wk
ij is a weight of neuron j in layer k for node i and α is a learning

rate of the network. The expansion of the delta rules can be found using back-
ward propagation of errors, because the gradient information flows backwards
through the network [4].

4.2 Prediction model
Reaching our goal to predict opponent’s game state, we train a feedforward
neural network. First, we must clarify what type of problem we are facing
and what do we want the output values to represent. If we think of the neural
network as a black box, the idea is to give it current game state situation
and take back the game state in next three minutes. Consequently, input and
output vector values are numbers representing number of units and buildings
opponent has. In classification model, output vector represents categories
and the mapping function predicts the class or category for a given observa-
tion. It follows, prediction model is a regression type where output values
are represented as quantities. Moreover, because input and output data have
linear dependencies, we can formalize the problem as multidimensional linear
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4. Neural network

regression. It follows, for linear regression problem, an ideal activation func-
tion should have linear relation, so we chose identity function as an activation
function in our model.

4.2.1 Parsing replays
Training and test samples for our network are recorded game states during
game with interval of three minutes. For training our network properly, we
downloaded replays played by professional players from [18] and parsed them
into vectors. For this purpose we had to create a special replay pseudo bot.
Whenever a new unit is created pseudo bot saves two new game states (input
and output game state) and adds current time plus three minutes into its time
queue. Every next created unit in those three minutes is added to the output
game state. The implemented time queue checks game time every frame and
if it matches with time on the front of the queue, it saves the original input
state and modified one, which contains all units as the input state plus units
created in three minutes. Game states are saved into file using JSON format
for easy machine parsing and human reading.

Figure 4.2: Class diagram of a replay pseudo bot
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4.2. Prediction model

Figure 4.3: Example of parsed data using replay pseudo bot

4.2.2 Network topology and configuration
Choosing correct neural network topology is very difficult problem for AI
programmers. Furthermore, one neural network does not cover different unit
compositions of each race and naturally, cannot simulate prediction for all
three races. Thus, we created a neural network for each race separately and
designed them to fit their own race. Each network is a feedforward type, uses
MSE as an error function with gradient descent backpropagation. The reason
MSE was chosen is it uses quadratic cost, which is a smooth function. It turns
out to be easier to figure out how to make small changes in the weights with
smooth error function so as to get an improvement in the cost [19].

The remaining criteria we cannot simply chose is network topology. Vari-
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4. Neural network

ous hidden layers and number of neurons effect predicting accuracy of neural
network. Thus, our goal is to find a configuration (number of layers and neu-
rons in each layer), which provides the best results for test sample of data
after learning the training samples. According to [20], recommended number
of neurons in hidden layers to start with should be less than twice the size of
the input layer. Based on this information, we tried 9 different topologies with
three hidden layers and 11 topologies with four hidden layers. As input vector
sizes are almost identical for all three races, we started with forty neurons and
adjusted the numbers by adding or removing 5 - 10 neurons in hidden layers.
For each newly created network, we measure its error on testing data set and
compared it to previous networks. The measured error (the lower the better)
indicates network’s success rate. If the measured error starts rising compared
to previous configurations, we stop the adding or removing neurons. Using
this simple method, we will try various topologies and choose the one with
the lowest measured error.

Another key parameter for our network is a learning rate. Learning rate is
a hyper-parameter that controls how much we are adjusting the weights of our
network with respect the loss gradient. The learning rate affects how quickly
our model can converge to a local minima and achieve the best accuracy.
According to [21], we can determine the learning rate by starting training
our model with low learning rate and increase it at each iteration and plot
it against loss. However, our training set contains shuffled replays of various
games, where training data often causes the oscillation of measured error itself.
In order to still find a good learning rate for our model, we decided to train
the same network configurations with same training and testing data sets,
but different learning rates. We started with relatively small learning rate
of 0.00001 and multiplied it by 10 every next training round until the loss
measured by MSE showed sign of divergence.
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Chapter 5
Evaluation of prediction model

Using replay pseudo bot, we were able to parse 4549 replays with game time
longer than three minutes. Every game was played one versus one, so it gives
us two players to observe per game, resulting into 9098 files with parsed input
and output game states. Every log file has different number of game states
as it depends on replay length. In order to produce independent results and
minimize the chance of overfitting, we split parsed replays randomly into two
sets.

5.1 Training
The first data set is called the training set. Training set contains 8070 replay
log files and serves for training our neural networks. There are 2362 protoss
logs, 2592 terrans logs and 3116 zerg logs. After each batch, we record the
MSE of the training sample. The problem of training is equivalent to the
problem of minimizing the loss function. It is much easier to optimize the loss
function using gradient descent than maximize the number of correct output
directly. It follows, our network adjusts its weights based on measured error
to perform better.

5.2 Testing
The second data set is called testing set. It has 1028 replay log files containing
237 zerg log files, 334 protoss log files and 457 terran log files. Its purpose is to
validate the accuracy of previously trained neural network. We saves sum of
MSE for all test samples and compare the results with other configurations.
Based on the performance, we choose the best network configuration as a
prediction model for our library.

Overall, we trained 153 neural networks with different topologies and con-
figurations. All trained models and results are enclosed on the flash drive
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5. Evaluation of prediction model

B.
The best network configurations for three hidden layers are shown in table

5.1. All networks with three layers showed the best results using 0.001 learning
rate.

Figure 5.1: Measured error for networks with 3 hidden layers. Note: For
better representation, errors displayed in the table are divided by 106

Same as three hidden layers configurations, four hidden layers configura-
tions performed better with learning rate 0.001. According to our measured
data in 5.2, some of four hidden layer topologies performed better than all of
the three hidden layer topologies. However, both configurations showed that
increasing the number of neurons over forty, results in worse performance.

Figure 5.2: Measured error for networks with 4 hidden layers. Note: For
better representation, errors displayed in the table are divided by 106

Besides the error measurement, which might be abstract to imagine, we
also stored result files for networks testing procedure. Result files contain all
test game states with desired output values and the output values predicted
by currently testing network.
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5.3. Conclusion

Figure 5.3: Example of prediction recorded into result file. It shows prediction
for protoss player.

5.3 Conclusion
The best fitting trained models according to our measurement are:

• Protoss: 4 hidden layers with neurons 30, 35, 35, 30 and learning rate
0.001.

• Terran: 4 hidden layers with neurons 40, 45, 45, 40 and learning rate
0.001.

• Zerg: 4 hidden layers with neurons 35, 50, 50, 35 and learning rate 0.001.

Even though error measurement of our models is nowhere near zero, the best
performing networks does not provides inaccurate predictions. Having a closer
look at 5.3, if we round all the decimals, provided prediction is very accurate.
The numbers of units like dragoons and zealots can never fit perfectly. Star-
craft is a very complex game and various army compositions can have same
strength. Even though, the network provides a little different output in terms
of units, it can satisfy our goal. However, networks predicting zerg game state
have the worst predictions from all three races. Most probably it is caused
by the different play style against other races. In our training samples, we
focused only on one player and did not consider the opponent’s race. In order
to improve out model, we would have to create 9 neural networks. One for
every possible match up.

23





Chapter 6
Usage

This chapter describes library usage, pseudo bot usage and testing methods
used during implementation. This chapter provides a guide how to use our
library and what are its benefits.

6.1 Integration with AI module
In order to integrate the library functionalities into AI module, programmer
must include the OpponentModelling header file into his module and create
an instance of COpponentModelling class. COpponentModelling contains
similary named methods as BWAPI AI module class. In order to pass the game
information into our library, programmer must call those specified methods
using created COpponentModelling object. Those methods must be called in
AI module class in virtual functions whose name corresponds with COppo-
nentModelling methods as described in 6.1

Figure 6.1: Example of calling corresponding methods for COpponentMod-
elling object
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6. Usage

If this procedure is followed correctly, COpponentModelling object can
provide functionalities by calling its methods. For instance, PredictOppo-
nentGameState method returns opponent’s game state model in next three
minutes predicted by implemented neural network. List of all methods pro-
vided by our library is described in added doxygen documentation.

6.2 Setting pseudo bot
Pseudo bot for parsing replays operates with four text files and one directory.
At first, we describe input and output operations with files and then the
configuration of pseudo bot itself.

• ReplayLogs is a directory containing all log files parsed by pseudo bot.
Parsed data are saved there directly as text files if the location is not
specified to a different folder.

• Iterator.txt This file contains a single digit number. It is a counter
value in order to numerize parsed replays.

• ReplayLogNames.txt is a text file containing names of log files parsed
by the bot.

• ReplayOriginalNames.txt is a text file containing names of all parsed
replays. It helps to keep track about already parsed replays.

• ConfigPseudoBot.h is a configuration file defining paths to locations
of previously mentioned files.

Pseudo bot output JSON file can be modified by adding or removing source
code from addData method located in CWriteToFileHandler class. The
method takes two vectors, where the first one describes key values for saved
JSON and the second one their corresponding values. The default settings of
this method can be seen in 6.2.

Figure 6.2: Default settings of addData function
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6.3. Training custom neural network

6.3 Training custom neural network
For creating own neural network, we recommend to start a new project and
separate it from AI modules. All programmer needs is a set of training log files
and set of validating (test) log files. Creating custom neural network is rela-
tively simple and can be done in few lines of code. CNeuralNetworkHan-
dler is a class, which offers various functionalities to adjust the network con-
struction and configuration. At first, a new CNeuralNetworkHandler object
must be created. After that, using the object programmer can call function
createNN with specified parameters for network topology. Then, call func-
tions for setting parameters of the network such as number of epochs, learning
rate or batch size and finally calling methods trainNNWithDataSet and
testNN with given paths to log files, will start training the network and test-
ing it using MSE as described in 6.3. Files with outputs and predicted values
with measured error are saved in the OpponentModelling project in directory
called NeuralNetworkInfoFiles.

Figure 6.3: Example of creating own neural network

In order to adjust loss function or activation functions, programmer must
modify the source code of CNeuralNetworkModel, specifically the creat-
eNN method. Input and output vectors for neural networks are located in
CPlayerModel child classes. Those are static vectors that can be modified
based on programmer needs. Neural network will then automatically create
an input and output layer based on the vectors sizes.

6.4 Testing
For testing purposes, we created another project called TestOpponentMod-
elling, which implements visual studio unit tests. Unit testing is a level of
software testing where individual software components are tested. The pur-
pose is to validate that each unit of the software performs as designed. It
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6. Usage

usually has a few inputs and a single output [22]. Implemented unit tests val-
idate components of our library for essential things such as adding new units
into the database or removing destroyed units.

Figure 6.4: Example of a testing method for removing units
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Conclusion

The aim of this thesis was to create a tool allowing AI modules playing com-
puter game Starcraft to model their opponent, automatically infer additional
information and predict future situations. Library was successfully imple-
mented and tested with all requirements. Unit database saves all opponent’s
units with inferred data, built on current data our trained neural network
predicts game state in near future and the library design and implementation
allows programmers to use replay pseudo bot by themselves to parse replays
of their rivals and create and train their own neural network.

As part of future work, there is an idea to extend the neural networks
and create 9 networks overall, one for every race match up in the game. Un-
fortunately, such extension requires not only three times more computational
time, but also three times more evaluating time for choosing the best fitting
network model in every match up.

Last but not least, I would like to point out that this thesis was based
on a computer game, which shows computer games are not just source of fun
in today’s society, but can also serve as an important model mechanisms to
support various parts of science.
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Appendix A
Acronyms

BWAPI Brood War Application Programming Interface

RTS Real Time Strategy

AI Artificial Intelligence

STL Standard Template Library

JSON JavaScript Object Notation

IoT Internet of Things

BWME Brood War Easy Map

BWTA Brood War Terrain Analyzer

MSE Mean Squared Error
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Appendix B
Contents of enclosed flash disk

readme.txt...................the file with flash disk contents description
T.Bohuslav_thesis.pdf..................the thesis text in PDF format
projects.................................the directory of thesis projects

doc ............ the directory with technical documentation (doxygen)
OpponentModeling.....the directory with library implementation and
trained models of neural networks
PseudoBotForParsingReplays. the directory with pseudo bot project
TestOpponentModelling....the directory with project for testing the
library
doxygen_config_file..................the doxygen configuration file
Makefile................................the Makefile for compilation

35


	Introduction
	Thesis structure

	Aim-of-thesis
	State of the art
	Starcraft AI development
	Extendable AI modules

	Implementation
	Library design
	Unit database
	Inference
	Prediction

	Neural network
	Introduction to neural networks
	Prediction model

	Evaluation of prediction model
	Training
	Testing
	Conclusion

	Usage
	Integration with AI module
	Setting pseudo bot
	Training custom neural network
	Testing

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed flash disk

