

25/05/2018

DECLARATION

 I declare that the presented work was developed independently and that I have

listed all sources of information used within it in accordance with the methodical

instructions for observing the ethical principles in the preparation of university

thesis.

Prague, date …………… …………….

 Signature

DEEP REINFORCEMENT

LEARNING FOR

AUTONOMOUS OFF-ROAD

DRIVING IN SIMULATION

Jacques Valentin

Specialization: Cybernetics and Robotics

Thesis Supervisor: Karel Zimmermann, doc. Ing., Ph.D.

Thesis Co-supervisor: Teymur Azayev

Czech Technical University

A thesis submitted for the degree of

Master of Science

June 2018

i

ABSTRACT

This thesis presents different ways to make a car autonomous. We will use the

power of machine learning and neural network to “teach” a car how to drive

autonomously in an off-road environment by using only a minimum set of sensors,

in our case which is just a single RGB camera. We will first focus on a technique

called imitation learning, it is a supervised learning algorithm which takes a lot of

example pairs (image; driving command) to extract a policy that the car will use to

drive in unseen situations. Then we will use the so-called reinforcement learning

technique. It is an unsupervised learning algorithm which manages, by a lot of trial

and error experiments, to create a policy used by the car to drive safely. We

managed with these two techniques to make our car drive itself in a simulator.

 ii

ACKNOWLEDGMENTS

I first want to thank my advisor M. Karel Zimmermann who helped me during this

project. I also want to thank Teymur Azayev who joined this project and helped

me a lot to solve some problems I had. I finally want to thank my parents and my

friends who’ve been there in both happy and difficult moments of this project.

 iii

TABLE OF CONTENTS

Abstract .. i

Acknowledgments ... ii

Table of Contents... iii

Table of tables ... vi

Table of figures ... vi

Introduction ... 1

Chapter 1 Neural network ... 3

Layers.. 4

Fully Connected layer ... 4

Convolutional layer ... 5

Dropout [7] .. 7

Architecture ... 7

Loss function .. 9

Mean square error ... 9

Optimizer ... 10

ADAM .. 10

Software ... 12

Tensorflow [10] ... 12

TFlearn [11] .. 13

Chapter 2 Simulators ... 14

 iv

DEEPDRIVE .. 15

CARLA [12] .. 15

AIRSIM [13] .. 16

Sensors .. 18

API ... 20

Final Choice .. 20

Chapter 3 Imitation learning ... 22

Data .. 23

Gathering the data .. 23

Splitting the training and testing data .. 26

Experiments .. 27

Fine tuning of hyperparameters .. 28

Results .. 32

Chapter 4 ReinforcEment learning .. 34

Principle ... 35

Reward ... 36

Algorithm ... 38

Technique 1: simple DQN [15] .. 39

Technique 2: double DQN [15] ... 40

Technique 3: Double Dueling DQN [16] .. 40

Comparison of thEse techniques ... 41

Results .. 43

Imitation learning vs Reinforcement learning ... 44

 v

Future work .. 47

Using semantic segmentation for imitation learning ... 48

Adding some memory ... 48

Train also the throttle of the vehicle .. 49

Conclusion .. 50

Bibliography ... 52

Annex 1: Learning rate analysis .. 54

Annex 2: keep_prob analysis... 57

 vi

TABLE OF TABLES

Table 1: neural network architecture ... 8

Table 2: simulators comparison .. 21

Table 3: results for imitation learning .. 33

Table 4: results for reinforcement learning .. 43

Table 5: imitation learning vs reinforcement learning .. 45

TABLE OF FIGURES

Figure 1: fully connected layer .. 4

Figure 2: convolutional layer ... 5

Figure 3: ADAM algorithm from [9] ... 11

Figure 4: CARLA sensors: RGB image (left), Depth image (center), semantic

segmentation (right) .. 16

Figure 5: AIRSIM environments .. 17

Figure 6: position of cameras .. 18

Figure 7 : camera images: RGB (top left), Depth (top right), semantic segmentation

(bottom left), surface normal (bottom right) ... 19

Figure 8: scheme of the multi-threading algorithm used for logging the data....... 24

Figure 9: data file ... 25

Figure 10: Technique 2 ... 25

 vii

Figure 11 : split train/test .. 26

Figure 12: effect of learning rate onto learning process... 28

Figure 13: learning rate comparison .. 29

Figure 14: effect of keep_prob on the learning process.. 30

Figure 15: keep_prob comparison .. 31

Figure 16: final learning curve ... 32

Figure 17: Pseudo code for DQN ... 39

Figure 18: DQN learning process .. 41

Figure 19: double DQN leaning process .. 41

Figure 20: double dueling DQN learning process .. 42

1

INTRODUCTION

The first experiments on self-driving cars were conducted in the 1920s1 in some

labs. Nowadays we see companies like Tesla and Valeo which are making cars

autonomous for everyone. Those improvements were made thanks to the

evolution of artificial intelligence techniques. Moreover, thanks to the evolution of

graphical units simulators became really realistic so people don’t need real car to

design artificial intelligence algorithms which need a lot of experiments and data.

Simulators also made the development of such algorithm cheaper and accessible

to almost anyone.

 In [1] they use Google Street View pictures, which cover almost all the cities in the

world, to learn a policy- with reinforcement learning algorithm- to navigate vehicles

through a city. That shows that nowadays with artificial intelligence techniques and

the amazingly big amount of data we can gather, we don’t need straight rules to

navigate a vehicle. They also show that unlike most mobile robots which need a

map to navigate to a particular destination, here we just need pictures of the

environment without creating a map of it. To do that they trained a reinforcement

learning algorithm and increased gradually the complexity of the tasks. A lot of

different reinforcement learning algorithms are described in [2]. They analyzed the

different improvement of deep Q learning algorithm and show how we can

combine them to get better results. Reinforcement learning algorithm became

“famous” when a computer defeat a human for the first time in the game of go, in

[3] the authors explained how they used reinforcement learning for tree searching

in order to play the game of Go. The algorithm explained in [3] is an evolution of

the first algorithm described in [4] which was also using imitation learning to learn

a policy to play go. Imitation learning is another technique used to navigate a

vehicle through a city, in [5] they described how the used imitation learning from

expert driving data to do that. They trained their policy in a simulator and they were

also able to put this policy into a 1/5 scale truck to test it into the real world. That

1 https://en.wikipedia.org/w/index.php?title=Autonomous_car&oldid=838072806

2

shows that simulators help to gather realistic data which can be used to train neural

networks that can perform well in the real world as explained in [6].

For this project, we decided that we wanted to use a simulator and these techniques

to make an autonomous off-road driving vehicle. We looked at different simulators

and decided that instead of navigating through a city we will navigate through a less

structured environment like a countryside track. After finding the right simulator

we made a car autonomous using the two different techniques explained

previously. We first trained a neural network using imitation learning. We tried

different techniques to gather the data and also tried different architectures for the

network. After finding the right architecture and getting some results with imitation

learning, we implemented a reinforcement learning algorithm to compare the

results of both techniques.

3

CHAPTER 1

NEURAL NETWORK

One of the goals of this project is to study how we can use artificial neural networks

to make a car autonomous. We will consider that the reader knows what a neural

network is and its principle. We will start with a focus on the different layers that

we used in the network. Then we will focus on the activation function, the loss

function and the optimizer we used.

4

L a y e r s

FULLY CONNECTED LAYER

Fully connected layers are the most common layers of neural networks. Let’s see

how it works.

Figure 1: fully connected layer

On this figure, we see that the fully connected layer is composed of the neurons

n5 and n6, and each neuron is connected to all the neurons of the previous layers.

We have the following result

4

,

1

 for j = 5,6j i j i j

i

n w n b


  

5

Where ,i jw and jb are the weight and the bias that will be trained to fit our

database. We can then see that for each neuron of the fully connected layer there

are l+1 parameters where l is the number of neurons in the previous layer. Then

we need to train (1)n m  parameters where m is the size of the fully connected

layer. The problem with this kind of layer is that it takes a lot of parameters (if we

want to feed a 120x120 images to a fully connected layer with a size of 10 it takes

144 000 parameters), and does not preserve the spatial arrangement of an image,

because we have to flatten it before feeding to the fully connected layer.

CONVOLUTIONAL LAYER

Figure 2: convolutional layer

6

Unlike the fully connected layer, the convolutional layer preserves the spatial

structure of an image. In figure 2, we can see a convolutional layer with K filters.

The principle is easy to understand, we take a window of size n m , in our

example the size of the window is 2 2 , which will slide through the image. And

then we cluster the pixels inside the window to feed it to a neuron in the next layer.

So we have:

1 ,1 ,1 ,2 ,2 ,3 ,4 ,4 ,5

1

2 ,1 ,2 ,2 ,3 ,3 ,5 ,4 ,6

1

L

j j j j j j j j

j

L

j j j j j j j j

j

N W P W P W P B

N W P W P W P B

P W

P W





  
        

  


 
       
 

 

 





We see that for the first channel of the layer N+1 we will need (* * 1)m n L 

parameters, so in total we need (* * 1) Km n L   parameters. The different settings

we have are the size of the kernel, the number of filters (K in our example) and the

stride. The stride is the number of pixels the kernel is moving to the right and

down. These parameters have an influence on the size of the next layer, as we see

on the figure 2 the layer N+1 has a size of 2x2 and the size of the layer N is 3x3.

So it is a way to decrease the complexity of the problem. In our network we will

use that instead of the pooling layer.

7

DROPOUT [7]

A big problem in Machine learning is overfitting. It means that the network is

perfectly trained based on the data we used to train it but it will behave very badly

on data it never saw. To prevent this in a neural network we use a layer called

dropout. This layer will drop neurons with some probability. Thus it reduces the

correlation between the layers and prevents overfitting.

A r c h i t e c t u r e

To find the correct architecture we get some inspiration from the network

described in [8]. In this paper, they also implement a neural network for a self-

driving vehicle using a single camera which led us into thinking that it was a good

architecture. But it was a really heavy network used to detect a lot of features like

road signs and there was more than 4 billion parameters to train. Since we don’t

need this we simplified it by removing some layers or just changing their sizes.

After a lot of experimentation, we finally found an architecture which seemed to

work. We can see the final architecture in table 1.

The input layer is a grayscale picture from a camera which we normalize to get a

mean of 0 and a variance of 1. This technique is commonly used to make neural

networks converge faster.

The output layer is a vector of size NUM_OUTPUT. This number depends on the

data we have and how we want to control the car, we will talk about this in the next

chapters. It can be 1 2 or 3 that depends on what we want to control.

1- Continuous control for the steering only

2- Continuous control for steering and throttle

3- Discrete control for the steering only

Because we used different approach the target of the network changed. If we use

a continuous control, the target is just the control command of the vehicle for the

image which is fed into the network. When we used a discrete control, the problem

8

becomes a classification problem so the target is a one hot vector. A one-hot vector

is a vector full of zero except one element, the one which represents the class we

desire for a given state, which is one.

Layer Type Size Number of parameters
to train

1 Input layer 120x120x1 0

2 Convolutional
Kernel : 5x5; Stride : 2x2

58x58x24 624

3 Convolutional
Kernel : 5x5; Stride : 2x2

27x27x36 21636

4 Convolutional
Kernel : 3x3; Stride : 1x1

25x25x64 20800

 Flatten2 40000 0

5 Fully-connected 10 400010

6 Dropout 10 0

7 Output layer NUM_OUTPUT 11xNUM_OUTPUT

Table 1: neural network architecture

2 Layer to flatten the previous layer into the fully-connected layer

9

L o s s f u n c t i o n

The loss function is the mathematical tool which helps to determine how far the

model is from the ground truth. During the different experiments we did we used

two different loss functions because we approached this problem from two

different angles. But at the end, we used only the mean square error loss function.

MEAN SQUARE ERROR

 (1.1)  
2

, ,

1 1

1 1
ˆ

f N

i j i j

i j

MSE y y
N f  

  

The equation (1.1) describes the mean square error where:

 N is the number of data in the batch

 f is the number of features we want to predict, in our algorithm

_OUTPUTf NUM

 ,i jy is the ground truth value for the feature i in the batch j

 ,
ˆ

i jy is the predicted value for the feature i in the batch j

The mean square error is usually used for regression problems. In this project, we

used it when we wanted to control the car with a continuous input. But we have

also used it in our DQN reinforcement learning algorithm which is a classification

problem, where we want to learn the Q policy which will be used for the

classification.

10

O p t i m i z e r

To train a neural network we need to minimize the loss function. The way to do it

is to feed the network with an input where we know the ground truth prediction,

and then we need to backpropagate the loss function through the network to

update each weight and bias of the network. The optimizer is the tool used to do

this.

ADAM

In this project, we used the ADAM optimizer. But first, let’s take a look at the

gradient descent optimizer. This optimizer updates the weight using the formula

(1.2)

(1.2) i i

i

J
w w

w



 


Where:

 J is the loss function

  is the learning rate

We see in the formula that  is a constant which describes how much we have to

follow the gradient. But if we are too close to a local minimum we can “skip” it if

 is too big. ADAM optimizer solves this problem by updating the learning rate

11

through the learning process for each weight. The algorithm is described in [9] as

you can see in figure 3.

Figure 3: ADAM algorithm from [9]

12

S o f t w a r e

To implement our artificial neural network we used two libraries in python,

Tensorflow, and Tflearn

TENSORFLOW [10]

Tensorflow is an open source library developed by Google. It is a really useful

library because it can compute either on a CPU or on a GPU, and it is the same

code for both of them which is very useful when one wants to work on a cluster.

For example, one can start to design one’s network on one’s computer without a

GPU and then finalize the training on a cluster with multiple GPUs. It is also very

easy to use thanks to all the tutorials that one can find on the internet.

The main principle of Tensorflow is to work with graphs, the graphs are composed

by:

 Tensors, which are the variables represented by matrices. They are

represented in graphs by edges.

 Operations that operate on the tensors. They are represented in graphs as

nodes.

13

TFLEARN [11]

Tflearn is an abstracting layer on Tensorflow which simplify the implementation.

It provides a lot of different layers like convolutional and fully connected. It also

provides a simple way to fit our model to the data and then load and save our

model. One of its nice features is that it is totally compatible with Tensorflow so

every operation made with Tensorflow are compatible with Tflearn. This can be

useful to implement some features which are not provided by Tflearn.

14

CHAPTER 2

SIMULATORS

For this kind of problem, self-driving car, it is much easier to use a simulator to

simulate the car in different type of environment. As we can see in [6] simulators

are a good way to generate annotated data, it doesn’t need a large amount of human

effort to annotate all the images we can get, for example for semantic classification.

It also reduces the time to get a large variety of images. It is easy, for example, to

get images in a raining environment but in the real life, we have to wait until it rains.

So we can understand through this example the potential of a simulator for deep

learning algorithms. For this project, we found different simulators, which can

simulate a car in different environments, and which were released at the beginning

of our project.

15

D E E P D R I V E

We won’t talk a lot about this simulator, but like in [6] they used the open world

game GTAV to train self-driving car algorithms. But Take-Two Interactive©

forced them to shut down the project so we couldn’t move forward in this

direction. But finally they moved to unreal engine and released the second version

of Deepdrive, but it was too late for us.

C A R L A [1 2]

CARLA is an open-source simulator created to simplify autonomous driving

research. It simulates an urban environment (because at the beginning of the

project we didn’t know that we wanted to focus on off-road driving), where we can

find different static objects like buildings or vegetation but also dynamic objects

like pedestrians and cars.

As you can see in figure 3 the simulator provides different sensors, RGB image

(Left), depth image (Center) and semantic segmentation (Right).

Moreover, the physic of non-player characters was really realistic, the pedestrian,

for example, were walking on the sidewalk but could cross the road at any moment

- which is a nice feature - to explore as many states as we can to train a self-driving

vehicle.

16

Figure 4: CARLA sensors: RGB image (left),

Depth image (center), semantic segmentation

(right)

In [12] the authors try to compare different algorithms like the one we wanted to

implement and this is why we were interested in this particular simulator.

The problem we had is that at the beginning of the project, just the first version of

the simulator was available and after running into some difficulties to install it, we

realized that it was really slow and it was almost impossible to drive the car under

such conditions.

A I R S I M [1 3]

Airsim is a simulator for drones and car on unreal engine environment, its purpose

is to represent as closely as possible - the real world - to be able to export an

algorithm trained in the simulator into the real world. It is available on both

Windows and Linux and providing binaries for different kind of environments as

one can see in figure 5.

17

Figure 5: AIRSIM environments

It also provides different interesting features

18

SENSORS

On each vehicle, there are 5 different cameras positioned as in figure 6

Figure 6: position of cameras

Each camera can provide different kind of images as you can see in figure 7:

 RGB images (top left)

 Depth images (top right)

 Semantic segmentation (bottom left)

 Surface normal (bottom right)

19

Figure 7 : camera images: RGB (top left), Depth

(top right), semantic segmentation (bottom left),

surface normal (bottom right)

It is also possible to get the speed of the vehicle and to see if the vehicle collided

with something.

20

API

AIRSIM also provides an API to control the car. Using which, we can control

different things:

 The throttle

 The steering

 The brake

 The gear (it can also be set to automatic)

The only problem is that when we drive the car manually we don’t have access to

these parameters, we will get to this point in the next chapters.

Another feature of the API is the possibility to set and get the pose of the vehicle,

it helps to set the vehicle in a specified position and then train our network in

different situations.

F i n a l C h o i c e

Now that we are aware of all the three choices we have had, we’ll explain our final

choice. Table 2 highlights the pros and cons of each simulator we have talked

about. We finally choose the Airsim simulator because we could not do what we

wanted to do with the other two. Also, because of the fact that it was difficult to

put more vehicles in the simulation, we choose to use the mountain environment

21

that one can see on figure 5 to accomplish off-road driving which is usually sans

competing vehicles in the same environment.

Simulator Pros Cons

Deepdrive  Big open world of GTA V  Not available at the beginning of the

project

CARLA  Lot of different sensors

 Good physics of non-player

characters

 Difficult to install

 Only available on Linux

 Not fluent and really difficult to drive

manually

Airsim  Lot of different sensors

 Easy to install thanks to binaries

 Lot of different environments

 Available on Windows and Linux

 Realistic physics of vehicle and

environment

 Need to be used to work with unreal

engine to add more vehicles

 Can’t get the control command when

driving manually

Table 2: simulators comparison

22

CHAPTER 3

IMITATION LEARNING

As explained in the introduction we tried two different techniques to make our

vehicle autonomous. In this chapter, we will explain the first one which uses

imitation learning algorithm. It is a deep learning algorithm where an expert drive

manually the car while gathering the state of the vehicle, in our case it’s an image

taken in front of the vehicle, and the command of the vehicle like the steering and

the throttle in our case. From these examples, a neural network is trained to learn

a policy which we will use to make the car drive autonomously.

23

D a t a

GATHERING THE DATA

The first thing to do was to get the data in order to train our neural network. The

data is composed of an image extracted by the camera in front of the vehicle as we

saw in the previous chapter, and the ground truth is the control command of the

vehicle.

We tried two different techniques to get those data.

Technique 1

As we explained before it is not possible to get the steering and throttle when we

drive the car manually in the simulator. So we had to find a way to overcome this

problem. To do that we use different threads as you can see in figure 8. We

implemented a keylogger which gives us the ID of the key pressed at time kt and

in parallel we have a thread which logged the images taken by the camera at time it

. We then get two .csv files containing the images, the ID of the keys pressed and

the time when we get each of them. The .csv file looks like the figure 9. And now

we can reconstruct the throttle and steering by counting how many times we have

pressed the keys in the time between the capture of two images. We tried different

formulas to reconstruct the control command:


1

2

(up)

steering k ()

throttle k down

right left

  


  
 Where up, down, right, left are the number

of times we have pressed the corresponding keys in the time between the

capture of two images. And 1k , 2k are two positive constants we can set

up. The problem with this technique is that we don’t know if it is a good

24

way to reconstruct the throttle and steering and we don’t know how to set

1k and 2k perfectly, so it was not a very acceptable idea.

 1 sgn()

throttle K

steering k right left  



 Here, we just use a binary steering and

a constant throttle. In that case, the steering can take only three values 1k ,

1k and 0. So the problem switches from a regression problem to a

classification problem as was explained in the first chapter.

Figure 8: scheme of the multi-threading algorithm

used for logging the data

25

Figure 9: data file

Technique 2

The second technique was more accurate because we use the API to drive the car

manually. To do that we used a joystick to get the steering value and we use a

constant speed instead of a constant throttle. The reason is that a constant throttle

can lead to a high speed and high acceleration at the beginning. In this

environment, a high speed and a high acceleration make the vehicle drift making it

in turn difficult to control. The pseudo code in figure 10 explains the procedure

we have used to get the data.

Figure 10: Technique 2

26

One can see that we don’t get the images at the first time but we obtain the pose

of the vehicle first and then go through all the poses and then extract the images.

We do this to facilitate the driving because when we extract an image in the

simulator, the frame rate decreases and it can become difficult to drive the car.

SPLITTING THE TRAINING AND TESTING DATA

In any supervised learning algorithm we need to get some data to train our

algorithm, but if we train it on the entirety of the data, we can make the model

overfit and it will behave very badly on unseen data. To prevent this, we have to

separate our data into two sets, namely, a training set and a testing set. We can then

train our model on the training set and see if it overfits on the testing set. As we

were in possession of only one environment we had to find a way to make these

two sets. To do that, we drove the car and saved different positions of the car in

the environment. The car can later be set into which positions using the API of the

simulator. So different paths were used to obtain training and testing data. Hence

we obtain the training and testing tracks. Figure 11 gives an example as to where

we separate a track into two subsets for training and testing. In the end, we have

gathered around 23 thousand images for training the network and around 4

thousand for testing it.

Figure 11 : split train/test

27

E x p e r i m e n t s

For our first experiment, we tried to reconstruct a continuous control command

from manual driving as explained before. The first problem was that we used the

full architecture described in [8]. As we explained before, this network had more

than 4 million parameters to tune so it overfitted rapidly, and we also needed a lot

of training data. We then tried different ways to reconstruct the control command

but at one point the vehicle was performing badly. It barely managed to navigate a

single curve even after providing it with a lot of data.

Then we realized two things. The first thing is that the network used in [8] is used

to navigate through a city with a lot more information than we have in our

environment. For example road signs, pedestrians or other vehicles. So it was a

good idea to reduce the size of the network to extract only the necessary features

like the shape of the road or the slope of it. The second thing is that when we tried

to reconstruct the control command, we had no idea if it was the command we

used when we drove the car. So instead of continuing using this technique, we

switched to a new technique.

Now instead of controlling the throttle and the steering of the vehicle, we resorted

to just controlling the steering with a constant throttle. And to label the images we

just considered three options: going straight, going left or going right. Which results

in the steering only taking three values. It switches the problem from a regression

problem to a classification problem. We also decided to change the architecture of

our network and decrease its complexity. We then made different experiments to

get the architecture we needed. The main problem was the overfitting. We were

always able to get the network to fit the training data perfectly but then it behaved

really badly for the testing data. And as soon as there was some drifting we were

no longer able to follow the training data. So even on a training track where we

gathered data for training the network, the vehicle behaved badly. One reason is

that because we couldn’t use a constant throttle when driving the vehicle manually,

we needed at times, to increase the throttle to make the vehicle move. But with our

keylogger, we couldn’t log two keys at the same time. And sometimes when we

needed to go left or right, we also had to accelerate and the logger just logged the

acceleration and then labeled the image as “go straight” instead of “go left” or “go

28

right”. Because of this, there was a lot of incoherent data that were difficult to

distinguish.

We decided then to use another technique to gather the data, the second technique

that was described before, using the API and a joystick. Using this technique we

switched again to a regression problem but it was much easier to gather the data,

and the results were much better.

F i n e t u n i n g o f h y p e r p a r a m e t e r s

After we tried different architectures for the network we finally observed that the

car was able to drive by itself satisfactorily, but to get the best results we needed to

find a fine-tuning for the hyperparameters. The first parameter we had to set was

the learning rate.

To find the best learning rate, we tried different learning rates and watched the

effect on the training. We can see the different learning curves in figure 12 and

each graph is also in Annex 1 with a better resolution.

Figure 12: effect of learning rate onto learning

process

29

We plot the value of the loss function for training and testing data (Y-axis) for

different training steps (X-axis). We see that for a learning rate of 0.01 or 0.001 the

network almost doesn’t learn anything and for a learning rate of
610
, it learns

really slowly. So we were left with the choices of a learning rate of
410
 or

510
.

Although, for the second one we observed that the network stops leaning after few

epochs. But for a learning rate of
410
, even if it overfits - the network continues

to learn. To choose a good learning rate we have to see what the minimum loss

value for the testing data is. This is what we see in figure 13. We see that there is

just a small difference between a learning rate of
410
 and one of

510
 . So, we

decided upon the best learning rate being
410
 .

.

Figure 13: learning rate comparison

After choosing a good learning rate we needed to choose a good keep_prob

parameter for the dropout layer. It is the parameter which decides if we keep a

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

lo
ss

leaning rate

learning rate analysis

min val loss

corresponding train loss

30

neuron or not. We did the same experiment as before, we choose a learning rate

of
410
 and then change the keep_prob parameter and watch the effect on the

learning process, as one can see on figure 14 and again each graph is on Annex 2

with a better resolution.

Figure 14: effect of keep_prob on the learning

process

We see that if keep_prob is too slow, the network doesn’t learn enough and if it is

too big it overfits too much. The figure 15 is the same as figure 13 but for the

keep_prob parameter. This helps us to choose the best parameter and here the best

keep_prob seems to be 0.9.

31

Figure 15: keep_prob comparison

Now we have these two parameters so we can train the network to get the most

optimal result. The figure 16 shows the learning process with the loss value for

training and testing data and the red line shows the best step to save our network.

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

lo
ss

keep_prob

keep_prob analysis

min val loss

corresponding train loss

32

Figure 16: final learning curve

R e s u l t s

So now we have a control policy for our car, with loss value of 0.1525 for training

data and 0.1684 for testing data, we need to see how it behaves. In table 3 one can

see the performance of our algorithm. To get these results we drove the car from

different parts of the track for hundreds of episodes. The way to compute the

distance of the car from the center of the road is explained in the next chapter. We

see that the car stays mostly in the center of the road but as there are not a lot of

624

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000

lo
ss

steps

learning curve

train

test

choosen step

33

examples where the car is in a difficult situation, the network has some problems

to manage these situations.

We also see that the car travels 1 km most of the time. We explained before that

we separate the track into training and testing parts. Each part is around 400 m

long. Since there is at least one curve in each part, we can be hopeful that our car

is able to navigate through curves. And as a result of this, the car can drive for 3

minutes autonomously without crashing in most of the cases.

mean distance
from the center

 of the road
≈8 pixels

mean distance traveled ≈1 km

mean time traveling ≈3 minutes
Table 3: results for imitation learning

34

CHAPTER 4

REINFORCEMENT LEARNING

In this chapter we will go through the second technique we have used to make the

car autonomous. It is a reinforcement learning algorithm which tries to make the

car learn how to drive by itself using trial and error experiments.

35

P r i n c i p l e

Reinforcement learning is a technique of artificial intelligence which was inspired

by how animals can learn by trial and errors. For example, when people try to teach

a dog to do some tricks like seating, they ask the dog to seat and when it seats they

give him treats or caress, then the dog will know that when its owner asks him to

sit it will be rewarded if it does. A connection in its brain will be made between the

order to seat and the action to sit. This is how reinforcement learning works. For

each action, the agent receives a reward or a penalty (the pain in our example) and

then back propagates this error to be able to know what to do the next time it

encounters this state. And we have used neural networks in this algorithm to

generalize those situations.

In this project, we used a deep Q-learning algorithm. In this algorithm, the actions

are discretized. In our case we have three actions:

1. Go left

2. Go straight

3. Go right

So we try to learn the following function

 1(,) : (,) at t t t tQ s a s a 

Where:

 ts state at time t

 ta action taken at time t (straight, left, right)

 1ta  action taken at time t+1

And this function is following the Bellman’s equation described by (4.1)

36

(4.1)
1 1 1(,) max (,)

tt t t a t tQ s a r Q s a
   

R e w a r d

For a reinforcement learning algorithm, the reward is the most important feature.

Designing a good reward can dictate if our agent will learn what we want it to learn.

Let’s go back to the example we used before with the dog. If instead of treat or

caress one reprimand it, the dog will never seat when its owner asks it to sit. Hence,

we can see that using the wrong reward can change the behavior of our agent

completely.

In this project, we decided to use the distance of the car from the center of the

road as a reward. As we could not directly obtain the coordinates of the center of

the road, we have used the semantic segmentation feature from the simulator. We

first get a binary image where all the pixels of the road are 255 and the rest is 0. We

used the equation (4.2) to compute the center of the road for each row of pixels,

where:

 i is the row i

 j is the column j

 ,i jP is the value of the pixel at row i and column j

 ic is the center of the road for the row i

(4.2)

,

,

i j

j

i

i j

j

j P

c
P









 Once we have the center of the road for each row of the image, we take only a

few rows in front of the vehicle and compute their mean. As we know that our

image has a size of 120x120, if the vehicle is in the center of the road, then this

value should be 60. So the distance of the car from the center of the road is just

d 60C  where C is the center of the road. So if d is greater than 30 it means

that the car is starting to go out of the road and when d is 60 it means that the car

is completely out of the road.

37

We now have to design a reward from this value. We could directly use d as a

penalty but if we train it with different image sizes, this penalty can be higher or

smaller. To prevent this we decided to clip the reward between 1 and -1 with the

following formula (4.3) where:

 d is the distance from the center of the road

 maxd is the maximum value d can take, here it is
120

60
2



(4.3)
max

2 1 0.5
d

r
d

 
     

 

We can see that if max

2

d
d  which means that as the car starts to go out of the

road the reward is 0 and if 0d  which means the car is perfectly at the center of

the road, the reward is 1 and finally if maxd d which means that the car is

completely out of the road, the reward is -1. So our agent should learn to stay as

close as possible from the center of the road.

38

A l g o r i t h m

Here we will explain how to implement the reinforcement learning algorithm. For

this project, we have used an already implemented algorithm [14] and changed it

to fit our needs.

The first important thing to implement is the replay memory. The replay memory

is a buffer containing experiences that the agent has encountered during the

learning process. During this learning process we will save each tuple

1(, , r ,)t t t ts a s  in this replay memory where:

 ts is the state at time t

 ta is the action taken for state ts

 tr is the reward we get for taking action ta for state ts

 1ts  is the state at time 1t 

After each episode, we will extract a random set of tuples from the replay memory

and apply the Bellman equation to train the network. This replay memory makes

the network more robust by learning from a bigger amount of examples and not

only from the few examples it has encountered in the previous episode. To create

the replay memory we used the class that has already been implemented.

Now we have to implement the algorithm itself. It is described by the pseudo code

in figure 17. We can see that there is a probability epsilon that the agent takes a

random action. It helps the agent discover new states during the training process.

39

Figure 17: Pseudo code for DQN

The network we used has the same architecture as in imitation learning. The

difference is that it outputs a vector with three values and then we take the arg max

of this vector to decide if we wish to go straight, left or right. An example being: 0:

left; 1: right, 2: straight. It is a classification problem, but instead of using the cross-

entropy loss function we use the mean square as a loss function. This way we can

directly train the value of the policy.

Finally, we have to update the Q value according to the bellman’s equation, and

for that, we have tried different techniques.

TECHNIQUE 1: SIMPLE DQN [15]

For the simple DQN, we use only one network. We first compute (s ,)t tQ a by

feeding the state ts into the network, we then get 3 values for each action (left,

right, straight) and then we take the value corresponding to the action ta . Secondly

we compute  
1 1 1max (,)

ta t tQ s a
   by feeding the state 1ts  into the network and

by taking the arg max of the 3 values we get. Which leaves us with just having to

update (s ,)t tQ a according to the Bellman’s equation.

40

TECHNIQUE 2: DOUBLE DQN [15]

This technique is similar to the previous one but we use two networks here. The

main one, to compute (s ,)t tQ a and the second one - to compute

1 1 1max (,)
ta t tQ s a
  

. Here, we train only the first network and we update the

weight of the second one to the values of the first one. This technique should help

in preventing the network towards overestimating some states and hence makes

the learning process more efficient.

TECHNIQUE 3: DOUBLE DUELING DQN [16]

This technique is the same as the second one but we have here, changed the

architecture of our network. So for this technique, we split the network into two

branches at the end. One branch is supposed to decide how good it is to stay in a

given state, while the second one is supposed to decide how good an action is

compared to the others. And finally, we combine these two branches at the end to

output our Q values.

41

COMPARISON OF THESE TECHNIQUES

We tried these three techniques for thousands of episodes and observed the

learning process.

Figure 18: DQN learning process

Figure 19: double DQN leaning process

42

Figure 20: double dueling DQN learning process

In figures 18, 19, 20 we can see the learning process of these three techniques. For

each figure, we can see the total reward we get after each episode (left) and the

moving average of total reward with a window of 25 episodes (right). We observe

this in order to ascertain if the network manages to learn something.

We see that simple DQN is not really efficient, it almost doesn’t learn anything.

The double dueling DQN is learning during the process, but it is not as efficient as

the double DQN. So this is the technique we have decided to use for this project.

43

R e s u l t s

After training the network for 2000 episodes we get a policy and then evaluate it

the same way as we did in the case of imitation learning. We can see these results

in table 4.

What we can say about this result is that they could very certainly be better if we

train our network for a longer time period. But the training process itself is very

time-consuming. We will talk more about these results in the next chapter where

we will compare both imitation learning and reinforcement learning.

mean distance
from the center

 of the road
≈13 pixels

mean distance traveled ≈0.5 km

mean time traveling ≈2 minutes
Table 4: results for reinforcement learning

44

IMITATION LEARNING VS REINFORCEMENT LEARNING

Here we exhibit a comparison between the results for the imitation learning

algorithm and the reinforcement learning approach.

45

Our first conclusion is that even though the reinforcement learning approach

seems easier because there is no data to gather and moreover it takes less time- it

is actually not the case. Firstly, when we started our experiments with the

reinforcement learning algorithm we already had a good network architecture

which made the problem easy. But since we don’t provide our agent with an expert

policy and it has to learn it by itself, it takes a lot of time to see the first results. And

because it takes a lot of time to see some results, it is difficult to tune all the

hyperparameters used in the algorithm.

 Imitation learning Reinforcement learning

Distance from the

center of the road
8 pixels 13 pixels

Distance traveled 1 km 0.5 km

Time of traveling 3 minutes 2 minutes

Total reward 100 63

Table 5: imitation learning vs reinforcement learning

In table 5 we see a comparison between imitation learning and reinforcement

learning. We can readily observe that imitation learning is better but as we have

said before, the results of reinforcement learning can be improved by going

through more episodes.

46

First, we see that in reinforcement learning the controlled vehicle drives further

from the center of the road than in the case of imitation learning. We can

understand the reason behind this by looking at how the car is driven. For imitation

learning, we use a continuous steering which is less affected by the frame rate. But

for reinforcement learning, we use a binary steering which is more affected by the

frame rate. It is the same situation with discrete-time systems in control theory,

where a system can be unstable if the sample time is too large. This can be solved

by an increase in the number of actions. But even if the reaction time is too high

the reinforcement learning algorithm should be more robust, because it has seen

more states where the car is in a difficult situation than in the imitation learning

algorithm which leads us to conclude that if we train our network for a longer time

it should be more suitable for such a task.

47

FUTURE WORK

In this chapter, we will see what can be done to improve our results.

48

U s i n g s e m a n t i c s e g m e n t a t i o n f o r i m i t a t i o n

l e a r n i n g

The first idea we can think of is to use two different networks for the imitation

learning technique.

The first network would be trained only on semantically segmented images. We

saw that it is possible to get these kind of images in the simulator. And using only

these images would make the task easier for the network as we already have

extracted the important features of these images to drive the car i.e. the road

position.

But because we wish to put the policy in a real car in the future, we need a second

network to do the semantic segmentation. There is already a lot of semantic

segmentation networks online that we can use for this purpose. But we still have

to train those networks for our task. To do that we can combine the two networks,

the one for driving the car and the other one for obtaining semantic segmentation,

and train this big network as we did before using the pictures from a camera in

front of the car. In the project when we had unacceptable results with imitation

learning, we tried to use only the segmented images and the results looked

promising but we didn’t have the time to pursue this idea.

A d d i n g s o m e m e m o r y

In this project, every control action the neural network took, was made according

to an image taken at some instant t. But we did not take into account the previous

states. There was no memory of what happened before. So we can think of adding

some memory by using a recurrent neural network to improve our results, in which

way the actions would be taken not only according to what the vehicle sees but

also with a consideration towards what happened before so that the controller may

predict the inertia of the vehicle or the slope of the track. The difficulty lies in the

fact that training a recurrent neural network is more difficult. To provide a

workaround to this, we can first try to feed the network with a bunch of

consecutive images instead of a single image, which is another way to provide some

memory to the network.

49

T r a i n a l s o t h e t h r o t t l e o f t h e v e h i c l e

In both the reinforcement learning and imitation learning approach, we trained

only the steering of the vehicle, and we use a constant speed. Problems arise if for

example, the slope is too high or if there is a tight curve. But if we also think about

training the throttle of the vehicle resulting in decreasing it when we are about to

take a tight curve or increase it if the slope is too high, we should see even more

promising results.

50

CONCLUSION

In this paper we went through two different techniques to make a car autonomous,

in an environment like a countryside track which is a little bit less structured than

usual roads, using the power of artificial neural networks, and the realism of

simulators.

We first had a look at the composition of the neural network we used. It was

inspired by the network used in [8]. In the end, we changed the different layers to

simplify it and make it fit our task better.

Then we looked at the different simulators we could choose and compared them

in order to make the best choice. We chose the simulator Airsim developed by

Microsoft which provide different environments and a wide range of sensors.

After that, we tried our first technique which was the imitation learning algorithm.

It is a supervised learning technique where we had to first gather an expert policy,

where we had to manually drive the car through the simulator while gathering the

control command of the vehicle, and then we used this data to train a neural

network to behave the same way as the trainer did. After some experiments to find

the best architecture of this network we managed to make the car drive by itself

for around 1 km in the simulator.

Finally, we tried the second technique which was the reinforcement learning

algorithm. For this technique the car learned by itself, the strategy to drive through

the simulator. It makes a lot of trial and error experiments and then learns from its

mistake. For any action we have a reward or a penalty. And we back propagate this

reward to find the appropriate action to take when the agent is in a given state. But

this learning process is really time-consuming especially since we want our policy

to converge to the optimal policy. After training it for 2000 episodes our car was

able to drive for half a kilometer by itself. But these results can be improved by

training it for a longer time.

We finally could compare these techniques and at this point, the imitation learning

had better results, even though the reinforcement learning seemed more robust as

it has seen more unusual states where the car is in difficult situations.

51

We have mentioned some ideas to improve these results. One of them being, for

example, by adding some memory to our network to make it more capable of

predicting the inertia of the car for example.

52

BIBLIOGRAPHY

[1] . M. Piotr, K. G. Matthew , . M. Mateusz, M. H. Karl , A. Keith , T. Denis ,

S. Karen , K. Koray , . Z. Andrew and H. Raia , "Learning to Navigate in

Cities Without a Map," 2018.

[2] H. Matteo , M. Joseph , v. H. Hado , S. Tom , O. Georg , D. Will , H. Dan ,

P. Bilal , A. Mohammad and S. David , "Rainbow: Combining Improvements

in Deep Reinforcement Learning," 2017.

[3] S. David , S. Julian , S. Karen , A. Ioannis , H. Aja , G. Arthur, H. Thomas ,

B. Lucas , L. Matthew , B. Adrian , C. Yutian , L. Timothy, H. Fan , S. Laurent

, v. d. D. George , G. Thore and H. Demis , "Mastering the Game of Go

without Human Knowledge," Nature volume, no. 550, 19 October 2017.

[4] S. David, H. Aja , J. M. Chris , G. Arthur , S. Laurent , v. d. D. George , S.

Julian , A. Ioannis , P. Veda , L. Marc , D. Sander , G. Dominik , N. John ,

K. Nal , S. Ilya , L. Timothy , L. Madeleine , K. Koray , G. Thore and H.

Demis , "Mastering the game of Go with deep neural networks and tree

search," Nature volume, no. 529, 28 January 2016.

[5] C. Felipe , M. Matthias , . L. Antonio, K. Vladlen and D. Alexey , "End-to-

end Driving via Conditional Imitation Learning," 2017.

53

[6] . J.-R. Matthew, B. Charles , M. Rounak , N. S. Sharath , R. Karl and V. Ram

, "Driving in the Matrix: Can Virtual Worlds Replace Human-Generated

Annotations for Real World Tasks?," 25 Feb 2017.

[7] S. Nitish , H. Geoffrey , K. Alex , S. Ilya and S. Ruslan , "Dropout: A Simple

Way to Prevent Neural Networks from," 2014.

[8] B. Mariusz, D. T. Davide , D. Daniel , F. Bernhard , F. Beat , G. Prasoon , .

D. J. Lawrence, M. Mathew , M. Urs , Z. Jiakai , Z. Xin , Z. Jake and Z. Karol

, "End to End Learning for Self-Driving Cars," 25 Apr 2016.

[9] . P. K. Diederik and . B. Jimmy, "Adam: A Method for Stochastic

Optimization," 2014.

[10] "https://www.tensorflow.org/," [Online].

[11] "http://tflearn.org/," [Online].

[12] D. Alexey , R. German , C. Felipe , . L. Antonio and K. Vladlen , "CARLA:

An Open Urban Driving Simulator," 2017.

[13] S. Shital , D. Debadeepta , L. Chris and . K. Ashish, "AirSim: High-Fidelity

Visual and Physical Simulation for Autonomous Vehicles," 2017.

[14] "https://github.com/awjuliani/DeepRL-Agents/blob/master/Double-

Dueling-DQN.ipynb," [Online].

[15] v. H. Hado , G. Arthur and S. David , "Deep Reinforcement Learning with

Double Q-Learning".

[16] W. Ziyu , S. Tom , H. Matteo , v. H. Hado , L. Marc and d. F. Nando ,

"Dueling Network Architectures for Deep Reinforcement Learning," 2016.

54

ANNEX 1: LEARNING RATE ANALYSIS

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0 5000 10000 15000 20000

lo
ss

steps

learning rate = 0.01

train

test

55

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 5000 10000 15000 20000

lo
ss

steps

learning rate = 0.001

train

test

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000

lo
ss

steps

learning rate = 0.0001

train

test

56

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 5000 10000 15000 20000

lo
ss

steps

learning rate = 0.00001

train

test

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 5000 10000 15000 20000

lo
ss

steps

learning rate = 0.000001

train

test

57

ANNEX 2: KEEP_PROB ANALYSIS

0.15

0.2

0.25

0 5000 10000 15000 20000

lo
ss

steps

keep_prob = 0.1

train

test

58

0.15

0.2

0.25

0 5000 10000 15000 20000

lo
ss

steps

keep_prob = 0.2

train

test

0.1

0.15

0.2

0.25

0 5000 10000 15000 20000

lo
ss

steps

keep_prob = 0.3

train

test

59

0.1

0.15

0.2

0.25

0 5000 10000 15000 20000

lo
ss

steps

keep_prob = 0.4

train

test

0.1

0.15

0.2

0.25

0 5000 10000 15000 20000

lo
ss

steps

keep_prob = 0.5

train

test

60

0.1

0.15

0.2

0.25

0 5000 10000 15000 20000

lo
ss

steps

keep_prob = 0.6

train

test

0.15

0.2

0.25

0 5000 10000 15000 20000

lo
ss

steps

keep_prob = 0.7

train

test

61

0.1

0.15

0.2

0.25

0 5000 10000 15000 20000

lo
ss

steps

keep_prob = 0.8

train

test

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000

lo
ss

steps

keep_prob = 0.9

train

test

62

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5000 10000 15000 20000

lo
ss

steps

keep_prob = 1

train

test

