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ABSTRACT

In the age of modern technology, time is a very valuable resource. Therefore, an 

important indicator of the program's work is its computational speed.

This essay will describe the optimization of Bezout coefficients search algorithm 

by introduction different optimization schemes.

Bezout’s equation is a representation of the greatest common divisor of two 

integers and as a linear combination , where are integers called 

Bezout’s coe cients. Usually Bezout’s coe cients are counted using the extended 

version of the classical Euclidian Algorithm.

Keywords: Euclidean algorithm, extended Euclidean algorithm, k-ary 

algorithm for computing GCD, calculation of inverse elements modulo.
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INTRODUCTION

Actuality of the problem: Cryptography is a science engaged in the 

development of cryptosystems, that is, by researching mathematical methods for 

transformation information in order to protect systems from unauthorized access.

In the age of modern technology, time is a very valuable resource. Therefore, an 

important indicator of the program's work is its computational speed. The process of 

increasing the speed goes in the following directions:

1. Increase the productivity of equipment. Achieved by using more powerful 

processors. The main difficulty in this approach is the great difficulty in 

manufacturing such processors. Another difficulty is the renewal of equipment on 

all machines, which entails additional costs.

2. Parallelizing the program. The distribution of common work between different 

threads allows you to reduce the total running time of the program. However, the 

Bezout coefficients search algorithm is iterative, and therefore not subject to 

parallelization.

3. Reduction of the asymptotic complexity of the algorithm used. This approach will 

be used in this work. It consists in reducing the number of elementary operations 

used by the algorithm.

The Bezout relation is the representation of the greatest common divisor of 

integers in the form of their linear combination with integer coefficients [14]. For the 

case of two integers and and their — is the greatest common 

divisor, this relation is written in the following form [22]: 

(1)

Moreover, the coefficients and are called the Bezout coefficients.

Finding the Bezout coefficients can be used to solve the following problems:

1. The solution of linear Diophantine equations in the form [33]: 

(2)

2. The solution of first-degree comparisons in the form [36]: 

(3)

3. The search for an inverse element in a field — is a particular case of equation (3):

(4)
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4. It is the basis for some cryptographic algorithms with a public key, such as RSA.

[24]

Euclid's algorithm is an effective algorithm for finding the greatest common 

divisor of two integers [25]. This algorithm is iterative and is defined by:

(5)

Extended Euclidean algorithm is a modification of the Euclidean algorithm, 

which allows to find Bézout coefficients [10]. The main idea is to represent the resulting 

remainder at each iteration in the form of a linear combination of the original numbers 

and .

The main idea of optimizing the Bezout coefficients search algorithm will be to 

change the choice of a new number, which should lead to a faster convergence of the 

algorithm and, accordingly, to a decrease in the number of iterations.

The main disadvantage of the approach described above is an increasing of the 

load per iteration, which can lead to a decrease in the speed of the complete algorithm. 

Therefore, we must also optimally find new values for the next iteration.

Object of investigation: cryptography and algorithms of number theory.

Subject of investigation: an algorithm for finding the Bezout coefficients, its 

algorithmic complexity and schemes for its optimization.

The goal of the master's thesis: the investigation of optimization schemes for 

the Bezout coefficients search algorithm, their algorithmic complexity and their 

implementation.

To achieve this goal, the following problems are formulated and solved in the 

work:

1. An analysis of the Bezout coefficients search algorithm.

2. Analysis of existing optimization schemes for the basic Euclidean algorithm.

3. Construction of a new algorithm for finding Bezout coefficients based on the studied 

schemes.

Scope and structure of work: The master's thesis consists of an introduction, 

three chapters, a conclusion, a list of used literature and an annex in the form of a listing. 

The volume of the main text is 44 pages of typewritten text.

In the first chapter, a brief analysis of the subject area — the basic and extended 

Euclidean algorithms — was carried out. The following optimization schemes for the 



3

basic Euclidean algorithm are considered: binary, k-ary, and approximating. An 

approximate number of iterations is also calculated for all algorithms.

In the second chapter, modified extended Euclidean algorithms are considered. 

For the modification, the following schemes were used: k-ary, approximating and 

approximating with parallelization. All these schemes were used for analysis.

The third chapter describes the program, the libraries used, and the results of the 

experiments.

Each chapter ends with brief conclusions, and all work with conclusion.
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CHAPTER 1. THEORETICAL ASPECTS OF THE OPTIMIZATION 

SCHEMES OF THE BASIC EUCLIDEAN ALGORITHM

1.1. Euclidean algorithms

1.1.1. Description of the algorithm

Euclid's algorithm is an effective algorithm for finding the greatest common 

divisor of two integers [25]. The algorithm is iterative. The next iteration is determined 

by the relation (5). Thus, the computation for the pair is replaced in the next step 

by the calculation for . Iterations are performed until . The result of 

the calculations will be equal to the value at the last iteration.

Thus we obtain the following steps of the algorithm:

(6)

1.1.2. Computational complexity of the algorithm

Denote by — number of iterations for the algorithm on the numbers 

and . According to [23] and the relation (6) the following recurrence formula holds:

(7)

The worst case for convergence is a pair of neighboring Fibonacci numbers 

and . In this case, the number of iterations is equal to [23]. Since there is a 

Bin formula for the Fibonacci number [38]:

(8)

Where the is a golden ratio. [27]

In this case, the maximum number of iterations can be reduced to the form:

(9)

To calculate the average number of iterations, we use the following formula:

(10)

Where the is a Euler's totient function.

Since the [26], it can be seen that a simple sum over 

all will be greatly noisy and the smoothness is broken, therefore the sum is considered 

only for coprime pairs. According to [34] this function is represented in the form:
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(11)

Where the is an infinitesimal, and is a Porter’s constant. [41]

1.1.3. Example of the work of the algorithm

 As an example of the work of the algorithm, consider the pair 252 and 195. The 

result is shown in the table 1.1:

252 195 57

195 57 24

57 24 9

24 9 6

9 6 3

6 3 0

3 0 —

Table 1.1. The result of the work for 252 and 195(Euclidean).

Table 1.1 shows that the result is .

 As an additional example of the operation of the algorithm, consider the pair 242

and 146. The result is shown in the table 1.2:

242 146 96

146 96 50

96 50 46

50 46 4

46 4 2

4 2 0

2 0 —

Table 1.2. The result of the work for 242 and 146(Euclidean).

Table 1.2 shows that the result is .
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1.2. Extended Euclidean algorithm

1.2.1. Description of the algorithm

Extended Euclidean algorithm is a modification of the Euclidean algorithm, 

which allows to find Bézout coefficients [10]. The main idea is to represent the resulting 

remainder at each iteration in the form of a linear combination of the original numbers 

and [10]: 

(12)

However, in practice, a «direct» approach is rarely used. Therefore, the «reverse» 

approach to the algorithm is more common. [2]

At the first stage, the basic Euclidean algorithm is run, but in addition to the 

remainder an incomplete quotient is also calculated .

In the second step, for the last iteration, the values of the Bezout coefficients are 

assumed to be equal to and .

In the third stage, all steps of the Euclidean algorithm are gone back and for each 

iteration the Bezout coefficients are recalculated using the following formula [2]:

(13)

At the end of the algorithm, the values and will be a pair of Bezout 

coefficients for and .

1.2.2. Computational complexity of the algorithm

Since in the "direct" approach, we only go through Euclid's algorithm once, then 

the number of iterations remains the same: function (9) for the worst case at neighboring 

Fibonacci numbers and ; function defined in (11) for the average number of

iterations.

In the "reverse" approach, there are two runs according to the Euclidean 

algorithm: the direct one for computing reminders and incomplete quotients; and the 

inverse for the calculation of the Bezout coefficients directly. Therefore, the number of 
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iterations is doubled: the maximum number of iterations at neighboring Fibonacci 

numbers and :

(14)

Where the is a golden ratio. [27] 

The average number of iterations is defined by formula:

(15)

Where the is an infinitesimal, and is a Porter’s constant. [41]

1.2.3. Example of the work of the algorithm

 As an example of the operation of the algorithm under the "direct" approach, we 

consider the pair 245 and 227. The result is shown in the table 1.3:

245 227 18 1 1 -1 

227 18 11 12 -12 13

18 11 7 1 13 -14

11 7 4 1 -25 27

7 4 3 1 38 -41

4 3 1 1 -63 68

3 1 0 3 — —

Table 1.3. The result of the work for 245 and 227(Extended Euclidean).

Table 1.3 shows that Bezout coefficients are equal -63 and 68.

 As an example of the operation of the algorithm under the "reverse" approach, 

we consider the same pair 245 and 227. The result is shown in the table 1.4:

245 227 18 1 -63 68

227 18 11 12 5 -63

18 11 7 1 -3 5

11 7 4 1 2 -3 

7 4 3 1 -1 2

4 3 1 1 1 -1 

3 1 0 3 0 1
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1 0 — — 1 0

Table 1.4. The result of the work for 245 and 227(Extended Euclidean).

Table 1.4 shows that Bezout coefficients are equal -63 and 68.

1.3. Binary Euclidean algorithm

1.3.1. Description of the algorithm

The binary Euclidean algorithm was first published in [32]. The main idea of 

optimization was getting rid of the heavy operation of finding the remainder and 

replacing it with easier subtraction and division by 2. At each iteration, the next step for 

is determined by the following rule [32]:

1.

2. If and are both even, then

3. if is even and is odd, then

4. If is odd and is even, then (16)

5. If and are both odd and , then

6. If and are both odd and , then

1.3.2. Computational complexity of the algorithm

Note that at each non-finite step, at least one number decreases by a factor of 2. 

Thus we obtain a limitation on the number of iterations for any pair and

from above [40]: 

(17)

Then the average number of iterations for any will be limited from above:

(18)

The worst case is a pair of the form and . Then the number of 

iterations . Thus, we obtain an estimation for 

the maximum number of iterations :

(19)

Note that the number of iterations of the binary algorithm is more than original, 

but they are easier, so acceleration is achieved.
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1.3.3. Example of the work of the algorithm

 As an example of the work of the algorithm, consider the pair 193 and 215. The 

result is shown in the table 1.5:

Additional factor

193 215 –

193 11 –

91 11 –

40 11 –

20 11 –

10 11 –

5 11 –

5 3 –

1 3 –

1 1

Table 1.5. The result of the work for 193 and 215(Binary).

Table 1.5 shows that the result is .

 As an additional example of the operation of the algorithm, consider the pair 228 

and 224. The result is shown in the table 1.6:

Additional factor

228 224 +

114 112 +

57 56 –

57 28 –

57 14 –

57 7 –

25 7 –

9 7 –

1 7 –

1 3 –

1 1

Table 1.6. The result of the work for 228 and 224(Binary).
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Table 1.6 shows that the result is .

1.4. K-ary Euclidean algorithm

1.4.1. Description of the algorithm

The k-ary Euclidean algorithm was first published in [29] and [30]. Then in [35] 

and [21] improvements were proposed. This algorithm is iterative, like the original 

algorithm. The main difference is to find a new pair for the next step. For this, we use 

the theorem proved in [35] and [21]:

Theorem 1. Let are natural numbers and is a small positive number 

that is coprime to and . Then there are integers and , satisfying the relation 

such that:

(20)

Thus, it follows directly from the theorem that the number:

(21)

Is natural. In case that it is necessary to divide the number 

by . Then the transition to the next iteration has the form:

(22)

Note that when the algorithm works, additional multipliers may appear [3]. To 

eliminate them, you must start recursively , where is the result 

obtained at the output of the k-ary algorithm.

1.4.2. Computational complexity of the algorithm

We construct an upper bound for :

(23)

From this estimate it follows that at each step the greater of the numbers decreases 

at least times [19]. Thus, we obtain an estimation for the number of iterations 

for any pair and :

(24)

Thus, we obtain a upper bound for the average number of iterations for any

[19]:
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(25)

1.4.3. Example of the work of the algorithm

 As an example of the work of the algorithm, consider the pair 203 and 157. The 

result is shown in the table 1.7:

203 157 2 2 45

157 45 1 -1 7

45 7 3 -1 1

7 1 2 2 1

1 1 1 -1 0

1 0 — — —

Table 1.7. The result of the work for 203 and 157(K-ary).

Table 1.7 shows that the result is .

 As an additional example of the operation of the algorithm, consider the pair 207

and 171. The result is shown in the table 1.8:

207 171 1 3 45

171 45 2 2 27

45 27 2 2 9

27 9 1 -3 0

9 0 — — —

Table 1.8. The result of the work for 207 and 171(K-ary).

Table 1.8 shows that the result is .

1.5. Approximating Euclidean algorithm

1.5.1. Description of the algorithm

In article [19] optimization of the k-ary algorithm was presented. The main idea 

is the replacement of the algorithm for finding the coefficients and for the next 

iteration. For this is taken from the interval and is taken close to .
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At first we introduce the following notation:

(26)

(27)

(28)

(29)

Then the formula for is [19]:

(30)

Now we find the formula for [19]:

(31)

Note that is arbitrary, so for a minimum we take [19]:

(32)

Then the final formula for [19]:

(33)

Thus it is necessary to find such a , to minimize . To find them, consider the 

formula (31):

(34)

We note that the original fraction has an arbitrary form, so we must find an 

approximation on condition . Then formula (34) takes the form:

(35)

Then the minimum, which is equal to 0, will be achieved with and

. Now we obtain the final formulas for the transition:

(36) 

1.5.2. Computational complexity of the algorithm

In article [20] the proof of the following theorem was presented:

Theorem 2. There is an integer , such that:

(37)
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And the search for such can be produced by an algorithm with complexity 

.

From the theorem it follows directly that it is possible in an acceptable time to 

find such a pair of coefficients and , that:

(38)

That is, at each step there is a decrease in one number, at least in times. 

Thus we obtain a estimation on the number of iterations for any and from 

above [19]: 

(39)

Then the average number of iterations for any will be limited from above:

(40)

1.5.3. Example of the work of the algorithm

 As an example of the work of the algorithm, consider the pair 485 and 321. The 

result is shown in the table 1.9:

485 321 -14 22 17

321 17 9 -169 1

17 1 15 -255 0

1 0 — — —

Table 1.9. The result of the work for 485 and 321(Approximating).

Table 1.9. The result of the work for and .

Table 1.9 shows that the result is .

 As an additional example of the operation of the algorithm, consider the pair 339 

and 315. The result is shown in the table 1.10:

339 315 2 -2 3

315 3 15 -1575 0
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3 0 — — —

Table 1.10. The result of the work for 339 and 315(Approximating).

Table 10 shows that the result is 

1.6. Farey sequence

1.6.1. Description of the algorithm

To search for the approximation of an arbitrary fraction we use the 

Farey sequence. At the first step we find the segment on which our fraction lies:

(41)

We denote this segment by . Now try to improve the approximation. 

Consider the median of our segment:

(42)

Then from the subsegments and we choose one in which our 

fraction lies. Denote it by . We perform this operation on a new segment until 

the new denominator of the median exceeds . We obtain a segment . As an 

approximation, we return the near to end point of segment.

1.6.2. Computational complexity of the algorithm

Note that the resulting algorithms will form a chain in the Stern-Brocot tree [39]. 

Search for fractions in this tree will be produced no more than steps [39]. From 

this we obtain the time complexity of the maximum number of steps :

(43)

To estimate the average number of steps, note that the selection of two 

subsegment options correspond to two disjoint subtrees. That is, we obtain a binary 

search for the Stern-Brocot tree. Since the total number of Farey fractions with a 

denominator not exceeding is equal , then the average number of steps 

[12]: 

(44)
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1.6.3. Example of the work of the algorithm

 As an example of the work of the algorithm, consider the number 

and module . The result is shown in the table 

1.11:

1 2 2 3 3 5

1 2 3 5 4 7

1 2 4 7 5 9

1 2 5 9 6 11

1 2 6 11 7 13

1 2 7 13 8 15

1 2 8 15 9 17

Table 1.11. The result of the work for 0.5218487889069591(Farey).

Table 1.11 shows that the approximation of

 As an additional example of the operation of the algorithm, consider the number 

and module . The result is shown in the 

table 1.12:

1 3 1 2 2 5

2 5 1 2 3 7

3 7 1 2 4 9

4 9 1 2 5 11

5 11 1 2 6 13

5 11 6 13 11 24

Table 1.12. The result of the work for 0.4581481154474917(Farey).

Table 1.12 shows that the approximation of 

1.7. Conclusions on the chapter 1

All schemes of optimization of the Euclidean algorithm were analyzed in detail. 

In the second chapter, each considered scheme will be modified for use in the extended 

Euclidean algorithm.
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Also, the original and advanced Euclidean algorithms were considered. They will 

act as a reference for comparing the remaining schemes in the course of our 

investigation.

For each algorithm considered, examples of work are given and an estimate of 

the number of iterations is given.
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CHAPTER 2. METHODS OF IMPLEMENTATION OF OPTIMIZATION 

SCHEMES OF THE ALGORITHM OF SEARCH OF THE BEZOUT 

COEFFICIENTS

2.1. Binary extended Euclidean algorithm

2.1.1. Description of the algorithm

As the first optimization, consider the binary Euclidean algorithm. Its extended 

version was presented in [23]. In the algorithm we will use the "reverse" approach. For 

each variant of the step, we give our version of the calculation of the Bezout coefficients:

1.1. If , then 

1.2. If , then 

2.

3.1. If is even, then 

3.2. If is odd, then 

4.1. If is even, then (45)

4.2. If is odd, then 

5.1. If is even, then 

5.2. If is odd, then 

6.1. If is even, then 

6.2. If is odd, then 

2.1.2. Computational complexity of the algorithm

Since we use the "reverse" approach, the number of steps will be twice as large 

as in the usual version. Then the average number of iterations for any will be 

limited from above:

(46)

The worst case is a pair of the form and . Thus, we obtain an 

estimation for the maximum number of iterations :

(47)
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Note that the acceleration of the program is achieved due to simpler operations 

for the machine, but the number of iterations increases. This is the first reason why this 

method does not suit us.

The second reason why this method does not suit us is the lack of internal 

parameters. This leads to a rigid algorithm, and we can’t influence its course of work.

2.1.3. Example of the work of the algorithm

 As an example of the work of the algorithm, consider the pair 238 and 220. The 

result is shown in the table 2.1:

238 220 49 -53

119 110 49 -53

119 55 49 -106

32 55 43 -25

16 55 31 -9 

8 55 7 -1 

4 55 14 -1 

2 55 28 -1 

1 55 1 0

1 27 1 0

1 13 1 0

1 6 1 0

1 3 1 0

1 1 1 0

Table 2.1. The result of the work for 238 and 220(Extended binary).

Table 2.1 shows that Bezout coefficients are equal 49 and -53.

 As an additional example of the operation of the algorithm, consider the pair 160

and 135. The result is shown in the table 2.2:

160 135 38 -45

80 135 76 -45

40 135 17 -5 
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20 135 34 -5 

10 135 68 -5 

5 135 1 0

5 65 1 0

5 30 1 0

5 15 1 0

5 5 1 0

Table 2.2. The result of the work for 160 and 135(Extended binary).

Table 2.2 shows that Bezout coefficients are equal 38 and -45.

2.2. K-ary extended Euclidean algorithm

2.2.1. Description of the algorithm

The following optimization of the extended Euclidean algorithm. Was proposed 

in the [18]. In this algorithm, too, we will use the "reverse" approach. To construct the 

transition formula, we present the Bezout equation:

(48)

Now we substitute in this equation the transition formulas (21) and (22):

(49)

Now we group the terms:

(50)

Thus, we have explicitly obtained the transition formula for the Bezout 

coefficients [18]: 

(51)

However, in this formula there is one drawback -the non-integer division into . 

Since it is not guaranteed that the result of dividing will always be integer, this move

our calculations into the field of real numbers, which is undesirable for us. Therefore, to 

stay in the field of integers, we introduce auxiliary variables and [18]. They are 

defined as follows:

(52)
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Then the recurrence relation for them will be written in the form [18]:

(53)

We note that the Bezout equality itself takes the form:

(54)

Since we can't divide by , because we leave the field of integers, we can 

replace it by an integer division modulo . We obtain the intermediate coefficients 

and by formula:

(55)

Then the Bezout equation takes the form:

(56)

Hence we obtain the final formula for the Bezout coefficients:

(57)

2.2.2. Exceptions of the algorithm

Despite the resulting formula, it will be true only under very strong assumptions. 

Therefore, for a complete algorithm, it is necessary to analyze how to operate in 

exceptional situations:

 For good convergence, it is necessary that the new number replace the larger of 

the old numbers. This means maintaining the condition for all the 

resulting pairs. If , then our condition is preserved. However, when 

The condition will be broken therefore, instead of calculating for the pair 

we shall count for the pair . Then the recurrence relation (53) 

takes the form:

(58)

 To be right (21), it is necessary that . If this is not the case, then 

formula (21) is transformed into the form:

(59)

Where the is the number by which we divide to satisfy the condition. Then the 

recurrence relation (53) takes the form:



23

(60)

In this case, equality (54) takes the form:

(61)

Where the is the product of all the additional numbers. In general, 

the form of this number is complicated for further work. However, in two cases it has a 

convenient form:

1. — is the prime number. Then .

2. — is the power of two. Then .

2.2.3. Computational complexity of the algorithm

Since we use the "reverse" approach, the number of steps will be twice as large 

as in the usual version. Then the average number of iterations for any will be 

limited from above:

(62)

2.2.4. Example of the work of the algorithm

 As an example of the work of the algorithm, consider the pair 209 and 183. The 

result is shown in the table 2.3:

0 209 183 — — — — — — 102 8 -7 8

1 209 183 2 2 49 493568 903168 1 — — — —

2 183 49 2 2 29 25600 246784 1 — — — —

3 49 29 3 1 11 13824 12800 1 — — — —

4 29 11 2 2 5 512 4608 1 — — — —

5 11 5 1 1 1 256 256 1 — — — —

6 5 1 3 1 1 0 256 1 — — — —

7 1 1 1 -1 0 0 16 1 — — — —

8 1 0 — — — 1 0 1 — — — —

Table 2.3. The result of the work for 209 and 183(Extended k-ary).

Table 2.3 shows that Bezout coefficients are equal -7 and 8.

 As an additional example of the operation of the algorithm, consider the pair 255 

and 147. The result is shown in the table 2.4:
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0 255 147 — — — — — — 159 229 -132 229

1 255 147 3 1 57 -768 12032 1 — — — —

2 147 57 3 -1 3 768 -256 8 — — — —

3 57 3 1 -3 3 0 256 1 — — — —

4 3 3 1 -1 0 0 16 1 — — — —

5 3 0 — — — 1 0 1 — — — —

Table 2.4. The result of the work for 255 and 147(Extended k-ary).

Table 2.4 shows that Bezout coefficients are equal -132 and 229.

2.3. The inverse element of a given number

2.3.1. Description of the algorithm

As can be seen in formula (55), the inverse element of a fixed number is used for 

an arbitrary modulus [18]. The search for the reverse element is a long operation so we 

need to optimize for our case. Since the module is arbitrary, we can’t use simple pre-

calculations.

Since the number is defined in advance, we can calculate in advance the inverse 

elements modulo . Then we can only express the desired inverse element through the 

module .

At first we introduce the notation:

(63)

Now, denoting by , we obtain the equality:

(64)

Adding a comparison modulo on both sides, we get:

(65)

Whence we find the formula for :

(66)

Substituting (66) into expression (64), we obtain:

(67)

Now we find the expression for :

(68)

Now adding the modulo on both sides, we get:
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(69)

2.3.2. Computational complexity of the algorithm

Since the algorithm uses only simple arithmetic operations: 1 multiplication, 1 

subtraction, 1 division and 1 module taking. Then the total complexity will be 

[37]: 

(70)

This time is acceptable for us.

2.3.3. Example of the work of the algorithm

 As an example of the work of the algorithm, consider the module and 

number :

 As an additional example of the operation of the algorithm, consider the module 

and number :

2.4. Approximating extended Euclidean algorithm

2.4.1. Description of the algorithm

The basic steps of the algorithm are the same as for the k-ary extended algorithm. 

The only difference is the use of a different approach for choosing the coefficients and

. For this, an algorithm using Farey's sequence is used, as in the usual approximating 

algorithm.

2.4.2. Computational complexity of the algorithm

Since we use the "reverse" approach, the number of steps will be twice as large 

as in the usual version. Then the average number of iterations for any will be 

limited from above:

(71)
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2.4.3. Example of the work of the algorithm

 As an example of the work of the algorithm, consider the pair 435 and 331. The 

result is shown in the table 2.5:

0 435 331 — — — — — — 285 46 -35 46

1 435 331 -15 23 17 -70320 92464 4 — — — —

2 331 17 -15 293 1 -240 4688 1 — — — —

3 17 1 1 -17 0 0 16 1 — — — —

4 1 0 — — — 1 0 1 — — — —

Table 2.5. The result of the work for 435 and 331(Extended approximating).

Table 2.5 shows that Bezout coefficients are equal -35 and 46.

 As an additional example of the operation of the algorithm, consider the pair 391

and 357. The result is shown in the table 2.6:

0 391 357 — — — — — — 268 172 -157 172

1 391 357 -13 15 17 -208 240 1 — — — —

2 357 17 1 -21 0 0 16 1 — — — —

3 17 0 — — — 1 0 1 — — — —

Table 2.6. The result of the work for 391 and 357(Extended approximating).

Table 2.6 shows that Bezout coefficients are equal -157 and 172.

2.5. Parallel approximating extended Euclidean algorithm

2.5.1. Description of the algorithm

When using Farey sequence, we first obtain an approximation segment, from 

which we then select one of the end points. Hence the second approach follows, when 

we take both end points [15]. Then the transition to (22) is transformed into:

(72)

Then the transition to (53) is transformed into:

(73)

And if there are additional factors and introduce and 

additions to :
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(74)

Then instead of (60) we obtain the following transition:

(75)

All other formulas keep unchanged.

For parallelization, the portion of the algorithm that computes and . Each of 

them can be calculated independently.

2.5.2. Computational complexity of the algorithm

Since the replacement occurs for both numbers and , one of which satisfies 

(38) and the other is less than the original ones, then the number of iterations 

for any pair and is limited from above:

(76)

Then the average number of iterations for any under the basic algorithm 

will be limited from above:

(77)

And for the extended algorithm:

(78)

2.5.3. Example of the work of the algorithm

 As an example of the work of the algorithm, consider the pair 431 and 287. The 

result is shown in the table 2.7:

0 431 287 — — — — — — — — — 296 428 -285 428

1 431 287 -15 31 19 1 -1 9 -209 321 8 — — — —

2 19 9 7 -13 1 9 -19 0 7 -13 1 — — — —

3 1 0 — — — — — — 1 0 1 — — — —

Table 2.7. The result of the work for 431 and 287(Extended parallel).

Table 2.7 shows that Bezout coefficients are equal -285 and 428.

 As an additional example of the operation of the algorithm, consider the pair 511

and 385. The result is shown in the table 20:
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0 511 385 — — — — — — — — — 27 150 -113 150

1 511 385 -13 19 21 7 -9 7 1049 -1383 2 — — — —

2 21 7 -15 61 7 1 -3 0 -15 61 1 — — — —

3 1 0 — — — — — — 1 0 1 — — — —

Table 2.8. The result of the work for 511 and 385(Extended parallel).

Table 20 shows that Bezout coefficients are equal -113 and 150.

2.6. Conclusions on the chapter 2

All optimization schemes of the extended Euclidean algorithm, which is used to 

find the Bezout coefficients, were analyzed in detail. To implement and conduct the 

experiments, the following were selected:

 K-ary extended Euclidean algorithm.

 Approximating extended Euclidean algorithm.

 Parallel extended Euclidean algorithm.

For each algorithm considered, examples of work are given and an estimation of 

the number of iterations is given.
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CHAPTER 3. SOFTWARE IMPLEMENTATION OF OPTIMIZATION 

SCHEMES OF THE ALGORITHM OF SEARCH OF THE BEZOUT 

COEFFICIENTS

3.1. How the program works

Python 3.6.4 was used as the programming language. Of all the development 

environments, IDLE Python was selected.

The experiments were performed on a 4-bit module, 8-bit module and a 16-bit 

module for a prime module and power of 2. As values, pairs of 512-bit numbers were 

taken. For the experiments, all the realized schemes were launched in three stages.

Stage one — run 100 repetitions of the implementation without counting the 

steps. Then followed the calculation of the time of work.

Stage two — the launch of the implementation with the calculation of steps. 

Getting the number of steps as a result of launching.

Stage three — the calculation of the average time of work for one iteration. Save 

all received values in a file.

The experiments were carried out on the computer Acer TravelMate P2 P259-

MG-39WS.

Characteristics:

 CPU Intel Core i3 6006U.

 Number of Cores: 2.

 CPU frequency: 2 GHz.

 RAM size: 6 Gb.
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3.2. Prime number

3.2.1. 4-bit module

Figure 3.1. Comparison of the number of steps with the original algorithm (prime, 

4-bit).

k-ary: as seen from the graph above, the value of the module is too small, so the 

convergence is low and the number of steps becomes larger than with the original 

algorithm.

Approximating: As can be seen from the graph above, the number of iterations 

has decreased approximately 3 times compared to the original algorithm. Among all the 

schemes considered, this showed the best result.

Parallel: As can be seen from the graph above, the number of iterations has 

decreased approximately 3 times compared to the original algorithm. However, the 

result was somewhat worse than the approximating one.
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Figure 3.2. Comparison of the running time of the step with the original algorithm

(prime, 4-bit).

k-ary: As can be seen from the graph above, the amount of work on one iteration 

increased significantly in comparison with the original algorithm. This reinforces the 

lag from the original algorithm, so this module size does not fit.

Approximating: as can be seen from the graph above, the amount of work on one 

iteration increased approximately 10 times compared to the original algorithm. This 

leads to a time lag in comparison with the original algorithm.

Parallel: As can be seen from the graph above, the amount of work on one 

iteration increased approximately 20 times compared to the original algorithm. This 

leads to a time lag in comparison with the original algorithm. This also leads to a lag in 

comparison with the approximating algorithm.
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3.2.2. 8-bit module

Figure 3.3. Comparison of the number of steps with the original algorithm (prime, 

8-bit).

k-ary: As can be seen from the graph above, the number of steps became 

approximately 1.5 times less compared to the original algorithm. However, of all the 

algorithms considered, this is the worst result.

Approximating: As can be seen from the graph above, the number of iterations 

has decreased by approximately 5 times in comparison with the original algorithm. 

Among all the schemes considered, this showed the best result.

Parallel: As can be seen from the graph above, the number of iterations has 

decreased by approximately 5 times in comparison with the original algorithm. 

However, the result was somewhat worse than the approximating one.
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Figure 3.4. Comparison of the running time of the step with the original algorithm

(prime, 8-bit).

k-ary: As can be seen from the graph above, the amount of work on one iteration 

increased significantly in comparison with the original algorithm. This leads to a time 

lag in comparison with the original algorithm. It is also clear that the running time at the 

step is very close to the approximating algorithm.

Approximating: as can be seen from the graph above, the amount of work on one 

iteration increased approximately 15 times compared to the original algorithm. This 

leads to a time lag in comparison with the original algorithm.

Parallel: As can be seen from the graph above, the amount of work on one 

iteration increased approximately 20 times compared to the original algorithm. This 

leads to a time lag in comparison with the original algorithm. This also leads to a lag in 

comparison with the approximating algorithm.
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3.2.3. 16-bit module

Figure 3.5. Comparison of the number of steps with the original algorithm (prime, 

16-bit).

k-ary: As can be seen from the graph above, the number of steps has become 

more than 2 times less compared to the original algorithm. However, of all the 

algorithms considered, this is the worst result.

Approximating: As can be seen from the graph above, the number of iterations 

has decreased by about 7 times compared to the original algorithm. The result was close 

to parallel.

Parallel: As can be seen from the graph above, the number of iterations has 

decreased by about 7 times compared to the original algorithm. The result was close to 

approximating.
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Figure 3.6. Comparison of the running time of the step with the original algorithm

(prime, 16-bit).

k-ary: As can be seen from the graph above, the amount of work on one iteration 

increased about 20 times compared to the original algorithm. This leads to a time lag in

comparison with the original algorithm.

Approximating: as seen from the graph above, the amount of work on one 

iteration has an extremely strong variance. Because of this, it becomes difficult to 

evaluate the attitude to the original algorithm. It also becomes difficult to compare with 

other schemes.

Parallel: As can be seen from the graph above, the amount of work on one 

iteration has an extremely strong variance. Because of this, it becomes difficult to 

evaluate the attitude to the original algorithm. It also becomes difficult to compare with 

other schemes.
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3.3. Power of 2

3.3.1. 4-bit module

Figure 3.7. Comparison of the number of steps with the original algorithm (binary, 

4-bit).

k-ary: As can be seen from the graph above, the number of steps became slightly 

less than 1.5 times less compared to the original algorithm. However, of all the 

algorithms considered, this is the worst result.

Approximating: as can be seen from the graph above, the number of iterations 

has decreased more than 3 times in comparison with the original algorithm. The result 

was close to parallel.

Parallel: As can be seen from the graph above, the number of iterations has 

decreased more than 3 times compared to the original algorithm. The result was close to 

approximating.
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Figure 3.8. Comparison of the running time of the step with the original algorithm

(binary, 4-bit).

k-ary: as seen from the graph above, the amount of work on one iteration 

increased about 6 times compared to the original algorithm. This leads to a time lag in 

comparison with the original algorithm. It is also clear that the running time at the step 

is very close to the approximating algorithm.

Approximating: as can be seen from the graph above, the amount of work on one 

iteration increased approximately 10 times compared to the original algorithm. This 

leads to a time lag in comparison with the original algorithm.

Parallel: As can be seen from the graph above, the amount of work on one 

iteration increased approximately 20 times compared to the original algorithm. This 

leads to a time lag in comparison with the original algorithm. This also leads to a lag in 

comparison with the approximating algorithm.
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3.3.2. 8-bit module

Figure 3.9. Comparison of the number of steps with the original algorithm (binary, 

8-bit).

k-ary: As can be seen from the graph above, the number of steps became 

approximately 2 times less compared to the original algorithm. However, of all the 

algorithms considered, this is the worst result.

Approximating: As can be seen from the graph above, the number of iterations 

has decreased by approximately 6 times in comparison with the original algorithm. The 

result was close to parallel.

Parallel: As can be seen from the graph above, the number of iterations has 

decreased by approximately 6 times in comparison with the original algorithm. The 

result was close to approximating.
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Figure 3.10. Comparison of the running time of the step with the original algorithm

(binary, 8-bit).

k-ary: As can be seen from the graph above, the amount of work on one iteration 

increased by about 10 times in comparison with the original algorithm. This leads to a 

time lag in comparison with the original algorithm. It is also clear that the running time 

at the step is very close to the approximating algorithm.

Approximating: as can be seen from the graph above, the amount of work on one 

iteration increased approximately 15 times compared to the original algorithm. This 

leads to a time lag in comparison with the original algorithm.

Parallel: As can be seen from the graph above, the amount of work on one 

iteration increased approximately 20 times compared to the original algorithm. This 

leads to a time lag in comparison with the original algorithm. This also leads to a lag in 

comparison with the approximating algorithm.
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3.3.3. 16-bit module

Figure 3.11. Comparison of the number of steps with the original algorithm (binary, 

16-bit).

k-ary: As can be seen from the graph above, the number of steps became 

approximately 3 times less compared to the original algorithm. However, of all the 

algorithms considered, this is the worst result.

Approximating: As can be seen from the graph above, the number of iterations 

has decreased by about 7 times compared to the original algorithm. The result was close 

to parallel.

Parallel: As can be seen from the graph above, the number of iterations has 

decreased by about 7 times compared to the original algorithm. The result was close to 

approximating.
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Figure 3.12. Comparison of the running time of the step with the original algorithm

(binary, 16-bit).

k-ary: as seen from the graph above, the amount of work on one iteration has 

greatly increased in comparison with the original algorithm. This leads to a time lag in 

comparison with the original algorithm.

Approximating: as seen from the graph above, the amount of work on one 

iteration has an extremely strong variance. Because of this, it becomes difficult to 

evaluate the attitude to the original algorithm. It also becomes difficult to compare with 

other schemes.

Parallel: As can be seen from the graph above, the amount of work on one 

iteration has an extremely strong variance. Because of this, it becomes difficult to 

evaluate the attitude to the original algorithm. It also becomes difficult to compare with 

other schemes.

3.4. Conclusions on the chapter 3

Based on the results of the work, a program has been written that is attached to 

the application. The whole program is divided into two sections.

The first section of the program is the Testing.py file. It contains the code for all 

considered algorithms that are not involved in this study. This section sets the task of 

preliminary testing of all the considered schemes before use in further work.
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The second section of the program is all other files. Participate directly in this 

work. They are divided into three parts:

 Finding the coefficients , and . It is represented by one file Coefficients.py. 

Contains all algorithms for finding new coefficients - direct search, use of the 

predefined inverse elements, an approximate variant and a parallel 

approximating variant. Implemented as options for an arbitrary number, and for 

the case with bit arithmetic.

 A directly extended Euclidean algorithm with all the schemes considered. It is 

represented by files: GCD.py, k_GCD.py, bin_k_GCD.py, paral_k_GCD.py and 

bin_paral_k_GCD.py. All the schemes studied were implemented using the 

search for coefficients from the first part and an additionally extended algorithm 

without comparison schemes. Implemented as an option for a simple module, 

and for a power of 2.

 Use of ready-to-use Bezout coefficient search functions. It is represented by 2 

files: Mastership_test.py, created for testing the received algorithms; 

Mastership.py directly performing experiments.

The Mastership.py file contains two main functions: Gen(), which has an input 

number of generated pairs, generates pairs of random numbers during the operation and 

writes them to a file; Test(), which measures the time performance on the generated 

pairs and writes the results to files.



43

CONCLUSION

The theoretical and practical questions of the Bezout coefficients search are 

considered. Developed: a program containing the implementation of all the considered 

optimization schemes for the extended Euclidean algorithm. Also, in the dissertation, to 

evaluate the efficiency of optimization of the extended Euclidean algorithm, 

experiments were performed and the results are shown.

As a result of the work, the following results were obtained:

 The analysis of ordinary and extended Euclidean algorithms is carried out. The 

schemes of algorithms are analyzed and their convergence is estimated. Also 

possible practical applications of algorithms are shown.

 The analysis of existing methods of optimization of the Euclidean algorithm is 

carried out. The chosen ones were: binary, k-ary, and approximating algorithms. 

The schemes of algorithms are analyzed and their convergence is estimated.

 The analysis of the binary extended Euclidean algorithm is carried out. The 

scheme of the algorithm is analyzed and its convergence is estimated. Also, 

arguments were given why this algorithm is not considered in this work.

 The analysis of optimization methods of the Euclidean algorithm is carried out. 

The chosen ones were: k-ary, approximating algorithms. Their modifications for 

the extended Euclidean algorithm are presented. Possible exceptional situations 

are considered and methods for their solution are analyzed. The schemes of 

algorithms are analyzed and their convergence is estimated.

 The analysis of the parallel extended Euclidean algorithm is carried out. The 

scheme of the algorithm is analyzed and its convergence is estimated.

 Implemented all the analyzed schemes of optimization of the Euclidean 

algorithm. The correctness of the work of the received implementations was 

tested in practice.

 Implemented all the analyzed optimization schemes for the extended Euclidean 

algorithm. The correctness of the work of the received implementations was 

tested in practice.

 Implemented a program for conducting experiments. The time performance of 

the algorithms obtained during the program are stored in files.
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 The analysis of the received characteristics is carried out. Graphical display of 

results.

In the course of this work, the following conclusions were made on the schemes 

considered:

 K-ary — showed the worst result among all the considered schemes. At small 

values of the module, the number of steps turned out to be greater than that of 

the original one, at large there was a significant gain. The amount of work on 

one iteration with a small module is less than that of other schemes, but more 

than the original algorithm. This leads to a total loss in time for the entire 

algorithm in comparison with the original.

 Approximating — showed the best result among all the considered schemes. The 

number of steps is several times less than the original algorithm. For large values 

of the module, the number of steps coincides in parallel with the number of steps. 

The amount of work on one iteration with a small module is less than that of a 

parallel module, but more than the original algorithm. However, for large values, 

the dispersion becomes too large, which complicates the analysis. One of the 

reasons may be the nonuniform convergence of the algorithm on Farey's 

fractions.

 Parallel — the number of steps is several times less than the original algorithm. 

For large values of the module, it coincides with the number of steps with the 

approximating step. The amount of work on one iteration with a small module 

is the largest in comparison with other algorithms. However, for large values, 

the dispersion becomes too large, which complicates the analysis. One of the 

reasons may be the nonuniform convergence of the algorithm on Farey's 

fractions.

The further direction of the study may be the reduction of the work time spent on 

one iteration. Among the possible approaches: the disclosure of internal function calls, 

the use of a lower-level language, the use of a faster algorithm for selecting coefficients.
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ACRONYMS

1. — greatest common divisor of number and .

2. — comparability of numbers and by modulo . and give 

the same remainder upon division by .

3. — remainder of dividing by .

4. — incomplete quotient of division by .
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APPLICATIONS

Testing.py
import random
import Coefficients
import bin_k_GCD
#import bin_paral_k_GCD
#from Coefficients import FindBin as find
from Coefficients import FindApproxBin as find
from random import randint as rnd
from bin_k_GCD import k_extended_euclide as k_gcd
#from bin_paral_k_GCD import k_extended_euclide as k_gcd
from Coefficients import Farey

pow_p = 4
p = (1 << pow_p)
Inv = [0] * p
Inv[1] = 1
for i in range(3, p, 2):

Inv[i] = pow(i, (p >> 1) - 1, p)
setattr(Coefficients, 'Bin_Inv', Inv)

def bin_ext_gcd(a, b):
if a == 0:

print(a, b, 0, 1)
return [0, 1]

if b == 0:
print(a, b, 1, 0)
return [1, 0]

if a == b:
print(a, b, 1, 0)
return [1, 0]

if (a % 2 == 0) & (b % 2 == 0):
x, y = bin_ext_gcd(a // 2, b // 2)
print(a, b, x, y)
return [x, y]

if a % 2 == 0:
x, y = bin_ext_gcd(a // 2, b)
if x % 2 == 0:

x, y = x // 2, y
else:

x, y = (x + b) // 2, y - a // 2
print(a, b, x, y)
return [x, y]

if b % 2 == 0:
x, y = bin_ext_gcd(a, b // 2)
if y % 2 == 0:

x, y = x, y // 2
else:

x, y = x - b // 2, (y + a) // 2
print(a, b, x, y)
return [x, y]

if a > b:
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x, y = bin_ext_gcd((a - b) // 2, b)
if x % 2 == 0:

x, y = x // 2, y - x // 2
else:

x, y = (x + b) // 2, y - (a - b) // 2 - (x + b) // 2
print(a, b, x, y)
return [x, y]

if a < b:
x, y = bin_ext_gcd(a, (b - a) // 2)
if y % 2 == 0:

x, y = x - y // 2, y // 2
else:

x, y = x - (b - a) // 2 - (y + a) // 2, (y + a) // 2
print(a, b, x, y)
return [x, y]

def bin_gcd(a, b):
print(a, b)
if a == 0:

return b
if b == 0:

return a
if a == b:

return a
if (a % 2 == 0) & (b % 2 == 0):

return 2 * bin_gcd(a // 2, b // 2)
if a % 2 == 0:

return bin_gcd(a // 2, b)
if b % 2 == 0:

return bin_gcd(a, b // 2)
if a > b:

return bin_gcd((a - b) // 2, b)
if a < b:

return bin_gcd(a, (b - a) // 2)

def gcd(a, b):
print(a, b)
if b != 0:

return gcd(b, a % b)
return a

List = [[0, 1]]

def bezu(a, b):
global List
if b == 0:

return
if(len(List) == 1):

print(a, b, 1, -(a // b))
List.append([1, -(a // b)])
bezu(b, a % b)
return

x1, y1 = List[-2]
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x2, y2 = List[-1]
x = x1 - x2 * (a // b)
y = y1 - y2 * (a // b)
List.append([x, y])
print(a, b, a // b, x, y)
bezu(b, a % b)

def bezu1(a, b):
if b == 0:

print(a, b, '-', 1, 0)
return [1, 0]

x, y = bezu1(b, a % b)
print(a, b, a // b, y, x - y * (a // b))
return [y, x - y * (a // b)]

def k_gcd1(a, b):
if b == 0:

return a
x, y, c = find(a, b, p)
if c:

while c & 1 == 0:
c>>= 1

print(a, b, x, y, c, ':')
if b > c:

return k_gcd(b, c)
else:

return k_gcd(c, b)

def Inverse(a):
return ((1 - a * Inv[a % p]) // p) % a

a, b = [rnd(128, 256) * 2 + 1, rnd(128, 256) * 2 + 1]
191, 157
#[rnd(64, 128) * 2 + 1, rnd(64, 128) * 2 + 1]
if a < b:

t = b
b = a
a = t

a, b = 391, 357
#[rnd(128, 256), rnd(128, 256)]

x, y = k_gcd(a, b)
print(a * x + b * y)

#r = random.random()
#t = Farey(r, 16)
#print(r, t)

Coefficients.py
from multiprocessing import Pool

def Crutch(A, x, k):
C = A[0] * x[0] + A[1] * x[1]
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pow_d = 0
C//= k
if C != 0:

while C % k == 0:
C//= k
pow_d+= 1

if C >= 0:
return [x[0], x[1], C, pow_d]

return [-x[0], -x[1], -C, pow_d]

def CrutchBin(A, x, k):
pow_k = k.bit_length() - 1
C = A[0] * x[0] + A[1] * x[1]
pow_d = 0
C>>= pow_k
if C != 0:

while (C & (k - 1)) == 0:
C>>= pow_k
pow_d+= pow_k

while C & 1 == 0:
pow_d+= 1
C>>= 1

if C >= 0:
return [x[0], x[1], C, pow_d]

return [-x[0], -x[1], -C, pow_d]

def ParalCrutch(t):
print(t)
m, n = t[0]
print(m, n)
x = n
s = -m - t[1] * n
y = s * t[3] - t[4] * x
return Crutch(t[2], [x, y], t[3])

def ParalCrutchBin(t):
m, n = t[0]
x = n
s = -m - t[1] * n
y = (s << (t[3].bit_length() - 1)) - t[4] * x
return CrutchBin(t[2], [x, y], t[3])

def FindNaive(A, B, k):
x = 1
while x * x <= k:

y = 1
while y * y <= k:

if (A * x + B * y) % k == 0:
return Crutch([A, B], [x, y], k)

if (A * x - B * y) % k == 0:
return Crutch([A, B], [x, -y], k)

y+= 1
x+= 1
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def Find(A, B, k):
x = 1
while x * x <= k:

y = -((A * x * Inv[B % k]) % k)
if y * y <= k:

return Crutch([A, B], [x, y], k)
y+= k
if y * y <= k:

return Crutch([A, B], [x, y], k)
x+= 1

def FindNaiveBin(A, B, k):
x = 1
while x * x <= k:

y = 1
while y * y <= k:

if ((A * x + B * y) & (k - 1)) == 0:
return CrutchBin([A, B], [x, y], k)

if ((A * x - B * y) & (k - 1)) == 0:
return CrutchBin([A, B], [x, -y], k)

y+= 1
x+= 1

def FindBin(A, B, k):
x = 1
while x * x <= k:

y = -((A * x * Bin_Inv[B & (k - 1)]) & (k - 1))
if y * y <= k:

return CrutchBin([A, B], [x, y], k)
y+= k
if y * y <= k:

return CrutchBin([A, B], [x, y], k)
x+= 1

def Farey(r, k):
if r * k >= k - 0.5:

return [1, 1]
if r * k >= k - 1:

return [k - 2, k - 1]
if r * k <= 0.5:

return [0, 1]
if r * k <= 1:

return [1, k - 1]
if r < 0.5:

m2 = 1
n2 = int(1 / r)
m1 = 1
n1 = n2 + 1

else:
n1 = int(1 / (1 - r))
m1 = n1 - 1
n2 = n1 + 1
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m2 = n1
while n1 + n2 < k:

m = m1 + m2
n = n1 + n2
if r * n <= m:

m2 = m
n2 = n

else:
m1 = m
n1 = n

if (m1 / n1 + m2 / n2) >= 2 * r:
return [m1, n1]

return [m2, n2]

def FindApprox(A, B, k):
q = (A * Inv[B % k]) % k
u = (A - q * B)
v = B * k
s1 = u // v
u-= s1 * v
if u < 0:

u+= v
s1-= 1

m, n = Farey(u / v, k)
x = n
s = -m - s1 * n
y = s * k - q * x
return Crutch([A, B], [x, y], k)

def FindApproxBin(A, B, k):
pow_k = k.bit_length() - 1
q = ((A * Bin_Inv[B & (k - 1)]) & (k - 1))
u = ((A - q * B) >> pow_k)
v = B
s1 = u // v
u-= s1 * v
if u < 0:

u+= v
s1-= 1

m, n = Farey(u / v, k)
x = n
s = -m - s1 * n
y = (s << pow_k) - q * x
return CrutchBin([A, B], [x, y], k)

def FareyPar(r, k):
if r * k >= k - 1:

return [[k - 2, k - 1], [1, 1]]
if r * k <= 1:

return [[0, 1], [1, k - 1]]
if r < 0.5:

m2 = 1
n2 = int(1 / r)
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m1 = 1
n1 = n2 + 1

else:
n1 = int(1 / (1 - r))
m1 = n1 - 1
n2 = n1 + 1
m2 = n1

while n1 + n2 < k:
m = m1 + m2
n = n1 + n2
if r * n <= m:

m2 = m
n2 = n

else:
m1 = m
n1 = n

return [[m1, n1], [m2, n2]]

def FindApproxPar(A, B, k):
q = (A * Inv[B % k]) % k
u = (A - q * B)
v = B * k
s1 = u // v
u-= s1 * v
if u < 0:

u+= v
s1-= 1

r = u / v
res = FareyPar(u / v, k)
res1 = [[res[0], s1, [A, B], k, q], [res[1], s1, [A, B], k, q]]
#pool = Pool(2)
#ans = pool.map(ParalCrutch, res1)
#pool.close()
#pool.join()
ans = list(map(ParalCrutch, res1))
return ans

def FindApproxParBin(A, B, k):
pow_k = k.bit_length() - 1
q = ((A * Bin_Inv[B & (k - 1)]) & (k - 1))
u = ((A - q * B) >> pow_k)
v = B
s1 = u // v
u-= s1 * v
if u < 0:

u+= v
s1-= 1

res = FareyPar(u / v, k)
res1 = [[res[0], s1, [A, B], k, q], [res[1], s1, [A, B], k, q]]
#pool = Pool(2)
#ans = pool.map(ParalCrutchBin, res1)
#pool.close()
#pool.join()
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ans = list(map(ParalCrutchBin, res1))
return ans

GCD.py
def extended_euclide(A, B):

if B == 0:
return [1, 0]

u, v = extended_euclide(B, A % B)
return [v, u - v * (A // B)]

def extended_euclide_with_count(A, B):
if B == 0:

return [1, 0, 1]
u, v, s = extended_euclide_with_count(B, A % B)
return [v, u - v * (A // B), s + 1]

k_GCD.py
import Coefficients
import fractions
#from Coefficients import FindNaive as find
#from Coefficients import Find as find
from Coefficients import FindApprox as find

MOD = 0
p = 251
Inv = [0] * p
Inv[1] = 1
for i in range(2, p):

Inv[i] = -(p // i) * Inv[p % i]
Inv[i] = (Inv[i] + p) % p

setattr(Coefficients, 'Inv', Inv)

def k_extended_euclide_iter(A, B):
if B == 0:

return [1, 0]
x, y, C, pow_d = find(A, B, p)
d = pow(p, pow_d)
if B > C:

u, v = k_extended_euclide_iter(B, C)
return [v * x, u * p * d + v * y]

else:
u, v = k_extended_euclide_iter(C, B)
return [u * x, v * p * d + u * y]

def k_extended_euclide_iter_with_count(A, B):
global MOD
if B == 0:

return [1, 0, 1, 0]
if A % B == 0:

return [0, 1, 1, 0]
x, y, C, pow_d = find(A, B, p)
d = pow(p, pow_d, MOD)
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if B > C:
u, v, s, d1 = k_extended_euclide_iter_with_count(B, C)
u1 = (v * x) % MOD
v1 = (u * p * d + v * y) % MOD

else:
u, v, s, d1 = k_extended_euclide_iter_with_count(C, B)
u1 = (u * x) % MOD
v1 = (v * p * d + u * y) % MOD

return [u1, v1, s + 1, d1 + pow_d]

def k_extended_euclide(A, B):
global MOD
MOD = A
if (A % p == 0) | (B % p == 0):

raise NameError("Incorrect input. Change it.")
a = (1 - Inv[A % p] * A) // p
x, y, n, d = k_extended_euclide_iter_with_count(A, B)
d+= n - 1
a = pow(a, d, A)
x = (x * a) % A
y = (y * a) % A
t = (x * A + y * B) // A
return [x - t, y]

def k_extended_euclide_with_count(A, B):
global MOD
MOD = A
if (A % p == 0) | (B % p == 0):

raise NameError("Incorrect input. Change it.")
a = (1 - Inv[A % p] * A) // p
x, y, n, d = k_extended_euclide_iter_with_count(A, B)
d+= n - 1
a = pow(a, d, A)
x = (x * a) % A
y = (y * a) % A
t = (x * A + y * B) // A
return [x - t, y, n + 1]

bin_k_GCD.py
import Coefficients
import fractions
#from Coefficients import FindNaiveBin as find
#from Coefficients import FindBin as find
from Coefficients import FindApproxBin as find

MOD = 0
pow_p = 8
p = (1 << pow_p)
Inv = [0] * p
Inv[1] = 1
for i in range(3, p, 2):

Inv[i] = pow(i, (p >> 1) - 1, p)
setattr(Coefficients, 'Bin_Inv', Inv)
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def k_extended_euclide_iter(A, B):
if B == 0:

return [1, 0]
x, y, C = find(A, B, p)
C>>= pow_p
pow_d = 0
if C:

while C & 1 == 0:
C>>= 1
pow_d+= 1

if B > C:
u, v = k_extended_euclide_iter(B, C)
return [v * x, (u << (pow_d + pow_p)) + v * y]

else:
u, v = k_extended_euclide_iter(C, B)
return [u * x, (v << (pow_d + pow_p)) + u * y]

def k_extended_euclide_iter_with_count(A, B):
global MOD
if B == 0:

return [1, 0, 1, 0]
if A % B == 0:

return [0, 1, 1, 0]
x, y, C, pow_d = find(A, B, p)
if B > C:

u, v, s, d1 = k_extended_euclide_iter_with_count(B, C)
u1 = (v * x) % MOD
v1 = (((u << pow_d) << pow_p) + v * y) % MOD

else:
u, v, s, d1 = k_extended_euclide_iter_with_count(C, B)
u1 = (u * x) % MOD
v1 = (((v << pow_d) << pow_p) + u * y) % MOD

return [u1, v1, s + 1, d1 + pow_d]

def k_extended_euclide(A, B):
global MOD
MOD = A
if (A & 1 == 0) | (B & 1 == 0):

raise NameError("Incorrect input. Change it.")
a = (1 - A) >> 1
x, y, n, d = k_extended_euclide_iter_with_count(A, B)
d+= (n - 1) * pow_p
a = pow(a, d, A)
x = (x * a) % A
y = (y * a) % A
t = (x * A + y * B) // A
return [x - t, y]

def k_extended_euclide_with_count(A, B):
global MOD
MOD = A
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if (A & 1 == 0) | (B & 1 == 0):
raise NameError("Incorrect input. Change it.")

a = (1 - A) >> 1
x, y, n, d = k_extended_euclide_iter_with_count(A, B)
d+= (n - 1) * pow_p
a = pow(a, d, A)
x = (x * a) % A
y = (y * a) % A
t = (x * A + y * B) // A
return [x - t, y, n + 1]

paral_k_GCD.py
import Coefficients
import fractions
from Coefficients import FindApproxPar as find

MOD = 0
p = 251
Inv = [0] * p
Inv[1] = 1
for i in range(2, p):

Inv[i] = -(p // i) * Inv[p % i]
Inv[i] = (Inv[i] + p) % p

setattr(Coefficients, 'Inv', Inv)

def k_extended_euclide_iter(A, B):
if B == 0:

return [1, 0]
x = [res[0][0], res[1][0]]
y = [res[0][1], res[1][1]]
C = [res[0][2] // p, res[1][2] // p]
d = [1, 1]
for i in range(2):

if C[i]:
while C[i] % p == 0:

d[i]*= p
C[i]//= p

d1 = max(d)
for i in range(2):

d[i] = d1 // d[i]
u, v = k_extended_euclide_iter(C[0], C[1])
return [x[0] * u * d[0] + x[1] * v * d[1], y[0] * u * d[0] + y[1] * v * d[1]]

def k_extended_euclide_iter_with_count(A, B):
global MOD
if B == 0:

return [1, 0, 1, 0]
if A % B == 0:

return [0, 1, 1, 0]
res = find(A, B, p)
x = [res[0][0], res[1][0]]
y = [res[0][1], res[1][1]]
C = [res[0][2], res[1][2]]
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pow_d = [res[0][3], res[1][3]]
d = [pow(p, pow_d[0]), pow(p, pow_d[1])]
d0 = max(d)
for i in range(2):

d[i] = d0 // d[i]
u, v, s, d1 = k_extended_euclide_iter_with_count(C[0], C[1])
u1 = (x[0] * u * d[0] + x[1] * v * d[1]) % MOD
v1 = (y[0] * u * d[0] + y[1] * v * d[1]) % MOD
return [u1, v1, s + 1, d1 + max(pow_d)]

def k_extended_euclide(A, B):
global MOD
MOD = A
if (A % p == 0) | (B % p == 0):

raise NameError("Incorrect input. Change it.")
a = (1 - Inv[A % p] * A) // p
x, y, n, d = k_extended_euclide_iter_with_count(A, B)
d+= n - 1
a = pow(a, d, A)
x = (x * a) % A
y = (y * a) % A
t = (x * A + y * B) // A
return [x - t, y]

def k_extended_euclide_with_count(A, B):
global MOD
MOD = A
if (A % p == 0) | (B % p == 0):

raise NameError("Incorrect input. Change it.")
a = (1 - Inv[A % p] * A) // p
x, y, n, d = k_extended_euclide_iter_with_count(A, B)
d+= n - 1
a = pow(a, d, A)
x = (x * a) % A
y = (y * a) % A
t = (x * A + y * B) // A
return [x - t, y, n + 1]

bin_paral_k_GCD.py
import Coefficients
import fractions
from Coefficients import FindApproxParBin as find

MOD = 0
pow_p = 8
p = (1 << pow_p)
Inv = [0] * p
Inv[1] = 1
for i in range(3, p, 2):

Inv[i] = pow(i, (p >> 1) - 1, p)
setattr(Coefficients, 'Bin_Inv', Inv)

def k_extended_euclide_iter(A, B):
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if B == 0:
return [1, 0]

x = [res[0][0], res[1][0]]
y = [res[0][1], res[1][1]]
C = [res[0][2] >> pow_p, res[1][2] >> pow_p]
pow_d = [0, 0]
for i in range(2):

if C[i]:
while C[i] & 1 == 0:

pow_d[i]+= 1
C[i]>>= 1

pow_d1 = max(pow_d)
for i in range(2):

pow_d[i] = pow_d1 - pow_d[i]
u, v = k_extended_euclide_iter(C[0], C[1])
return [((x[0] * u) << pow_d[0]) + ((x[1] * v) << pow_d[1]), ((y[0] * u) << pow_d[0]) + ((y[1] * v) << 

pow_d[1])]

def k_extended_euclide_iter_with_count(A, B):
global MOD
if B == 0:

return [1, 0, 1, 0]
if A % B == 0:

return [0, 1, 1, 0]
res = find(A, B, p)
x = [res[0][0], res[1][0]]
y = [res[0][1], res[1][1]]
C = [res[0][2], res[1][2]]
pow_d = [res[0][3], res[1][3]]
if C[0] < C[1]:

t = C[0]
C[0] = C[1]
C[1] = t
t = x[0]
x[0] = x[1]
x[1] = t
t = y[0]
y[0] = y[1]
y[1] = t
t = pow_d[0]
pow_d[0] = pow_d[1]
pow_d[1] = t

pow_d1 = max(pow_d)
for i in range(2):

pow_d[i] = pow_d1 - pow_d[i]
u, v, s, d1 = k_extended_euclide_iter_with_count(C[0], C[1])
u1 = (((x[0] * u) << pow_d[0]) + ((x[1] * v) << pow_d[1])) % MOD
v1 = (((y[0] * u) << pow_d[0]) + ((y[1] * v) << pow_d[1])) % MOD
return [u1, v1, s + 1, d1 + pow_d1]

def k_extended_euclide(A, B):
global MOD
MOD = A
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if (A & 1 == 0) | (B & 1 == 0):
raise NameError("Incorrect input. Change it.")

a = (1 - A) >> 1
x, y, n, d = k_extended_euclide_iter_with_count(A, B)
d+= (n - 1) * pow_p
a = pow(a, d, A)
x = (x * a) % A
y = (y * a) % A
t = (x * A + y * B) // A
return [x - t, y]

def k_extended_euclide_with_count(A, B):
global MOD
MOD = A
if (A & 1 == 0) | (B & 1 == 0):

raise NameError("Incorrect input. Change it.")
a = (1 - A) >> 1
x, y, n, d = k_extended_euclide_iter_with_count(A, B)
d+= (n - 1) * pow_p
a = pow(a, d, A)
x = (x * a) % A
y = (y * a) % A
t = (x * A + y * B) // A
return [x - t, y, n + 1]

Mastership_test.py
import random
import datetime
import GCD
import k_GCD
import bin_k_GCD
import paral_k_GCD
import bin_paral_k_GCD
from random import randint as rnd
from GCD import extended_euclide as gcd
from GCD import extended_euclide_with_count as gcd_cnt
from k_GCD import k_extended_euclide as k_gcd
from k_GCD import k_extended_euclide_with_count as k_gcd_cnt
from bin_k_GCD import k_extended_euclide as bin_k_gcd
from bin_k_GCD import k_extended_euclide_with_count as bin_k_gcd_cnt
from paral_k_GCD import k_extended_euclide as paral_k_gcd
from paral_k_GCD import k_extended_euclide_with_count as paral_k_gcd_cnt
from bin_paral_k_GCD import k_extended_euclide as bin_paral_k_gcd
from bin_paral_k_GCD import k_extended_euclide_with_count as bin_paral_k_gcd_cnt

N = 1<<16#1 << 256
M = 1000
a, b = [rnd(N // 2, N), rnd(N // 2, N)]
#a, b = [3234243321, 543543234]
while (a % 13 == 0) | (b % 13 == 0) | ((a & 1) == 0) | ((b & 1) == 0):

a, b = [rnd(N // 2, N), rnd(N // 2, N)]
#a, b = 5641, 2484
a, b = 65269, 38957
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#a, b = 550065, 492073
#a, b = 700177, 438587
#a, b = 
103496410105685614694258950134719037771415278288559602065182004096950215434067, 
67914742837363768444204967225748869296138108950035401011314871117989811132657#??
??
if a < b:

a, b = b, a
print(a, b)

dt = datetime.datetime.now()
for i in range(M):

t = gcd(a, b)
dt1 = datetime.datetime.now() - dt
print(t, dt1)
print(t[0] * a + b * t[1])

t = gcd_cnt(a, b)
print(t)

dt = datetime.datetime.now()
for i in range(M):

t = k_gcd(a, b)
dt1 = datetime.datetime.now() - dt 
print(t, dt1)
print(t[0] * a + b * t[1])

t = k_gcd_cnt(a, b)
print(t)

dt = datetime.datetime.now()
for i in range(M):

t = bin_k_gcd(a, b)
dt1 = datetime.datetime.now() - dt
print(t, dt1)
print(t[0] * a + b * t[1])

t = bin_k_gcd_cnt(a, b)
print(t)

dt = datetime.datetime.now()
for i in range(M):

t = paral_k_gcd(a, b)
dt1 = datetime.datetime.now() - dt
print(t, dt1)
print(t[0] * a + b * t[1])

t = paral_k_gcd_cnt(a, b)
print(t)

dt = datetime.datetime.now()
for i in range(M):

t = bin_paral_k_gcd(a, b)
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dt1 = datetime.datetime.now() - dt
print(t, dt1)
print(t[0] * a + b * t[1])

t = bin_paral_k_gcd_cnt(a, b)
print(t)

Mastership.py
import random
import datetime
import GCD
import k_GCD
import bin_k_GCD
import paral_k_GCD
import bin_paral_k_GCD
from random import randint as rnd
from GCD import extended_euclide as gcd
from GCD import extended_euclide_with_count as gcd_cnt
from k_GCD import k_extended_euclide as k_gcd
from k_GCD import k_extended_euclide_with_count as k_gcd_cnt
from bin_k_GCD import k_extended_euclide as bin_k_gcd
from bin_k_GCD import k_extended_euclide_with_count as bin_k_gcd_cnt
from paral_k_GCD import k_extended_euclide as paral_k_gcd
from paral_k_GCD import k_extended_euclide_with_count as paral_k_gcd_cnt
from bin_paral_k_GCD import k_extended_euclide as bin_paral_k_gcd
from bin_paral_k_GCD import k_extended_euclide_with_count as bin_paral_k_gcd_cnt

N = 1 << 256
M = 1000
Func = [[gcd, gcd_cnt], [k_gcd, k_gcd_cnt], [bin_k_gcd, bin_k_gcd_cnt],

[paral_k_gcd, paral_k_gcd_cnt], [bin_paral_k_gcd, bin_paral_k_gcd_cnt]]
#Func = [[k_gcd, k_gcd_cnt], [bin_k_gcd, bin_k_gcd_cnt]]
S = "k_8/"
S1 = ["GCD/", "Approximate_GCD/", "Parallel_approximate_GCD/"]
#S1 = ["k_GCD/"]
S2 = ["step.txt", "time.txt", "tps.txt"]
N1, N2 = [N >> 2, N >> 1]

def Gen(num):
f = open("k_4/input.txt", 'w')
for i in range(num):

a, b = [2 * rnd(N1, N2) + 1, 2 * rnd(N1, N2) + 1]
while (a % 13 == 0) | (b % 13 == 0):

a, b = [2 * rnd(N1, N2) + 1, 2 * rnd(N1, N2) + 1]
f.write(str(a) + ',' + str(b) + '\n')

f.close()
f = open("k_8/input.txt", 'w')
for i in range(num):

a, b = [2 * rnd(N1, N2) + 1, 2 * rnd(N1, N2) + 1]
while (a % 251 == 0) | (b % 251 == 0):

a, b = [2 * rnd(N1, N2) + 1, 2 * rnd(N1, N2) + 1]
f.write(str(a) + ',' + str(b) + '\n')

f.close()
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f = open("k_16/input.txt", 'w')
for i in range(num):

a, b = [2 * rnd(N1, N2) + 1, 2 * rnd(N1, N2) + 1]
while (a % 65521 == 0) | (b % 65521 == 0):

a, b = [2 * rnd(N1, N2) + 1, 2 * rnd(N1, N2) + 1]
f.write(str(a) + ',' + str(b) + '\n')

f.close()

def Cnt(a, b, files, funcs):
dt = datetime.datetime.now()
for i in range(M):

t = funcs[0](a, b)
dt1 = datetime.datetime.now() - dt
files[1].write(str(dt1.total_seconds()) + '\n')
t = funcs[1](a, b)
files[0].write(str(t[2]) + '\n')
files[2].write(str(dt1.total_seconds() / t[2]) + '\n')

def Test():
f = open(S + "input.txt")
f1 = []
for s1 in S1:

f2 = []
for s2 in S2:

f2.append(open(S + s1 + s2, 'w'))
f1.append(f2)
if s1 != "GCD/":

f2 = []
for s2 in S2:

f2.append(open(S + s1 + "bin_" + s2, 'w'))
f1.append(f2)

cnt = 0
for d in f.readlines():

a, b = map(int, d.split(','))
if len(Func) != len(f1):

print("ERROR!!!!")
return

for i in range(len(f1)):
Cnt(a, b, f1[i], Func[i])

cnt+= 1
print("Progress:", cnt, '/', 100)

for f2 in f1:
for t in f2:

t.close()

#Gen(100)
Test()
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