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Abstract

This master’s thesis main goal is to make research about model reference adaptive
control for linear MIMO systems. For these purposes theoretical models are used to see
possible implementation of neural algorithms for Linear MIMO system. There are two
different algorithms applied; GD and RLS, most effective algorithm is finally adopted
to 20th order theoretical MIMO model. All of these analysis, design and
implementation are made via MATLAB Simulink and Python 2.7.

Abstract

Cilem této diplomové prace je provést vyzkum adaptivniho fizeni s referen¢nim
modelem pro linearni MIMO systémy. Pro tyto Gcely se teoretické modely pouZzivaji k
posouzeni moznosti implementace neuralnich algoritmi pro dynamické MIMO
systémy. Jsou pouzity dva rizné algoritmy; GD a RLS, nejucinnéjsi algoritmus, je
nakonec pfijat do teoretického modelu MIMO 20. fadu. VSechny tyto analyzy, navrhy

a implementace jsou realizovany pomoci MATLABuU Simulink a Pythonu 2.7.
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1. Introduction

In last decades, human and machine interaction increased significantly. This pushed
machines to become smarter for better use by human in many different fields. As a
result, concept of machine learning was born. Nowadays, there are variety usage of
machine learning applications with different algorithms in industries. For instance,
numerous industrial process are demanding automatic control for efficient production
or management and machine learning controller applications are requested instead of
conventional controller to ensure high quality control. Therefore, objective of this thesis
to make research about adaptive identification and control algorithms and
implementation of these neural algorithms on example theoretical plants.There are
many studies about neural algorithms and their application however many of them are
focused on simple-input simple-output system (SISO) as implementation [1]. In this
thesis, multiple-input multiple-output system (MIMO) is chosen for implementation to
test performance of neural algorithms. Thus, three linear MIMO system are proposed
as theoretical models for testing; stable linear 2-2 linear MIMO system of 2" order of
dynamics and stable oscillating 2-2 linear MIMO system of 4™ order of dynamics [2].
These models are built and simulated in MATLAB & Simulink and Python 2.7
environment. Further recently published works on adaptive algorithms for
identification and control of linear MIMO system with supervised learning algorithms
are reviewed, and sample-by-sample adaptation rules are mainly focused such as
Gradient Descent (GD), and Recursive Least Square (RLS) algorithms[3][4]. These
adaptation rules are derived and carried out for identification and control experimental
analysis on linear MIMO system via Python 2.7. There are different control approach
such as model predictive adaptive control and model reference adaptive control
(MRAC) [5;6]. For this thesis work, MRAC approach is used. As final, theoretical 20"
order model is created for derived learning algorithms because given actively actuated
double-wheel-set roller rig dynamic model was not stable so it was not suitable for the
objective of this thesis as the main objective was the investigation of MRAC for
(stabilized) MIMO systems. Therefore to follow main goal of this thesis, similar

theoretical model is created to show how these derived neuro controller works with



same order plant with rig model. All of these works are provided with schemes, figures,

tables and codes in thesis work. At the end, results are shared in conclusion part.

2. Linear MIMO system Description

Linear MIMO system can be empirically described by several linear dynamic system
models. These system are more complicated than SISO system due to several factors
which are multivariable interaction, potential co-linearity of inputs, and large data

processing requirements. MIMO dynamical models are presented in;

- Ordinary differential equations
- Continuous transfer functions

- State space presentation.

General look to linear MIMO system is illustrated in Figure 1 below. For sake of this

thesis work, 2 inputs and 2 outputs linear MIMO system are used.

input! ——— ————————>output1
input2 —————— > dyq/dt = al1*y4 + 212"y, + b11*u4 + b12*uy ~ |———>output2
input3 ——————> dypfdt=a21%yq +a22%p + b217uq + b22%u; L youtput3

......... —_—> ahRh LD
----------------------- > Fomammmm =
input n— [—————— output_m

Figure 1:Block diagram of the structure to represent a linear linear MIMO system.

There are two main representations of linear MIMO system; frequency domain and
state space model. These representations are most used in this work therefore their form
are illustrated as 2-inputs 2-outputs models also any “u” presents input and any “y”
presents output of the system. Frequency domain solution of linear MIMO system in

matrix transfer function form is as it follows;:

}’1(5)] _ [911(5) 912(5)] . [ul(s)

Y2(s) 921(8)  g22(8)]  Lux(s) @)

The block diagram of transfer function implementation can be shown as in Figure 2.
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Figure 2: Block diagram of transfer function set for linear MIMO system.

2-inputs and 2-outputs linear MIMO system yield 4 transfer functions. This block
diagram shows relation between inputs and outputs as it is in matrix form also explains
how system should be simulated in Simulink. As last representation state space form
for 2" order 2-inputs and 2-outputs MIMO [7] system is;
X=Axx+Bx*u
)
y=C*x+D=x*u

where equation has variables;

x - the state process, includes states according to order of system,

u - the input process, includes inputs for this case in 2x1 dimension,

y - the output proces, includes outputs for this case in 2x1 dimension,
- A -» the system matrix,

- B -» the input matrix,

- C -»the output matrix,

- D -» the feed-through matrix.

In this part, linear MIMO system is represented simply for better understanding of this
thesis work. Next section is about stable linear 2-2 linear MIMO system of 2" order of

dynamics.



2.1 Theoretical Linear Stable 2"¥ Order Dynamic System

System of second order is used as a test model to see adaptation of learning rules for
linear MIMO system. It is created as random model, it has no relation with real plant
however because of its structure, it leads better construction of neural learning rules for

roller rig. This system is created in MATLABI[8] with simple code as;
rss(2,2,2)

first element in array defines order of system, second element defines number of inputs,

last element defines number of outputs. As result, created system is;

Xy = —1.0xx; +0.5*x, + 3.0 xu; + 1.5u,
Xy = —05%x; —2.0%xx, + 0.0 xu; — 1.0 * u,
y1 = 04xx; —0.1x*x, 3)
y, = —0.98 * x,

where system order is reduced to first order and presented as ordinary differential
equation (ODE). Yielded continuous time transfer function of system is created in
MATLAB & Simulink for simulation as it is below;

C.. = 1.2s 4+ 3.9
17624 3%x5+4225
o 1.47
127 62 4 3%5+4 225
4
o __~04s+115 @
217 624+ 3xs5+225
—0.98s — 0.245
Gy =

s2+4+3%xs+2.25



This theoretical plant is fed with step signal for inputs in different period and signal
width. It is simulated in Python 2.7 via scipy.integrate.odeint[9] to see response of
system under different input signals. Also, variable step signals is inserted to system to
analyze response of system under different type of inputs signal. Properties of step

signal as follows;

- Forul; T=40sec., W=%50*T
- Foru2; T=50sec., W =%50* T
- T =200 sec.

- dT=01

under these conditions system response is illustrated as in Figure 3.

-=- inputl
—— outputl
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104  g=m—==m—m——=1=1  femmmpm————— e e

0.5 1

0.0

—10+— e ey e o

~1.54

(I) 25 5‘0 7‘5 160 12‘5 150 17‘5 260
Figure 3: Preview of process data as 2" order system inputs and outputs.

As it is mentioned before there is an another illustration in Figure 4. Shows theoretical

system response to variable input step signals.
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Figure 4: Theoretical 2" order system response to variable input signals.




2.2 Theoretical Oscillating Stable 4" Order Dynamic System

System of fourth order is used as a test model to see adaptation of learning rules for
linear MIMO oscillating system. It is created as random model, it has no relation with
real plant however because of its structure, it leads better construction for understanding
neural learning rules. This system is created in MATLAB with simple code as;

rss(4,2,2)

first element in array defines order of system, second element defines number of inputs,

last element defines number of outputs. As result, created system is;

X, = —08+*x; +4.0*xx, —5.0xx3 —2.0* x4 + 1.0 *xu; + 0.1u,
X, = —40*x; —1.0%xx, —3*x3—1.0*xx, —0.1*u; +0.5*u,
X3=50xx; +1*x, —20%x3+4.0*x,+05*u,
X4 = 3.0%x; +1.5%xx, +05%x3 —5.0*x, — 1.0 *uy (5)
y1= 10xx; —1.2%x, + 096 xx3 — 1.2 % x,
Y, = 3.4 % x,

where system order is reduced to first order and presented as ordinary differential
equation (ODE). Yielded continuous time transfer function of system is created in
MATLAB & Simulink for simulation as it is below;

o - 2853 + 14.66s% + 163.1s + 285.2
™ 64 4 7s3+ 6552 + 306s + 234

o - 1.47 — 0.34s3 — 14.79s% — 90.95s — 428.7
1z = s* + 753+ 6552 + 306s + 234

o - —0.5s3 — 0.82s%2 — 69125 — 84.82 (6)
217 o4 4+ 753+ 6552 + 306s + 234

o - 1.7s3 + 8.84s% + 57.63s + 243.1
227 ¢4 4+ 753+ 6552 + 306s + 234




This theoretical plant is fed with step signal for inputs in different period and signal
width. It is simulated in Python 2.7 via scipy.integrate.odeint to see response of system
under different input signals. Also, variable step signals is inserted to system to analyze
response of system under different type of inputs signal. Properties of step signal as

follows;

- Forul; T=40sec., W=%50*T
- Foru2; T=50sec., W =%50* T
- T =200 sec.

- dT=0.1

under these conditions system step response is illustrated as in Figure 5.

4th order plant response to pulsating signal

)
=== ul

0 250 500 750 1000 1250 1500 1750 2000

0 250 500 750 1000 1250 1500 1750 2000
Figure 5: Preview of process data as 4" order system inputs and outputs.

As it is mentioned before there is another illustration in Figure 6. Shows theoretical

system response to variable input step signals.



4th order plant response to variable step signal
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Figure 6: Theoretical 4™ order system response to variable input signals.

These are theoretical systems as example to apply identification and control algorithms.
In next chapter, these algorithms are derived according to linear MIMO system, and

these two theoretical plant are used to see results.



3. Implemented Identification and Control Algorithms

In this chapter, as solution of identification and control, discrete-time adaptive
approaches are adopted to neural unit or high order neural units (HONU)[10]. These
neural units are used as a recurrent models for dynamic system identification and later

as controller.

For linear stable 2" order theoretical plant linear neural unit (LNU) is used however
derivation of high order neural unit (HONU) is also revealed. All applications are based
on dynamic neural units which means feedbacks of system also supplied by neural
units. This term of dynamic neural units are discussed further. These are two main
algorithms are derived; GD and RLS. These both learning rules are based on real time

recurrent learning (RTRL) technique[11].

3.1 Sample by Sample Learning Plant Identification

The GD is fundamental learning rule behind neural units such as LNU and quadratic
neural units (QNU). General polynomial form of the LNU is to be described as by
following;

n

yn=ZWi*xi = Wo*Xg+ W *xX; + Wy *xXy + Wy xx3+..+w, xx, (7)
i=0

where w is updatable vector of neural weights and x vector of neuron inputs which
includes plant inputs and outputs in case of static model, in dynamic model it includes
neural outputs instead of system outputs. General polynomial form of the QNU can be

derived as below;

n n
yn = Z é Wi,j xl'x]' = W0,0xOxO + Wollxo x1+ . Wn’n * xnxn
i=0 0

= (8)
Y = rowx.colw

Where “rowx” and “colw” are long vectors representation of input vector and weight

matrix of QNU in general.

10



Now, these neural weights general form is reconstructed according to linear MIMO
system also input vector of neuron “x” includes neuron outputs since system is
dynamic. To identify linear MIMO system two linear neural units are set, therefore
there are two “x” vectors are derived for each neural units. System inputs and outputs

connect through both neural units since system depends on both. So definition for first

neural unit “x1» vector and second neural unit “x»~ vector are as below;

1 1
Yn1lk] Yn2lK]
Ynilk —1] Ynalk — 1]
Ynilk — 2] Ynalk — 2]
Ynilk — 3] Ynalk — 3]
Yn2lK] Yn1lk]
Ynalk — 1] Ynilk —1]
x1 = |Yn2lk — 2] Xy = |Yn1lk — 2] ©)
uy [k] up[k]
w [k — 1] uy [k — 1]
w, [k — 2] u, [k — 2]
w, [k — 3] uy [k — 3]
u, k] uy[k]
u, [k — 1] w, [k — 1]
u, [k — 2] | w, [k — 2]

Where “yn1“ is first neuron output and “yn2 “ is second neuron output. Also “uz “is first
input, “uz“is second output to linear MIMO system. Amount of “yn1[K] ”'S, “yn2[K] ”'S
, “ur[k]” s and “u2[K]” s correspond to components of input vector. These all
components are calculated using system equation at different time instances of “k”.

Size of “x” vector is 15, as result “wiand w» ““ are to be in same size.

11



3.1.1 Gradient Descent Algorithm Adaptation

The main purpose behind all of these to adapt neural weights and it is a crucial factor
for identification process of linear MIMO system. Adaptation of neural weights are
succeed by derivation of GD formula [12]. Adaptation of neural weights is same
process for both neural units therefore general derivation of GD is given as it follows;

1 de?(k)
Wiv1 = Wi = S > =57
L

(10)

where "u" is learning rate of the weight adaptation and “eq ” is error value between

system or plant and neural output. It can be represented as;

e(k) = yr(k) - yn(k) (11)

where “ynk) " represents plant or system output. Rest of the derivation of GD is shown

as following;
1 de(k
Wiy = Wi — E,u*Ze(k) 228
i
Wi = i s () (ayr(k) _ aynac))
oy, (k
Wit = Wi+ (k) » 220
i
where “ % “ represents partial derivatives of the neural inputs respective to each

neural weights.

Modification of GD for QNU is same derivation as LNU and it is final formula as

follows;

oyn(k+1)

colw(k +1) = colw(k) + p = e(k) dcolw (k)

(13)
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3.1.2 Recursive Least Square Algorithm Adaptation

In this method, main goal is to adapt neural weights again. Structure of linear neural
unit “x” vector is same as in previous chapter. Adaptation of neural weights are succeed
by derivation of RLS formula. Adaptation of neural weights is same process for both
neural units therefore general derivation of RLS [13;14] is given as it follows;

Wik+1) = Wi T Aw

Aw(ey = Ry * X)) * e(x)

ew) = Yray ~ Yn()
(14)

R(e—1) * X(o) * Xy * R(k—1)>

1
R :_*<Rk—1 -
O T T )l Ry * 20

1
R(O)Z E*I

where “ex) “ is error between neural unit output and real system output, w is weight of
neural units. “R) “is inverse autocorrelation matrix, “1” is identity matrix, “6 " is small
positive constant.
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3.2 Procedure of Plant Identification Algorithm Application

In previous parts, structure of neural units, and adaptation of algorithms to identification
process are explained with formulations. In this section, scheme of MIMO adapted
plant identification is shared with implementation of adaptive identification of
theoretical models.

The principal schematics of linear MIMO system adaptive identification with neural
units can be shown as in Figure 7. Both neural units are fed with MIMO s both inputs
and outputs to create input vector for neural units. Their feedback is supported by

individual difference of related output and neural output.

ul — @—@—> —  &—&—0 & >
MIMO SYSTEM ‘
ul - ®—@® ——» _.J L > y2
L’ v
v =wy * x4 ‘;Q_D
R
el )
> v
A -
i yny =wy * x5 ;"/:'
- > _
e2 )
o

Figure 7: Scheme of adaptive identification for linear MIMO system.

For dynamical models, error value can feed neural unit with difference of neural unit

input and output instead of difference of system output and neural unit output.

System identification requires plant data (input and output). This algorithm application

is realized on Python 2.7. Therefore theoretical model is inserted to identification
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algorithm as online plant. Program works as once for both theoretical plant simulation

and identification in terms of neuron long “x” vector of weights “w”.

Sampling rate is significant for system identification also for controller, because it has
important role on defining size of neuron input vector. Large sampling rates as 200
samples for a second requires 120 previous inputs and outputs to neural unit. Therefore
it is not efficient, re-sampling or keeping sample rate low increases efficiency. In this

work, sampling rate for plant is kept as 10 samples for per second.

Final important point is learning rate "u". It corresponds to the speed of learning. High
value of "u" corresponds faster learning process of (identifying) system, lower rate
corresponds slower learning process. However, it does not mean for all cases usage of
high rate can be efficient. Higher rate of learning can result with instability in the
system, so it can be chosen by testing according to algorithm and system. This
difference will be also revealed in next sections, because even for same algorithm and

system, learning rate must be set because of different system input.

3.3 Plant Identification Algorithm Application

For identification methods, different number of epochs, learning rate but same sampling
rate and, same amount of input and output values for neuron long “x” vector are used.
Because main purpose of this work to obtain best possible results with given algorithms.
These epochs and different learning rate values are obtained experimentally. As

theoretical models and roller rig models are linear, LNU is used in learning algorithms.

For both learning algorithms, two different inputs are given to system; step and variable
step inputs for observation of system under different loads. And for these two different
inputs, two different graphs are created by program which illustrates neural output with

comparison system input and output, also error values.

In next parts, there will be controller adaptation algorithm. For that purpose, variable
step input will be used as system input for simulating real plant behavior realistically
however to see identification algorithm performance, step input signal illustrates more

observable response in the system.
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3.3.1 LNU Algorithm Trained with the GD Method

First illustration in Figure 8 shows 2" order stable linear theoretical plant response to

step input signal.

Identification of plant, sample-by-sample adaptation
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Figure 8: 2" order plant identification with LNU using GD as response to step input signal.

*QOriginal plant can be seen in Figure 3.

As if can be seen in Figure 8, system output and neural input are nearly perfectly in

same line which means neural-model step by step training works efficiently. Input

signal properties are given below;

For ul; T =40 sec., W = %50*T
For u2; T =50 sec., W = %50*T

T =200 sec.
dT=0.1

these values are valid for both theoretical models, and their step and variable step input

signals.

Error states of this identification process is shown in Figure 9.
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Identification of Plant, Error and Sum of Square Error
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Figure 9: 2" order plant error of identification with LNU using GD as response to step signal.

*QOriginal plant can be seen in Figure 3.

Last trained epoch results are given in Table 1 below;

GD SSE1 SSE? n Epochs
LNU 0.0085 0.32 4 100

Table 1: Details of simulated system of 2" order with step signal.

As it is visible in Figure 9 and Table 1, SSE results are very small. Learning rate and

Epochs are defined by many experiments for best results.

In Figure 10 shows 2" order stable linear theoretical plant response to variable step
signal. Identification of system is even better in comparison with step signal, variable

step input response stability is better than step signal response.
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Identification of plant, sample-by-sample adaptation
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Figure 10: 2" order plant identification with LNU using GD as response to variable step signal.

*Qriginal plant can be seen in Figure 4.

Error states of this identification process is shown in Figure 11.

Identification of Plant, Error and Sum of Square Error
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Figure 11: 2" order plant error of identification with LNU using GD as response to variable step
signal.

*Qriginal plant can be seen in Figure 4.
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Last trained epoch results are given in Table 2 below;

GD

SSE1l

SSE2

Epochs

LNU

0.0067

0.08

50

As it is clear in Table 2, variable input signal is better option for system simulation.

Table 2: Details of simulated system of 2" order with variable signal.

So far plant identification for linear MIMO systems results are shown for second order

plant. Next illustration Figure 12 represents 4™ order oscillating linear theoretical plant

response to step input signal.

Identification of 4th order plant, sample-by-sample adaptation
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Figure 12: 4" order plant identification with LNU using GD as response to step input signal.

*QOriginal plant can be seen in Figure 5.

400

1000

For oscillating systems identification process does not perform good as stable systems.

Order of the system and MIMO also effects performance of identification process.

Error states of this identification process is shown in Figure 13.

19




Identification of Plant, Error and Sum of Square Error
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Figure 13:4™ order plant error of identification with LNU using GD as response to step signal.

*Original plant can be seen in Figure 5.

Last trained epoch results are given in Table 3 below;

GD

SSE1l

SSE2

Epochs

LNU

5.27

7.21 .01 200

Table 3: Details of simulated system of 4" order with step signal.

SSE values are higher in comparison with second order plant, it is due to complexity of

plant.

In Figure 14 shows 4" order oscillating linear theoretical plant response to variable step

signal. Identification of system is even better in comparison with step signal, variable

step input response stability is better than step signal response.
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Identification of 4th order plant, sample-by-sample adaptation
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Figure 14:4" order plant identification with LNU using GD as response to variable step signal.

*Original plant can be seen in Figure 6.

Error states of this identification process is shown in Figure 15.

Identification of Plant, Error and Sum of Square Error
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Figure 15: 4" order plant error of identification with LNU using GD as response to variable step
signal.
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Last trained epoch results are given in Table 4 below;

GD

SSE1

SSE?

Epochs

LNU

0.78

1.91

200

Table 4: Details of simulated system of 4" order with variable step signal.

In comparison with step signal input, learning rate is higher and SSE values are smaller.

3.3.2 LNU Algorithm Trained with the RLS Method

First illustration in Figure 16 shows 2" order stable linear theoretical plant response to

step input signal.

Identification of plant, sample-by-sample adaptation
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Figure 16: 2" order plant identification with LNU using RLS as response to step input signal.

*Qriginal plant can be seen in Figure 3.

As if can be seen in Figure 8, system output and neural input are nearly perfectly in

same line which means neural-model step by step training works efficiently.
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Error states of this identification process is shown in Figure 17.

Identification of Plant, Error and Sum of Square Error

0.02

0.00 4

—-0.01 4

—-0.02

250 500

750

1000

1250

1500

1750

2000

1000

1250

1500

1750

2000

—— SSE1

20

40

60

80

20

40

60

80

Figure 17: 2™ order plant error of identification with LNU using RLS as response to step signal.

Last trained epoch results are given in Table 5 below;

GD

SSE1l

SSE2

n

Epochs

LNU

0.002

0.091

.9998

100

Table 5: Details of simulated system of 2" order with step signal via RL.

For same conditions in GD algorithm, it can be easily said that for adaptive

identification purposes RLS algorithm performs better than GD algorithm.

In Figure 18 shows 2" order stable linear theoretical plant response to variable step

signal.
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Identification of plant, sample-by-sample adaptation
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Figure 18: 2" order plant identification with LNU using RLS as response to variable step signal.

*Qriginal plant can be seen in Figure 4.

Error states of this identification process is shown in Figure 19.
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Figure 19: 2" order plant error of identification with LNU using RLS as response to variable step

signal.
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Last trained epoch results are given in Table 6 below;

GD

SSE1l

SSE2

11

Epochs

LNU

0.0006

0.038

.9998

50

Table 6: Details of simulated system of 2" order with variable step signal via RLS.

So far plant identification for linear MIMO systems results are shown for second order

plant. Next illustration Figure 20 represents 4™ order oscillating linear theoretical plant

response to step input signal.

Identification of 4th order plant, sample-by-sample adaptation
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*QOriginal plant can be seen in Figure 5.

Error states of this identification process is shown in Figure 21.
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Figure 20: 4" order plant identification with LNU using RLS as response to step input signal.
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Identification of Plant, Error and Sum of Square Error
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Figure 21:4" order plant error of identification with LNU using RLS as response to step signal.

Last trained epoch results are given in Table 7 below;

GD

SSE1

SSE?

n

Epochs

LNU

3.52

412

.9998

200

Table 7: Details of simulated system of 4" order with step signal via RLS.

For same conditions in GD algorithm, it can be easily said that RLS performs better

than GD for identification approach. As last identification results, in Figure 22

illustrates 4™ order oscillating linear theoretical plant response to variable step signal.

Last trained epoch results for variable step response are given in Table 8 below;

GD

SSE1

SSE2

n

Epochs

LNU

0.30

1.12

0.9998

50

Table 8: Details of simulated system of 41 order with variable signal via RLS.

From all of the results, it can be easily said that RLS algorithm performs better than GD

for adaptive identification process.
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Identification of 4th order plant, sample-by-sample adaptation
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Figure 22: 4" order plant identification with LNU using RLS as response to variable step signal.
*QOriginal plant can be seen in Figure 6.
Error states of this identification process is shown in Figure 23.
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Figure 23: 4" order plant error of identification with LNU using RLS as response to variable step
signal.
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4. Neuro Controller

Concept of model reference adaptive controller [15] is same as plant identification
algorithm. Main difference is neuro controller is used for manipulating newly feed input
into neural unit for control. But here neural unit is used as a model itself. For linear
MIMO systems, complete scheme of neural controller can be illustrated as in Figure
24. This scheme included all process for this work.
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Figure 24: Scheme of neuro controller with all other system parts.
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where “q” is neuro controller output, its structure same as “yn”, “v” is neural weights
to show difference is denoted with different letter. “¢ “ is input vector for neural unit its

structure is similar with “x” vector. Neuro controller equation yields as;

q=vo*éot+ vy *& + VxSt vy k& = v (15)

Update rule for neural weights are as following;

dyn (k)
avi

Vig1 = Vi + U * eref(k) * (16)

where “erer “ IS an error value between reference model and plant, “ro” is neuro
controller gain value. For this value adaptation also possibly can be used but in this

work, ideal gain value is obtained after multiple test run. Key variable of the equation

is " ay”—@ " . Since it provides dependence of neural model to output of controller[12].

av;
As it follows;
Oyn(k) _ d(w.x()) _  dx(k)
(')vi - (')vl- - wE 6vi (17)
1 1 0
y(k) 0
k—1 0
0x(k) B 4 ) B 0 0
o, = —r0 * a—vl *
(40— q(k)) * 70 q(k)
(d(k—1) —q(k—1)) 70 q(k —1)
(18)
0
0
0
= —1r0*
$(k)
$(k—1)
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Structure of “&” vector is;

&= [ynk) yn(k—1) .. d(k) d(k—1) ... ] (19)

Size of “&” array is same as “x” vector.
4.1 Procedure of Controller Implementation

Implementation of control algorithm is quite same as identification process however
there are still few difference. Main idea behind neuro controller is to manipulate real
plant to act as reference model. In this case, reference model can be declared as ideal

response of plant to input signal.

If it is explained in detail, real plant responses to given input, these output and input
values are inserted to create input vector of neural unit. This process allows neural unit
to define proper weights to act as real plant, in this point, neural unit becomes model
which means simulated plant. After neural model output feeds neuro controller unit
with desired value which is same as input value in many cases. Neuro controller update
rule is provided by “erer” which defines error value between plant and reference model.
Finally neuro controller yields its output value “q”. This value is multiplied by gain
than it is subtracted by desired value to control system.

Important point all of these processes is that; both neural unit and neuro controller is
fed by both input and output values. Although there are double neural units and neuro
controller, system behavior depends on both inputs and output value, so without them,
identification and controller process can not perform. This specifies MIMO plants

systems need for adaptive identification and control with neural units.

As final, importance of reference model is explained above. Here reference model for
precise controller tuning is given as a filter to desirable value. it can be seen in Figure
25.

E—Td*s 1

Trs+1 Tes+1

Figure 25: Principal of reference model
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4.2 Neuro Controller Application

In this section, neuro controller algorithm is applied to theoretical models which are
created in previous part. All system works dynamically, weights for neural unit are not
set as constant. Algorithm is implemented with continuous training of neural weights
for all process. This method lets controller fast adaptation to changes in the system
behavior, system simulation identification and control occur in same sampling rate,
input values and sampling rate are same as previous parts only difference is variable
step signal used as system input. Both GD and RLS algorithms are used for neuro
controller[16]. After implementation of these algorithms, the one yields better results

is elected to use for 20" order theoretical plant.

4.2.1 2" Order Theoretical Plant Neuro Controller Application

2" order stable linear theoretical model is controlled by neuro controller. Result is

shown in Figure 26.

Controller sample-by-sample adaptation for 2nd order stable linear theoratical plant

1000

Figure 26: 2" order theoretical plant controller with continues weights training via GD.(Original
plant can be seen in Figure 4.)

System initial conditions and error values are given in Table 9. Magnified look to

controller results are shown in Figure 27.
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Controller sample-by-sample adaptation for 2nd order stable linear theoratical plant
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Figure 27: Magnified view of Figure 26.(Original plant can be seen in Figure 4.)

GD SSE1 SSE? T Epochs T8 rol ro2

LNU 2,32 4,28 0.5 2000 0.3 0.009 |0.015

Table 9: Details of controlled system of 2" order with variable signal via GD.

Controller sample-by-sample adaptation for 2nd order stable linear theoratical plant
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Figure 28: 2" order theoretical plant controller with continues weights training via RLS. (Original
plant can be seen in Figure 4.)
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System initial conditions and error values are given in Table 10. Magnified look to

controller results are shown in Figure 29.

Controller sample-by-sample adaptation for 2nd order stable linear theoratical plant
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Figure 29: Magnified view of Figure 28. (Original plant can be seen in Figure 4.)

RLS SSE1 | SSE2 n | Epochs | Epochsc T8 rol | r02
LNU [37,92 [3658 |05 200 2 0.9998 | 0.05 | 0.05

Table 10: Details of controlled system of 2™ order with variable signal via RLS.

It is clearly seen that GD algorithm for linear MIMO system controller implementation
yields better result. RLS algorithm did not perform as good as GD, results can be read
in Table 10. Especially oscillating system results were extremely unstable that is the
reason they are not add in thesis work however implementation of it is add to Appendix.
Main goal was so far to identify ideal learning and controller rule for linear MIMO

system, GD algorithm is carried out for next section.

In addition, as it can be seen in Table 9, SSE values are nice. Reference model is chosen
as second order linear system. Choosing second order linear system as system reference
model yields better result because of its smooth transition. In addition, due to system
complexity, it is complicated to create reference model. According to gained experience
of this work, linear MIMO systems reference model could be plant itself but
manipulated version by conventional controller or it could be desired value itself. In
other word, there is no need for reference value in case of feeding neuro controller with

desired value and neural unit difference. But in such case transition is not smooth so it
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can cause instability in controller. To avoid all possible problems, for this work second

order plant is chosen as reference model after testing performance of all mentioned

reference model implementation.

4.2.2 4" Order Theoretical Plant Neuro Controller Application

4™ order oscillating linear theoretical model is controlled by neuro controller. Result is

shown in Figure 28.

Controller sample-by-sample adaptation 4th order oscillating linear plant

30
25 f
20 fm——

H

H

|

— Yra
— a1
--

400

600 800 1000

— Yrn
R
-- d2

0 200

400

600 800 1000

Figure 30: 4™ order Theoretical plant controller with continues weights training via GD. (Original
plant can be seen in Figure 6.)

Controller sample-by-sample adaptation 4th order oscillating linear plant
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Figure 31: Magnified view of Figure 30. (Original plant can be seen in Figure 6.)

System initial conditions and error values are given in Table 10. Magnified look to

controller results are shown in Figure 29.

GD

SSE1

SSE2

1

Epochs

K

rol

ro2

LNU

4,32

2,28

0.5

2000

0.5

0.013

0.016

Table 10: Details of controlled system of 4™ order with variable signal via GD.

Magnitude of errors are also good. As it is explained in previous section, second order
plant is used as reference model. Real plant is oscillating so it results with overshooting

in plant.
4.3 Discussion

For better achievements, it is observed that using different learning rates for different
neural units could be the key point, however it can cause instability of the system. So
relation between different learning rates must set with numerical relation between them.
In addition more efficient sampling interval, and length of neural inputs. Also different
learning algorithms can be used such as batch training approach Levenberg-Marquardt

(LM) especially for offline plant tuning.

Another important point is defining neuro controller gain “ro” value, it is chosen in this
thesis work according to theoretical system gains, however for better controller
achievements it is possible to derive adaptation rule for “ro”.

The last point is about weights, GD algorithm can be used for both online and offline
tuning of neuro controller. The best way of it, pre-training weights before tuning
controller however this is possible for offline plant controller.

In next section, discussed algorithms for identification and control process are applied
to 20" order theoretical model. According to experience of this work so far, it is chosen
that GD algorithm will be used for training weights continuously.
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5. Actively Actuated Double Wheel Set Roller Rig

Actively actuated double wheel set roller rig is one of the project which has studied in
Czech Technical University in Prague (CTU). It is basically explained in source [17]
as;

“ Active control of wheelset guidance is regarded as a promising solution for railway
vehicles of the future. Although computational simulations published in number of
studies, show that active wheelset guidance offers superior properties in comparison
with conventional, passive designs, track tests of such a system on vehicles are rather
rare. On the other hand on a roller rig it is possible to test railway vehicle running

dynamics.”

One of the main goal for control process is to prevent wheel flange and rail head contact
on railway carriages, with independently rotating wheel sets. System can be seen as in
Figure 30.

Position transducer S1 Position transducer S2
Inductive sensor  S3

Position transducer S5

Figure 32: Actively actuated double wheel set roller rig (courtesy of [17]).
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Unfortunately, system was in repair so it was not possible to observe system properly,
none of datum are taken from the roller rig. Instead of real data, mathematical model of
system is given from the source [17]. Model of the system is given as 20" order in space
state form. However system was extremely unstable. And it was not possible to stabilize
system with conventional controller techniques. Roller rig model space state form eigen

values of matrix A is given in Tablel1. Unstable parts are written in red color.

-2.20385581e+02+1521.89549136] -2.20385581e+02-1521.89549136
-2.43060266e+02+1655.83731627] -2.43060266e+02-1655.83731627j
-3.01146497e+02+1858.81351718j -3.01146497e+02-1858.81351718j
-2.85457410e+02+1825.78333622j -2.85457410e+02-1825.78333622j
-1.04138625e+03 +0.j -1.04138625e+03 -0.j
-1.58218868e+02 +24.07876876j -1.58218868e+02 -24.07876876]
-1.38241861e+02 +21.6711047j -1.38241861e+02 -21.6711047j
4.86260449e+00 +27.82821513] 4.86260449e+00 -27.82821513j
5.40308376e+00 +27.36325273] 5.40308376e+00 -27.36325273]
-1.06718544e-04 +0.] 9.42039509e-05 -0.j

Table 11. Eigen values of roller rig space state model.

Step response to system can be seen in Appendix, in “unstable responses part”. Poles,

zeros graph of eigen values are shown in Figure 33.

7é real, imaginary eigen values graph of rig model matrix A - O X

2000
ey * poles
*
1500 4 *
1000 +
500 +
0 - ¥ *
—500 A
—1000 +
—1500 + *
*
ak
72000 E T T T T T T
—1000 —800 —600 —400 —200 0

Figure 33: Poles, zeros graph of eigen values of rig model.
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System is tried to be stabilize by changing unstable parts, and new eigen values of

system is calculated as in Tablel12.

-6.264109626+03 +0,]

-6.264109626+03 +0.]

-3.33756797e+02+1403.70483194j

-3.33756797e+02-1403.70483194

-3.02564040e+02+1612.04266345j

-3.02564040e+02-1612.04266345j

-3.06665307e+02+1846.61822734j

-3.06665307e+02-1846.61822734j

-2.88776050e+02+1824.6965927]

-2.88776050e+02-1824.6965927j

-7.25051377e+02 +0.j

-7.25051377e+02 +0.j

-9.19880084e+02 +0.j

-9.19880084e+02 +0.j

-8.37749418e-01 +5.43925808)

-8.37749418e-01 -5.43925808j

-1.66984168e+00 +4.49961517j

-1.66984168e+00 -4.49961517j

-5.65632980e-07 +0.]

-5.65632980e-07 +0.j

Table 12. Eigen values of roller rig space state model after replacement of poles.

Step response to system can be seen in Appendix, in “unstable responses part”. Poles,

zeros graph of eigen values are shown in Figure 34.

74 real, imaginary eigen values graph of rig model after replacement of unstable parts with stable values — O

2000 A
+ poles *
1500 *
] *
1000
500 A
o [ — pra—. -
—500 -
—1000 A
+
—1500 +
L 4
L
—2000 ~ T T T T T T T
—6000 —5000 —4000 —3000 —2000 —1000 o]

Figure 33: Poles, zeros graph of eigen values of rig model after replacement of poles.

Although, eigen values are in stable region after poles replacement system was still

unstable. My main task was not try to stabilize such kind of system with neural
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algorithms and also due to goal of this thesis and time limitation, after discussion with
my supervisor, | decided to use 20" order theoretical plant to show performance of

linear MIMO model reference adaptive control and its possibility for implementing on
roller rig.
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6. 20™ Order Theoretical Plant

This plant is created to illustrate linear MIMO model reference adaptive control
performance, its degree is chosen to approach 20" order roller rig model, due to stability
issues, roller rig was not able to be used. For simulation of system, variable step signal

is used as inputs value, system response is given in Figure 34.

L A S —
i

35 H =W
H

i
304  jmmmmmmmmmmmmmmeenl ey
I

25

o 200 400 600 800 1000

] 200 400 600 800 1000

Figure 34: Theoretical 20™ order system response to variable input signals.

Eigen values of plant is given in Table 13.

-0.33645671+14.05255636j -0.33645671-14.05255636j
-3.05654692 +9.01803421j -3.05654692 -9.01803421j
-10.49059971 +0.j -0.79787216 +5.21286789j
-0.79787216 -5.21286789j -1.44958056 +3.099382j
-1.44958056 -3.099382j -4.63026689 +0.
-4.63055112 +0. -2.11293254 +0.
-1.08954236 +0.j -0.82498758 +0.
-0.22529631 +0.j -0.34602196 +0.j
-0.54032827 +0.j -0.47590645 +0.j
-0.46316735 +0.j -0.46316735 +0.j

Table 13. Eigen values of 20" order theoretical plant.

Plant poles and zeros graph is shown in Figure 35.
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74 real, imaginary eigen values graph of 20th order theoretical plant - [m| X
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Figure 35: Poles, zeros graph of 20™ order theoretical plant.

Eigen values of this plant is way smaller than rig model however system is stable.

6.1 20" Order Theoretical Plant Control

In this section, results of control and identification process are shared. Identification of

system is achieved via GD algorithm and results is illustrated in Figure 36.

—
—_— ult
— ym

3.0
2.5
2.0
1.0 \
0.0

[ 200 400 600 800 1000

— 2
— 2
— yn2

0 200 400 600 800 1000

Figure 36: 20" order plant identification with LNU using GD as response to step input signal.

Initial set values and error values are given in Table 11.

41



GD SSE1 SSE? V5] Epochs [T
LNU 1,32 1,28 0.5 200 0.7

Table 14: Details of simulated system of 20" order with variable step signal.

Identification of system is pretty good, in next part neuro controller is applied to model,
as reference model second order plant is used as in previous chapters because of its

smooth transition.

Neuro controller implementation is made under different conditions to compare effects
of variables in implemented algorithm. Variables in identification process are not
changed. First initial conditions and error results are given in Table 13. According to

first initial conditions, neuro controller performance is given in Figure 37.

o 200 400 600 800 1000

[} 200 400 600 800 1000

Figure 37: Roller-Rig tuned controller for first trial.(Original plant can be seen in Figure 34.)

Magnified version of Figure 37 is given in Figure 38.
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— Yen
— yal
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350

s —
Figure 38: Magnified view of Figure 37.
*Original plant can be seen in Figure 34.
GD SSE1 SSE2 Hic Hac Epochs | r01 ro2
LNU 15,12 10,64 0.4 0.3 200 0.001 0.01

Table 15: First initial conditions and error results.

Results are under second initial conditions given in Figure 39 and Table 14.

— yen
—
-

1000

— Y
— w2
- a2

200

400

Figure 39: Roller-Rig tuned controller for second trial.

*Qriginal plant can be seen in Figure 34.

1000
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Magnified version of Figure 39 is given in Figure 40.

-—- dl

-

325 T
W —ym
. T L — ¥2
i
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i

Figure 40: Magnified view of Figure 37.

*Original plant can be seen in Figure 34.

GD

SSE1

SSE?

Hic

H2¢

Epochs

rol

ro2

LNU

12,51

7,82

0.2

0.15

200

0.006

0.04

Table 16: Second initial conditions and error results.

Final trial is shown in Figure 41 and Table 15.

200

400

800

1000

Figure 41: Roller-Rig tuned controller for second trial.(Original plant can be seen in Figure 34.)

200

400

800

1000
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Magnified version of Figure 41 is given in Figure 42.

!

|
, ! — wl
;
i
i
.

— yn2
-—- @2

150 200 250 300

Figure 42: Magnified view of Figure 39.(Original plant can be seen in Figure 34.)

GD SSE1 SSE?2 Mic M2 Epochs | rO1 r02

LNU 6,51 5,82 0.23 0.19 200 0.004 0.09

Table 17: Final initial conditions and error results.

Different initial conditions and variable values effect performance of neuro controller,
so for better performance, learning rate values and system gain values could be tuned
precisely. After 3 different sets of initial conditions and different variable values, results
are shared. In final trial, SSE values are less than other trial and it can be seen plant is
controlled nicely except overshooting in first phase of transition. It is also possible to

gain better results with different reference model.

45




7. Conclusion

In this thesis, multiple-input multiple-output system (MIMO) is chosen for
implementation to test performance of neural algorithms. Thus, two linear MIMO
system are proposed as theoretical models for testing; stable linear 2-2 linear MIMO
system of 2" order of dynamics and stable oscillating 2-2 linear MIMO system of 4™
order of dynamics. These models are built and simulated in MATLAB & Simulink and
Python 2.7 environment. Further recently published works on adaptive algorithms for
identification and control of linear MIMO system with supervised learning algorithms
are reviewed, and sample-by-sample adaptation rules are mainly focused such as
Gradient Descent (GD), and Recursive Least Square (RLS) algorithms. These
adaptation rules are derived and carried out for identification and control experimental
analysis on linear MIMO system via Python 2.7. For this thesis work, MRAC approach
is used. All key objectives are completed within scope of the thesis, there are main
accomplished points should be considered. One of them is system simulation in Python
2.7, this allow me to tune controller same time with system run. Another one is neuro
controller implementation on linear MIMO system, because of linear MIMO system
complexity, it required complex neural units formation. Next point to mention is
algorithms, GD algorithm performed very well however RLS algorithm did not perform
as good as GD especially for neuro controller. The last point, roller rig model could not
be observed properly due to maintenance process, its mathematical model was not
stable therefore it is tried to be stabilized. However system was not stabilized, and main
goal of the thesis was not try to stabilize such system with neural algorithms. So 20"
order theoretical model is created to simulate similar system and observe its
performance, implementation of algorithm on such complex structure (20" order
system) gives idea about possible implementation of neuro controller. This is thesis

could be first step for those who will make a further search in this field.
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Appendix

Code for 2" Order Theoratical Plant Neuro Controller Implementation

from numpy import*

from matplotlib.pyplot import*
from scipy.integrate import odeint
from numpy.random import randn

#Input signals
t=arange (0,200, .1)

N = len(t)
ul=sign(sin(2*pi*t/40))
u2=sign(sin (2*pi*t/50))

1[0:int (N/7)]1=1; ul[int (N/7) :int (2*N/7) 1=
ul[lnt (2*N/7) :int (3*N/7)1=3
ul [int (3*N/7) :int (4*N/7) ]=4;ul [int (4*N/7) :int (5*N/7) ]=3
ul [int (5*N/7) :int (6*N/7) 1=2; ul[int (6*N/7) :int (7*N/7)]1=1
[0:int (N/7)1=1; w2 [int (N/7) :int (2*N/7) 1=

2[int (2*N/7) :int (3*N/7) 1=3
2[int (3*N/7) : 1nt (4*N/7)1=4; u2[int (4*N/7) :int (5*N/7) ]=3
u2 [int (5*N/7) : 1nt(6*N/7)]= H u2[int(6*N/7).1nt(7*N/7)]=
#Theoretical Second Order Plant Simulation
yl = zeros(N); y2 = zeros(N); x0 = [0,0]
al = -1.0; a2 = 0.5; a3 = 3.0; a4 = 1.5
bl = -0.5; b2 = -2.0; b3 = 0; b4 = -1.0
def dfdt(x,t,ul,u2,al,a2,a3,ad,bl,b2,b3,bd):

dxldt = al*x[0] + a2*x[1] + a3*ul + ad*u2

dx2dt = bl*x[0] + b2*x[1] + b3*ul + b4d*u2

return (dxldt, dx2dt)
for i in range(0,N-1):

tt = [t[i],t[i+1]]

x = odeint (dfdt,x0,t, (ul[i],u2[i],al,a2,a3,a4,bl,b2,b3,b4))

yl[i] = .4*x[0,0] - .1*x[1,1]

2[1] = -.98*x[1,1]

x0 = x[1,:]
#Reference model
yrefl =zeros (N);yref2 = zeros(N); k= -2
yrefl = zeros(N); x0rl = [0,0]
def refl (x,t, ul k) :

dxdtl = k*x[0] + -1*x[1] + ul

dxdt2 = 1* [0]
return (dxdtl, dxdt2)
for i in range(0,N-1):

tt = [t[i],t[i+1]]
x = odeint (refl,x0rl,t, (ulfil, k))
yrefl[i] = x[1,1]1*1
x0rl = x[1,:]
m= -2
yref2 = zeros(N); x0r2 = [0,0]

def ref2(x,t,u2,m):
dxdtl = m*x[0] + -1*x[1] + uZ2
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dxdt2 = 1*x[0]
return (dxdtl, dxdt2)
for i in range(0,N-1):

tt = [t[i],t[i+1]]
x = odeint (ref2,x0r2,t, (u2[il,m))
yref2[i] = x[1,1]1*1

x0r2 = x[1,:]
#) Parameter Definition for Adaptive Identification
#first neuron
nul = 4 ;nul2 = 3; nyl = 4; nyl2 = 3; nxl = 1 + nul+nul2 +nyl +nyl?2
nwl = nxl
#second neuron
nuz2 = 4; nu2l = 3; ny2 = 4; ny2l = 3; nx2 = 1 + nul+nu2l +nyl + ny21l
nw2 = nx2
#common variables

nx = nxl = nx2; nw = nwl = nw2

##common values

mu = .5; Epochs =2000

##first neuron

wl = randn (nw) /nw; ynnl = yl.copy(); el = zeros(N); x1 = zeros(nx)

SSE1 = zeros (Epochs); dydwl = zeros ((N,nw))

##second neuron
w2 = randn (nw) /nw; ynn2 = y2.copy();e2 = zeros(N);x2 = zeros (nx)
SSE2 = zeros (Epochs) ; dydw2 = zeros ((N,nw))

#6) Adaptive Identification
for epoch in range (0, Epochs) :
for k in range (max(nyl,nul,nul2,nyl2),N-1):
##first neuron x vector

x1[0] =1

x1[1l:(nyl+1l)] =ynnl[range(k-1,k-(nyl+1l),-1)]

x1[ (nyl+1l) : (nyl+nyl2+1)] =ynn2[range (k-1,k-(nyl2+1),-1)]

x1[ (nyl+nyl2+1) : (nyl+nyl2+nul+1) ]=ul [range (k-1,k-(nul+l),-1)]
x1[ (nyl+nyl2+nul+1l) :]=[range (k-1,k-(nul2+1l),-1)]

##second neuron x vector

x2[0] =1

x2[1:(ny2+1)]= ynn2[range (k-1,k-(ny2+1),-1)]

x2 [ (ny2+1) : (ny2+ny21+1) ]= ynnl[range (k-1,k-(ny21+1),-1)]

x2 [ (ny2+ny21+1) : (ny2+ny2l+nu2+1) ]=u2 [range (k-1, k- (nu2+1),-1)]
x2 [ (ny2+ny21l+nu2+1) : 1= ul[range(k-1, k- (nu2l+1),-1)]

#update rule

ynnl[k] = dot(wl,x1)

el[k] = yl[k] - ynnll[k]
dydwl[k,:] = x1

#gd

dwl= mu/ (1+dot (x1,x1))*el[k]*dydwl [k, :]
wl = wl+dwl

#update rule

ynn2[k] = dot(w2,x2)

e2[k] = y2[k] - ynn2[k]

dydw2 [k, :] = x2

#gd

dw2= mu/ (1+dot (x2,x2)) *e2[k] *dydw2 [k, :]
w2 = w2+dw2

#Desired Values

50



dl = ul.copy(); d2 = u2.copy()
#Set points

setpointl = dl.copy(); setpoint2 = d2.copy/()

#Parameter Definitions for controller

muv = .3; r0l = 0.009; r02=0.015; vl = zeros(nw); v2=zeros (nw)

gl = zeros(N) ; g2 = zeros(N); erefl=zeros(N) ; eref2=zeros (N)

xil = ones(nw) ; xi2 = ones(nw); dxdvl = zeros((nw,nw)) ; dxdv2 =
zeros ( (nw, nw) )

dydvl = zeros(nw) ; dydv2 = zeros(nw); nd = nul + nul2 ;ny= nyl+nyl2

ynl = yl.copy(); yn2 = y2.copy()
for epoch in range (0, Epochs) :
for k in range (max (nyl,nul,nul2,nyl2),N-1):

xil1[0] =1

xil1[1l:(nyl+l)] = ynl[range(k-1,k-(nyl+1l),-1)]

xil[ (nyl+1l) : (nyl+nyl2+1)] = yn2[range (k-1,k-(nyl2+1),-1)]

xil[(nyl+nyl2+1) : (nyl+nyl2+nul+1l) ]=dl[range (k-1,k- (nul+l), -
1)]

xil[ (nyl+nyl2+nul+l):] = d2[range(k-1,k-(nul2+1),-1)]

gl[k] = dot(vl,xil)

setpointl[k]= dl[k] - r0l*qgll[k]

xi2[0] =1

xi2[1l: (ny2+1)] = yn2 [range (k-1, k- (ny2+1), -
1)]

x12 [ (ny2+1) : (ny2+ny21+1)] = ynl [range (k-1, k- (ny21+1), -
1)]

xi2 [ (ny2+ny21+1) : (ny2+ny21l+nu2+1)] = d2[range (k-1, k- (nu2+1),-
1)]

x12 [ (ny2+ny21l+nu2+1) :] =dl[range (k-1, k- (nu2l+1),-1)]

g2[k] = dot(v2,xi2)

setpoint2[k]= d2[k] - r02*g2[k]

#first neuron as model

x1[0] =1

x1[1:(nyl+1l)] =ynl[range(k-1,k-(nyl+1l),-1)]

x1[ (nyl+1l) : (nyl+nyl2+1)] =yn2[range (k-1,k-(nyl2+1),-1)]

x1[(nyl+nyl2+1) : (nyl+nyl2+nul+l) ]=setpointl [range (k-1, k-
(nul+l),-1)]

x1[(nyl+nyl2+nul+l) :] =setpoint2[range (k-1,k-(nul2+1),-1)]

#second neuron as model

x2[0] =1

x2[1:(ny2+1)] =yn2[range(k-1,k-(ny2+1),-1)]

x2 [ (ny2+1) : (ny2+ny21+1)] =ynl[range (k-1,k-(ny21+1),-1)]

x2 [ (ny2+ny21+1) : (ny2+ny2l+nu2+1)=setpoint2[range (k-1, k-
(nuz2+1),-1)]

-1
x2 [ (ny2+ny21+nu2+1) :] =setpointl[range (k-1, k- (nu2l1+1),-1)]

ynl[k] = dot(wl,x1)
erefl[k] = yrefl[k] - ynl[k]
dxdvl[l:ny, :]=dxdvl1[2:1+ny, :];dxdvl[ny, : ]=dydvl

dxdvl[l+ny:-1, :]=dxdvl[2+ny:, :];dxdvl[-1, :]=-r01*xil
dydvl = dot (wl,dxdvl)
#dxdv[-1,:] = -xi

dvl = muv*erefl[k]*dydvl #dot (wl,dxdvl)
vl = vl +dvl

yn2[k] = dot(w2,x2)
eref2[k] = yref2[k] - yn2[k]
dxdv2[l:ny, :]=dxdv2[2:1+ny, :];dxdv2[ny, : ]=dydv2

dxdv2 [1l+ny:-1, :]1=dxdv2[2+ny:, :];dxdv2[-1, :]=-r02*xi2
dydv2 = dot (w2,dxdv2)
#dxdv([-1,:] = -xi
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dv2 = muv*eref2[k]*dydv2 #dot (w2,dxdv2)
v2 = v2 +dv2

SSE2 [epoch] = sum(eref2*eref?2)

SSE1l [epoch] = sum(erefl*erefl)

print (SSE1l [epoch]), (SSE2[epoch])

figure (figsize=(14,9))
subplots adjust (hspace=.4)

subplot (211)

title("Controller sample-by-sample adaptation for 2nd order stable
linear theoratical plant")

plot (yrefl, 'm',label="3y {refl}s")
plot (dl, "b--", label="d1l")

plot (ynl,'g',label="Sy nl$")
grid();legend()

subplot (212)

plot(yrefZ 'm',label="8y {ref2}s")

plot (d "b——', label="d2")
plot(yn2 ', label="3%y n2$")
grid(); legend()

show ()

Code for 4" Order Theoratical Plant Neuro Controller Implementation
from numpy import*

from matplotlib.pyplot import*

from scipy.integrate import odeint

from numpy.random import randn

#Input signals
t=arange (0,100, .1)

N = len(t)

ul=sign(sin (2*pi*t/40))
u2=sign(sin (2*pi*t/50))

1[0:int (N/7)] ul[int (N/7) :int (2*N/7)1=2;
ul[lnt (2*N/7) : 1nt (3*N/7)1=3
ul[int (3*N/7) :int (4*N/7) ]=4;ul[int(4*N/7):int(5*N/7)]=3
ul [int (5*N/7) :int (6*N/7) ]1=2; ul[int (6*N/7) :int (7*N/7)]1=1
[0:int (N/7)] w2 [int (N/7) :int (2*N/7)1=2;
2[int (2*N/7) :int (3*N/7) ]1=3
2[int (3*N/7) :int (4*N/7) ]=4; u2[int (4*N/7) :int (5*N/7) 1=
u2 [int (5*N/7) :int (6*N/7) 1=2; u2[int (6*N/7) :int (7*N/7) 1=
# 4th order system
yl = zeros(N); y2 = zeros(N); x0 = [0,0,0,0]
al=-0.8 ;a2=4 ;a3=-5 ;ad=-
bl=-4 ;b2=-1 ;b3=-3 ;bd=-
cl=5 ;c2=1 ;C3==-2 ;cd= 4
di=3 ;d2= 1.5 ;d3=0.5 ;dd=-5
def dfdt(x,t,ul,u2,al,a2,a3,ad4,bl,b2,b3,bd4,cl,c2,c3,c4,dl,d2,d3,d4):
dxldt = al*x[0] + a2*x[1] + a3*x[2] + ad4*x[3] + 1*ul + 0.1*u2
dx2dt = bl*x[0] + b2*x[1] + b3*x[2] + b4*x[3] + -0.1*ul + O0.5*u2
dx3dt = cl*x[0] + c2*x[1] + c3*x[2] + c4*x[3] + 0.5*ul
dx4dt = d1*x[0] + d2*x[1] + d3*x[2] + d4*x[3] + -1*ul

return (dxldt, dx2dt,dx3dt,dx4dt)
for i in range(0,N-1):

tt = [t[i],t[i+1]]

% =
odeint (dfdt,x0,t, (ul[i],u2([i],al,a2,a3,a4,bl,b2,b3,bd,cl,c2,c3,cd,dl,
d2,d3,d4))

yl[i] =( 0.8*x[0,0] - 1.5*x[1,1] +1.2*x[2,2] - 1.5*x[3,31)*0.8
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v2[i] = =x[2,2] *3.4
x0 = x[1,:]
yrefl = zeros (N); yref2= zeros (N)

# Reference Model
k= -2
yrefl = zeros(N); x0rl = [0,0]
def refl(x,t,ul,k):
dxdtl = k*x[0] + -1*x[1] + ul
dxdt2 = 1*x[0]
return (dxdtl, dxdt2)

for i in range(0,N-1):

tt = [t[i],t[i+1]]
x = odeint (refl,x0rl,t, (ulfil, k))
yrefl[i] = x[1,1]*1
x0rl = x[1,:]
m= -2
yref2 = zeros(N); x0r2 = [0,0]

def ref2(x,t,u2,m):
dxdtl = m*x[0] + -1*x[1] + u2
dxdt2 = 1*x[0]
return (dxdtl, dxdt2)

for i in range(0,N-1):
tt = [t[i],t[i+1]]
x = odeint (ref2,x0r2,t, (u2[i],m))
yref2[i] = x[1,1]1*1
x0r2 = x[1,:]

#) Defining parameters for identification
##first neuron

nul = 4 ;nul2 = 3; nyl
nwl = nxl

##second neuraon

4; nyl2 = 3; nxl

nuz2 = 4; nu2l = 3; ny2 = 4; ny2l = 3; nx2
nw2 = nx2

##common variables

nx = nxl = nx2; nw = nwl = nw2

##common values

mu = .5; Epochs =2000

##first neuron

wl = randn(nw)/nw; ynnl = yl.copy(); el =

##second neuron
w2 = randn (nw)/nw ;ynn2 = y2.copy(); e2 =

#6) Adaptive Identification
for epoch in range(0,Epochs):

1 + nul+nul2

1 + nul+nu2l

zeros (N),; x1 =
SSE1 = zeros (Epochs); dydwl = zeros ((N,nw))

zeros (N); x2 =
SSE2 = zeros (Epochs); dydw2 = zeros ((N,nw))

for k in range (max(nyl,nul,nul2,nyl2),N-1):

##first neuron x vector
x1[0] =1
x1[1l:(nyl+l)] =

1)]
x1[(nyl+1l) : (nyl+nyl2+1)] =
1)]
X1 [ (nyl+nyl2+1) : (nyl+nyl2+nul+1) ]
1)]
x1[ (nyl+nyl2+nul+l):] =
1)]

+nyl +nyl2

+nyl + ny21

zeros (nx)

zeros (nx)

ynnl [range (k-1, k- (nyl+1), -

ynn2 [range (k-1,k-(nyl2+1), -

ul [range (k-1, k- (nul+l), -

u2[range (k-1, k- (nul2+1l), -
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##second neuron x vector

x2[0] =1

x2[1:(ny2+1)] = ynn2 [range (k-1, k- (ny2+1), -
1)]

x2 [ (ny2+1) : (ny2+ny21+1)] = ynnl [range (k-1, k- (ny21+1), -
1)]

x2 [ (ny2+ny21+1) : (ny2+ny2l+nu2+1)] = u2[range(k-1,k-(nu2+l),-
1)]

X2 [ (ny2+ny21+nu2+1):] = ul [range (k-1, k- (nu2l+l), -
1)]

#update rule

ynnl[k] = dot(wl,x1)

el[k] = y1[k] - ynnl[k]

dydwl [k, :] = x1

#gd

dwl= mu/ (1l+dot (x1,x1))*el[k]*dydwl [k, :]

wl = wl+dwl

#update rule

ynn2[k] = dot(w2,x2)

e2[k] = y2[k] - ynn2[k]

dydw2 [k, :] = x2

#gd

dw2= mu/ (1+dot (x2,x2)) *e2[k] *dydw2 [k, :]

w2 = w2+dw2

#

#Desired Values
dl = ul.copy(); d2 = u2.copy()
#Set points
setpointl = dl.copy();setpoint2 = d2.copy ()
#Controller Parameters ;muv = .5 ; r0l = .013 ; r02 = .016

vl = zeros(nw); v2=zeros (nw)

gl = zeros(N) ; g2 = zeros(N); erefl=zeros(N) ;
xil = ones(nw) ; xi2 = ones(nw); dxdvl
zeros ( (nw, nw) )

dydvl = zeros(nw) ; dydv2 = zeros(nw); nd

ynl = yl.copy(); yn2 = y2.copy/()

for epoch in range (0, Epochs) :

= zeros ((nw,nw)) ;

= nul + nul?2

eref2=zeros (N)
dxdv2 =

;ny= nyl+nyl?2

for k in range(max(nyl,nul,nul2,nyl2),N-1):

xi1[0] =1
xil[1l: (nyl+1l)] =
1)]
xil[(nyl+1l) : (nyl+nyl2+1)] =
1)]
x1i1l[(nyl+nyl2+1) : (nyl+nyl2+nul+1) ]
1)]
xil[ (nyl+nyl2+nul+l):] =
1)]
gl[k] = dot(vl,xil)
setpointl[k]= dl[k] - rOl*gllk]
xi2[0] =1
x1i2[1l: (ny2+1)] =
1)]
x12 [ (ny2+1) : (ny2+ny21+1) ] =
1)]
x12 [ (ny2+ny21+1) : (ny2+ny21l+nu2+1) ]
1)]

ynl[range (k-1,k-(nyl+1l),-
yn2 [range (k-1, k- (nyl2+1), -
= dl[range (k-1,k-(nul+l), -

d2 [range (k-1, k- (nul2+1), -

yn2 [range (k-1, k- (ny2+1), -
ynl [range (k-1, k- (ny21+1), -

= d2[range (k-1, k- (nu2+1), -
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xXi2 [ (ny2+ny21+nu2+1) :] = dl[range (k-1,k-(nu2l+l), -

1)]

g2[k] = dot(v2,xi2)

setpoint2[k]= d2[k] - r02*g2[k]

#first neuron

x1[0] =1

x1[1l:(nyl+l)] = ynl [range (k-1, k- (nyl+1l), -
1)]

X1 [ (nyl+l) : (nyl+nyl2+1)] = yn2 [range (k-1,k-(nyl2+1), -
1)]

x1 [ (nyl+nyl2+1) : (nyl+nyl2+nul+1) ] = setpointl[range (k-1, k-
(nul+l),-1)]
x1[(

nyl+nyl2+nul+l):] = setpoint2[range (k-1, k-
(nul2+1),-1)1

#second neuron

x2[0] =1

x2[1:(ny2+1)] = yn2 [range (k-1, k- (ny2+1), -
1)]

x2 [ (ny2+1) : (ny2+ny21+1)] = ynl [range (k-1, k- (ny21+1), -
1)]

x2[(ny2+ny21+1) : (ny2+ny2l+nu2+1) ] = setpoint2[range (k-1, k-
(nu2+1),-1)1]

x2 [ (ny2+ny2l+nu2+1l):] = setpointl[range (k-1, k-
(nu21+1),-1)1

ynl[k] = dot (wl,x1)

erefl[k] = yrefl[k] - ynl[k]

dxdvl[l:ny, :]=dxdvl1[2:1+ny, :];dxdvl[ny, :]=dydvl
dxdvl[l+ny:-1, :]=dxdvl[2+ny:, :];dxdvl[-1,:]=-r01*xil
dydvl = dot (wl,dxdvl)

#dxdv[-1,:] = -xi

dvl = muv*erefl[k]*dydvl #dot (wl,dxdvl)
vl = vl +dvl

yn2 [k] = dot(w2,x2)

eref2[k] = yref2[k] - yn2[k]

dxdv2[l:ny, :]=dxdv2[2:1+ny, :];dxdv2 [ny, : ]=dydv2
dxdv2 [l+ny:-1, : ]=dxdv2 [2+ny:, :];dxdv2[-1, :]=-r02*xi2
dydv2 = dot (w2,dxdv2)

#dxdv[-1,:] = -xi

dv2 = muv*eref2[k]*dydv2 #dot (w2,dxdv2)
v2 = v2 +dv2

SSE2 [epoch] = sum(eref2*eref?2)

SSE1l [epoch] = sum(erefl*erefl)

print (SSE1l[epoch]), (SSE2[epoch])

figure(figsize=(14,9))
subplots adjust (hspace=.4)

subplot (211)

title("Controller sample-by-sample adaptation 4th order oscillating
linear plant")

#plot (yl, 'b',label="8y rs")

plot (yrefl, 'm',label="3%y {refl}s$")
plot(ynl,'g',label="Sy nls")
plot(dl, "b--", label="dl")
grid () ;legend()

subplot (212)
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#plot (y2, 'b',label="8y rs$")
plot(yrefZ 'm',label="$y_{ref2}$")
plot(ynZ ,label="Sy n2$")

plot (d "b——', label="d2")
grid(); legend()

show ()

Code for 20" Order Plant Neuro Controller Implementation
from numpy import*

from matplotlib.pyplot import*

from scipy.integrate import odeint

from numpy.random import randn

#Input signals
t=arange (0,100, .1)

N = len(t)
ul=sign(sin(2*pi*t/40))
u2=sign(sin(2*pi*t/50))

ul[0:1int (N/7) 1= ul[int (N/7) :int (2*N/7) 1=
ul[int (2*N/7) :in (3*N/7)]=3

ul [int (3*N/7) :int (4*N/7) ]=4;ul [int (4*N/7) :int (5*N/7) ]=3

ul [int (5*N/7) :int (6*N/7) ]=2; ul[int (6*N/7) :int (7*N/7)]1=1

u2[0:1int (N/7) 1= u2[int (N/7) :int (2*N/7) 1=
u2[int (2*N/7) :in (3*N/7)]=3

U2 [int (3*N/7) :int (4*N/7) 1=4; u2[int (4*N/7) :int (5*N/7)]=

u2 [int (5*N/7) :int (6*N/7) ]=2; u2[int (6*N/7) :int (7*N/7) ]=

#System Definition

a = -5
x0 = zeros (20)
ef dfdt(x,t,ul,u2,a):

dxldt =a*x[0] +1.985*x[1] +0.4971*x[2] -0.2271*x[3]
1.784*x[4] +0.4091*x[5] +1.475*x[6] +0.7547*x[7] -
1.416*x[8] +0.1734*x[9] +2.591*x[10] +2.573*x[11]

+1.047*x[12] +1.125*x[13] -2.061*x[14] -

0.3782*x[15] -0.1733*x[16] -0.04207*x[17] -1.476*x[18]

-0.3628*x[19] +0.1202*ul +0.09231*u2
dx2dt =-1.477*x[0] -2.189*x[1] -2.167*x[2] +0.3972*x[3]
+1.949*x[4] +0.647*x[5] -2.259*x[6] +0.3126*x[7]

+1.619*x[8] -2.4*x[9] -0.9923*x[10] +0.1743*x[11]
+2.16*x[12] -0.7117*x[13] -0.5006*x[14] +0.7109*x[15
-0.3583*x[16] +1.901*x[17] -0.4519*x[18] -

0.5639*x[19] +0*ul +1.73*u2
dx3dt =-1.08*x[0] +1.289*x[1] -1.604*x[2] +4.064*x[3] -

2.64*x[4]  +2.154*x[5] -1.563*x[6] +3.149*x[7] -3.44*x[8] -
1.697*x[9] -1.075*x[10] +2.627*x[11] +2.22%x[12] -
2.204*x[13] -1.557*x[14] -1.608*x[15] +0.2274%x[16]
0.4241*x[17] -1.942%x[18] +1.295*x[19] +0*ul  +0*u2
dx4dt= 0.6845*x[0] -0.09759*x[1] -3.177*x[2] -1.92*x[3]
1.175*x[4] +3.755*x[5] +0.1581*x[6] -0.6664*x[7]
+0.09002*x[8] -1.107*x[9] -1.084*x[10] -0.717*x[11]
+0.2265*x[12] -0.7542*x[13] +0.5366*x[14] -
1.355%x[15] -0.1324*x[16] -2.146*x[17] -0.6385*x[18]
0.6902*x[19] -0.987*ul +0*u2
dx5dt =1.702*x[0] -1.304*x[1] +2.491*x[2] +0.9819%x[3]
1.366*x[4] +1.515*x[5] +0.0522*x[6] +1.627*x[7] -2.094*x[8]
+0.6409*x[9] +1.647*x[10] +1.567*x[11]
+0.4101%x[12] -0.1509*x[13] -1.409%x[14] -

]
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(@)

=

OO NEFE O

.392*x[4]
+1.182*x[9]
+2.322*x[13]

.642*x[16]

.5995*x[3]
+0.2119*x
-0.5053*x

.9682*x[15]

.292*x[19]

.9644%x[3]
LA441%x%[7]
.057*x[11]
.915%x[15]
.7068*x[19]

.1952*x[15]
+2.367*x[19]
=-0.8476*x[0]
-1.

dxe6dt

+0.

+1.958*x[16]
+0.7596*ul

295*x[5]
+2.259*x[10]

1723*x[17]

+0.9105*u2

dx7dt

dx8dt

dx9dt

dx10dt

dx1l1ldt

dxl2dt

+0.1946%x
.6886%x[7]
L129%x[11]
.3177*x[15]
-1.833*x[19]

= 0.
-0.

+0.

L132%x[12]
+1.

dx13dt

-2

dx1l4dt

dx15dt

=-1.276*x[0]
+0.7399*x
.6889*x[8]
+0.2945*x
-0.2123*x
.526*x[19]

+0.

-0.
-1.

1.588*x[0]
+0.8129*x
-1.635*x[8] +2.07*x[9]
+0.09832*x[12]
+1.672*x[15]
.9934*x[18]
-0.05716*x[0]
-0.08049*x[4]
-0.8183*x
-0.8051*x
.409*x[15]
.2734*x[19]

+2.

-1.534*x[0]
-0.79*x[4]
.374%x[8]
.192%x[12]
+0.4906%x
.381*x[19]

-0.
+1.

-1.334*x[0]

-0.
+1.

-1.991*x[0]
+1.291*x[3] +0.796*x[4]

.9635*x[7]
+0.9014*x
+1.203*x[15]

.6591*x[18]

-0.

1.
+1.268*x[4]
+0.1137*x
+0.206*x[12]

+1
[4] -2.
2893*x[9]
[12]
[16]
+0*ul
3924*x[0]
417*x[4]
[8] -2.
[12] -0.
+0.496*x[16]
+0.1769*ul

-0.
+1.
+1.
+0.

+0.
+1.

-0.

[4]
+0.

+1.224*x[19]

+3.
-1
-1
+0

(8]

[12]

323*x[16]
-0.1318*ul

+1.
+0.
+1
-0.
-2.
+0.

-2.037*x[5]
6778*x[9]
533*x[13]
[16]
+0*ul
-0.
[3]
7571*x[8]
459*x[12]
+1.898*x[16]
+0*ul
1065*x[0]
4928*x[4]
966*x[8]

-2.
+0.

+0.
-0.
+1.

+0.
-1.
+0.
+0.
-2.
-0.

545*x[16]
-0.198*ul

1495*x[8]
[11]

+0.3882*x[19]
689*x[0]
-1.876*x[5] +0.

(8]

-0.0988*x
+2.737*x[6]

+1.864*x[14]
+2.

L14*x[1]
336*x[5]

36*x[13]
824*x[17]
8671*u2
454*x[5]

016*x[9]
6632*x

-1.835*x[1]
-1.532*x[5]
+1.696*x[13]

-0.1761*x

.83*x[5
.579*x[9]
.05833*x[13]

.186*%x[1]

+1.348*x[17]
+0.2908*u2

-1.515*x[4]

-0.5905*x

-0.1367*x
-0.2256*x

-0.2474*x

+1.873*x[9]
+0.5918*x

-2.
-1.75*%u2
(1] -3
-0.9228%*
-3
-0
443*x[18]

6938*x[10]
-0.9224~*
+0

9739*x[1]

-0.7274*
[13] +0

-1.68*x[17]

07989*uz2

+0.2996*
811*x[10]
-0
[16] -0
-0.3075*ul
078*x[1] +2
] -0.5941*
-0.7263*
-0
979%x[17]
1837*u2

+1
8962*x[6]
54*x[10] -1
9508*x[14]
-0

05293*x[1]
+3.373*x
551*x[9] -0
03717*x[13]
-2.641*x
1129*u2
5554+*x[1]
526*x[5] +0
[9] +0
01619*x[13]
891*x[17]
44*u2
9856*x[1]
359*x[5]
469*x[9]
[12]
[16]
+0*ul
[1]
632*x[6]

-0

+1

+0

[13] -1

058*x

x[7]
.268*x

+0.9557*x[2]
-1.356*x

x[14]

+1.108*x
x[10]

+2.778*x
x[6]

x[6]
x[10]

-0.
-1.

+0.
+0.

-0.5716*x

[17] -1.683*x[18]

.141*x[2] -2.606*x[3] -
+1.403*x[8]
[11] -0.9255*x[12]
.2566*x[15] -
-1.219*x[19]

-0.7484*x[3]
-1.325*x[7] -
+0.05672*x[11]
+1.326*x[15]
.136*x[18] -

(6]

-1.57*x[2] -
-2.047*x[7]
+0.5994%x[11]
.8841*x[14] -
-0.5078*x[18] -

(6]

[2] -1.045%x[3]
+0.4092%x[7]
+0.5032*%x[11]
.9083*x[14]
.1182*x[17] -
+0.8985*%u2
.561*x[2] +0.9238%*x[3]
+0.7435*x[7]
+1.954%x[11]
.5489%x[14] -
-1.868*x[18] -

.843*x[2] -0.2953*x[3]
-0.1266*x[7] -

.148*x[11] -
-0.71*x[15]

.3508*x[18] -

-2.141%x[2]
[5] -0.7687*x[6] -
.3203*x[10] -
-0.8015*x[14] -
[17] +0.8335*%x[18]
+0.4454*x[2] -
.2531*x[6] -
.1721*x[10] -
+1.713*x[14]
+1.21*x[18] -

+2.056*x[2]
8435*x[6] -
.2485*x[10]
97*x[13] +0.495*x[14]
L347*x[17] -
1017*u2
15*x[2]
L7666%x[7]
[10]
.622*%x[14]

+0.01819*x[3]

+0.91*x[11]

+0*ul
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+0.9979*x[15]
+0.01638*x[18]
dxledt 0.9128*x[0]
+0.8333*x[3]
.065*x[06] +0.3341*x[7]
.008353*x[10] -0.201
-0.1908*x[14]
.7609*x[17] -0.243
+0*u2
dx17dt -2.833*x[0]
L142*x[4] +1.927*x[5]
+0.2297*x[9] +1.10
.3131*x[13] -0.368
-0.2862*x[17]
.854*u2
dx18dt 1.463*x[0]
+2.293*x[4] +0.453
+0.5306*x[8]
+0.1556*x[12]
+0.413*x[15]
.647*x[18] +0.4107*x[19
dx19dt 0.5868*x[0]
L001*x[3] +1.134*x[4]
+0.04053*x[8]
-0.8157*x[12]
+0.654*x[15]
.327*x[18] +1.74*x[19]
dx20dt 0.8673*x[0]
+0.5824*x[3]
+1.221*x[7]
+1.374*x[11]
+0.2468*x[14]
5774%x[17] -0.874
4336*u2

-1.137

0.
0.

-1.913*x[16]
+0.738*x[19]
+0.5218*x[1]
+0.04456*x[4]
-1.212*x[8]
T*x[11]
-1.399*x[15]
7*x[18]

-1.455*x[1]
+0.304*x[6]
1*x[10] +0
T*x[14] +0
-0.6418*x[18]

+0*ul

-1.146*x[12]
+1.52*x[19]
+1.295*x[7]

L18*x[11]
.05187*x[15]

+1.177*x[17]
+2.787*u2
+3.217*x[2]
+0.7694*x[5]
+0.7797*x[9]

-0.3141*x[13]

+2.076*x[16]

-2.7*x[2] +0.561*x[3]
-1.311*x[8]
+1.945*x[12]
-4.041*x[16]
+0.9395*x[19] +0*ul -

-1.824*x[1] +2.102*x[2] +1.508*x[3]
3*x[5] -1.03*x[6] +0.5963*x[7]
-2.19*x[9] -1.827*x[10] +2.206*x[11]

-1.634%x[13]
+2.192*x[16]
] -0.6169*ul
+0.1263*%x[1]
-1.784*x[5]
+1.995*x[9]
+0.1027*x[13]
-1.307*x[16]
+0.2748*ul
+1.847*x[1]
-2.139*x[4]
*%x[8] -1.165*x[9]
-1.111*x[12]
-2.771*x[15]
6*x[18]

-0.4244%x[6]
+0.1191*x[10]

+1.023*x[5]

-1.772*x[19]

-0.1956*x[14]
-1.647*x[17]
+0*u2

+1.82%x[2]
-0.7385*x[7]
-0.4276*x[11]

+0.533*x[14]
+1.901*x[17]
-1.093*u2
-0.04373*x[2]
+1.119*x[6]
-0.8055*x[10]
+0.7632*x[13]
+1.729*x[16]
+0.6011*ul

+0.2296*ul

return (dxldt,dx2dt, dx3dt, dx4dt, dx5dt, dx6dt,dx7dt, dx8dt, dx9dt,dx10dt,d
x11dt,dx12dt,dx13dt,dx14dt,dx15dt,dxl6dt,dx17dt,dx18dt,dx19dt, dx20dt)

vl zeros (N); y2 zero
for i in range(0,N-1):

tt = [t[i],t[i+1]]
x = odeint (dfdt,x0,t
yl[i] = x[0,0]
y2[i] = x[4,4]
x0 = x[1,:]
yrefl = zeros(N); yref2=
# Reference Model
k= -2
yrefl = zeros(N); x0rl =

def refl(x,t,ul,k):
dxdtl k*x[0] + -1%*
dxdt2 1*x[0]
return (dxdtl, dxdt2)

for i in range(0,N-1):
tt [(t[1],t[1+1]]
X odeint (refl, x0rl
yrefl[i] x[1,1]*1

x0rl x[1,:]

s (N)

, (ul[i],u2[il,a))

zeros (N)

(0,0]

x[1] + ul

fEy(ulfil, k))
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yref2 = zeros(N); x0r2 = [0,0]
def ref2(x,t,u2,m):
dxdtl = m*x[0] + -1*x[1] + uZ2
dxdt2 1*x[0]
return (dxdtl, dxdt2)

for i in range(0,N-1):

tt = [t[i],tl[i+1]]
x = odeint (ref2,x0r2,t, (u2[i],m))
yref2[i] = x[1,1]1*1

x0r2 = x[1,:]

#) Defining parameters for identification
##first neuron

nul = 4 ;nul2 = 3; nyl = 4; nyl2 = 3 ;nxl = 1 + nul+nul2 +nyl +nyl?2
nwl = nxl

##second neuraon

nu2 = 4; nu2l = 3; ny2 = 4; ny2l = 3 ;nx2 = 1 + nul+nu2l +nyl + ny21l
nw2 = nx2

##common variables

nx = nxl = nx2; nw = nwl = nw2

##common values

mu = .5; Epochs =2000

##first neuron

wl = randn (nw) /nw; ynnl = yl.copy(); el = zeros(N); x1 = zeros (nx)

SSE1 = zeros (Epochs); dydwl = zeros ((N,nw))
##second neuron
w2 = randn(nw)/nw; ynn2 = y2.copy(); e2 = zeros(N); x2 = zeros (nx)
SSE2 = zeros (Epochs); dydw2 = zeros ((N,nw))
#6) Adaptive Identification
for epoch in range (0, Epochs):

for k in range(max(nyl,nul,nul2,nyl2),N-1):

##first neuron x vector

x1[0] =1

x1[1l:(nyl+l)] = ynnl [range (k-1,k-(nyl+1)
1)]

x1[(nyl+l) : (nyl+nyl2+1)] = ynn2 [range (k-1,k-(nyl2+1)
1)]

x1 [ (nyl+nyl2+1) : (nyl+nyl2+nul+l)] = ul[range(k-1,k-(nul+l)
1)]

x1[(nyl+nyl2+nul+l):] = u2[range (k-1,k-(nul2+1)
1)]

##second neuron x vector

x2[0] =1

x2[1l:(ny2+1)] = ynn2 [range (k-1, k- (ny2+1)
1)]

x2 [ (ny2+1) : (ny2+ny21+1)] = ynnl [range (k-1,k- (ny21+1)
1)]

x2 [ (ny2+ny21+1) : (ny2+ny2l+nu2+1l)] = u2[range(k-1,k-(nu2+l)
1)]

x2 [ (ny2+ny21l+nu2+1):] = ul [range (k-1, k- (nu2l+1l)
1)]

fupdate rule

ynnl[k] = dot(wl,x1)

el[k] = yl[k] - ynnl[k]

dydwl[k,:] = x1

#gd

dwl= mu/ (1+dot (x1,x1))*el[k]*dydwl [k, :]
wl = wl+dwl

;=
;=
, =

;=

;=
, -
;=

;=
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#update rule
ynn2[k] = dot(w2,x2)
e2[k] = y2[k] - ynn2[k]
dydw2 [k, :] = x2
#gd
dw2= mu/ (1+dot (x2,x2)) *e2[k] *dydw2 [k, :]
w2 = w2+dw2
#Desired Values
dl = ul.copy()
d2 = u2.copy()
#Set points
setpointl dl.copy ()
setpoint2 = d2.copy ()
#Controller Parameters

muvl = .23 ; muv2 = .19 ; r01 = .004 ; r02 = .09

vl = zeros(nw); v2=zeros(nw); gl = zeros(N) ; g2 = zeros(N)
erefl=zeros (N) ; eref2=zeros(N); xil = ones(nw) ; xi2 = ones (nw)
dxdvl = zeros((nw,nw)) ; dxdv2 = zeros((nw,nw))

dydvl = zeros(nw) ; dydv2 = zeros(nw); nd = nul + nul2 ;ny= nyl+nyl2
ynl = yl.copy(); yn2 = y2.copy ()
for epoch in range (0,Epochs) :

for k in range(max(nyl,nul,nul2,nyl2),N-1):

xi1l[0] =1

xil[1l: (nyl+l)] = ynl [range (k-1, k- (nyl+1l), -
1)]

xil[(nyl+1l) : (nyl+nyl2+1)] = yn2 [range (k-1, k- (nyl2+1), -
1)]

x1i1l[ (nyl+nyl2+1) : (nyl+nyl2+nul+1l)] = dl[range(k-1,k-(nul+l), -
1)]

xil[(nyl+nyl2+nul+l):] = d2 [range (k-1, k- (nul2+1l), -
1)]

gl[k] = dot(vl,xil)

setpointl[k]= dl[k] - rO0l*gl[k]

xi2[0] =1

xi2[1l: (ny2+1)] = yn2 [range (k-1, k- (ny2+1), -
1)]

x12 [ (ny2+1) : (ny2+ny21+1)] = ynl [range (k-1, k- (ny21+1), -
1)]

xi2 [ (ny2+ny21+1) : (ny2+ny21l+nu2+1)] = d2[range (k-1, k- (nu2+1),-
1)]

xi2 [ (ny2+ny2l+nu2+1):] = dl [range (k-1, k- (nu2l1+1), -
1)]

g2[k] = dot(v2,xi2)

setpoint2[k]= d2[k] - r02*qg2[k]

#first neuron

x1[0] =1

x1[1l:(nyl+l)] = ynl [range (k-1, k- (nyl+1l), -
1)]

x1[(nyl+l) : (nyl+nyl2+1)] = yn2 [range (k-1,k-(nyl2+1), -
1)]

x1[(nyl+nyl2+1) : (nyl+nyl2+nul+1) ] = setpointl[range (k-1, k-
(nul+l),-1)]

x1[(nyl+nyl2+nul+l):] = setpoint2[range (k-1, k-
(nul2+1),-1)1

#second neuron
x2[0] =1
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x2[1:(ny2+1)] = yn2 [range (k-1, k- (ny2+1), -

1)]

x2 [ (ny2+1) : (ny2+ny21+1)] = ynl [range (k-1, k- (ny21+1), -
1)]

X2 [ (ny2+ny21+1) : (ny2+ny21l+nu2+1) ] = setpoint2[range (k-1, k-
(nu2+1),-1)1

X2 [ (ny2+ny21+nu2+1) :] = setpointl[range (k-1, k-

(nu2l+1),-1)]

ynl[k] = dot(wl,x1)

erefl[k] = yrefl[k] - ynl[k]

dxdvl1[1l: ny,.] =dxdvl[2:1+ny, :]1;dxdvl [ny, : ]=dydvl
dxdvl1[1l+ 1,:]=dxdvl[2+ny:, :];dxdvl[-1, :]=-r01*xil
dydvl = dot(wl,dxdvl)

#dxdv[-1,:] = -xi

dvl = muvl*erefl[k]*dydvl #dot (wl,dxdvl)
vl = vl +dvl

yn2[k] = dot(w2,x2)

eref2[k] = yref2[k] - yn2[k]

dxdv2[l:ny, :]=dxdv2[2:1+ny, :];dxdv2[ny, : ]=dydv2
dxdv2 [l+ny:-1, :]=dxdv2[2+ny:, :];dxdv2[-1, :]=-r02*xi2
dydv2 = dot (w2,dxdv2)

#dxdv[-1,:] = -xi

dv2 = muv2*eref2[k]*dydv2 #dot (w2,dxdv2)
v2 = v2 +dv2

SSE2 [epoch] = sum(eref2*eref?2)

SSE1l [epoch] = sum(erefl*erefl)

print (SSE1l [epoch]), (SSE2[epoch])

figure (figsize=(14,9))
subplots adjust (hspace=.4)

subplot (211)

title("Controller sample-by-sample adaptation roller rig model")
#plot (yl, 'b',label="8y rs")

plot (yrefl, 'm',label="3%y {refl}s")
plot(ynl,'g',label="Sy nls")

plot (dl, "b--", label="d1l")
grid();legend()

subplot (212)

#plot (y2, 'b',label="8y rs")
plot(yrefZ 'm',label:"$y_{ref2}$")

plot(ynZ ,label="8y n2s")
plot (d2 "b——', label="d2")
grid() legend()

show ()

Code for Second Order RLS Neuro Controller Implementation
from numpy import*

from matplotlib.pyplot import*

from scipy.integrate import odeint

from numpy.random import randn

#Input signals
t=arange (0,200, .1)

N = len(t)
ul=sign (sin (2*pi*t/40))
u2=sign(sin (2*pi*t/50))
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O0:int (N/7)1=1; ul [int(N/7) :int (2*N/7) 1=2;
int (3*N/7) 1=

ul [
ul [int (2*N/7) : 1=3
ul [int (3*N/7) :int (4*N/7) ]=4;ul [int (4*N/7) :int (5*N/7) ]=3
ul [int (5*N/7) :int (6*N/7) ]=2; ul[int (6*N/7) :int (7*N/7)]=1
0:int (N/7)1=1; u2 [int (N/7) :int (2*N/7) 1=2;

u2 [

u2 [int (2*N/7) :int (3*N/7) 1=3

u2 [int (3*N/7) :int (4*N/7) ]=4; u
u2 [int (5*N/7) :int (6*N/7) ]=2; u

[int (4*N/7) :int (5*N/7) 1=3
[int (6*N/7) :int (7*N/7) ]1=1

NN

yl = zeros(N); y2 = zeros(N); x0 = [0,0]
al = -1.0; a2 = 0.5; a3 = 3.0; a4 = 1.5
bl = -0.5; b2 = -2.0; b3 = 0; b4 = -1.0

def dfdt(x,t,ul,u2,al,a2,a3,ad,bl,b2,b3,bd):
dxldt = al*x[0] + a2*x[1] + a3*ul + ad*u2
dx2dt bl*x[0] + b2*x[1] + b3*ul + bd*u2
return (dxldt, dx2dt)

for i in range(0,N-1):
tt = [t[i],t[i+1]]

x = odeint (dfdt,x0,t, (ul[i],u2[i],al,a2,a3,a4,bl,b2,b3,b4))
yl[i] = .4*x[0,0] - .1*x[1,1]

y2[1i] = -.98*x[1,1]

x0 = x[1,:]

#reference model
yrefl =zeros(N); yref2 = zeros(N); k= -2; yrefl = zeros(N); x0rl =
[0,0]
def refl(x,t,ul,k):
dxdtl = k*x[0] + -1*x[1] + ul
dxdt?2 1*x[0]
return (dxdtl, dxdt2)

for i in range(0,N-1):
tt = [t[i],t[i+1]]
x = odeint (refl,x0rl,t, (ulfil, k))
yrefl[i] = x[1,1]*1

x0rl = x[1,:]

m= -2
yref2 = zeros(N); x0r2 = [0,0]
def ref2(x,t,u2,m):
dxdtl = m*x[0] + -1*x[1] + u2
dxdt2 = 1*x[0]
return (dxdtl, dxdt2)

for i in range(0,N-1):
tt = [t[i],t[i+1]]
x = odeint (ref2,x0r2,t, (u2[i]l,m))
yref2[i] = x[1,1]*1
x0r2 = x[1,:]
vl = yl; y2 = y2
#) Defining parameters
#first neuron
nul = 4 ;nul2 = 3; nyl = 4; nyl2 = 3; nxl = 1 + nul+nul2 +nyl +nyl?2
nwl = nx1
#second neuron
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nu2 = 4; nu2l = 3; ny2 = 4; ny2l = 3; nx2 = 1 + nul+nu2l +nyl + ny21
nw2 = nx2
#common variables

nx = nxl = nx2; nw = nwl = nw2
##common values
mu = 0.15

Il
=

Epochs =5; Epochsc
##first neuron
wl = randn(nw)/nw; ynnl =zeros(N) #yl.copy(); el = zeros(N); x1
zeros (nx)
SSE1i = zeros (Epochs); SSEl = zeros (Epochsc); dydwl
##second neuron
w2 = randn(nw)/nw; ynn2 = zeros(N) #y2.copy();e2 = zeros(N);x2
zeros (nx)
SSE2i = zeros (Epochs); SSE2 = zeros (Epochsc); dydw2
#rls variables
Rl=1/delta*identity (nw)
R2=1/delta*identity (nw)
#6) Adaptive Identification
for epoch in range (0,Epochs) :

for k in range(max(nyl,nul,nul2,nyl2),N-1):

##first neuron x vector

zeros ( (N, nw) )

zeros ( (N, nw) )

x1[0] =1

x1[1l:(nyl+l)] = ynnl [range (k-1, k- (nyl+1), -
1)]

x1[(nyl+1l) : (nyl+nyl2+1)] = ynn2 [range (k-1,k-(nyl2+1), -
1)]

x1[ (nyl+nyl2+1) : (nyl+nyl2+nul+1l)] = ul[range(k-1,k-(nul+l), -
1)]

x1[(nyl+nyl2+nul+l):] = u2[range (k-1,k-(nul2+1l), -
1)]

##second neuron x vector

x2[0] =1

x2[1:(ny2+1)] = ynn2 [range (k-1, k- (ny2+1), -
1)]

x2 [ (ny2+1) : (ny2+ny21+1)] = ynnl [range (k-1,k-(ny21+1), -
1)]

x2 [ (ny2+ny21+1) : (ny2+ny2l+nu2+1)] = u2[range(k-1,k-(nu2+1l),-
1)]

x2 [ (ny2+ny2l+nu2+1l):] = ul [range (k-1,k- (nu2l1+1l), -
1)]

#update rule

ynnl[k] = dot(wl,x1)

el[k] = yl[k] - ynnll[k]

dydwl[k,:] = x1

# rls

R11 = dot (dot (dot (R1,x1),x1.T),R1)
R12 = mu + dot(dot(x1l,R1l),x1.T)

Rl = 1/mu * (R1 - R11/R12)

dwl = dot (R1,x1.T)*ell[k]

wl = wl+dwl

fupdate rule

ynn2[k] = dot(w2,x2)

e2[k] = y2[k] - ynn2[k]

dydw2 [k, :] = x2

#rls

R21 = dot (dot (dot (R2,x2),x2.T),R2)
R22 = mu + dot(dot(x2,R2),x1.T)

R2 = 1/mu * (R2 - R21/R22)

dw2 = dot (R2,x2.T)*e2[k]
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w2 = w2+dw2

dl = ul.copy(); d2 = u2.copy();setpointl = dl.copy(); setpoint2 =
d2.copy ()

#rls variables

deltac = 1

Rlc=1/deltac*identity(nw); R2c=1/deltac*identity (nw)

muv = 0.9998; r01l = 0.05; r02=0.05; vl = zeros(nw); v2=zeros (nw)

gl = zeros(N) ; g2 = zeros(N); erefl=zeros(N) ; eref2=zeros(N)

xil = ones(nw) ; xi2 = ones (nw)

dxdvl = zeros((nw,nw)) ; dxdv2 = zeros((nw,nw))

dydvl = zeros(nw) ; dydv2 = zeros (nw)

nd = nul + nul2 ;ny= nyl+nyl2 ; ynl = zeros(N) #yl.copy():;
yn2 = zeros (N) #y2.copy/()
for epoch in range (0, Epochsc):

for k in range (max (nyl,nul,nul2,nyl2),N-1):

xi1[0] =1

xil[1l:(nyl+1l)] = ynl [range (k-1, k- (nyl+1l), -
1)]

x1i1[(nyl+1l) : (nyl+nyl2+1)] = yn2 [range (k-1, k- (nyl2+1), -
1)]

xil[(nyl+nyl2+1) : (nyl+nyl2+nul+1l)] = dl[range (k-1,k-(nul+l), -
1)]

xil[ (nyl+nyl2+nul+l):] = d2 [range (k-1, k- (nul2+1), -
1)]

gll[k] = dot(vl,xil)

setpointl[k]= dl[k] - r0l*qgll[k]

xi2[0] =1

xi2[1l: (ny2+1)] = yn2 [range (k-1, k- (ny2+1), -
1)]

xi2 [ (ny2+1) : (ny2+ny21+1)] = ynl [range (k-1, k- (ny21+1), -
1)]

x12 [ (ny2+ny21+1) : (ny2+ny21l+nu2+1)] = d2[range (k-1,k-(nu2+1), -
1)]

xi2 [ (ny2+ny21l+nu2+1):] = dl [range (k-1, k- (nu2l+l), -
1)]

g2[k] = dot(v2,xi2)

setpoint2[k]= d2[k] - r02*g2[k]

#first neuron identification

x1[0] =1

x1[1:(nyl+1)] = ynl [range (k-1, k- (nyl+1),-1)]

x1[(nyl+l) : (nyl+nyl2+1)] = yn2 [range (k-1,k-(nyl2+1),-1)]

x1[(nyl+nyl2+1) : (nyl+nyl2+nul+l) J= setpointl[range (k-1, k-
(nul+l),-1)]

x1 [ (nyl+nyl2+nul+l) :] = setpoint2[range (k-1, k- (nul2+1l), -
1)]

#second neuron identification

x2[0] =1

x2[1:(ny2+1)] = yn2 [range (k-1, k- (ny2+1), -
1)]

x2 [ (ny2+1) : (ny2+ny21+1)] = ynl [range (k-1, k- (ny21+1), -
1)]

x2 [ (ny2+ny21+1) : (ny2+ny2l+nu2+1l) ]= setpoint2[range (k-1, k-
(nu2+1),-1)1]

x2 [ (ny2+ny21l+nu2+1):] = setpointl [range (k-1,k-(nu2l1+1), -
1)]
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ynl[k] = dot(wl,x1)

erefl[k] = yrefl[k] - ynl[k]

dxdvl1[1l: ny, ]—dxdvl[Z l+ny, :];dxdvl[ny, : ]=dydvl
dxdvl1[1l+ :]=dxdvl[2+ny:,:];dxdvl[-1, :]=-r01*xil
dydvl = d (wl dxdvl)

#dxdvl[-1,:] = -xil

#rls

Rllc = dot(dot (dot (Rlc,x1il),xil.T),R1lc)
R12c = muv + dot (dot(xil,Rlc),xil.T)
Rlc = 1/muv * (Rlc - R1llc/R1l2c)

dvl dot (Rlc,x1il1.T) *erefl [k]

vl = vli+dvl

yn2 [k] = dot(w2,x2)
eref2[k] = yref2[k] - yn2[k]
dxdv2[l:ny, :]=dxdv2[2:1+ny, :];dxdv2[ny, : ]=dydv2

dxdv2[l+ny:-1, : ]=dxdv2 [2+ny:, :];dxdv2[-1, :]=-r02*x1i2
dydv2 = dot (w2,dxdv2)

# dxdv2[-1,:] = -xi2

#rls

R21c = dot (dot (dot (R2c,x1i2),x12.T),R2c)
R22c = muv + dot (dot(xi2,R2c),xi2.T)
R2c = 1/muv * (R2c - R21c/R22c)
dv2 = dot (R2c,x12.T) *eref2[k]
v2 = v2+dv2

SSE2 [epoch] = sum(eref2*eref2)

SSEl [epoch] = sum(erefl*erefl)

print (SSE1l[epoch]), (SSE2[epoch])

figure (figsize=(14,9))
subplots adjust (hspace=.4)
subplot (211)

title("Controller sample-by-sample adaptation for 2nd order

linear theoratical plant")
#plot(yl, 'b',label="3$y rs$")

plot (yrefl, 'm',label="3%y {refl}s")
plot(dl, "b--", label="dl1l")
plot(ynl,'g',label="Sy nls")
grid () ;legend()

subplot (212)

#plot (y2, 'b',label="8y rs")
plot(yrefZ,'m',label="$y_{ref2}$")

plot (d2,"b--", label="d2")
plot(ynZ 'g',label="8Sy n2s")
grid () ;legend()

show ()
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Unstable System Responses

Roller rig model step response
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Step response of roller-rig after poles replacement
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