
doc. Ing. Hana Kubátová, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 31, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Pitch Shifting of Audio Signals in Real Time Using STFT on a Digital Signal Processor

 Student: Jan Onderka

 Supervisor: Dr.-Ing. Martin Novotný

 Study Programme: Informatics

 Study Branch: Computer engineering

 Department: Department of Digital Design

 Validity: Until the end of summer semester 2018/19

Instructions

Develop a program that will shift the spectrum of a stereo audio signal. Program will be implemented in
ADSP BF548 EZ-KIT design kit. Specifically, the signals on the stereo input of the kit shall be transformed
into higher or lower tones (e.g. by one, two or three octaves) and the transformed signals shall be
outputted on its stereo output. The left and right channel shall be processed independently. Output signals
should have a low distortion and a low latency with respect to the input. If possible, compare your solution
with other known solutions with respect to distortion, latency, etc.

References

Will be provided by the supervisor.





Bachelor’s thesis

Pitch Shifting of Audio Signals in Real
Time Using STFT on a Digital Signal
Processor

Jan Onderka

Department of Digital Design
Supervisor: Dr.-Ing. Martin Novotný

May 15, 2018





Acknowledgements

I would like to thank Dr.-Ing. Martin Novotný for supevising my bachelor
thesis, prof. Ing. Roman Čmejla, CSc. for insights into the phase vocoder
algorithm and Ing. Radek Sedláček, Ph.D. for lending me a digital signal
processor kit.

I would also like to thank my family for their support during my studies
and work on the bachelor’s thesis.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended.
In accordance with Article 46(6) of the Act, I hereby grant a nonexclusive
authorization (license) to utilize this thesis, including any and all computer
programs incorporated therein or attached thereto and all corresponding
documentation (hereinafter collectively referred to as the “Work”), to any and
all persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity.

In Prague on May 15, 2018 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
© 2018 Jan Onderka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Onderka, Jan. Pitch Shifting of Audio Signals in Real Time Using STFT on
a Digital Signal Processor. Bachelor’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2018.



Abstrakt

Ćılem této práce je implementace pitch shifteru, tedy měniče výšky zvuku,
stereofonńıho zvukového signálu v reálném čase s požadavkem na ńızké zkresleńı
a ńızkou latenci. Jsou zváženy r̊uzné algoritmy a je vybrán algoritmus Ocean
založený na posunu koš̊u krátkodobé Fourierovy transformace. Je opravena
chybná rovnice v popisu algoritmu. Algoritmus je implementován v reálném
čase na př́ıpravku digitálńıho signálového procesoru ADSP BF548 EZ-KIT
a jeho výstupy jsou porovnány s daľśımi pitch shiftery. Je zjǐstěno, že imple-
mentace funguje téměř stejně dobře jako komerčńı pitch shifter. Je prezentován
závěr, že daľśı radikálńı zlepšeńı algoritmů pro pitch shifting založených na
krátkodobé Fourierově transformaci neńı možné, jelikož se již přibližuj́ı prin-
cipiálńım omezeńım transformace.

Kĺıčová slova Pitch shifting, č́ıslicové zpracováńı signálu, reálný čas, ńızká
latence, Blackfin, BF548, krátkodobá Fourierova transformace, STFT, win-
dowing, váhovaćı okno, Overlap and Add, OLA, Constant Overlap and Add,
COLA, banka filtr̊u, SOLA, Synchronous Overlap and add, PSOLA, Pitch
Synchronous Overlap and Add, algoritmus Rollers, phase vocoder, algoritmus
Ocean

vii



Abstract

The goal of this work is to implement a pitch shifter of a stereophonic audio
signal in real time with a requirement of low distortion and low latency. Basic
principles of audio processing are explained. Various pitch shifting algorithms
are described and considered, resulting in selection of the Ocean algorithm
based on Short time Fourier transform bin shifting. An erroneous equation in
the algorithm description is fixed. The algorithm is implemented in real-time
on a digital signal processor kit ADSP BF548 EZ-KIT and its outputs are
compared to other pitch shifters. The implementation is found to perform
almost as well as a commercial pitch shifter. It is concluded that further
drastic improvements of Short time Fourier transform based pitch shifters are
impossible as they are approaching the fundamental limits of the transform.

Keywords Pitch shifting, digital signal processing, real time, low latency,
Blackfin, BF548, Short time Fourier transform, STFT, windowing, window
function, Overlap and Add, OLA, Constant Overlap and Add, COLA, filter
bank, SOLA, Synchronous Overlap and add, PSOLA, Pitch Synchronous
Overlap and Add, Rollers algorithm, phase vocoder, Ocean algorithm

viii



Contents

Citation of this thesis . . . . . . . . . . . . . . . . . . . . . . . vi

Introduction 1

1 Goals 3
1.1 Pitch shifted sound quality . . . . . . . . . . . . . . . . . . . . 3
1.2 Pitch shifting latency . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Stereophonic field preservation . . . . . . . . . . . . . . . . . . 3
1.4 Implementation feasibility . . . . . . . . . . . . . . . . . . . . . 4

2 Principles of audio processing taken into design considerations 5
2.1 Physical aspects of sound . . . . . . . . . . . . . . . . . . . . . 5
2.2 Frequency range of human hearing . . . . . . . . . . . . . . . . 5
2.3 Human pitch perception . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Signal sinusoids’ amplitude and phase consideration . . . . . . 8
2.5 Gabor uncertainity principle . . . . . . . . . . . . . . . . . . . . 8

3 Spectrum separation and recombination techniques 11
3.1 Discrete Fourier transform (DFT) . . . . . . . . . . . . . . . . . 11

3.1.1 Explanation of Discrete Fourier transform for real-valued
time-domain signals . . . . . . . . . . . . . . . . . . . . 12

3.2 Fast Fourier transform (FFT) . . . . . . . . . . . . . . . . . . . 14
3.3 Bandpass filter bank . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Short time Fourier transform (STFT) . . . . . . . . . . . . . . 15

3.4.1 Window function . . . . . . . . . . . . . . . . . . . . . . 16
3.4.2 Spectrogram . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Overlap-Add (OLA) . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.1 Constant Overlap-Add criterion (COLA) . . . . . . . . 19

4 Analysis of real-time pitch shifting algorithms 21
4.1 Time domain algorithms . . . . . . . . . . . . . . . . . . . . . . 21

ix



4.1.1 Synchronous Overlap and Add (SOLA) . . . . . . . . . 21
4.1.2 Time Domain Pitch Synchronous Overlap and Add (TD-

PSOLA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 Rollers algorithm . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Frequency domain algorithms . . . . . . . . . . . . . . . . . . . 26
4.2.1 Standard phase vocoder . . . . . . . . . . . . . . . . . . 26
4.2.2 Improved phase vocoder . . . . . . . . . . . . . . . . . . 27
4.2.3 Frequency Domain Pitch Synchronous Overlap and Add

(FD-PSOLA) . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.4 Ocean algorithm . . . . . . . . . . . . . . . . . . . . . . 27

5 Selection of a suitable pitch shifting algorithm for BF548
real-time processing 31

6 Analog Devices Blackfin platform, tools and libraries 33
6.1 Blackfin processor architecture . . . . . . . . . . . . . . . . . . 34

6.1.1 Blackfin BF548 . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 VisualDSP++ integrated development environment . . . . . . . 35
6.3 Used Analog Devices libraries . . . . . . . . . . . . . . . . . . . 36

6.3.1 Device Drivers and System Services . . . . . . . . . . . 36
6.3.2 Digital signal processing library . . . . . . . . . . . . . . 37

7 Ocean algorithm pitch shifter implementation on BF548 EZ-
KIT 39
7.1 Common definitions . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Peripherial handling . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2.1 Audio codec interfacing . . . . . . . . . . . . . . . . . . 42
7.2.2 Input and output circular buffer design . . . . . . . . . 43

7.3 Pitch transformation . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3.1 Transformation arrays . . . . . . . . . . . . . . . . . . . 45
7.3.2 Core pitch transformation implementation . . . . . . . . 45
7.3.3 Fast Fourier transform implementation considerations . 46

7.4 Audio frame processing . . . . . . . . . . . . . . . . . . . . . . 46
7.4.1 Windowing implementation . . . . . . . . . . . . . . . . 47
7.4.2 Amplitude demodulation computation . . . . . . . . . . 47

7.5 Main processing routines . . . . . . . . . . . . . . . . . . . . . . 48

8 Achieved performance and testing 49
8.1 Testbench setup . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.3 Test sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.4 Sound latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.5 Stereophonic field preservation . . . . . . . . . . . . . . . . . . 54
8.6 Sound quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

x



8.6.1 Detuning and popping artifacts . . . . . . . . . . . . . . 54
8.6.2 Amplitude modulation and oscillating noise artifacts . . 57

8.7 Ocean algorithm and implementation evaluation . . . . . . . . 58

Conclusion 61

Bibliography 63

A Glossary 67

B Contents of the enclosed microSD card 69

xi





List of Figures

1.1 Analog Devices BF548 EZ-KIT . . . . . . . . . . . . . . . . . . . . 4

2.1 First four harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Sum of first four harmonics . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Periodic von Hann window . . . . . . . . . . . . . . . . . . . . . . 17
3.2 High frequency resolution spectrogram of signal transition . . . . . 18
3.3 Low frequency resolution spectrogram of signal transition . . . . . 18
3.4 Sum of the square of von Hann windows . . . . . . . . . . . . . . . 19

4.1 Principle of Synchronous Overlap and Add . . . . . . . . . . . . . 22
4.2 Principle of Pitch Synchronous Overlap and Add analysis . . . . . 24
4.3 Principle of Pitch Synchronous Overlap and Add synthesis . . . . . 25
4.4 The principle of Rollers algorithm . . . . . . . . . . . . . . . . . . 26

6.1 Blackfin BF548 digital signal processor . . . . . . . . . . . . . . . . 33
6.2 Blackfin core architecture . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 A typical VisualDSP++ session . . . . . . . . . . . . . . . . . . . . 35

7.1 Used features of Analog Devices BF548 EZ-KIT . . . . . . . . . . 40
7.2 Analog Devices BF548 EZ-KIT board architecture . . . . . . . . . 42
7.3 Chain of buffers as seen by codec driver . . . . . . . . . . . . . . . 44
7.4 Array of buffers as seen by processing algorithm . . . . . . . . . . 45

8.1 Implementation testbench . . . . . . . . . . . . . . . . . . . . . . . 50
8.2 Spectrograms of bass guitar pitch shifted with multiplier 1

2 . . . . 55
8.3 Spectrograms of bass guitar pitch shifted with multiplier 1

2 , continued 56
8.4 Pitch shifted sinusoid . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.5 Noise pitch shifted with multiplier 3

2 spectrograms . . . . . . . . . 60

xiii





List of Tables

8.1 Settings of configurations used for testing and maximum overlap
factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.2 Description of sounds used for testing . . . . . . . . . . . . . . . . 53
8.3 Latency as a function of analysis size and overlap . . . . . . . . . . 53

xv





Introduction

Changing the pitch of audio signals without changing the speed of their playback
is one of the more complex areas of digital signal processing. Since humans
perceive sound as harmonically related (frequencies being consonant with other
frequencies that are their multiples and dissonant with frequencies that are
not), it is not possible to simply perform a linear shift of all audio frequencies;
this results in changing the harmonic relationships of frequencies and produces
audible dissonances that worsen with larger shift.

This results in need of non-linear processing techniques which are usually
computationally expensive. Such computational costs are critical when per-
forming pitch shifting in real time, where the amortised time of processing
of the incoming audio sample must be smaller than sample duration. It is
also important to consider latency, i.e. the time delay between the input and
the pitch-shifted signal. Delays between otherwise similar signals may cause
unintended distortion of their sum and/or confuse the listener.

Fortunately, the quickly decreasing costs of computing have opened a path
to inexpensive digital processing units powerful enough to perform pitch shifting
and related transforms in real time with low distortion and latency. While
the underlying theoretical algorithms are usually academically published and
well-known, as well as implemented and used in digital audio workstation
software for personal computers, I have found no non-commercial real-time
implementation of a general pitch shifting algorithm on an embedded processor.

There is, however, a large number of pitch shifting pedals for guitar players
which use embedded hardware to pitch shift. Many of them rely on heuristics
(tracking) to detect guitar notes and chords and synthesise a new signal.
This results in a number of disadvantages: the tracking can fail and produce
different notes/pitches, false negatives or false positives; the output signal
may have a different frequency content (timbre) than the equivalent pitch-
shifted signal; the pedal will probably produce wildly varying results for signals
containing something else than the intended instrument, e.g. different musical
instruments, human voice, other naturally occuring or synthesised sounds and

1



Introduction

their combinations. Some of the pitch shifting pedals use general pitch shifting
algorithms, but the exact used algorithms and implementations are closely
guarded secrets of their manufacturers.

Knowing this, I have decided to develop a real-time general audio pitch
shifter implementation on an inexpensive digital processing unit. After consid-
ering various hardware options and approaches, noted in the Analysis section,
I have decided to base my solution on an Analog Series Blackfin 5xx series
digital signal processor (DSP). For development, I have used a BF548 EZ-
KIT evaluation kit that contains a high-end Blackfin BF548 processor and
an AD1980 audio codec for signal input and output. While the BF548 pro-
cessor is fairly expensive, the Blackfin DSP family consists of closely-related
processors varying mostly in their memory sizes and peripherials; a low-cost
processor and audio codec might be selected for mass-production of a potential
product.

2



Chapter 1
Goals

The main goal of my work is to analyse existing pitch shifting algorithms, select
an appropriate one and create a program for the selected BF548 EZ-KIT that
will create a high-quality pitch-shifted version of the incoming stereophonic
audio signal in real time. Upon a closer inspection, this neatly decomposes
into four separate concerns.

1.1 Pitch shifted sound quality

Since there are no constraints on the type of incoming audio signal (e.g. vocals
or a specific type of instrument), my program should be able to accurately
pitch shift all of them. While doing this perfectly is an impossible task in
real-time processing, I shall select an algorithm that does not unacceptably
degrade for a worst-case input, maintaining a good quality for all cases.

1.2 Pitch shifting latency

The most obvious problem that separates real-time pitch shifting algorithms
from their non-time-constrained counterparts is that of latency. Empirical
research came to a conclusion that latencies of up to 20-30 milliseconds of
audio delay in the whole signal chain are acceptable for listeners [1]; I shall
therefore select an algorithm that allows processing with a latency lower than
that.

1.3 Stereophonic field preservation

Humans are very discerning about the stereophonic field created when a similar
but slightly different signal (latency, phase, amplitude) reaches each ear,
creating a sense of sound directionality. As this can be critical in musical
context, I shall select an algorithm that preserves this stereophonic field.

3



1. Goals

1.4 Implementation feasibility

The selected algorithm must be feasible to implement on the BF548 EZ-KIT.
This means it cannot use more computing and memory resources than are
actually available.

Figure 1.1: Analog Devices BF548 EZ-KIT
The kit on which a real-time pitch shifting algorithm is to be implemented.

Its functions, connections and peripherials useful for implementation shall be
discussed later in chapter 7.

4



Chapter 2
Principles of audio processing

taken into design considerations

Human sound perception is not completely understood despite the extensive
research undertaken. General concepts have been empirically identified and
successfully used for different areas of audio processing, however [2, p. 209]. I
shall go over various considerations that have to be taken in mind for digital
signal processing of audio data.

2.1 Physical aspects of sound

“Sound is a waveform consisting of density variations in an elastic medium,
propagating away from the source. The propagation medium can be air, water,
or a solid material.” ([3, p. 55])

What allows modern audio signal processing is the fact that while sound is
a density variation waveform, it is easily converted into and from audio signals.
By an audio signal, a variation of electrical potential is conventionally meant.
Various electroacoustic transducers, e.g. microphones and speakers, can be
used for the conversion [3, p. 55, 68]. As the task is just to process an incoming
stereophonic audio signal, outputting another one, a further discussion of the
various transducers is not necessary. A special interest remains, however, in
the manner of how human brain processes sound; this specifies the desired
behaviour and limits of the pitch shifting designs.

2.2 Frequency range of human hearing

While the exact hearing range varies with each human and changes with age,
the commonly stated frequency range of human hearing is from 20 Hz to 20 kHz
[3, p. 57]. It should be noted that the perceived loudness of tones decreases
at the ends of frequency range, facilitating a smooth falloff of perceived tones

5



2. Principles of audio processing taken into design
considerations

rather than an abrupt cutoff [2, p. 211]. The high end of the frequency
range is particularly important for consideration. Due to the Nyquist-Shannon
sampling theorem, one is able perfectly reconstruct a digitally sampled signal
with the highest frequency B if and only if the sampling frequency fs satisfies
the equation [4, p. 36]

fs > 2B

. This means all frequencies in human hearing range can be digitally sampled
with sampling rate fs > 40 kHz. However, frequencies above fs present in the
original signal will cause aliasing if they are not attenuated below the sensitivity
of the system. This necessitates a low-pass filter added before sampling [4,
p. 34-36]. Such a filter is also needed for a conversion back to analog signal
for a similar reason. As an ideal low-pass filter is noncausal and cannot be
implemented in real time due to its frequency window being unbounded in
time [4, p. 83], the sample rate chosen has to be higher, typically 44.1 Hz or
48 kHz.

2.3 Human pitch perception

Various human pitch perception models and theories have been proposed, with
experiments on the topic being seemingly inconclusive and often contrary [2,
p. 228].

Despite that, the basic understanding of human pitch perception, put
together by Hermann von Helmholtz in his influential On the Sensations of Tone
as a Physiological Basis for the Theory of Music[5], is suitable for most purposes
including this one. To summarise his basic findings, pitched instruments
basically produce a signal consisting of a sum of sinusoids with different
frequencies: a lowest frequency called the first or fundamental frequency and
its multiples, called harmonics or overtones. Upon sound wave perception by
the auditory system in ear, the human brain tries to find a harmonic spectrum of
the incoming frequencies. If it finds such a spectrum, it responds by producing
a sensation of pitch based on the corresponding fundamental frequency and a
timbre corresponding to the relationship between the fundamental frequency
and harmonics [5][6, p. 15-21, 35]. Modern pitch perception models usually
roughly concur with this interpretation of pitch perception, differing in some
less important phenomena not explained by this basic model [2, p. 216-229].

It should be noted that while pitch is a subjective psychoacoustical attribute
of sound, in conventional cases, its progression is perceived approximately
logarithmically. That is, if a human hears a sinusoidal 100 Hz and then
a sinusoidal 400 Hz tone, the human will classify the interval between them
as a double of an interval between a sinusoidal 100 Hz and a sinusoidal 200
Hz tone. This forms the basis of contemporary Western music that almost
exclusively uses 12-tone equal temperament (12-TET), which defines the
smallest interval between two frequencies corresponding to pitches, a semitone,

6



2.3. Human pitch perception

1* f

2* f

3* f

4* f

Figure 2.1: First four harmonics
Four harmonically related sinusoids. Considering the first wave to be the

fundamental, the lower waves are its second harmonic, third harmonic and
fourth harmonic respectively. They all have a multiplicative relationship both

to the fundamental and other harmonics.
The basic sinusoids are represented by solid lines. Dashed lines represent their
inverted amplitude counterparts, which can also be made by moving the basic

sinusoids phase by −π/2.
Inspired by [5, p. 46 fig. 17].

to have a ratio of 12√2. To arrrive at a definition of pitch shifting consistent
with the contemporary Western music, I shall also treat pitch as a logarithm
of frequency.

The multiplicative relationship between frequencies forms a basis of a strict
pitch shifter requirement. In order not to change the perception of pitch
difference (i. e. the multiplicative relationship between frequencies), all of the
frequencies in the audio signal can only be multiplied by the same multiplier.
In other words, if Fin is the input frequency, Fout is the output frequency and
the following equation holds true for all Fin frequencies in the input audio
signal:

Fout = k ∗ Fin,

then the output signal is a perfectly pitch shifted input signal by the multiplier
k.

7



2. Principles of audio processing taken into design
considerations

Figure 2.2: Sum of first four harmonics
Four harmonically related sinusoids from Figure 2.1 added together, with their

amplitude divided by 4 to provide a comparison to a single sine wave.

2.4 Signal sinusoids’ amplitude and phase
consideration

While a pitch shifting process would seem to be straightforward from the
preceding equation, a real-world audio signal poses a number of complications.
Consider the classic sinusoid equation:

y(t) = A ∗ sin(2πft+ φ)

Amplitude A, frequency f and phase φ are held constant in this equation.
Note that this does not provide an exact mapping to real-world signals as these
are created by (or at least can be thought of as) composing various products
of sinusoidal waves with varying amplitude modifiers.

Humans are very sensitive not only to the frequency content of the signal,
but the amplitudes of various frequency components as well. This means it is
important to preserve the amplitudes of the pitch shifted composing waves.
While humans are not very sensitive to phase (von Helmholtz’s research even
points to absolute insensivity [5, p. 127]), it is important for φ to be held
constant, that is, to maintain constant phase of the pitch shifted sinusoids
where the input sinusoids’ phase is held constant: otherwise, the equation does
not result in y(t) forming a single, perfect sinusoid.

2.5 Gabor uncertainity principle

Due to the Gabor uncertanity, a fundamental property of signals related to the
Heisenberg uncertainity principle, it is not possible to exactly localise a signal
both in frequency and in time. For a general signal, the standard deviations of
time and frequency estimates ot and of must follow this equation [7]

σtσf ≥
1

4π ≈ 0.08 cycles = 80 ms ∗Hz

This means no pitch shifting algorithm using localisation of signal in real
time can achieve perfect output for a general signal. It is, however, possible to
balance the time and frequency resolution. If it is possible to make predictions

8



2.5. Gabor uncertainity principle

about the signal, the output can be also improved. A pitch shifting algorithm
without the need to localise the signal could overcome this limitation; however,
no such general algorithm is known.

9





Chapter 3
Spectrum separation and
recombination techniques

During my studies of known pitch shifting algorithms giving usable results
in real time, I have realised that most of them, barring the Synchronous
Overlap and Add (SOLA) family of algorithms (which shall will be discussed
in subsection 4.1.1 and subsection 4.1.2), have a common pipeline:

1. Separate the signal into spectral components centered on different fre-
quencies.

2. Frequency shift them to a multiple of the center frequency (with emphasis
on preserving constant phase as discussed in section 2.4).

3. Recombine them to get the output signal.

I have found it wise to discuss the common spectrum separation and recombi-
nation techniques separately before explaining the algorithms built on top of
them.

3.1 Discrete Fourier transform (DFT)

The Discrete Fourier transform is the fundamental tool that enables thinking
about a discrete signal in terms of sinusoidal waves which describe it. It is
a sequence of complex numbers X(b) defined as [4, p. 53]

X(b) =
N−1∑
n=0

x(s)e−j2πbs/N .

Let me enlighten the readers about the useful properties and intuitive meaning
of this incredibly important transformation tool.

First of all, the input signal sequence x(s) is a sequence of N real or
complex elements x(0), x(1), . . . , x(N − 1) (though real-valued signals are

11



3. Spectrum separation and recombination techniques

typical in the real world). Its Discrete Fourier transform, the sequence X(b),
is a complex-valued sequence of elements X(0), X(1), . . . , X(N − 1) .

The most important properties of DFT are its linearity, which can be
expressed as

c1x1(s) + c2x2(s) results in−−−−−→ c1X1(b) + c2X2(b)

, where c1 and c2 are constant, and its invertibility using the Inverse Discrete
Fourier transform (IDFT)

x(s) DFT−−−→ X(b) IDFT−−−→ x(s),

where the Inverse Discrete Fourier transform is defined as

x(s) = 1
N

N−1∑
n=0

X(b)ej2πbs/N

Note that the only difference from the DFT is the division by N (will be
explained later) and a missing minus sign in the exponent [4, p. 75].

The invertibility, assured by the proven Fourier invertibility theorem, means
that signals can be represented in its Discrete Fourier transform form without
loss of data. They can also be manipulated in this form (called the frequency
domain for a time domain signal, that is, in discrete processing, a sequence
where the elements are positioned linearly according to the time of their
capture) and then converted back.

3.1.1 Explanation of Discrete Fourier transform for
real-valued time-domain signals

For better understanding of the Fourier transform, particularly as it applies to
real-valued time-domain signals, consider the Euler’s formula:

ejx = cosx+ j sin x

Using the Euler’s formula, the Fourier transform can be represented by
an equivalent equation to the standard exponential form:

X(b) =
N−1∑
s=0

x(s)
[
cos

(
−2π b

N
s

)
+ j sin

(
−2π b

N
s

)]
Since cosine is an even function and sine is an odd function, the signs of

their arguments can be propagated to arrive to the rectangular form of discrete
Fourier transform [4, p. 54]:

X(b) =
N−1∑
s=0

x(s)
[
cos

(
2π b
N
s

)
− j sin

(
2π b
N
s

)]

12



3.1. Discrete Fourier transform (DFT)

It is now a bit clearer what is going on. I shall now consider x(t) to be
real-valued and split the X(b) into two real sequences, X(b)real and X(b)imag,
representing the real and imaginary parts respectively. Due to the trigonometric
functions being real-valued and x(s) now considered also real-valued, only the
cosine part will yield real outputs and only the sine part will yield imaginary
outputs:

X(b)real =
N−1∑
s=0

x(s) cos
(

2π b
N
s

)

X(b)imag = j
N−1∑
s=0
−x(s) sin

(
2π b
N
s

)
In the next step, I shall force the inner computations into separate sequences

and name them Mreal and Mimag.

X(b)real =
N−1∑
s=0

Mreal(b, s)

X(b)imag = j
N−1∑
s=0

Mimag(b, s)

Mreal(b, s) = x(s) cos(2π b
N
s) = x(s) sin

(
2π b
N
s+ π

2

)
Mimag(b, s) = −x(s) sin(2π b

N
s) = x(s) sin

(
2π b
N

+ π

)
Let me refresh the reader’s memory with the function of a sinusoid:

y(t) = A ∗ sin(2πft+ φ)
It is apparent that the sequences Mreal and Mimag can be rephrased like

this: they multiply the input signal with argument s by a sinusoid with unit
amplitude, frequency b/N samples−1 and phase π/2 or π, respectively, at time
s samples.

The reader is advised to think deeply about this rephrasing when thinking
about the sums in the equations for X(f)real and X(f)imag:

X(b)real =
N−1∑
s=0

x(s) sin
(

2π b
N
s+ π

2

)

X(b)imag = j
N−1∑
s=0

x(s) sin
(

2π b
N
s+ π

)
This translates to the result being the sum of the multiplication of the

whole input signal by a sinusoid with unit amplitude, frequency b/N samples−1

and phase π/2 or π for X(f)real and X(f)imag, respectively.

13



3. Spectrum separation and recombination techniques

What does this all mean? If a real-valued time-domain signal is sampled
N times, sample value at sample s being stored as x(s), x(s) can be described
by a sum of 2N sinusoids: the complex value of X(b), also called frequency
bin b, describes the “similarity” of the signal to sinusoids with amplitude
Re(X(b)) for the real part and Im(X(b)) for the imaginary part, frequency
b/N samples−1 and phase π/2 for the real part and π for the imaginary part.

There are a few interesting points to note. If x(s) is a real sinusoid with
amplitude Ao and frequency f = b/N samples−1 (lesser than f = 1/2), the
resulting frequency bin complex amplitude will be AoN/2. This is the reason
for the scale factor in the Inverse Discrete Fourier transform: the scale factor
is needed to remove this scaling. The reason why the scale factor is 1/N and
not 1/N2 ) is due to the considered sinusoids being real, not complex, sinusoids
[4, p. 70].

In case of a sinusoid present in the input signal whose frequency does not
precisely match frequency of some bin, its content will be split between all
bins, with the bins with closer frequency generally getting more of its content
due to spectral leakage. Unfortunately, the discussion about spectral leakage is
beyond the scope of this bachelor thesis, as are other Discrete Fourier transform
and filtering concepts. I recommend consulting [4] as a starting point if the
reader wants to understand these concepts in greater depth.

When sampling in time domain, the samples are usually taken with a con-
stant frequency fs called the sampling frequency. It should be no wonder that
the frequency of the bins expressed in samples per second is

fb = fsb

N
Hz.

Note that the bins are always equally spaced fs/N Hz from each other and N
samples are needed to compute the Discrete Fourier transform. This means
that despite many advantages of DFT, it will always separate the spectrum
using these linearly spaced bins and need the same number of samples to
compute any bin regardless of its frequency.

3.2 Fast Fourier transform (FFT)

The Fast Fourier transform is an algorithm used for computing the Discrete
Fourier transform quickly. Since DFT consists of N frequency bins, every one
of them summing N input samples, the algorithmic complexity of DFT is
O(N2). The Fast Fourier transform can reduce that to O(N log N) by using
the fact many arithmetic operations used to compute DFT are redundant. It
does this by breaking the DFT down into smaller DFTs and then combining
those. Fast Fourier transform has a variation, Inverse Fast Fourier transform,
that performs the same thing for Inverse Discrete Fourier transform [4, p.
127-159].

14



3.3. Bandpass filter bank

While the Fast Fourier transform algorithm can be adapted for every N , the
original algorithm could only process power-of-two [4, p. 128]. This property is
retained in many implementations since it results in the fastest FFT processing.

3.3 Bandpass filter bank

Another way to perform spectral separation is by filtering. Filtering is es-
sentially processing of a time-domain signal that results in results in signal
spectral content change [4, p. 161]. A bandpass filter attenuates frequencies
below and above the one frequency band it passes, making it ideal for spectral
separation. Since spectral separation usually involves more frequency bands of
interest (pitch shifting is an extreme example, since all frequencies below the
Nyquist frequency are of interest), more filters are needed. A filter bank is just
an array of parallel bandpass filters, each of which extracts a different signal.

Note that a bandpass filter bank has algorithmic complexity of O(NM),
where N is filter length and M is the number of filters (if all of the filters have
the same length). Unfortunately, unlike the special case of DFT, which can
be sped up using its special properties, it is generally not possible to speed
up general filter bank processing drastically. The biggest avenue for speedup
is the fact the filters are parallel, making them ideal for implementation on
massively parallel hardware.

3.4 Short time Fourier transform (STFT)

The Short time Fourier transform is is a technique for shifting a long or a
long-running signal into frequency domain using short frames [8, p. 395].

Essentially, from the engineering standpoint, the Short time Fourier trans-
form is just a way to select the N samples that will be processed using DFT in
a fair way. The classic algorithm using FFT essentially works in this way: [8,
p. 397-398]

1. Select N most recent samples (the current “frame”).

2. Multiply them by a window function.

3. Transform them into frequency domain using FFT of size N .

4. The frequency domain data can now be used.

5. Wait for N/O samples to arrive, O being a number specifying frame
overlap.

Note that the Short time Fourier transform can be also thought about
as a filter bank [4, p. 711]. It has to be noted that while it has much lower
computing requirements than a typical filter bank thanks to the FFT algorithm,

15



3. Spectrum separation and recombination techniques

it suffers from the equal spacing of bins and need for N samples to compute
every bin.

3.4.1 Window function

A window function is a function that is zero-valued outside a chosen interval.
This makes them important for computing Short time Fourier transform: no
more than N samples can be transformed by DFT of size N . A rectangular
window is not a fine choice in most circumstances due to spectral leakage
concerns beyond the scope of this thesis [4, p. 83], but these concerns may
be somewhat intuitively explained by considering the fact that the window
rapidly changes from multiplication by 1 to multiplication by 0. This means
abrupt changes that affect most of the bins.

Various smoother windowing methods have been proposed, the most pop-
ular for algorithms performing resynthesis being the von Hann window, its
symmetric form being

ws(n) = 1
2

[
1− cos

( 2πn
N − 1

)]
= sin2

(
πn

N − 1

)
.

A periodic form of any symmetric window form can be computed by adding
1 to N and discarding the last sample. This way, the periodic form can be
given as [4, p. 85]

wp(n) = 1
2

[
1− cos

(2πn
N

)]
= sin2

(
πn

N

)
.

The von Hann window (mistakenly called Hanning in many sources) is
nice for resynthesis because of its small spectral leakage and its ends smoothly
tapering to zero. The periodic form is of particular interest since the windows
add to nice constants when they are overlapped by a fraction of N . This will
become important in subsection 3.5.1.

3.4.2 Spectrogram

It should be noted that while this thesis mainly concerns itself with usage
of STFT for usage in pitch shifting algorithms, it is also used for making
spectrograms, that is, visualisations of the Discrete Fourier transform of
signals. This is very useful when studying audio signals, as one can visualise
what is heard. I shall make use of spectrograms when testing and interpreting
the results of various pitch shifter implementations.

For reference and to provide a demonstration of STFT, I have made two
spectrograms of the same signal containing first four harmonics of a sinusoid
added together. The lowest harmonic has a frequency of 3520 Hz, the frequency
of musical note A7 in the A4 = 440 Hz Western equal-tempered scale. The

16



3.5. Overlap-Add (OLA)

N/2 N

1

Figure 3.1: Periodic von Hann window
Note that the window is exactly one in N/2 and zero in intervals (− inf, 0]

and [N, inf).

signal contains 0.2 seconds of silence, 0.6 seconds of the harmonics and, again,
0.2 seconds of silence. The sample rate is 48 kHz, resulting in frequencies up
to the Nyquist frequency 24 kHz useful for visualisation in spectrograms. In
both spectrograms, von Hann window and overlap O = 4 are used.

The spectrogram in Figure 3.2 is made by a high frequency resolution
STFT with N = 2048. Note the long duration of spurious frequency content
during transition (smearing) and a slight negative time offset explained by the
need to get 2048 samples before starting the computation of spectrogram. In
real time, this would actually translate into latency.

On the other hand, the spectrogram in Figure 3.3 is made by a low frequency
resolution STFT with N = 256. There is almost no frequency smearing during
the transitions, but the exact frequency of the various components is not
well known. The frequency bins all have the same size. Note that since
human hearing hears frequencies logarithmically scaled, the most important
frequencies are below 4000 Hz, which is handled here only by a few bins!

3.5 Overlap-Add (OLA)

Since common audio signals change over short amounts of time, the majority of
pitch shifting algorithms processes signal in small chunks (frames). Analysing
and resynthesising frames with no overlap results in significant discontinuities

17



3. Spectrum separation and recombination techniques

Figure 3.2: High frequency resolution spectrogram of signal transition

Figure 3.3: Low frequency resolution spectrogram of signal transition

at the frame edges where one resynthesised frame is immediately swapped for
another one which does not perfectly match it at the edge.

To solve this problem, the Overlap-Add technique was created: after
overlapping frames are selected in the same manner as with the STFT algorithm
described in section 3.4 and transformed (not necesarilly using DFT and IDFT),
the resynthesised frame samples are added to an output buffer with samples
belonging to different frames that were taken from the same input stample
being added to the same output sample. The output sample from output buffer
can be used only after all overlapping frames this sample belongs to have been
added.

18



3.5. Overlap-Add (OLA)

3.5.1 Constant Overlap-Add criterion (COLA)

0 100 200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

1

n →

x
(n
)

Figure 3.4: Sum of the square of von Hann windows
Von Hann windows with 66, 6% ( O = 3 ) overlap, and their Overlap-Add
output, satisfying the Constant Overlap-Add property at the center. Used

from [8, p. 233]

The Constant Overlap-Add criteron is important for preserving the ampli-
tude of the signal processed by Overlap-Add algorithm. Essentially, the sum
of windows of overlapping frames must be equal to 1. This assures that if the
windows do not change during frequency processing, the resulting resynthesised
signal will retain its original amplitude without artifacts.

19





Chapter 4
Analysis of real-time pitch

shifting algorithms

Roughly speaking, there are two distinct types of pitch shifting algorithms:
those that use a Short time Fourier transform (STFT) to convert the current
frame to frequency domain, modify its bins and resynthesize them by converting
back to time domain, and those that do not (time domain algorithms). I shall
consider both categories separately.

4.1 Time domain algorithms

It is apparent that time domain algorithm have a much greater freedom in
their functioning, as they are not defined by the presence of a STFT transform
and a resynthesis, but rather the absence thereof.

4.1.1 Synchronous Overlap and Add (SOLA)

It should be noted that the classic SOLA algorithm is basically a time stretching
algorithm (changing the duration of the signal without changing its pitch),
not a pitch shifting one (changing the pitch of the signal without changing its
duration). However, it is easily modified for pitch shifting by changing the
sample rate of the signal before or after SOLA; this changes both the duration
and the pitch of the signal and therefore can turn a time stretching algorithm
into a pitch shifting one and vice versa [8, p. 201].

The basic algorithm functions as follows: [8, p. 191, 192]

1. The input signal is split into overlapping blocks.

2. The blocks are repositioned using the scaling factor.

3. Cross-correlation (similarity as a function of displacement) of the suc-
ceeding blocks is computed for the possible overlap interval.

21



4. Analysis of real-time pitch shifting algorithms

(a)

(b)

(c)

(d)

x (n )

Sa

Sa

x1(n )

x3(n )

x2(n )

Ss = aSa

Ss = aSa

Ss = aSa

Ss = aSa

Ss = aSa

kmin kmax
km1

km1

km2

x2(n )

x1(n )

x2(n )

x2(n )

x3(n )

x1(n )

x1(n )

rxL1xL2(m )

x3(n )

overlap
interval

overlap
interval

L

fade-out

fade-in

Figure 4.1: Principle of Synchronous Overlap and Add
a) Signal splitting, b) block repositioning, c) cross-corelation and discrete-time
lag computation, d) fading and overlap-adding of blocks. Used from [8, p. 192]

22



4.1. Time domain algorithms

4. The discrete-time lag is selected as the displacement which has the highest
cross-corelation.

5. The repositioning is changed using the discrete-time lag, resulting in the
succeeding blocks having the maximum similarity.

6. The amplitudes of the succeeding blocks are changed during the overlap,
the ending one fading out and the starting one fading in, supplying a
window function that assures the satisfaction of the Constant Overlap
and Add criterion.

The SOLA algorithm has become a cornerstone of its time-scaling and
pitch shifting algorithm family. The derived algorithms usually try to solve its
shortcomings, namely its extreme computational requirements for computing
successive convolutions of two long windows and its reliance on time-domain
similarity which can sacrifice the frequency-domain similarity, resulting in
noticeable artifacts.

4.1.2 Time Domain Pitch Synchronous Overlap and Add
(TD-PSOLA)

The PSOLA algorithm, also known as TD-PSOLA to differentiate it from
Frequency domain Pitch Synchronous Overlap and Add (FD-PSOLA), is
a variation of SOLA used mainly for pitch shifting of voices and monophonic
instruments. It is based on a hypothesis that the input signal can be charac-
terized by its pitch, a consideration that cannot be made for general signals.
In case of signals with different competing pitches, the algorithm can (and
presumably will) fail, producing results with extreme artifacts.

The TD-PSOLA analysis algorithm performs these steps: [8, p. 194]

1. The pitch period is determined by analysis and pitch marks are placed at
a pitch-synchronous rate during the periodic parts of sound and constant
rate during the silent ones.

2. Segments centered at pitch mark are extracted using a von Hann window,
with the length of two pitch periods to try to satisfy the Constant
Overlap-Add criterion.

The TD-PSOLA synthesis algorithm performs these steps (this is done for
every synthesis mark): [8, p. 194]

1. A synthesis pitch mark is placed according to the pitch multiplier and
the best corresponding analysis segment is chosen for them.

2. The segment is overlap-added.

3. The next synthesis pitch mark is computed to be centered one pitch
period after the current one.

23



4. Analysis of real-time pitch shifting algorithms

Various filters can be inserted between the analysis and synthesis part,
which can be done to approximate the vocal tract. This is interesting for pitch
shifting of exclusively vocal audio.

While this algorithm does not require extensive computing resources, it
can only reliably process monophonic signals and suffers from artifacts that
increase with pitch multiplier becoming vastly different from 1. While vari-
ous workarounds and improvements that reduce audible artifacts exist, the
monophonicity is an inherent feature of the algorithm [8, p. 194, 196, 197].

Pitch marks

PSOLA analysis

Segments

Figure 4.2: Principle of Pitch Synchronous Overlap and Add analysis
Pitch marks are placed according to the detected pitch and segments around

them are extracted. Used from [8, p. 195]

24



4.1. Time domain algorithms

Pitch marks

Segments

PSOLA time stretching

Synthesis
pitch marks

Overlap and add

Figure 4.3: Principle of Pitch Synchronous Overlap and Add synthesis
Extracted segments are resynthesised at synthesis pitch marks. Note that
when time stretching for pitch shifting, some segments will be discarded

or used more than once. Used from [8, p. 195]

4.1.3 Rollers algorithm

The novel Rollers algorithm uses a large number of Infinite Impulse Response
(IIR) filters that are frequency shifted and then added together [9]. This novel
approach approximates a frequency scaling (pitch shifting) operation with
extremely low latency (around 5 milliseconds) and a low amount of artifacts,
notably detuning (which can be regulated by increasing the size of the filter
bank), tremolo, frequency notches and resonance. Most ”identifying marks” of
classic techniques, such as phasiness, transient duplications and stereo field
loss are absent, however. The most problematic property of the algorithm
is its computational cost: as each filter must be processed in parallel, even
a normal personal computer struggles with this task (or at least did in 2008,
when the paper was released), prompting the authors to consider moving to
parallel hardware such as general-purpose graphics processing units [9, ch. 7].

25



4. Analysis of real-time pitch shifting algorithms

Large IIR filter bank

FS FS FS FS FS

+

Input

Output

...

...

Figure 4.4: The principle of Rollers algorithm

4.2 Frequency domain algorithms

All of the following frequency domain algorithms except the Frequency Domain
Pitch Synchronous Overlap and Add (FD-PSOLA) share a common step in
their pipeline: before processing an incoming frame of audio samples, it is
transformed into frequency domain using the Short time Fourier transform
(STFT). The frequency domain algorithms work with the resulting frequency
bins. After the pitch shift algorithm is done processing, an inverse transform
is used. Due to the invertibility of the Fourier transform, doing this without
any pitch shifting done leaves the resulting time domain data unchanged (with
the exception of latency) from the input frame.

These algorithms are popular since the transformation into and out of
frequency domain can be peformed by the Fast Fourier transform (FFT)
algorithm, drastically decreasing their computational cost.

4.2.1 Standard phase vocoder

The phase vocoder is a classic algorithm proposed by J. L. Flanagan and R.
M. Golden in [10] that tries to preserve both frequency bin (vertical) and
time frame (horizontal) coherence of signals when performing a time-scale
modification (TSM). While there are different implementations, the STFT one
using FFT is the most well-known, requiring much less computing power than
the other (filter bank and Gaboret) approaches. The idea of pitch shifting
using the phase vocoder is to calculate the instanteneous frequency for each
bin and to integrate the corresponding phase increment so that the signal can
be reconstructed as a weighted sum of cosines of the phases [8, p. 250, 251].

Unfortunately, the standard phase vocoder introduces significant transient
smearing and phasiness (or phase dispersion [8, p. 254, 255]) artifacts, especially
when the pitch multiplier drastically differs from 1 [11, ch. 1].

26



4.2. Frequency domain algorithms

4.2.2 Improved phase vocoder

A highly successful improvement of the phase vocoder, known either as an im-
proved phase vocoder or a phase-locked vocoder, works with a hypothesis
that the spectral peaks of sound do not vary drastically between frames and
that their phase changes linearly in frequency. Thus, it finds spectral peaks,
connects them to previous ones, propagates them (linearly in frequency) and
rotates all frequency bins assigned to each peak equally. This, in theory, makes
sure that the different frequencies propagated from one source do not change
their phase relationship, which would result in phasiness [8, p. 250, 251].

Unfortunately, the improved phase vocoder is susceptible to analysis errors,
even with constant-frequency sinusoids in case of small window size, and to
stereophonic field loss [11, ch. 5].

4.2.3 Frequency Domain Pitch Synchronous Overlap and
Add (FD-PSOLA)

This algorithm works similarly to the TD-PSOLA described in subsection 4.1.2.
The only change is that the optional filtering done between the analysis and
synthesis phase is performed by transforming the pitch epoch window into
frequency domain and filtering there [12, p. 2]. This results in a decrease of
computing complexity for expensive filters. Since the task is to implement
a general pitch shifter, not a vocal-oriented one, where this can be used to
emulate a vocal tract and get better results, this algorithm is not suitable.

4.2.4 Ocean algorithm

The Ocean algorithm is a novel algorithm for pitch shifting [11] which performs
no analysis of the frequency spectrum, only shifting the frequency bins by the
multiplier k in this simple manner (a is the input bin, b is the output bin and
m is synthesis window size divided by analysis window size):

b = bmka+ 0.5c

.
The phase of the bin also has to be modified. This introduces a modulation

effect, however, due to the the fact that the frequency bin shift actually also
shifts the window, which can cause edge artifacts. The authors deal with
this problem by introducing a synthesis window, which causes the output
to no longer satisfy the Constant Overlap-Add property. This is solved by
demodulating the result.

The full algorithm explanation in the original paper is quite lacking and
confusing, but I have eventually figured out the probably intended sequence of
steps performed for every STFT frame. Considering that Na is the analysis
size (equal to the frame size N), Ns is the synthesis size and O is the frame
overlap.

27



4. Analysis of real-time pitch shifting algorithms

1. Select N most recent samples.

2. Multiply them by an analysis window function (e. g. a von Hann
window).

3. Transform the result into frequency domain using Fast Fourier transform
on the Na samples.

4. Shift the frequency bins and modify their phase, multiplying them by
m = Ns/Na)

5. Transform the result back into time domain using Inverse Fast Fourier
transfom on Ns bins.

6. Multiply the start of the resulting sequence by a synthesis window
function with Na window size, discarding the other Ns −Nasamples.

7. Add the result to output buffers.

8. Multiply the output buffer which will not have anything more added to
it by the demodulation modifier (real array with size Nanalysis), starting
at Nanalysis/O samples of the demodulation modifier.

Unfortunately, while doing away with most classic pitch shifting artifacts,
this algorithm introduces detuning artifacts, worsening with decreasing N .
It also introduces transient duplications for k > 1. On the other hand, as
the algorithm contains no bin analysis (e.g. finding the bin with maximum
amplitude and shifting according to that), it does not affect stereophonic field
[11, ch. 3].

For the core transformation, as well as the aforementioned bin shift

b = bmka+ 0.5c

, a phase shift is needed since the bin phases would not line up between frames.
The authors use a phase shift formula [11]

ωb = ωbe
−j 2πp(b−ma)

mON .

Unfortunately, it has come to my attention during implementation that this
formula is wrong. I shall derive the correct formula using the Fourier shifting
theorem, which states that if one decides to start sampling x(n) starting at
sample k instead of 0, the resulting DFT of those time-shifted sample values is
[4, p. 72]

Xshifted(r) = ej2πkr/NX(r).
This applies to fixing the phase of nonzero frames because they are being
sampled starting from k = N p

O . This results in

Xshifted(r) = ej2π
p
O
rX(r).

28



4.2. Frequency domain algorithms

As we have acquired analysis bins, we need to compute the phase shift relative
to analysis size. Let me insert b

m and a for r, which gives the equations

Xshifted(
b

m
) = ej2π

p
O

b
mX(b),

Xshifted(a) = ej2π
p
O
aX(a).

Now then, for the correct phase shift of the resulting bin b, one needs to undo
the phase shift done by analysis bin a and apply the phase shift for analysis
bin b

m , which results in

ωb = ωbe
j2π p

O
b
m − ej2π

p
O
a = ωbe

j2π p
O

( b
m

−a) = ωbe
j

2πp(b−ma)
mO

.
It can be seen that I have arrived to a different phase shift equation. I

have verified that my changed phase shift equation works as it is supposed to
in my implementation. The original phase shift equation fails severely. The
errors in the original paper might be explained by the authors not checking
the correspondence of their mathematical equations to the variables they used
in code.

As the computation of amplitude demodulation in the algorithm is not very
well explained, I have devised an alternative solution consisting of applying the
frequency domain transformation (bin and phase shift) to unity signal. Since
this signal is windowed by analysis and synthesis window, I would expect the
overlapped-and-added sequence of O frames to result in a signal that would
take the exact form of the amplitude modulation of the signal. By dividing
by this modulation, the real signal could be demodulated. Unfortunately, the
implementation using this idea (discussed in more detail in subsection 7.4.2)
still suffers from moderate amplitude modulation for certain pitch multipliers
as detailed in subsection 8.6.2.

29





Chapter 5
Selection of a suitable pitch
shifting algorithm for BF548

real-time processing

While the conventional algorithms such as PSOLA and improved phase vocoder
are well-known, I have not chosen them mainly because of their dependence on
signal analysis, performing well for monophonic signal but introducing artifacts
for heavily polyphonic music. As my task is to create a truly universal pitch
shifter, such behaviour is not acceptable. It should also be noted that separate
analysis of the signal for the left and right channel of the stereophonic signal
is likely to introduce differences between their processing that alter or destruct
the perception of stereophonic field for signals that have one, while analysis
of mixed signal is likely to result in extreme artifacts if both channels feature
vastly different sounds (which can happen easily, for example, if two guitars
playing separate parts are mixed in separate channels).

Only the Juillerat and Müller’s Rollers algorithm and the Juillerat and
Hirsbrunner’s Ocean algorithm do not seem to suffer from such problems, while
their authors note other problems, notably detuning errors, which do not result
in a high quality loss in no circumstances, the worst case being slight audible
detuning of signals with few harmonics, such as pipes.

The Rollers algorithm provides superior latency for acceptable-quality
signals on the scale of 5 milliseconds, decreasing with higher frequencies due to
the ability to fine-tune the filters to balance time-frequency localization for the
particular frequency. It is, however, extremely demanding on computing power,
constructing a large number of bandpass filter banks and frequency shifting
those. The authors have even planned to use a graphics processing unit to run
the algorithm on in the future as even the personal computer available to them
could not handle high-quality filters! After some preliminary computations of
feasibility of implementation of this algorithm on a digital signal processor, I

31



5. Selection of a suitable pitch shifting algorithm for BF548
real-time processing

have decided against it as success could not be guaranteed. I would expect,
however, that some current field-programmable gate arrays (FPGA) could be
up to task as the algorithm is massively parallelisable.

After considering the drawbacks of the other algorithms, I have chosen to
implement the novel Ocean algorithm which contains no analysis-dependent
processing, instead of relying on shifting the raw input bins, and filtering
done by switching into frequency domain by the means of Short time Fourier
transform, which is quite fast on modern processors using the Fast Fourier
Transform algorithm.

32



Chapter 6
Analog Devices Blackfin

platform, tools and libraries

Figure 6.1: Blackfin BF548 digital signal processor
The used processor, mounted on the BF548 EZ-KIT, is shown in the upper
middle of the image. The AD1980 audio codec is also shown in lower left.

A 1 CZK coin is used for size comparison.

In this chapter, I shall discuss the Blackfin platform and tools and libraries
supplied by Analog Devices for it. The core of the kit the algorithm is
implemented on is a BF548 digital signal processor, one of the most powerful
ones in the Blackfin processor family.

33



6. Analog Devices Blackfin platform, tools and libraries

6.1 Blackfin processor architecture

Blackfin is a RISC processor architecture optimised for digital processing
needs. This is made apparent not only by its dual fixed-point arithmetic units,
but also by support of advanced digital signal processing functions such as
built-in integer saturation arithmetic support and zero-overhead loops. the
high processor speeds in hundreds of MHz. Most Blackfin processors features
a three-level cache. The L1 cache is accessed in one clock cycle [13, p. 6-3]
and the L2 cache is accessed in multiple clock cycles with optional cache.

Figure 6.2: Blackfin core architecture
Note the two 16-bit multipliers speeding up the multiplications tremendously

when performing 16-bit multiplications.

6.1.1 Blackfin BF548

The Blackfin BF548 is a top-of-the-line Blackfin processor, supporting a host
of peripherials. Its performance and data cache sizes are the most interesting
to us, however. The BF548 is operates at maximum clock frequency of 533
MHz [14, p. 3] and has two 16 KB banks of L1 cache [13, p. 3-7]. The L2
cache has a capacity of 128 KB [13, p. 3-8].

34



6.2. VisualDSP++ integrated development environment

6.2 VisualDSP++ integrated development
environment

Figure 6.3: A typical VisualDSP++ session
The right pane in particular is interesting as it allows for viewing code

disassembly, important especially for speed optimisation.

The kit ships with an evaluation licence for the Analog Devices Visu-
alDSP++ integrated development environment (IDE). The evaluation licence
is unrestricted for 90 days. After this period, connections to kit/processor
simulators and emulators are disabled and the available code space memory is
restricted to 60 kB [15, p. 1-11 and 1-12]. As the completed code uses approx-
imately 80 kB of code space and this is not easily optimised, an unrestricted
licence is a must.

VisualDSP++, even in the 5.1.2 version I am using, can be best described
as a relic of the last century (according to the IDE splash screen, the first
version of it was actually released in 1995). While it provides most of the
functionality expected from an IDE, it suffers from notable instability, often
crashing to desktop in situations where the debugged processor is disconnected,
reconnected, reset by hardware or performs an invalid memory access. The
last point makes debugging invalid memory accesses essentially impossible,
forcing a thorough code inspection.

35



6. Analog Devices Blackfin platform, tools and libraries

I would like to mention the Expert Linker utility in particular. According
to Analog Devices:

The Expert Linker is a graphical tool that simplifies complex tasks
such as memory-mapping manipulation, code and data placement,
overlay and shared memory creation, and C stack/heap adjustment.
This tool complements the existing VisualDSP++ LDF format
by providing a visualization capability enabling new users to take
immediate advantage of the powerful LDF format flexibility.
([16, p. 4-1])

Unfortunately, I have found working with the Expert Linker to be a terrible
experience that defies my understanding. Needless to say, I was not able to
ascertain any useful information by using it.

I would definitely consider buying a licence to the CrossCore IDE, a suc-
cessor to VisualDSP++ based on the Eclipse IDE [17], if I planned to work
with the Blackfin family of processors professionally. That said, while I would
not say that VisualDSP++ is a particularly good IDE, it is usable in the real
world.

6.3 Used Analog Devices libraries

The VisualDSP++ installation, in addition to the core IDE and compilers,
contains libraries for their processor lines and examples tailored to the various
evaluation kits. The libraries are notably in their original source code form
as opposed to many the practices of many vendors who only ship compiled
binaries. This is very welcome as it allows for inspection of the source code in
order to figure out usage and behaviour quirks.

6.3.1 Device Drivers and System Services

Analog Devices have implemented a “device driver mode” to provide con-
cise, effective and easy-to-use interfaces for commonly used functionalities
on embedded systems [18, p. 1-1], providing universality in Blackfin family.
Unfortunately, I have found the driver interfaces to be very abstract, leaving me
to figure out their proper functionality and usage using the hardware reference
[19] and driver implementation source code.

This was hampered by the fact that the Analog Devices references and
manuals are quite complex, owing to the general complexity of the Blackfin
family of processors. For example, the BF54x hardware reference, while
extremely useful and definitely recommended for anyone developing on this
platform, is 2376 pages long [19]. This has impeded my progress, but I have
acquired an understanding of the platform, especially the fundamental and
Direct memory access (DMA) capabilities of the processor.

36



6.3. Used Analog Devices libraries

6.3.2 Digital signal processing library

A digital signal processing (DSP) library is also supplied for Blackfin by Analog
Devices. It is mostliy written in ANSI C with the more computation-intensive
routines are implemented in assembly language, speeding up the computation
beyond optimisation achievable by the C compiler. This frees signal processing
developers from the need to write hand-crafted assembly.

For pitch-shifting purposes using Ocean algorithm, fast implementations of
Fast Fourier transform (FFT) and Inverse Fast Fourier transform (IFFT) are
particularly important. In the Blackfin DSP library, the fastest power-of-two
versions exist as the cfft [20, p. 4-98] and ifft [20, p. 4-189] families of
functions and are augmented with support of dynamic scaling: unlike the basic
FFT and IFFT which essentially scale the resulting values by N and 1/N ,
respectively, dynamic scaling divides the input at any FFT stage if and only if
the largest absolute input value is greater than or equal to 0.25 [20, 4-99]. This
solves overflow problems and largely solves underflow problems. The functions
require an array of precomputed constants called the twiddle factor to be input.
These can be computed beforehand by the twidfftrad2 family of functions
[20, p. 4-242] and used for different N sizes provided they are all powers of 2.

FFT/IFFT functions that are available accept their input in form of
complex numbers of type complex fract16 or complex fract32, comprised
of two values (real and imaginary) with fractional fixed-point types fract16
and fract32 for complex fract16 and complex fract32, respectively. These
types and provided arithmetic functions manipulating them are perfect for
digital signal processing, manipulating the signal as if it was between 1 and -1
(excluding 1 due to the two’s complement notation) and clipping it if it goes
outside that range.

Also provided are functions for computing various well-known symmetric
windows. For pitch-shifting purposes, the gen vonhann family of functions
which generate a symmetric von Hann window is particularly interesting [20,
p. 4-185].

37





Chapter 7
Ocean algorithm pitch shifter

implementation on BF548
EZ-KIT

In this chapter, I shall go over the pitch shifter implementation.
I have implemented the pitch shifter as a VisualDSP++ project, writing

it in ANSI C99 with emphasis on processing speed. I was worried whether
I would need to write critical code sections in Blackfin assembly language,
but the VisualDSP++ compiler proved to be good at aggressively optimising
costly operations (mostly buffer copies combined with element-by-element
multiplications).

For greater maintainability and readability facilitated by high cohesion and
low coupling, my implementation decomposes codec handling and the Ocean
algorithm into 5 separate components:

• Common definitions: preprocessor definitions that change qualitative
and quantitative characteristics of the pitch shifter.

• Peripherial handling: initialisation and destruction of codec driver,setting
up codec driver audio buffer processing and handling filled buffer inter-
rupts.

• Pitch transformation: handling the transformation into frequency domain,
shifting bins including modifying their phases and transformation back
into time domain.

• Audio transformation: extracting frames from audio buffers, windowing,
setting up and running pitch transformation on frames and performing
amplitude demodulation.

39



7. Ocean algorithm pitch shifter implementation on BF548
EZ-KIT

Figure 7.1: Used features of Analog Devices BF548 EZ-KIT
Only a few kit features and connections are used:

1) USB-B debugging connection to the host computer,
2) 7.5 V power supply connection required for powering the kit,

3) Blackfin BF548 digital signal processor,
4) AD1980 codec used for input/output audio signal conversion,

5) Line In stereo audio input using a 3.5 mm audio jack,
6) Surround stereo audio output using a 3.5 mm audio jack,

7) Pushbutton used to terminate the running program.
Note that the metal board under the BF548 EZ-KIT containing adapters from
3.5 mm audio jacks to RCA connectors was installed by the university staff. I

have not used it.

40



7.1. Common definitions

• Main processing routines: initialising board and audio transformation
components and synchronisation of audio transformations to filled buffer
interrupts.

I shall describe each one of them in greater detail in the following sections.

7.1 Common definitions

I have put the basic preprocessor definitions that impact the pitch shifter char-
acteristics (quality, latency, computational speed) into file pitch shifter.h.
I shall list the various definitions here:

• FRAME OVERLAP: Frame overlap O defined as number of overlapped frames
contributing to one sample.

• ANALYSIS SIZE: Analysis window size Na, must be a power of two. 512
is a reasonable minimum.

• SYNTHESIS SIZE: Synthesis window size Ns, must be a power of two. 512
is a reasonable minimum.

• FFT 32 BIT: If defined, the Fast Fourier transform will be performed with
32-bit scalars, if not, it will be performed with 16-bit scalars. Massive
performance impact.

• LINE IN AS INPUT: If defined, codec Line In is used as the input source.
If not, codec Mic In is used as the input source (in stereophonic configu-
ration).

• TERMINATE BUTTON: Flag of pin on which the program termination button
resides.

There are also definitions that configure the placement of important arrays
in memory: this enables their quick change if the current settings deplete the
memory of L1 or L2 cache.

Note that the pitch multiplier is not controlled by a preprocessor definition.
Complementing this header is transform defines.h. In this file, I have

put definitions dependent on pitch shifter.h that should not be tweaked in
most situations.

7.2 Peripherial handling

In board.h and board.c, I handle everything related to the board peripherials.
This includes initialising and destroying used Blackfin system services (see
subsection 6.3.1) and the codec driver.

41



7. Ocean algorithm pitch shifter implementation on BF548
EZ-KIT

Initialisation is handled by function InitBoard() and destruction by func-
tion DestroyBoard(). Function IsTerminateButtonPressed() can be used
to check whether the terminate button is being pressed. Global buffers
g InData and g OutData are provided for use by transformation routines and
external functions InputBufferFinished() and OutputBufferFinished()
(declared, but not defined by this component) called by the codec driver inter-
rupt provide a fast way to notify the main loop that the codec has processed
a buffer.

USB
Conn

D
eb

ug
 

A
ge

nt

JTAG
Header

Power
Regulation

LEDs
(6)

EBIU

JT
A

G
 

P
or

t

+
7.

5V
 

C
o

n
n

ec
to

r

32.768 KHz 
Oscillator

RTC

SPIs

64 MB 
DDR

(32M x 16)

Expansion
Connectors

(3)

16 MB
Burst Flash

(8M x 16 )

25 MHz 
Oscillator

UARTs
PBs (4)

RS-232
Female

ADM3202
RS-232
TX/RX

SPORTs EPPIs

U
S

B

TWIs

IDC
Conn

SPI
IDC

Conn

(2) 
IDC

Conn

PPI
IDC

Conn

USB 
OTG

Mini AB 
Conn

(2)
IDC

Conn

KEYPAD

Rotory

Touch
Screen

VGA LCD

Ethrernet
MAC/PHY

16 Mb
SPI

Flash

SD
Conn

ATAPI
Conn

AC97
AD1980

Or
AD1981B
CODEC

2 Gb
NAND Flash

(512M x 8 )

DDR

24 MHz 
Oscillator

C
A

N
s(2) CAN 

Transceiver
(2) 

RJ11

Figure 7.2: Analog Devices BF548 EZ-KIT board architecture
The AD1980 codec (or AD1981B, with different board pinout but same for

our purposes) is connected to SPORT0 serial bus and handled by the Blackfin
AD1980 driver. The program termination pushbutton is connected to

processor pin PB11 and handled by the Blackfin Flag driver. Used from [15, p.
2-18].

7.2.1 Audio codec interfacing

The BF548 EZ-KIT uses an AD1980 codec connected to the SPORT0 interface
of the BF548 processor as seen in Figure 7.2 [15, p. 1-25]. The AD1980 codec

42



7.2. Peripherial handling

implements the AC’97 codec developed by Intel, with support for a proprietary
mode with several more options. It has analog-to-digital converter total
harmonic distortion of 78 dB and resolution of 16 bits (resulting in a signal-
to-quantization-noise ratio of 96.33 dB) [21, p. 3], which provides sufficient
quality but only 3 bits of headroom. Its standard sample rate of 48 kHz is
completely fine for our purposes.

Supplied Analog Devices AD1980 codec driver can be used for interfacing
with the codec. During testing (as detailed in section 8.1), I have found that
when receiving from Line In, the input samples were attenuated by almost
exactly 7.5 dB, resulting in a 7.5 dB output attenuation. I have therefore
increased the recording gain by 7.5 dB compared to the default codec value.
This essentially solved the problem, but the signal to noise ratio surely worsened.
I did not conduct a more in-depth investigation. It should be undertaken
before using the AD1980 codec as-is in a final product (which I would not
recommend in any case due to its not very impressive characteristics).

I also found a bug concerning the codec during implementation. If the
standard input/output (I/O) is used after codec initialization, it somehow
knocks the codec interfacing out of synchronization about one third of the
time. The codec then periodically outputs 1-3 invalid samples with a period
corresponding to the codec driver internal circular buffer size (presumably
old values previously written there). As with the previous problem, I did not
investigate the root cause of the problem further.

I have not found the root cause of this behaviour, but would hazard a guess
that the codec driver and standard I/O driver compete for interrupt priority.
This theory is probably incomplete, however, since that would explain the
codec driver outputting a wrong value occasionally when using standard I/O,
but not the continuation of this behaviour afterwards. I intend to investigate
this behaviour further when I have the time. For the time being, I have
refrained from using standard I/O after initialising and before destroying the
codec driver. This solved my problem nicely.

While the communication with the codec can be delegated to the Analog
Devices implementation, I needed to figure out how exactly should I set up
the input and output buffers so that the processing of the analysis window
could begin immediately after all of the needed samples were received from the
codec and have the maximum time available for processing while respecting
the output sample deadline.

7.2.2 Input and output circular buffer design

There are three basic controllable constants in the Ocean algorithm that can
be tuned to get the optimal balance of processing speed, latency and quality:
size of the analysis window Na, window overlap O and size of synthesis window
Ns. The window overlap is the number of analysis windows processed during
one size of the analysis window. Naturally, it follows that the sample length

43



7. Ocean algorithm pitch shifter implementation on BF548
EZ-KIT

0 1 2 3 4

Figure 7.3: Chain of buffers as seen by codec driver
Buffer 2 is being processed by the codec driver. Latest buffer completion

interrupt was fired for buffer 1. Grey rectangle areas represent relatively new
sample data while the white area represents sample data taken in last buffer

pass and not yet replaced.

between starts of processing of succeeding windows can be written as:

sa = Na

O

Because of the real-time requirement, the program needs to be done with
the processing of the current frame before starting processing the next one;
therefore, processing can take at most the time corresponding to sa incoming
samples at 48 kHz sample rate. This means that every sa samples, an interrupt
should be received which signifies that a new frame should be processed.

This requirement can be implemented by submitting buffers with sa sample
size to the Blackfin codec driver which feeds them with the incoming audio
data in a circular fashion, firing an interrupt after each buffer has been filled
and continuing with the next one. The codec driver essentially treats the
buffers as a chain as seen in Figure 7.3.

For estabilishment of the number of the buffers needed, I have considered
that a frame processing routine first copies the latest Na samples to a special
processing array. As this requires O buffers and the buffer after the last
processed is currently being refilled by the codec driver, O + 1 buffers are
required for the whole array, which puts the start of the latest Na samples
at the start of buffer two positions after the latest buffer filled by the codec
driver. To speed up the frame processing routine, the best solution to put the
buffers inside a continuous array. This is being shown by Figure 7.4.

I have applied the same idea is applied to the output buffers. Since the
synthesis window has the same size as the analysis window, the input and
output buffers map perfectly 1:1.

44



7.3. Pitch transformation

0 1 2 3 4

Figure 7.4: Array of buffers as seen by processing algorithm
While buffer 2 is being filled, buffer 3, 4, 0 and 2 can be copied for processing.
The light grey Hann window shows how the samples will be windowed before
Fast Fourier transform. Windowing is actually performed after copying the

samples out to a separate buffer.

7.3 Pitch transformation

I have implemented the heart of the Ocean algorithm (described in subsec-
tion 4.2.4) in files pitch transform.h and pitch transform.c. Function
InitPitchTransform() initialises the pitch transform, taking the phase mul-
tiplier as its sole argument. Function PitchTransform() pitch transforms
an input transformation array, invalidating it and storing the result in an output
transformation array. It takes the current frame number as its sole argument.

7.3.1 Transformation arrays

For the purposes of pitch transformation processing, two separate arrays of
size Ns are declared, g FrameInData and g FrameOutData. They are declared
globally so that the caller can fill the input and retrieve the output.

7.3.2 Core pitch transformation implementation

Bin and phase shift buffers containing precomputed values are initialised using
the equations from subsection 4.2.4 by calling InitPitchTransform() with a
pitch multiplier as its sole argument. The core function PitchTransform() is
implemented as follows:

1. g FrameInData is transformed into frequency domain using Fast Fourier
transform and stored into g FrameOutData.

2. g FrameInData bins are zeroed.

3. Each g FrameOutData bin a < Na/2 is phase shifted by a precomputed
value selected depending on the current frame number and added to
g FrameInData bin with precomputed number b = bmka+ 0.5c.

45



7. Ocean algorithm pitch shifter implementation on BF548
EZ-KIT

4. The bins a > Na/2 are filled according to the a < Na/2 bins so the FFT
result is still real-valued (not doing that can result in precision artifacts).
The bin N/2 is copied over.

5. g FrameInData is transformed back into time domain using Inverse Fast
Fourier transform and stored into g FrameOutData.

7.3.3 Fast Fourier transform implementation considerations

I have used the Blackfin DSP library FFT implementation, described in
subsection 6.3.2, for both the transformation into frequency domain using the
Fast Fourier transform (FFT) and the transformation back to time domain
using the Inverse Fourier transform (IFFT). As touched on there, FFT scaling
its result by N poses a huge problem for 16-bit numbers: with a window size
on the upper reasonable limit, N = 4096, log2N = 12 bits of the signal are
irretreivably lost. This results in extreme artifacts.

This problem is alleviated by using dynamic FFT scaling, also explained
in subsection 6.3.2, where the FFT result is scaled based on its maximum
value, retaining most of the information in majority of cases, but degrading
during sudden changes of signal amplitude. It can also be eliminated entirely
by using 32-bit numbers for internal processing, which gives an ideal amount of
headroom at the price of a big performance hit (32-bit FFTs are approximately
5 times slower than their FFT counterpart for N around 1024 due to the slower
multiplications explained by section 6.1).

7.4 Audio frame processing

In audio transform.h and audio transform.c, I have implemented audio
frame processing required by the algorithm. It neatly solves analysis windowing,
synthesis windowing and amplitude demodulation, leaving only the frequency
domain manipulation to be done in the core transformation implementation.

Function InitAudioTransform() initialises the audio transformation (in-
cluding calling InitPitchTransform() and initialising amplitude demodula-
tion array). It takes pitch multiplier as its sole argument.

Function AudioTransform() is called with the index of the newly finished
buffer. The function first zeroes the output buffer that was just finished. It
then processes each channel separately in this manner:

1. The newly available processing frame consisting of Na samples is moved
from the input buffer into g FrameInData while being windowed with
an analysis Hann window.

2. Pitch processing routine PitchTransform() is called with the current
frame number.

46



7.4. Audio frame processing

3. The result is windowed with a synthesis Hann window.

4. The result is added into the output buffer array starting with the buffer
that is going to be output next.

It then applies amplitude demodulation to the output buffer that is just going
to be processed and increments the frame number (resetting back to zero on
frame overlap).

7.4.1 Windowing implementation

The Ocean algorithm calls for an analysis window and a synthesis window,
both with size Na. This retains the latency of analysis windowing and removes
artifacts stemming from the phase shifts affecting the analysis window. In
order not to introduce spurious amplitude pulsing artifacts, the windows need
to satisfy the Constant Overlap-Add requirement. This requires usage of
periodic versions of classic symmetrical windows. Following the authors of
the Ocean algorithm, I have chosen to use the von Hann window, described
in subsection 3.4.1. The tried and proven von Hann window seems not to
be a cause of concern. To refrain from polluting the implementation with
unneeded algorithms, I have chosen to have the window generated for me by
the Blackfin DSP library, which includes a family of functions for generation of
the symmetrical form as described in subsection 6.3.2. I have thus increased the
size of the array holding my window to Na + 1, using only the first Na entries.
The resulting window is used both for analysis and synthesis windowing.

7.4.2 Amplitude demodulation computation

I have used the idea of using unity signal to compute the amplitude modulation
as detailed in subsection 4.2.4. The whole idea consists of using a sequence
which is always 1 as a signal, audio tranforming it for O frames (without
performing the amplitude demodulation, of course) and putting the resulting
Overlap-Add output in an array of size Na (since the whole cycle of analysis
windows completes in Na samples). This decreased the amplitude modulation,
but did not solve it completely, as it is still present for some pitch multipliers.
This is discussed in subsection 8.6.2.

I have used floating-point numbers to store the demodulation. By recom-
puting the demodulation buffer and putting the multiplicative inverses of
the original unity signal modulation result in it, I was able to perform the
demodulation just with one scalar emulated floating-point multiplication for
each sample channe. This could be done reasonably fast even on the fixed-point
Blackfin achitecture.

47



7. Ocean algorithm pitch shifter implementation on BF548
EZ-KIT

7.5 Main processing routines

I have put the main processing routines in a conventionally named source file
main.c. Functions InputBufferFinished() and OutputBufferFinished(),
declared in board.h and called by the codec interrupt, are also defined here.

InputBufferFinished() first checks if the audio transformation of last
finished input buffer is completed. If not, it increments a counter of unprocessed
buffers (it is a surefire sign that the hardware is not fast enough to perform
the audio transform with current configuration). The function then sets the
index of the input buffer to a global variable and also sets a flag that a new
input bufffer is available for processing.

OutputBufferFinished() just sets the index of the output buffer to
a global variable.

The main loop inside the Run() function continues looping until the ter-
minate button (located on the kit) is pressed. In the loop body, it checks the
new input buffer flag. If it is set, it waits for the input and output buffer syn-
chronisation. After they are synchronised, it calls AudioTransform(). After
the transform is completed, it clears the input buffer flag.

The main() function is the main program entry point. It initialises the
audio transformation and board components and calls the Run() function.
After it returns, main() destroys the board and prints statistics taken while
running and enters an infinite loop which does nothing (serving as a stopgap
preventing the main() function from ever returning, since returning from
main() does not make sense in embedded software).

48



Chapter 8
Achieved performance and

testing

In order to test the implementation, I have devised a testbench using a cheap
but acclaimed professional external audio interface Focusrite Scarlett 2i2. Since
the pitch shifter would be used in conjunction with audio interfaces in the
real world and these can reproduce the exact same passband as the AD1980
codec (20 Hz to 20 kHz), I have found no need for measurements using an
oscilloscope.

8.1 Testbench setup

Cable setup is detailed in Figure 8.1. The correct levels were set by setting the
input style to line input and manipulating the master volume knob and the
left and right input channel gain so the audio interface output levels would
not clip the AD1980 and the AD1980 output levels would not clip the audio
interface inputs. As mentioned in subsection 7.2.1, I have found out that with
default settings, processed signal was attenuated by almost exactly by 7.5 dB
compared to passthrough signal. I have therefore increased AD1980 recording
gain by 7.5 dB, which essentially solved the problem. In the end, the input
channel gain knobs were set to approximately 101/2 o’clock and master output
gain knob to approximately 2 o’clock. Setting both channel gain knobs to the
exact same value proved to be a problem since there are no setting labels.

The audio interface bit depth was selected to be 24 bits and sample rate
to 48 kHz. The bit depth of played test sounds differed, but was never lower
than 16 bits.Their sample rate was 44100 Hz. It is exceedingly unlikely that
these settings could introduce noticeable artifacts.

As for the software side, the completed implementation was loaded into
the BF548 processor via the VisualDSP++ studio. Audacity audio editor and
recorder was then used to play the original data via the audio interface outputs

49



8. Achieved performance and testing

Figure 8.1: Implementation testbench
Left output of the audio interface is connected to one input channel of AD1980
Line In. The same processed channel is fed back from AD1980 Surround Out

to the left input of the audio interface. The right channel of the audio
interface is looped back to act as a control, allowing comparison between it

and the processed channel. The feedback cable was replaced by the previously
unused second channel jacks during the testing of stereophonic functionality.

50



8.2. Performance

while recording its inputs.
For the reader’s consideration, I have saved the testing results converted

to 16-bit bit depth and 44100 Hz sample rate in Waveform Audio File format
(.wav) to the microSD card submitted with this thesis. See Appendix B for
more information.

8.2 Performance

I have selected the most interesting pitch shifter configurations to pitch shift
the sounds with, detailed in Table 8.1. Before testing them with audio data, I
needed to set their overlap factor. Since I wanted to use the highest power-
of-two overlap factor possible (it should have had a positive impact on the
resulting quality), I have experimentally recorded the maximum overlap where
all input frames can be processed for each configuration. I have verified this
by using the unprocessed buffer functionality described in section 7.5. This
overlap was then used for further testing of the configuration.

Notice that the Blackfin BF548 is powerful enough for use of a very generous
overlap O = 16 for every configuration with Fast Fourier Transform (FFT)
scalar 16 bit depth and synthesis size up to 2048. The first bottleneck is due to
the fact that Blackfin only has 16-bit multipliers as mentioned in section 6.1.
The second is due to the fact that with synthesis size over 2048, the FFT data
arrays no longer fit inside the 32 kB L1 cache, forcing at least one to be put
into L2 which takes much longer to fetch from and write back.

Since analysis sizes bigger than 2048 result in considerable latency and
synthesis sizes over 4096 do not result in much noticeable improvement ac-
cording to the authors of the Ocean algorithm [11, ch. 3], I did not consider
these. As the authors have concluded that overlap factor O ≥ 8 is necessary
for high-quality results, I have deemed the performance of the implementation

Table 8.1: Settings of configurations used for testing and maximum overlap
factor

Name FFT bits Analysis size Synthesis size Max overlap
LQ 16 512 512 32
LQE 16 512 2048 16
MQE 16 1024 2048 16
MQEE 16 1024 4096 4
HQ 16 2048 2048 16
HQE 16 2048 4096 4
HQ32 32 2048 2048 4
EHX Professional guitar pitch shifter
AUD Audacity audio editor non-real-time pitch shifter effect

51



8. Achieved performance and testing

satisfactory. The overlap factor most probably could be raised to O = 8 for
every tested configuration after a further aggressive manual optimisation.

8.3 Test sounds

I have used five different sounds for thorough testing, detailed in table Table 8.2.
With the exception of piano stereo, all of them are monoaural and were
rerecorded with the left audio channel pitch shifted and the right channel
looped back.

As well as various configurations of my implementation, two other pitch
shifters are tested. The first one of them is a commercial guitar pitch shifting
pedal Electro-Harmonix Epitome. It supports pitch shifting by multipliers
1
2 and 2 (in musical terms, octave down and octave up) and is set up in the
testbench the exact same way as my pitch shifter. The other pitch shifter
tested for comparison is a built-in non-real-time pitch shifting algorithm in
the Audacity audio editor.

I have used five different multipliers to pitch shift the testing sounds: 1
2

and 2, since they are the only multipliers supported by the commercial pitch
shifter, 3

2 for a fractional harmonic relationship, 11
13 for a quite disharmonic

relationship and 1 for a simple identity passthrough with the only desired
effect being system latency. (The passthrough is only recorded once for every
analysis size.)

8.4 Sound latency

Using the sine sound, I was able to ascertain the sound latency by measuring
the duration between the start of the sinusoid in the right loopback channel
and the start of the pitch shifted sinusoid in the left channel. I arrived to
results described in Table 8.3.While there were some transient artifacts in the
pitch shifted sounds, I have determined the latency to be largely (to 2 ms
precision) dependent only on the analysis size and overlap. This is in line with
my expectations: each sample is processed only after every frame containing it
is processed. A frame is processed only after all of its (analysis size) samples
have been processed. The processing takes analysis size divided by frame
overlap samples to complete; therefore, the latency is a sum of those two.

I have also analysed the EHX pitch shifter and determined its latency to
be roughly between analysis window sizes 1024 and 2048.

The feeling I have when confronted with this latency is that the latency
for Na = 512 is almost imperceptible, Na = 1024 is somewhat perceptible and
Na = 2048 is very perceptible.

52



8.4. Sound latency

Table 8.2: Description of sounds used for testing

Sound name Length Description
bass 26 s All notes on a four-string bass guitar played

in an ascending sequence. The bass guitar is
notably difficult to pitch shift well due to the
pure harmonic relationships of its low-frequency
notes.

piano 5 s Recording of a grand piano playing. Grand
piano has a rich frequency content due to the
resonances of various woods.

piano stereo 5 s The same recording, but this time, both audio
channels are pitch shifted, as opposed to only
the left one, the right one being looped back.
The sound contains an interesting and varying
stereophonic field, making it ideal for a verifica-
tion of stereophonic field preservation.

sine 1.44 s 0.5 seconds of silence, followed a 440 Hz sinu-
soidal wave for 0.44 seconds, followed by another
0.5 seconds of silence. The sine wave can be used
to analyse the behaviour of a pitch shifter on
transients and its ability to accurately pitch shift
a single wave.

song 13 s A song excerpt containing a guitar and a male
singing voice, both being fairly conventional tar-
gets for pitch shifting.

speech 15 s An old speech excerpt containing a single male
voice and a speaking chorus. A large amount of
recording noise is present, interesting for an anal-
ysis of how the pitch shifter transforms noise.

Table 8.3: Latency as a function of analysis size and overlap

Analysis size Overlap Worst case latency
512 32 13 ms
512 16 14 ms
1024 16 28 ms
1024 4 34 ms
2048 16 52 ms
2048 4 67 ms
EHX pitch shifter 36 ms

53



8. Achieved performance and testing

8.5 Stereophonic field preservation

As explained by the authors of the Ocean algorithm, no stereophonic field loss
can occur when processing a stereophonic signal with Ocean algorithm. I have
verified this with the piano stereo test sound. The stereophonic field was
always perfectly preserved. The commercial pitch shifter does not support
stereophonic processing (very notably, as it also contains two other sound
effects which are stereophonic, the pitch shifter being the only monophonic
effect). If confronted with a stereophonic signal, it sums it to mono before
processing. This obviously results in a total loss of a stereo field.

8.6 Sound quality

The general pitch shifting quality of the algorithm is comparable to other pitch
shifters. Some artifacts were found and shall be discussed.

8.6.1 Detuning and popping artifacts

The Ocean algorithm suffers from known detuning artifacts that worsen with
lower frequencies. The most notable comparison can be made when shifting the
bass guitar sound by an octave down. All of the pitch shifters essentially fail
here, not being able to transform the lower octave of the bass guitar without
major detuning artifacts. Once the bass guitar gets out of the lower octave,
the quality considerably increases (since the frequency is now twice as big,
which means twice as many bins are available for one note). Except for the
low quality configurations with analysis size 512, seen in Figure 8.2 b), the
detuning artifacts are not particularly jarring from the second octave onwards.

The configurations with enhanced synthesis sizes suffer from popping
artifacts here. As seen in Figure 8.2 c), the enhanced synthesis size results
in a larger number of similar frequencies appearing (consider the end of the
spectrogram, where one note is held for an increased amount of time). These
frequencies interact with each other in a way that reminds me of a popping
sound. The Audacity implementation also suffers from occasional popping
artifacts here, although as seen in Figure 8.3 d), this is not due to the interaction
of similar frequencies.

The high quality setting of my pitch shifter implementation seen in Fig-
ure 8.3 e) is very similar to the commercial pitch shifter in Figure 8.3 f). I
would not be surprised if the commercial shifter used a variation of an Ocean
algorithm. The commercial pitch shifter has a quirk: it adds some harmonics
to the pitch shifted signal. I am sure that I had the dry (passthrough) knob
on the commercial pitch shifter set to negative infinity when recording. This
makes me think the commercial pitch shifter always surreptiously mixes a bit
of the dry signal and signal pitch shifted shifted an octave up (pitch multiplier
2) into the signal pitch shifted an octave down (pitch multiplier 1

2) in order

54



8.6. Sound quality

a) Original, non-shifted signal

b) Low quality (Na = 512, Ns = 512, O = 32)

c) Medium quality with enhanced synthesis size
(Na = 1024, Ns = 2048, O = 16)

Figure 8.2: Spectrograms of bass guitar pitch shifted with multiplier 1
2

The spectrograms are made with Hann windows, window size N = 16384 and
overlap O = 32. This guarantees high frequency precision.

55



8. Achieved performance and testing

d) Audacity non-real-time pitch shifter

e) High quality (Na = 2048, Ns = 2048, O = 16)

f) Commercial pitch shifter

Figure 8.3: Spectrograms of bass guitar pitch shifted with multiplier 1
2 , contin-

ued
The spectrograms are made with with Hann windows, window size N = 16384

and overlap O = 32. This guarantees high frequency precision.

56



8.6. Sound quality

to strenghten the harmonic relationships so that the listener does not notice
minor detuning errors. This, however, results in an organ-sounding sound,
which is understandable considering that organ sounds are made by mixing
sounds of different pipes with frequencies related by small ratios.

8.6.2 Amplitude modulation and oscillating noise artifacts

My implementation of the pitch shifter using demodulation by transformed
unity signal demonstrates presence of some amplitude modulation artifacts, as
is visible on the shifted sinusoid in Figure 8.4. Using pitch multipliers 2 and 3

2 ,
the sine wave is clearly demodulated.

It seems this also has an effect on the background noise, as demonstrated
in Figure 8.5. Note that the amplitude modulation frequency is directly
dependent on the analysis window overlap O. This is understandable because
more analysis windows are added together using a higher overlap O and since
the modulation is created in ridges between the window peaks, more ridges
mean a higher modulation frequency.

While I did expect that increasing the FFT scalar precision from 16 bits
to 32 bits would have a positive effect on lessening this artifact, I have run
another test with the exact same settings as the 32-bit high quality configuration
(Na = 2048, Ns = 2048, O = 16) with only the precision changed to 16 bits
and I have found no difference, either audible or visible on a spectrograph. It
seems that increasing FFT scalar precision is not needed when using dynamic
FFT scaling as the quality of the samples has already been limited to 16 bits
by codec.

The reason why the amplitude modulation still persists even after demod-
ulation (although it is lessened to somewhat passing levels) still eludes me.
Perhaps the whole idea of computing amplitude demodulation cannot result in
exact demodulation (it could be said that the authors of the Ocean algorithm
point this out, although the used language is vague and unclear [11, ch. 3]),
perhaps my implementation computes the demodulation levels in a wrong
way (this theory would be suported by the authors of the Ocean algorithm
computing demodulation exactly for pitch multiplier 3

2 [11, ch. 3]). The only
consolation is that the modulation artifacts do not result in the destruction of
the sound, feeling more like an added effect.

57



8. Achieved performance and testing

8.7 Ocean algorithm and implementation
evaluation

I am pleasantly surprised by the results I have achieved with my implementation
of the Ocean algorithm. While there are amplitude modulation artifacts still
present and popping artifacts appear for configurations where the synthesis
size is larger than the analysis size, it is fully comparable to a free non-real-
time pitch shifting impementation and even a commercially available pitch
shifter. The performance of the chosen Blackfin BF548 even is adequate for
stereophonic processing, a feature that is absent on the commercial pitch
shifter.

I am somewhat confused by the fact that increasing synthesis size did
not appear to provide noticeable benefits claimed by the Ocean algorithm
authors. When pitch shifting, it results in separation of a single frequency into
multiple ones instead of a better exact frequency approximation. I am not
sure if I implemented synthesis windowing correctly, but I think that the only
reasonable interpretation of synthesis windowing while retaining the analysis
window latency is to use a synthesis window of the same size as the analysis
window.

It should be said that the implemented algorithm does not provide any
advancement over the compared pitch shifters. It is apparent to me that
pitch shifting using the Fast Fourier transform has already reached its peak:
the transform fundamentally does not allow lowering of its latency without
demodulation artifacts. I am convinced that general filter banks are the most
reasonable form of overcoming this limitation.

58



8.7. Ocean algorithm and implementation evaluation

Figure 8.4: Pitch shifted sinusoid
The top waveform is the original, the waveforms below it are shifted with

multiplier 1, 1
2 , 3

2 and 11
13 , respectively. High quality shifting with

Na = 2048, Ns = 2048, O = 16 used.

59



8. Achieved performance and testing

a) Typical noise (+45 dB)

e) Pitch shifted noise (Na = 2048, Ns = 2048, O = 16)

f) Pitch shifted noise (Na = 2048, Ns = 2048, O = 4)

Figure 8.5: Noise pitch shifted with multiplier 3
2 spectrograms

The spectrograms are made with with Hann windows, window sizewindow size
N = 1024 and overlap O = 4. This guarantees high time precision.

60



Conclusion

My task was to implement a stereophonic audio pitch shifter on a digital signal
processor BF548 EZ-KIT. To prepare for this task, I have researched known
pitch shifting algorithms, undestanding of which requires some knowledge about
principles of human hearing, music and sound processing. I have provided
an introduction to these topics. After that, I have detailed various common
techniques pitch shifting algorithms build on in chapter 3. I have analysed
both the common and some novel algorithms, discussing their benefits and
drawbacks. The Ocean algorithm seemed to be the best choice to me, having
drawbacks but no critical flaws.

I have discussed the chosen platform and the tools and libraries it provides.
Using them, I have implemented a pitch shifter that uses the Ocean algorithm.
I have neatly decomposed the functionalities required and successfully imple-
mented the algorithm despite unforeseen problems. For example, the audio
codec on the kit does not function well when the program is also writing to the
standard output, which is somewhat hard to debug when using the standard
output to print debugging statements concerning this problem. I have found
an error in the most important part of the Ocean algorithm, the phase shift
equation, forcing me to derive its correct version by myself. I have enhanced the
computation of amplitude demodulation in the Ocean algorithm,computing the
values automatically for each multiplier, although I was not able to completely
eliminate amplitude modulation artifacts.

I have tested the algorithm in and found the implementation to perform
roughly as well as a commercial pitch shifter and a freeware non-realtime pitch
shifter excluding the amplitude modulation artifacts. I have not been able to
replicate the Ocean algorithm authors’ claims that the synthesis size bigger
than the analysis size helps with eliminating artifacts, with my experience
being contrary.

While the amplitude modulation and popping artifacts might be resolvable
by modifying the implementation or the used algorithm details not exactly
specified in the original paper, have been convinced that improving the Ocean

61



Conclusion

algorithm latency or further reducing detuning artifacts without one having
a negative effect on the other is essentially impossible as it is limited by
the inherent properties the Discrete Fourier transform. The future work on
pitch shifting should therefore focus on different algorithms. The Rollers
algorithm seems to be a fine choice since it can overcome these limitations by
using different filter banks, with the filters perhaps placed in a logarithmic
relationship. Since the costs of processing fall rapidly, it could probably even
be implemented on an embedded device.

62



Bibliography

[1] Lago, N.; Kon, F. The Quest for Low Latency. In Proceedings of the Inter-
national Computer Music Conference, volume 30, International Computer
Music Association, 2004, pp. 33–36.

[2] Gold, B.; Morgan, N.; et al. Speech and Audio Signal Processing: Pro-
cessing and Perception of Speech and Music. New York: Wiley, second
edition, 2011, ISBN 978-1-118-14289-9.

[3] Tashev, I. J. Sound capture and processing: practical approaches. New
York: Wiley, 2009, ISBN 978-0-470-31983-3.

[4] Lyons, R. Understanding Digital Signal Processing (3rd Edition). New
Jersey: Prentice Hall, 2011, ISBN 013-7-02741-9.

[5] von Helmholtz, H. On the sensations of tone as a physiological basis for
the theory of music. London, New York: Longmans, Green, and Co., third
edition, 1895, no ISBN issued.

[6] Campbell, M.; Greated, C.; et al. Musical Instruments: History, Technol-
ogy, and Performance of Instruments of Western Music. Oxford: Oxford
University Press, 2004, ISBN 978-0-198-16504-0.

[7] Hall, M. What is the Gabor uncertainty principle? In Ag-
ile* blog, [online], 2004-01-15, retrieved 2018-04-20. Available
from: https://agilescientific.com/blog/2014/1/15/what-is-the-
gabor-uncertainty-principle.html

[8] Zolzer, U. DAFX: Digital Audio Effects. New York: Wiley Publishing,
second edition, 2011, ISBN 978-0-470-66599-2.

[9] Juillerat, N.; Schubiger-Banz, S.; et al. Low latency audio pitch shift-
ing in the time domain. In 2008 International Conference on Audio,
Language and Image Processing, July 2008, pp. 29–35, doi:10.1109/
ICALIP.2008.4590019.

63

https://agilescientific.com/blog/2014/1/15/what-is-the-gabor-uncertainty-principle.html
https://agilescientific.com/blog/2014/1/15/what-is-the-gabor-uncertainty-principle.html


Bibliography

[10] Flanagan, J. L.; Golden, R. M. Phase vocoder. The Bell System Technical
Journal, volume 45, no. 9, Nov 1966: pp. 1493–1509, ISSN 0005-8580,
doi:10.1002/j.1538-7305.1966.tb01706.x.

[11] Juillerat, N.; Hirsbrunner, B. Low latency audio pitch shifting in the fre-
quency domain. In 2010 International Conference on Audio, Language and
Image Processing, Nov 2010, pp. 16–24, doi:10.1109/ICALIP.2010.5685027.

[12] Hua, K. Reunderstand PSOLA. In Kanru Hua’s website, [on-
line], Dec 2015, retrieved 2018-05-14. Available from: http://
khua5.web.engr.illinois.edu/writings/reunderstand-psola.pdf

[13] Analog Devices, Inc. Blackfin® Processor Programming Refer-
ence. Feb 2013, rev. 2.2, retrieved 2018-05-11. Available from:
http://www.analog.com/media/en/dsp-documentation/processor-
manuals/Blackfin_pgr_rev2.2.pdf

[14] Analog Devices, Inc. ADSP-BF54x Blackfin Embedded Proces-
sors Data Sheet. 2014, rev. E, retrieved 2018-05-14. Available
from: http://www.analog.com/media/en/technical-documentation/
data-sheets/ADSP-BF542_BF544_BF547_BF548_BF549.pdf

[15] Analog Devices, Inc. ADSP-BF548 EZ-KIT® Lite Evaluation Sys-
tem Manual. Jul 2012, rev. 1.4, retrieved 2018-05-11. Avail-
able from: http://www.analog.com/media/en/dsp-documentation/
evaluation-kit-manuals/ADSP-BF548_ezkit_man_rev.1.4.pdf

[16] Analog Devices, Inc. VisualDSP++® 5.0 Linker and Utilities
Manual. Jan 2011, rev. 3.5, retrieved 2018-05-11. Available from:
http://www.analog.com/media/en/dsp-documentation/software-
manuals/50_lnkr_mn_rev_3.5.pdf

[17] Analog Devices, Inc. Getting Started with CrossCore® Embedded
Studio 1.1.x. Mar 2015, rev. 1, retrieved 2018-05-11. Available
from: http://www.analog.com/media/en/technical-documentation/
application-notes/EE372v01.pdf

[18] Analog Devices, Inc. Device Drivers and System Services Manual for
Blackfin® Processors. Jan 2011, rev. 4.3, retrieved 2018-05-11. Avail-
able from: http://www.analog.com/media/en/dsp-documentation/
software-manuals/50_ddss_mn_rev_4.3.pdf

[19] Analog Devices, Inc. ADSP-BF54x Blackfin® Processor Hard-
ware Reference. Feb 2013, rev. 1.2, retrieved 2018-05-11. Avail-
able from: http://www.analog.com/media/en/dsp-documentation/
processor-manuals/ADSP-BF54x_hwr_rev1.2.pdf

64

http://khua5.web.engr.illinois.edu/writings/reunderstand-psola.pdf
http://khua5.web.engr.illinois.edu/writings/reunderstand-psola.pdf
http://www.analog.com/media/en/dsp-documentation/processor-manuals/Blackfin_pgr_rev2.2.pdf
http://www.analog.com/media/en/dsp-documentation/processor-manuals/Blackfin_pgr_rev2.2.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADSP-BF542_BF544_BF547_BF548_BF549.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADSP-BF542_BF544_BF547_BF548_BF549.pdf
http://www.analog.com/media/en/dsp-documentation/evaluation-kit-manuals/ADSP-BF548_ezkit_man_rev.1.4.pdf
http://www.analog.com/media/en/dsp-documentation/evaluation-kit-manuals/ADSP-BF548_ezkit_man_rev.1.4.pdf
http://www.analog.com/media/en/dsp-documentation/software-manuals/50_lnkr_mn_rev_3.5.pdf
http://www.analog.com/media/en/dsp-documentation/software-manuals/50_lnkr_mn_rev_3.5.pdf
http://www.analog.com/media/en/technical-documentation/application-notes/EE372v01.pdf
http://www.analog.com/media/en/technical-documentation/application-notes/EE372v01.pdf
http://www.analog.com/media/en/dsp-documentation/software-manuals/50_ddss_mn_rev_4.3.pdf
http://www.analog.com/media/en/dsp-documentation/software-manuals/50_ddss_mn_rev_4.3.pdf
http://www.analog.com/media/en/dsp-documentation/processor-manuals/ADSP-BF54x_hwr_rev1.2.pdf
http://www.analog.com/media/en/dsp-documentation/processor-manuals/ADSP-BF54x_hwr_rev1.2.pdf


Bibliography

[20] Analog Devices, Inc. VisualDSP++® 5.0 C/C++ Compiler and Li-
brary Manual for Blackfin® Processors. Jan 2011, rev. 5.4, retrieved
2018-05-11. Available from: http://www.analog.com/media/en/dsp-
documentation/software-manuals/50_bf_cc_rtl_mn_rev_5.4.pdf

[21] Analog Devices, Inc. AD1980 AC ’97 SoundMAX® Codec Data Sheet. 2002,
rev. 0, retrieved 2018-05-11. Available from: http://www.analog.com/
media/en/technical-documentation/data-sheets/AD1980.pdf

65

http://www.analog.com/media/en/dsp-documentation/software-manuals/50_bf_cc_rtl_mn_rev_5.4.pdf
http://www.analog.com/media/en/dsp-documentation/software-manuals/50_bf_cc_rtl_mn_rev_5.4.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD1980.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD1980.pdf




Appendix A
Glossary

COLA Constant Overlap-Add criterion

DFT Discrete Fourier transform

FD-PSOLA Frequency-domain Pitch Sychronous Overlap-Add method

FFT Fast Fourier transform

STFT Short time Fourier transform

OLA Overlap-Add method

PSOLA Pitch Sychronous Overlap-Add method

TD-PSOLA Time-domain Pitch Sychronous Overlap-Add method

SOLA Synchronous Overlap-Add method

67





Appendix B
Contents of the enclosed

microSD card

README.txt .................... Readme detailing the various directories
blackfin.................................Pitch shifter implementation
testing

sounds...........Testing sounds and their pitch shifted counterparts
bass
piano
piano stereo
sine
song
speech

stats................Statistics of various pitch shifter configurations

69


	Citation of this thesis
	Introduction
	Goals
	Pitch shifted sound quality
	Pitch shifting latency
	Stereophonic field preservation
	Implementation feasibility

	Principles of audio processing taken into design considerations
	Physical aspects of sound
	Frequency range of human hearing
	Human pitch perception
	Signal sinusoids' amplitude and phase consideration
	Gabor uncertainity principle

	Spectrum separation and recombination techniques
	Discrete Fourier transform (DFT)
	Explanation of Discrete Fourier transform for real-valued time-domain signals

	Fast Fourier transform (FFT)
	Bandpass filter bank
	Short time Fourier transform (STFT)
	Window function
	Spectrogram

	Overlap-Add (OLA)
	Constant Overlap-Add criterion (COLA)


	Analysis of real-time pitch shifting algorithms
	Time domain algorithms
	Synchronous Overlap and Add (SOLA)
	Time Domain Pitch Synchronous Overlap and Add (TD-PSOLA)
	Rollers algorithm

	Frequency domain algorithms
	Standard phase vocoder
	Improved phase vocoder
	Frequency Domain Pitch Synchronous Overlap and Add (FD-PSOLA)
	Ocean algorithm


	Selection of a suitable pitch shifting algorithm for BF548 real-time processing
	Analog Devices Blackfin platform, tools and libraries
	Blackfin processor architecture
	Blackfin BF548

	VisualDSP++ integrated development environment
	Used Analog Devices libraries
	Device Drivers and System Services
	Digital signal processing library


	Ocean algorithm pitch shifter implementation on BF548 EZ-KIT
	Common definitions
	Peripherial handling
	Audio codec interfacing
	Input and output circular buffer design

	Pitch transformation
	Transformation arrays
	Core pitch transformation implementation
	Fast Fourier transform implementation considerations

	Audio frame processing
	Windowing implementation
	Amplitude demodulation computation

	Main processing routines

	Achieved performance and testing
	Testbench setup
	Performance
	Test sounds
	Sound latency
	Stereophonic field preservation
	Sound quality
	Detuning and popping artifacts
	Amplitude modulation and oscillating noise artifacts

	Ocean algorithm and implementation evaluation

	Conclusion
	Bibliography
	Glossary
	Contents of the enclosed microSD card

