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Abstract 

 First, I review the distraction caused by roadside advertisement. In the work, I focus on 

billboards. I name most common billboard types and the distraction they cause. 

 Then, I create two methods to potentially reduce the distraction – blackening the 

content of the billboard and hiding the billboard in the scene using methods like content aware 

fill. After establishing methods, I create a simulator setup to test these two methods and then 

compare the results. 

 After evaluating the results, I create a proof-of-concept implementation using publicly 

available computer vision framework and the training data extracted from simulator testing. 

 

Key words 

 Car, driving, billboards, distraction, advertisement, blocking, distractors, virtual reality, 

simulator testing 

 

Anotace 

V práci je čtenář nejdříve seznámen s problematikou reklamy podél silnic a distrakcí, 

kterými na řízení působí. V práci samotné se potom soustředím konkrétně na billboardy. 

Vyjmenuji jejich druhy a specifické vlastnosti. 

 Poté navrhuji dvě metody redukce distrakcí způsobených billboardy – začernění 

obsahu a skrytí billboardu ve scéně pomocí metod jako například Content Aware Fill. Po 

definování těchto metod tyto dvě metody testuji pomocí simulátoru řízení a potom vyhodnocuji 

závěry z tohoto testování. 

 Na závěr ukazuji implementaci výsledné metody z předchozí kapitoly pomocí veřejně 

dostupného projektu zaměřeného na počítačové vidění a trénovacích dat extrahovaných 

z testování na simulátoru. 

 

Klíčová slova 
 Auto, řízení, billboardy, distrakce, reklama, blokování, distraktory, virtuální realita, 

testování na simulátoru 
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1 Introduction 

Driver distraction is a cause of many crashes, with some of them being lethal. In fact, 

25% of all crashes are caused by distractions according to the National Highway Traffic Safety 

Administration statistics [1] from 2000. The 100-Car Naturalistic Driving Study [2] from 2006 

even shows, that 78% of all crashes are caused by distractions (distraction in this case 

meaning variety of factors including fatigue, looking in mirrors etc.) Also, while other causes of 

crashes like alcohol are on decline, distraction related crashes are on a rise as newer cars 

have more and more things distracting the driver, like in-car build-in multimedia systems. 

Phone distraction is also a huge factor, as not using a phone for a longer period of time is 

problem for an increasing amount of people. 

Distraction in this case is defined as a process of diverting the attention from a desired 

area of focus and thereby blocking or diminishing the reception of desired information. In the 

case of driver distraction, we can divide the distraction factors into two basic groups - in-car 

distractions and outer distractions.  

Most studies focus only on the first group, the in-car distractions. Probable reason is 

that crashes caused by these types of distractions are in majority. According to study External-

to-vehicle driver distraction [3], chance of crash caused by in-car distraction is 1.25 times more 

probable than crash caused by outer distraction. In-car distractions are also easier to control 

than outer ones. To limit the in-car distraction, we can change the dashboard interface, remove 

distracting functions, we can allow users to use voice control instead of for example a 

touchscreen input and other examples. Outer distraction on the other hand are much harder 

to control. 

Although harder to control, with the recent advances in computer vision and 

computational capabilities as a whole, there is an increasing number of ways to manipulate or 

control this environment in way that it is less distracting for a driver. Also modern cars have 

ways of detecting distracted driver by position of his eyes or by checking the position and 

speed difference to other cars. These car systems can then react and help prevent dangerous 

situations and potential crashes. 

 Target of this study is to find, whether it is possible, to reduce or to block harmful effects 

of external distractions on drivers, more specifically roadside advertisement and to do so 

possibly without introducing other harmful effects [4] and then create sample implementation 

of the selected approach. The best approach is the result of user testing. 

 Roadside advertisement in this case is defined as a device or a sign visible to road 

users that is used to promote services, products, places, businesses or organizations and 

serve purpose of bringing benefit from displaying the advertisement. 
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 Typical advertisement sign cannot be easily defined. It varies considerably both in the 

form of the sign itself and the content of the sign. There are different signs along highways and 

in the cities (Figure 1). Highway signs are usually larger and further away from the road then 

advertisement signs near normal roads. The content itself is also very variable and changes 

regularly. 

 

 

Figure 1 Normal road advertisement sign versus highway sign [5] 

   

My hypothesis is that by reducing visibility of a billboard in the field of view by covering 

it up with other content effectively hiding it in the scene in way that is as natural in the particular 

scene as possible, will make it less distracting for drives despite introducing other possible 

distractions like artifacts and other possible harmful effects. 

The second hypothesis is that removing only the content of a billboard will reduce the 

distraction caused by this billboard, because it will remove the motivation for a driver to look at 

such a billboard, even though the billboard itself will still be visible. 
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2 Problem description 

2.1 Advertisement signs 

2.1.1 Static advertisement signs 

 Static signs are the most common type of signs. The reasons are lower cost and less 

complexity compared to dynamic sign. The content does not change automatically and there 

is no visual movement in the content of the sign. These signs vary from small to large 

dimensions. From a distraction standpoint, they are less harmful and they draw less attention 

and for shorter amounts of time. 

2.1.2 Dynamic advertisement signs 

 These signs change content automatically or have animated or movable content. 

These signs are typically alongside more frequented roads as the cost is higher compared to 

static signs. These signs are much worse distraction-wise, as they draw the attention much 

more aggressively and for longer time, as discussed later in this thesis. There are typically 

three principles these signs use. [4]  

First is sign with vertical adjacent prisms with three sides that rotate, displaying one of 

three pictures (Figure 2). These are typically smaller than other dynamic signs, due to the 

construction limitations (typically 3m x 6m) [4] 

Second is scrolling signs (Figure 2). These have a scroll of vertically adjacent ads that 

spools alongside vertical axis so that the spool displays the ads sequentially on the display. 

These are typically smaller than previous group of prism signs again due to construction 

limitations and are typically placed alongside smaller streets on street level and are typically 

illuminated.  

 

 

Figure 2 Rotating prisms sing and scrolling sign [5] [6] 
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Last type is digital displays (Figure 3). These are the most recent ones and by far the 

worst distraction wise. They can show static images or animated sequences or animated 

individual images or videos. They are typically greater than 4 square meters [4] and the 

individual pixels are made out of small led lights. 

 

 

Figure 3 Pixels consisting of led lights [7] 

 

 These signs (Figure 3), especially when used with animated content, cause the most 

distraction, because the animation together with very high level of illumination make this type 

of advertisement sign most attention heavy.  

For example, on Prague’s most busy road called ‘Pražská magistrála’, after installing 

dynamic led billboards (Figure 4), ŘSDP (Czech road and highway headquarters) reported that 

the number of crashes in the proximity of these billboards was 35% higher than without the 

billboards. [6] 

 

 

Figure 4 Led billboard located on ‘Pražská magistrála’ [9] 
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2.1.3 Legislation in Czech Republic 

Allowance for installing traffic signs is issued for 5 years and must comply with these rules: 

1. They cannot be designed in a way that they can be mistaken with traffic signs 

2. The signs cannot glare the traffic users or disturb the traffic in any other way 

3. The sign must put behind crash barrier or made safe in a way of vehicles crashing 

into the sign 

4. Signs on highways and main roads can be used only to promote local businesses 

maximally 50 meters from the sign itself in a case of build-up areas or 200 meters 

otherwise. 

 

These have to be valid for the whole 5 years of issued allowance, otherwise the signs must 

be taken away on the expanses of the owner of the sign. 

2.2 Distractions while driving 

Again, distraction is defined as a process of diverting the attention from a desired area of focus 

and thereby blocking or diminishing the reception of desired information. [7] In the case of 

driver distraction, we can divide the distraction factors into two basic groups - in-car distractions 

and outer distractions. This is only one of many possible ways to divide driving distractions into 

groups. Another possible grouping could be manual distractions like eating or smoking, visual 

distractions like changing radio station and cognitive distractions like talking to passenger. [8] 

In my work, I use the in-car distractions and outer distractions groups. 

 As already mentioned, according to studies, distractions cause big percentage of 

crashes, depending on study, from 10% [1] all the way to 78% [2]. The big difference between 

study results is caused by different definitions of distraction. Some studies’ distractions include 

factors like fatigue or day dreaming, while other studies do not include these factors. But even 

the low estimate is still a big number. 

 When we take a look number of in-car distractions versus outer distractions, in-car 

distractions are about two times more probable than outer distractions according to study 

conducted by Stutts et al. (2001) for AAAFTS [9], but this number varies a lot trough out 

different studies. If we take this number together with the fact that in-car distractions like 

entertainment systems or mobile phones are easier to control means that most studies that 

focus on reducing or controlling distraction focus on in-car distractions.  

Two most common in-car distraction according to 100-car naturalistic study [2] were 

other car occupants and using other device brought into vehicle. In case of external extractions, 
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studies do not typically divide this group into specific distraction groups. However, there are 

studies that focus specifically on one type of distraction. 

Some studies, focusing specifically on billboard distraction define distraction as a 

glance at billboard longer than 0.75 seconds (minimum perception–reaction time) [10] as this 

number is a border value that may cause a dangerous situation. According to systematic 

literature review by US National Institutes of Health, 10-20% of glances on billboards are longer 

than 0.75 seconds. They also show, that in case of dynamic billboards, both glances longer 

and shorter than 0.75 were more often than in case of static billboards. 

Also, according to aforementioned study, the danger factor of distraction is very 

variable. Despite already mentioned length of glance, the situation were the distractions 

appears have a big impact on how dangerous the distraction is. 

In environment were driver expects all driver related stimuli and situations like following 

a lead car or to concentrate on traffic signs. However, in situations were driving task suddenly 

and unexpectedly becomes more difficult after a period of relatively low complexity, these 

distractions may cause a considerable risk. 
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3 Distraction reduction methods 

To reduce the effect of distractors, billboards in this case, I came up with two methods 

of reducing their effect.  

First method is to make the billboard itself as invisible as possible. Methods like content 

aware filling (Figure 6), filling the billboard with colors from the edges of the billboard or other 

alternatives. Making billboard invisible using these methods together with detection in a real 

environment is impossible, especially if we add motion. There will always be some artifacts (as 

seen on the example below). These could defeat the purpose of the distraction reduction as 

they would cause additional distraction themselves. Another problem could also be detecting 

the whole billboard (not just the billboard content) in the scene if we would want to implement 

this method in a real environment. Detecting the content itself is an easier task. The billboard 

body and legs are more variable and many of them do not share common features that could 

be used for their detection. 

Second method is to blacken only the content of the billboard (Figure 5). Blackening 

the content is an easier task compared to the first method. There is also lower chance of 

artifacts appearing, as the artifacts in real environment would be introduced only by detection 

errors, not by the method itself. 

 

 
Figure 5 Normal billboard with content, Billboard with blacken content 

 
Figure 6 Billboard removed using content aware fill method  
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4 Simulation experiment 

 Before implementing the discussed methods, I decided to do a simulation of these two 

methods to determine their effects in an ideal situation, find out if they actually help to reduce 

the distraction and to find out which of these methods is better to implement it later. 

4.1 Environment 

To collect the data, most studies use controlled environments to measure and observe 

the driving. Study Assessing Cognitive Distraction in the Automobile [1] shows that there is 

some difference in focus and distraction between real-life driving and driving in a simulated 

environment but the difference is not significantly different to affect the results of the 

researches (Figure 7). 

 

 

Figure 7 Environment comparison [1] 

 

The same study [1] shows that the same tasks conducted in laboratory, simulator and real car 

have a different cognitive load in each environment, although the performance is very similar 

(Figure 8). The result of this study is, that both the simulator and laboratory testing is 

ecologically valid – as stated in the study – “lessons learned in the laboratory and driving 

simulator are in good agreement with studies of cognitive distraction on the road-way”. 
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Figure 8 Cognitive load based on environment [1] 

 

Getting the data in a real driving environment is also very expensive. Apart from 

cameras that collect the data regarding the driver attention, which are common for both 

simulated and real driving environments, there needs to be additional sensors installed to 

collect the data. Sensors like accelerometers are needed to identify the data interesting for the 

study [2].  Also, to collect data from as many participants as possible, all the data collection 

equipment needs to be installed into multiple cars. For example, in the case of NTDS study [2], 

100 cars had the data collection equipment installed. Also, there could be legal issues 

depending on the country of the study. 

Second option is to use car simulator. All the controls are very similar to real car and 

there is higher amount of immersion compared to laboratory testing. All of this, together with 

other factors means that there is less cognitive load on the participants of the study. The 

environment is also controllable. We can for example generate hazardous situations and 

measure the participant’s reaction, which cannot be done in a real car. As we are responsible 

for all the simulation creation, we know what is happening on the road at any given time. This 

means we do not need to measure nearly as much information as in the case of a real car. 

Third option is regular laboratory study. This has the advantage of being the cheapest 

and fastest way. There is no need for special equipment that isn`t useable for other studies. 

We have the same amount of control as when using the simulator, but the immersion is lacking 

behind the previous two options. 

As the graph shows, simulator requires up to 2 times more cognitive load than driving 

real car and laboratory testing requires up to 4 times more cognitive load than real car driving 

[1]. 
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4.2 Participants 

Driving experience may also affect driver’s cognition. Beginner drivers are the most 

likely to crash compared to other groups of drivers. Although the number of glances at external 

distractions are comparable in both groups, the effects are different. 

 

 

Figure 9 Glance comparison of novice and experienced drivers [11] 

 

In a study The Effect of External Distractions on Novice and Experienced Drivers [11], 

novice drivers exceeded lane boundary in 26% of scenarios compared to 4% for the 

experienced drivers (Figure 9). 

The next graph (Figure 10) shows the percentage of novice and experienced drivers 

who recognized hazards during test scenarios. Again, experienced drivers recognized by 

average 58% of hazards while novice drivers recognized 43%. Difference of 15%. 
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Figure 10 Comparison of hazard anticipation between novice and experienced drivers [11] 

 

For example, as stated in the aforementioned study - “long glances away from the 

forward roadway did not affect the lane and speed maintenance ability of the experienced 

driver but this was not completely true for the younger novice drivers “. [11] 

All these factors need to be addressed when choosing the participants or when 

evaluating the data. Different driving experience of drivers in different tests could cause error 

in result data. 

Age is not the only factor that has a role in influencing driving capabilities. Some studies 

show for example differences in gender and other factors, although these factors should not 

be significant enough to influence the results of this experiment. 

4.3 Experiment setup 

To collect the data and conduct the experiment, I am using driving simulator Octavia II 

located at Faculty of Transportation Science, Czech technical university.  

4.3.1 Simulator description 

Simulator consists of front half of a Skoda Octavia. It has original dashboard including 

most of control elements like steering wheel, shifter etc. It also has original seats, a-pillars and 

closable doors. The transmission is automatic so that user is not distracted by shifting. Original 

speedometer and tachometer show real data from the simulation. The steering wheel also has 

force feedback based on the simulation. This all adds to the immersiveness, although the lack 

of centrifugal forces is counter intuitive in the beginning as it makes it much harder to tell the 

driving speed of the car, breaking speed or degree of turning just by looking at the road and 
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driving as in a real car. This should be taken in account when testing with participants and let 

them get used to these differences before starting the relevant tests. 

The system of the simulator consists of 4 parts, each of which is proprietary for this 

simulator.  

1. Physics simulation system.  

2. Audio and visual rendering system. The rendering part is quite simple. It has one global 

shader that defines the rendering of the whole scene. Scene itself is defined as a 

normal 3D scene with triggers, that can turn on or off some of the actions like moving 

a car based on the location in the 3D scene. This mean that it can display only basic 

types of visual simulations as it lacks more advanced features like illumination. 

3. Input and output system. This system takes care of inputs like steering wheel rotation, 

gas and brake pedal position or handbrake. It also outputs information to in-car 

equipment like speedometer. 

4. Logging system. This part saves the data collected during simulation to devices 

connected to the simulator. 

 

These systems communicate with each other using a UDP based protocol trough network 

and have control system with user interface to control the simulator (Figure 11). 

 

Figure 11 Simulator control center 

 

There are 3 back-projection screens around the car cockpit that display the simulation 

(Figure 12, Figure 13). One in front and two on both sides. Each of the screens has Full-HD 

resolution of 1920x1080 pixels and 60 Hz refresh rate. [12] 
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Figure 12 Simulator setup [15] 

 

Figure 13 Internal components connection and back projection 

 

4.3.2 Practicing driving 

 Before testing itself, each participant was given about 5-10 minutes of practice driving 

to get used to driving using this simulator. The most unnatural thing when driving a simulator 

is lack of centrifugal forces. It is hard to estimate speed and braking distance when there is 

lack of these forces. This is eliminated by the practice driving as people get used to looking 

more at speedometer instead of estimating their traveling speed like when driving normally. 

One of the problems may also be the sound of the engine while driving, which a lot of 

people use to estimate they’re speed and it might be different in the simulator than in the car 

they are used to.  

4.3.3 Eye tracking 

 For tracking the participant’s eyes, a helmet with two mounted cameras is used to track 

the users viewing target and viewing fields (Figure 14). The result is a video with marker of the 
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viewing target. From this data, test results regarding the time of the participants looking at each 

billboard is extracted. 

 The device needs to be calibrated for each of the participants. The front looking camera 

needs to be pointed towards the front view of the participant while he remains in a natural 

driving position. The area of interest – road ahead, should be in the center of the view of this 

camera where tracking is most accurate. Second camera needs to be looking at the eye of the 

participant through a semi reflective glass with infrared light attached to it and shining in the 

eye from the same direction as camera recording the eye. 

 The camera looking at the eye detects position of the pupil compared to the center 

position of the infrared light and computes a vector, which is used to find a location in the view 

of the second front facing camera based on the calibration. 

 The calibration itself is done in a special software. The participant cannot move his 

head during calibration. On the connected computer, there are by default 5 points presented 

in a field of view of the front camera. One in each corner of the field of view and one in the 

center. Participant then needs to look at each of them. Also brightness and dynamic range 

needs to be set so that eye pupil is detected all the time. After all the 5 points are confirmed, it 

is better to validate the calibration (best working and fastest way I found was to use a laser 

pointer which the participant followed with his eyes and checking the tracking of the laser 

pointer on the computer screen) and in case it is not perfectly accurate, repeat all the calibration 

steps (Figure 15). 

 

 

Figure 14 Eye tracking helmet 
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Figure 15 Eye tracking result, the red cross is the point of view 

 

4.3.4 Simulated track 

 The track used in this experiment is based on track from thesis Driver’s useful field of 

view [12] (Figure 16).  

 

  

Figure 16 Map of the testing track 

 

The track is 5264 meters long and there are 20 curves. The surrounding is neutral - no heavy 

traffic or crossroads but mostly natural environment to minimize the unwanted disturbance for 

the person to drive through the track and finish the task. The driver is supposed to trail a lead 

car that is going about the speed of legal speed limit, but he is not required to do so and can 

overtake the car if he wants to. 

 There are 6 places with billboards in total. Two places (1 and 5) have two billboards 

side by side, other places have only one billboard. They are placed so that only one place can 

be seen at any given time and all of them are visible at least from 200m away. 
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 The content of the billboards is selected so that it is similar to the real world billboard 

content and is represented by ads for fictional products like phones, bank services, perfumes 

etc. The billboards are 50% bigger compared to a real billboard. This had to be done to make 

the billboard ads readable from a larger distance due to lower resolution of simulator projectors. 

[12] Also, all the billboards used in this experiment are static due to simulator limitations. 

4.3.5 Tasks 

Participant completes the same track 3 times. First time with billboards fully shown. 

Second time with billboards hidden from a further distance gradually increasing transparency 

to the point, where they are barely visible (about 85-90% transparency) (Figure 18). Lastly, the 

content of the billboard will be gradually blacken out at the same distance as the transparency. 

The order of these 3 tracks for each participant is chosen using Latin square counterbalancing. 

This ensures that the order of the tracks does not affect the experiment results. The distance, 

where transition of the billboards from normal rendering to black or transparent rendering 

begins is set to the point maximally 300 meters away from the billboards itself and at least 1/3 

of the billboard must be visible. This simulates limitations of image recognition in real 

environment (Figure 17). 

 

 

Figure 17 The environment of the track 

 

 In case of the track with transparent billboards, the billboards do not disappear fully, 

but they are left barely visible. Billboards visibility is controlled using alpha channel. The target 

visibility is 15-20%. This simulates the fact that we are not able to fully remove the object from 

visual field in real application either (Figure 18). 
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Figure 18 Reducing distraction using transparency vs. blackening the content and 
comparison with original billboard 

 

The result of these tasks is the eye-tracking data and times with how long each 

participant spent looking at each billboard together with questionnaire, where the participant 

will answer questions about the content and amount of billboards he detected during each 

round (questionnaire in Czech language added at the end of this document). 

4.3.6 Procedure 

The testing procedure was kept as similar between different participants as possible. 

When participant arrived, all he knew was that he will be driving using a driving simulator. After 

arriving, he was shown around the simulator room. He was explained how the simulator and 

all its controls work. Also, the whole procedure was explained including the questions after 

driving, eye tracking, driving itself, how long will the test take and what data will be collected. 

    Before the start of the testing, each participant was given about 5-15 minutes of practice 

driving to get used to driving using this simulator. The most unnatural thing when driving a 

simulator is lack of centrifugal forces. It is hard to estimate speed and braking distance when 

there is lack of these forces. This is eliminated by the practice driving as people get used 

looking more at speedometer instead of estimating their traveling speed. 

           One of the problems may also be the sound of the engine while driving, which a lot of 

people use to estimate they’re speed and it might be different in the simulator than on the car 

they are used to. 
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    The participants were instructed to drive as long as they want and say when they feel 

they are able to keep the speed they want and place and steer the car exactly where they 

want. 

After practice driving, they were given the eye tracking helmet and the helmet was 

calibrated. A test track was loaded where we asked the participants to look at specific objects 

on the screen and checked if the tracking is accurate. Then the testing track was loaded and 

the participant was instructed to drive the same way as he would drive a real car in a real 

environment - not going over speed limit, stopping at traffic lights etc. 

    After he finished the first round, second track with different billboard rendering was 

loaded and the participant again finished the track and finally the same with third track. The 

order of the three methods was chosen using Latin square counterbalancing method to remove 

the learning effect on the resulting data. 

Each of the tracks took about 5-6 minutes to finish depending on driving speed of the 

participant. Including all the track loading and driving, participant spend about 25 minutes with 

the eye tracking helmet on, which seemed like an upper limit of being comfortable with the 

helmet on. Participant could not move the helmet on his head because it would have ruined 

the calibration. This, combined with the heat of all the projectors and computers in one room 

meant more than half an hour would probably be uncomfortable. 

After each round, the eye-tracking data was saved as the new track was loading. After 

all three rounds the participant was instructed to take off the helmet and we talked about the 

testing and the tracks. I revealed the subject of the experiment and asked him about his opinion 

about each of the 3 rendering methods. I had a questionnaire prepared so that the questions 

asked for each participant are exactly the same. Expect the aforementioned opinion about the 

three methods, we also asked question “How many billboards have you seen in each round?” 

to which the right answer was 8 in all of them. I also asked each participant a question about 

the billboard content - “Do you remember content of some of the billboards and from what 

testing round?”, but because only some participants were able to recall the content and all of 

them from the track with normal rendering, I did not use the question in the testing results as I 

consider it not relevant. As we finished discussing the questions, the testing was ended. 

Including all the parts of the procedure, each participant testing took from one to one 

and a half hour. 

4.3.7 Participants 

 The only requirement for participants was a previous experience with driving a real 

vehicle. Participants were not aware of what the target of the experiment is before the end of 
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the driving simulation and where told to drive as if they were driving their own car in real 

environment. 

The experiment was attended by 15 people, 10 of which were used in this experiment. 

The data from four of the attendants were not used, because it was corrupted during the 

testing. The eye tracking system was not sufficiently tracking their eyes which resulted in 

missing or false data. One attendant could not finish the experiment due to motion sickness. 

Participants were recruited from a student groups and using contacts provided by these 

students. 

One of the problems encountered during testing was eye tracking with glasses. The 

problem was that glasses reduced the dynamic range of the resulting image of the camera, 

because the lens reflects some of the light. Because of that, camera could not detect the iris 

properly and all participants had to drive without glasses. 
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5 Results of the experiment 

To determine the results, I used open source media player VLC. It can slow down the 

video or play the video frame by frame. If we do not take into account the latency of the eye 

tracking, the theoretical maximal error is about +-0.04 seconds because the eye tracking video 

is recorded at 25 frames per second. Each look at billboard was counted from the time 

participant’s view crossed the outer border of the billboard and ended when the view left the 

billboard. Minimal viewing time was set to 0.1 seconds to eliminate counting in situations, 

where participants wants to look at something next to the billboard and just quickly moves his 

point of view over the billboard are to look at it. 

  

Participant 1. bb 2. bb 3. bb 4. bb 5. bb 6. bb 7. bb 8. bb Billboard rendering 

1 3,6 2,7 1,1 1,6 0,7 1,4 2,2 3,2 normal 
1 2,2 0,5 0,9 0,1 0,2 0 0,1 0,8 black 

1 1 1 1,8 0,9 0,9 0,9 0,3 1,2 transparent 

2 0,4 0 0,1 0,2 0,2 0 0 0 normal 

2 0,4 0,3 0,3 0 2 0 0 1,7 black 

2 0,8 2,1 0,6 0 0,9 0 0 1,4 transparent 

3 4,6 1,7 2 0,3 2,5 0,7 1 0,5 normal 

3 0 0 0 0,2 2,1 0 0,5 0,1 black 

3 1,8 2,8 0,9 1,4 1,7 0,2 0 0,3 transparent 

4 1,1 0,4 0,7 0 0,2 0 0 0 normal 

4 0,1 0 1,1 0,6 0,8 0 0 0 black 

4 2,3 0,3 0,9 0,2 0,6 0 0 0 transparent 

5 3,3 0,5 1,3 1,9 2,3 0,4 1,2 3,1 normal 

5 2,5 0 0,3 0 0,1 0 0 0,2 black 

5 2,6 1,3 0,6 1,2 2,1 0,3 0,1 2,1 transparent 

6 1,6 1,5 1,6 1,4 0,3 0 0 0,6 normal 

6 1 0 0,2 0,1 0,3 0 0 0 black 

6 1,1 0,2 0,5 0 0,7 0 0 1,1 transparent 

7 0,2 0,7 1,5 0,7 0,6 0 0 1,2 normal 

7 2,1 0,8 0,5 0,6 1,5 0 0,3 0,3 black 

7 0,6 0,4 1,4 0,4 0,4 0,2 0,2 2 transparent 

8 3,1 1,4 2,5 1,3 1,4 1 1,1 1,4 normal 

8 0,2 0,3 0,4 0,1 0 0,1 0 0,9 black 

8 1,8 2,6 1,8 0,4 1,6 0,2 0,2 1,4 transparent 

9 0 0,1 0,9 0,3 2,6 0,6 1,3 2,6 normal 

9 0 0 0 0,2 2 0 0 0 black 

9 0,1 1,6 1,1 0,7 0,9 0 0,6 0,3 transparent 

10 2,8 1,4 2,3 1,6 2,8 0,9 1 1,5 normal 

10 0,9 0,4 0,6 0,3 0,5 0 0,1 0,4 black 

10 1,7 1,9 1,2 1 1 0,4 0,5 1,2 transparent 

Figure 19 Results of eye tracking results per billboard and participant 
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After testing all the participants, manually collecting all the data from the eye tracking 

results and questioners and excluding unsatisfactory data (Figure 19), following results were 

collected.  

The average time spend looking at billboards was counted depending on the type of 

the billboard rendering. As expected, the highest time was achieved when rendering the 

billboards normally, with content and without transparency. The time participants spent looking 

at all billboards throughout the whole testing with all participants when rendering billboards 

normally was 94,9 seconds and participants spend 1.19 seconds looking at one billboard on 

average. These are the base numbers to compare the two other methods with. 

 The transparency method’s time spent looking at the billboards throughout the whole 

testing was 70,9 seconds while each participant spent looking 0.89 seconds on each billboard 

on average, which is 25.29% decrease compared to the normal rendering. One of the 

participants mentioned after he finished driving – “I tried to recognize, what was on the 

billboard, but I could not tell.” Some of the participants even spend looking more time on some 

of the transparent billboards then the normal billboards. The transparent billboard is not a 

natural thing drivers are used to and attracts attention even if the content itself is not 

recognizable. Long term testing could bring a different result as getting used to this type of 

object in a field of view could reduce motivation to look at transparent billboards. 

 Last method was to blacken the content of the billboard, leaving the billboards itself 

visible but removing the content of the billboard. This method’s time spent looking at billboards 

of all participants throughout the testing was 33.2 seconds and average time spent looking at 

one billboard was 0.42 seconds, which is the smallest measured number and is 65,02% 

smaller than in case of normally rendered billboards. Some of the participants said that they 

looked at first few of a billboards and then stopped looking at them as they knew the billboards 

have no content. From the interviews of the participants and also from the numbers, this 

method looks more natural for the participants compared to the transparent billboards and 

does attract less attention. For drivers, these where simply billboards with no content so they 

had no motivation to give them attention. 
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The graph Figure 20 shows average time spend looking at each of the billboards in 

each of the rendering methods. We can see that the blackening method has the best results 

with all billboards compared to both normal and transparent rendering. Transparency is better 

than normal method except in case of second billboard. 

Expect from collecting time spend looking at each billboard, number of looks at each 

billboard by each of the participants was also collected (Figure 21). 

 In case of normal rendering, participants looked in total 184 times at a billboard 

throughout the whole testing. That means 2.3 looks on average per billboard. 

 Transparent rendering’s total number looks throughout the testing is 152 and 

participants looked on average 1.9 times at each of the billboards. That is decrease of 17.39% 

compared to normal rendering. 17.39% is a smaller decrease compared to 25.29% decrease 

in case of time spend looking on average on a billboard with transparent rendering. 
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Figure 20 Average time spend looking at each billboard 
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Participant 1. bb 2. bb 3. bb 4. bb 5. bb 6. bb 7. bb 8. bb 
Billboard 
rendering 

1 9 3 1 1 2 2 2 6 normal 

1 2 2 1 1 1 0 1 2 black 

1 2 1 3 1 2 1 1 2 transparent 

2 3 0 1 1 1 0 0 0 normal 

2 3 2 2 0 4 0 0 3 black 

2 2 4 3 0 3 0 0 2 transparent 

3 9 6 7 2 6 1 1 2 normal 

3 0 0 0 1 5 0 1 1 black 

3 5 4 4 3 5 1 0 1 transparent 

4 4 2 2 0 1 0 0 0 normal 

4 1 0 2 2 2 0 0 0 black 

4 4 1 2 1 1 0 0 0 transparent 

5 7 5 3 3 3 3 3 3 normal 

5 3 0 2 0 1 0 0 1 black 

5 3 3 2 2 3 1 1 3 transparent 

6 3 3 2 3 1 0 0 1 normal 

6 1 0 1 1 1 0 0 0 black 

6 2 1 1 0 1 0 0 2 transparent 

7 2 2 2 1 2 0 0 3 normal 

7 5 3 2 2 2 0 1 2 black 

7 1 1 2 2 2 1 1 3 transparent 

8 5 3 2 2 2 1 1 4 normal 

8 2 2 3 1 0 1 0 3 black 

8 6 5 4 2 2 1 1 3 transparent 

9 0 1 2 1 4 1 2 4 normal 

9 0 0 0 1 4 0 0 0 black 

9 1 2 3 2 3 0 2 1 transparent 

10 3 2 2 3 5 1 1 2 normal 

10 4 2 2 1 2 0 1 1 black 

10 3 4 1 2 1 2 2 2 transparent 

Figure 21 Number of looks per billboard and participant 

 

 Blackening method`s total number looks throughout the testing is 94 and participants 

looked on average 1.21 times at each of the billboards. This means decrease of 47.28% 

compared to normal rendering and 36.2% decrease compared to transparent rendering. 

 This also means that blackening method has again the best results, although the 

improvement is slightly lower compared to the time spent looking at each billboard. 
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Figure 22 Average number of looks at each billboard 

 

Graph Figure 22 shows average number of looks at each of the billboards. We can see 

that the black method is still better than both normal and transparent rendering at each of the 

billboards. Except for the first billboard, normal and transparent rendering are comparable in 

terms of number of looks. 

 

 

Figure 23 Percentage of participants that looked at each billboard 

 

 One the graph Figure 23 we can see that in terms percentage of billboards participant 

looked at, black rendering had again the best results. Black rendering had the lowest 

percentage of all three methods for each of the billboards. In this metric, transparent method 

is worse than rendering billboards normally. 
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 Participants looked in average on 83.75% of the billboards in case of normal rendering. 

With transparent method, participants looked at 86.25% percent of all billboards, which is 

2.98% increase compared to normal rendering. Finally, in case of black rendering, participants 

looked at 62.5% of billboards, which is 25.37% decrease compared to normal rendering. 
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Figure 24 Number of guessed billboards by each participant in each driving round 

 

As a part of the questioner at the end of the testing, I asked each participant to guess 

number of billboards for each of the driving rounds (Figure 24). The right answer was 8 for all 

three rounds. Most participants guessed highest number of billboards with the normal billboard 

rendering – an average of 8.1, which is even higher than real number of billboards. 40% of 

participants guessed higher number than 8, which was the right amount. Second was the 

transparent method, where the average amount of billboards guessed was 7. The smallest 

number of billboards was guessed with the blackening method – an average of 6.2.  

I also asked each of the participants which method would they personally prefer, and 8 

out of 10 saw the blackening method as the better one. Most argued that the blackening 

method removes their motivation to look at the billboards as they know there is no content in 

case of the transparent method. 

Based on the data collected both for number of looks and for time spent looking at each 

billboard, the blackening method showed the best results, 56.15% reduction in distraction 

amount on average trough out all the main metrics used. The transparent method was worse 

than the blackening method but still better than normal rendering at 21.34% in distraction 

decrease. Also number of guessed billboards and other questions related to billboards given 

to each of the participants showed best results for the blackening method. 



26 
 

For these reasons, I will be showing an implementation of this method in the next 

chapters of this work. 

  



27 
 

6 Implementation of distraction reduction method 

6.1 Sketch of real environment implementation possibilities 

The hardware implementation is not the target of this thesis. Target is to find, whether 

it is possible to detect and block roadside advertisement and if it is efficient and helpful, but not 

to implementing the feature in a real car. Sample implementation and demonstration will be 

shown in next chapters. 

The vision is, that this functionality will be implemented into a mixed reality headset (for 

example Hololens-like device) (Figure 25) or window of a car will be used to block the vision 

of the driver while cameras and other equipment will track the drivers position and detect the 

roadside advertisement (Figure 26). 

 

 

Figure 25 Example of possible future implementation in car environment [16] [17] 

 

Figure 26 Illustration of the method implemented with front window of a car 

 

This functionality is called mixed reality or augmented reality. It is defined as “either as 

a standalone concept or used to refer to the entire spectrum of situations between actual reality 
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(i.e. real world) and virtual reality, attempts to combine the best of both virtual reality and 

augmented reality. When both real and virtual worlds are merged together, new environments 

and visualizations become possible where physical and digital objects can coexist and interact 

in real time.” [13]. Objects in mixed reality can also be called holograms. 

In case of future implementation, the quality of holograms would need to be very high. 

These are the hologram qualities [14]: 

 

● Accuracy. Once the hologram is world-locked and placed in the real world, it should 

stay where it was placed, relative to the surrounding environment, independent of user 

motion or small and sparse environment changes. If a hologram later appears in an 

unexpected location, it is an accuracy problem. 

● Jitter. Users observe this as high frequency shaking of a hologram. This can happen 

when tracking of the environment degrades. 

● Judder. Low rendering frequencies result in uneven motion and double images of 

holograms. This is especially noticeable in holograms with motion. Constant 60 FPS 

needs to be maintained. 

● Drift. Users see this as hologram appears to move away from where it was originally 

placed.  

● Jumpiness. When a hologram "pops" or "jumps" away from its location occasionally. 

● Swim. When a hologram appears to sway corresponding to the motion of the user's 

head.  

 

All of these would need to be addressed. Refresh rate would need to be consistently 

above 60 FPS, as this is a recommended minimum. If the mixed reality would not fulfill all the 

quality criteria, it would probably be even more distracting than the roadside advertisement 

itself and could even be dangerous. For example, hologram that should originally cover a 

billboard could block a view of some important road sign or traffic. 

 If the hologram placement and rendering would be perfect, there still could be 

distracting and dangerous problems. For example, detecting a traffic sign as billboard or not 

detecting an important object in front of the billboard and blocking its view.  

In case of border cases where the detection or rendering is not correct with high 

certainty, blocking should be turned off. In other words, false positives cannot appear in a real 

world use. 

 There might be also legal issues as most countries specify by law what exactly can and 

cannot be in a driver's fields of view and glasses and other devices could interfere with these 

laws. 
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6.2 Implementation of the method 

 Again, to stress the goal of this work, the implementation shown here will be a proof of 

concept, not a final implementation usable in real environment. 

To implementing this method, there were multiple ways how to do it. What we need is 

to create pixel wise detection system that is able to detect one class – billboard, and separate 

it from the background. 

 

 

Figure 27 Computer vision algorithms comparison [20] 

 

 In computer vision terms, this is called instance segmentation. There are multiple levels 

of computer vision algorithms. The basic algorithms do only image classification. That means 

they are able to detect what is the subject of the image and at what probability, but they do not 

provide any additional information like object position, number of objects of certain class and 

they can classify only one class, for example cat on the image above (Figure 27). 

 Classification algorithms with localization add information about object position and 

size in the image. This is still not enough information for my particular use case. 

 Next group of algorithms is object detection. These add multiple class detection and at 

the same time multiple instances of one class. They still do not provide the information of 

shape, only position and size of each of the class instances. Algorithms from this group could 

theoretically be used in this work, but the results would be very inaccurate. We would be able 

to detect only rectangles with position and size. If there would be something in front of the 

billboard, it would get blocked together with the billboard and there would be many other 

problems with the inaccuracy (Figure 28). 
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Figure 28 Instance segmentation vs. object detection on billoard example [21] 

 

 The last group of algorithms is called instance segmentation algorithms. These are able 

to detect multiple classes with multiple instances of one class in one image. They also detect 

position of the object and exact shape of the object. This is the type of algorithm used in this 

work. 

More basic computer vision algorithms providing only object detection are not sufficient 

here as we need to know exact shape and pixel-wise information about billboards to be able 

to block them efficiently and with as little distraction as possible. 

 

6.3 Existing projects for instance segmentation 

 There are multiple projects with functionality that supports instance segmentation. In 

this case, we need both to train the model and then use the trained model to apply the trained 

weights to segment the images. A lot of projects do only one of these things, they either train 

the model or use already trained model to do the segmentation itself. I decided to use project 

that does both, as it eliminates possible problems with compatibility. [15] 

 Most, if not all of these projects are based on one of a three deep learning libraries – 

Caffe, Tensorflow or Torch/PyTorch. 

 PyTorch is a python implementation of Torch library. It was developed by Facebook 

and made open-source. Main advantages are modularity, easy way to create new layer types 

that run on GPU and lots of compatible pre-trained models that make it easier and faster to 

train models for a new specific classes. 

 Tensorflow is a library developed by Google. Compared to other libraries mentioned 

here, it has much wider functionality like reinforcement learning, which means it is slower in 

some aspects compared to other libraries that have more limited use. It has python API and 

the engine itself is written in C/C++. There is lower number of pre-trained models, which can 

be an issue for some projects, but it was not important in this case. As I plan to train the model 

by myself, it is not important what was the pre-trained model originally trained on. Together 
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with this library, there is also possibility to use Keras, which provides an intuitive and simpler 

API inspired by Torch library. Also very useful utility made for Tensorflow is Tensorboard, which 

visualizes trained process in real time, allowing to react to for example incorrectly set hyper-

parameters much quicker than waiting for some part of the training process to finish. 

 Caffe is C/C++ port of Matlab’s convolutional networks library. It has python API as the 

rest of the mentioned libraries. In contrast with other mentioned libraries, the functionality is 

made strictly for image processing. Other advantages are very easy model training and simple 

python API. Disadvantages are no support in python API to create new layers and smaller 

support from community compared to the two other mentioned libraries. 

 All of the three mentioned libraries are suitable for use in this concrete use case. 

After searching through existing projects and deep learning libraries, I decided to base my work 

on a Mask R-CNN project which uses Tensorflow library [16]. 

6.4 Mask R-CNN 

  The reason I decided to use this project as a starting point was that if offers functionality 

both for training the network and to use the trained model to do the instance segmentation. 

The other reason I decided to use this project is that there already are many project based on 

this one which means there is better community support and smaller chance of incompatibility 

and errors. I tried a few smaller projects with lower community support and had problems either 

with poor segmentation results or some sort of incompatibility – drivers, pre-trained models 

etc. 

 Mask R-CNN, or Region-based Convolutional network, is based on the Faster R-CNN 

project. Faster R-CNN detector works in two stages. Firs stage – Region Proposal Network, 

proposes candidate objects bounding boxes. Second stage extracts features from each 

proposed bounding-box and preforms classification and bounding-box regression (Figure 29).  
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Figure 29 High level Mask R-CNN process [23] 

 

6.4.1 High level view of Mask R-CNN process 

First component of the process is backbone network – that is a convolutional layer that 

servers as feature extractor. Lower levels of network extract lower level features like edges 

while higher levels extract higher levels of features like for example billboard in this case. 

By default, it converts dataset input images to 1024x1024 pixels and then to a feature 

map of 256x256 pixel. This map is then set as input to another layer and converted to a lower 

resolution again. There are 5 feature map layers in total (Figure 30). [16] 

 

 

Figure 30 Convolutions and different feature levels visualization 

Although this approach can be improved. In the original feature map, lower level layers 

have access only to lower level features. Feature pyramid network (Figure 31) improves the 
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standard feature extraction pyramid by passing higher level features to lower level layers, 

which improves object detection at different object scales. [17] 

 

 

Figure 31 Feature pyramid networks for object detection [23] 

 

Next step is region proposal network. It scans the already generated backbone feature 

map using sliding window approach and using a neural network, detects areas that contain 

some objects. These areas are called anchors. They have predefined shapes (Figure 33) that 

should be specified so that they correspond with the shape of objects we want to detect. They 

overlap each other and have different sizes and positions. If there are several closely 

overlapping anchors, we keep only anchor with highest probability of containing an object. This 

is called Non-max Suppression. As the sliding window and anchor generation is handled in a 

parallel manner by GPU, it is very quick to compute. For the image below, the total amount of 

anchors was 261 thousand. First high resolution feature layer had about 197 thousand anchors 

(Figure 32) while the last feature layer had only 768 anchors as there is no need for more 

anchors in a very low resolution space. 
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Figure 32 200 randomly selected anchors, about 0.01% of all generated anchors 

 

 
Figure 33 Different anchor side ratios and sizes used 
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 For each of the anchors, region proposal network generates a score that tells at what 

probability the anchor contains some object and what class it contains. If the probability is less 

than 0.5, the anchor contains background class or in other words – it probably does not contain 

any objects (Figure 35). If it has probability more than 0.5 than the anchor most probably 

contains some objects and we can also say it contains foreground class (Figure 34). If it has 

probability close to 0.5, then the anchor is called neutral and it is not useful for training and is 

not used later for other steps of the process (Figure 36). 

 Box refinement is also calculated for each of the positive anchors. It makes sure that 

each of the object’s box is centered and sized as precisely as possible. More anchor boxes 

can be merged into one box during the refinement. We can see the refinement on the image 

bellow, where anchor boxes before refinement are dotted and after refinement are solid. 

 

 
Figure 34 Positive anchors 
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Figure 35 Negative anchors 

 

 
Figure 36 Neutral anchors 
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 After these steps, we have our regions of interest – the positive anchors are parts of 

the image that we search for the classes we want to detect – billboard in this case. 

 For each region of interest, we generate class and we do one more bounding box 

refinement. The neural network in this case is deeper and generates the final classes we want 

to detect. [17] If this neural network detects only a background class for some of the regions 

of interest, we discard that region. 

 To be able to detect class of each region of interest, we need to convert each of the 

regions to the same size. In this case, resizing and cropping using bilinear filtering is used to 

convert each region of interest to 7x7 pixels (Figure 37). 

 
Figure 37 Extracting class of region of interest 

 

 All steps until now are originally from Faster R-CNN project. [18] Mask R-CNN projects 

adds the ability to do pixel-wise detection. It uses convolutional network to do so. 

 First it down-samples the original masks to low resolution of 56x56 pixels (configurable) 

(Figure 39). The reason is to make the training faster and less memory heavy. As we need a 

mask file for each object instance in a picture, 100 objects in a scene would mean around 100 

MB of memory and much slower training speed (Figure 38). There is a loss of precision for 

objects larger then 56x56 pixels, but it is negligible.  Also the mask down-sampling can be 

turned off in configuration of the project, but it significantly increases training time and memory 

usage and has very little effect for mask accuracy (Figure 40). 

The training mask is a ground-trough mask and we train the network minimizing a loss 

function comparing the ground-trough mask and our detected mask. 
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Figure 38 Original input masks 

 

 
Figure 39 Minimized input masks 

 

 
Figure 40 56x56 pixel masks fitted into 1024x1024 pixel image 
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6.4.2 Training data 

 

 Training data and its quality are essential for a training process. The more training data 

we have the better the results generally are. The quantity needed to train a model to a certain 

detection quality depends on what we want to detect. The more classes we have, the harder 

the classes are to tell apart and the more complex objects, the higher amount of training data 

we need. But there is not any way to tell exact number needed for a good detection results. 

In my case, I have around 482 instances in my dataset. The training data I am using 

was extracted from the simulator track used for testing in the previous chapters. There are 

additional billboards added (Figure 41) making the total of around 65 billboards. This was done 

to maximize the amount of usable training data gathered from the track as there is a visible 

billboard almost on every part of the track. 

 

 

Figure 41 Billboards added to testing track 

 

 There was a curve added that the camera was following, moving at a speed of traffic 

and recording at 60 frames per second. The result was around 16400 captured images from 

the 4 minutes 32 seconds long video. As the simulator engine version I was using did not have 

required functionality to record this video, a newer version of the engine had to be used. As 

there were license issues and the newer version of simulator not being fully released at the 

time of making this project, I had to prepare the track, send the files to a colleague with access 

to a new version who recorded the video and provided it to me. 

 For training process, we also need the segmentation data. These were created the 

same way on a same track but with different textures. Every object was set to black color and 

each billboard surface got its own color (Figure 42). Again, video was recorded and provided 

to me. 
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Figure 42 Image and its corresponding mask 

 

 My original vision was to synchronize the two videos to start at the exact same time 

and frame, sample pictures from each video at the same sample rate and create data this way. 

Sadly, the two videos were slightly out of sync trough out the whole videos, not only at the start 

of the video. Some of the parts of the track were slightly faster on one track, some parts were 

faster on the other track.  

That meant that I could not find any way to completely sync these videos together and 

as I could not influence the creation of the videos, because I had no access to required version 

of the engine, I had to sync both videos frame by frame by hand. To extract the frames and 

sync videos, I used open source utility FFmpeg. 

First I synchronized the start of each video. I found and exact frame on each of them 

and cut both videos to start with this frame. 

 

ffmpeg -i input.mp4 -ss 00:00:00.70 -c copy output.mp4 

 

Then, I extracted the frames from the video. I extracted every eighth frame from the 

video with normal textures and every frame from the segmentation video. 

 

ffmpeg -i input.mp4 -filter:v fps=60 image_%0d.jpg 

 

After getting the images, I selectively reduced the number of pictures with normal 

textures so that there are more samples from places with more billboards and less samples 

from places where there are less billboards. This gave me 482 images. 

 Now, when I had the images, I had to pair the images from track with normal textures 

with images from segmentation track. First I selected one of a 482 images from normal track 

and then found a corresponding image from the 16400 segmentation images. Despite both 

videos being recorded at 60 frames per second, some of the images had no suitable 

segmentation image pair (Figure 44). This was problem especially when there were objects 
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moving fast relative to camera and placed between the billboard and the camera (Figure 43). 

In these cases, I had to modify the mask images or create a completely new mask images. 

Due to all these reason, this process was very time consuming. That was the reason I chose 

to train using only 482 instances. 

 

 

Figure 43 None of two adjacent images from segmentation video fit the original image 

 

Figure 44 Again, no fitting mask for original image 

 

After fitting all the segmentation images and images from the normal track together, I 

found out other problem. Due to the original segmentation video not being encoded in a 

lossless format, the colors of the billboards were shifted from the original color of the texture 

(Figure 45). Also the color of single billboard in one image was not the same on the whole 

billboard area. Especially near the edges, the colors where noticeably shifted.  
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Figure 45 Detail of a compressed edge of billboard mask 

 

First I tried loading the segmentation data this way – read image pixel by pixel. If the 

color of pixel +- 15 in each of the RGB channels was already seen, add this pixel to that set of 

pixel, otherwise create new set of pixels. The problem of this approach was that it was quite 

slow and still was not reliably working, especially around edges, creating multiple billboard 

instances from a single original one. To make the process faster and more accurate, I decided 

to create a CSV file for each data instance containing the right color for each billboard instance 

and then using this color with +- 15 tolerance in each RGB channel to find each billboard 

instance area. This proved to be much more accurate and faster approach. The negative point 

was the need to create the CSV files for each of the data instances. 

After all data instances were created, the data was split in 80:20 proportion for training 

and validation data. Training data is used for training itself, validation data is used during 

training too, but for parameter selection and to prevent overfitting, not for training weights itself. 

The 80:20 ratio called Pareto principle is usually a recommended value for splitting the data or 

at least a good starting point [19]. 

6.4.3 Using Mask R-CNN 

 To be able to use the Mask R-CNN project to train model using your own dataset and 

then apply the trained model to a set of images, we need to first create functionality to load the 

dataset. 

 For each of the units of the dataset, we need to have the input picture itself and the 

segmentation mask. Segmentation mask does not need to be a picture necessarily. Some 

other popular formats are JSON or XML files specifying boundaries of each object with set of 

points. We can then connect those points, fill the inside of the newly created object and create 

mask this way.  
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When using a picture as a mask, we need to be able to tell apart each instance of each 

of the classes. That means it is a good practice to give each instance its own color (or 

differentiate them some different way). If all instances would have the same color, it would be 

impossible to tell apart overlapping objects. 

 In my own example, I also had CSV file for each dataset instance containing correct 

color for each billboard instance mask. 

To be able to load the dataset properly, we need to implement our own Dataset class 

extending the utils.Dataset class. We need to implement at least two methods in this class – 

method to load all our dataset pictures. To add picture to dataset, we call Dataset method 

add_picture, which adds “link” to the image that is later used to load the image itself and to find 

the image mask. 

Second method we need to implement is load_mask that based on the information 

saved by the add_image method, loads masks for a specific image. In my case, I load both the 

segmentation image and CSV file with defined colors. Then I use OpenCV library to filter the 

segmentation image. For each color from CSV file, I apply inRange filter on the image with 

lower and upper boundary set to +-15 from each channel of RGB image. This return a binary 

array with ones where the color was in the desired range and zeros otherwise. I add this array 

to final mask array with dimensions of mask height x mask width x number of instances. We 

return this array together with 1 dimensional array with class defined for each instance, that 

means array of size 1 x number of instances in our case were we have only one class – 

billboard.  

If we do not want to use the default configuration for training, we need to extend the 

Config class. Here we set things like number of images per GPU, number of classes, learning 

rate and other things. 

If we want to do the training itself, we need instances of previously created configuration 

class and dataset class.   

 

model = modellib.MaskRCNN(mode="training", config=config, 
 model_dir=MODEL_DIR) 

 

When we have the model created, we need to decide what initial weights we want to 

start with. We can either create empty weights and start training from the beginning or use a 

pre-trained model and train it to our needs. The initial weights can be trained on a totally 

different classes then we want to detect. The advantage is that it makes the training faster and 

reduces the dataset instance count needed, because even though the model is trained on 

different classes, billboard class will most probably share many features with them and thus 

reduce the training time as we do not need to extract those feature anymore. 
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In my case, I decided to use a model pre-trained on COCO - Common objects in 

Context dataset. We also need to exclude things from dataset that we do not use. 

 

model.load_weights(COCO_MODEL_PATH, by_name=True, exclude = 
["mrcnn_class_logits","mrcnn_bbox_fc","mrcnn_bbox","mrcnn_mask"]) 

 

 After loading the initial weights, last two things we need to decide before learning is if 

we want to train all the neural network layers, or only the top layers extracting only higher level 

features and the number of epochs. Training only top layers is recommended when we train 

object similar to objects used to train the initial model, if we have very small dataset or when 

the object, we want to detect is very simple. None of these things is true in the case of 

billboards, so we will train all layers. This is indicated by layers='all'.  

We also need to set the number of epochs we want to train. Each epoch trains the 

model using the amount of dataset instances defined in configuration class in parameter 

STEPS_PER_EPOCH. This is by default 1000, but it should be ideally set to number of 

instances in dataset. At the end of each epoch, checkpoint with trained weights is saved. The 

number of epochs is unknown in advance. Generally, we want to stop the learning process 

when the validation loss stops improving and starts “jumping around”. The number of epochs 

should not be set very high to avoid overfitting. The number again depends on many factors 

like set learning rate, number of training instances, complexity of class etc. In my case, I trained 

80 epochs. I was using Nvidia Titan XP GPU with 12 GB of memory, which was capable of 

training with minibatch of 2 images. One epoch took about 20 minutes, so the whole training 

process took about 27 hours. When trying to implement training process using CPU only, one 

epoch took about 100-200 times longer than compared to using GPU. 

 

model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE,  
epochs=epoch_num, layers='all') 

 

 When we finish the training and want to start detecting billboards on images, we need 

to create another class that extends config class as detection and training configurations are 

different. We need to set IMAGES_PER_GPU to 1 as we will detect billboards on one image 

at the time. Also, we can set DETECTION_MIN_CONFIDENCE parameter, which sets the 

minimum detection confidence. This parameter is 0.9 by default. I am using 0.95 – 95% 

confidence detection. After that we create model that we will use for detection and initialize it 

with weights from previously trained model. 

 

model = modellib.MaskRCNN(mode="inference", config=detection_config, 
 model_dir=MODEL_DIR) 

model.load_weights(model_path, by_name=True) 
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 Now we can start detecting the billboards. We read the image using scikit-image library 

in this case and run the detection process using model.detect method. 

 
image = skimage.io.imread(img_path) 
masks = model.detect([image], verbose=1)[0] 
 

 This method, besides other things, returns array of masks with dimensions of image 

height x image width x detected instances count. Now all we need to do is collapse all the 

instance masks into a single mask, apply the mask to all RGB channels and we have the 

resulting image. What I also added was a Gaussian blur with sigma (standard deviation for 

Gaussian kernel) dependent on image size to make the edges of the masks more seamless. 

 

6.5 Implementation results 

 After training, I used the detection to classify the whole simulator video from testing 

track. I again created frames from the video file using FFmpeg utility. After running the 

classification, a used the FFmpeg to create back the video from the segmented frames. 

 
ffmpeg -framerate 30 -pattern_type glob -i '*.jpg' -c:v libx264 -profile:v high -crf 20 -pix_fmt 
yuv420p result.mp4 
 

Results were generally very good (Figure 46, Figure 47 and Figure 48). All the 

billboards were detected at a very high confidence levels, vast majority of billboards at 

confidence higher than 99%. Even partially covered or overlapping billboard were detected 

well. Trough out the whole track, there was only 1 billboard that did not get detected properly. 

 

 

Figure 46 First segmentation result from simulator testing track 
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Figure 47 Second segmentation result from simulator testing track 

 

Figure 48 Third segmentation result from simulator testing track 

 

There were also some problems with detection. On the images above, we can see that 

the billboards are not detected all the way to the edge of the billboard area. To make it more 

precise, more training data would probably be needed. I think that also the compression of the 

video mentioned in training data chapter might have influenced the training masks and some 

of them have not been covering the whole area of the billboard. That is the reason I added the 

Gaussian blur, to make this effect less visible. 

Next problem was occasional flickering of the mask (Figure 49). When the billboard 

was for example partially covered, and on one frame we detected the billboard, on the next 
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frame we did not and on the next frame we again detected it, it created flickering that might 

have been distracting. 

 

 

Figure 49 Zoomed in detail of flickering on 3 consequent frames of partially covered billboard 

 

 Other problem was detection of other objects as billboards. For example, a car, sign or 

a wall of a building (Figure 50). That was resolved by increasing the detection confidence from 

0.95 to 0.99. It introduced slight flickering at some of the images as shown above, but it 

significantly reduced the number of wrongly detected objects. 

 

 

Figure 50 Zoomed in detail on wrongly detected objects 

 

 Even if counting all these inaccuracies, detection on the testing track was very good 

trough out the whole track. Even billboards that were partially covered, billboards behind 

moving objects or overlapping billboards were detected correctly. 

 Besides the testing track, I also used the segmentation on a recording from a real traffic 

(Figure 51, Figure 52, Figure 53 and Figure 54). The video was taken in Prague, street K 
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Barrandovu. It was processed the same way and using the same model as the recording from 

the testing track. 

 The problems with detection are basically the same as with the previous recording, but 

more pronounced. As the model was trained using simulator dataset, not all the features are 

common with real world, so decrease in detection quality was expected. 

 

 

Figure 51 First example of image classification from real driving environment 

 

 

Figure 52 Second example of image classification from real driving environment 
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Figure 53 Third example of image classification from real driving environment 

 
Figure 54 Fourth example of image classification from real driving environment 

 

 As already mentioned, the detection problems that were rare in the case of the 

simulator test track, were much more pronounced here. Flickering was an issue but it was 

much more noticeable. Some billboards were not detected properly at all and some objects 

that should not be detected were detected and blocked. That is especially problem with traffic 

signs or cars in this case as it can easily cause dangerous situations (Figure 55). 
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Figure 55 Detection errors from a real environment data 

 

Despite the mentioned detection errors, I believe the results are generally good as 

demonstration of the blackening method. The model is of course far from being usable in real 

traffic. For that to be true, training data from a real driving environment would be needed with 

all the edge cases that are possible. But I believe that the trained model used in this project 

would be a great starting point for further training, if someone would want to implement this 

feature in real environment. 

 

6.6 Future work and possible detection improvements 

 As I already mentioned in the previous chapter, the model is not perfect. I would like to 

mention a few approaches that I believe would increase the accuracy of the detection. 
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 The data used for training were synthetic and do not fully represent real environment. 

That means we cannot extract all the features we would need to do the detection more reliably 

in real environment. For that to improve, we would need training data from a real environment. 

As the real environment is more complex with more edge cases, training set of would need to 

be bigger than the one used in this work. 

 Next possible improvement would be to use between-frame information. In this work, 

the segmentation is done only on a single frame basis. Frames do not influence each other’s 

segmentation results. There already are papers and projects using this approach, like for 

example Learning to Segment Moving Objects [20]. This would probably help to at least reduce 

or remove the flickering mentioned in previous chapter. 

 Another approach that could help to increase the detection quality would be using depth 

data (Figure 56). Self-driving cars already use depth data from lidars for object detection. 

Adding information about space would mean more possible features to extract and thus better 

detection quality. 

 

 

Figure 56 Visualisation of depth data from self-driving car [28] 

 

 To further increase detection quality on the simulator training data, we would simply 

need more dataset instances. But with increasing number of instances, if we would want to 

use the model on a different data than the original dataset, we would need to be careful not to 

over-fit the model thus making the detection more accurate on the training and validation data, 

but worse on different input data. 

 Also, for this to be usable in real environment, detection would need to be done in real 

time. That means ideally minimally 60 frames per second. Using the code shown here to load, 

segment and save images one by on Nvidia Titan XP yields around 3-4 frames per second. 

The reason is that there is no performance enhancement done with the model. With these 

optimizations, the target frame rate should be possible even on less powerful hardware. 
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7 Conclusion 

The goal of this work was to define distraction caused by roadside advertisement, 

billboards more specifically. After defining the distraction and billboards themselves, the next 

goal was to find and make a simple implementation of method that reduces the distraction 

caused by these billboards. 

First I made a research about roadside advertisement. I named most types of 

billboards, their placement, legislation and the spoke about the distraction they cause. 

The goal of this work was to find a good method of reducing distraction caused by these 

billboards. The picked blackening method from the two tested methods was by a good margin 

better according to user testing and it significantly reduced distractions caused by the 

billboards. The user testing proved significant results, where the picked method was better 

trough out the whole testing track in all measured variables. Also, post-test participant opinions 

showed again the blackening method as the better one. 

 Based on the testing, I showed an implementation of this method as a proof of concept. 

I explained that we need a pixel-wise detection system and that it is called instance 

segmentation. I named the frameworks projects supporting instance segmentation use and 

chose to base my work on Mask R-CNN project as it supported functionality both to train and 

then do the instance segmentation itself and it was one of the most community supported 

projects I found. 

 I showed the stages of Mask R-CNN and high level view of what the projects does. 

After that, I showed the process of creating the test data based on the track used for testing in 

previous chapter for participant testing. I showed that I thought that creating the data will be 

simple automated process, but in the end had to synchronize and create the data instances by 

hand, which was very long and tedious process and that the manual creation was the reason 

I created only around 500 training instances. 

 After creating the training set, I mentioned most important steps how to make the Mask 

R-CNN project work with your own data. First I talked about how to load the dataset, how to 

prepare it for training process and how to create the training model. I mentioned that it is better 

to use an already pre-trained model, even if it does not support the classes we want to detect, 

because it makes the training process faster as it already contains some trained features we 

no longer have to train ourselves. 

 Then I showed the results of detection of the trained model on two sets of data. 

Simulator testing track and recoding of driving in real environment. The results on the simulator 

testing track were good with only a few detection errors, most common of witch was mask 

flickering were billboard is detected on the first frame, not detected on the next frame and again 

detected on the next frame. But the detection was accurate on this set of input data.  
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 The detection on the data from real environment was worse. The flickering was more 

prominent, some billboards were not detected and there were also problems with some 

unwanted objects like cars or traffic sign being detected. I mentioned that the model is not 

ready for real environment use, but this was not the target of this work and if someone would 

want implement this method of blocking in real environment, the trained model used here would 

be a good starting point. 

 At the end, I mentioned ways I can see to improve the real environment results. Those 

were using training data from a real environment with as many dataset instances as possible, 

using between-frame information and adding depth information. 
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