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Abstrakt

Spotřeba zař́ızeńı může prozradit mnoho informaćı ohledně jeho vnitřńı struk-
tury a toku dat který toto zař́ızeńı zpracovává. Jednoduchá a Diferenciálńı
odběrové analýzy jsou v odborné literatuře široce probrané techniky pro útoky
postranńımi kanály. Tato práce uvád́ı čtenáře do problematiky analýzy spotřeby
a dává krátký přehled metod, které jsou k tomu použ́ıvány.

Hlavńım ćılem této bakalářské práce je analýza spotřeby mikrořadiče při
vykonáváńı r̊uzných operaćı z jeho instrukčńı sady, konkrétně se jedná o
mikrořadič ATMega163, vestavěný do smartkarty. Jsou probrány d̊uležité
aspekty toho, jak mikrořadič funguje a jak zpracovává instrukce: instrukčńı
cyklus, adresy v paměti programu, hodnoty operand̊u a tok dat. Kromě toho
práce popisuje jak typ instrukce ovlivňuje spotřebu, jinak řečeno, jaké procesy
se odehrávaj́ı uvnitř mikrořadiče při zpracováńı dat a kontrole toku programu.

Kĺıčová slova útoky postranńımi kanály, analýza spotřeby, SPA, DPA,
spotřeba mikrořadič̊u, ATMega163, instrukčńı sada
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Abstract

Through power consumption of a device a lot of information about it internal
structure and data it processes can be leaked. Simple and Differential power
analysis are well described techniques for such side channel attacks. This work
gives brief introduction to the idea of power side channel analysis and methods
it uses.

The main objective of this Bachelor’s thesis is power side channel analysis
of a microcontroller’s instruction set specifically ATMega163 which is embed-
ded in a smartcard. Important aspects of microcontroller’s operation and it’s
instructions are discussed: instruction execution cycle, address in a Program
Memory, operand values and data flow. Also how instruction type affects
power consumption, in other words, what does microcontroller internally do
to process data or manage program flow.

Keywords side channel attacks, power analysis, SPA, DPA, microcontroller’s
power consumption, ATMega163, instruction set

viii



Contents

Citation of this thesis . . . . . . . . . . . . . . . . . . . . . . . vi

Introduction 1

1 Power side channel analysis attacks 3
1.1 Power analysis attacks . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Simple Power Analysis . . . . . . . . . . . . . . . . . . . 3
1.1.2 Differential power Analysis . . . . . . . . . . . . . . . . 5
1.1.3 High-Order Differential Power Analysis . . . . . . . . . 6

1.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Test design and measurement setup 7
2.1 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Obtaining power traces: SC Power Measurement . . . . 7
2.1.2 Post-processing . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Test design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Design properties . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Test generation and communication with measurement

setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Power consumption analysis of a microcontroller ATMega163 13
3.1 Architecture and instruction execution of ATMega163 . . . . . 13
3.2 Instruction address dependency . . . . . . . . . . . . . . . . . . 15
3.3 Operand value dependency . . . . . . . . . . . . . . . . . . . . 17
3.4 Instruction type dependency: instruction set analysis . . . . . 20

3.4.1 Arithmetic and logic instructions . . . . . . . . . . . . . 20
3.4.2 Bit and bit-test instructions . . . . . . . . . . . . . . . . 34
3.4.3 Data transfer instructions . . . . . . . . . . . . . . . . . 38
3.4.4 Branch instructions . . . . . . . . . . . . . . . . . . . . 54

3.5 Analysis summary . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



3.5.1 Instruction comparison . . . . . . . . . . . . . . . . . . . 61
3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Conclusion 65

Bibliography 67

A Acronyms 69

B Contents of enclosed CD 71

x



List of Figures

1.1 SPA trace of basic square-and-multiply algorithm [5]. . . . . . . . 4
1.2 SPA trace showing an entire DES operation [7]. . . . . . . . . . . . 5

2.1 One hundred of raw power traces of 1 µs. . . . . . . . . . . . . . . 9
2.2 Analysis of a three sample pairs in a window for n = 5 with position

to analysis 63, 69, 75. Legend shows difference value by which the
starting point is chosen. . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 The Parallel Instruction Fetches and Instruction Executions. . . . 14
3.2 Operations during execution stage of ATMega163. . . . . . . . . . 15
3.3 NOP executed at 6000 different addresses, starting from $2b5. . . . 16
3.4 Power traces at 18 ns for constant number of destination register

and different data stored in it. . . . . . . . . . . . . . . . . . . . . 18
3.5 Power traces of ADD, where destination register is constant in data

and it’s number and changing number of source register and their
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Fetch of ORI with different immediate values. . . . . . . . . . . . . 19
3.7 Power traces of ADD r16, r17, where r17 is ranging from 0 to 255

and with different values stored in r16 . . . . . . . . . . . . . . . . 21
3.8 Power traces of clock after ADD r16, r17, where r16 contains $0f

and r17 is ranging from 0 to 255 at different points of execution. . 22
3.9 Power consumption in the clock after SUB execution at 16 ns, with

hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10 Comparison between power consumption of ADD r16, r17 and SUB

with different data being processed. . . . . . . . . . . . . . . . . . 24
3.11 Power consumption of SUBI at 21 ns with constant value in desti-

nation register and different immediate values. . . . . . . . . . . . 25
3.12 Comparison between ADD and INC . . . . . . . . . . . . . . . . . . 27

xi



3.13 Power consumption of clock after AND r16, K, with r16 = $cc
and all possible K at different points of execution with respective
hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.14 Power consumption of ANDI with different immediate values and
constant value stored at destination register at the clock of execu-
tion at 16 ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.15 Power consumption of ANDI with different immediate values and
constant value stored at destination register at and the clock after. 31

3.16 Power consumption of a clock after execution of ANDI with different
immediate values and with different constants stored at destination
register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.17 Power consumption of clock after OR r16, K, with r16 = $cc and
all possible K at different points of execution with respective hy-
potheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.18 Power consumption of ORII with different immediate values and
constant value stored at destination register at and the clock after. 32

3.19 Clock after execution of ASR in comparison with my hypothesis,
that power consumption is dependent on original data and a result. 35

3.20 Dependency on a Hamming Distance between result and data pro-
cessed at the clock after SWAP execution . . . . . . . . . . . . . . . 36

3.21 Power consumption of MOV with different values stored in source
register and constant value stored at destination register at the
clock after execution at 16 ns. . . . . . . . . . . . . . . . . . . . . . 39

3.22 Power consumption of LDI with different immediate values and zero
stored in destination register at the clock after execution at 24 ns. 40

3.23 Power consumption of second execution clock of LDS with different
addresses as operand value, loading 256 data entries from addresses
starting with $0070 at 13 ns. . . . . . . . . . . . . . . . . . . . . . 41

3.24 Power consumption of clock after execution of LDS with different
addresses as operand value, loading 256 data entries from addresses
starting with $0070 at 22 ns. . . . . . . . . . . . . . . . . . . . . . 42

3.25 Power consumption of LDS with addresses $70 to $b0, with first
six bits prepended with different values at different . . . . . . . . . 43

3.26 Power consumption of LD with constant address, different data are
loaded into register that is set to $cc. . . . . . . . . . . . . . . . . 44

3.27 Power consumption of LD with constant address, at loaded memory
entry $00 is stored, different data are stored in register. . . . . . . 44

3.28 Power consumption at the second clock of LD with increment/decrement,
both destination register and memory entry at tested addresses are
set to $00, with respective hypothesis, at 17 ns. . . . . . . . . . . . 45

3.29 Power consumption at the second clock of LDD, both destination
register and memory entry at tested addresses are set to $00, with
respective hypothesis, address is set to $77. . . . . . . . . . . . . . 46

xii



3.30 Power consumption of ST with constant address, different data are
stored from register, with memory entry set to $cc. . . . . . . . . 47

3.31 Power consumption of ST tested at 21 ns. . . . . . . . . . . . . . . 48
3.32 Power consumption of ST in dependency on data in source register

and those stored in memory. . . . . . . . . . . . . . . . . . . . . . 48
3.33 Power consumption of ST and LD at 50 ns with increment and

respective hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.34 Comparison between power consumption of a second clock of in-

structions LDD and STD. . . . . . . . . . . . . . . . . . . . . . . . . 50
3.35 Power consumption of first clock of LPM execution from address $582,

accessing 256 different addresses. . . . . . . . . . . . . . . . . . . . 53
3.36 Power consumption of IJMP with respective hypothesis. . . . . . . 54
3.37 Power consumption of RJMP, third clock of execution at 10 ns. . . . 55
3.38 Power consumption of RJMP, first clock of execution, both executed

from same addresses, with different relative address value. . . . . . 56
3.39 Power consumption of SBRS r16, 4, second clock of execution,

different data are set into register, so skip does or does not occur
in dependency on bit 4. . . . . . . . . . . . . . . . . . . . . . . . . 60

3.40 NOP with different Hamming distance between current and next
address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.41 Power consumption of two arithmetic instructions. . . . . . . . . 62
3.42 Power consumption of two data transfer instructions. . . . . . . . 62
3.43 IJMP with different Hamming distance between current and next

address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xiii





Introduction

Often, when designing cryptographic algorithm, developer is concerned mainly
with it’s mathematical properties: if not mathematically unbreakable, algo-
rithm needs to be practically unbreakable. This is the first Kerckhoffs’s prin-
ciple[6], set by Auguste Kerckhoffs among others in nineteenth century that is
still relevant. On the flip side, algorithm needs implementation, and programs
do not exist in vacuum.

Secure implementation is as important as secure algorithm. Without well
thought implementation security of a whole system might be compromised.
Device might produce some side-effects, like different time of computation
given different data, noise produced by hardware device itself, or power con-
sumption that is dependent on processed data. Side-channel attacks based on
such properties of a device may pose threat to security of a system. Power
side channel analysis attacks target power consumption of a device.

Main objective of this work is to analyze power consumption of a microcon-
troller, how it’s internal architecture can affect power traces during execution
of various instructions. To perform this analysis the preparation stages should
be taken, such as picking up a microcontroller to test, creating measurement
setup and design a number of tests.

Work structure

Chapter 1 introduces reader to the idea behind power analysis attacks and
describe main methods of it’s implementation.

In chapter 2 I describe test prerequisites for practical part of the work to
be done: what measurement setup I had, which tools I used to acquire and
process power traces, what problems I encountered and how I dealt with them.

Chapter 3 present the practical output of my work. Here I describe internal
architecture of ATMega163 — microcontroller used for analysis — and how
it affects power consumption. I continue with describing instruction set and
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Introduction

types of instructions. I analyze power consumption of individual instructions
with dependency on the type of instruction, operands and data they process.
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Chapter 1
Power side channel analysis

attacks

This chapter will provide introduction to power side channel analysis attacks,
and what methods of power analysis exist. I will briefly mention historical
development and significant concepts in this topic and how it influenced my
work.

1.1 Power analysis attacks

First to introduce cryptographic community to power analysis attacks were
Paul Kocher, Joshua Jaffe and Benjamin Jun, in their report “Differential
power analysis” in the year 1998[7]. Despite the name, they’ve brought up
two methods of power analysis: Simple Power Analysis and Differential Power
Analysis. Simple power analysis targets implementation details, such as con-
ditional pieces of code, which are or are not executed in dependency on data
that are being processed and structures such as loops or any repetitive pieces
of computation. Differential power analysis exploits statistical properties of
data and respective power consumption trace.

1.1.1 Simple Power Analysis

To successfully implement Simple power analysis attack only a few power
traces are sufficient, even one power trace may expose all information that
attacker needs. Power consumption is analyzed along time axis, because im-
portant part of it is algorithm itself. Great example of Simple power analysis
attack is provided by Marc Joye[5]. In this example Simple Power Analysis
attack was performed against basic square-and-multiply implementation, see
algorithm 1.

The problematic part here is that at the moment of checking conditional
statement, when condition is not met (bit i of d is 0) execution of this iteration

3



1. Power side channel analysis attacks

Algorithm 1 Basic square-and-multiply algorithm.
k ← bitsize(d)
y ← x
for i = k − 2 downto 0 do

y ← y2(modn)
if bit i of d is 1 then y ← y ∗ x(modn)
end if

end for

of a loop is shorter in comparison to iterations where condition is met. Which
is afterwards can be seen at the power trace of a device, that used straight-
forward implementation of this algorithm, as seen on figure 1.1.

Key value: 2E C6 91 5B F9 4A

2

0010
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1 1 10

C

1 100

6

0 1 10

9

100 1

1

000 1

5

0 10 1

B

10 1 1

F

1 1 1 1

9

100 1

4

0 100

A

10 10

Figure 1.1: SPA trace of basic square-and-multiply algorithm [5].

Another typical example is observation of repeated structures, for example,
rounds in block ciphers. Although just from a power consumption of a block or
groups of blocks, Simple Power Analysis is used as supplement to Differential
power analysis to “remove irrelevant regions” [8].

Rita Mayer-Sommer in [9] pointed out, that SPA can be applied to individ-
ual instructions, not only to conditional branching instructions. She objected
the statement from [7], that SPA is easily prevented “by avoiding conditional
branching and jumps” and presented results of power consumption measure-
ment of MOV instruction in PIC16C84 chip. Those measurements show that
by a mere SPA attacker can figure out Hamming weight of data processed,
which creates a threat no one before anticipated.
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1.1. Power analysis attacks

Figure 1.2: SPA trace showing an entire DES operation [7].

1.1.2 Differential power Analysis

In contrast to Simple Power Analysis, Differential Power Analysis requires a
large amount of power traces to perform it, therefore it is usually necessary
to physically possess one attacked device[12]. On the upside, attacker doesn’t
need to know implementation details about cryptographic device, all that he
needs is “being merely informed about general code structure”[9].

Generally, to perform Differential power analysis attack few steps need to
be taken according to Mangard[12]:

1. Choose intermediate value of executed algorithm: it needs to
be a result of a function f(d, k), where d is a non-constant data value
(either plain text or cipher text) and k is constant key;

2. Measure power consumption: attacker needs to obtain power traces
of ciphering/deciphering data, known to the attacker. It is important
for resulting power traces matrix to be aligned, i.e. at every point in
time (column in matrix) needs to be performed same operation;

3. Calculate hypothesis: attacker has to have some model (more on
models later in text), by which he can create hypothesis about interme-
diate value in dependency on key;

4. Mapping hypothesis to power traces and compare them.

5



1. Power side channel analysis attacks

There are two basic models for calculating hypothesis, based on Hamming
Weight1 and on Hamming Distance between two intermediate values2.

Technique, that is widely used to calculate liner correlation between power
traces and hypothesis is sample Pearson correlation coefficient[3]. Formula for
it reads as follows

r = n
∑
xiyi − (∑xi

∑
yi)√

[n∑
x2

i − (∑xi)2][n∑
y2

i − (∑ yi)2]

where n is the sample size, xi and yi are samples at i position in the set.

1.1.3 High-Order Differential Power Analysis

Number of countermeasures to DPA attacks exist, such as masking, insertion
of random operations, that do not affect the computation, shuffling and so on,
discussed at great detail by Mangard[12]. But for every countermeasure there
is better yet attack scheme.

Higher-order (second or more) DPA attacks deal with not one, but with a
number of points in measurement. This attack requires even more power traces
for it to success, but is able to deal with various standard countermeasures
against first-order DPA attack[4].

1.2 Summary

Thematically, my work is close to that of Rita Mayer-Sommer I mentioned
above while describing Simple Power Analysis. Before discovering her work,
I came up with idea of testing instructions against known values in order to
see, how instructions behave with regard of their power consumption.

As she stated in [9], SPA attack can be performed against individual in-
structions. With that in mind, I would like to say that objective of this work is
to perform Differential Power Analysis, so future works could rely on it to per-
form Simple Power Analysis. Difference between her work and mine is that
here I provide more comprehensive exploration of almost every instruction,
with more detailed overview of timings3.

1Hamming weight of a value is number of ones in it’s binary representation.
2Hamming distance between two values is Hamming weigh of a result of operation “ex-

clusive or” between the two.
3Not to mention that we analyze different microcontrollers
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Chapter 2
Test design and measurement

setup

In this chapter i would like to present my measurement setup, tools and soft-
ware I used to obtain and process power traces. Note about the order of
sections: at the first glance it may seem illogical to start with measurement
setup and continue with test design; after all, tests had to be designed before
any measurement could take place. I wanted to swap those chapters in order
to make transition from design to implementation more smooth.

So I would like to start with measurement setup and explain necessary
steps that I took to get power traces that are prepared for analysis, then
proceed with logic behind test design, and at the end explain my analysis
software choice.

2.1 Measurement setup

Microcontroller under test in this work is ATMega163, embedded in a smart-
card. This allowed me to use tools, that were available for smartcard com-
muncation and power consumption analysis.

2.1.1 Obtaining power traces: SC Power Measurement

To obtain power traces I used Agilent oscilloscope MS06104A that’s communi-
cating with a computer through SC Power Measurement program from course
MI-BHW.16, created by Ing. Jǐŕı Buček and Ing. Vyleta Petr[10]. This pro-
gram performs arbitrary amount of power measurements through oscilloscope.
It communicates with a smartcard through a reader. SC Power Measurement
creates four output files:

• traces.bin, binary file that contains measurement itself,

• traceLength.txt, text file with the number of samples per trace,

7



2. Test design and measurement setup

• plaintext.txt, text file with randomly generated plain data of a size 16
bytes, number of “plain texts” generated is respective with number of
power traces collected in traces.bin,

• ciphertext.txt, text file with respective to the plaintext.txt encrypted
texts.

I made slight changes to suit my needs. Firstly, I was not interested in the
input or output texts, since it is not my objective with this work, so I am not
generating those. Secondly, due to amount of different measurements I had to
perform to various instructions, it was necessary to create subfolders where I
could store my measurements so I could tell to which test those power traces
belong. Before prompt about amount of measurements needed, in my version
program asks to enter a name of a test. After this it creates folder with the
current date (unless this folder already exists) and inside this folder created a
subfolder with with a test name. Lastly, I the only thing this program sends
to a smart card is header of a APDU with command that starts the test. No
data from this program are processed in my tests, so there is no need to send
anything else.

Another piece of hardware I used is measurement adapter for smartcards
created by Ing. Jǐŕı Buček.

2.1.2 Post-processing

2.1.2.1 Timing problem

Sample rate of oscilloscope was set to 1GSa (1 sample every nanosecond), and
with 4MHz frequency of microcontroller’s internal clock it gives 250 samples
per clock.

First problem that I had to deal with is electronic noise, which is solved
easily by collecting a reasonably large amount of traces and calculating mean.

And right there is the actual obstacle: clock period has some deviation, not
very large, but still significant enough to interfere. This results in a situation,
when one clock cycle might be actually by a mere nanosecond longer or shorter
than documented. At the point where trigger signal was sent it might not be
such a problem, but some milliseconds after this event error accumulates.
Figure 2.1 depicts how this situation looks like in reality. Notice how much
less precise clock match is on the figure 2.1b than that of 2.1a.

When calculating mean of those raw traces, result is blurred due to the
fact that clocks were not properly aligned, which makes analysis results less
precise. Furthermore, power traces are not only misaligned between each
other, but clocks inside are as well, and alignment of pieces of traces within
one trace is even worse.
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2.1. Measurement setup
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(a) Right after trigger signal is sent.
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Figure 2.1: One hundred of raw power traces of 1 µs.

2.1.2.2 Solution

So two problems arise: noise and alignment. The way to solve those problems
is to find at which point power consumption grows the most in every clock
cycle (due to change in a clock signal from 0 to 1) and align those points.
Afterwards it is possible to calculate mean value of power traces without
loosing any important pieces of power consumption.

I designed a simple utility for that purpose. This program loads single
power trace, aligns it and accumulates in array, that represents sum of all
aligned power traces, those steps repeated until end of traces file is reached
(i.e. all power traces are read).

PC
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93.

63 756968 8074
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150

Figure 2.2: Analysis of a three sample pairs in a window for n = 5 with
position to analysis 63, 69, 75. Legend shows difference value by which the
starting point is chosen.
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2. Test design and measurement setup

Here I would explain aligning a little further. Aligning process starts after
identifying beginning of a relevant part (i.e. where trigger signal is sent). As
an initial step first set of samples in a size corresponding to one clock cycle is
copied to accumulator array. From this point aligning uses concept of “sliding
window”. Program selects set of samples, that contain the change of a clock
signal from zero to one; in other words, position, where execution of instruction
starts. To find exact place of start, set of samples is searched for the edge with
largest angle. Program takes first sample in the set and nth sample after it,
where n is fixed value for every iteration for the sake of consistency. For the
needs of this program the “angle” in question can be sketched as difference
between values of second and first samples. Then programs picks second
sample and nth sample after it, and defines that difference for them, and
continues until it reaches the end of a sample set. After every such sample pair
in set is calculated, program picks the one with the largest positive difference
and sets position of it’s first sample as the beginning of a clock.

Figure 2.2 tries to explain this concept. Here pair of samples with po-
sitions 69, 74 clearly has biggest positive difference between values, meaning
that between those two points difference in power consumption is the biggest,
which makes position 69 a candidate for a “clock starter”. Code 1 present
implementation of this algorithm, which I used to post-process4 power traces.

2.2 Test design

2.2.1 Design properties

When instruction is executed, a lot of variables can contribute to it’s power
consumption, such as it’s opcode, position in memory, operand values, data it
operates on, opcode of a next instruction and power consumption of previously
executed instruction, and also hardware-specific variables such as electronic
noise. According to [12] we can compose those variables into four groups. With
that said, we can roughly estimate that power consumption of any specific
point in time can be described with a following formula

Ptotal = Pdata + Pop + Pel.noise + Pconst.

Means that total power consumption at any given point in time has data
dependent component, operation dependent component, and also electronic
noise and constant component. From the cryptanalytic point of view, most
important components are Pop and Pdata, as well as Pel.noise. Pconst doesn’t
provide any exploitable information, so it’s insignificant. On the other hand,
Pel.noise doesn’t provide any information either, but it’s presence can obscure
power consumption and make power analysis way harder.

4Or pre-process, depending on point of view
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2.2. Test design

Listing 1 C++ implementation of aligning algorithm.
1 #define CLOCK 250
2 void MeanCalculator::ClockAllignment ()
3 {
4 for ( unsigned i = 0 ; i < CLOCK ; i++)
5 mean[i] += trace [start + i];
6

7 unsigned clock = CLOCK;
8 unsigned first_40p_clock = (CLOCK * 4 ) / 10;
9 unsigned clock_skip = (CLOCK * 9 ) / 10;

10 unsigned clock_skew = CLOCK / 50;
11 unsigned max_pos = 0;
12 double max = 0;
13

14 for ( unsigned i = start + clock_skip ;
15 i < trace_length && clock < mean_length ;
16 i = max_pos + clock_skip )
17 {
18 for ( unsigned j = i; j < i + first_40p_clock ; j++)
19 {
20 double dif = (trace[j+clock_skew] - trace[j]);
21 if ( dif > max )
22 {
23 max = dif;
24 max_pos = j;
25 }
26 }
27 for ( unsigned j = 0 ;
28 j < CLOCK && max_pos + j < trace_length ;
29 j++ )
30 mean [clock + j] += trace[max_pos + j];
31 max = 0;
32 clock += CLOCK;
33 }
34 }

11



2. Test design and measurement setup

But for the sake of my tests, I keep up to more detailed way of breaking up
power consumption components. For example, when considering Pdata com-
ponent of a power consumption, we can compose it from a list of variables.
For example, for LD instruction, which loads memory entry value from speci-
fied address and to specified register, Pdata can be broken down to Preg.value

(contents of a register), Pmem.value (value that is loaded) and Psrc.addr. (source
address). So it is good idea to either isolate those components (for example,
loading from different addresses same value), or to keep track of everything
that can affect power consumption.

My tests use both approaches, because in some cases using only isolated
data analysis means omitting important components such as Hamming dis-
tance between destination and source data, and on the flip side, manipulate
with a large amount of possible dependencies can be convoluted and make
power analysis much harder.

2.2.2 Test generation and communication with measurement
setup

To apply those tests I needed to have a way to communicate with computer in
order to obtain power traces. I used program [11], modified by Filip Štěpánek.
Practically this modification is rather a downgrade, since I cut off everything,
that was not necessary for the purpose of my work.

Besides actual .hex file, that gets programmed to a microcontroller, this
tool outputs very important debug data, that are useful in further analysis
and test design, such as on what exact addresses instruction will be located,
what opcode it has and so on.

Other than than I wrote a number of bash scripts that helped me managing
test generation and logging of important files.

2.3 Software

As I mentioned in the introduction to this chapter, the software I chose is
Wolfram Mathematica. I am familiar with this software from past courses
BI-CAO and BI-PMA so it was a logical choice for me. Besides, Wolfram
Mathematica provides wide range of analytic possibilities, not only imple-
mented in a language itself but with a use of custom functions and libraries
that user can program himself. It also has great graphic drawing functions.
In my analysis I used is Manipulate that allows user to change the variable in
specified function and see how this change affects it on the go. It was helpful
in visual analysis of power traces. Mathematica can also export graphics into
various formats and I used this functionality to provide graphs for this work.

I implemented a small library to shortcut frequently used sets of functions,
such as reading traces from a file and creating graphics.
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Chapter 3
Power consumption analysis of a

microcontroller ATMega163

This chapter presents the main output of this work. Here reader will find
power consumption analysis of a microcontroller ATMega163. Following sec-
tions will describe dependencies on a different factors and variables in exe-
cuted instruction, at which point of execution those dependencies occur and
the thought process that has led me to those conclusions.

Before anything is necessary to outline the internal architecture and exe-
cution cycle of microcontroller ATMega163. After clarifying those points we
can proceed to the analysis.

First things that need to be resolved are values that are not necessarily
dependent on instruction type: address of a currently executed instruction
and it’s operand value. Then we will explore power consumption of every
instruction type thoroughly through different instructions.

3.1 Architecture and instruction execution of
ATMega163

Not everything about ATMega163 microcontroller is available in it’s datasheet,
such as the actual topography of a chip. Despite that, it contains a lot of useful
data on instruction cycle, from which user can conclude what to look for in
power traces analysis. This section largely depends on information provided
by datasheet, so assume that everything descriptive about ATMega163 comes
from it [1], unless I explicitly cite something else, or state my own observations.

ATMega163 has a Harvard architecture, meaning that it has separated
program memory and data memory, which implies that it can access both
simultaneously. This property enables instruction level parallelism in a form
of two-stage pipelining with “fetch” and “execute” stages.
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3. Power consumption analysis of a microcontroller
ATMega163

Figure 3.1 (page 16 of datasheet) illustrates simply how it works. At first
clock microcontroller fetches the instruction and at second microcontroller
executes it. Obviously, the “fetch” loads instruction from program memory,
meaning that it holds a memory position at Program Counter. This observa-
tion is important: it suggests that at the instruction execution stage power
consumption will be somehow dependent on address and opcode (and operands
values that come with it) of instruction that is currently fetching. I explore
it more in subsection 3.4.2, where I analyze address dependency. In subsec-
tion 3.4.4 I will examine it even further with analysis of branch and jump
instructions.

T1 T2 T3 T4

System Clock Ø

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

Figure 3.1: The Parallel Instruction Fetches and Instruction Executions.

Next lets examine timings of actual instruction execution. Basically, ex-
cluding manipulations with PC and program memory I looked at higher in the
text, vast majority of instructions involve either arithmetic logic unit (ALU
for short) or data memory (from this point I will refer to it as SRAM as in
datasheet).

Quite expectedly for ALU operations, as seen at figure 3.2a (page 17 of
datasheet), execution goes step-by-step: collect data to process, compute
something with those data and save the result. Generally I would expect
some similar dependency occurring in power traces, more on that in subsec-
tion 3.4.1. Majority of ALU operations takes just one clock cycle, except for
those involving two registers, which are interpreted as word and which are
processed in two clock cycles. This makes me suppose that in two-clock in-
structions I will see something similar to two corresponding one-clock ALU
operations in a row.

Everything that accesses SRAM takes two clocks. No further informa-
tion to figure 3.2b (page 17 of datasheet) is given, and I can only suppose
that at the first clock of memory access instruction execution SRAM con-
troller decodes address to requested memory entry. This theory will be tested
at subsection 3.4.3.

ATMega163 has 8K × 16 Program Memory, 1K × 8 Data Memory and 32
general purpose registers and 64 I/O registers. SRAM is organized in a way,
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3.2. Instruction address dependency

T1 T2 T3 T4

System Clock Ø

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

(a) Single Cycle ALU Operation.

Address

T1 T2 T3 T4

Prev. Address

R
e
a
d

W
ri
te

System Clock Ø

WR

RD

Data

Data

Address

(b) On-chip Data SRAM Access Cycles.

Figure 3.2: Operations during execution stage of ATMega163.

that program can access general purpose registers and I/O registers same
as ordinary memory entries. It means, that maximum address that is avail-
able is $45f. What is notable, that instructions that directly or indirectly
address Program Memory of SRAM, have more than needed amount of bits
to address it. For example, instruction LDS (Load Direct) loads byte from 16
bit position, which is more than needed to address total of $45f memory po-
sitions. While testing instructions that access memory locations, I found out
that loading data from address that is bigger than $45f throws away higher
nibble of high byte entirely and cuts two most significant bits from lower nib-
ble. This observation will be useful at testing instructions, that manipulate
with addresses, for example Data Transfer Instructions (see subsection 3.4.3).

3.2 Instruction address dependency

To test power consumption of instructions I needed to test instruction de-
pendency first. Since Program Counter change is always there, it might be
a significant complication in analysis, if instruction is placed in a wrong place.
There is not always an option to place tested instructions at the exact same
address: while the problem of testing data dependency in registers is eas-

15



3. Power consumption analysis of a microcontroller
ATMega163

ily solved by “increment–branch” pair, testing operand change would require
absurd amount of measurements.

To test instruction address dependency, I used NOP instruction, which
doesn’t operate on any data, and has all-zeros opcode. I found out, that
power consumption is heavily dependent on address of instruction that is cur-
rently in execution and next address. It can be explained by the fact, that
ATMega163 has two-stage pipeline, and at the moment of execution of cur-
rent instruction next one is in fetch stage. Apparently, increment and logically
following change in a number of bits creates larger power consumption.

In result, power consumption at 14 ns of instruction execution is depen-
dent on a change between current and next instruction. Correlation between
power consumption at this point and Hamming distance of those two addresses
is 0.988.

(a) Overview of every clock.

test

hypothesis

fef16 ff716 fff16 100716

130

140

150

160

170

180

(b) Closer look at address dependency
on addresses from $feb to $100e
at 14 ns.

Figure 3.3: NOP executed at 6000 different addresses, starting from $2b5.

On figure 3.3b it is clear that at address $fff power consumption is
the largest. And indeed, Hamming distance between $fff and next ad-
dress, $1000, is 12, while, for example, Hamming distance between $ff8
and $ff9 is only 1.

On the same figure there is noticeable difference between hypothesis and
real power consumption. At address $1000 it is significantly higher, than
expected. This happening is due to residual consumption after a large peak.

I had to choose how to place instructions in such a way, that it has high-
est possible density (but without interfering with helper instructions) and to
minimize address change impact.

Table 3.1: Lower three bits of address with it’s power consumption dependency

Address 000 001 010 011 100 101 110 111
Next address 001 010 011 100 101 110 111 X000
Hamming distance 1 2 1 3 1 2 1 >3
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3.3. Operand value dependency

Table 3.1 shows how Hamming distance changes in dependency on last
three bits. With what was mentioned before, I needed to choose some address,
that doesn’t have large Hamming distance with next instruction (so $7 and $f
are not an option), and on any address that goes after those (so $0 and $8
are also excluded). I chose $2 and $a: Hamming distance with next address
is minimal, and address before it has second minimal Hamming distance with
next address, address after has third minimal Hamming distance.

3.3 Operand value dependency

There are two types of operand values.

1. Immediate values

• value to process (LDI, ORI and ANDI),
• address in SRAM (LDS, STS, displacements),
• address (direct or relative) in Program Memory (jumps, branches

and calls),
• address of ports (IN, OUT),
• positions in register (BSET and BCLR).

2. Register numbers

• source and destination registers in most of instructions,
• registers for indirect addressing memory (Program or SRAM) (LD,

ST).

Usually in instructions there is wider range of immediate values available
then register numbers. Even with relatively big number of general purpose
registers AVR microcontrollers dispose (in ATMega163 it’s 32), a lot of in-
structions narrow user’s options down to 16 or even 6 registers.

Logically, it is expectable to see dependency on immediate values, since
those are the ones that get finally processed. And as opposed to immediate
values, little to no dependency on register number is expected.

3.3.0.0.1 Register number dependency In reality register number can
noticeably affect data dependency in computations. I examined ADD instruc-
tion on values from 0 to 31 in four tests. It is combination of two sets of
options. First set is where does data change occur: in source or destination
register. Second set is at which position occurs change in register number,
again, either source or register.

What I found out that data in destination register expose themselves
through power consumption less than data in source register. On top of that,

17



3. Power consumption analysis of a microcontroller
ATMega163

what data are there in destination register is much harder to define: not only
it alters power consumption, but generally makes it more noisy, see figure 3.20.
Correlation between Hamming weight of data and power consumption doesn’t
get higher than 0.608 and at a different point in time through every register
number. All in all, there is some dependency, but it is not very clear one.

0 2 4 6 8 1012141618202224262830

113

114

115

116

117

118

Figure 3.4: Power traces at 18 ns for constant number of destination register
and different data stored in it.

On the other hand, when data in destination register remain constant, data
dependency is clear with correlation up to 0.990, as shown on 3.5a. More on
data dependency reader will find in further sections that provide instruction
analysis. Another noticeable thing is that register number also leaks in a form
of Hamming weight, adding up to total consumption, see 3.5b.
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(a) Data dependency of power con-
sumption through all the register num-
bers.
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(b) Register number dependency of
power consumption through data.

Figure 3.5: Power traces of ADD, where destination register is constant in data
and it’s number and changing number of source register and their data.
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3.3. Operand value dependency

3.3.0.0.2 Immediate value dependency More interesting then data de-
pendency during execution stage of an instruction is opcode change. I de-
scribed in subsection 3.4.2 how much PC change affects power consumption.
Here I am interested in examining how opcode can affect fetch of an instruc-
tion.

To test it I picked two instructions that use 8 bit immediate value: LDI
and ORI. Dependency was found, which starts after the falling edge of a clock
(as seen on 3.6a) and is defined by Hamming weight of negated value. Fig-
ure shows this dependency with hypothesis. Notice how opcode’s Hamming
Weight dependency occurs at the very end of instruction fetch.

50 100 150 200 250
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100

150

(a) One clock before execution of ORI.
32 64 96 128 160 192 224 256

32

33

34

35

36

37

38

test hypothesis

(b) Dependency on immediate value at
243 ns of ORI fetch.

Figure 3.6: Fetch of ORI with different immediate values.

In conclusion I have to say that even though some dependency on opcode
is present, it is not as significant as data dependency, that will be examined
later in the work.

19



3. Power consumption analysis of a microcontroller
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3.4 Instruction type dependency: instruction set
analysis

3.4.1 Arithmetic and logic instructions

Tests of arithmetic and logic instructions for any intelligible results need to
operate with data. Every such instruction manipulates with general purpose
registers.

As was said before, we would expect some dependency on data stored in
registers at the beginning of execution, then something that would resem-
ble computation happening in between and at the end storing the data to
destination register.

Some instructions are not described, because they are redundant and are
practically aliases to existing instructions.

3.4.1.1 Arithmetic instructions

3.4.1.1.1 General positioning of dependencies examined on ADD and
ADC

Table 3.2: Detailed description of ADD and ADC instructions.
Description Add two Registers Add with Carry two Registers
Mnemonics ADD ADC
Operands Rd, Rr Rd, Rr
Operation Rd ← Rd + Rr Rd ← Rd + Rr + C
Flags Z,C,N,V,H Z,C,N,V,H
Opcode 0000 11rd dddd rrrr 0001 11rd dddd rrrr
Clocks 1 1

ADD starts it’s register operands fetch roughly at 18 ns after start of a clock
and is mostly visible around 24 ns. Testing with constant data in destination
register and ranging data from 0 to 255 in source register, picking a power
trace measurement at 24 ns shows dependency very similar to Hamming weight
of a ranging value, that currently is loaded to ALU. Correlation between
Hamming weight of this value and power consumption of processing those
values is roughly 0.983 (mean between correlations when destination register is
set to $00, $0f and $ff). Same holds for situation when we switch destination
and source.

Figure 3.7 shows, that with different data stored in source register and
three different values stored in destination register, data consumption changes
significantly. It can be seen at the smaller wave peak at 27 ns that with
different values that peak gets higher: with destination register set to $00 the
largest peak is 155.87 in contrast to destination register set o $ff, where it
reaches 168.63. Notice, how main (first) large peak at around 178 ns is not
changing no matter what is stored in both registers.
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3.4. Instruction type dependency: instruction set analysis
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(a) r16 = $00.
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(c) r16 = $ff.

Figure 3.7: Power traces of ADD r16, r17, where r17 is ranging from 0 to
255 and with different values stored in r16

ALU operation execute and result write back occur around falling edge
of a clock. Therefore power consumption there is more steady with residual
peaks of consumption. This effect is more pronounced after processing large
values, yet still too small to distinguish it from electronic noise.

What is remarkable is that the result is leaking the clock after the ADD ex-
ecution, which I found a rather common thing practically in every instruction.
The progression of changes in this “after-clock” is much more interesting than
in the main clock. It starts off with a dependency Hamming weight of data
and “exclusive or” of data and the result at 11th ns, reaches it’s peak at 16 ns
with ratio 1 (data) to 3 (data “XOR” result) with correlation 0.987. After this
it moves towards 1 to 1 ratio at 18 ns and proceeds with more dependency on
result.

Figure 3.8 shows an example with destination register initially set to $0f.
Figures on the left present power measurement at described points in time
through all values in source register. Figures on the right show a comparison
between those power traces and hypothesis. Reader can notice, how neatly
hypothesis and result are correlating.

ADC acts exactly as one would expect: same as ADD. No matter if carry
flag is set or not: correlation between Hamming weight of a processed value
and power consumption at 22 ns is around 0.98. If carry flag is cleared then
the rest of execution goes pretty much the same way. If carry flag is set,
then consumption seems to be dependent on Hamming weight of current data
and difference between data and incremented value with ratio 3 to 2 with
correlation 0.888. The clock after ADC show expected dependencies to what
I’ve seen in ADD instruction.

Another test I’ve done with ADD is flag test. I’ve set flags to a different
values and performed same ADD operation with the same values. My idea was
that if there is five bits that instruction can change, then it would be somehow
noticeable. Unfortunately, this returned no significant differences in power
consumption. In my opinion the reason for that is that bits that operation
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esis.

0 32 64 96 128 160 192 224 256

180

185

190

195

200

(c) 18 ns.
0 4 8 12 16 20 24 28

180

182

184

186

188

190

192

test hypothesis

(d) 18 ns, comparison with a hypoth-
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Figure 3.8: Power traces of clock after ADD r16, r17, where r16 contains $0f
and r17 is ranging from 0 to 255 at different points of execution.

sets arrive to SREG in slightly different time, and change in just one bit doesn’t
create much of a power consumption. Or may be that dependency is so small
that it is insignificant in the scope of power analysis attacks anyway.

3.4.1.1.2 SUB and SBC

Table 3.3: Detailed description of SUB and SBC instructions.
Description Subtract two Registers Subtract with Carry two Reg-s
Mnemonics SUB SBC
Operands Rd, Rr Rd, Rr
Operation Rd ← Rd - Rr Rd ← Rd - Rr - C
Flags Z,C,N,V,H Z,C,N,V,H
Opcode 0001 10rd dddd rrrr 0000 10rd dddd rrrr
Clocks 1 1

“Subtraction” is a short way to say “Addition of a negative value”. And
this is exactly what I saw in my tests.
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3.4. Instruction type dependency: instruction set analysis

At 23 ns of instruction execution power traces show dependency on Ham-
ming weight of data currently processed. At the next clock at 16 ns starts to
show dependency on result. My hypothesis that it depends on a data before
processing, negated source data, difference between result and data in des-
tination register and on a result itself with ratio 2/1/5/1 respectively shows
correlation 0.984. Figure 3.9 shows power consumption with this hypothesis.
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test hypothesis

Figure 3.9: Power consumption in the clock after SUB execution at 16 ns, with
hypothesis.

Speaking in general, SUB produces more power consumption than ADD does
due to negation operation that needs to be precomputed. In figure 3.10 we
can notice, that at 26 ns power consumption of SUB is noticeably larger that
of ADD. The second peak of power consumption at maximum when at one of
the registers zero is stored, for SUB reaches 179.51, while for ADD doesn’t reach
even 160.

Instruction SBC is no exception from the rule I talked about examining
ADC. Instructions, that just add carry to the computation leak data and result
of computation pretty much at the exact places as their regular counterparts.
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(a) ADD r16, r17, where r16 =
$00 and all data in source regis-
ter.
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(b) SUB r16, r17, where r16 =
$00 and all data in source regis-
ter.
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(c) ADD r16, r17, where r17 =
$00 and all data in destination
register.
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(d) SUB r16, r17, where r17 =
$00 and all data in destination
register.

Figure 3.10: Comparison between power consumption of ADD r16, r17 and
SUB with different data being processed.

3.4.1.1.3 SUBI and SBCI

Table 3.4: Detailed description of SUBI and SBCI instructions.

Description Sub. Cons. from Reg. Sub. with Carry Const. from Reg.
Mnemonics SUBI SBCI
Operands Rd, K Rd, K
Operation Rd ← Rd - K Rd ← Rd - K - C
Flags Z,C,N,V,H Z,C,N,V,H
Opcode 0101 KKKK dddd KKKK 0100 KKKK dddd KKKK
Clocks 1 1
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3.4. Instruction type dependency: instruction set analysis

For analyzing instructions, that operate over both register and immediate
value, I did two tests. First test changes data stored in register and performs
instruction with the same immediate value. Second test keeps data in desti-
nation register constant and changes the immediate value. For the first test
of SUBI I chose data to start at value $00 and always subtract one. That way
I can test both data in register, result and control the testing loop. In the sec-
ond test I stored value $ff in destination register, and after every subtraction
restored it.

At first I will describe dependency on value stored in register. At around 9 ns
SUBI starts to fetch data, clear enough dependency on Hamming weight of
data occurs at the 24 ns (correlation with hypothesis 0.755). The clock after
execution show dependency on a result and Hamming distance between result
and data stored previously.

What is more interesting is dependency on immediate data. I expected
something among the lines of classic SUB, but I was mistaken. Apparently, at
the operand fetch ALU does load immediate value. And in my opinion, power
consumption here consists of more parts than SUB. Execution clock of SUBI
with constant value stored in destination register in both tests and different
immediate value shows pattern, that is quite common for instructions that
operate over immediate values, see figure 3.11a.
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(a) Execution clock.
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(b) After execution clock.

Figure 3.11: Power consumption of SUBI at 21 ns with constant value in
destination register and different immediate values.

But the clock after execution of SUBI starts with something that resem-
bles Hamming Weight of immediate value. I can not be sure about that, since
I was not able to guess closer than 0.5 correlation between data and my hy-
pothesis. Moreover, at 21 ns there is another (but similar) power consumption
throughout all immediate values, see figure 3.11b.

“Carry” version SBCI doesn’t help either. Both instructions clearly have
structure to their power consumption in time throughout the immediate val-
ues, and for both I wasn’t able to find that dependency rule.

Power consumptions with and without carry flag set and SUBI look simi-
lar.

25



3. Power consumption analysis of a microcontroller
ATMega163

3.4.1.1.4 ADIW and SBIW

Table 3.5: Detailed description of ADIW and SBIW instructions.
Description Add Immediate to Word Subtract Immediate from Word
Mnemonics ADIW SBIW
Operands Rd, K Rd, K
Operation Rdh:Rdl ← Rdh:Rdl + K Rdh:Rdl ← Rdh:Rdl - K
Flags Z,C,N,V,S Z,C,N,V,S
Opcode 1001 0110 KKdd KKKK 1001 0111 KKdd KKKK
Clocks 2 2

First I examined instruction ADIW. What stroke me as unusual is that
unlike other instructions, that deal with immediate values, ADIW actually act as
expected. First execution clock fetches immediate data. What is notable that
apparently the higher nibble of a lower byte is more significant in the scope
of power consumption, because last three quarters of a tested data (ones that
have some bit of immediate set in a higher nibble) show significantly larger
power consumption. At the second clock of execution dependency on the value
stored in lower register shows, more specifically, on difference between data
stored in destination register and immediate value.

Dependency on data in registers is located as predicted, dependency on
hamming weight of lower byte is located at the first clock of execution, depen-
dency on Hamming weight of a higher byte and Hamming distance between
result of a first operation and data that were stored in lower register prior to
addition. One clock after execution, logically, shows dependency on hamming
weight between result of addition of carry flag to high byte and what was
stored before.

Analysis of SBIW showed similar dependencies.

3.4.1.1.5 INC and DEC

Table 3.6: Detailed description of INC and DEC instructions.
Description Increment Decrement
Mnemonics INC DEC
Operands Rd Rd
Operation Rd ← Rd + 1 Rd ← Rd - 1
Flags Z,N,V Z,N,V
Opcode 1001 010d dddd 0011 1001 010d dddd 1010
Clocks 1 1

Both instructions at execution leak Hamming weight of data stored in
register. Again, starting at 18 ns and continuing through rest of execution
with most detectable dependency at 24 ns.
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3.4. Instruction type dependency: instruction set analysis

Clock after execution both instructions start off with some Hamming dis-
tance between data previously stored in register and result at 10 ns, then at
around 23 ns power consumption is more dependent on a Hamming weight
of result itself, but after that it continues with dependency on processed
data. Correlation between my assumptions and real power consumption is
around 0.75 to 0.85. This holds for both INC and DEC.
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(c) ADD r16, r17 with r16
set to different values and
r17 constant.

Figure 3.12: Comparison between ADD and INC

When compared with ADD, those instructions practically do not differ from
it, as shown at figure 3.12.

3.4.1.1.6 MUL and derivatives ATMega163, together with lots of Mi-
crochip’s microcontrollers, has hardware multiplier, that process data just in
two clocks.

Both versions of MUL fetch data from register at the first clock, as seen
by dependency on Hamming weight of contents of registers, when one of the
register is set to zero. What is interesting, that at the second clock of execu-
tion, dependency on Hamming weight of a multiplicand register (RD) is much
more significant, then that of multiplier (Rr). Which is even stated in Atmel’s
Application note on hardware multipliers [2].

Multiplication itself starts right it the first clock. Immediately it can be
seen, that calculation is started, when at 17th ns power consumption starts
to be dependent on a lower byte of a result. And at 25 ns dependency on a
Hamming distance between result and contents of a R0 starts to be prevalent
and keeps until the end of a first clock.
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Table 3.7: Detailed description of MUL and FMUL, MULS and FMULS, MULSU and
FMULSU instructions.

Description Multiply Unsigned Fractional Multiply Unsigned
Mnemonics MUL FMUL
Operands Rd, Rr Rd, Rr
Operation R1:0 ← Rd × Rr R1:0 ← Rd × Rr
Flags Z,C Z,C
Opcode 1001 11rd dddd rrrr 0000 0011 0ddd 1rrr
Clocks 2 2
Description Multiply Signed Fractional Multiply Signed
Mnemonics MULS FMULS
Operands Rd, Rr Rd, Rr
Operation R1:0 ← Rd × Rr R1:0 ← Rd × Rr
Flags Z,C Z,C
Opcode 0000 0010 dddd rrrr 0000 0011 1ddd 0rrr
Clocks 2 2
Description Multiply Sig. and Unsig. Fractional Multiply Sig. and Unsig.
Mnemonics MULSU FMULSU
Operands Rd, Rr Rd, Rr
Operation R1:0 ← Rd × Rr R1:0 ← Rd × Rr
Flags Z,C Z,C
Opcode 0000 0011 0ddd 0rrr 0000 0011 1ddd 1rrr
Clocks 2 2

Next clock shows a familiar picture, more precisely Hamming distance
between a value and it’s two’s complement, which is the case of the multipli-
cand and the lower result byte. I am not sure about what exactly causes this
behavior.

Instructions that operate with signed values act in the similar fashion.
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3.4.1.2 Logic instructions

3.4.1.2.1 AND and ANDI

Table 3.8: Detailed description of AND and ANDI instructions.

Description Logical AND Registers Logical AND Register and Constant
Mnemonics AND ANDI
Operands Rd, Rr Rd, K
Operation Rd ← Rd ∧ Rr Rd ← Rd ∧ K
Flags Z,N,V Z,N,V
Opcode 0010 00rd dddd rrrr 0111 KKKK dddd KKKK
Clocks 1 1

First I want to examine “regular” AND. As with all ALU instructions, data
fetch exposes itself through Hamming weight of data stored in registers in it’s
execution clock.

The next clock starts with dependency on Hamming distance between
final result and data processed with correlation up to 0.93. Figure 3.13 shows
comparison between my hypotheses and actual power consumption at two
points: 16 ns and 24 ns. Hypothesis for power consumption is sum of processed
data Hamming weight, result of AND operation and Hamming distance between
those. At 16 ns with ratio 3/1/8 respectively it has correlation 0.927. For 24 ns
with ratio 3/3/1 correlation is 0.992.
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(b) Power consumption at 24 ns

Figure 3.13: Power consumption of clock after AND r16, K, with r16 = $cc
and all possible K at different points of execution with respective hypotheses.

Logic instructions such as AND, OR, EOR are especially good in examining
dependency on a result. With those instructions it is easy to see with a naked
eye what is going on at particular points of execution.

Lets proceed to examining ANDI instruction. Instructions with immediate
values act in a way that is not always plain as other data dependencies. Power
consumption at execution of a ANDI instruction seem to be dependent on
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immediate value it processes, which is expectable. But it seems like it is
broken down into pieces of length 16. Figure 3.14 shows what I mean by that.

It looks like Hamming weight of values from 0 to 15 repeated 16 times
without much significant difference. This pattern continues through entire
execution clock. My theory is, that ALU fetches immediate value nibble by
nibble. Which is a valid theory, given that immediate value is stored by nibbles
in opcode: higher nibble is stored in higher byte of ANDI’s opcode and lower
nibble in lower byte, see table 3.8.
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Figure 3.14: Power consumption of ANDI with different immediate values and
constant value stored at destination register at the clock of execution at 16 ns.

Review of a clock after execution of ANDI actually supports this theory.
At 10th ns power consumptions resembles what I’ve seen at execution clock,
but at 15th ns it starts to change into something, again, divided into blocks of
size 16, but now with significantly different “base line” — inside those blocks
it still resembles what I’ve seen at execution clock, but when taking each
block as a whole, they differ in their power consumption quite noticeably,
see 3.15a. This change goes even further and at 21 ns it resembles a bit
different structure.

Despite my effort, I was not able to make anything specific out of this. It
does differ if data in destination register are changed (see figure 3.16), yet I
can’t come up with any rule. Yes, there is some general increase in consump-
tion when a larger constant is stored in destination register. There is regularity
in the way ATMega163 consumes power at executing those instructions, so I
decided to leave this information in a hope that it is still useful.
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(b) Clock after execution, at 21 ns.

Figure 3.15: Power consumption of ANDI with different immediate values and
constant value stored at destination register at and the clock after.
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(a) Execution clock at 16 ns.
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(b) Clock after execution, at 16 ns.

Figure 3.16: Power consumption of a clock after execution of ANDI with dif-
ferent immediate values and with different constants stored at destination
register.

3.4.1.2.2 OR and ORI

Table 3.9: Detailed description of OR and ORI instructions.

Description Logical OR Registers Logical OR Register and Constant
Mnemonics OR ORI
Operands Rd, Rr Rd, K
Operation Rd ← Rd ∨ Rr Rd ← Rd ∨ K
Flags Z,N,V Z,N,V
Opcode 0010 10rd dddd rrrr 0110 KKKK dddd KKKK
Clocks 1 1

Instruction OR acts in a same predictable way as AND does. Dependency
on Hamming weight of data stored in registers happens throughout execution.
Dependency on a result occurs in the clock after at the beginning.

What is much more interesting to study is power consumption of a ORI. It
does notably differ from that of ANDI. Now at the clock of execution there could

31



3. Power consumption analysis of a microcontroller
ATMega163

32 64 96 128 160 192 224 256

190

195

200

test hypothesis

(a) Power consumption at 16 ns
32 64 96 128 160 192 224 256

185

190

195

200

205

test hypothesis

(b) Power consumption at 20 ns

Figure 3.17: Power consumption of clock after OR r16, K, with r16 = $cc
and all possible K at different points of execution with respective hypotheses.
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Figure 3.18: Power consumption of ORII with different immediate values and
constant value stored at destination register at and the clock after.

be something, that actually does resemble progression of Hamming weight of
immediate value.

Yet the clock after execution shows similar progression of power consump-
tion as ANDI. At the 13 ns there is dependency on immediate value, and at 21 ns
there is structure that resemble that of ANDI (see figure 3.18).

3.4.1.2.3 EOR

Table 3.10: Detailed description of EOR instruction.
Description Exclusive OR Registers
Mnemonics EOR
Operands Rd, Rr
Operation Rd ← Rd ⊕ Rr
Flags Z,N,V
Opcode 0010 01rd dddd rrrr
Clocks 1
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Exclusive OR (in ATMega163 instruction set EOR, otherwise known as XOR)
is the key operation in the whole cryptography. It’s power consumption at
execution doesn’t differ from other logical operation instructions such as AND
and OR. At execution clock microcontroller exposes Hamming weight of data
stored in destination register.

Second clock exposes dependency on Hamming weight of data at the be-
ginning, after 15 ns it looks like it is now more dependent on Hamming weight
of a fraction of a data stored in source register.

3.4.1.2.4 COM and NEG

Table 3.11: Detailed description of COM and NEG instructions.
Description One’s Complement Two’s Complement
Mnemonics COM NEG
Operands Rd Rd
Operation Rd ← $FF - Rd Rd ← $00 - Rd
Flags Z,C,N,V Z,C,N,V,H
Opcode 1001 010d dddd 0000 1001 010d dddd 0001
Clocks 1 1

COM and NEG instructions both perform very similar operation, with only
difference that NEG practically adds one to the result. What seems to be rad
when one sees those instructions in the datasheet is their description. Not that
those descriptions are incorrect — they are perfectly fine with regard of the
result — but rather a strange way to describe them. Why not write for COM,
for example, that this instruction performs bit negation? Well, analysis of
power consumption of those instructions seems to explain it.

As it is common, first clock of execution of both instruction depends solely
on Hamming weight that is is destination register. One clock after execution
shows more differences, and with NEG dependencies are exactly those that are
expected. At the beginning at 8 ns power consumption is still dependent on
a Hamming weight of data previously stored, and at the Hamming weight of
the result with ratio 1/4 respectively and with correlation 0.931. Over time
dependency on the result grows and at 24 ns power consumption is dependent
on those values with ratio 1/1 with correlation 0.957.

But COM acts in another way. First of all, clock after execution is not
dependent on data, but rather on the lower five bits. To that adds dependency
on the Hamming distance between bit negated and result.
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3.4.2 Bit and bit-test instructions

Bit manipulations are also ALU instructions. Even more, shifts to the left are
all aliases for addition register to itself, “logical shift left” LSL Rd stands for
ADD Rd, Rd and “rotate left through carry” ROL Rd stands for ADC Rd, Rd.
For information on those instruction reader can see subsection 3.4.1, where I
described how those instruction behave in general.

For instructions, that manipulate with SREG, BSET and BCLR, exist eight
aliases for each, so those were not mentioned.

Another instructions that I won’t touch here are NOP (stands for “no oper-
ation”, was used in analyzing instruction address dependency, see ), and SBI,
CBI (both manipulation with I/O registers), SLEEP and WDR for a reason, that
I can not test instruction itself because effect it has is much more significant
in consumption.

3.4.2.0.1 Shifts to right

Table 3.12: Detailed description of instructions, representing different shifts
to the right.

Description Arithmetic Logical
Mnemonics ASR LSR
Operands Rd Rd
Operation Rd(n) ← Rd(n+1), Rd(n) ← Rd(n+1),

n=0..6 Rd(7) ← 0
Flags Z,C,N,V Z,C,N,V
Opcode 1001 010d dddd 0101 1001 010d dddd 0110
Clocks 1 1
Description Rotate through Carry
Mnemonics ROR
Operands Rd
Operation Rd(7) ← C,

Rd(n) ← Rd(n+1),
C ← Rd(0)

Flags Z,C,N,V
Opcode 1001 010d dddd 0111
Clocks 1

All shifts start with fetching the operand, therefore every such operation
exposes dependency on data in register. In the clock of ASR, LSR and ROR
dependency on data outgrows any dependency on result.

Again, clock after actual execution there is dependency on final result. It is
combination of data that was processed, result and Hamming distance between
result and data. I found correlation around 0.6–0.7 between consumption
at 16 ns and my hypothesis (original data, difference between data and result
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and result with ratio 4/1/1). Yet still it looks like to me, that I might be
missing something in my hypothesis (that is why correlation is relatively low
in comparison to other tests).
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Figure 3.19: Clock after execution of ASR in comparison with my hypothesis,
that power consumption is dependent on original data and a result.

Figure 3.19 shows that my hypothesis and actual power consumption
at 16 ns in clock after execution are similar, but not so neatly aligning as
I expected.

3.4.2.0.2 SWAP

Table 3.13: Detailed description of SWAP instruction.
Description Swap Nibbles
Mnemonics SWAP
Operands Rd
Operation Rd(3..0) ← Rd(7..4),

Rd(7..4) ← Rd(3..0)
Flags -
Opcode 1001 010d dddd 0010
Clocks 1

This is ALU instruction, so, again, basic rules, that I described earlier in
this work, apply. Data fetch starts at 18 ns and reaches it’s peak at 25 ns.
Dependency on result is found in the clock after. First at 9 ns there is still
data dependency, then at 11 ns dependency on Hamming distance between
data processed and result starts to emerge. Dependency on Hamming distance
is at max at 17 ns and then data dependency adds a little.
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Figure 3.20: Dependency on a Hamming Distance between result and data
processed at the clock after SWAP execution

3.4.2.0.3 BSET and BCLR

Table 3.14: Detailed description of BSET and BCLR instructions.
Description Flag Set Flag Clear
Mnemonics BSET BCLR
Operands s s
Operation SREG ← 1 SREG ← 0
Flags SREG(s) SREG(s)
Opcode 1001 0100 0sss 1000 1001 0100 1sss 1000
Clocks 1 1

In a larger scale those instructions are insignificant. Not that their effect is
useless, but in a scope of power analysis attacks event though it can give some
useful information, but the problem here is that analyzing such a instruction
consumes more effort than it gives a result.

Analysis shows that those instructions leak Hamming weight of a SREG
and a result, and power consumption of a BSET differs more than BCLR when
manipulating with bit at ranging positions of a SREG.
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3.4.2.0.4 BST and BLD

Table 3.15: Detailed description of BST and BLD instructions.
Description Bit Store from Register to T Bit load from T to Register
Mnemonics BST BLD
Operands Rr, b Rd, b
Operation T ← Rr(b) Rd(b) ← T
Flags T -
Opcode 1111 101d dddd 0bbb 1111 100d dddd 0bbb
Clocks 1 1

I tested BST and BLD with all 256 values of data stored in register and
with different position of bit to manipulate with. Whilst we can not expect
significant differences at execution BST (as I mentioned at subsection 3.4.1, I
was not able to find any dependency on a flag change), BLD might affect result
that gets stored in register.

Both of those instructions leak Hamming Weight of a data in register they
manipulate with in the execution clock. Like other ALU instructions, some
data dependency occurs in the clock after BST and BLD, however the clock
after BLD instruction presents dependency, that appears to be dependency on
data before processing, not after.
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3.4.3 Data transfer instructions

Data transfer instructions do not perform any operations, that alter data,
only transfer them from one place to another. ATMega163 can transfer data
from register to register, from register to memory location and vice versa, but
it is not able to transfer data from one memory location to another without
register manipulation in between.

The only instructions that were not described are I/O space access instruc-
tions.

3.4.3.1 Manipulations only with registers

3.4.3.1.1 MOV and MOVW

Table 3.16: Detailed description of MOV and MOVW instructions.
Description Move Between Registers Copy Register Word
Mnemonics MOV MOVW
Operands Rd, Rr Rd, Rr
Operation Rd ← Rr Rd+1:Rd ← Rr+1:Rr
Flags - -
Opcode 0010 11rd dddd rrrr 0000 0001 dddd rrrr
Clocks 1 1

Ability to copy data from register to register is one of the basic require-
ments for microcontroller to operate. MOV provides such operation.

Obviously, this instruction leaks data from both registers. Execution of
this instruction starts with data fetch and it fetches values from both registers,
despite the fact that it actually needs value of only one of them. In my opin-
ion, ATMega163 performs this operation through ALU. Fetches destination
register and then overwrites it’s value by value of source register.

This instruction is easy in analysis. At execution clock fetch starts at 17 ns,
and is clear at 24 ns with correlation between Hamming weight of data and
power consumption at this point of execution around 0.991.

Clock after execution of MOV depends mostly on change between data orig-
inally stored in destination register and data that was in source register (as
contents of destination register change). Figure 3.21 shows how power con-
sumption at clock after execution exposes the result. My hypothesis was that
power consumption is dependent on data (in a form of it’s Hamming weight)
and difference between old and new data (their Hamming distance). I found
that at 16 ns of clock after execution power consumption does depend on those
values with ratio 1/2 respectively. Logically power consumption is dependent
more on data that were previously in destination register.

Moving to MOVW instruction, we notice something interesting about it: even
though this instruction moves two registers it still performs in just one clock
cycle.
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Figure 3.21: Power consumption of MOV with different values stored in source
register and constant value stored at destination register at the clock after
execution at 16 ns.

I examined this instruction with two tests: changing value in a high byte
of word and in a low byte. I found out that power consumption at execution
clock is not dependent on value stored in high byte of source register, which is
in contrary with what MOV instruction looks like. Though it is still dependent
on Hamming weight of data in low register.

Clock after shows dependency on difference between data previously stored
in register word and new data (now depending on data stored in high byte
too), yet for some reason much less clear and generally difference between
consumptions of different values is lower than that of MOV.

3.4.3.1.2 LDI

Table 3.17: Detailed description of LDI instruction.
Description Load Immediate
Mnemonics LDI
Operands Rd, K
Operation Rd ← K
Flags -
Opcode 1110 KKKK dddd KKKK
Clocks 1

LDI is a short way to load some constant into register. It is logical to
use program memory to store constants, but it is not always necessary (LPM
instruction can load data from program memory, more about it later) As for
every instruction that uses immediate value, it is harder to defy particular
dependency.
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I tested this instruction with immediate value set to zero and different
contents of destination register and with constant data stored at register and
different immediate values.

Power consumption most definitely depends on Hamming weight of data
stored in register, again, apparently this sort of “move” instruction operates
through ALU. And certainly it depends on immediate value, or more precisely,
on opcode.

One clock after execution power consumption depends on Hamming dis-
tance between data that were previously stored in destination register and new
data. Also it is dependent on immediate value, but by which rule immediate
values affect power consumption I was not able to defy, see 3.22.
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Figure 3.22: Power consumption of LDI with different immediate values and
zero stored in destination register at the clock after execution at 24 ns.

3.4.3.2 Loads from SRAM

3.4.3.2.1 LD and LDS I would like to start with LDS. This instruction
contains in opcode direct data memory address. First clock of execution seems
like to be fetching address (as I wrote about at section 3.1), but difference
between power consumption is actually not really clear, that there is little no
chance to guess out what address is being processed. Second clock of execution
is far, far more richer on dependency. At 13 ns of second clock of execution
there is dependency on Hamming weight of address. Figure 3.23 show it,
correlation between hypothesis is 0.94.
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Table 3.18: Detailed description of LD and LDS instructions.
Description Load Indirect Load Direct from SRAM
Mnemonics LD LDS
Operands Rd, X Rd, k

Rd, Y
Rd, Z

Operation Rd ← (X) Rd ← (k)
Rd ← (Y)
Rd ← (Z)

Flags - -
Opcode X: 1001 000d dddd 1100 1001 000d dddd 0000

Y: 1000 000d dddd 1000 kkkk kkkk kkkk kkkk
Z: 0000 000d dddd 1000

Clocks 2 2

32 64 96 128 160 192 224 256

165

170

175

180

185

190

195

test hypothesis

Figure 3.23: Power consumption of second execution clock of LDS with dif-
ferent addresses as operand value, loading 256 data entries from addresses
starting with $0070 at 13 ns.

One clock after execution of LDS there is residual consumption, that changes
form to something, that I was not able to recognize (see 3.24).

Another thing I tested is how microcontroller will deal with bits in direct
address in opcode, that can not be used (higher five to six bits, depending on if
program tries to access addresses between range $400 and $45f). I mentioned
it at section 3.1.

What I found out is that in the first clock of LDS execution, there is
difference in power consumption with changing values of six higher bits of
direct address. And all the clocks after have practically indistinguishable
power consumptions. This means, that at the first clock microcontroller tries
to set exact value stored in opcode, and at the second clock the width of
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Figure 3.24: Power consumption of clock after execution of LDS with different
addresses as operand value, loading 256 data entries from addresses starting
with $0070 at 22 ns.

address is cut due to actual processing of address. All of what I described can
be seen at figure 3.25.

Proceeding to LD instruction, regarding address it acts almost the same,
differences are:

• There is no “unknown” part in a equation: power consumption of this in-
struction is dependent plainly on Hamming weight of address processed.

• At every clock of execution this dependency shows up, not only in
the second and the clock after execution for a short period of time,
correlation between Hamming weight of address processed and power
consumption goes up to 0.968.

• From the previous point it follows, that microcontroller at the first clock
fetches address from register word.

Summing up, address-procession-wise LD acts more predictable then LDS.
Since operations LDS and LD are practically (except for the addressing

way) perform same operation, I decided to test data dependency only in power
consumption of LD. To test it, I store test value at the specific constant address,
load it to register, that is set to some constant value, increment test value and
repeat from “store” point.

Logically, as I wrote in section 3.1, first clock of execution deals only with
address, so while dealing with constant address no change is present. Since I
process data in a row from 0 to 255, I can notice specific graphs, so what I saw
at the second clock of execution is dependency on Hamming distance between
subsequent data, see 3.29a. And only the next clock (clock after execution)
is dependent on Hamming distance between data that were stored in register
and that are loaded from SRAM, see 3.29b.
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(c) Clock after execution, 21 ns.

Figure 3.25: Power consumption of LDS with addresses $70 to $b0, with first
six bits prepended with different values at different .

I think that dependency on Hamming distance between the data is due to
change in what was accessed in SRAM before.

Next topic for discussion is dependency on a value stored in destination
register. Test is designed like this: some value is stored at specific constant
address, and for every LD execution data in destination register are different.

Again, at the first execution clock nothing happens because address is
again kept constant. At the second execution clock dependency on Hamming
weight of data stored in destination register shows roughly at 21 ns (with
correlation to hypothesis around 0.965). And after that power consumption
progression looks like Hamming weight of it’s lower nibble. Similar process is
occurring at the clock after execution, see both clock at figure 3.27.
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(b) Clock after execution, 19 ns.

Figure 3.26: Power consumption of LD with constant address, different data
are loaded into register that is set to $cc.
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(b) Clock after execution, 28 ns.

Figure 3.27: Power consumption of LD with constant address, at loaded mem-
ory entry $00 is stored, different data are stored in register.

3.4.3.2.2 LD with Post-Increment and Pre-Decrement

Table 3.19: Detailed description of LD with Post-Increment and Pre-
Decrement instructions.

Description Load Indirect and Post-Inc. Load Indirect and Pre-Dec.
Mnemonics LD LD
Operands Rd, X+ Rd, -X

Rd, Y+ Rd, -Y
Rd, Z+ Rd, -Z

Operation Rd ← (X++) Rd ← (--X)
Rd ← (Y++) Rd ← (--Y)
Rd ← (Z++) Rd ← (--Z)

Flags - -
Opcode X: 1001 000d dddd 1101 X: 1001 000d dddd 1110

Y: 1001 000d dddd 1001 Y: 1001 000d dddd 1010
Z: 1001 000d dddd 0001 Z: 1001 000d dddd 0010

Clocks 2 2
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These instructions by themselves alter contents of address register. This
functionality is especially great when processing arrays of data.

At the first clock of execution microcontroller fetches data from address
register. At the second clock of execution it increments/decrements the ad-
dress. Dependency on data stored in address register before increment starts
at 10 ns and roughly around 14 ns starts to emerge dependency on Ham-
ming distance between original address and incremented/decremented ver-
sion. With ratio 1/1 (Hamming weight of previous address and Hamming
distance between this and new address) correlation between hypothesis and
power consumption at 17 ns is roughly 0.93.
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(a) LD r16, Y+.
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(b) LD r16, -Y.

Figure 3.28: Power consumption at the second clock of LD with incre-
ment/decrement, both destination register and memory entry at tested ad-
dresses are set to $00, with respective hypothesis, at 17 ns.

Clock after execution power consumption is dependent on Hamming weight
of a new address and Hamming distance between old and new address.

3.4.3.2.3 LDD

Table 3.20: Detailed description of LD with displacement.
Description Load Indirect with Displacement
Mnemonics LDD
Operands Rd, Y+q

Rd, Z+q
Operation Rd ← (Y+q)

Rd ← (Z+q)
Flags -
Opcode Y: 10q0 qq0d dddd 1qqq

Z: 10q0 qq0d dddd 0qqq
Clocks 2

First clock of LDD seem to be loading a displacement value from opcode.
Second clock depends on the displacement: on Hamming weight of a base
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address, Hamming weight of a displacement and Hamming distance between
the two. But as it is always a deal with immediate values, not as clear as if it
was a dependency on a data in register.
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Figure 3.29: Power consumption at the second clock of LDD, both destination
register and memory entry at tested addresses are set to $00, with respective
hypothesis, address is set to $77.

Clock after execution shows dependency on Hamming weight of a displaced
address.

3.4.3.3 Stores to SRAM

3.4.3.3.1 ST

Table 3.21: Detailed description of ST and STS instruction.
Description Store Indirect Store Direct from SRAM
Mnemonics ST STS
Operands X, Rr k, Rr

Y, Rr
Z, Rr

Operation (X) ← Rr (k) ← Rr
(Y) ← Rr
(Z) ← Rr

Flags - -
Opcode X: 1001 001r rrrr 1100 1001 001d dddd 0000

Y: 1000 001r rrrr 1000 kkkk kkkk kkkk kkkk
Z: 1000 001r rrrr 0011

Clocks 2 2

In a way complement operation to “loads” is “store”.
Analyzing just address dependency of a STS instruction doesn’t give any

new information to what I’ve described earlier in analysis of LDS instruction.
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Logically address processing is practically same operation for both instruc-
tions.

Much more noteworthy are data dependencies, since those instructions
are practically inverse. Described in paragraph 3.4.3.2.1, power consumption
of operation “load” in the second clock of execution depends on a Hamming
distance between value that is now being loaded from memory location and
value that had been previously processed by SRAM controller.
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Figure 3.30: Power consumption of ST with constant address, different data
are stored from register, with memory entry set to $cc.

Power consumption of ST is radically different from that. At 24 ns of sec-
ond execution clock for a brief period of 5 ns there shows a dependency on
Hamming weight of data stored in source register. But not exactly on the
whole value, at 31 ns there is significant change, that exposes that power con-
sumption at this point is dependent rather on a lower nibble of data stored in
source register, as if microcontroller processes those data by halves. After 32 ns
dependency on the Hamming distance between data stored previously at the
memory entry and data in source register starts to prevail an at 47 ns power
consumption is fully dependent on that value. Figure 3.30 shows power con-
sumption and comparison with hypothesis.

Clock after execution exposes a residual power consumption after second
clock of execution, but at much lesser scale.

In comparison to dependency on a data stored in source register, depen-
dency on data stored in memory is much less easy to spot. Generally, depen-
dency on data in memory occurs later than dependency on data in register,
as seen on figure 3.31. Notice how at 21 ns on figure 3.31a there is significant
difference in overall consumption with different constants stored in register,
and how on figure there is practically no difference with different data stored
in memory.
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(a) Value in register is set to constant
value, data in memory change.
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(b) Value in register change, but mem-
ory entry value remains the same.

Figure 3.31: Power consumption of ST tested at 21 ns.
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(a) Value in register is set to constant
value (see legend), data in memory
change, at 35 ns.
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(b) Value in register change (see leg-
end), but memory entry value remains
the same, at 39 ns.

Figure 3.32: Power consumption of ST in dependency on data in source register
and those stored in memory.

Otherwise power consumption depends on the same values: Hamming
weight of data in register and in memory, Hamming distance between those
values (exposing that there is change occurring) Hamming weight of a lower
nibble of both register value and memory value. Another difference is that
whilst exhibiting almost the same behavior, value in register holds more weight
than data in memory. As seen on figure 3.32, changes in value stored in register
provoke more difference between power consumption.

Clock after execution expose only residual power consumption. When
compared to a behavior of LD instruction, where clock after exposes data de-
pendency very clearly, differences in consumption of ST are insignificant. This
can be probably connected to the fact that power consumption of transitions
in SRAM is less significant then transitions in registers.
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32 64 96 128 160 192 224 256

120

130

140

150

160

test hypothesis

(a) LD with increment.
32 64 96 128 160 192 224 256

110

120

130

140

150

160

test hypothesis
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Figure 3.33: Power consumption of ST and LD at 50 ns with increment and
respective hypotheses.

3.4.3.3.2 ST with Post-Increment and Pre-Decrement

Table 3.22: Detailed description of ST with Post-Increment and Pre-
Decrement instructions.

Description Store Indirect and Post-Inc. Store Indirect and Pre-Dec.
Mnemonics ST ST
Operands X+, Rr -X, Rr

Y+, Rr -Y, Rr
Z+, Rr -Z, Rr

Operation (X++) ← Rr (--X) ← Rr
(Y++) ← Rr (--Y) ← Rr
(Z++) ← Rr (--Z) ← Rr

Flags - -
Opcode X: 1001 001r rrrr 1101 X: 1001 001r rrrr 1110

Y: 1001 001r rrrr 1001 Y: 1001 001r rrrr 1010
Z: 1001 001r rrrr 0001 Z: 1001 001r rrrr 0010

Clocks 2 2

Power consumption of ST with increment/decrement differs from that of
same functionality LD. This instruction exposes more dependency on Hamming
distance between address and result of it’s increment or decrement.

Figure 3.33 compares power consumption of LD and ST with post-increment.
As a reference point I used 50 ns of second clock of execution. My hypothesis
about power consumption of LD is that at this point in time it is dependent on
Hamming weight of a currently processed address and Hamming distance be-
tween current and new address with ratio close to 1/1. Hypothesis for power
consumption of ST is close to 1/2 respectively. Reader can notice that despite
seemingly different hypothesis, those difference are very subtle.
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3.4.3.3.3 STD

Table 3.23: Detailed description of ST with displacement.
Description Store Indirect with Displacement
Mnemonics STD
Operands Rd, Y+q

Rd, Z+q
Operation Rd ← (Y+q)

Rd ← (Z+q)
Flags -
Opcode Y: 10q0 qq1d dddd 1qqq

Z: 10q0 qq1d dddd 0qqq
Clocks 2

Execution of STD is similar to LDD at the first clock of execution. Those
instructions are also similar in a way they confuse power consumption of other
clock and the clock after execution.

Until the 13 ns in the second clock of execution they behave similarly
expectable: power consumption of both of them is dependent on Hamming
weight of displacement value and Hamming distance between address before
and after displacement. From this point to 21 ns dependency on Hamming
distance grows. And after around 25 ns power consumption of LDD and STD
starts to differ. Figure 3.34 illustrates this phenomena.
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Figure 3.34: Comparison between power consumption of a second clock of
instructions LDD and STD.

Here I think my hypothesis about dependency on opcode makes sense:
opcode of LDD and opcode of STD differ in one bit (when same word register
used). Problem with it is that I was not able to found exact way in which
power consumption depends on it.
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3.4.3.4 Stack manipulations

Table 3.24: Detailed description of PUSH and POP instructions.
Description Push Register on Stack Pop Register from Stack
Mnemonics PUSH POP
Operands Rr Rd
Operation Rr ← STACK SP ← SP + 1

SP ← SP - 1 Rd ← STACK
Flags - -
Opcode 1001 001d dddd 1111 1001 000d dddd 1111
Clocks 2 2

From a practical point of view stack instructions are same as LD and ST
with increment and decrement, with a few differences:

• LD and ST can do both increment and decrement, respective POP and PUSH
are left with only one,

• LD and ST perform post-increment and pre-decrement, while PUSH does
post-decrement and POP pre-increment: this is because stack grows
down,

• stack instructions can load/store indirectly using only one pre-set reg-
ister, basic memory instructions can pick from three general purpose
registers.

With that said it’s only natural to expect similar behavior to basic memory
instructions. I’ve set stack pointer to the end of reserved address space I used
in previous memory tests.

First I examined how are those instructions dependent on the value of
a stack pointer (memory location). In both instructions dependency on the
Hamming weight of value of a stack pointer starts to show at 9 ns.

First clock of execution is a little bit dependent on address, but not clearly.
Second clock of execution differs in consumption much more and actually ex-
poses action performed with stack pointer. PUSH instruction (post-decrement)
during the whole clock is dependent on the current value of a stack pointer,
whilst POP (pre-increment) is dependent on it only at the start (around 9 ns),
and after this point starts to convert to the dependency on Hamming weight
of the incremented stack-pointer and Hamming distance between old and new
SP value.

On clock after execution shows dependency on previous clock.
Second test was dependency on data. Expectedly, first clock of PUSH ex-

ecution was highly dependent on Hamming weight of data stored in register
with correlation 0.995, while first clock of POP did not show any dependency.
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Second clock of PUSH starts again with dependency on Hamming distance
between data stored at the address of stack pointer and data stored in source
register. This dependency reaches peak of dependency on this difference be-
tween values at 12 ns with ratio 1/1 and then it regains dependency on data in
register at 20 ns with ratio 1/5 with dominant component of Hamming weight
of value in register.

Second clock of POP now exposes dependency on Hamming distance be-
tween data stored in destination register and data that arrived from stack.

Clock after execution shows clear dependency on Hamming weight of data
now stored in register no matter what was there before.

These two instructions behave in a very direct and clear fashion and there-
fore are great targets of DPA attacks.

3.4.3.5 Manipulations with Program Memory

Table 3.25: Detailed description of LPM instruction.
Description Load Program Memory
Mnemonics LPM
Operands None

Rd
Rd, Z+

Operation R0 ← (Z)
Rd ← (Z)
Rd ← (Z++)

Flags -
Opcode 1001 0101 1100 1000

1001 000d dddd 0100
1001 000d dddd 0101

Clocks 3

LPM is different from regular memory instructions: it doesn’t manipulate
with SRAM where data are stored, but with flash memory, where is stored
the firmware. I tested every variant of this instruction.

First clock of execution actually depends on a current value of Program
Counter. Since LPM loads data to register, it points to byte, whilst PC ad-
dresses point to words. That means, that in order to load lower byte of a word,
microcontroller needs to shift left by one target address. To load higher byte
of a word, it shifts the address and adds one. This means that ATMega163
has Little-Endian order of storing data, but it is a digression.

As a means to explain this behavior, my hypothesis is that flash memory
controller kept some residual value of the memory location it last accessed
during the fetch of instruction. What I found is that power consumption
depends on Hamming weight of target address and Hamming distance between
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target address and PC value (which is at the time of execution of LPM is address
of an instruction after it) times 2 (i.e. shifted to the left).

At the beginning of execution clock one at 9 ns microcontroller accesses
flash memory at the target address, so power consumption here depends
largely on Hamming distance between target address and shifted value of PC.
At the 13 ns reaches balance between those values and after that dependency
on Hamming weight of a target address grows and at 28 ns dependency on
target address is twice as significant as dependency on difference between PC
and target. For the last point correlation between power consumption and hy-
pothesis is 0.992. Figure 3.35 shows power consumption at the last two points
together with respective hypotheses. Second clock shows behavior similar to
that of first clock at 13 ns throughout whole clock.
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Figure 3.35: Power consumption of first clock of LPM execution from ad-
dress $582, accessing 256 different addresses.

All the versions of LPM exhibit the same behavior at all of the clocks of
execution. Even LPM Rd, Z+, which is unexpected: I was not able to find at
which point happens to be increment of address register. Power consumption is
dependent on Hamming weight of data loaded at the third clock of execution.
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3.4.4 Branch instructions

Branch instructions are program flow control instructions. Without those,
program can not have if-else statements, loops, conditional processing and so
on and so forth. ATMega163 has plenty of them.

Instructions, that I won’t describe in this section are instructions, that in
manipulate with input and output of microcontroller. And again, as with
bit manipulation instructions, there is a lot of mnemonics for conditional
branches, which are in fact only aliases, so it is not necessary to talk about
those.

3.4.4.1 Jumps

3.4.4.1.1 IJMP

Table 3.26: Detailed description of IJMP instruction.
Description Indirect Jump to (Z)
Mnemonics IJMP
Operands -
Operation PC ← Z
Flags -
Opcode 1001 0100 0000 1001
Clocks 2

First clock of IJMP depends on a value in Z register, in other words, on a
target address. Correlation between Hamming weight of target address and
power consumption of the first clock at 33 ns is 0.97. Second clock of IJMP
shows dependency on target address and difference between it and PC with
ratio around 1/1. Figure 3.36 presents both clocks with described hypotheses.
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Figure 3.36: Power consumption of IJMP with respective hypothesis.

IJMP is instruction that is perfect for such analysis: it doesn’t have any
immediate values nor changing operands.
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Figure 3.37: Power consumption of RJMP, third clock of execution at 10 ns.

3.4.4.1.2 JMP

Table 3.27: Detailed description of JMP instruction.
Description Direct Jump
Mnemonics JMP
Operands k
Operation PC ← k
Flags -
Opcode 1001 010k kkkk 110k

kkkk kkkk kkkk kkkk
Clocks 3

This instruction uses immediate value but in my tests used same target
address. What can be said about this instruction, is that it has one more
clock than other jumps. This is due to twice as large opcode than other such
instruction have and it is a common thing for instruction, that has double-
word opcode, to have one extra clock. As I mentioned, in my test opcode
value was constant, and the first two clocks show same power consumption
throughout every instance. Which leads me to a conclusion, that those clocks
fetch address.

Third clock of execution is dependent on Hamming distance between cur-
rent PC value and Hamming weight of a current address (at 10 ns correlation
for ratio 4/1 respectively is 0.972). This point in execution can bee seen at
figure 3.37 with respective hypothesis.
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3.4.4.1.3 RJMP

Table 3.28: Detailed description of RJMP instruction.
Description Relative Jump
Mnemonics RJMP
Operands k
Operation PC ← PC + k + 1
Flags -
Opcode 1100 kkkk kkkk kkkk
Clocks 2

RJMP is one of those instructions, where analysis lead me to nowhere. Due
to the fact that relatively large proportion of this instruction is immediate
value, and the fact that I was not able to understand how exactly immediate
values affect power consumption, this instruction remains large mystery for
me.

My test for this instruction included jumping to the same address from a
number of places. I used IJMP to proceed through all RJMP’s. Jumps were for-
ward and backward, so I can see how different sign of immediate value affects
power consumption. The obstacle I encountered analyzing this instruction
is that while jumping from same addresses forward or backward with almost
the same immediate value power consumption was almost same, which sug-
gests opcode (or immediate) value dependency. The closest I could get to
the actual power consumption dependency was hypothesis about somehow
combining Hamming distance between RJMP address and target address and
Hamming weight of a opcode, which resembles vaguely (and with a bit of
imagination) power consumption of second execution clock at 1 ns, which is
not a reliable source for analysis.
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Figure 3.38: Power consumption of RJMP, first clock of execution, both exe-
cuted from same addresses, with different relative address value.

RJMP was performed from addresses starting with $30a every eighth ad-
dress, and jumped to the address $b05 while jumping forward and to $2fd
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jumping backward. With that Hamming weight of a opcode of jumps at each
address remained same. Figure 3.38 compares power consumption of a first
clock of RJMP execution. Note how similar those consumptions are, and yet
there are differences: which is logical, since opcode value is not exactly the
same. And test of JMP only proves the fact, that power consumption of a first
execution clock is dependent on opcode and may be current/next instruction
address.

3.4.4.2 Calls

3.4.4.2.1 RCALL

Table 3.29: Detailed description of CALL, ICALL and RCALL instructions.
Description Long Call to a Subroutine
Mnemonics RJMP
Operands k
Operation PC ← PC + k + 1

STACK ← PC + 1
Flags -
Opcode 1001 010k kkkk 111k

kkkk kkkk kkkk kkkk
Clocks 4
Description Relative Call Indirect Call
Mnemonics RJMP IJMP
Operands k -
Operation PC ← PC + k + 1 PC ← Z

STACK ← PC + 1 STACK ← PC + 1
Flags - -
Opcode 1101 kkkk kkkk kkkk 1001 0101 0000 1001
Clocks 5 5

Calls are practically just jumps with extra “push” operation. That is why
this operation has one more clock in comparison to respective JMP instructions.
At the first clock all CALL instructions push the PC value. Change of SP can
be observed, together with value of a PC. At this point those instructions are
quite similar to instructions that operate with stack.

Otherwise power consumption of those instructions is similar to that of
their counterparts JMP.
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3.4.4.3 Branches

3.4.4.3.1 BRBS and BRBC

Table 3.30: Detailed description of BRBS and BRBC instructions.
Description Branch if Status Flag Set Branch if Status Flag Cleared
Mnemonics BRBS BRBC
Operands s, k s, k
Operation if SREG(s) = 1 if SREG(s) = 0

then PC ← PC + 2 or 3 then PC ← PC + 2 or 3
Flags - -
Opcode 1111 00kk kkkk ksss 1111 01kk kkkk ksss
Clocks 1/2 1/2

Branch instructions are able to conditionally jump relatively to 64 address
forward and backward. First clock of execution fetches the immediate value
stored in opcode, and checks the flag. Second clock, if condition matched,
performs PC change to new relative value.

As it is the case with many instructions, that use immediate values, it is
much harder to find exact dependency. Further more, testing of BRBS and BRBC
is complicated due to small amount of values than can be tested in reliable
fashion.

3.4.4.4 Comparisons and skips

3.4.4.4.1 Comparisons: CP, CPC, CPI

Table 3.31: Detailed description of instructions, representing different com-
parisons.

Description Compare C. with Carry
Mnemonics CP CPC
Operands Rd, Rr Rd, Rr
Operation Rd - Rr Rd - Rr - C
Flags Z,N,V,C,H Z,N,V,C,H
Opcode 0001 01rd dddd rrrr 0000 01rd dddd rrrr
Clocks 1 1
Description C. Register with Immediate
Mnemonics CPI
Operands Rd, Rr
Operation Rd - K
Flags Z,N,V,C,H
Opcode 0011 KKKK dddd KKKK
Clocks 1
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Those comparisons are disguised SUB, SBC, SUBI instructions, the difference
is that they do not write result to the destination register, but do change
flags. With that said, both dependency on data in registers and a distance
between are present in these instructions as well, but dependencies on a result
and Hamming distance between result and data in register are much less
significant.

Compare instructions can not really count as instructions that work with
data (such as arithmetic and logic instructions or bit manipulation instruc-
tion), but rather control instructions, because they don’t alter data in any
way. They are supply for other instructions, most of the time they are ap-
plied for branch control (if statements, skips, loops, etc.). That is why in-
structions CP, CPC and CPI are in a group of ”Branch instructions” and not
anywhere else.

3.4.4.4.2 Skips: SBRS and SBRC

Table 3.32: Detailed description of SBRS and SBRC instructions.
Description Skip if Bit in Register Set Skip if Bit in Register Cleared
Mnemonics SBRS SBRC
Operands Rr, b Rr, b
Operation if Rr(b) = 1 if Rr(b) = 0

then PC ← PC + 2 or 3 then PC ← PC + 2 or 3
Flags - -
Opcode 1111 111r rrrr 0bbb 1111 110r rrrr 0bbb
Clocks 1/2/3 1/2/3

Power consumption of skip instructions depends data stored in register
instruction manipulates with. First clock of execution depends solely on Ham-
ming weight of data in source register. Second clock: the clock after execution
or the clock where PC change happens, exposes Hamming weight of data in
register as well. What should be noted is that if skip does occur, then will
occur change in PC as well, so it will increase power consumption.

Before 13 ns power consumption keep dependency on Hamming weight of
data, and after this point Hamming weigh of change in PC shows. At 23 ns
power consumption is dependent on Hamming weigh of data and Hamming
distance between PC (which is at the moment of SBRS or SBRC execution is
set to the next address) and address after next instruction with ratio 1/2.
Correlation to my hypothesis is 0.991. Figure 3.39 shows how second clock
after execution start processes data at different points. Note that this figure
presents both situations: if next instruction is skipped or not.

Skip Instructions can alter the length of program execution. For example,
if one of skip instruction has to skip ADD or other instruction that is executed
in one clock, the one who analyzes the power trace may not notice any change,
especially if this instruction operates over same data. But if next instruction
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Figure 3.39: Power consumption of SBRS r16, 4, second clock of execution,
different data are set into register, so skip does or does not occur in dependency
on bit 4.

is executed in two or more clock cycles, and this part of the program is located
in loop, so there are portions of power trace that repeat themselves, skip will
change the length of one iteration.

3.4.4.4.3 CPSE

Table 3.33: Detailed description of CPSE instruction.
Description Compare, Skip if Equal
Mnemonics CPSE
Operands Rd, Rr
Operation if Rd = Rr

then PC ← PC + 2 or 3
Flags -
Opcode 0001 00rd dddd rrrr
Clocks 1/2/3

This instruction is a hybrid of two previously discussed groups of in-
structions: compare and skip. Difference between other skip instructions is
that CPSE as a skip control bit uses zero flag from SREG. Otherwise this in-
struction act as expected: as CP in the first clock of execution and as SBRS,
as zero flag is set if result of subtraction is zero (i.e. values in registers are
equal), except this instruction doesn’t expose value of status register.s
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3.5 Analysis summary

In this section I would like to sum up the analysis by compare power con-
sumption of different instructions and discuss general results of analysis.

3.5.1 Instruction comparison

As I analyzed instruction in groups largely by themselves, it is important to
compare different instructions of different types. Generally instructions do
not look the same in power trace. It depends on operation they perform.

Figure 3.40 shows how NOP might look like in power traces, when executed
from different addresses. First thing that should be noted is position where
PC change starts. It starts relatively early, since most of the instructions start
to operate some time after the first large consumption peak. Another notable
thing is that after peak power consumption goes down rapidly, making second
small peak (that occurs due to imperfections of power supply) insignificant
when compared to other instructions.
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Figure 3.40: NOP with different Hamming distance between current and next
address.

Another comparison I actually brought up before: ADD and SUB. Basically,
all arithmetic and logic instructions look very much alike. The only significant
difference is when data needs to be pre-processed, or generally require more
transitions. Classic example could be SUB, which needs to prepare negative
value of data in source register, and this operation generates more power
consumption due to amount of transitions that need to be performed in order
to change value to negative. Notice from the figure 3.41 how in comparison
to NOP second smaller peak of those instructions is higher. Also we can observe
that beginning of data fetch of those instructions occurs later than change in
PC.
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Figure 3.41: Power consumption of two arithmetic instructions.

Data transfer instructions, especially when they manipulate with data
memory, consume a lot of power. Inside the group of data transfer instruc-
tions, when considering memory access, there are two types of instructions:
store and load. They differ in timings of events. As described in section 3.1,
memory can not be accessed in a first clock of instruction. So LD-like instruc-
tions in the first clock are mostly dependent on address they are accessing,
when ST-like instructions may also be dependent on data that is fetched from
register. Those differences can be observed at figure 3.42.
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Figure 3.42: Power consumption of two data transfer instructions.

Branch instructions can reveal it’s position, especially when used as a loop
control. Actually, the very presence of some periodical action can be used as
a mean of differential power analysis in the scope of only one power trace.
On figure 3.43 it can be seen what significant change to power consumption
instruction execution address brings.

3.5.2 Results

Power consumption depends on what and how microcontroller does. Great-
est contribution to power consumption create data and addresses, and only
their values, but differences between them. Hamming weight and Hamming
distance can be used as very precise models of power consumption. With help
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Figure 3.43: IJMP with different Hamming distance between current and next
address.

of differential power analysis attacker can find out with great certainty what
instruction does and what data it processes. When provided with a small
number of power traces, it is still possible with some probability to reveal
intermediate state of microcontroller.
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Conclusion

The task of this work was to analyze power consumption of a microcontroller.
Analysis revealed that ATMega163 can be really vulnerable: power consump-
tion depends on data it processes, on operation it does, on addresses in Pro-
gram Memory and in Data Memory. Some instructions even had the difference
in consumption in dependency on data so significant, that it is possible to tell
what particular program does with just a few power traces.

Not every test returned in a successful power consumption model. For
some of instructions, despite the fact that they clearly had some dependency
on what they operate with, I was not able to find acceptable hypothesis for
their power consumption.

In the future, may be with some new experience and knowledge, I will
be able to fill the gaps in this work, or it may be that someone else with a
another point of view will find what I’ve missed. Another idea is to combine
existing simulator solutions with a program, that will be capable of generating
estimations of power consumption based on a source code and data.

I believe this work can be helpful for people, who would like to analyze
some other microcontroller themselves, or for those, who design cryptographic
systems to better secure their creations.

Working on this thesis I learned a lot about power analysis attacks and how
they work, about AVR assembler and machine oriented languages in general,
gained better understanding of microcontroller’s architecture.
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Appendix A
Acronyms

DPA Differential Power Analysis

SPA Simple Power Analysis

APDU Application Protocol Data Unit

PC Program Counter

SP Stack Pointer

ALU Arithmetic Logic Unit

SRAM Static Random Access Memory

SREG Status Register

HW Hamming Weight

HD Hamming Distance
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

analysis....the directory of preprocessing and analysis source codes
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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