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ABSTRACT
The goal of this thesis is to develop software tools allowing the user to use Mask R-CNN

(Mask region-based convolutional neural networks) in GRASS GIS. These tools allow

the user to train his own Mask R-CNN model and use it to get vector masks from

raster data. In the text of the thesis, the theory behind convolutional neural networks

is introduced, followed by a list of their possible applications in the field of computer

vision, a brief sketch of used technologies and is ended with a part dedicated to the

implementation itself. The appendix contains a user manual and examples of usage.

KEYWORDS
GIS, GRASS GIS, Python, artificial neural networks, convolutional neural networks,

Mask R-CNN, instance segmentation

ABSTRAKT
Cílem diplomové práce je návrh softwarových nástrojů umožňujících uživateli využití

Mask R-CNN (Mask region-based convolutional neural networks) v prostředí GRASS

GIS. Tyto nástroje zprostředkovávají možnost učit svůj vlastní Mask R-CNN mo-

del a aplikovat jej za účelem získání vektorových masek objektů z rastrových dat.

V textu práce je nejprve nastíněn teoretický základ konvolučních neuronových sítí,

následuje přehled možností jejich využití v počítačovém vidění, dále kapitoly o po-

užitých technologiích, a uzavírá jej část věnovaná implementaci samotné. Přílohy

obsahují uživatelskou příručku a ukázku výsledků dosažených za využití vytvoře-

ných modulů.

KLÍČOVÁ SLOVA
GIS, GRASS GIS, Python, umělé neuronové sítě, konvoluční neuronové sítě,

Mask R-CNN, instanční segmentace
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CTU in Prague 1. INTRODUCTION

1 Introduction

In the last years, the field of computer science is permanently shaken by one term:

Artificial neural networks (ANNs). Some people perceive it almost as a magical

formula. And even though ANNs are not a spell able to solve everything, they

have wide applications. Their applications are in finance, data mining, language

recognition, computer vision and many more.

Another term that can be heard more and more is the information age. The avai-

lability of computers and the growth of memory limits result in huge amounts of

data.

The huge amount of data is a fuel for ANNs. One hundred years ago, an artificial

intelligence was a phantasmagoria of science-fiction writers. Fifty years ago, it was

an idea facing only derision. Twenty-five years ago, a design doomed to failure due

to a lack of training data. Twelve years ago, a bold idea of few men. Five years ago,

an earthquake in each branch of the field of computer science.

The data availability and their opening in the field of geomatics, as well as

the computer performance, open doors for the usage of ANNs in geographic infor-

mation systems (GIS). Results of a special type of ANNs called convolutional neural

networks (CNNs) promises a lot in computer vision and therefore also in GIS, in

tasks of detection and classification.

Chapter 2 will briefly introduce the theory behind CNNs. In the first part, the his-

tory and the motivation behind them will be described. The second part covers

multiple types of layers used in CNNs. Few pioneering architectures will be covered.

Chapter 3 will introduce the term computer vision. Various tasks of computer

vision will be named and few breakthrough architectures not mentioned in the CNN

chapter will be described there. The research which concluded in the selection of

Mask R-CNN as the architecture for the implementation will be depicted in this

chapter.

Chapter 4 will describe some of the most important technologies used during

the above-mentioned implementation.

11



CTU in Prague 1. INTRODUCTION

The implementation will be the topic of chapter 5. It will summarize the moti-

vation behind the architecture choose and code decisions, and then describe the up-

permost parts of the code. The practical part of the thesis is exactly this implemen-

tation.

12



CTU in Prague 2. CONVOLUTIONAL NEURAL NETWORKS

2 Convolutional neural networks

Although it is assumed that the reader has sufficient prior knowledge of ANNs and

CNNs, this part briefly introduces convolutional neural networks, their layer types

and few selected architectures.

For a better understanding of the topic, it is recommended to take a look at

the holy book of deep learning, [13].

2.1 Introducing convolutional neural networks
If you try to find an introduction to CNNs on the internet, you may bump into

a common statement that CNNs are neuroscience-based deep neural networks using

convolution and presuming the input is an image. It is not exact.

Though images are the most common input, according to [13], CNNs presume

the input has a grid-like topology; apart from the computer vision, other appli-

cations include for example natural language processing (as in [29]) or anything

representable as a grid-like topology (audio waveform as 1-D grid, RGB images as

multichannel 2-D, CT scan as 3-D, etc.).

A paradox inexactness is the term convolution as in mathematical meaning, many

CNNs implement cross-correlation instead of real convolution. Cross-correlation may

be seen as convolution without a kernel flipping. The reader can get more mathe-

matical insight about the difference and harmlessness of this change from [13].

It is true that CNNs are based on a neuroscience. They are inspired by Nobel

prize laureates Hubel and Wiesel’s research on mammalian vision systems (firstly

cats in [18] and [19], later monkeys in [20]). Hubel and Wiesel found that some

neurons (sorted in columns) strongly respond to specific edge-like patterns but just

a bit to other patterns.

The eye stimulus on the retina is transferred through the optic nerve and the la-

teral geniculate nucleus into the primary visual cortex (sometimes referred to as V1),

a part of the visual cortex located in the posterior pole of the occipital lobe. The pri-

mary visual cortex is organized in a 2-D spatial map representing visual stimuli from

the retina and contains two cell types, simple cells and complex cells. Simple cells

purpose is to compute a linear function (although some counterarguments against

13
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the linearity have been raised, see [6]) of the image in a spatially localized field,

while complex cells operations are to some extent position and lighting invariant.

2.2 Layer types
While the common approach in image processing of classical ANNs is to vectorize

the input, CNNs emulate the neuroscientific approach outlined in chapter 2.1 using

feature maps (each colour channel is a feature map). CNNs profit from the fact that

pixels in an image are ordered according to some structure. That allows neurons in

layers to be connected just to the certain region instead of heavily arduous fully-

connected architecture.

CNNs consist from many layers with different functions. In the following, indi-

vidual layer types are briefly described.

2.2.1 Convolutional layers

The first layers through which the input is passed are convolutional layers. So, firstly,

what is the convolution?

In the geomatics field, we very often encounter the term kernel. A kernel can

be seen as a matrix (or a window) sliding across all the image pixels. The pixels

contained in this window are a receptive field. As both the kernel and the receptive

field are matrices of the same shape, in each position element-wise multiplication is

computed and outputted as an output matrix element. Because after such a filtering,

the output matrix contains a 2-D activation map (a map where each position values

say with which probability the requested feature is on that position in the original

image), the output is called a feature map. Kernels/filters are the subjects of training.

In case of stride 1 and without zero-padding, the feature map is naturally of

shape [𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑤𝑖𝑑𝑡ℎ−𝑘𝑒𝑟𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ+1]×[𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_ℎ𝑒𝑖𝑔ℎ𝑡−𝑘𝑒𝑟𝑛𝑒𝑙_ℎ𝑒𝑖𝑔ℎ𝑡+1].

An example may be seen in figure 2.1.

With convolution, we reduce both computational requirements and a threat of

overfitting by using local connections (representing weights) between input and out-

put. However, these connections are local only in two dimensions, in width and

height of the input; these connections have to be full along the depth of the chan-

nels - e.g. in RGB images, the last dimension of connections is always 3. Different

14
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Figure 2.1: Two steps of kernel convolution, source: author

is it with the output; its third dimension (depth) is determined by the number of

neurons referencing the same spatial location, e.g. by the number of kernels we use.

In chapter 2.1, translational invariance was mentioned. In convolutional layers,

the first step to this invariance was achieved by another huge parameter reduction,

by parameter sharing. The idea of parameter sharing raised from the premise that

when one feature is useful in one location, it could be useful also in another one. This

simple presumption which works apart from for example centred special structures

allows sharing a set of parameters throughout the whole depth slice.

Using the parameters from [23] as an example, assume that the feature map has

size 55×55×96 and we apply it to images of size 227×227×31 using kernels of size

11× 11× 3. Sharing parameters within a depth slice, we can reduce the parameter

amount from 55 * 55 * 96 * (11 * 11 * 3 + 1) to 96 * (11 * 11 * 3 + 96), where 1 and 96

are biases; it means from more than 105 million to less than 35 thousand. Speaking

only about the first layer. I believe that this example said it all.

An inquiring reader may raise a question: In the chapter name, there is a plural.

What happens in deeper layers?
1The paper claims that the images were of size 224 × 224 × 3, but it is assumpted that it was

either a typo or authors forgot to mention a zero-padding.

15
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Their input is the previous layer output. The output of the first layer is the fe-

ature map of the lowest-level features. As was already mentioned, each neuron of

the next layer is connected with some local neighbourhood and with everything

along the third dimension; and because the third dimension of the output is formed

by the stack of filters/kernels of the first layer, each second layer neuron is con-

nected to all detected features in some location and its neighbourhood. The result?

Output feature map from the second layer contains higher-level features (simple

combinations of the low-level ones, like triangles or squares; combinations of some

edges, curves, etc.). The next layer will output again higher-level features and in

the end, we may have very specific features like cars, reflective heliports or art deco

swimming pools. This principle is illustrated in figure 2.5 using a deconvolutional

network, a technique described in chapter 2.3.3.

2.2.2 ReLU layers

Since the real data we are using to train our CNNs are mostly non-linear, it is

useful to introduce some non-linearity into the network. In the past, functions like

a hyperbolic tangent or sigmoid were used but Rectified Linear Unit (ReLU) has been

found to be trained faster and mitigate the vanishing gradient problem (a problem

of slow training of low layers due to the exponential decrease of the gradient).

ReLU output is defined by a function:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

After applying the ReLU function to the input values, we have a feature map

where all negative values of the input were changed to zero. This output is called

rectified feature map.

2.2.3 Pooling layers

Even though the input size reduction might already be included in convolutional

layers, it is very common to include other layers with this purpose. Because of this

purpose, they are called pooling layers or subsampling layers (they can do both

downsampling or upsampling).

Pooling layers work again with a kernel. But this time, the stride is bigger than

one which is quite uncommon for convolutional layers. It means that when we use

a pooling layer with a kernel of size 2×2 and stride 2, the output will be half in first
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two dimensions (the third one is preserved). One pooling like this reduces parameters

by 75 percent.

Aside from the parameter reduction, there are two more positive effects. Because

of the detail mute, it reduces a threat of overfitting and it also strengthens the shift

invariance. The advantage of pooling layers is also the fact that they do not introduce

any new parameters to the network.

The function for the kernel can vary, but the most-used one is max-pooling2

having the advantage that it does not matter where in the region was the value

detected. Other customary approaches apply average (compared with max-pooling

in [4]), 𝐿2 [24] or Stochastic pooling [44]. Also used kernel size and stride vary,

the most common ones are 2×2 with stride 2 and 3×3 with stride 2.

Also, architectures without pooling layers are not so uncommon today. One re-

search on this approach can be seen in [36]. It introduces an architecture called all

convolutional net where the subsampling may be done by increasing the stride and

compares it with other approaches.

2.2.4 Normalization layers

Besides the neural exhibition, a neural inhibition is also found in the human brain.

These doors of perception stay half-closed and filter or inhibit human receptions.

Normalization layers can be seen as an attempt to imitate this structure, but

there are more reasons for these layers in deep learning. As was written above, input

for higher (deeper) layer is the output of lower level. It means that the highest

(deepest) layer input is dependent on the first layer output. Because functions of

layers are changed each training step, a small change of the first layer output may

have a huge effect on the last layer input and therefore also on the last layer output,

which may lead to completely wrong behaviour of deeper layers. This problem is

called a covariate shift or, following terminology from [21], an internal covariate

shift.

This change in the distribution can be to some extent reduced by using a small

learning rate and right initialization of the network. Because small learning rate ra-

dically extends the training time, other solutions were needed. Normalization layers.
2Choosing the biggest value from those overlaid by the kernel.
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One of the most widely used approaches is called batch normalization [21]. In

CNNs, it is common to use batches (or mini-batches) of training examples instead

of one-at-a-time as the computation parallelism saves time. Batch normalization

computes a mean and variance over a batch using the distribution of the summed

neuron input and whiten3 it for each training batch. According to [21], it reduced

the number of training steps 14 times allowing the user to use much higher learning

rate and being less careful about initialization.

Other types of normalization layers include local response normalization or 𝐿2

normalization.

2.2.5 Fully connected layers

As their name prompts, fully connected (FC) layers are layers where each neuron in

a layer is connected to each neuron of the previous layer. Their activations can be

seen simply as a matrix multiplication enhanced by a bias.

The purpose of FC layers is to take the high-level feature map as an input and

return a classification vector as an output. Each value in the output refers to one

class occurrence, e.g. The length of the output vector is 𝑛 where 𝑛 is the number of

classes. FC layers are not so hard to train to use non-linear combinations of features

in input which is widely used whereas the combinations of high-level features are the

things we are looking for. For example, if we are looking for a platypus, the last layer

output will have high values in the neurons that represent things like a duck-like

snout, four legs, flat tail or a calcaneus spur; if we are looking for a jelly, we will

most probably not be interested in any of these features.

Using popular softmax classifier4, the output is a vector of probabilities repre-

senting each class. Other classifiers like SVM can also be used.

Fully connected layers are sometimes referred to also as dense layers.

2.3 Architectures of convolutional neural networks
It is generally resolved5 that the history of successful CNNs started in 1998 when

Yann LeCun and his team published the paper Gradient-Based Learning Applied
3Set means equal to zero and variances unit; idea proposed in [30].
4Softmax transforms a vector of real-valued values to a vector of values between zero and one

that sum to one.
5Roots of CNNs lie at the end of the eighties, but the breakthrough came in nineties.
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to Document Recognition [25]. Although it is just twenty years, CNNs have made

tremendous progress. During this period, a plenty of various architectures was pro-

posed, more or less successful.

Because some background of the CNN architectures evolution could help in un-

derstanding CNN fundamentals and deepens the insight into research and decisions

made for this thesis, few of the most influential architectures will be mentioned in

the following chapters.

In this chapter, ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

will be mentioned several times as it is something like a fuel for computer vision

progress with which are CNNs inseparably connected. For the topic of this thesis,

it should be enough to say that ILSVRC is a competition in visual recognition

including many diverse tasks, for more information and results, take a look into [33]

which was used also during writing this chapter.

2.3.1 LeNet-5

Nobody would argue that the fundamental architecture is the one from the pa-

per Gradient-Based Learning Applied to Document Recognition mentioned above,

the one called LeNet-5. It was proposed in [25] and due to the lack of GPU and

insufficience of CPUs, its convolutional, computationally economical approach en-

sured the architecture a huge success and usage for example in character recognition

(reading zip codes, checks).

In figure 2.2, we can see the architecture of LeNet-5. It contains many features

mentioned in chapter 2.2. It consists of convolutional, pooling (subsampling) and

FC layers and it also introduced the non-linearity into the network using hyperbolic

tangent or sigmoids. Its two convolutional layers (C1 and C3) apply 5 × 5 convo-

lutional filters with stride 1 and its two pooling layers (S2 and S4) apply 2 × 2

average-based filters with stride 2. The architecture is finished with two FC layers;

one is needed to learn the non-linear combinations of high-level features, the other

one to classify the results6.

LeNet-5 made the first important step for CNNs and a big step for ANN-based

computer vision generally. It explained that taking an input as individual values,
6Gaussian connections are used here instead of softmax mentioned in 2.2.5. They are based on

Euclidean Radial Basis Function and described in [25].
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Figure 2.2: LeNet-5 architecture schema, source: [25]

besides its speed and computation problems, does not use the advantage of spatial

correlations within the input.

2.3.2 AlexNet

As was mentioned, LeNet-5 became a very successful first step. Nevertheless, until

the 2010s, development of CNNs was out of the main spotlight. Although there were

few important events like Dan Ciresan using GPU neural nets in 2010, the main one

happened in 2012, when Alex Krizhevsky came with something like a deeper version

of LeNet in [23] and called it AlexNet. That year, AlexNet won the ILSVRC7.

Krizhevsky benefited from years of progress bringing more computing power

and more data to be trained on. This well-timed entree allowed him to use a deep

architecture containing about sixty million parameters, ReLU layers, overlapping

max pooling and dropout8. AlexNet also included a stack of convolutional layers

instead of the previous approach, where each convolutional layer was followed by

a pooling layer.

The computation was done on GPU (NVIDIA GTX 580) which allowed him to

use larger datasets consisting of more and larger images as well as fastened the trai-

ning. The separate GPU approach is indicated in figure 2.3 by upper and lower part

of the image as two different GPU processes; it can be seen that the interaction

between two GPUs happens only at certain layers.
7AlexNet won it by a great margin with top 5 error of 16.4 % compared to the second place

with 26 %.
8A technique used to prevent overfitting proposed in [17]. Dropout selectively ignores individual

neurons during training.
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Figure 2.3: AlexNet architecture schema, source: [23]

If LeNet-5 represents the first step of CNNs, AlexNet is the first marathon. After

its success, CNNs became the bleeding edge in both deep learning and computer

vision.

2.3.3 ZF Net

After the success of AlexNet, the number of CNNs competing in the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) noticeably increased. Matthew Zeiler

and Rob Fergus built an architecture called ZF Net and won the ILSVRC 2013 with

top 5 error rating of 11.2 %.

ZF Net architecture was based on AlexNet and described in [45]. Because it was

believed that the 11 × 11 filtering in the first layer of AlexNet skipped too much

information, it was replaced with a filter of size 7×7 with a decreased stride. Besides

the parameter tweaking, the size of the middle convolutional layers expanded and

the cross-entropy loss function was used as well as stochastic gradient descent with

a mini-batch size of 128. The architecture can be seen in figure 2.4.

Figure 2.4: ZF Net architecture schema, source: [45]
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An important feature was introducing a technique mapping features from feature

maps back to pixels, due to its character this technique is called a deconvolutional

network. During the forward pass, activations are computed at each level of CNNs;

when we want to observe a certain feature of a certain layer, we pass it back through

the preceding layers. In this back pass, operations are in another direction (pooling

is changed to unpooling, downsampling to upsampling etc.) until the input layer

is reached. It gives the user an idea of what kinds of structures are recognized in

the certain feature map. A visualization of 5 layers illustrating the way from low-

level features like edges or colours to high-level features like dog faces or flowers can

be seen in figure 2.5.

Figure 2.5: Visualization of 5 feature maps through deconvolutional networks, source: [45]
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Thanks to its modifications, it was enough to train ZF Net on only 1.3 million

images instead of 15 million images used with AlexNet. However, the training took

12 days instead of 5 or 6 and was stopped after 70 epochs. The training ran on

a single GPU.

However, in [45], Zeiler and Fergus did more than just bring new architecture.

They summarized why the time of CNNs had just come and tried to deepen the gene-

ral knowledge behind these models, where especially the deconvolution visualization

of feature maps can be called a missionary work.

2.3.4 VGG Net

ILSVRC 2014 brought new interesting architectures. Although VGG Net, an ar-

chitecture proposed by Visual geometry group of the University of Oxford in [35],

was not the winning architecture, it reached the error rate 7.3 % even with its

simplicity-in-the-first-place architecture.

Authors experimented with different architectures with a number of layers be-

tween 11 and 19 (see figure 2.6 for their parameters) and chose 16-layer architecture

homogenously using only 3× 3 filters with stride and zero padding of size 1 to pre-

serve the spatial resolution after convolution interleaved with maxpooling layers with

stride 2. They found that when we use multiple convolutional layers with smaller

kernels in a row, it emulates the effect of larger kernels while still retaining advan-

tages of smaller kernels; it means that 3 layers with a kernel 3×3 emulate the effect

of 1 layer with kernel 7× 7, decrease the number of parameters and allows the user

to implement three ReLU layers instead of one, exactly the advantage VGG Net

used. It has to be said that the number of parameters was still enormous reaching

almost 140 million and in the following architectures, this problem caused by FC

layers had to be solved to reduce the time consumption.

VGG Net also enlarges the number of filters after each maxpool layer as can be

seen in figure 2.6; the idea of decreasing spatial dimensions but increasing the third

(depth) dimension was shown to be very important as well as the depth (number

of layers) of the network. During the mini-batch gradient descent based training,

a scale jittering was used for the data augmentation to train the model to reco-

gnize objects at different scales. The training took two to three weeks depending on

the architecture and was carried out by 4 NVIDIA Titan Black GPUs.
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Figure 2.6: Different architectures of VGG Nets and the chosen one, source: [35]

2.3.5 GoogLeNet

And now for something completely different. Authors of GoogLeNet, the winning

architecture of ILSVRC 2014 with a top 5 error rate of 6.7 %, proposed in [37] ano-

ther approach, instead of at the architecture simplicity aiming at the computational

simplicity.

In figure 2.7, we can see parallel blocks. Authors found that the sequential queue

of layers increases a computational and memory cost a lot, so they proposed a module

called Inception. The naïve idea behind the Inception module is illustrated in figure

2.8 and is quite simple: Why should we stack the layers in a sequence, when we

can perform them in a parallel? Though the idea behind was not bad, this naïve
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Figure 2.7: GoogLeNet network schema, source: [37]

version ended in an enormous depth (size of the third dimension) of the output after

the concatenation into a single vector.

Figure 2.8: Naïve idea of Inception module, source: [37]

As can be seen in figure 2.9, authors solved the depth problem by adding 1× 1

convolutional layers, sometimes referred to as network in network 9. Usage of 10

1 × 1 filters outputs a volume with two dimensions equal to the input dimensions

and the third one equal to 10. The depth of input for bigger kernels is thus pooled

to the defined size while allowing also to use one more ReLU layer after the 1 × 1

convolution. This process is sometimes called a bottleneck (likewise the 1 × 1 layer

is sometimes called a bottleneck layer).
9The alias of this approach was derived from the architecture called Network-in-network pro-

posed in [26] and presenting the advantages of 1× 1 convolutions.
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Figure 2.9: Inception module with dimensionality reduction, source: [37]

The parallelized architecture used over 100 layers while the real depth of the full

network was just a fraction of this number and it used only 7 Inception modules.

Authors also get rid of unnecessary FC layers and instead used an average pooling

which concluded in twelve times fewer parameters than AlexNet. Their architecture

also decreased the threat of overfitting. In [37], authors claimed that the network

was trained using few high-end GPUs within a week.

Time from time, updated versions are published. Interested readers may try to

find architectures like Inception V2, Inception V3 and higher.

Figure 2.10: Inception V2 used the idea described already in chapter 2.3.4 about

replacing 5× 5 convolution with two 3× 3 convolutions, source: [38]

2.3.6 ResNet

In the above-described architectures, a trend of going deeper can be noticed. Micro-

soft Research team noticed it too and in [15], they proposed much deeper architecture

than previous ones. This architecture was called ResNet, contained 152 layers and
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won ILSVRC 2015 with an error rate of 3.6 % beating even humans with their error

rate of circa 5 – 10 %.

Although the depth was quite revolutionary, it was not the most innovative thing

about ResNet. Neither was the usage of batch normalization as described in [21] after

each convolutional layer. The most innovative thing of ResNet was a structure called

a residual block. In 2011, Pierre Sermanet and Yann LeCun proposed in [34] a notion

to bypass a layer. ResNet used this design with a richer mind and as can be seen in

figure 2.11, they bypassed two layers.

Figure 2.11: A residual block schema, source: [15]

Bypassing two layers (a term skip connections is not uncommon) gives much

better improvements than the single layer bypass. But what exactly happens during

the bypass? In traditional CNNs, only the 𝐹 (𝑥) is computed. It means that the next

layer does not have the real connection to the original input, but only to this trans-

formed output, 𝐹 (𝑥). When we bypass the block input 𝑥 after 2 layers, we can add

it to 𝐹 (𝑥) which represents a change this time. By the addition, we get a mildly

altered representation of the input. Authors of ResNet declared that it is easier to

optimize this referenced mapping instead of the unreferenced one. Another advan-

tage is that with addition operations, the backward propagated gradients will flow

easier through the structure. Because the mapping was referenced using residuums,

it is sometimes referred to as a residual mapping.

Authors experimented with diverse depths of the architecture counting 18, 34,

50, 101 and 152 layers. During these experiments, authors found a problem in the

number of parameters in deeper architectures. However, authors found a solution

by following the design of bottleneck layers described in chapter 2.3.5: They rede-

signed the residual block into a bottleneck block. This block reduced the number of

features usually to approximately one quarter by using 1× 1 convolutions and was

implemented into ResNet-50 and higher.
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Figure 2.12: A bottleneck block schema, source: [15]

Mentioned experiments contained one more interesting event. A creation of a real

monster, a 1202-layer network. Surprisingly, this network got a lower accuracy during

tests. Authors argued that this is because of overfitting.

8 GPUs were used for the training of ResNet-152 and the process took something

between two and three weeks.

The continuation of ResNet can be found for instance in an architecture called

ResNeXt. Saining Xie and his team proposed ResNeXt in [42] and it combines

ResNet with modularized parallel pathways similar to those described in chapter

2.3.5.
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3 CNNs for computer vision

A paper Visualizing and Understanding Convolutional Networks by Matthew D.

Zeiler and Robert Fergus [45] started with two sentences: Large Convolutional Ne-

twork models have recently demonstrated impressive classification performance on

the ImageNet benchmark. However there is no clear understanding of why they per-

form so well, or how they might be improved.

I tried to disperse such clouds a bit in the previous chapter, but now I would like

to focus on another undertone connected with those statements. On their applicati-

ons in the computer vision.

Almost everything mentioned in chapter 2 was already tied to the computer

vision. The following text will briefly describe the field of computer vision itself and

then introduce few tasks in that field connected with the topic of the thesis. In each

task, the models that were considered during the research for the practical part of

this thesis - an implementation into GRASS GIS - will be mentioned. Models are

also mentioned and described to depict their evolution concluding in the selected

one.

3.1 Understanding computer vision
When you see a group photo, you can easily count the number of people in the photo,

you can say whether they are smiling or not, whether they are happy, sad, angry,

you can even guess whether they are one family, a bunch of friends, colleagues or just

random people passing by. You can do all of that in a fraction of a second without

any effort. The computer vision is supposed to be a computer-aided version of this

human cognition. Or in a fancier way, from [5]: Computer vision is the transformation

of data from a still or video camera into either a decision or a new representation.

The new representation might be for instance a colour shift, the decision an answer

to a question like Is there any football field in the picture?

However, the claim that it is easy for humans does not implicate any simpli-

city also for computers. As is generally known and was indicated in chapter 2.1,

the human brain is an extremely complex tool. The other thing is that a computer

receives a visual impulse (image) in another way as is illustrated in figure 3.1. Where

human sees a side mirror, a computer sees a grid of numbers. And this grid may be
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completely different when the daytime, viewpoint, brightness, background or scale

changes.

Figure 3.1: The difference between human and computer cognition, source: [5]

The task may be something like Is there any side mirror in the picture? This kind

of tasks can be seen in the field of computer vision daily and can be extremely difficult

to solve in the computer way. Although the input may include some metadata, it

still has to be solved in a strict mathematical way. And because our goal is to make

our computer vision system perceive like a human, it looks like the right place for

CNNs.

Although we will focus only on classification and connected tasks like detection

and segmentation, there are many more applications of the computer vision. To name

a few: Autonomous cars, face recognition, fingerprint recognition, motion capture,

biometrics and remote sensing.

To get a better view into the field of computer vision, it is recommended to read

a richer source like [39] and [5] to get some practice.

3.2 Classification
The idea is simple, image classification is the task of assigning an image to one

class. It means that the user is interested in the result of a guess of what the image

contains. A good example is a camera trap. When the user is interested in moose,
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he can train his model to predict moose and automatically filter all outputs from

the camera trap through this validator.

The idea of training a model to sort a list of numbers is quite straightforward.

Due to differences in pictures of the same object caused by influences mentioned in

chapter 3.1, the classification task needs a bit of oblique, but still strictly logical

thinking. It needs a data-driven approach. Instead of defining how exactly should

moose look like, we feed the model with a bunch of labelled examples. It is the same

process as with human children.

However, the number of classes does not have to be equal to one. The user

can have a set of multiple classes and even his classifier may differ. A popular

simple classifier is a binary classifier returning just 1 or 0 (representing True or

False/Yes or no) for each class per image but much more widely used one is a softmax

function giving a vector of probabilities for classes. This classifier also somehow more

represents the human mind, as we may be unsure if there is a moose or a wapiti in

the picture if it was taken with bad conditions.

Figure 3.2: An example of the classification output with softmax function, source: [23]
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The pioneering work in the field of CNN-based classification is AlexNet propo-

sed in [23] and described in chapter 2.3.2. Another interesting implementation is

the CNN-RNN framework for multi-label image classification10 proposed in [41].

3.3 Classification with localization
Although classification with localization is sometimes ignored in similar lists as

a subtype of object detection, I believe it is useful to mention it as a step between

pure classification and object detection.

Classification was already explained in the previous chapter. Classification with

localization uses classification in its one-class form together with bounding boxes

(bounding boxes may be multiple). The goal is to draw the bounding box as tight

around the object as possible and predict the class of the object, so the user ends

up with two outputs:

• Class: Class label

• Bounding box: Box in the image defined by two coordinates and its width and

height.

Figure 3.3: An example of classification with localization, source: author

10Real world images often contain more features; multi-label image classification tries to predict

more than just one of them. The problem of one-label classification can be seen in the seventh

image in figure 3.2.
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Because multiple values are returned, this task can be considered as a kind of

a regression problem. Outputs from the regression are enough to get a result as

the one illustrated in figure 3.3.

3.4 Object detection
Object detection is the classification with localization for multiple classes.

Shared basics with the task from the previous chapter instigate to use the similar

approach but applied to every single class individually. However, this method could

be very, very inefficient. Different architectures use different practice to solve it and

few of them will be presented here.

3.4.1 R-CNN

The Region-based convolutional neural network (R-CNN) is a model proposed in

2014 in [12], which combines region proposals with convolutional neural networks to

detect objects in an image via bounding boxes.

The first step of the detection and also an answer to individual passes of classes

is to generate category-independent region proposals containing probable objects.

Instead of the whole image, those proposals are passed to a deep convolutional neural

network which returns a feature vector for each region proposal. The last step is

to pass this vector through a set of class-specific linear support vector machines

(SVMs).

Although diverse methods may be used for the region proposals generation11,

authors of the original R-CNN paper decided to use the selective search. The selective

search was proposed in [40] and mixes advantages of both an exhaustive search and

segmentation. From the exhaustive search, an effort to catch all possible object

locations is used; from segmentation, the idea of following the image structure to

guide the sampling process is used. To deal with many diverse image conditions,

the selective search uses a variety of complementary image partitions.

After regions proposition, their features must be computed. Because the network

works with a fixed-size input, the region must be warped into 227×227 square RGB

image, and then it can be forward propagated through an architecture composed of
11In the case of interest see an objectness measure [3] or category-independent object proposals

with diverse ranking [8].
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five convolutional layers and two fully connected layers (a modified architecture of

AlexNet, see chapter 2.3.2).

The third step is scoring those extracted features (deciding which class the feature

is and whether it is any class at all). This is done for each feature separately using

an SVM trained for that class.

In general, the bounding box has a large overlap with the background. This is

the last problem with which the algorithm has to deal. To improve the localization

(make bounding boxes tighter), a linear bounding box regression method proposed in

[10] is used with one modification - R-CNN applies regression on features computed

by the CNN instead of on geometric features computed on the inferred deformable

part model (DPM) locations.

Figure 3.4: R-CNN architecture schema, source: [12]

Although R-CNN outperformed similar architectures12, there were still some

shortcomings. The biggest one was the slowness. It is caused mainly by three ele-

ments - the forward propagation through CNN (each region of every image must

be passed separately), by its triplicated training (a network for generating image

features, a network for the class decision and the bounding box regression model)

and by the generating of bounding box proposals.

3.4.2 Fast R-CNN

Then, in the year 2015, a new architecture came to solve first two of these issues.

Because the main reason for a new architecture was to speed-up R-CNN, Ross

Girshick named his new architecture proposed in [11] simply Fast R-CNN. Besides
12[12] claims a mean average precision (mAP) of 53.3%.

34



CTU in Prague 3. CNNS FOR COMPUTER VISION

the main purpose to avoid first two issues mentioned in chapter 3.4.1, it also improves

its accuracy13.

The first issue, the separate forward propagation for each region proposal, was

solved by propagating the entire image to obtain a feature map before the region

proposition. For each object proposal is from the feature map extracted a fixed-

length feature vector by a region of interest (RoI) pooling layer.

The RoI pooling layer can be seen as a one-level spatial pyramid pooling layer,

a max pooling-based downsampling algorithm proposed in [14]. Its purpose is to

decompose separately each valid RoI into a fixed size 7 × 7 feature map. The de-

composition is made by quantization each RoI to the rounded discrete grid which is

filled using max pooling on the corresponding kernel of the feature map.

These feature vectors are inputs for a set of FC layers. This propagation is

followed by the last, branched step, where two different outputs are obtained depen-

ding on the last layer - class probabilities from a softmax function and a bounding

box defined by 4 values from a regressor.

There can be seen also a solution to the second problem named in chapter 3.4.1.

Instead of three separate models, all steps are joint into only one model by appending

classification (using a softmax layer instead of a separate SVM) and bounding box

regression as parallel layers to the end of the model.

Figure 3.5: Fast R-CNN architecture schema, source: [11]

There can be raised a question whether is the SVM replacement with the softmax

layer as accurate as the original approach. According to tests performed in [11],
13[11] claims a mAP of 66% on Pascal Visual object classes (VOC) 2012. To find more info about

the Pascal VOC datasets and challenges, please see [9].
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the softmax layer is even slightly outperforming SVM by 0.1 to 0.8 mAP points

depending on the depth of the network14.

3.4.3 Faster R-CNN

The third speed issue mentioned in chapter 3.4.1, the region proposer based on

the selective search, was solved in the year 2016 in an architecture imaginatively

named Faster R-CNN, proposed in [32].

Microsoft Research team found that the feature map computed in the first part

of Fast R-CNN can be used to generate region proposals instead of using slower

selective search algorithm. Authors did it by including Region Proposal Network

RPN after the feature maps extraction of Fast R-CNN.

Figure 3.6: RPN schema, source: [32]

RPN approach is different than the ones used in other architectures. Instead of

pyramids of images or filters, RPN uses anchor boxes - a set of rectangular bounding

boxes proposals and scores created by sliding a spatial window over the entire feature

map. The sliding window is a 𝑛× 𝑛 fully convolutional network. The anchor boxes

are defined by a scale and aspect ratio, so they are of different shapes. Powerful

attributes of anchor boxes are that they are translation-invariant and multi-scale,

which concludes also into a reduction of the model size.
14Different models were tried. Surprisingly, with a deeper network, smaller mAP difference was

noticed.
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Figure 3.7: Faster R-CNN architecture schema, source: [32]

As can be seen in figure 3.7, the training scheme alternates between training (or

fine-tuning) for the region proposition and for object detection. This approach with

shared convolutional features quickly converges.

Besides the speed improvement, Faster R-CNN improves also the accuracy. [32]

claims a mAP of 73.2% on Pascal VOC 2007 and of 70.4% on Pascal VOC 2012.

3.5 Semantic segmentation
Semantic segmentation is a labelling of each pixel in an image to a certain class

without differentiating between instances of objects.

The first conception in our minds is to slide the kernel across an entire image

and classify each pixel individually. However, I think that everyone surmises that

this conception is not very efficient.

Two terms are connected with semantic segmentation, encoder and decoder.

While the encoder is a classification network as one of those described in chapter 2.3,

the decoder is a network projecting a lower resolution (a feature map) to a higher

one (pixel space of the original image size), e.g. The task of the decoder is to reco-

ver the spatial information lost in the encoder. Different versions of decoders were

proposed.

37



CTU in Prague 3. CNNS FOR COMPUTER VISION

3.5.1 Fully convolutional network

The Fully convolutional network (FCN) was proposed by Jonathan Long and the UC

Berkeley team in 2015 in [28].

Figure 3.8: Semantic segmentation with FCN schema, source: [28]

Imagine for example VGG-16 as the backbone architecture, but the same process

can be applied to any other classification architecture. Following the approach of

[28], cut off the last classification layer and convert the fully connected layers into

convolutional ones. 1× 1 convolution was appended to predict scores for each class.

Figure 3.9: FCN skip connections schema; only pooling and prediction layers are shown,

source: [28]

Everything must be then passed through the decoder; the decoder is here re-

presented by a backward convolution, by a deconvolution. Deconvolution consists

of upsampling using a bilinear interpolation. With a few of deconvolutional layers,

the network can learn even a nonlinear upsampling. When using more layers, it is

useful to fuse the output of each layer with predictions computed in the backbone
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layer with corresponding resolution using similar bypass (skip connections) as that

described in chapter 2.3.6.

3.6 Instance segmentation
Instance segmentation can be seen as a combination of object detection and se-

mantic segmentation; the task is in detecting all instances of different objects and

marking their pixels. In other words, the difference between semantic segmentation

and instance segmentation is that instance segmentation allows marking two objects

of the same class separately.

Figure 3.10: Instance segmentation example, source: [16]

3.6.1 Mask R-CNN

So we had R-CNN, Fast R-CNN and Faster R-CNN. What could be the next step?

The first answer that comes to your mind is wrong - instead of expected The Fastest

R-CNN, the Mask R-CNN was proposed in the year 2017 by Facebook AI Research

FAIR in [16].

FAIR stood in a front of another question. According to [32], Faster R-CNN

outperformed most of their competitors in the field of object detection. But it was

still unusable for some users looking for a semantic segmentation neural network.
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They had a powerful network for object detection, so the question was: Is there any

way to use the current network for the semantic segmentation?

Obviously, the answer was yes. But instead of the semantic segmentation, they

proposed a more advanced approach, the instance segmentation. To implement

the instance segmentation with sufficient accuracy, there was a need for some chan-

ges in the architecture of Faster R-CNN. Following the original terminology from

[16], in the following part, I will distinguish between the backbone architecture for

feature extraction and the head architecture for classification, bounding box regres-

sion and mask prediction. Those will be described in following parts of this chapter

along with an extra focus on a RoIAlign, a new approach in the RoI generation.

Figure 3.11: Mask R-CNN architecture schema, source: [16]

Backbone architecture

For the backbone architecture, more models can be used, but in the original paper

[16], ResNet was used. ResNet was already described in chapter 2.3.6.

Moreover, authors experimented also with ResNet extended by a feature pyramid

network (FPN), a top-down architecture with skip connections (in the original paper

called lateral connections) developed for building high-level semantic feature maps

at different scales proposed in [27].

FPN uses the fact that by subsampling, we obtain a different spatial resolution

feature hierarchy with multi-scale, pyramidal shape. To achieve strong semantics at

all scales, FPN uses bottom-up, top-down pathways and skip connections to create

predictions independently on each pyramid level. The feature hierarchy is created

by propagating an image through the convolutional network (bottom-up pathway).

There are stacks of layers producing feature maps of the same size; they are thought

of being in the same stage. One level of the FPN is created from the output of the last

layer of each stage except the first stage due to its memory claims. The top-down

pathway is done by upsampling feature maps from higher levels by a factor of 2 and
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using nearest neighbour upsampling, and then enhancing them via skip connections

with features from the bottom-up pathway as can be seen in figure 3.12.

Figure 3.12: The FPN schema, source: [27]

Head architecture

In the head architecture, there was the most important change to allow the instance

segmentation - including the mask branch in parallel with branches for classification

and bounding box regression.

The mask branch is a pixel-to-pixel FCN predicting a mask individually for

each RoI, where the mask is a binary matrix of ones (object location) and zeros

(elsewhere).

In figure 3.13, we can see two implementations of the head architecture. The left

one is based on ResNet-C4 (4 stage ResNet) and extends it with the compute-

intensive fifth stage, the right one is based on FPN which already includes the fifth

stage. In these implementations, the last convolution is 1× 1 and the other ones are

3× 3 and are the ones with preserved shapes; deconvolutions are 2× 2 with stride

2 and increase shapes.

Figure 3.13: Different Mask R-CNN head architectures schema, source: [16]

RoIAlign

In figure 3.11, we can see a RoIAlign layer instead of Fast R-CNN RoI pooling from

figure 3.5.
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This change was needed because of spatial inaccuracy of RoI pooling due to

the fact that it was not intended to be used for a pixel-to-pixel alignment. This

inaccuracy is caused by quantizations and roundings and RoIAlign avoids it simply

by skipping the rounding. To compute the value of the input, a bilinear interpolation

at regular sampled locations (usually 4) is used.

According to [16], RoiAlign improved Mask R-CNN mask accuracy by relative

10 % to 50 %.
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4 Used technologies

This chapter briefly introduces the most important technologies used during the de-

velopment of modules for GRASS GIS. It means that besides GRASS GIS itself,

the Python language and its libraries TensorFlow and Keras will be introduced.

4.1 GRASS GIS

Figure 4.1: GRASS GIS logo, source: https://grass.osgeo.org/download/logos/

The history of GRASS GIS (an acronym for Geographic Resources Analysis Support

System Geographic Information System) started in the year 1982 at the U.S. Army

Corps of Engineers Construction Engineering Research Laboratory, but the version

1.0 under the name GRASS was released later, in 1985. However, its way lead from

the national project to the international Open GRASS Consortium in the mid-1990s.

This consortium is perceived as an ancestor of today’s Open Geospatial Consortium

(OGC). In 1999, GRASS GIS was published under GNU General Public License

(GPL).

GRASS GIS has grown to a cross-platform free and open-source GIS maintained

by an international team of developers and users and licensed under the GNU GPL

license allowing users to perform geospatial data management and analysis for both

raster and vector data, image processing, geocoding and visualization. Within its

more than 400 modules, it supports also spatio-temporal data.

For more information about GRASS GIS, please see its official website15.
15https://grass.osgeo.org/documentation/general-overview/
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4.2 Python

Figure 4.2: Python logo, source: https://www.python.org/community/logos/

Python is a cross-platform open-source interpreted programming language. Python

was invented by a Dutch programmer and Monty Python’s Flying Circus fan Guido

van Rossum in the year 1991. Due to its user-friendly and readable structure, it is

more and more popular.

It is also one of the most popular languages in the field of (nay) open-source GIS.

Many modules for GRASS GIS are written in Python and Python is the most used

language in QGIS16 plugins. Also libraries like Fiona17 or RasterIO18 are Python-

based, and GDAL19 has its Python API.

For information about programming in Python, please see [31].

4.3 TensorFlow
TensorFlow is an open-source software library developed by Google Brain Team20

primarily for the purpose of neural network research. TensorFlow uses data flow

graphs, where a node represents a mathematical operation and an edge represents

a tensor (a multidimensional array). A toolkit for visualization of these graphs is

called TensorBoard.

TensorFlow is available for Python and C++ programming languages. Its usage

optimizes mathematical expressions and as it was developed for the purpose of neural
16https://qgis.org/
17http://toblerity.org/fiona/
18http://rasterio.readthedocs.io/
19http://www.gdal.org/
20https://research.google.com/teams/brain/
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Figure 4.3: TensorFlow logo, source:

https://www.tensorflow.org/images/tf_logo_transp.png

networks, the main focus was dedicated to this field and TensorFlow provides a lot

of functions useful for deep learning.

A good starting point is the book Getting Started with TensorFlow [43]. A do-

cumentation and examples can be found also at the official website21.

4.4 Keras

Figure 4.4: Keras logo, source: https://keras.io/

Keras is an open-source software library written in Python and using TensorFlow,

Microsoft Cognitive Toolkit, Theano or MXNet as a backend tensor manipulation

library.

Keras is again developed for the purpose of deep learning. Its powerful feature

is the content of extensible objects for defining different types of layers (see chapter

2.2), models, loss functions and other tools widely used in the field of ANNs.

For a wider documentation, please see the official website22.
21https://www.tensorflow.org/
22https://keras.io/

45

https://www.tensorflow.org/images/tf_logo_transp.png
https://keras.io/
https://www.tensorflow.org/
https://keras.io/


CTU in Prague 5. IMPLEMENTATION

5 Implementation

In the field of GIS, users are dealing with a huge amount of satellite photos. Though

there are many algorithms for automated classification, ANNs are a promising child

which is just growing up and hogging the limelight. However, the younger sibling of

ANNs is even more promising. The sibling is called CNNs.

CNNs for image processing are very strong in an object detection. The object

detection in aerial photos could be very useful for example for detecting sick trees

in an orthophoto of a forest or for a vehicle detection (aeroplane, ship, car, etc.).

It means elements that can be represented as points. But what about searching for

forests? Searching for lakes? Rivers? Oil spills? Do we really want to represent them

in GIS as points in their centre of mass?

It seems that better representation is in polygons (or lines). But representing

a detection bounding box as a polygon square does not seem like the right way.

So there are two possible ways - semantic segmentation and instance segmentation.

Three arguments were raised and discussed on behalf of instance segmentation:

• The instance differentiation could be very useful for some tasks.

• It is easier to create masks only for requested objects.

• If each pixel in a raster input will be assigned to a class, we got semantic segmen-

tation.

When work on this implementation started, the paper on Mask R-CNN was just

recently published ([16], March 2017). With its approach, it was a kind of bleeding

edge. However, its results spoke for themselves and within a year of its publication,

it was implemented in few projects following the success of the original paper. Few

followers also appeared (for example [7]) and it could be interesting to examine them

deeper from a geomatic point of view.

For the implementation to GRASS GIS, the Python language was chosen. There

are few reasons for this decision:

• Although some GRASS GIS modules are written in C and C++, many of them

are written in Python.

• Python allows me to use libraries such as TensorFlow and Keras, both very useful

and widely used in the field of deep learning.
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Mask R-CNN tools created for the practical part of the thesis consist of two

modules. i.ann.maskrcnn.train allows the user to train a Mask R-CNN model on

his own dataset, i.ann.maskrcnn.detect to use that model to detect features in

georeferenced files. Both modules are licensed under GNU GPL 2 license.

Along with these modules, a library of Mask R-CNN tools was designed. This

library is heavily based on a Python implementation of Mask R-CNN written by

Waleed Abdulla from Matterport, Inc.23 Matterport, Inc. published their implemen-

tation under the MIT License [2]. The MIT License is a license granting the permis-

sion to use the code, copy it, modify it, publish and even to sell it free of charge and

is compatible with GNU GPL 2 (or newer) [1] of GRASS GIS. Scripts in the lib-

rary are also under the MIT License and moreover, Waleed Abdulla himself agreed

with the usage and modifications of his code for purposes of the GRASS GIS usage.

The Matterport, Inc. Mask R-CNN implementation can be found in their GitHub

repository24.

The Matterport implementation of Mask R-CNN was chosen because of many

reasons. Besides its license compatibility, it is quite robust and ready for modificati-

ons leading to another implementation, so it saved thousands of lines of code. But

the main motivation behind its usage is that there is a plenty of people interested

in this project, proposing their ideas and testing it. And these people are experien-

ced in fields of computer vision and deep learning, so besides the base of GRASS

GIS users, there are always people from another field working with core functions of

the model. Even Abdulla himself is very active in answering people’s questions and

open-minded when discussing other people improvement proposals. I found it very

useful and consider it as the icing on the cake of open source software.

The following text will briefly describe the structure of the mentioned modules

together with their workflow. Because aspects of the Mask R-CNN architecture

were already mentioned in chapter 3.6.1, this facet will be a bit overshadowed and

the main focus will be given to the code implementation. The library will be also

introduced altogether with notes on my modifications connected with this thesis to

distinguish them from Abdulla’s code.
23https://matterport.com/about/
24https://github.com/matterport/Mask_RCNN
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5.1 Mask R-CNN library
The library consists of four Python modules:

• config.py: The configuration file for the model. It will be described in chapter

5.1.1.

• model.py: The core of the Mask R-CNN model. It builds up the model. It will be

described in chapter 5.1.2.

• parallel_model.py: Contains the ParallelModel class, a subclass of the standard

Keras model allowing the parallelized computation. Because this file is in the ori-

ginal state written by Waleed Abdulla without any modification, it will not be

described further in the text.

• utils.py: Utilities for the model. They will be described in chapter 5.1.3.

Files config.py, model.py, and utils.py will be described in the following text.

Because these files have quite ample inner documentation, only the most important

functions will be described.

5.1.1 config.py

In the Matterport implementation, config.py is the configuration class setting mo-

del attributes like the learning rate, RPN anchor scales and aspect ratios (described

in chapter 3.4.3). It is recommended not to use this class directly but to subclass

it; in the subclassed class, the user should override model attributes to fit his future

model.

Instead of overriding the ModelConfig class, I implemented an initialization

method. The __init__ method is automatically called when a class object is be-

ing constructed and allows to construct it in a specific state; in the ModelConfig

class, __init__ sets model attributes either to a default or a user-defined state.

The attribute value pass is made through parameters of i.ann.maskrcnn.train

and i.ann.maskrcnn.detect modules.

The ModelConfig class also contains the display method to display the model

attributes.
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5.1.2 model.py

model.py builds up the model using tools and features provided by Keras and Ten-

sorFlow. Purposes of classes and functions included in this file are diverse and can

be summed as follows:

• Building the ResNet backbone.

• Building the RPN.

• Building RoIAlign layers.

• Building head architectures.

• Building the complete Mask R-CNN model and putting everything together.

• Building detection layers.

• Defining loss functions.

• Miscellaneous functions and utilities connected to the model, like batch norma-

lization (see chapter 2.2.4), data formatting and generating (building up targets,

loading ground truth masks) or bounding boxes normalization.

The file is almost without any modification. The only modifications in compare

with Waleed Abdulla’s original code were made to handle errors that can raise during

masks loading; however, all of the functions and classes from model.py described

below were written by Waleed Abdulla, to see the modifications please take a look

at the code where the authorship is explicitly written.

ResNet backbone

The essential function for the building of the backbone architecture is the one called

resnet_graph. It follows the architecture described in chapter 2.3.6. Its workflow is

illustrated in pseudocode 5.1. Some features were simplified in the pseudocode and

it uses two functions identity_block and convolutional block. These features

will be described in the following text.

1 layers = intended layers

2 layers.add(zero padding 3x3)

3 layers.add(convolution 7x7)

49



CTU in Prague 5. IMPLEMENTATION

4 layers.add(batch normalization)

5 layers.add(ReLu)

6 layers.add(maximum pooling)

7 layers.add(convolutional block 64 x64x256)

8 layers.add(2 identity blocks 64 x64x256)

9 layers.add(convolutional block 128 x128x512)

10 layers.add(3 identity blocks 128 x128x512)

11 layers.add(convolutional block 256 x256x1024)

12 if architecture == ’resnet50 ’:

13 layers.add(5 identity blocks 256 x256x1024)

14 elif architecture == ’resnet101 ’:

15 layers.add(22 identity blocks 256 x256x1024)

16 return layers

Pseudocode 5.1: Building the ResNet backbone architecture

The real function does not return complete layers, but it returns them in stages

𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 as can be seen in pseudocode 5.8, where this function is called

build_resnet_backbone. Each of these stages represents the state of art before each

convolutional block addition, which is the last layer before changing dimensions of

inputs or outputs. It is important for the FPN as was mentioned in chapter 3.6.1

and illustrated in the model building in pseudocode 5.8.

Functions identity block and convolutional block are very similar and both

builds the bottleneck block illustrated in figure 2.12. The only difference is that

the convolutional block function also implements a 1×1 convolution in the short-

cut connection as it is necessary to change the shape of the input to the one used in

the block. The rest of their implementation is more or less the same and is illustra-

ted in pseudocode 5.2 (the convolution should be applied in the output connection

step). It uses filters given to each call of the function in the ResNet pseudocode.

1 original_input = original_input_tensor

2 block = intended block of layers

3 block.add(convolution 1x1)

4 block.add(batch normalization)

5 block.add(ReLu)

6 block.add(convolution 3x3)

7 block.add(batch normalization)

8 block.add(ReLu)

9 block.add(convolution 1x1)
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10 block.add(batch normalization)

11 block.connect_outputs(block , original_input)

12 block.add(ReLu)

13 return block

Pseudocode 5.2: identity_block

RPN

The RPN is built by two functions, build_rpn_model and rpn_graph. However,

these functions build only the model, e.g. the sliding window and its behaviour,

anchors are generated in utils.py as described in chapter 5.1.3. Even in this split

approach, it follows the idea from chapter 3.4.3.

Inputs for the rpn_graph function are a feature map, number of anchors per

location and anchor stride and returns anchor class logits, probabilities and boun-

ding boxes refinements. The workflow of rpn_graph is illustrated in pseudocode 5.3.

build_rpn_model creates a model which firstly feed the rpn_graph function and

then returns the above-mentioned values.

1 feature_map = input_feature_map

2 logits_number_of_filters = 2 * number of anchors per location

3 bbox_number_of_filters = 4 * number of anchors per location

4 shared_layer = convolution 3x3 on feature_map

5 rpn_class_logits = convolution 1x1 on shared_layer with

logits_number_of_filters

6 rpn_probabilities = softmax on rpn_class_logits

7 rpn_bbox_refinements = convolution 1x1 on shared_layer with

8 bbox_number_of_filters

9 return rpn_class_logits , rpn_probabilities , rpn_bbox_refinements

Pseudocode 5.3: rpn_graph

An important class for the RPN is the ProposalLayer class. It takes anchor pro-

babilities, bounding box refinements and anchors themselves as inputs, trims them

to smaller batches while taking into account top anchors and applies refinements to

the anchor boxes.

1 probs = anchor probabilities

2 deltas = anchor refinements

3 anchors = anchors

4 threshold = threshold for probabilities
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5 top_anchors = names_of_anchors_with_top_probs(probs , how_many=min

(6000, len(probs)))

6 probs_batch = batch_slice(probs , top_anchors)

7 deltas_batch = batch_slice(deltas , top_anchors)

8 anchors_batch = batch_slice(anchors , top_anchors)

9 boxes = apply_refinements(anchors_batch , deltas_batch)

10 proposals = [boxes , probs_batch]

11 proposals.apply_threshold(threshold)

12 return proposals

Pseudocode 5.4: ProposalLayer

RoIAlign

As was described already in chapter 3.6.1, RoIAlign is more or less the RoIPooling

algorithm from the chapter 3.4.2 without rounding. The implementation is briefly

sketched in pseudocode 5.5.

1 pool_shape = shape of regions

2 image_shape = shape of the image

3 boxes = list of RoIs

4 feature_maps = list of feature maps

5 h, w = compute_heights_and_widths_boxes(boxes)

6 image_area = image_shape [0] * image_shape [1]

7 roi_level = minimum(5, 4 + log2(sqrt(h * w) / (224 / sqrt(

image_area))))

8 pooled = list()

9 for level in range(2, 6):

10 roi_level_i = 1 where roi_level == level , 0 elsewhere

11 level_boxes = gather(boxes , indices=roi_level_i)

12 pooled.append(crop_and_resize(original_image=feature_maps[level

-2], what_process=level_boxes , shape=pool_shape , method=’

bilinear ’))

13 pooled.rearrange_to_match_the_order(boxes)

14 return pooled

Pseudocode 5.5: RoIAlign

It implements the RoIAlign algorithm on multiple levels of the feature pyramid

and in its enumerations of the 𝑙𝑜𝑔2 equation, it follows the ideas behind enumerations

in [27] and also applies the five-levels approach. The minimum choosing at line 7
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and the loop at line 9 the then follows the idea of using only layers two to five from

chapter 5.1.2.

Head architectures

As can be seen in figure 3.13 and was already described in chapter 3.6.1, the head

architecture is divided into two sections. The head architecture for bounding bo-

xes and class probabilities is handled by the fpn_classifier_graph function and

the mask architecture by the build_fpn_mask_graph.

fpn_classifier_graph takes as input RoIs, feature maps, pool size and a num-

ber of classes and returns classifier logits, probabilities and bounding boxes refi-

nements. build_fpn_mask_graph takes the same input but returns only a list of

masks.

1 rois = given regions of interest in normalized coordinates

2 feature_maps = list of feature maps from layers P2 , P3, P4, P5

3 pool_size = height of feature maps to be generated from ROIpooling

4 num_classes = number of classes

5 layers = list of keras layers

6 layers.add(ROIAlign(pool_size , input=[rois , feature_maps ]))

7 layers.add(convolution pool_size X pool_size)

8 layers.add(batch_normalization)

9 layers.add(ReLU)

10 layers.add(convolution 1x1)

11 layers.add(batch_normalizataion)

12 layers.add(ReLU)

13 shared = squeeze_to_one_tensor(output of layers)

14 class_logits = fully_connected_layer(input=shared ,

number_of_filters=num_classes)

15 probabilities = softmax(class_logits)

16 bboxes = fully_connected_layer(input=shared , number_of_filters =4 *

num_classes)

17 return class_logits , probabilities , bboxes

Pseudocode 5.6: fpn_classifier_graph

1 rois = given regions of interest in normalized coordinates

2 feature_maps = list of feature maps from layers P2 , P3, P4, P5

3 pool_size = height of feature maps to be generated from ROIpooling

4 num_classes = number of classes

5 layers = list of keras layers
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6 layers.add(ROIAlign(pool_size , input=[rois , feature_maps ]))

7 layers.add(convolution 3x3)

8 layers.add(batch_normalization)

9 layers.add(ReLU)

10 layers.add(convolution 3x3)

11 layers.add(batch_normalization)

12 layers.add(ReLU)

13 layers.add(convolution 3x3)

14 layers.add(batch_normalization)

15 layers.add(ReLU)

16 layers.add(convolution 3x3)

17 layers.add(batch_normalization)

18 layers.add(ReLU)

19 layers.add(deconvolution 2x2 with strides 2)

20 layers.add(convolution 1x1 with sigmoid as an activation function)

21 return layers

Pseudocode 5.7: build_fpn_maskk_graph

In the pseudocodes above, a ROIAlign object is added as the first one into layers.

This object was sketched in pseudocode 5.5.

Mask R-CNN model

The centrepiece of the model.py file is the MaskRCNN class which contains methods

to build the entire Mask R-CNN model by cobbling together different types of layers

and to use it for training or detection.

The workflow of the method build is illustrated in pseudocode 5.8 and follows

the architecture described in chapter 3.6.1. In the pseudocode, we can see that

the head architecture differs a bit in the training and in the detection. It is due to

the fact that we need loss values to be computed during the training, so we compute

them from detected values and target values (values based on known targets from

the training dataset).

1 C2 , C3 , C4, C5 = build_resnet_backbone ()

2 P5 , P4 , P3, P2 = build_top_down_fpn_layers(C2, C3, C4 , C5)

3 anchors = generate_anchors ()

4 rpn = build_rpn ()

5 rois = ProposalLayer(rpn , anchors)

6 if mode == ’training ’:

7 ground_truth_values = values from the training dataset
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8 bbox , classes = fpn_classifier(rois)

9 target_detection = DetectionTargetLayer(ground_truth_values)

10 mask = fpn_mask(rois from target_detection)

11 loss = loss_functions(target_detection , bbox , classes , mask)

12 model = [bbox , classes , mask , loss]

13 else:

14 bbox , classes = fpn_classifier(rois)

15 target_detection = DetectionLayer(bbox , classes)

16 mask = fpn_mask(rois)

17 model = [bbox , classes , mask]

18 return model

Pseudocode 5.8: Mask R-CNN.build

In the pseudocode, we can see few classes and functions. Although their purpo-

ses are quite evident, some of them can be seen in different pseudocodes. Function

build_resnet_backbone was already described in pseudocode 5.1, subsequent func-

tion build_top_down_fpn_layers is fairly straightforward process connecting la-

yers as in chapter 3.6.1, generate_anchors will be described in 5.12, build_rpn can

be seen in pseudocode 5.3, ProposalLayer in pseudocode 5.4, fpn_classifier re-

presents the fpn_classifier_graph from pseudocode 5.6 and fpn_mask is function

build_fpn_mask_graph from pseudocode 5.7.

5.1.3 utils.py

The most important part of the utils.py file is the Dataset class. It is also the only

part of the utils.py code that was modified for the needs of GRASS GIS usage

(the other changes are just minor refactorings).

The utils.py also contains a lot of functions. Only a few of them will be men-

tioned as all of them have sufficient documentation in the code.

Dataset

The Dataset class is the base class for dataset classes and images. It contains in-

formations about them including their names, identifiers and in the case of images

also paths to them.

One of the written methods is the one called import_contents, which feeds

the Dataset object with classes and images. The workflow is illustrated in pseudo-

code 5.9. Inputs for the method are:
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• List of classes names intended to be learned

• List of directories containing training images and masks

• Name of model

The add_class method in pseudocode 5.9 import a class into the Dataset ob-

ject dictionary altogether with a unique identifier; an important part is containing

the background as the first class with identifier 0 (in the pseudocode represented

simplifiedly by the saved_class dictionary). The add_images line is a loop over all

images with the predefined extension contained in a given directory importing them

altogether with their identifier and path into the Dataset object list.

1 classes = list of classes names intended to be learned

2 directories = list of directories containing training images and

masks

3 saved_classes = {’BG’: 0}

4 for i in classes:

5 add_class

6 for directory in directories:

7 add_images

Pseudocode 5.9: import_contents

Another important method written for the needs of the GRASS GIS modules is

the one called get_mask. The workflow of the method is illustrated in pseudocode

5.10. It returns an array containing boolean masks (True for the mask, False el-

sewhere) for each instance in the picture, an array of class identifiers corresponding

each instance in the masks array and an error message. If an error happened during

the process of masks loading, the load is skipped for all masks in the directory.

1 masks_list = list of mask files within the directory

2 first_mask = masks_list [0]

3 masks_array = array containing first_mask transformed to bool

4 classes_list = list containing class of the first mask

5 for new_mask in masks_list [1:]:

6 concat_mask = new_mask transformed to bool

7 concatenate masks_array with concat_mask

8 append class of new_mask into classes_list

9 if any problem happened:

10 return None , None , 1
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11 return masks_array , classes_list , 0

Pseudocode 5.10: get_mask

From the rest of Dataset class methods, one more will be mentioned. prepare

must be called before the usage of the Dataset object as it prepares it for use.

The preparation is done through setting object parameters like a number of clas-

ses, classes names and identifiers or number of images. This setting is based on

information got during the import_contents call.

Bounding boxes tools

Because bounding boxes are not required to be provided altogether with masks

in the training dataset, the function extract_boxes is used to compute bounding

boxes from masks. The function searches for the first and last horizontal and vertical

positions containing mask along all channels and returns them as an array. It means

that each pixel of the mask is contained in the returned horizontal-vertical bounding

box and it is also as tight as possible.

A function used to compute the IoU is called simply compute_iou. Its workflow

is illustrated in pseudocode 5.11. The handling of no intersection is also implemented

in the function, but for better reading, it is not included in the pseudocode.

1 predicted_box_area = area of predicted box

2 groundtruth_box_area = area of given mask

3 y1 = the bigger one from the upper coordinates of the predicted and

ground truth bboxes

4 y2 = the smaller one from the lower coordinates of the predicted

and ground truth bboxes

5 x1 = the bigger one from the left coordinates of the predicted and

ground truth bboxes

6 x2 = the smaller one from the right coordinates of the predicted

and ground truth bboxes

7 intersection = (x2 - x1) * (y2 - y1)

8 union = predicted_box_area + groundtruth_box_area - intersection

9 iou = intersection / union

10 return iou

Pseudocode 5.11: compute_iou

With the comparison of ground truth boxes and the predicted ones is connected

also the function box_refinement. It computes differences between ground truth
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and predicted coordinates of bounding boxes and returned them as the information

of the inaccuracy bounding box inaccuracy.

Pyramid anchors tools

The theory of scales and pyramids was already described in chapters 3.4.3 and 3.6.1.

Two functions are connected with the generation of the anchors at different levels of

a feature pyramid. The called one is generate_pyramid_anchors which loops over

scales. In the loop, the generate_anchors function is called to generate anchors of

ratios for a given set of scales.

The workflow of the generate_anchors function is illustrated in pseudocode

5.12. It takes scales and ratios of anchors, feature map shape and anchors and

feature map strides as inputs. It uses these inputs to compute heights and widths

of different anchors (can be seen in figure 3.6) and to compute a grid of anchors

centres. This grid together with their heights and widths defines the returned value,

anchors.

1 scales = array of scales

2 ratios = array of ratios

3 feature_map_shape = [height , width]

4 anchor_stride = stride of anchors on the featuremap

5 feature_stride = stride of the featuremap

6 heights = scales divided by a square root of ratios (each by each)

7 widths = scales multiplied by square root of ratios (each by each)

8 shifts_y = grid from 0 to shape [0] with stride anchor_stride

9 shifts_y = shifts_y * feature_stride

10 shifts_x = grid from 0 to shape [1] with stride anchor_stride

11 shifts_x = shifts_x * feature_stride

12 anchors_centers = stack of [shifts_y , shifts_x] in each combination

13 anchors_sizes = [heights , widths]

14 anchors = [anchors_centers - 0.5 * anchors_sizes , anchors_centers +

0.5 * anchors_sizes]

15 return anchors

Pseudocode 5.12: generate_anchors

5.2 i.ann.maskrcnn.train
Before a child can recognize an object, child’s parents must teach him how does

the object look like, what is its name, its common colours and other attributes.
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The same applies to an ANN - the model must be trained before it can detect or

predict objects. The training is done in the i.ann.maskrcnn.train GRASS GIS

module. The module is written in the file i.ann.maskrcnn.train.py. This file was

written as part of the practical section of the thesis. Its workflow is with few sim-

plifications illustrated in figure 5.1.

The flowchart contains few already-mentioned functions and classes, specifically

the ModelConfig class and its display method from chapter 5.1.1, the MaskRCNN

class from chapter 5.1.2 and the Dataset class and its methods import_contents

and prepare from chapter 5.1.3.

The last step in this flowchart, a method model.train(), has actually two di-

fferent forms depending on the usage of initial weights. The first form is applied

for a training from a scratch and trains all layers. The second one consists of three

smaller segments; firstly training layers 5 and higher, then fine-tuning layers 4 and

higher and the last and biggest segment is fine-tuning the whole architecture. It is

shown in the flowchart in figure 5.2 and the idea behind this behaviour is that it is

impractical to train the first layers including low-level features, while changes have

a huge impact on deeper levels and those features should be more or less the same

for any object.
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Figure 5.1: Flowchart of the i.ann.maskrcnn.train module, source: author
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Figure 5.2: Flowchart of different training branches inside the i.ann.maskrcnn.train

module, source: author

i.ann.maskrcnn.train also contains its own manual, help and a graphical user

interface (GUI) to help a user’s understanding of the module. The manual can be

seen in appendix A.2.

5.3 i.ann.maskrcnn.detect
In case we have a trained model, either trained by us or provided by someone else,

we can use it to detect features or objects in maps. Such maps have to be ras-

ter maps imported to GRASS GIS or georeferenced raster files. The output from

the module consists of a set of vector maps for each class. Although the model

is to some extent scale-invariant, it is recommended to provide rasters in simi-

lar resolution to the one used in training images. The GRASS GIS module pro-

viding detection is i.ann.maskrcnn.detect. The module is contained in the file

i.ann.maskrcnn.detect.py. This file can be seen as the second part of the practi-

cal section of the thesis. Its workflow is with some simplifications illustrated in figure

5.3.

As in the i.ann.maskrcnn.train module, the flowchart contains few already-

mentioned functions and classes, specifically the ModelConfig class from chapter

5.1.1 and the MaskRCNN class from chapter 5.1.2.
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However, more unmentioned functions can be seen in the flowchart. Function

parse_instances imports masks of detected instances into GRASS GIS (except for

images with external georeferencing; they are just saved into a temporary folder).

These masks are rasters of the same size as the input maps/images where mask

pixels have the value of class ID and the rest are zeros. In case the georeferencing

is external, a flag -e should be used and the function external_georeferencing

is called to copy georeferencing files to the directory with masks and import them

into GRASS GIS.

Rasters are then cropped and vectorized to get a separate vector map for each

class. The process of cropping and vectorizing consists of a bunch of GRASS GIS

modules and is illustrated in figure 5.4.

The illustrated process works only with detected classes (e.g. when no instance

of sties was detected, the loop corresponding to this class will be skipped). The term

vector_map used in the flowchart corresponds to the same string as the term

raster_map, but is used to emphasize the difference in the map type; it is also

the reason why we can use v.patch and g.remove with vector_maps - because

we already have the list of raster maps. The motivation behind the inner loop in

the flowchart is a detection made on multiple rasters; classes from them are extracted

and vectorized separately and then patched together for each class.
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Figure 5.3: Flowchart of the i.ann.maskrcnn.detect module, source: author

63



CTU in Prague 5. IMPLEMENTATION

Figure 5.4: Flowchart of the vectorization and classes extraction in

the i.ann.maskrcnn.detect module, source: author

The output of i.ann.maskrcnn.detect represents detected masks in a vector

form. The output type can be either areas or points (corresponding to a centre of

the mask).

i.ann.maskrcnn.detect also contains its own manual, help and a GUI to help

a user’s understanding of the module. The manual can be seen in appendix A.3.
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5.4 GRASS GIS patch
Although the support for Python 3 in GRASS GIS is a widely discussed topic and

although much effort has been done to for it, it is still incomplete. This lack is

handled in modules, but there is still a problem in setting the GRASS environment.

Thus, a patch and a recompilation of GRASS are needed to allow the user to set

the environment right. The patch decodes bytes-typed string into a UTF-8-typed

string and consists of the following diff. It can be seen in appendix A.1.
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6 Conclusion

The goal of the thesis was to find and implement a suitable ANN architecture into

GRASS GIS. Because ANNs and especially CNNs are shaking with the field of

computer vision, many GRASS GIS users and developers were interested in imple-

mentation options into this system.

The first part of the thesis was dedicated to a theoretical background behind

CNNs. It is followed by their various applications in the field of computer vision.

The second part of the thesis was dedicated to the implementation of Mask

R-CNN modules into GRASS GIS. It starts with a brief introduction of some of

the used tools and follows with explanations of the most important parts of the code.

The research flows in the background of the theoretical part and is briefly sum-

marized at the beginning of the chapter on the implementation.

Developed modules are ready to use and as can be seen in appendices, I already

made few tests. However, because the training costs a lot of time (at least few days

on a GPU machine, even weeks on a machine without GPU), only a limited amount

of tests was made. Modules were proposed for testing also to other GRASS GIS

developers and users and they found their results to be satisfying, sometimes even

for data, where other methods of classification in GRASS GIS failed (a shadow over

a field, different colours, etc.).

Developed modules are available from the GitHub repository25.

Even though modules work, there are still some possible extensions and even

some issues.

The biggest issue is in insufficient support for Python 3 in GRASS GIS. This

issue is solved by a patch attached as an e-attachment and should be solved in

GRASS GIS during this year.

Possible extensions are:

• Support more training data annotation structures. The current state works with

*.jpg images and *.png masks for each instance. The next step could be a JSON-

based structure used in MS COCO26.
25https://github.com/ctu-geoforall-lab-projects/dp-pesek-2018
26http://cocodataset.org/#format-data
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• Support training on images in GRASS GIS (using raster map as images, vector

areas as masks).

• Support more channels than three.

• Support more types of the backbone architecture. Now only ResNet 50 and ResNet

101 are supported.

• Diversify head architecture types. The current one is just very basic one.

• Implement image augmentation for the training.

The last thing worthy of mention is the high gear of progress. After only six

years of research in the field of CNNs, black is white and up is down. Everything

has changed and results unbelievable six years back are standards nowadays. Almost

every week, there is a new architecture. Even during work on this project, many

interesting architectures were proposed, to name a few, [7] or [22].

Developed modules are the first step of GRASS GIS in the direction to neural

networks. Many functions could be useful for developing more modules. It would

be pleasant to start a new trend and see more modules using CNNs and sharing

libraries. Unsupervised learning is an open call.
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List of abbreviations

AI Artificial intelligence

ANN Artificial neural network

CNN Convolutional neural network

DPM Deformable part model

FAIR Facebook AI research

FC Fully connected

FCN Fully convolutional network

FPN Feature pyramid network

GIS Geographic information system

GPL General public license

GRASS Geographic resources analysis support system

GUI Graphical user interface

ILSVRC ImageNet large scale visual recognition challenge

IoU Intersection over union

mAP Mean average precision

OGC Open geospatial consortium

R-CNN Region-based convolutional neural network

ReLU Rectified linear unit

ResNet Residual network

RNN Recurrent neural network

RoI Region of interest

RPN Region proposal network
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SVM Support vector machine

VOC Visual object classes
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A User manual

HTML pages in the style of common GRASS GIS user manuals were created. In

this chapter, they will be attached. Firstly, they will introduce Mask R-CNN tools

generally and then each module separately.

A.1 Mask R-CNN tools

DESCRIPTION

Mask R-CNN tools allow the user to train his own model and use it for a detection

of objects, or to use a model provided by someone else. It can be seen as a supervised

classification using convolutional neural networks.

The training is done using module i.ann.maskrcnn.train. The user feeds the mo-

dule with training data consisting of images and masks for each instance of intended

classes and gets a model. For difficult tasks and when not using a pretrained model,

the training may take even weeks; in case of a good pretrained model and powerful

PC with GPU support, the training could get good results after 1 day and even less.

When the user has a trained model, it can be used for the detection. Module

i.ann.maskrcnn.detect detects classes learned during the training and extracts from

given images vectors corresponding to detected objects. Objects can be extracted

either as areas or points.

DEPENDENCIES

i.ann.maskrcnn.* modules contain a lot of external python dependencies. To run

modules, it is necessary to have them installed. Modules use Python 3, so please

install Python 3 versions.

• NumPy

• Pillow

• SciPy

• Cython

• scikit-image
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• OSGeo

• TensorFlow

• Keras

• h5py

After dependencies are fulfilled, modules can be installed locally using g.extension
module:

g . ex tens i on extens i on=i . ann . maskrcnn u r l=path/ to / the / i . ann . maskrcnn/

f o l d e r

After submitting the thesis, modules will be added to GRASS GIS official Ad-
dOns. It should be possible to install them directly by this command:

g . ex tens i on extens i on=i . ann . maskrcnn

GRASS GIS PATCH

Unfortunately, python3 is not fully supported by GRASS GIS yet. To use envi-

ronment setting flags like –overwrite, the user has to update his GRASS GIS with

the following patch:

===================================================================

−−− l i b /python/ s c r i p t / core . py ( r e v i s i o n 72644)

+++ l i b /python/ s c r i p t / core . py ( working copy )

@@ −746 ,7 +746 ,7 @@

e l i f var . s t a r t sw i t h (b ’ opt_ ’ ) :

opt i ons [ var [ 4 : ] ] = va l

e l i f var in [ b ’GRASS_OVERWRITE’ , b ’GRASS_VERBOSE’ ] :

− os . env i ron [ var ] = va l

+ os . env i ron [ var . decode (" utf −8") ] = va l . decode (" utf −8")

e l s e :

r a i s e SyntaxError (" i n v a l i d output from g . par s e r : %s " %

l i n e )
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A.2 i.ann.maskrcnn.train

NAME

i.ann.maskrcnn.train - Train your Mask R-CNN network.

SYNOPSIS

i.ann.maskrcnn.train

i.ann.maskrcnn.train --help

i.ann.maskrcnn.train [-esbn] training_dataset=name [model=string]

classes=string[,string,...] logs=name name=string [epochs=value]

[steps_per_epoch=value] [rois_per_image=value]

[images_per_gpu=value] [gpu_count=value]

[mini_mask_size=value[,value,...]] [validation_steps=value]

[images_min_dim=value] [images_max_dim=value]

[backbone=string] [--overwrite] [--help] [--verbose] [--quiet] [--ui]

Flags:

-e

Pretrained weights were trained on another classes / resolution / sizes

-s

Do not use 10 % of images and save their list to logs dir

-b

Train also batch normalization layers (not recommended for small batches)

-n

No resizing or padding of images (images must be of the same size)

--overwrite

Allow output files to overwrite existing files

--help

Print usage summary

--verbose

Verbose module output

--quiet

Quiet module output
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--ui

Force launching GUI dialog

Parameters:

training_dataset=name [required]

Path to the dataset with images and masks

model=string

Path to the .h5 file to use as initial values

Keep empty to train from a scratch

classes=string[,string,...] [required]

Names of classes separated with ","

logs=name [required]

Path to the directory in which will be models saved

name=string [required]

Name for output models

epochs=value

Number of epochs

default: 200

steps_per_epoch=value

Steps per each epoch

default: 3000

rois_per_image=value

How many ROIs train per image

default: 64

images_per_gpu=value

Number of images per GPU

Bigger number means faster training but needs a bigger GPU

default: 1

gpu_count=value

Number of GPUs to be used

default: 1

mini_mask_size=value[,value,...]

Size of mini mask separated with ","
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To use full sized masks, keep empty.

Mini mask saves memory at the expense of precision

validation_steps=value

Number of validation steps

Bigger number means more accurate estimation of the model precision

default: 100

images_min_dim=value

Minimum length of images sides

Images will be resized to have their shortest side at least of this value

Has to be a multiple of 64

default: 256

images_max_dim=value

Maximum length of images sides

Images will be resized to have their longest side of this value

Has to be a multiple of 64

default: 1280

backbone=string

Backbone architecture

options: resnet50, resnet101

default: resnet101

DESCRIPTION

i.ann.maskrcnn.train allows the user to train a Mask R-CNN model on his own

dataset. The dataset has to be prepared in a predefined structure.

DATASET STRUCTURE

Training dataset should be in the following structure:

• dataset-directory

• imagenumber

• imagenumber.jpg (training image)

• imagenumber-class1-number.png (mask for one instance of class1)

• imagenumber-class1-number.png (mask for another instance of class1)
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• ...

• imagenumber2

• imagenumber2.jpg

• imagenumber2-class1-number.png (mask for one instance of class1)

• imagenumber2-class2-number.png (mask for another class instance)

• ...

The described structure of directories is required. Pictures must be *.jpg files

with 3 channels (for example RGB), masks must be *.png files consisting of numbers

between 1 and 255 (object instance) and 0s (elsewhere). A mask file for each instance

of an object should be provided separately distinguished by the suffix number.

NOTES

If you are using initial weights (the model parameter), epochs are divided into three

segments. Firstly training layers 5+, then fine-tuning layers 4+ and the last segment

is fine-tuning the whole architecture. Ending number of epochs is shown for your

segment, not for the whole training.

The usage of the -b flag will result in an activation of batch normalization la-

yers training. By default, this option is set to False, as it is not recommended to

train them when using just small batches (batch is defined by the images_per_gpu

parameter).

If the dataset consists of images of the same size, the user may use the -n flag to

avoid resizing or padding of images. When the flag is not used, images are resized

to have their longer side equal to the value of the images_max_dim parameter and

the shorter side longer or equal to the value of the images_min_dim parameter

and zero-padded to be of shape images_max_dim × images_max_dim. It results in

the fact that even images of different sizes may be used.

After each epoch, the current model is saved. It allows the user to stop the trai-

ning when he feels satisfied with loss functions. It also allows the user to test models

even during the training (and, again, stop it even before the last epoch).

EXAMPLES

Dataset for examples:
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• crops

• 000000

• 000000.jpg

• 000000-corn-0.png

• 000000-corn-1.png

• ...

• 000001

• 000001.jpg

• 000001-corn-0.png

• 000001-rice-0.png

• ...

Training from scratch

i . ann . maskrcnn . t r a i n t ra in ing_datase t=/home/ user /Documents/ crops

c l a s s e s=corn , r i c e l o g s=/home/ user /Documents/ l o g s name=crops

After default number of epochs, we will get a model where the first class is trained

to detect corn fields and the second one to detect rice fields.

If we use the command with reversed classes order, we will get a model where

the first class is trained to detect rice fields and the second one to detect corn fields:

i . ann . maskrcnn . t r a i n t ra in ing_datase t=/home/ user /Documents/ crops

c l a s s e s=r i c e , corn l o g s=/home/ user /Documents/ l o g s name=crops

The name of the model does not have to be the same as the dataset folder but

should be referring to the task of the dataset. A good name for this one (referring

also to the order of classes) could be also this one:

i . ann . maskrcnn . t r a i n t ra in ing_datase t=/home/ user /Documents/ crops

c l a s s e s=r i c e , corn l o g s=/home/ user /Documents/ l o g s name=rice_corn

Training from a pretrained model

We can use a pretrained model to make our training faster. It is necessary for

the model to be trained on the same channels and similar features, but it does not
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have to be the same ones (e.g. model trained on swimming pools in maps can be

used for a training on buildings in maps).

A model trained on different classes (use -e flag to exclude head weights):

i . ann . maskrcnn . t r a i n t ra in ing_datase t=/home/ user /Documents/ crops

c l a s s e s=corn , r i c e l o g s=/home/ user /Documents/ l o g s name=crops model=/

home/ user /Documents/models / bu i l d i n g s . h5 −e

A model trained on the same classes:

i . ann . maskrcnn . t r a i n t ra in ing_datase t=/home/ user /Documents/ crops

c l a s s e s=corn , r i c e l o g s=/home/ user /Documents/ l o g s name=crops model=/

home/ user /Documents/models / corn_rice . h5

Fine-tuning a model

It is also possible to stop your training and then continue. To continue in the training,

just use the last saved epoch as a pretrained model:

i . ann . maskrcnn . t r a i n t ra in ing_datase t=/home/ user /Documents/ crops

c l a s s e s=corn , r i c e l o g s=/home/ user /Documents/ l o g s name=crops model=/

home/ user /Documents/models /mask_rcnn_crops_0005 . h5
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A.3 i.ann.maskrcnn.detect

NAME

i.ann.maskrcnn.detect - Detect features in images using a Mask R-CNN model.

SYNOPSIS

i.ann.maskrcnn.detect

i.ann.maskrcnn.detect --help

i.ann.maskrcnn.detect [-esbn] images_directory=name

images_format=string model=string classes=string[,string,...]

[masks_output=name] [output_type=string] [--overwrite] [--help]

[--verbose] [--quiet] [--ui]

Flags:

-e

External georeferencing in the images folder

--overwrite

Allow output files to overwrite existing files

--help

Print usage summary

--verbose

Verbose module output

--quiet

Quiet module output

--ui

Force launching GUI dialog

Parameters:

band1=name

Name of raster maps to use for detection as the first band (divided by ",")

band2=name

Name of raster maps to use for detection as the second band (divided by ",")

band3=name

Name of raster maps to use for detection as the third band (divided by ",")
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images_directory=name

Path to a directory with images to detect

images_format=string

Format suffix of images

model=string [required]

Path to the .h5 file containing the model

classes=string[,string,...] [required]

Names of classes separated with ","

masks_output=name

Directory where masks will be saved

output_type=string

Type of output

options:area, point

default: area

DESCRIPTION

i.ann.maskrcnn.detect allows the user to use a Mask R-CNN model to detect features

in GRASS GIS raster maps or georeferenced files and extract them either as areas

or points. The module creates a separate map for each class.

NOTES

The detection may be used for raster maps imported in GRASS GIS or for external

files (or using both). To use raster maps in GRASS GIS, you need to pass them in

three bands following the order used during the training, e.g. if the training has been

made on RGB images, use band1=*.red</em, band1=*.green and band3=*.blue. To

pass multiple images, put more maps into band* parameters, divided by ",".

The detection may be used also for multiple external files. However, all files for

the detection must be in one directory specified in the images_directory parameter.

Even when using only one image, the module finds it through this parameter.

When detecting, you can use new names of classes. Classes in the model are not

referenced by their name, but by their order. It means that if the model was trained

with classes corn,rice and you use i.ann.maskrcnn.detect with classes zea,oryza, zea

areas will present areas detected as corn and oryza areas will present areas detected

as rice.
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If the external file is georeferenced externally (by a worldfile or an .aux.xml file),

please use -e flag.

EXAMPLES

Detect buildings and lakes and import them as areas

One map imported in GRASS GIS:

i . ann . maskrcnn . de t e c t band1=map1 . red band2=map1 . green band3=map1 . blue

c l a s s e s=bu i ld ing s , l a k e s model=/home/ user /Documents/ l o g s /

mask_rcnn_buildings_lakes_0100 . h5

Two maps (map1, map2) imported in GRASS GIS:

i . ann . maskrcnn . de t e c t band1=map1 . red ,map2 . red band2=map1 . green ,map2 .

green band3=map1 . blue ,map2 . b lue c l a s s e s=bu i ld ing s , l a k e s model=/home

/ user /Documents/ l o g s /mask_rcnn_buildings_lakes_0100 . h5

External files, the georeferencing is internal (GeoTIFF):

i . ann . maskrcnn . de t e c t images_directory=/home/ user /Documents/

geore ferenced_images c l a s s e s=bu i ld ing s , l a k e s model=/home/ user /

Documents/ l o g s /mask_rcnn_buildings_lakes_0100 . h5 images_format=t i f

External files, the georeferencing is external:

i . ann . maskrcnn . de t e c t images_directory=/home/ user /Documents/

geore ferenced_images c l a s s e s=bu i ld ing s , l a k e s model=/home/ user /

Documents/ l o g s /mask_rcnn_buildings_lakes_0100 . h5 images_format=png

−e

Detect cottages and plattenbaus and import them as points

i . ann . maskrcnn . de t e c t band1=map1 . red band2=map1 . green band3=map1 . blue

c l a s s e s=bu i ld ing s , l a k e s model=/home/ user /Documents/ l o g s /

mask_rcnn_buildings_lakes_0100 . h5 output_type=point
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B Examples

In the following chapter, few results obtained during tests of modules will be presen-

ted. Firstly a module trained to detect football and tennis pitches, then a module

trained to detect buildings.

B.1 Pitches
The model for detecting football and tennis pitches was trained on a Debian server

with 16 CPUs Intel Xeon E5540 (8 CPUs were in the use) and with memory 49 GBs.

The processor base frequency of Intel Xeon E5540 is 2.53 GHz and the cache is 8 MB.

The training used a model trained on the MS COCO dataset as a pre-trained model

and the training took one month reaching loss function of 0.9568.

The training dataset consisted of Bing maps27 tiles with zoom level 18 (resolution

0.6 m per pixel) and masks corresponding to above-mentioned pitches. The training

dataset consisted of almost 54000 images (plus masks).

When the training was stopped, the loss function was about 0.86.

Detection of pitches worked very well on images with the same shape and reso-

lution (0.6 m/pixel) as training images (figures B.1 and B.2). For images with worse

resolution (1.19 m/pixel), the detection sometimes contained a bit of background for

tennis pitches (figures B.4). However, there was a problem in detecting football pit-

ches, as the model sometimes detected wrongly also other green fields (figure B.3).

This problem is considered to be caused by the fact that training data contained

also amateur football pitches consisting only of a rectangular green field and two

goals.
27https://www.bing.com/maps
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Figure B.1: An example of the detection on a picture containing football pitches

Figure B.2: An example of the detection on a picture containing tennis pitches
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Figure B.3: An example of the detection on a picture containing football pitches

Figure B.4: An example of the detection on a picture containing football and tennis

pitches

The permission to the usage of Bing map tiles was given to me specifically for

purposes of this thesis. Unfortunately, the permission to share the training dataset

in e-attachments could not be given to me.
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B.2 Buildings
Another model was trained to recognize buildings. Training data were from the same

source, with the same resolution, but this time only 2400 images (plus masks) was

used.

The training ran for 2 days on a machine using NVIDIA Tesla K80 GPU. NVIDIA

Tesla K80 has memory 24 GBs, effective clock speed 2.5 Hz with 875 MHz boost

clock and 560 MHz core clock. The training ran from the scratch.

Results are worse than in the pitches detection. In the figure from the last epoch,

figure B.10, we can see a tennis pitch and road detected as a building, the building

with a black roof was not recognized and only a small part of the tribune was

detected. These problems may be caused by some of the following effects:

• More than twenty times smaller dataset.

• Bigger diversity in building types (compared to tennis pitches)

• Training from a scratch and for a shorter time

Even though the training took a shorter time, it reached much smaller loss

function (0.5019 for the last epoch) than in the pitches training. A figure of de-

tection with this loss function is shown in figure B.10.

To illustrate a progress of the training, the same area will be shown also during

older epochs with loss function depicted in their captions. The progress shows also

interesting moment, where an epoch with loss function 0.6280 (figure B.9) seems

to behave better than the one with loss function 0.5019 (it detects also the small

building on the left and a piece of a building at the bottom of the picture and it

does not detect the street on the right; the tribune was detected as two individual

buildings).
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Figure B.5: An example of the detection; epoch 1, loss function 35.0102

Figure B.6: An example of the detection; epoch 10, loss function 5.8694
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Figure B.7: An example of the detection; epoch 50, loss function 1.3638

Figure B.8: An example of the detection; epoch 100, loss function 0.8245
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Figure B.9: An example of the detection; epoch 150, loss function 0.6280

Figure B.10: An example of the detection; epoch 180, loss function 0.5019
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C E-attachments

E-attachment of this thesis consists of following features:

• The source code of GRASS GIS modules and library

• GRASS GIS patch for Python 3
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