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Abstract

Microstrip antennas (MA) are widely used as component in various devices for
mobile communication systems: phased antenna arrays, base stations with sectorial
radiation patterns, space-diversity reception, etc. Powerful computational
algorithms are required to calculate the characteristics of (MA). In thesis we
consider the problem of plane electromagnetic wave diffraction by a thin metal
plate, which is a special case of the radiating element of a microstrip antenna.
Parallel implementation of the numerical solving via CUDA technology is

proposed.
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Introduction

Microstrip antennas (see Fig.1) are widely used as component in various
devices for mobile communication systems: phased antenna arrays, base sta-
tions with sectorial radiation patterns, space-diversity reception, etc. Mi-
crostrip antennas have several advantages in terms of weight, overall dimen-
sions, cost, simplicity of manufacture, but represent electrodynamic systems,
which are difficult to study theoretically. The most complete information on
their characteristics can be obtained by using rigorous numerical-analytical
methods of applied electrodynamics [3-5]. The calculation for characteristics
of microstrip antennas of arbitrary configuration based on strict methods
is very often complicated and cumbersome, and at times even impossible
because of the difficulties of a fundamental nature. The way out of this sit-
uation is the use of powerful computational algorithms, such as the method

of moments and technologies of distributed (parallel) computations, such as,
for example, CUDA, OpenMP etc.

Fig. 1: Microwave antenna 5,8 GHz NP-A44-5800
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Assignment

The aim of this work is to solve the problem of a plane electromagnetic wave
diffraction by a thin metal plate, which represents a special case of the radi-
ating element of a microstrip antenna and to propose parallel implementation
of the numerical solving.

To achieve this goal, it was necessary to solve the following tasks:

1. To study the existing methods and algorithms for solving electrody-

namics problems in the field of antenna’s design.

2. To Apply the method of moments to solve the diffraction problem

formulated in the EFIE form for a rectangular metal plate.
3. Use as a basis and testing functions piecewise linear RWG functions.

4. Program implementation of the developed algorithm (make a triangu-
lation of domain, calculate the potentials and construct a matrix of

moments, that is, prepare system of algebraic equations)

5. Within the program, to choose a method for solving a system of linear
algebraic equations and to implement its parallel version via parallel

programming technologies (CUDA)

The structure of the work corresponds to its goals and objectives: the
work consists of an introduction, three chapters, conclusion, a list of used
sources, bibliography and applications.

To solve the problems of scattering and radiation of an electromagnetic
field, analysis of existing numerical methods and solutions based on them, as

well as software, is necessary.

Thesis Outlines

The first chapter is an introduction to the theory of microstrip antennas
(MA). It consist of an overview of MA. We examine the canonical forms of

MA and the mathematical apparatus of antenna theory. We overview the
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main numerical methods for analyzing the characteristics of patch antennas,
and also we provide the theoretical basis for the method of moments.

In the second chapter, we provide an overview of parallel programming
technologies. Based on the comparative analysis, for the further solution of
System of Linear Algebraic Equations (SLAE) in the method of moments,
the CUDA technology was chosen.

Among the considered numerical methods for solving the problem of scat-
tering EM waves by surfaces of arbitrary shape, the method of moments is
chosen. For the discretization of models, it is proposed to use the method
of dividing the surface into triangular elements, since it makes it possible to
obtain an exact correspondence of any surface or boundary.

In the third chapter, a study of the algorithm for a solving by the method
of moments based on the paper of S.M. Rao, D.R. Wilton and A.W.Glisson
is made. Based on the C++ programming language, we implemented a
computer program which calculate the elements of the moment matrix. The
biconjugate gradient stabilized method is chosen for the numerical solution
of SLAE, based on the moment matrix. The parallel version of the method
is implemented via CUDA Toolkit. In conclusion, the results of the work are

formulated.






Chapter 1

Background from Antennas

Design

1.1 Overview of microstrip antennas

One of the main trends in the development of modern radio electronics is
the microminiaturization of radio electronic equipment (REE). Significant
progress in this direction was obtained with the widest use of microelec-
tronics achievements both in the part of low-frequency REE units and its
microwave modules. It is known that the qualitative characteristics of REE
are largely determined by the properties and design-electrical parameters of
its antenna-feeder device (AFD). Particularly noticeable gain in the mass-size
parameters of the REA is achieved when moving in microwave modules from
the planar integrated circuits (IC) of microwave to volume integrated circuits
(VIC). The use of integrated technology makes it possible to successfully solve
the problems of creating an AFD under very rigid and contradictory require-
ments for electrodynamic, aerodynamic, overall, weight, cost, constructive
and other parameters.

The concept of a microstrip antenna (MSA) was first introduced in 1950.
However, only 20 years later, in 1970 the development of the printed circuit
board technology (PCB - Printed Circuit Board) began to be realized. And
with the emergence of modern photolithographic technology and low-cost

solid-state microwave sources, microstrip antennas have become the most

7



widely used. Since then, microstrip antennas are the most common types of

antennas with a wide range of applications due to their obvious advantages:
e light weight and small size;
e simple manufacturing of printed circuit board technology;

e simplified integration with electronic components (placement of mi-

crowave devices with conventional components on one board);

e the possibility of making an antenna on a curved plane, which allows

you to "fit" the antenna into the carrier unit;
e simplified creation of antenna arrays;
e high repeatability of characteristics;

e ability to radiate energy with linear, circular and elliptical polarization,
which leads to convenient design solutions and provides operation in

two- or multi-frequency modes.

These antennas are widely used for civil and military systems, such as ra-
dio frequency identification (RFID), broadcast radio, mobile systems, global
positioning systems (GPS), TVs, multi-input and output (MIMO) systems,
vehicles, systems collision avoidance, satellite communications, surveillance
systems, radar systems, remote sensing, missile guidance, and so on. Despite
their versatility, such antennas have a number of limitations. The disadvan-
tage of such antennas is that an approximate equality of their overall dimen-
sions and working wavelength, which will be determined resonance mode of
operation. At high frequencies, for example, at 915 MHz, the dimensions of
the microstrip antennas can reach 35 cm.

Fig. 1.1 shows the structure of such antennas. Typically, they consist
of three layers: (1) on top — a conductive plate (patch), (2) in the middle -
a dielectric layer (substrate), (3) at the base - a substrate (ground plane).
Dielectric in MSA is needed to reduce the overall dimensions of the radiator
itself. Such microstrip antennas with a good dielectric substrate allow the

creation of miniature emitters. The width of the frequency band in the MSA is
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Fig. 1.1: Microstrip antenna model

approximately equal to one to two percent. Dielectric can affect the width of
the strip, and how to expand, and narrow down. For example, if to increase
the thickness of the dielectric substrate, the bandwidth of the antenna will
increase. If to take a dielectric with a greater dielectric constant, then the
bandwidth, on the contrary, narrowed.

It must also be remembered that the dielectric parameters affect other
characteristics microstrip antennas. A dielectric must have the following
properties to meet MPA’s high technical requirements and ensure function-
ality: high temperature stability, minimal energy losses, homogeneity of the
structure and unchangeability overall dimensions. Such qualities are pos-
sessed by dielectric materials, which are mainly are used in the manufacture
of MSA: fluoroplastic, polycorb etc. The energy supply of the conductive
plate can be provided in three standard ways: aperture, due to short trans-
mission lines and directly by electromagnetic coupling. Each the method of
supplying energy has its advantages and disadvantages. However, all meth-
ods affect the characteristics of the antenna as well as the different forms of
the conductive plate.

The conductive plate of the MSA has linear dimensions of approximately
0.1 to 0.2 operating wavelengths. In form, they can be of different types.
Such diversity contributes to the creation of antennas with a different set
of certain characteristics, for example, the input impedance, directivity and

polarization of the radiation.

As noted above, the use of the highest-quality dielectrics in the MSA
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contributes to the improvement of its characteristics, as well as to a reduction
in the dimensions of the emitters. However, on the other hand, the presence
of a dielectric in the antenna structure makes it difficult to find the necessary
parameters of the MSA, since it will be necessary to calculate the effect of
surface waves. Therefore, accurate calculation methods will be required to
determine the characteristics of the radiators. At most of these methods are
based on strict theorems and laws that allow further design and production
accuracy to know the parameters of the antennas. There are many methods
for calculating the characteristics of the radiation of MPA. In the next section,

consider some of them.

Fig. 1.2: Different shapes of patch

In Fig. 1.2 shows the variants of the geometric shapes of the patch: a —
square, b — rectangle, ¢ — dipole, d — circle, e — ellipse, f — triangle, g — disk
sector, h — ring, i — sector of the ring.

The choice of the shape is mainly determined by the required radiative
characteristics of the antenna. For example, rectangular, square and round
radiators of the antenna have very good radiating characteristics. However,
when a wide frequency band is required, dipole emitters are used. The metal
base in its dimensions is slightly larger than the plate. All considered radi-
ators can be formed practically on any metal surface, planar or non-planar,
which leads to the possibility of constructing a large number of diverse an-
tennas that can be used in wireless communication systems. The variety of
forms testifies to the great difficulties of theoretical analysis of such electro-
dynamic structures, the difficulties of its adequate description, compilation

convenient mathematical or electrical model.
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1.2 Review and comparison of methods for EM

modeling

The main problem of electromagnetic modeling is to find an approximate
solution of the Maxwell’s equations, which corresponds to the given boundary
and for nonharmonic waves - to initial conditions. At present, for three-
dimensional EM simulation, many methods for calculating, designing and
analyzing objects of varying complexity have been developed. In modern
software, the following three methods or their combination are more used:
the method of moments (MoM), the finite element method (FEM), and the
finite time difference method (FDTD). Below we briefly describe the essence

and application fields for each of them.

Method of Moments. The method of moments is used to calculate
the currents in metallic and dielectric structures during radiation in the free
space. It is usually used for the analysis of electrically small structures are
made of metals, but the extensions allow the inclusion of dielectrics or layered
dielectrics of finite form. In fact, the method of moments is the solution of
the Maxwell’s equations in integral form in the frequency domain. The main
practical advantage of this method is that it is necessary to discretize (i.e.
divide into patches) only metal compounds of the modeling structure, since
the current distribution on metal surfaces acts as an unknown quantity. This
distinguishes MoM from other methods, where free space is discretized, as
when we solve equations for finding a electric or magnetic field in a volume.
As a result, the "planar" MoM grid proves to be much simpler and smaller
than the equivalent "bulk" mesh needed for modeling using the FEM and
FDTD methods. The grid turns out to be homogeneous and consists usually
of rectangular, triangular or square cells. A reduced number of grid cells
improves simulation efficiency. Therefore MoM is well suited for analysis of
complex (multilayer) structures. But the MoM method has its drawbacks.
It is not suitable for arbitrary three-dimensional structures. The simulated
structures must be "planar" in nature and form a multi-layered structure

(located in the x-y plane) or be planar objects located in the x-y plane, but

11



elongated along the vertical (along the z-axis) through several superimposed
layers . For many RF / microwave devices, this limitation does not play a

significant role, since they often have a planar structure.

Finite Element Method. The finite element method is currently one
of the main methods for solving variational problems, including the prob-
lems of calculating the stress-strain state of structures. The finite element
method is used in modeling large or inhomogeneous dielectric objects that
can not be effectively modeled by another method. It is FEM that is truly
3D (3D), favorably different from MoM in that it can be used to analyze
arbitrary volumetric structures, not limited to multi-layer topologies. It re-
quires placing the simulated object in the "box", which limits the space and
defines the modeling area. The entire volume of the modeling domain is dis-
cretized using a grid with tetrahedral cells, and a denser grid is created closer
to the modeled object. The main unknown quantity in the FEM method is
usually the field size. The field is divided into tetrahedrons (elements), the
dielectric properties of which vary from element to element. The size of the
elements can be changed, reducing it near the area of interest, and increasing
- to reduce the cost of CPU time. In each of the elements, the form of the
approximating function is arbitrarily chosen. In the simplest case this is a
polynomial of the first degree. Outside of its element, the approximating
function is zero. The values of the function at the boundaries of the elements
are the solution of the problem and are unknown in advance. The coefficients
of the approximating functions are usually sought from the condition that the
values of the neighboring functions on the boundaries between the elements
are equal. Then these coefficients are expressed in terms of the values of the
functions at the nodes of the elements. A system of linear algebraic equations
is compiled. The number of equations is equal to the number of unknown
values at the nodes on which the solution of the original system is sought,
and is directly proportional to the number of elements. Since each of the
elements is associated with a limited number of neighboring ones, the system
of linear algebraic equations has a sparse form, which essentially simplifies

its solution. Perhaps, FEM can be recognized as the most flexible method
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of EM analysis, allowing to model most volume structures. However, for
geometrically complex structures a grid with a large number of tetrahedral
cells is required. This, in turn, leads to the use of huge matrices, which can

require large amounts of computer memory.

Finite Difference Time Domain method. Like the FEM method,
the FDTD simulation method is truly three-dimensional and can be used to
analyze structures of arbitrary shape. But if the MoM and FEM algorithms
solve Maxwell’s equations indirectly through matrices, the FDTD algorithms
do this explicitly. The entire volume of the modeling domain in the FDTD
method is discretized, usually using a grid with hexahedral cells (which are
called Yee cells). FDTD uses a step-by-step integration algorithm over time
that step-by-step updates the field values in the grid cell, explicitly tracking
the progress of electromagnetic waves through the modeled structure. One
of the significant advantages of this method over FEM is that it does not
require the use of matrices, and as a result, complex problems can often be
solved with very little computer memory consumption. In addition, when
choosing the FDTD method to accelerate simulation, it is convenient to use
the capabilities of modern graphics processors (GPUs). However, along with
the advantages of the FDTD method, there are some drawbacks. So, for each
one present in the port topology, you need to perform a separate simulation,
as a result, a scheme with N ports will require N simulations. This makes the
FDTD method not very attractive for analyzing circuits with a large number
of ports. A typical application of the FDTD method is the determination of
the characteristics of the antenna built into the mobile phone. The antenna
may lose its setting when it is embedded in the phone or when the phone
approaches the human body. Early detection of such effects can be very

useful.

Thus, for each class of EM modeling problems, there are effective methods
of solution. Below we will describe in detail the method of moments, which

in the future will be applied to the analysis of microstrip antennas.
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1.3 The Method of moments

The method of moments (MoM) is most fully described in Harrington’s works
and in his monograph, published in English. The consistent description and
analysis of MoM is also presented, for example, in book of Nikolsky V.V. Note
that the author of this book does not use the term MoM, but, nevertheless,
it’s about this method. From a mathematical point of view, MoM is a method

for solving the following operator problem:

L(f) =y, (1.1)

where L(f) is the linear operator defined in a certain function space, and g is a
known function. Under the operator in mathematics understands the action,
which assigns a function to a function. The simplest operator example can
be differentiation, which the original function puts in correspondence another
function - its derivative. Another operators class are integrals. Among them,

the best known is the Fourier transformation:
L) = [ fa)=rda

It is easy to see that the operator from this formula puts the original function
f(x) to a new function, which is called the Fourier transformation and is
determined by the right-hand side.

In electrodynamics integral operators are more often used. About how
they derive we will talk below. Now we consider the main idea of MoM. In
this thesis we omit purely mathematical questions about the region definition
of the operator L(f) and convergence of MoM, considering the proof of the
MoM known and talk about only its constructive part.

For a compact presentation of the MoM scheme, we need to use some
definitions from functional analysis. Among such term refers to the inner
product. Suppose we have two functions f and g. Their inner product (f, g)

must satisfy the following properties:

(f9) =149, f) (1.2)

(af + By, h) = alf, h) + B{g, h) (1.3)
14



(f,f)>0, if £>0 (1.4)
T.f)=0, i f=0 (1.5)
where o, 8 are constants and f is a complex conjugation of f. The definition
of an inner product is ambiguous. It can be define by different ways. Let

f and g be two functions defined in the open or close domain .S, then inner

product can be present as follows

(f.g) = / fgds. (16)
S

It is easy to see that the definition (1.6) satisfies all the conditions (1.2)
- (1.5). However, nothing prevents us from adding to (1.6) some known
function called the weight function w. Then the inner product will change
as follows:

(f.g) = / wfgds. (1.7)

S
It still satisfies all the conditions (1.2) - (1.5) and has right to be. Because

of the freedom to choose the type of the inner product, we can build more
effective algorithms for solving equation (1.1). Now, we will describe the
scheme of MoM. First of all, we represent the unknown function f as the

expansion of the following type:
f - Z@nfna (18)

where f, are known functions, called basis functions, and «a, — unknown
coefficients. Let a function f be defined in some domain S. Equation (1.1)

can be written as

S anl(f) = g (19)

The basic functions f, are chosen in such a way as to correctly model the
expected properties of the unknown function f. Now, we introduce one more
system of functions g,,, called testing functions and define the inner product,

or the moment between the basis functions f,, and the test functions g, as

> anlgm, L(f)) = (g 9)- (1.10)
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Thus, the formula (1.10) is a system of linear algebraic equations with respect
to the unknown coefficients «,. If we solve this system of linear equations and
find v, then we automatically find the desired function f. Strictly speaking,
this is the main idea of method of moments, which allows us to reduce the
initial operator problem to the system of linear equations, which effectively
solved on the computer.

Rewrite (1.10) in matrix form as Za=b, where

({91, L(F)) {9 L(f2)) - (g0, L(fw)) ..\
(92 L(F)) (g2 L(f2)) o {92 L(f)

{gn, L(f1)) (9w, L(f2)) - (gn, L(fN))

L. ) .
(<9179>\ (041\ ( | )

<g2, g} %)

<9N,9> an
\ ) \ )

Note, that resulting matrix in MoM is dense in contrast, for example, from

the FEM, where the system matrix is symmetric and sparse. Using(1.11) we

derive the expression for desired function f:

f - <77 Z_1b>7 ? - (f17f27 "'fN7 )T

In formulas (1.8) - (1.11), we deliberately omitted the summation limits. The
point is that, strictly speaking, for an accurate description an unknown func-
tion f requires an infinite set of basis functions. On practice it is necessary

to be limited to the final sum:

N
fN - Z O‘nfn-
n=1

It is assumed that the following relationship is filled

lim fy=F, (1.12)

N—o00
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where F' — exact solution of the equation (1.1). Formula (1.12) implies that
the limit exists and is equal to the solution of (1.1). In this case, it is said that
the method converges. Since the function F' is unknown, relation (1.12) can
not be used as a convergence criterion. On practice the following relationship

is often used:

i [ fye = fv =0,
which asserts only that the iterative process converges and the function f
change less and less with increasing N, which does not always mean that it
converges to the exact solution of equation (1.1). Justification of equality
(1.12) refers to the proof part of the MoM, which we shall not consider. To

stop the iterative process, that is, to select N, the following relationship can

be used:

/!fzm — fnl|dS < € (1.13)
S

where € is some preassigned number, called the stopping criterion. The for-
mula (1.13) is not the only possible rule for the choice of N. Moreover, other
criteria are often used in practice, but their meaning is the same: some value

at the N step should become less than some fixed value.

1.3.1 Basis and testing functions

. Let’s consider what functions can be used as basis and testing functions.
There is a wide variety of basis functions. The fact is that MoM does not
impose such strict requirements on the system of basis functions as orthog-
onality. It suffices to satisfy the requirement of completeness of a system of
functions, which means that an infinite series of the form (1.8) converges in
the functional space in which the function f is defined. There are two ap-
proaches to choose the basis functions. The first approach is focused on the
solution of a specific problem. In this case, the basis functions are chosen
so as to be maximally similar to the exact solution of equation (1.1). To
do this, we have respect to a priori information about the properties of the
solution. This reduces the amount of work, but limits the scope of the tasks

to be solved. Consider the basis functions used in practice.
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Waveguide modes. For example, as the basis functions the eigenfunc-
tions of the solution of the Sturm-Liouville problem for the Helmholtz equa-

tion in case of rectangular waveguides are chosen
v (gy) = (mﬂ < N a)) mr (o b
x,y)=sin|— (z+ =) ) cos | — =
Pmni Y a 2 b \U 72
v oz )=cos<m<x+g>)sin 4 Jré
(pm’n Y y a 2 b y 2 Y

where m, n are the numbers of the basis functions,a, b — the geometric dimen-
sions of the conductor. For lines tangent to electric walls, the basis functions
are modified in such a way as to satisfy the boundary conditions. The possi-
bility of an analytic calculation of the inner products of basis functions is a
great advantage of this set. However, only a limited number of devices can
be calculated using these basis functions, when the device topology is a set
of disjoint rectangular transmission lines.

We can also note a class of finite functions. Such basis functions are func-
tions with a finite support, which are invariant with respect to translational

shift. Finite functions can be represented as a product:

p(z,y) = po(2)py(y).

An example of such class can be piecewise sinusoidal basis functions
(PWS):

;.
sin(k(Az+x))
—em(tAs) o ATz =0

0 (7) = < W, 0<z<Az pyly) =

Ay Ay
I, -5 <y<5

Y

0, in other cases.

\O, in other cases,

Such functions are most convenient when calculations are made of configu-
rations with inhomogeneities such as "open end", "capacitive gap" and so
on. That is, such devices, where the value of the propagation constant k
along the line can be reliably estimated using 2D analysis. Unfortunately,
usually the pay for fast convergence of MoM in the above cases is the loss
of versatility. Indeed, in each concrete structure there will be suitable basis
functions. Searching for them is an informal process that can not be turned

into a computer program. Therefore, software developers give preference to
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basis functions capable of solving a wider set of tasks, even to the detriment
of the convergence of the solution. But it does not mean that accounting
for a priori information has not found its application in real design systems.
However, when switching to more complex structures, it is necessary to use
other, more universal system of basis functions. In MoM widely used so

called rooftop functions:

1—|z|, —-Azr<z<Ax 1, —%Syg%
pa(z) = py(y) =
0, in other cases, 0, in other cases.
Such functions can be used to calculate devices with arbitrary configuration
of conductors with rectangular boundaries. To model and analyse the devices
with arbitrary boundary it is suitable to use so called RWG functions. Details
about these functions will be presented in the next chapter.

For the testing procedure, we can, generally speaking, use any functions.
However, their choice for a specific task is crucial to obtaining a "good"
solution. One of the most effective methods is the Galerkin’s method, where
the same basis functions are used as testing functions, which are used in
the expansion of the required function f. This ensures that the boundary
conditions are satisfied in the entire solution domain, and not only at discrete
points. Everywhere below, to solve problems, we will use the Galerkin’s
method.
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Chapter 2

Background from Parallel

Programming

Parallel computing is one of the most urgent and priority research topics for
today. In all top IT companies (Microsoft, Intel, AMD, NVIDIA, Google,
etc.) for a long time already there are departments and laboratories engaged
in the design and development of high-performance systems based on parallel
processing algorithms. With such close attention, parallel computations are
due to the rapid growth of data volumes that need processing. The range of
problems under study is extremely wide. This includes image analysis and
processing, simulation of physical processes, forecasting of various processes,
analysis of satellite data, financial calculations, electromagnetic calculations,
neural networks and much more. Some of these tasks can be solved by using
distributed computations in the cloud (Cloud Computing), the other part
can be solved in an acceptable time only by running on a supercomputer

with a performance of hundreds of teraflops (TeraFLoating point Operations
Per Second, TFLOPS).

Follow an upward trend in the calculations on a big data, special parallel
programming technologies are being developed. At the heart of each of them
lies its own principle and for effective work the programmer needs the deep
knowledge not only in the field of parallel algorithms, but also understanding
of the features of the chosen technology. Below we will discuss Open MP and
NVIDIA CUDA technologies.
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2.1 Comparison of OpenMP and CUDA tech-

nologies

As mentioned above, technologies that allow to automate the distribution
of tasks between nodes of the computer system use different approaches to
solving the problem of the distribution of computations |7,8]. Therefore, it
makes sense to compare how effective, universal and easy to use each of them.

OpenMP (Open Multiprocessing) is an application programming in-
terface (API) intended for parallel programming using shared memory. C, C
++ and Fortran programming languages are supported, Solaris, AIX, HP-
UX, Linux, Max OS X, and Windows operating systems. OpenMP devel-
opment is conducted with the participation of large IT companies, such as
AMD, Intel, IBM, Cray, and others.

OpenMP is a set of directives for the compiler, library calls and environ-
ment variables. So, to use OpenMP we need a compiler that can take into
account the OpenMP directives. How to use the parallelism rests with the
programmer, who must specify the runtime environment and the compiler
what they should do. OpenMP does not detect data conflicts, search for con-
currency states, etc. Thus, OpenMP allows you to create portable programs
in which the programmer is responsible for the correctness of the parallel
algorithm.

OpenMP uses the fork-join model. The API allows writing programs
that work correctly, executing in parallel, and sequentially. If a sequential
execution of the program is requested, the OpenMP library replaces the real
functions with stubs, that is, the measures for the OpenMP operation are still
spent. To create a new thread, you must specify the parallel directive. This
directive leads to the creation of a team from the thread that processed the
directive and any number of new threads (including none), and the thread
that processed the directive becomes the main one in the set. Inside the
parallel block, there may be several tasks, each job will be assigned to a
separate thread. At the end of the parallel block is an implicit barrier that
allows you to synchronize threads that are working on tasks. The entire

program itself is already in an implicitly defined parallel block.
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Thus, OpenMP allows the programmer to specify blocks that can be
parallelized and tasks that must be run in parallel. OpenMP can not use the
GPGPU tools. The library also includes synchronization primitives other
than the barrier. Since the thread model is used for execution, the memory
is common to all the generated threads. OpenMP can be considered as a
standardized tool for creating portable parallel programs executed on the
central processor (or processors), which allows the programmer do not think

about the features of the parallel programming tools on each platform.

CUDA (Compute Unified Device Architecture) is a hardware-
software platform for parallel computing that uses the resources of the NVidia
graphics processor for non-graphical computing [2|. The development of
CUDA was started in 2006. Supported programming languages C, C++
and Fortran, Windows 7, Windows XP, Windows Vista, Linux, Mac OS X.
All supported nVidia GPUs are divided into several classes depending on
hardware and supported operations, backward compatibility is supported.
CUDA is available both on home video adapters, and in the form of special-

ized coprocessors Tesla and Fermi.

CUDA uses the SIMD model, which imposes limitations on algorithms
that can be effectively implemented on such a platform. So, for example,
when executing a conditional statement, there is a problem with processing
an alternative branch - you have to perform operations, the result of which
will be discarded. However, CUDA masks this problem, the programmer does
not have to solve it himself. Because of the features of the processor, CUDA
can only work with a limited set of data - one-dimensional, two-dimensional
and three-dimensional blocks with data of the same type. Each block can
be processed by several threads using shared memory. CUDA allows you to
perform calculations simultaneously on the central and graphics processors
due to the asynchrony of the call to the computational core. With GPUD:-
rect technology, it is possible to directly access the memory (DMA) of the
GPU. From a programmer’s perspective, a program using CUDA consists of
several phases, each running on a central or graphics processor. Functions

that can be executed on the GPU are marked with special keywords (exten-
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sion of the language) and are called kernels. The data structures involved are
also marked with keywords. When compiling a special preprocessor splits the
phases into two parts, these parts are compiled separately, that is, the modi-
fication of the compiler of the source programming language is not required.
The address spaces of the central and graphic processors are independent of
each other, which causes a delay when copying data between them.

Thus, CUDA allows the programmer to accelerate the execution of code
sections that fit well on the SIMD execution model, with the help of graphics
processor resources. You do not need to modify the development tools already
in use, you just need to set up a connection with the preprocessor and the
compiler from NVidia. Desadvantages are the need for a graphics processor
from NVIDIA (which, incidentally, is corrected using the generalized OpenCL
library) and the need to copy data between address spaces, as well as the

complexity of the memory model on the graphics core.

In work [10], a comparison of OpenMP and CUDA technologies is pre-
sented for calculating matrix multiplication. According to the analysis car-

ried out by the author, it can be established the following:

1. If the platform does not have a graphics processor supporting acceler-
ation of calculations (nVidia CUDA / AMD Fusion / OpenCL), but
has a multi-core (or multiple) processor, the use of OpenMP is an easy
way to achieve improved performance and reduce power consumption

in proportion to the number of processors / cores;

2. If the platform has a graphics processor, the task is SIMD-realizable,
but it is a set of consecutive segments of the parallel SIMD code, then
the application of the graphics processor gives an increase in perfor-

mance and a reduction in energy costs by an order of magnitude.

Since in our problem matrix calculations are widely used, and we will
develop a program on a machine with a graphics card NVIDIA Geforce 920M,
then we chose CUDA technology to use them in our calculations. Therefore,

below we will describe in more detail the CUDA program model.
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2.2 CUDA program model

The first ideas about the possibility of using their own video adapters in tasks
other than simple image rendering were born in the minds of NVIDIA devel-
opers in 2004. It was then that NVIDIA Corporation released its first book
on graphics programming - GPU Gems. Most of the book consisted of arti-
cles devoted to programming game graphics, as well as creating high-quality
visual effects. Of particular interest are the last chapters of this book, enti-
tled "Beyond Triangles", which contained the first reflections on what we now
call GPGPU (General-Purpose Computing on Graphics Processing Units).
But the real interest is the second book, from the GPU Gems series released
a year later, in the spring of 2005, in which almost a quarter of the chapters
were devoted to the possibility of programming the GPU. But with the tools
and environments that were available at that time, this task remained ex-
tremely complex and almost inaccessible to ordinary programmers. To solve
this problem, NVIDIA assembled a group of developers engaged in the cre-
ation of special software and hardware. This direction was named Compute
Unified Device Architecture or simply CUDA. The development of CUDA
was announced together with the G80 chip at the end of 2006, and in early
2007 the developers were presented with the first beta version of the CUDA
SDK. The first official version of CUDA was released in June 2007.

2.2.1 The CUDA memory model

Perhaps, one of the most important features for CUDA developers is free
memory access (support for scatter and gather operations) with the possibil-
ity of byte addressing. Each of the threads executed on the GPU has access

to the following memory types:

1. Global memory is the main type of memory, which has the largest
volume and is available for all multiprocessors on a video chip. The
size of global memory directly depends on the model of the video card
and varies from 256 megabytes to 4 gigabytes on Tesla. Has a high
bandwidth (more than 100 gigabytes / s on the latest solutions from
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Fig. 2.1: Program model of multiprocessor memory

NVIDIA), but work with this type of memory is associated with sig-
nificant time delays (several hundred clock cycles). Global memory is

not cached, supports linear addressing and conventional pointers.

. Local memory is a type of memory in which all variables declared inside
the CUDA program are placed by default. Just like global memory, it

is very slow and does not support caching.

. Shared memory is a 16-kilobyte block of memory, available for writing
and reading from all stream processors in a multiprocessor. In terms
of speed, this type of memory is comparable with registers. The main
purpose of shared memory is to ensure interaction between threads.
Also shared memory can be used in the role of a programmable cache,

which helps to reduce delays when working with global memory.

. Constant memory is a 64 KB memory area used to store the program’s
constant values. This type of memory is cached (8 kilobytes per mul-
tiprocessor). And if there is no necessary data in the cache, reading
from the constant memory is performed with delays of several hundred

clock cycles.
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5. Texture memory is a block of memory accessible only for reading by all
multiprocessors. Sampling from this type of memory occurs using the
texture blocks of the video chip. Due to this, it is possible to perform
linear interpolation at no additional costs. This type of memory is

cached.

Fig. 2.1 shows the software model of the video card’s memory. In fact,
global, local, textural and constant memory are represented on the chip
in the form of the local memory of the video card. The CPU can only

access global, constant and texture memory.

Multiprocessor

Shared memory

Registrs I Registrs I Registrs I
ALU

Processor 1 Processor 2 sss  Processor N

|I’ e
L

Video card memory

Fig. 2.2: NVIDIA Multiprocessor Model

2.2.2 Multiprocessors

Video chips from NVIDIA consist of several clusters of texture units (Tex-
ture Processing Cluster, TPC). Each cluster in turn consists of a block of
texture samples and several multiprocessors. The multiprocessor consists of
8 computational devices and two superfunctional units. All instructions in
the GPU are performed according to the SIMD principle, i.e. one instruction
applies to all threads in the wrap (a group of 32 threads). This way of doing
so called SIMT (Single Instruction Multiple Threads) - one instruction and
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many threads. Each of the multiprocessors is allocated from 8192 to 16384
registers (depending on the model of the video card), which are common to
all the threads that are executed on it. Also on each processor there is 16
kilobytes of fast shared memory, which is write access and read from any
stream within one block. Multiprocessors also have access to video memory,
but it is necessary to be extremely cautious, since access to it is associated
with significant time delays. To speed up access and reduce the number
of accesses to video memory, all multiprocessors are equipped with a small
(8 kilobytes) cache for constants and textures. Multiprocessors GPU can
perform up to eight blocks and up to 24 wraps, each of which includes 32
threads. In other words, the multiprocessor has up to 768 threads.
Knowledge of the architecture of the GPU is extremely important in the
compilation of the algorithm, since it allows to optimize it for the available

resources of the video card.

2.2.3 Programming on CUDA

As mentioned earlier, the graphics transporter used to render the image is
a set of multiple processing steps. With traditional APIs, the programmer,
regardless of the complexity of the algorithm, is always required to configure
all parts of the graphics transporter. This fact significantly complicates the
use of the GPU for solving general-purpose problems, since even a simple
addition of two matrices requires execution of a number of commands for
preparing and drawing images in the off-screen buffer. As a result, several
lines of the shader program account for hundreds of lines of additional code.
When solving problems with small dimensions, these additional costs can
negate the entire gain from using the GPU.

The programming model used in CUDA differs from the traditional API
in that it completely hides the graphical transporter from the programmer,
allowing it to write programs in more familiar terms for the extended varia-
tion of the C language. In addition, CUDA provides the programmer with
a more convenient model of working with memory. There is no longer any

need to store data in 128-bit textures, since CUDA allows you to read data
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directly from the memory of the video card.

NVIDIA CUDA includes two APIs: high level (CUDA Runtime API) and
low (CUDA Driver API). If you need to use the low-level functions of the
graphics processor, the programmer can always abandon the Runtime API
in favor of the Driver API. It is worth noting that the use of both APIs in

one program is not possible.

The first step when moving an existing algorithm to CUDA is certainly
its analysis, the purpose of which is to find a "bottleneck" that needs to be
parallelized. As a rule, in the algorithm for CPU such areas are enclosed
in a cycle or recursion. Full transfer of the algorithm to the GPU is not
possible, because the GPU does not have access to either computer memory
or I / O devices (except for the frame buffer, which can be displayed as a
picture on the computer screen). While executing the program, the CPU
is still responsible for the preparation and postprocessing of the data, while
the laborious work itself falls on the GPU. A set of instructions executed on
the GPU is called the kernel. The kernel, in fact, is the development of the
concept of shaders. The CPU is responsible for the formation and compilation
of the kernels. The video chip simply accepts the already compiled kernel and
creates its copies for each data item. Each of the kernels is executed in its
own thread. Threads in the GPU can be executed only in groups of 32 copies
(wrap). In this case, the total number of threads needed to solve a problem
can exceed the maximum allowable for the current video card. Therefore,
each clockeycle hardware chooses which of the wraps will be executed. But if
in the CPU such a switch would take hundreds of clockcycles, the GPU does
this almost instantly. The data in the kernel is scalar, unlike shaders, where
all data are represented as four-component vectors. Such a representation is
more natural for most non-graphic tasks. The programming model of CUDA
involves grouping flows into blocks - one-, two- or three-dimensional matrices.
Interaction between them is carried out with the help of shared memory. Also
there are synchronization points that allow data in all threads to be brought
to the current state. Each of the kernels is executed over the grid of the
blocks (see Fig. 2.3) . At any one time, only one grid can be executed on the

GPU. This grouping allows you to achieve maximum scalability. If the GPU
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Fig. 2.3: The scheme of grouping threads into blocks and grids

does not have enough resources to run all the blocks - they will be executed
sequentially, one by one. This allows the developer not to think about the

power of the device on which the application will be launched.

Programming CPU on CUDA

There are a number of common steps in every application written on NVIDIA
CUDA, regardless of its purpose: Preparing the memory. Since the GPU
does not have access to RAM, the programmer needs to take care in advance
that all the resources necessary for executing the application kernel are in
the memory of the video card. For these purposes, three main functions are
used from the CUDA SDK: cudaMalloc, cudaMemcpy, and cudakree. These
functions have the same purpose as standard malloc, memcpy and free, but, of
course, all operations are performed on video memory. It is also worth noting
that the function cudaMemcpy has an additional parameter, indicating the
direction of copying the information (from the CPU to the GPU or vice
versa). The configuration of the grid and blocks. The configuration process
is extremely simple and consists in setting the size of the grid and blocks.
The main task of the programmer at this step is to find the optimal balance
between the size and the number of blocks. By increasing the number of
threads in the block, it is possible to reduce the number of calls to the global
memory by increasing the intensity of data exchange between the threads via

fast shared memory. On the other hand, the number of registers allocated to
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the block is fixed and if the number of threads is much larger, the GPU will
begin to place data in slow local memory, which will significantly increase
the execution time of the kernel. NVIDIA recommends that programmers
use blocks of 128 or 256 threads. In most tasks, the number of threads in the
block allows to achieve optimal delays and the number of registers. Starting
the kernel. The kernel is called as a regular function in the C language.
The only significant difference is that when you call the kernel, you must
transfer the previously defined grid and block dimensions. Retrieving results
and freeing memory. After executing the kernel, you must copy the results
of the program back to the main memory using the cudaMemcpy function,
specifying the reverse copy direction (from the GPU to the CPU). Just like
in any C-program, you need to release all allocated resources, to prevent

memory leaks.

Programming GPU on CUDA

Writing code for the GPU on CUDA and Shader Model is very different.
When using CUDA, there is no need to learn a new language, the developer
has the familiar C with a number of additional extensions, with which you can
access the hardware capabilities of the GPU and the context of the current
executable thread. The functions that make up the kernel are placed in a file
with the extension cu, which is compiled using the NVCC program. NVCC,
in turn, is a wrapper over other tools, and calls them: cudacc, g ++, cl,
etc. As a result of the compilation, all the code is divided into 2 parts: the
first part is intended for execution on the CPU, and the second contains the
PTX object code for the GPU. To determine the type of device (GPU or
CPU) on which the function will be executed, a number of qualifiers have
been introduced in CUDA:

1. _ host__ — functions marked with this qualifier are executed on the
CPU. They can be called in the same way, only with the CPU.

2. __global __ —runs on the GPU, it is called from the CPU.

3. __device__ —runs on the GPU, it is called from the GPU.
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CUDA also provides a set of specifiers that define the type of memory for

placing variables:

1. device__ — this specifies that the variable is in the global memory
of the device. This type of memory is used for data exchange between
CPU and GPU, as well as for the interaction of kernel from different
blocks.

2. _ _constant__ — specifies a variable in the constant memory. This type

of memory is cached.
3. _ shared__ — specifies a variable in the shared memory of the block.

A function executed on the GPU can have arbitrary arguments. In most
tasks, references to memory locations are transferred as parameters to which
all the necessary information was previously copied, as well as variables con-
taining the dimensionality of the data. That is, the parameters are the same
for all kernel instances running on the GPU. In order to determine the piece
of data to be processed, the blockDim and blockldx variables are used, which
contain the block size and the index corresponding to the current kernel in-

stance.
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Chapter 3

Solution the problem of EM
wave diffraction on metallic
plate by the method of

moments

In this section we will consider the problem of electromagnetic scattering for
metallic plate and its solution by the method of moments. The rectangular
metallic plate is the special case of microstrip antenna radiating element.
Following [1,2], we obtain analytic representations for the elements of
the moment matrix and construct the resulting system of linear algebraic
equations. All about the numerical solution of this problem will be presented

below, in the next section.

3.1 Integral equation of electric field (EFIE)

ant 1ts solution

It will be recalled that the equation for the surface current induced on a
conducting scatterer is obtained from Maxwell’s equations and boundary
conditions on the electric field (see, for example, [3-6]). Let S — be an open

or closed surface of an ideally conducting body with unit normal n. We
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denote by E' the electric field generated by the source in the absence of the
body (antenna). It induces a surface current J on S. If S is an open surface,
then we consider J as the sum of surface currents on opposite sides of S,
and hence the normal component J should disappear on S boundaries. The

scattered field E® can then be calculated from the formula (see ||)
E’ = —iwA -V, (3.1)

where A and ® — are vector and scalar potentials, respectively. From elec-
tromagnetic theory it is known that the potentials are related to the exciting

current through the Green’s function. The following formulas are valid in

free space:
A(r) = / I0)Gr,)dS'. (3.2)
S
B(r) = % / oG, ")dS, (3.3)
S

where the Green’s function

_' — /
e ik|r—r'|

G(r,r")

- drc|r —r!|’

k= wy/pe = 2m /A (X - is the wavelength) and |r — 7’| — is the distance
between an arbitrarily localized observation point r and the starting point »’/
on S. The charge density o is related to the surface current density by the
continuity equation

V- J = —iwo. (3.4)

The boundary condition for the electric field in the case of an ideally con-

ducting surface has the form
n x (E' + E*) =0, (3.5)

whence, using (3.1) we obtain an integro-differential equation with respect
to J
—E! = (—iwA — V), (3.6)

tan

Together with (3.2) - (3.4), equation (3.6) is the so-called integral equation
for the electric field (EFIE). In the literature, the classical formulation of
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Fig. 3.1: Triangulation of an arbitrary surface

EFIE for ideally conducting surfaces is written as

n x /SG(T, ') [J(r') + %V(V ~J(r")| dS" = ﬁn x E'(r),
and equation (3.6) is called an equation in terms of mixed potentials (Mixed
Potential Integral Equation). Nevertheless, everywhere below, we will adhere
to the term EFIE, implying equation (3.6), taking into account (3.2) - (3.4).
We note that the presence of the derived quantities J in (3.4) and & in
(3.5) means that it is necessary to select with special care the basis and test

functions when solving the problem by the method of moments.

3.1.1 RWG basis functions

One of the most popular basic functions used in calculating antenna param-
eters are the so-called RWG functions proposed in [1]. It is convenient to
use them to search for an approximate solution of EFIE, when the surface
of an ideally conducting body is divided into elementary triangular areas.
That is, we assume that the surface S is "well" approximated by a triangular
grid. We will use standard terms such as a face to indicate the surface of an
elementary triangular area, an edge (boundary edge) - to indicate one of its
sides and a vertex - to indicate the vertex of a triangle (see Fig. 3.1) First
of all, note that each basic RWG function is associated with one inner edge
and vanishes everywhere on S, except for a pair of triangles adjacent to the
given edge. Figure 3.2 shows two such triangles, T'F and T, , adjacent to the
n-th edge. The points belonging to the triangle 7' can be described both in

global coordinates by the radius vector r and in local coordinates using the
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Fig. 3.2: A pair of triangles with a common inner edge n

radius of the vector p; given with respect to the free vertex of the triangle

T:". A similar remark is also true for the triangle 7, with the only difference

that the vector p, is directed from the point belonging to the triangle to

the free vertex T". The choice of "positive" and "negative" triangles is arbi-

trary, taking into account that for the entire cycle of calculating the surface

current, it will not change.

The base function associated with the n-th inner edge has the form:

fa(r)

.

0,
\

ln
2A¢ pjz_a rec TJ—
sapy, reT; (3.7)
in other cases,

where [, is the length of the n-th edge, A" and A, — areas of the triangles T,

and T, respectively. List the main properties of these functions [1]|, which

make it possible to use them as an approximation for the surface current

1. The current density does not have a normal component to the bound-

ary edges of two triangles, except for the common n-th edge, i.e. the

current does not flow through the external boundary of the given area

and, consequently, there is no current density discontinuity and asso-

ciated linear charges on the boundary of the sections of two triangular

elements.

2. The current component normal to the n-th edge is constant and con-

+
tinuous along this edge and represents the height of the triangle T,
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with the edge n as the base. Numerically, it is expressed by the formula
+

h* = 2A, /l,. This coefficient normalizes f, in (3.7) so that its thread

density through the edge n is unit value and continuous when passing

from T.F T,.". Thus, linear charges on the n-th edge are also absent.

. The surface divergence f,,, which is proportional to the surface charge

density o, is expressed by the formula

%, reTr
Vi-fo=q-, rel, (3.8)
0,

Thus, the charge density is a constant in each of the triangular el-
ements, and the total charge density is zero (on a pair of adjacent

triangles).

. The integral R, = f fndS is called the moment of the function f,.
T +Ty
By the mean value theorem, we have

Ly
Ro = (A7 + A [0 = 2(057 +p7) = (i +7150), (39

where f%9 —is the average value of f,, on a pair of triangular elements,
+
pn — is the radius vector of the center of mass of triangles in local
+
coordinates, and ri —is the radius vector of the center mass relative

to the global origin.

Following the method of moments, we represent the surface current every-

where on S in the form of an approximate formula

N
I~ anfalr), (3.10)
n=1

where N — is the number of inner edges. Since each basis function is as-

sociated with one inner edge that is common to two triangular elements,

accordingly, up to three-basis functions can have non-zero values inside each

triangular face. But for a given edge only the basic function associated with

it has a current component normal to this edge. The current of the remaining
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basis functions in adjacent faces is parallel to this edge. In addition, since
the normal component f, to the n-th edge is unit, the coefficient «,, can be
interpreted as the normal component of the current density flowing through
the edge n. According to the above properties, all the basis functions inside

a given triangle are linearly independent. On the boundary edges of the sur-

Fig. 3.3: Local coordinates in the triangle T, with the observation point in the triangle
T

p

face S, the sum of the normal components of the current flowing through
the opposite sides of S is equal to zero because of the continuity equation.
Therefore, it is not necessary to determine and take into account in (3.10) the
contributions from the basis functions associated with the boundary edges.
Note also that due to a significant change in the directions of the stream-
lines f,, in the triangle, it is not obvious that such functions can describe,
for example, a current flowing in one direction over the entire area of the
given triangle. Show this with the aid of Fig. Consider a triangle 7, with
sides [y, and [3. The basic functions defined in this triangle have the form
fi = (l;/2A,)pi,i = 1,2,3. It follows from Fig. 3 and the definition of the
functions f; that the linear combinations I f1 — 1 fo and [3f; — [1 f3 are con-
stant vectors for each point r in 7}, that are parallel to the edges I3 and Is,
respectively. Indeed, consider, for example,

lolq l1lo l1ls
l - = —P1— — 0 = —— — )
oft — l1fo 5 ]qpl 9 lq 5 4(](291 p2)

Since the two forms are linearly independent (not parallel), any constant
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vector of arbitrary magnitude and direction can be expressed by a symmetric

linear combination of these forms in the triangle 7.

3.1.2 Testing procedure

The next step in the method of moments is the procedure of testing or mul-
tiplying the initial equation for trial (test) functions. As trial functions, we

take the expansion functions f,. Define scalar multiplication as

<f,g>=/f-gds
S

and will test the equation (3.6) with the RWG functions. We get

<Ei7 fm> - z'w(A, fm> + <VCI), fm> (3'11)

Using the methods of calculating the surface integral and the properties of

fm on the boundaries of S, we rewrite the last term in (11) in the form

(VO, fr) = —/CIDVS < fmdS. (3.12)
S
Then, taking into account (3.8), the integral in (3.13) can be approximated

as follows

. ]. 1 ~ ct\ c—
S T Tn
(3.13)

In (3.13), the average value of ® for each triangle was replaced by ® at the
center of mass of the triangles. Using similar arguments, we can approximate
the terms in (3.11) containing the vector potential and the incident field.

Show this with the example of the term (E', f,,,):

~ . 1 | 1 |

2 | Ab -
S T T
~ lm (. .C c i C—\ C—

(3.14)
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Thus, applying the procedure for testing EFIE RWG functions, taking into
account (3.12) - (3.14), we obtain the equation

iwly, [A<T$)pﬁj + A(rfn_)p%] [ @ (1)) = ()] =

2 2 mn
ot e (3.15)
— lm EZ c+H\Fm_ EZ c—\Mm
B+ B |
which is written for each inner edge, m = 1,2,...,N. In [1] it is noted

that another interpretation of the testing procedure is possible, leading to

equation (3.15). We can equate linear integrals of the form [ Fdr, where
Cm
F' denotes the right and left sides of equation (3.6), and C,, — is a piecewise

linear path from the point 7% up to the middle of the edge m, and from
it to the point r{ . The values of E’ and A can be approximated along
each part of the path by the corresponding values at the centers of mass
of the triangles. The resulting equality, which we obtain in this case — is
the equation (3.15) without the factor l,,. Within any interpretation, the
testing procedure reduces the requirements for the differentiability of the
scalar potential ® in (3.6) due to the fact that V& is first integrated. The
aim of the approximations (3.13), (3.14) is to get rid of the surface integrals
from the potential values, which allows us to approximate the double integral
over the surface by using of a single integral. This, in turn, greatly simplifies
the calculation of the elements of the moments matrix, which will be discussed
below. On the other hand, to solve equation (3.11), we can use any other

quadrature formulas suitable for calculating double integrals.

3.1.3 The matrix equation and the elements of the mo-
ment matrix evaluation

After substituting the expansion for the surface current with respect to the

basis functions (3.10) into equation (3.15), we obtain a system of linear al-

gebraic equations (SLAE) of size N x N, which can be represented in the

form
ZI =V, (3.16)
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where Z = [Z,,,] — N x N matrix, I = [a;,] — is the column of unknown
coefficients, V' = [V},] —is the column of the known right-hand side. Elements

of the matrix Z and the column V' are determined by the following formulas:

pc—i- pc—
Zonn = b [iw (A;m R T ) +®,, - cp;ml (3.17)
c+ c—
p p
Vm:lm E+' = L s 3.18
where
+ —@k:|7“fn 7’|
Ay = f folr) S, (3.19)
d rm — 7|
ot
o, e~ - I'ds’ 3.20
mn — 47rezw / fn | ) ( . )
ot
E, = E(r). (3.21)

After the elements of the moments matrix Z and the vector V are deter-
mined, we can solve the system (3.16) with respect to the vector of unknown
coefficients «,, by one of the known methods for solving SLAE.

Elements of Z,,,, can be calculated directly using formula (3.17) (taking
into account (3.19) and (3.20)) for each combination of indices m and n.
However, it will be shown below that such an approach is of little effect and
a variant is suggested that allows us to reduce the calculations necessary to
obtain the moments matrix. The calculation of each element of the matrix
Zmn associated with the edges m and n includes the integration over the
triangles Tni with the observation point at the center of mass of the triangles
Tnf . It is not difficult to verify (see Fig.3.4) that some of the same integrals
required for calculating the element of the matrix Z,,, are also necessary for
calculating the element Z,4(r # m,s # n) if the edge r is an edge of the
triangle T,/ or T, and the edge s —is an edge of the triangle 7, T, . Indeed,
if we focus on a pair of triangular faces and not on a pair of edges, we note
that the integrals computed for the source surface with the vector and scalar
potentials observed at the center of mass of the other triangular face are
included in all elements of Z,,,,, including an edge n as an edge of a triangle-

source, and an edge m - as an edge of a triangle-observation. Therefore, it is
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Fig. 3.4: The scheme for calculating the elements of the Z,,, matrix of moments

more efficient to calculate the required integrals of potentials by combinations
of pairs of faces, rather than directly counting all single elements of Z by
combinations of pairs of edges. For each combination of pairs of faces, the
integrals of the potentials can be multiplied by the corresponding coefficients
in (3.17) and their contributions accumulated in the corresponding elements
of Z as they are calculated. In accordance with the above, we consider the
calculation of the integral of the vector and scalar potentials for a given
pair of faces of the source and observation. Figure 3 shows a pair of faces
with an observation point at the center of mass of the triangle 7, and a
current source in the triangle 7). Each of the three-basis functions, which
can simultaneously exist in 7, is proportional to one of the vectors pi, po
and p3 shown in the figure. Each vector p;, i« = 1,2, 3 is depicted directed
from the corresponding vertex, but can be directed to the vertex, depending
on the direction of the vector in the face adjacent to the edge. We express

p; in terms of global coordinates
pi==x(r"—mr),i=1,2,3. (3.22)

Further, it follows from (3.19) and (3.20) that we need to calculate the fol-

lowing integrals:

m l; efik\rci’fﬂ ,
AP = i dS 3.23
' 47r/ <2Aq> P jrep —op!| (3:23)
1 L. 6—ik|7"6p—r’\
o — R B 3.24
' Arweiw / (Aq) |rer — 1| (3.24)

q
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associated with the i-th basis function on the face ¢ and the observation point
at the center of mass of the face p. To calculate the integrals (3.25), (3.26),
we can use different quadrature formulas using a triangular master element
that uses barycentric coordinates. More information about this can be found
in [1,3]. It should also be noted that when the regions of the source and the
observation region coincide (p = ¢) or overlap one another, a singularity arises
in the integrals, which makes numerical integration impossible and presents
a separate difficult problem in the method of moments. In these cases a
singularity is usually distinguished in the Green’s function and integration
is performed analytically. The integrals that arise in this case are computed
in [3]. The obtained expressions do not depend on the basis functions and,
accordingly, it is sufficient to count them once for each triangular element of

the surface.

3.2 Implementation

In this section, we consider the realization of a numerical solution of the
problem of electromagnetic wave diffraction on a rectangular metal plate.

The implementation consists of the following steps:

1. Surface triangulation and analysis of the resulting geometric structure

for RWGQG elements construction

2. Approximate calculation of the vector and scalar potentials, filling the

matrix of moments

3. Parallel implementation of the stabilized method of bi-conjugate gra-

dients for the subsequent solution of SLA

3.2.1 Triangulation

The existing methods for constructing a triangular mesh can be divided into
two groups according to the method of constructing the grid: direct and

iterative. All direct methods have two main distinctive features:

e The construction of the desired grid is carried out in one step.
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Opening B.l.ele.

Fig. 3.5: Triangulation with "Triangle" library

e The resulting grid is structured, that is, the topology (the link graph
between nodes) and the coordinates of all grid nodes are known ini-
tially. The most common methods from this group are the methods for
constructing a triangular grid based on templates. These methods are
intended for triangulation of simple domains of a given type, such as a
rectangle, circle, etc. in the two-dimensional case, and a parallelepiped,
a cylinder and a prism, etc. - in the three-dimensional case. For each
such area, a template is used, that is, a scheme for allocating nodes

and establishing links between them.

There are also more universal iterative methods for constructing triangu-
lar grids. These methods allow you to automate the construction of triangular
meshes in fairly complex areas. That is, there is no need to analytically an-
alyze the area before building a grid. Unlike direct methods, these methods
build a triangular grid sequentially, adding one or more elements on each
iteration, and neither the node coordinates nor the link graph of these nodes
are known in advance. Therefore, the grids constructed by these methods are
unstructured. However, this seems to be a small payoff for the universality
that has been acquired. Among the iterative methods, we can again distin-
guish several groups of methods, namely: methods of boundary correction,
exhaustion methods, methods based on the Delaunay criterion.

Fig. 3.5 is the result of triangulation using the library "Triangle" devel-
oped by J.R.Shewchuk. This is a conformal Delaunay triangulation with a

number of specific settings. For the design of complex surfaces, this library
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Fig. 3.6: Triangulation with right triangles

shows good results.

In our particular case, when the area is a rectangle, we built our tri-
angulation by the method from the first group. This made it possible to
simplify the calculation and analysis of geometry (the construction of a mesh

of vertices, edges, triangles and RWG elements), see Fig.3.6.

We briefly describe the triangulation scheme and the analysis of the geo-
metric structure, see Fig.3.7. The input is given the linear dimensions of the
plate - width and height and two numbers that discretize these dimensions

(they determine how small the triangular mesh will be).

First, we form an array of points that form a triangulation. On the basis
of this array, we build an array of triangles, which are given by the numbers
of the three points that make up these triangles. For the triangle, the area
and centroid (center of mass) are calculated, which will be needed in the

subsequent calculations.

Finally, at the last stage, we form the RWG structure. They consist of
an inner edge and two adjacent triangles (we indicate their "+" and "-", i.e.
1 or 0), we additionally calculate the points of the beginning and the end
of the edge, its length, and also the numbers of free vertices, for calculating
the vector rho(r). At the output, we get files "nodes.tzt", "triangles.txt",
"inneredge.trt" (for RWG structure).

3.2.2 Moment Matrix Calculation

After analysis the geometric structure, we proceed to calculate potential in-

tegrals A and ®% . To calculate such integrals, we use the following
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Fig. 3.7: Triangulation with right triangles
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quadrature formula:

[ stwar = Attty + g,
T +Tw
where A" — triangles area, r" — centroid of triangles 77", respectively.

Then, the potential integrals are transformed to the form

e—szmn B B e_lkRmn_
Ax =Py, [(rfr ) T ey, —]

n
8 R+ Ryn-
n 1 eiikRmn‘F eiikRmn*
or = —
mn Amiwe " | Ryt R-

Since we integrate a vector function, we separately consider the components
Az, and AY,, (@5, and @,)

One of the most difficult stages of the method of moments is the computa-
tion of potential integrals in cases where the pvr elements coincide or overlap
by one triangular face. In this case, numerical integration is impossible and
we must perform an accurate calculation of such integrals analytically.

One way to overcome such difficulties is to distinguish a feature in the
Green’s function. Briefly describe the essence of the used technique. We
present the Green function as follow:

e—z’kr e—ikr 1 1
N [ - _] —l_ r
T T T r

The first term on the right-hand side when r tends to zero has a constant
limit equals —¢k , and therefore terms with such an integral kernel can be
calculated using the approximate formulas described above. As for the dis-

tinguished singularity, the new obtained integrals can be written in the form

// //)\ )\j d/\ /\ odA1d g,
|7’

where \;—barycentric coordinate are used for triangular domains. After all
the elements of the matrix are calculated, we can only write down the right-
hand side of the SLAE, which depends on the type of the incident wave. In
our example, we consider a incident field that is directed along the normal

to the surface. In this case
Ei(.ﬁC,y, ) Age™ i(kpx+kyy+k. z) k, = ky — 0= F' = 140671']%7
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and we can write different types of the right side for SLAE, for example,

E, =0, E, = Aj or overwise.

3.3 Parallel implenetation of biconjugate gra-
dient stabilized method

To solve real problems in which SLAE with asymmetric matrices arise, a bi-
conjugate gradient stabilized method (BiCGStab) can be used. This iterative
method, developed by Van Dur East [9], converges faster than the conven-
tional method of bi-conjugate gradients and is used more often in practice.
According to 9], this method has proven itself for solving SLAE with dense,
complex and asymmetric matrices, which arise, for example, in the analysis
of wire antennas.

For the solving of the SLAE of the form Az = b, where A is a complex
matrix, the following algorithm can be used to stabilize the method of bi-

conjugate gradients:

- preparation before iterative process

1. We choose the initial approximation z°, for example, 2° = 0 =
{0,0,...0}

2. We calculate the residual vector r° = b — Az”

3.7=1Y

4. P =a’ =w' =1

5. 00 =p0 =0

- kth method iteration

1. pF = (7,r* 1
k k—1
2. f= Aot
R 5(pk—1 _ wk—lvk—l)
4. vF = Ap¥
5. of = £
SRR G
6. sk = rh1 — ofpk
7. th = Agk
ko [tFs"]
8. wh' = 7 1]
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Matnx size, N Runtime, sec

128 0.0133
256 0.0162

512 0.0204
1024 0.0272
1500 0.0426
2000 0.0675
3000 0.1206
4000 0.2033

Fig. 3.8: Runtime, sec

0. 2k = gh1 4 sk 1 akph

10. ¥ = sF — WhtF

Textit Remark. For complex SLAE in the method are used two scalar
product (u,v) = iu_@vi and [u,v] = zn: u;v;. They coincide in the case of
SLAE with real elle:rilents. =

The stopping criterion for the iterative process can be the number of
iterations k < ke or a given discrepancy (||7*||/]|0]|) < . In addition, the
stopping of the algorithm can be made when the value |wg| is less than some
preassigned number.

The main performance gain of the parallel version of the algorithm is
provided by the use of parallel operations to calculate the scalar product,
the product of the matrix by the vector, and also the linear combination of
vectors. The algorithm running time and the graph of the dependence of the
running time of the parallel BiCGStab algorithm on the SLAE dimension
is presented in table (see Fig.3.8). Also we present as example the code of

some computing kernels implementing the above operations on the GPU (see
Fig.3.9, 3.10).
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Edit Search View Enceding Language Settings Tools Macro Bun Plugins  Window 2

1 @ | @ =

__global  woid add kernel (double* a, double* b, double *c, int H}{
int tid = blocklIdx.x*blockDim.x + threadIdx.x:
if (tid < M)
cltid] ='altid] + bltid]:

_ global_  woid madd kernel (double* a, double® b, double *c, double alpha, int N)
i
int tid = blockIdx.x*blockDim.x + threadIdz.=x:
if (tid < M)
c[tid] = a[tid] + alpha * b[tid]:

Fig. 3.9: Addition operation

—
}global_ vold inner product (double* a, double® b, double® buf, int H)

_ shared double cache[MAX THREADS IN BLOCK]:
int index = blockDim.x*blockIdx.x + threadIldx.x;
double innersum = 07
while (index < N){
innersum += a[index] * b[index]:
index += blockDim.x*gridDim.x;
}
cache [threadIldx.x] = innersum;
__syncthreads():

int i = blockDim.x / 2:

while (i != 0){

if (threadIdx.x < 1)
cache [threadIdx.x] += cache[threadIdx.x + 1i]:;

__syncthreads(}:
i/=2:
if (threadldx.x == 0){
buf[blockIdx.x] = cache[0]:

H
__syncthreads(}:

edef unsigned int uint_t;
late<typename T>

Fig. 3.10: Scalar product
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Conclusion

The method of moments is extremely convenient for modeling microwave
devices due to simplicity, mathematical rigor and a sufficiently high com-
putational speed. However, as the pitch of the triangulation decreases, the
dimension of the SLAE increases. Therefore, for the solution of such systems,
the technologies of distributed computing are attracted. In this paper, we
considered the problem of the diffraction of a plane EM wave by a metal

rectangular plate. To solve this problem,

1. We studied the existing methods and algorithms for solving electrody-

namics problems in the field of antenna’s design.

2. We applied the method of moments to solve the diffraction problem

formulated in the EFIE form for a rectangular metal plate.

3. We studied and used RWG functions as a basis and testing functions

in the method of moments.

4. We made a program implementation of the developed algorithm, in-
cluded triangulation, numerical integration and construction the ma-

trix of moments.

5. Within the program, we chose the biconjugate gradient stabilized method
for solving a system of linear algebraic equations and implemented its

parallel version using parallel programming technologies (CUDA).

As for further research, there are several possible directions.
The first is a change the geometry of the radiating element of a mi-

crostrip antenna. We plan to consider more complex forms. This will require
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new methods of triangulation and the using of special libraries, for example
CGAL.

Further, to analyze the frequency characteristics of microstrip antennas,
it is necessary to take into account more parameters, such as the method of
feeding, the characteristics of the substrate and the dielectric, and also the
effects that arise during the radiation process.

In the field of computing acceleration, we plan to optimize the calculations

on the host using OpenMP technology and try to create some combined
method (OpenMP+CUDA).
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