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Abstract 
The master thesis is focused on technical analysis mikrogrids. In the text are listed the basic 

elements of microgrids, ways to control microgrids, architecture of microgrids. Ways of 

operating are listed in detail the microgrids parallel to the distribution network, and Island 

operation. The following are the parameters of the quality of the electricity that have great 

importance when in operation. The author lists a number of pilot project of microgrids in 

Europe. In the final part of the work is presented a case study of small microgrid and the 

necessary calculations are made, in particular in the voltage profiles in microgrid. 

 

Key words 
Microgrid, architecture of microgrid, microgrid operation, power quality, case study 

 

Abstrakt 
Diplomová práce je zaměřena na technickou analýzu mikrosítí. V textu jsou uvedeny 

základní prvky mikrosítí, způsoby řízení mikrosítí, architektura mikrosítí. 

Podrobně jsou uvedeny způsoby provozování mikrosítí paralelně s distribuční sítí a ostrovní 

provoz. Dále jsou uvedeny parametry kvality elektřiny, které mají při provozu mikrosítí 

velký význam. Autor uvádí několik pilotních projektů mikrosítí v Evropě. V závěrečné části 

práce je představena případová studie malé mikrosítě a jsou provedeny potřebné výpočty, 

zejména profily napětí v mikrosíti. 

 

Klíčová slova 
Mikrosíť, architektura mikrosítě, provoz mikrosítí, kvalita elektřiny, případová studie 
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1. Generation and Distributed Infrastructure 
 

I. INTRODUCTION  

This theesis explores some of the issues surrounding the apparent ongoing reorganization of 

the power system into units employ distributed energy resources (DER) and that enjoy some 

measure of control independence from the traditional grid, entities that will here be referred 

to as microgrids. Symmetrically, macrogrid will be used to describe familiar traditional 

electricity supply involving large central station generation, long distance energy 

transmission over a network of high voltage lines, then distribution through medium voltage 

radial, or occasionally meshed, networks. Most industry analysts today agree that some form 

of less centralized supply and control is desirable and expected; 

The nature of locally controlled systems is far from determined, and indeed many forms of 

microgrids may emerge to meet their own local requirements, and such diversity is probably 

desirable. While addressing some of the wider issues, the main focus here is on three major 

benefits of microgrids internal to participants in it, namely 1. application of combined heat 

and power (CHP) technology. opportunities to tailor the quality of power delivered to suit the 

requirements of endues, here called heterogeneous power quality and reliability (PQR), and 

the more favorable environment microgrids potentially establish for energy efficiency and 

small-scale renewable generation investments 

 

II. A SHORT HISTORY OF THE U.S. POWER SECTOR 

 The Industry’s Roots The historic progress of the electricity industry is here described in the 

context of the U.S.; however, parallels can likely be found in the histories of many countries. 

The industry began in the U.S. with a period of isolated systems, beginning when Thomas 

Edison opened Manhattan’s Pearl Street station in 1882 . Since early systems were naturally 

isolated, many microgrid enthusiasts suggest that microgrids are no more than a return to 

our engineering roots. While this is strictly true, the picture is clouded by two features of 

early power systems. First, they truly were isolated, whereas modern microgrid concepts 

generally incorporate an interruptible grid interconnection of some kind.  

Second, the era of independent systems was fairly short-lived. The birth of large 

interconnected systems was marked by the opening of the first remote alternating current 

(ac) system commissioned by Westinghouse in 1896 to serve Buffalo NY by a hydro station 

at Niagara Falls, about 35 km distant. In other words, the era of purely isolated systems 
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lasted only a decade or two. B. Unfettered Competition Following was a chaotic period 

(1901-1932) of consolidation and growth led by privately owned utility companies that 

quickly resulted in the emergence of state regulation, beginning with the establishment of 

public service commissions in Georgia, New York, and Wisconsin in 1907. The availability of 

electricity grew spectacularly over this period, ultimately reaching two-thirds of all 

households. Total production increased 12 %/a on average, despite declines during the 

Great Depression at the end of the period, and prices fell by two-thirds. Centralized control 

over larger regions became increasingly practical and the electricity industry because a 

highly capital intensive pursuit. C. New Deal Reform, the Golden Age, and Problems The 

early frantic period was closed by various pieces of New Deal legislation intended to spread 

access to electricity service, develop the vast Federal dam projects, and limit the excesses of 

the private electricity utility sector. 

Increased Federal involvement and rapid expansion of electricity usage characterized the 

following era, and of equal importance, reliability improved significantly. The rapid demand 

growth of the World War period continued into the golden post-war period, with residential 

sector applications and consumption growing most spectacularly. The Federal role was 

further expanded through encouragement of nuclear power beginning with the Atomic 

Energy Act of 1954. The 1960’s saw the industry reach its zenith, while at the same time, 

the first signs of problems were emerging. Demand grew as rapidly as ever, and yet 

environmental concerns, limits on efficiency improvements, and reliability concerns following 

the northeast blackout of 1965 signaled the coming end of the golden age. During the 

1970’s some problems became serious. Decades of falling costs reversed as a result of 

increased fossil fuel prices, all of which increased dramatically. Even domestically produced 

coal increased in cost by almost 16 %/ a over the decade. Following the Three Mile Island 

Number 2 accident in 1979, the cost of nuclear generation also escalated, and no new 

reactors have been ordered since.  

This period also saw the beginnings of the philosophical questioning of large-scale systems 

that is now so familiar, especially large energy systems [2,3]. D. Reversal Typical trends in 

the growth of per capita energy consumption in postindustrial economies are illustrated 

.While advanced economies become more electricity efficient, i.e. produce more income with 

less electrical energy. prosperity and new uses for electricity consistently outstrip this 

improvement so per capita electricity use actually grows, substantially in some cases. The 

problems of centralized power supply make consideration of alternatives an imperative. In 

the U.S., perhaps 1979 was the actual tipping point because it was both the year that the 

utility share of generation peaked at 97 %, and it was also the year in which the Public 
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Utility Regulatory Policies Act (PURPA) that revitalized independent generation was passed. 

Although competition in generation alone was contemplated and then only under limited 

circumstances at first, the process of decentralization accelerated dramatically in the mid 

1990’s with the establishment of independent system operators (ISO’s) in various parts of 

the country during the years 1996-1998. This process of industry restructuring not only 

established competitive patterns of generation competition, but also contemplated retail 

competition in some cases.  

This process is still in motion, but at a much-reduced rate following the California market 

meltdown of 2000 and 2001, and restructuring has not progressed as far in the U.S. as in 

some other regions. E. Whither from here, This then is the starting point for this study. As 

asserted above, most in the industry see some merit in moving towards a more 

decentralized form of power system, but there is little consensus on the exact nature of that 

system. To be sure, the technical features of today’s macro grid reflect the legacy of 

centralized planning, operation and control. Even in the postISO controlled regions, a high 

degree of centralized decision-making is retained to ensure system adequacy, stability, 

security, and robustness, while accommodating contractual commitments between market 

entities. Also, rules extend well beyond the meter, for example, requiring generator 

shutdown during blackouts. Per Capita Electricity Consumption in Three Developed Countries 

0.0 0.1 0.2 0.3 0.4 0.5 1970 1975 1980 1985 1990 1995 2000 kWh/US$GDP Japan U.S. 

France Electricity Intensities of Three Developed Countries 

 

III.  DISADVANTAGES OF EXTREME CENTRALIZATION 

Much has been said and written from many perspectives about the advantages of smaller 

scale generation and local control, but before addressing the key issues from that 

perspective, it is illustrative to consider the push towards microgrids, i.e. to consider what 

problems came along with the emergence of the familiar highly centralized grids of today. 

Restrictions on power system expansion – Electricity demand continues to grow in the 

developed economies and the macrogrid may not be expandable to meet the requirement. 

In the U.S., demand is predicted to increase by about 50 % over the current quarter 

century. Siting all the necessary generating stations, transmission lines, substations, etc. to 

meet growing demand will pose a major political challenge.  

Limitations of centralized power system planning – Even if growing demand can be met by 

the macrogrid, it is not clear that this can be achieved in a timely and organized way. In the 

U.S., investment in the grid has been falling behind demand growth for a quarter century, 
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and investment in generating capacity has been erratic. Risks of volatile bulk power markets 

– For some good economic reasons, establishing vigorous competitive wholesale generating 

markets is a high priority, and yet they might prove to be counter to reliable supply. Threats 

to an insecure system – Concerns about malicious attacks to the infrastructure haunt us, 

and unfortunately, the macrogrid poses a particularly attractive target. Consequences of 

infrastructure interdependencies – The increasing interdependencies of our complex 

infrastructures may be recognized as a mistake.  

Modern communication systems typically fail in blackouts, and vice-versa utility operations 

are highly dependent on communications. And the interdependence extends to public 

transportation, water and sewage service, etc. Each of these services might be more 

dependable if it self-provided power independent of the grid. Limits to the qualities of power 

delivered – Finally, the universal power quality paradigm of the macrogrid may be too costly 

to support, as described in more detail below. 

IV.  THREE ADVANTAGES OF MICROGRIDS? 

 Much has been said and written about the many possible benefits of a distributed power 

system. See [6] for example. Here, the focus is on just three aspects of microgrids, 

combined heat and power, heterogeneous PQR, and the role of the microgrid decisionmaker. 

A. CHP CHP is likely to occur in microgrids, be it fired by renewable or non-renewable fuel. 

While the simple cycle efficiency of generation at modern central station power plants will 

normally exceed any likely competing technology available in small scales, CHP can change 

the overall efficiency competition considerably, potentially handing microgrids a lower overall 

carbon footprint. Since transporting electricity is much more convenient than transporting 

heat, placing generation where economically attractive heat sinks exist may be a desirable 

generation configuration, and one that suggests a high degree of dispersion. In fact, optimal 

dispersion might suggest generators be small and deeply embedded with demand, e.g. 

residential rooftop photovoltaics or thermal generation on multiple building floors collocated 

with heat loads such as domestic water heaters. B. Heterogeneous PQR Various indices for 

measuring power quality and power reliability are often used in quantifying levels of 

electrical . Outages may be scheduled for periodic maintenance operations on the electrical 

system, but unscheduled outages are generally much more disruptive and threatening to 

people and property. Outages effects include unavailability of certain services and processes, 

such as refrigeration, manufacturing, plus dependence on on-site backup generation which is 

typically costly and environmentally damaging. In contrast, deterioration in power quality 

has mixed and less dramatic effects. It is caused by deviations in the features of the 

electrical power delivered to the load such as voltage sags, swells, harmonics, imbalances,  
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which are triggered by periodic switching operations or by faults in the electrical systems 

due to weather-events, wildlife, user errors, etc. If power quality events do not lead to 

service loss, they become important only when they trigger degradation in the end-use 

service or equipment performance or durability. Thus, from an end-user perspective, power 

quality and reliability cause similar consequences and costs, while the scale and drama of 

events might be wildly different. While the ideal is rarely achieved in practice, the prevailing 

macrogrid paradigm is to provide a universal level of PQR to every load in the network.FIG 

 

 
 

Fig. 1 – Principle scheme of the microgrid 

(source: Google.com_AUICigB&biw=1920&bih=97) 

 
 
conceptually shows an approach to picking the optimum universal target PQR level for the 

economy to adopt. The horizontal axis shows increasing service availability on a pseudo-log 

scale, with approximately the lowest reliability we can currently imagine as acceptable to the 

left and perfection to the right. The vertical axis shows societal cost of providing reliability. 

This cost has two components, the cost of providing reliability and the cost of the residual 

unreliability, i.e., of unserved requirements, with the sum representing the total societal 

cost. The optimum is clearly at the point of minimum total social cost, which in this case 

occurs to the left of the current U.S. target of about 99.99%. Developed economies have 

chosen to push reliability as far to the right in Fig 3. as possible, with relatively little 

consideration of the tradeoffs implicitly involved. Furthermore, the push to the right has 

resulted in system interdependency with possibly unnecessarily costly consequences when 

failures occur. One might also consider the effect of making systems more resilient to power 

outage, and local provision of electricity by DER is one potential method. It is pure 

speculation at this point what the net effect would be, but one possibility is that the societal 

optimal could be pulled leftwards. While technical analysis of electricity service PQR can be 
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highly sophisticated, by contrast analysis of the economics of the PQR of end uses is at best 

rudimentary. If the universal PQR is inadequate, backup or power conditioning provision is 

applied, and often backup is a code requirement, e.g., at hospitals, but otherwise the 

universal quality is accepted. Consider the pyramid shown in Fig 4, which illustrates how 

various electricity uses might be classified according to their PQR requirements. Some 

common loads are widely agreed to have low PQR requirements and appear at the bottom of 

the pyramid, and vice-versa. Other loads can be much harder to classify, e.g., refrigeration 

is re-schedulable in many applications, but might be critical in others, such as medication 

storage. At the top of the pyramid the exposed peak shows that not all requirements are 

currently met, i.e., a cut off exists. Analysis of PQR in a form like the pyramid could 

potentially lead to the clustering of like PQR loads on certain circuits and the provision of 

electricity of appropriate quality to that circuit. At the same time, the effective provision of 

high PQR locally to sensitive loads could potentially lower the societal optimum for grid 

service, as mentioned above. While space limitations preclude extensive consideration of the 

implications of power systems that deliver heterogeneous PQR, four observations are 

offered: 1.Little analysis or data collection has been done to establish the parameters of the 

pyramid shown in Fig. 4. 2.Matching the PQR delivered to the requirements of the enduse 

can potentially meet our goals at lower cost than universal PQR. 3. A wise approach would 

disaggregate loads such that the peak of the pyramid is as narrow as possible, and the base 

as wide because the former are the costly ones to serve. 

 
 

V. WHAT ARE SMART MICROGRIDS? 

 

 
Fig. 2 Main features of the smart microgrid 
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Microgrids are modern, small-scale versions of the centralized electricity system. They 

achieve specific local goals, such as reliability, carbon emission reduction, diversification of 

energy sources, and cost reduction, established by the community being served. Like the 

bulk power grid, smart microgrids generate, distribute, and regulate the flow of electricity to 

consumers, but do so locally. Smart microgrids are an ideal way to integrate renewable 

resources on the community level and allow for customer participation in the electricity 

enterprise. They form the building blocks of the Perfect Power System. 

Here at the Galvin Electricity Initiative's Microgrid Hub, you will find a comprehensive set of 

resources on microgrids, collected from our partners and from across the web. Use the 

navigation system at the left to browse through all of our microgrid materials, and if you 

have suggestions for additional content, please let us know. If you are a member of the 

media seeking information on microgrids, be sure to view our press kit in addition to the 

other resources.The Microgrid Hub was launched on May 20th to coincide with our Capitol 

Hill briefing, "Microgrids: A Critical Component of U.S. Energy Policy." The May 20th briefing, 

hosted by the the House Select Committee on Energy Independence and Global Warming, 

featured presentations from the Galvin Electricity Initiative's John Kelly, Guy Warner of 

Pareto Energy, and Intel's Fiona Sim. 

 
 

VI. MICROGRID CONTROL 

 
Hierarchical Control 

In regards to the architecture of microgrid control, or any control problem, there are two 

different approaches that can be identified: centralized and decentralized. A fully centralized 

control relies on a large amount of information transmittence between involving units and 

then the decision is made at a single point. Hence, it will present a big problem in 

implementation since interconnected power systems usually cover extended geographic 

locations and involves an enormous number of units. The fully centralized control is currently 

considered infeasible. On the other hand, in a fully decentralized control, each unit is 

controlled by its local controller without knowing the situation of others.[17] The fully 

decentralized control is also irrelevant in this context due to strong coupling between the 

operations of various units in the system. A compromise between those two extreme control 

schemes can be achieved by means of a hierarchical control scheme consisting of three 

control levels: primary, secondary, and tertiary.[10] 
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Fig. 3 – Scheme of the hierarchical microgrid control 

https://www.google.com.sa/search?q=Microgrid+control&tbm=isch&source=lnms&sa=X&ve

d=0ahUKEwiJlbWWrpjbAhVGLVAKHf7oA5sQ_AUICigB&biw=1920&bih=974&dpr=1#imgrc=M

hl5yom38QYyYM: 
 

 
 

Figure 4 – Scheme of the microgrid connected to distribution network 

 
General layout of electricity networks. Voltages and depictions of electrical lines are typical 

for Germany and other European systems. 

An electrical grid is an interconnected network for delivering electricity from producers to 

consumers. It consists of generating stations that produce electrical power, high voltage 

transmission lines that carry power from distant sources to demand centers, and distribution 

lines that connect individual customers. 

Power stations may be located near a fuel source, at a dam site, or to take advantage of 

renewable energy sources, and are often located away from heavily populated areas. They 

are usually quite large to take advantage of economies of scale. The electric power which is 

generated is stepped up to a higher voltage at which it connects to the electric power 

transmission network. 
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The bulk power transmission network will move the power long distances, sometimes across 

international boundaries, until it reaches its wholesale customer (usually the company that 

owns the local electric power distribution network). 

On arrival at a substation, the power will be stepped down from a transmission level voltage 

to a distribution level voltage. As it exits the substation, it enters the distribution wiring. 

Finally, upon arrival at the service location, the power is stepped down again from the 

distribution voltage to the required service voltage(s). 

Electrical grids vary in size from covering a single building through national grids which 

cover whole countries, to transnational grids which can cross continents. 

  
ABB will provide an innovative microgrid, combining battery and flywheel based storage 

technologies, designed to test scalability and improve power stability for around 300,000 

people in Anchorage, Alaska, USA. The small scale project, initiated by Chugach Electric 

Association, Inc., aims to identify technologies that will enable the integration of more 

renewables, including wind power from a 17 megawatt (MW) wind farm on Fire Island, 

located about 4 km off the coast of Anchorage, which will work in concert with the innovative 

storage solution. 

 

ABB’s modular and containerized microgrid solution PowerStoreTM will blend the 

complementary capabilities of two storage technologies, flywheel and battery storage. The 

flywheel will facilitate the integration of fluctuating wind power and the battery will be used 

for long-term storage. The battery has a capacity of 500 kilowatt hours with a maximum 

performance of 2 MW. 

 

“We are delighted to partner with a visionary utility like Chugach Electric, to build this 

microgrid which incorporates a hybrid storage solution to enhance reliability of power 

supply”, said Massimo Danieli, Managing Director of ABB’s Grid Automation business unit, a 

part of the company’s Power Grids division. “Integration of renewables is a key element of 

the Energy Revolution and a major focus area of our Next Level strategy.” 

 
ABB’s advanced Microgrid Plus control system will monitor the hybrid storage solution and 

ensure proper load sharing between the two storage mediums. It is also equipped for 

remote service and maintenance.  

 

“This innovative solution shows how energy storage technology can boost renewable energy 

penetration in Alaska and have far reaching implications for new renewable projects on the 
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Railbelt as well as in smaller Alaskan communities,” said Paul Risse, Senior Vice President, 

Power Supply at Chugach Electric. 

 

Chugach Electric Association is a leading electric utility, headquartered in Anchorage, 

Alaska's largest city, and home to half the people in the largest, most sparsely populated 

state in the US. 

 

ABB is a pioneer in microgrid technology with around 40 installations all over the world, 

across a diverse range of applications serving remote communities, islands, utilities and 

industrial campuses.  

 

ABB (ABBN: SIX Swiss Ex) is a pioneering technology leader in electrification products, 

robotics and motion, industrial automation and power grids, serving customers in utilities, 

industry and transport & infrastructure globally. Continuing more than a 125-year history of 

innovation, ABB today is writing the future of industrial digitalization and driving the Energy 

and Fourth Industrial Revolutions. ABB operates in more than 100 countries with about 

135,000 employees. 
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2. Microgrid structure 
 
2.1 MICROGRID CONCEPT STRUCTURE 

 
Microgrid is the local small energy network of distributed energy resources with local 

loads,which is connected in parallel with the grid to provide a high realibility.it is 

independent of local electrical power grid and act as single controllable utility with respect to 

power grid. It is used to deliver the electricity to colleges,hospitals,factories,military bases or 

entire communities. There are two operation like Grid connected and island mode during the 

emergency operation. In control strategy, protection and control are big problem in the 

microgrid. Usaully microgrid connect with Low voltage distribtuion network with different 

type of energy sources like (PV ,fuel cell,etc.), energy storage system, storage battery, and 

variable loads. There area several distinct advantages to customers and utilities i.e. lesser 

overall energy consumption, reduction of environmental impact, increse reliability and 

resilience,most cost efficient power infrastructre.[28] 

By supporting voltage and reducing voltage dips and lower cost of supply energy, it reduce 

emission and improve power quality. From customer point of view, it provide power and 

thermal needs. Demand for distribution and transmission facility has been reduced by use of 

MG from the utility point of view.It connect usally with MV distribution network.[28] 

Research project FP5 Project MI-CROGRIDS (ENK5-CT-2002-00610) mainly deal with the 

single microgrid operation through laboratory experiments. This projects’s main objectives 

are describe as: 

 

• Inventing new techniques for different control of maximum number of distributed 

sources. 

• Development of storage and load controller and smart micro-energy sources. 

• Testing of new technologies and concepts in real pilot sites. 

 

Microgrid offers Maximum flexibility in terms of ownership constiution compared to central 

generation concepts. Microgrid can be built by grid operator or by consumer or by free  

market player platform. There are benefits to use of microgrid as power supply having 

emission reduction power supply and lower tarrif to end consumers. For future evaluation of 

energy service provision ,Microgrids play a significant role to overcome the demand growth 

of electricity. Distribution generation and distributed storage are located near the consumer 

location which provide improved reliability Integration of various DG technologies with the 

utility power grid is an important pathway to a clean, reliable, secure, and efficient energy 
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system for developed economies with established levels of quality and reliability of electrical 

service. Various studies have found that a large number of utilities as well as consumers that 

have installed DGs at their facilities realize benefits like local waste heat capture, improved 

reliability and reduced cost. Microgrid is created by connecting a local group of small power 

generators using advanced sensoring, communications, and control technologies.[29] 

 
 

Figure 5: Simple concept of Microgrid  

 
Microgrids can be operated as two modes like off grid mode (standalone mode) or main grid 

connection mode. Usually generation and loads are connected at low or medium voltage 

level .microgrids has several generation renewable sources like solar cell, fuel cell,wind 

energy and power storage system(battery). Maximum number of power system are 

connected to microgrid due to this operator should be very alert. 

The followings are parameter of Microgrid: 

 

 Small microgrid have 1-5 km radius. 

 It can produce power unto to 1-5 MW to deliver the customers. 

 There in no requirements of long distance transmission lines and free from 

transmission power losses. 

 

Dc microgrid concept could be implemented in recent year for power generation and 

utilization system. DC microgrid can be placed at minimum distance between electricity 
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generation and loads., DC storage devices such as batteries, capacitors, and fuel cells also 

fulfill the requirements of local DC power. In essence, the self- network of power generation 

and energy storage devices, known as the Microgrid is basically a small network of the 

larger power grid. This self-sufficient PV-based” Nanogrid” can generate, store and distribute 

its own power, which is ideally suited for rural electrification. 

 
Figure 6 - Architecture of Microgrid  

 
Selection of Renewable energy source is very important consideration due to location and 

environment condition of that land. Integration of this sources require proper energy storage 

and monitoring system. Electronics technology are being used for monitoring system of 

Microgrid operation. Energy storage and management system have several reason like smart 

Gris, distributes energy sources, bad impact on environment due to fossil fuel use, after use 

of storage energy, development of electric vehicle which is focused on implementation of 

renewable energy sources in microgrid. This system will provide smooth, uninterrupted 

energy to home appliances by using resynchronization algorithm and advanced islanding 

detection. 
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Table 1: System component of Microgrid  

 
 
Decentralizing system is called as microgrid system by standalone operation which increase 

the system overall efficiency up to 85%- 95% by use of CHP system and reduce the loss of 

energy in transmission system. 
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Figure 7 - Proposed Microgrid Distribution system  

 

 
To manage the flow of system active and reactive power balance, distributed generation can 

be used with banks of capacitor in power system.Control system takes care of whole system 

while all the resources is integrated in the main grid and reduce environmental impacts such 

as: 

 Reduce the greenhouse gas emission 

 Increase the energy security by use of distributed generation and all energy 

sources sharing 

 

Microgrids carry out dynamic control over energy sources, enabling autonomous and 

automatic self-healing operations. During normal or high demand, or during the time of 

power grid failure, a microgrid can operate standalone of the power grid and disconnect 

generation nodes and power loads from disturbance without affecting the power grid 

connection. Microgrids interoperate with existing power systems, network infrastructure,  

and information systems and are capable of feeding power back to the larger grid during 

times of grid failure or power outages.  

 

 

2.2 MICROGRID FEATURES 
 
Microgrid components such as renewable or fossil-fueled generators, several circuit breakers 

and its control, loads, energy storage systems, must fulfill several requirements to produce 

reliable operation. Lawrence Berkeley National Laboratory has observed some importanttop-

level microgrid features that should be considered in all standardization projects and 

research and development projects:  
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Compatibility: Microgrids are compatible with the current power grid. They may be 

considered as main units that support the development of the current system in an 

economically and environmentally friendly way. 

 
Stability: Independent local control of generators, batteries, and loads of microgrids are 

based on frequency and voltage rating at the point of each component. Microgrid  can 

perform stable operation during nominal operating conditions and during transient condition, 

without dependency of larger power grid. To achieve a high level of stability, additional 

research is required. 

 

Efficiency: The utilization of generators, manage charging and discharging energy storage 

units, and can manage centralized as well as distributed microgrid supervisory controller 

structures consumption optimize. In this way energy management goals can be optimized 

on environmental related condition. 

 

Economics: According to market research studies, by evaluation of microgrids economics of 

heat recovery it can be identified current market of energy. In addition, use of renewable 

energy resources will help to reduce greenhouse gas emission and cost of fuel. 

 

 

2.3 DIFFERENT TYPES OF MICROGRID 

 
Depending on size, location and market condition, microgrids can be divided into different 

types. Some microgrids are described below. 

 

Institutional Microgrids/campus environment microgrid 

Major concern about onsite generation with several load which are connected in industrial 

park. In microgrid segments, single owner of both generation and large loads can manage 

very easily and avoid several problems. Generation power range from 4 MW to 40MW or 

more. 

 

True Microgridor Customer Microgrid 

It is connected at single point of common coupling(PCC) and self-operated. Usually it fit 

nearly to the current technology and control structure. Deployment of this type would be 

preferable from Customer point of view. 
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Remote off grid Microgrids 

Operation of this microgrid is in island mode without connect to the main grid. remote 

village power system in Village and generation of wind power are the best example of this 

type of microgrid which are interconnected and supply power to the local distribution. By 

implementing distributed wind and run of the river hydropower and solar photovolatics, 

reducing fossil fuel goal has been achieved. Village power sytem have the lowest average 

capacity of power generation and distribution. 

 
Military base microgrids 

This type of Microgrids are implemented with the focus on both cyber and physical security 

for military purpose to provide uninterrupted power without relying on the power grid. for 

forward operating bases , it includes mobile military microgrids i.e. Afghanistan. This 

approach is actively working by U.S department of Defense(DOD). 

 

Utility/Community Microgrids 

There is no islanding operation in this type of Microgrid. European Countries lead this 

segment. By use of one or more distribution substations, community microgrid is correlated 

with local grid network and supported by local renewable energy sources and several 

distributed energy sources(DES).It provides Cost effective energy, secure and more 

sustainable energy. It use load flattering and efficient load design to reduce transmission 

cost and costly peaks. More efficient grid operation and power quality operation has 

achieved by use of community microgrid. 

 

Industrial and commercial Microgrids 

This type of microgrids have good reliability and good power supply security, Usually big 

manufacturing industries is implementing this type microgrid due to its constant power 

supply capacity. For balancing and storing the energy , utility can be provided 

additionresources which is satisfied industrial energy needs. For Conventional energy 

production,PV technology is becoming an alternative energy source due to environmental 

concerns during the grid connected operation. Batteries are most impratant to match power 

generation and consumption demand. 
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Figure 8 - Utility/Community Microgrid  

 

 
2.4 MAIN MICROGRIDS COMPONENTS 

 
Microgrids consist of Several components like energy management system, communication 

system, controllers and power conversion elements, distributed energy resources and main 

key component is customer. 

 It is main functions in power prediction from renewable energy sources, power 

planning and load forecasting. For power system reliability evaluation, data 

collecting and estimation has been done by energy management system. 

 By Proper monitoring and control information sharing, communication system 

become medium in microgrid system. It is interconnect with different component 

and ensures control and management task in the system. 

 Electrical Parameter of system like voltage, frequency and power quality which is 

controlled by use of proper controller. It is very important for the microgrid 

operation to change the parameter of system according to the requirement. 

 Power conversion equipment like current and voltage transformer, are used to 

detect current and voltage limit for power system. Power electric converter 

interface is necessary to change the AC and DC voltage and current from the 

Distributed energy sources. 

 DER produces the sufficient amount of energy to fulfill the demand of energy in 

Microgrid system and supply energy to meet require energy demand. 

 Microgrid can be implemented according to the customer energy demand and 

customer participation is the important consideration for smart grid. 
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2.5 IMPACT OF MICROGRIDS ON THE DISTRIBUTION SYSTEM 

 
There are several important parameters of microgrid operation should be consider as key 

feature during the production and transmission of electricity throughout the whole microgrid 

which is describe below:  

 

Fault level Increase 

Most MG use both synchronous and induction generator for energy generation so that it will 

increase the fault level of the distribution system and contribute to the system fault levels. 

Introducing impedance by reactor or transformer between the system and generator, 

system fault can be reduced. Development of distributed Generation can be a serious 

problem in urban areas where the existing fault level increase the rating of switch gear.[35] 

 

Power Quality 

Usually two aspects are considered to be important in power quality like: 

 

 Variation in transient voltage 

 Harmonic distortion of network voltage 

 

Load as well as source fluctuation can cause voltage variation. It is very important to control 

the voltage variation due to relatively very large current changes during the disconnection 

and connection of the generator. Standalone operation of MG system observe more 

voltagechanges due to load disturbance which cause current change to the DG inverter. Ac 

output volage from the inverter will fluctuate by significant change in in voltage drop due to 

high output impedence of inverter. 

Injection of harmonic current into sytem by incorrectly design MG with power electronics 

interface which cause voltage distortion of the network. These harmonics depends on mode 

of operation, power converter technology, the interface configuration. Fortunately, most new 

inverters are based on Insulated Gate Bipolar Transistor (IGBT), which uses Pulse Width 

Modulation (PWM) to generate quasi-sine wave. Higher frequency of carrier wave has quite 

pure wave form without distortion by use of recent advances semiconductor technology. 

 
Stability 

Objective of the Distributed generation scheme to generate the power from the RES and 

control the generator transient stability. During the fault condition in the distribution 

network, network voltage changes occurs and generator trips so that is the losses of 
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generation for short period of time. MGs will trip the internal protection scheme and control 

system takes a command to restart automatically. DG is observed as power system support 

then transient stability becomes more considerable importance. 

 

Protection 

Different protection steps can be identified: 

 Loss Of mains protection or anti-islanding 

 Impacts of Existing protection of distribution system of MG 

 Generation Component protection 

 MGs faulted distribution network protection 

 

 

3. Microgrid projects in Europe 

 
3.1. CURRENT PROJECT OF MICROGRID  
 
There are several major research efforts which has been supported by The European Union 

to devote exclusively to Microgrids. This Projects focused on Demonstration activity of 

Microgrid operation through laboratory experiment, appropriate control techniques 

investigation, and individual operation of single Microgrid. Maximum number of DER 

connected to create a Microgrid with laboratory facility was implemented in National 

Technical University of Athens (NTUA)Kythnos Island, Greece. Main objectives to control the 

microgrid operation and test small scale equipment. The system has two poles each 

connected with local Wind and PV generation and battery storage system, also connected 

each other by low voltage line as well as to the main power grid. By its own connection to 

the grid, each pole may operate as a Microgrid or by two bus microgrid connection, both 

pole may be connected via the low voltage line.  

In Netherland, another Microgrids Project is located at Bronsbergen Holiday Park near 

Zutphen. It covers 210 cottages and 108 of them are connected to grid-connected PV 

systems. Three phase 400v network is connected to 10-KV medium-voltage network via 

distribution transformer. 

Consortium for Electric Reliability Technology Solutions(CERTS) microgrid is located in 

Columbus, Ohio in USA. It has thyristor based static switch and three 60-kw converter based 

sources and internal combustion engine use natural gas which achieve maximum efficiencies 

over a wide range of loads. To insure a constant AC frequency at microgrid, output has been 

rectified and inverted. 

In Japan, there are three projects are implemented at three different location like Kyoto Eco- 



- 27 

                                       

 

TECHNICAL ANALYSE OF MICROGRIDE 

 

Energy project (Kyotango Project), Expo 2005 Aichi, and Regional Power Grid with 

Renewable Energy Resources in Hachinohe City (Hachinohe Project). Capable of matching 

energy demand and supply for microgrid operation has been established in these three 

projects. In Expo 2005 Aichi project, PV and a battery storage system and fuel cell has been 

used in power supply system. In September 2007, it declared a second grid-independent 

operation mode. In Hachinohe Project, Microgrid has private distribution line more than 5km 

to supply electricity primarily generated by the gas engine system. It has several small wind 

turbines and PV systems. 

 

 
Figure 9: System configuration for the Boston bar IPP and BC Hydro planned islanding site  

 
In Canada, several power outages in Boston Bar town had been experienced two or three 

times per year. One option to operate in an island mode and supply load on more or one 

feeder of substation and utilize the local independent power producer (IPP). It has two 3.45 

MW hydro power generator It is connected to one of three feeders with the peak load of 3 

MW.  

 

 
3.2 ADVANTAGE AND CHALLENGE OF MICROGRID  

 
Power quality and Reliability of current power system has been improved by systematic 

application Microgrid technologies at the local distribution level. There are mainly threee 

major benefits includes: ensure local supply control (30%), fulfil local demand 

(approx.49%), and enhance grid reliability (36%). Reducing energy cost and good electricity 

supply reliability and grid security depends on lower frequency response of microgrid 

technologies. Integration of Distributed energy sources (DER) and battery storage option 
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becomes a foundational building block in the ultimate smart grid. During the brownout and 

blakouts, ability of microgrid is to island itself from the distribution system which enables 

Microgrid enablinf technologies both islanded and online like: Advanced Energy storage 

 Smart transfer Switch 

 Smart Meters 

 Distribution Automation (DA) 

 

Several research noted that most important technologies for Microgrid deployment were: 

 

 Communication sensors and technologies, 

 Distribution management system, 

 Energy management system. 

Microgrid can operate as a single collective load within the power system which is the 

primary advantage of a microgrid from the electric grid’s perspective. Small scale renewable 

energy sources and small-scale combined heat and power (CHP) generate distributed power 

which can increase energy efficiency and environmental advantages over central generation. 

Microgrid technologies leads to way of thinking about building and designing smart power 

grids. By energy generation and distribution like heat, Microgrids economically and efficiently 

integrate buildings and customers' needs and enhance power reliability. 

Power disturbances and blackouts are either substantially minimized or eliminated due to 

local power generation, ability to island ,redundant distribution, smart switches operation of 

microgrid technologies. By selling the power back to the utility/grid when not islandes, 

Microgrids can generate revenue for businesses and constituent consumers. Microgrids can 

set the stage for added consumer revenues from carbon credits and plug-in electric vehicles. 

CHP operation of Microgrid makes more flexible and efficient power network. It is more 

convenient to transposer electricity than transporting heat. In electrical service, several 

methods are used for measuring power reliability and power quality. While deterioration in 

power quality has mixed and low effects like voltage swells, imbalances and harmonics etc., 

unscheduled outages are becomes more threatening nand disruptive to property and people. 

Universal level of PQR to every load should be provided in the network. 

Microgrid Concept observe the number of challenges in dispatch, control and protection point 

of view. Several new technical challenges are describes below. 
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 Two modes of operation: Standalone/islanded and Grid connected mode. 

 By connection/disconnection of loads, storage system and generators, 

gradually changes in LV network. 

 In islanding operation, Low level of Short-Circuit current due to Power 

electronics Interfaced distributed generation(DG). 

 Bidirectional power flow in both low voltage and medium voltage generation system. 

 High rotating machine penetration which lead to increase fault current and 

rating of equipment. 

 During the fault in LV and MV system, slower tripping time of system. 

 Difficult protection tripping due to fault on feeders. 

 
Usually Many microsources are connected to the microgrids by use of power 

electronics inverter which has incompatible output with the grid voltage. There 

are several problems have to be considered due to small fault current 

contribution of inverter output which is considered below: 

 Difficulties in Inverter operation for Short circuit studies hence control 

strategy dependent operation. 

 During the change of operation from Grid connected to islanded mode, 

fault current level is reduced significantly. 

 For Different characteristics, The whole microgrids may have different 

inverter throughout the whole system. 

Inverter design and application depends on inverter characteristics in cas of individual inverter. 

 
 

Figure 10 – Components of the microgrid 
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3.3 MICROGRID ARCHITECTURES AND CHARACTERISTICS 
 
The technologies described above can be configured a number of ways to address a variety of 

different microgrid applications. As discussed above microgrids may consist of medium and low 

voltage distribution systems delivering power and/or thermal energy to loads in proximity served 

by DERs located on site. Microgrids can be interconnected to the macro-grid (interconnected 

microgrids) or designed to operate entirely as an island. 

Microgrids interconnected to the extant electric system at the point of common coupling can move 

between grid- connected and isolated grid modes, depending on circumstances. While grid-

connected, the microgrid’s control system may maintain a “grid dependent” or a grid-independent 

mode of operation, again depending on the circumstances. This flexibility allows interconnected 

microgrids to take advantage of grid resources yet maintain independence if needed. 

Driesen and Katiraei identify three types of microgrid architectures that reflect different categories 

of applications, including utility microgrids, non-utility or industrial microgrids and remote or 

isolated microgrids.Table 2.3 below is a general classification of different microgrid architectures 

and their characteristics based on different applications, ownership structures and load types. 

 
Microgrid Architectures

 
 

 

Utility 

Microgrids 

 

Non-Utility Commercial or

 Remote/Isolated Industrial 

Microgrids  Microgrids 

Urban Rural Multi-facility 

Networks Feeders 

Clusters of commercial and Remote communities 

Application Downtown areas Planned residential buildings; 

industrial 

and geographical 

islanding parks; shopping centers; and islands 

university campuses 

 

              Outage 

management/improved 

                           

Power quality 

enhancement, 

      

Electrification of 

Main 

drivers 

reliability and control and 

renewables or CHP 

integration 

reliability and energy 

efficiency 

remote area  

and reduction of 

fuel use 

 

 

Benefits 

Greenhouse gas reduction; 

supply/fuel diversity; congestion 

management; 

distribution/transmission upgrade 

deferral; and ancillary 

Premium power quality; 

service differentiation 

(i.e., reliability levels); 

CHP integration; and 

demand response 

management 

Supply availability; 

renewables 

integration; 

greenhouse gas 

reductions; demand 

services response 

Grid dependent (GD); grid 

Operating modes independent (GI); and isolated   GD, GI, IG                 IG grid (IG) 
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Transition

 Accidental to 

GI and 

Faults on adjacent feeders or at Macrogrid power failure; substation 

 power quality issues 

 

IG Modes Schedule System 

maintenance 

Source: Dreese and Katrine, 2008 

Energy prices (peak); utility 

maintenance
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Each of these architectures has a different set of drivers. The utility microgrid may be 

particularly valuable in a downtown urban network or along a rural feeder line where 

service capacity is resource-constrained and reliability and power quality may be 

compromised or in danger of being compromised. Efforts to increase the amount of 

renewable energy or use CHP may also be drivers of utility microgrids. Non-utility 

commercial or industrial microgrids may be driven by a desire to reduce costs through 

self-generation as well as provide greater control over site power quality and reliability. 

These loads, or a portion thereof, may not tolerate even momentary outages and a 

microgrids can be adapted to serve the different load requirements of multiple 

commercial or industrial facilities. 

Microgrids can also be designed to serve multi-facility residential customers or mixed use 

areas. Research conducted at Columbia University found, that due to their high demand 

for thermal energy relative electric, large multi-family buildings could serve as excellent 

hosts for CHP-based microgrid systems.Although less applicable to New York State, 

remote or isolated microgrids serve to electrify areas either currently without power 

services or with limited access to fuel supplies (e.g., remote communities, state parks or 

resource extraction sites). 

The range of benefits produced by a given microgrid will likely reflect the intended 

application, architecture, and resources deployed. A utility microgrid may be focused 

more on integration of renewable energy supplies and as a result, provide greater 

emissions benefits than a non-utility microgrid intended primarily to provide cost savings 

or highly reliable power services. These characteristics will in large part be driven by the 

microgrid ownership and service characteristics. Microgrid ownership and service models 

are examined further in Section 2.8 below 

 

 

3.4 MICROGRID OWNERSHIP AND SERVICE MODELS 
 
Previous efforts to clarify and resolve some of the regulatory barriers to microgrid 

implementation have found that the environment for microgrids in the US is complex and 

uncertain. Across the country, regulators’ views of what a microgrid is and how one 

might operate differently. As a result, it is likely that the viability of a given microgrid 

within today’s legal and regulatory structure will depend on how the project is framed, 

particularly with respect to who owns the microgrid infrastructure, which types of 

customers receive service from the microgrid, and how profits from those services are 

earned.Below we provide a typology of microgrid ownership and service models to help 

identify the range of options for deployment and begin to shed light on the types of 

applications that may face the biggest hurdles. While we raise some general legal and 

regulatory issues here, a more complete discussion of these issues as they pertain to 
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New York State and other parts of the country is provided in the next section. 

In our research, we identified only two other efforts to define and categorize ownership 

and service models for microgrids. In its examination of the potential future market 

opportunity for microgrids for California, NCI identified four ownership models with 

“strong” business cases including utility, municipal (government), landlord (a single, non-

utility and non-governmental owner) and renewable energy cooperatives (multiple non-

utility owners). NCI also identified four scales of service these owners might provide 

including single facility (< 2 MW), multi- facility (< 5 MW), feeder (5-20 MW) and sub-

station (20+ MW). 

King, in his research on the regulatory environment for interconnected microgrids across 

different US states, found that the way a microgrid is presented will have a significant 

effect on how regulators view it. “When framed as a small independent power producer,” 

King explains, “a microgrid may yield a different reaction than when it is framed as a 

large distributed generator, or placed in the context of energy services or demand 

management.” In order to reduce confusion and facilitate policy discussion and 

development, King proposed the following five models by microgrid ownership and 

business practice. 

1. Utility model – the distribution utility owns and manages the microgrid to 

reduce customer costs and provide special services (e.g. high power quality and 

reliability) to customers on the system. 

2. Landlord model – a single landlord installs a microgrid on-site and provides 

power and/or heat to tenants under a contractual lease agreement. 

3. Co-op model – multiple individuals or firms cooperatively own and manage a 

microgrid to serve their own electric and/or heating needs. Customers 

voluntarily join the microgrid and are served under contract. 

4. Customer-generator model – a single individual or firm owns and manages the 

system, serving the electric and/or heating needs of itself and its neighbors. 

Neighbors voluntarily join the microgrid and are served under contract. 

5. District Heating model – an independent firm owns and manages the microgrid 

and sells power and heat to multiple customers. Customers voluntarily join the 

microgrid and are served under contract. 

As King observed, depending on the state in which a microgrid is located, regulators may 

interpret these models very differently. For example, he found that the Utility and 

Landlord models tend to be viewed most approvingly by regulators while the District 

Heating model is viewed least approvingly. These views are shaped by state electric 

industry regulation and law, which is generally designed to protect incumbent distribution 

utilities and their customers from the potential risks of competition. Even after industry 

restructuring, which focused on encouraging competition in generation, distribution 
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utilities continue to be granted monopoly power to provide service to customers within a 

specified service territory. Service territories and franchises granted by municipal 

jurisdictions, effectively uphold what is considered to be a natural monopoly designed to 

avoid the duplication of service wires, reduce utilities’ financial risks, and assure 

customers they will receive electric service. By implying a merchant distribution function, 

where an independent microgrid firm can serve multiple independent customers that join 

voluntarily, the District Heating model may be viewed as conflicting with these existing 

protections for distribution utilities. 

The ability of a non-utility firm or cooperative to build and operate a microgrid revolves 

primarily around the following issues: how will the microgrid be interpreted under 

existing law, how heavily will it be regulated and will the incumbent attempt to block it 

from proceeding? If a proposed microgrid is defined by the regulator as a utility 

distribution company, it will likely face significant and probably insurmountable barriers 

to implementation, especially if it is located within the service territory or franchise area 

of an existing utility. Not only is it likely that regulatory authorities will be inclined to 

protect the incumbent distribution utility, but also the utility itself is likely to defend its 

franchise rights in court, if necessary. In many cases, the mere threat of tying up a 

potentially small enterprise such as a microgrid, in litigation over franchise rights could 

stop a project. 

For example, in 1998, Pittsburg Electrical Insulation (PEI) Corporation proposed the 

construction of a cogeneration power park that would serve approximately 25 MW of load 

to a variety of customers on a campus it owned. The local utility opposed the project and 

petitioned the Pennsylvania Public Utility Commission (PUC) that the facility should be 

treated as a public utility under state law. Ultimately, the PUC issued a declaratory order 

exempting PEI’s proposed project, partly on the basis that it owned the property on 

which it intended to serve. With this confirmation, PEI broke ground on the project and 

secured customer commitments to participate. Still, continued legal threats by the local 

utility in civil court and PEI’s fear of ruining the business relationship it had with the 

utility, led the company to abandon its plans.Ultimately, the PEI project went forward 

under an agreement with the local utility as an “exempt wholesale generator.” PEI 

produces power and steam, but sells its electricity on the wholesale market. The PEI 

project is also not able to island from the utility system, reducing the potential reliability 

value of the system to its tenants. 

In addition to influencing its legal status, the economics of a given microgrid project – 

the incentives and practical considerations for building a microgrid – are also likely to 

differ depending on the ownership and service model. The extent to which the benefits 

derived from developing a microgrid can be captured by the developer will have a 

significant impact on the likelihood of it being built. For example, if utility or social 
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benefits are large – and incremental to the estimated customer benefits – for a particular 

proposed micro-grid project, then that project under a non-utility model may not work, 

because the customers would not be able to realize the complete (i.e., social) value of 

their investment. This may be the case for a number of environmental and energy 

system benefits, such as reduced emissions, avoided line losses, and avoided generation 

and distribution system capacity investments.  

In order to provide more granularity to New York State’s consideration of microgrid 

opportunities and barriers, we developed a framework, following King, for thinking about 

physical and virtual microgrid ownership and service models. The framework includes 

nine models within two major categories of ownership: utility and non-utility. The reason 

for proposing these categories is not to judge how a given microgrid would be interpreted 

under the law. Instead, we observe that there are two general types of entities that 

might want to pursue microgrids, existing utilities, and non-utilities (e.g., cooperatives, 

independent firms, and independent campuses). Within the utility and non-utility 

categories there are a number of variations that relate to the service orientation of the 

microgrid as well as additional characteristics that might affect a given model’s 

permissibility. We highlight these differences in the discussion of the nine ownership and 

service models below. 

 
 

3.5 UTILITY OWNED PHYSICAL MICROGRIDS 
 
Existing electric distribution utilities may want to develop microgrids for various reasons, 

including to improve local reliability, differentiate their service offerings to customers or 

possibly to compete with non-utility microgrid service companies. In this context, we 

envision the potential for utilities to both fully owned (i.e., vertically integrated) and 

partially owned microgrids (i.e., unbundled). Although we do not address this issue in 

detail, utility-owned/operated microgrids could cover a range of scales including sections 

of distribution feeders, entire feeders or entire substation areas. 

There are several important reasons for this distinction. First, under electric industry 

restructuring, most distribution utilities have been required or encouraged to sell their 

generation assets to third parties to facilitate competition. As a result, utilities in states 

that have deregulated – such as New York – are generally not investing in new 

generation assets, but are leaving that to Independent Power Producers (IPPs) that build 

new generating units in response to wholesale market conditions. Meanwhile, states are 

encouraging customer investment in photovoltaics, fuel cells, and other forms of 

advanced clean distributed generation. Therefore, it is very likely that a microgrid that 

includes utility ownership of the distribution assets might also include customer or third 

party owned generating facilities. 



- 36 - 

 

 

Implementing this type of microgrid will require regulatory and policy guidance and 

potentially the development of new markets for local energy and ancillary services. 

Alternatively, utilities may want to own the generation assets embedded within the 

microgrid (if they are allowed) so that they can exercise a greater degree of control over 

the system. Utilities already own backup generation, which is used for reliability 

purposes, and increasingly they are asking regulators for permission to own renewable 

assets, especially photovoltaics. Ultimately, this microgrid model may require 

policymakers to reconsider restrictions on utility ownership of generation assets. 

 

A.Vertically Integrated Utility Model 

 An existing electric utility owns the microgrid distribution infrastructure and generation 

and storage technologies operating on the system, providing electric and/or thermal 

energy services to participating customers. It also operates the microgrid control system, 

determining which generating units run and directing customer demand response or the 

shedding of non- critical loads in the event of a macro-grid interruption or for economic 

reasons. The microgrid allows the utility to differentiate its product and services to 

customers in the form of varying reliability and/or power quality services at varying 

costs. The research team did not identify an example of a vertically integrated utility 

microgrid; however, aspects of this model are represented by a reliability project 

undertaken by Central Hudson Gas and Electric in New York and the City of Naperville’s 

smart grid initiative in Illinois. 

 

B.Unbundled Utility Model 

An existing electric utility owns and maintains the electric distribution facilities serving 

the microgrid, which provides electric and, possibly thermal energy, while generation or 

storage assets are owned by participating customers or third parties. The utility will likely 

operate or direct the microgrid control system, and possibly use a control scheme that 

can accommodate the interests of multiple DER asset owners (i.e., one that enables and 

can integrate multiple agents, or customers, acting on their own behalf). 

In this model, the utility would be an active partner with customers and generators to 

facilitate and manage the aggregation of loads and the deployment of generation on the 

microgrid. An example of an unbundled or hybrid utility microgrid is the project San 

Diego Gas and Electric developing in Borrego Springs, California. While SDG&E will own 

generation and storage assets located at its substation, it is also encouraging customer-

sited generation and developing a price-driven demand response program for residential 

customers. At least one circuit served by the substation area will be capable of islanding 

to improve local reliability (see SDG&E case study in the Appendix). 
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3.6. NON-UTILITY OWNED PHYSICAL MICROGRIDS 

 

 
 

Figure 11 – HV distribution system 

 
The development of non-utility owned microgrids providing lower cost, more reliable and 

cleaner energy services could become a significant new area of investment for distributed 

energy services. We distinguish non-utility microgrid ownership models based on whether 

the primary purpose is for self-service or for merchant service. 

 

 
 

Figure 12 – Consumption in the virtual microgrid 

 

 
3.7. VIRTUAL MICROGRIDS 

 
A virtual microgrid, also referred to as “virtual private wires” or “virtual power plants,” is 

a distributed energy resource-pooling model that uses existing electric or steam 

distribution systems to link multiple energy production resources and loads. Under a 

virtual microgrid scheme, locally sited energy resources supply multiple end users, but 

there is no separate physical connection between participating supply and load. Instead, 

power and/or thermal energy is produced and sold among different users using the 

existing utility distribution infrastructures. In addition to integrating customer-owned 
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DER, virtual microgrids may aggregate demand response to provide virtual load 

balancing, or generate additional revenues through participation in organized energy 

markets or demand response programs. The microgrid owner/operator, which could 

potentially be a third party aggregator or a co-op, manages the “dispatch” of energy to 

meet the load requirements of participating customers. Virtual microgrid customers pay 

the utility distribution fees for power distributed to participating loads, but for the most 

part avoid, or can greatly reduce, transmission and grid commodity costs. 

 
Tab. 2 Physical of Microgride 
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4. Case study – LV Microgrid 
 

Microgrid for calculation be composed of consums Z1 – Z9, photovoltaic power plants FV1 

– FV5 and small hydro power plant HC1. I tis typical part of the residental distribution 

network. The microgrid on the scheme is calculated in two operating states. 

 

 
 

Figure 13 - Scheme A –FVE are in day operation state 
 
 

 
 
Figure 14 - Scheme B – FVE are in evening operation state 
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Input network data for calculation 

 
Network 22 kV 

Name Un 

[kV] 

Uoper 

[kV] 

Izkr 

[kA] 

Szkr 

[MVA] 

NET_22 22 23 1.57 60 

 

Transformer 22/0.4 kV 

Name Un1 

[kV] 

Un2 

[kV] 

St 

[MVA] 

Pk 

[kW] 

uk 

[%] 

Primary 

connection 

Secondary 

connection 

In1 

[A] 

In2 

[A] 

TR_3 22 0.4 0.4 4.6 4 D YN 10,5 578 

 

Parameters of the Line sections 

 

Name 

 

Type 

Cros-

section 

[mm²] 

Un 

[kV] 

R 

[Ω/km] 

X 

[Ω/km] 

B 

[μS/km] 

Length 

[km] 

Imax 

[A] 

V1 70AYKY50 70 0.4 0.442 0.073 1 0.08 183 

V2 70AYKY50 70 0.4 0.442 0.073 1 0.08 183 

V3 70AYKY50 70 0.4 0.442  0.073 1 0.08 183 

V4 70AYKY50 70 0.4 0.442 0.073 1 0.1 183 

V5 50AES50 50 0.4 0.641 0.086 1 0.08 140 

V6 50AES50 50 0.4 0.641 0.086 1 0.08 140 

V7 50AES50 50 0.4 0.641 0.086 1 0.08 140 

V8 70AYKY50 70 0.4 0,442 0.073 1 0,1 183 

V9 50AES50 50 0.4 0.641 0.086 1 0,08 140 

V10 50AES50 50 0.4 0.641 0.086 1 0,08 140 

V11 50AES50 50 0.4 0.641 0.086 1 0,08 140 

V12 50AES50 50 0.4 0.641 0.086 1 0,08 140 

V13 50AES50 50 0.4 0.641 0.086 1 0,08 140 

V14 70AYKY50 70 0.4 0.442 0,073 1 0,15 183 

 

Loads 

Name Un 

[kV] 

I 

[A] 

cos φ 

[-] 

P 

[kW] 

Q 

[kVAr] 

S 

[kVA] 

Z1 0.4 15.8 0.92 10 4.3 10,9 

Z2 0.4 23.6 0.92 15 6.4 16.3 

Z3 0.4 22.9 0.95 15 4.9 15.8 

Z4 0.4 16.7 0.95 10 3.3 10.5 

Z6 0.4 16.7 0.95 10 3.3 10.5 

Z7 0.4 18.3 0.95 12 3.9 12.6 

Z8 0.4 16.7 0.95 10 3.3 10.5 

Z9 0.4 183 0.95 120 39 126 

 

Photovotaic power plants 

Name Un 

[kV] 

I 

[A] 

cos φ 

[-] 

P 

[kW] 

Q 

[kVAr] 

S 

[kVA] 

FV1 0.4 11.6 1 8 0 8 

FV2 0.4 11.6 1 8 0 8 

FV3 0.4 36.1 1 15 0 15 

FV4 0.4 11.6 1 8 0 8 

FV5 0.4 7.2 1 5 0 5 
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Small hydro power plant 

Name Un 

[kV] 

I 

[A] 

cos φ 

[-] 

P 

[kW] 

Q 

[kVAr] 

S 

[kVA] 

HC1 0.4 30.3 0,95 20 6.5 21 

 
Calculation results 

Network calculations were made in two operating modes.   

In the first operational state he thought the daily time operation of a distribution network 

with the power generation by photovoltaic power plants FV1 - FV5 and power generation 

by hydro power plant HC1. 

 The second operational state he thing about the operation of a distribution network in 

the evening time was thinking without the generation of power by photovoltaic power 

plants but with the generation of electricity by hydro power plant HC1 

The results of both calculations are listed in the following table and graphically displayed 

on the following charts 

 

Calculation results for two operating state 

 
 

Node name 

Voltage [kV] 

Operation with PVPP 

 

Voltage [kV] 

Operation without 

PVPP 

U4 0.414 0.412 

U5 0.411 0.408 

U6 0.409 0.405 

U7 0.409 0.403 

U8 0.408 0.401 

U9 0.408 0.399 

U10 0.409 0.398 

U11 0.411 0.398 

U12 0.415 0.406 

U13 0.413 0.404 

U14 0.411 0.402 

U15 0.409 0.400 

U16 0.409 0.399 

U17 0.407 0.398 

U18 0.422 0.398 

 
Transformer T3 power flow 

 
 Node P [kW] Q [kVAr] S [kVA] 

Daily state U1 130.8 68.7 147.7 

 U4 -130.2 -66.8 146.3 

Evening state U1 225.2 77.7 238.2 

 U4 -223.7 72.7 235.2 
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Figure 15 – Voltge profile on line 1 

 

 

 
 

Figure 16 – Voltage profile on line 2 
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Network operation – Connection HC1 to LV network 

 

Calculation results  dU before connection of the HC1 and dU after connection to 

LV network 

 

Name dU before [%] dU after[%] Voltage difference 

[%] 

U4 -3.363 -3.450 -0.087 

U12 -2.844 -3.720 -0.877 

U18 -2.844 -5.430 -2.587 

  
Network active losses  

 

 P[kW] 

Daily state 1.9 

Evening state 4.8 

 

Calculation results 
 
Calculations of network operation in two operational mode (day and evening) showed 

that the voltage changes in the distribution network are in the band of the Distribution 

network code for low-voltage networks.  

At calculating the connectivity of small hydro power plant HC1 voltage change occurre 

about 2.6%. 

Active losses in the network are lower in the time of day during the operation of 

photovoltaic power plants. In the night time are more than twice as much. 

The largest share of active losses are in the transformer TR 3, and in the first line section 

V1. 
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5. Conclusion 
 

The presented thesis had 4 chapters: 

1. Generation and distribution infrastructure 

2. Microgrid structure 

3. Microgrids projects in Europe 

4. A case study for small microgrid 

The master thesis is focused on technical analysis mikrogrids. In the text are listed the 

basic elements of microgrids, ways to control microgrids, architecture of microgrids. 

Ways of operating are listed in detail the microgrids parallel to the distribution network, 

and Island operation. The following are the parameters of the quality of the electricity 

that have great importance when in operation. The author lists a number of pilot project 

of microgrids in Europe. In the final part of the work is presented a case study of small 

microgrid and the necessary calculations are made, in particular in the voltage profiles, 

connection of hydro power plant to distribution network, voltage changes, losses in 

microgrid. Result of calculating were discussed and compared with Czech standards. 

 

6. References 
More microgrids – flysheet I 

More microgrids – flysheet II 

Distribution network code 

CSN EN 50 160 

eVlivy application manual 

Schlabbach, J, D Blume a T Stephanblome: Voltage quality in electrical power systems 

Microgrids: An Assesment of the Value, Opportunities and Barriers, Final Report, 2010 


