
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA ELEKTROTECHNICKÁ

Artificial Intelligence Based Intelligent Thermostat

Inteligentní termostat využívající metod umělé inteligence

DIPLOMOVÁ PRÁCE

2018 Martin Procházka

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

420153Personal ID number:Procházka MartinStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Artifical intelligence based intelligent thermostat

Master’s thesis title in Czech:

Inteligentní termostat využívající metod umělé inteligence

Guidelines:
1. Study the reinforcement learning method used in Artificial Intelligence, research the model-less optimal control design
methods.
2. Validate the control performance of intelligent, self-learnining thermostats based on Q-learning approach using simulation
model of a building with various properties (thermal innertia, insulation etc.), evaluate applicability of proposed methods
for commercial thermostat applications,
3. Estimate the benefits resulting from improved energy efficiency of domestic heating due to improved controller tuning.

Bibliography / sources:
[1] R. S. Sutton a A. G. Barto, Reinforcement Learning, The MIT Press, 1998 (několik reedic).
[2] M. Wiering, M. van Otterlo (Eds)., Reinforcement Learning State-of-the-Art, Springer, 2012.
[3] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006

Name and workplace of master’s thesis supervisor:

prof. Ing. Vladimír Havlena, CSc., Department of Control Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 25.05.2018Date of master’s thesis assignment: 27.03.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
prof. Ing. Vladimír Havlena, CSc.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Martin Procházka

Declaration

I hereby declare that the presented thesis was developed independently and that I have stated
all information sources in accordance with the methodological instructions on the compliance of
ethical principles in the preparation of university graduate theses.

In Prague on May 25, 2018 ...
Signature

iii

Martin Procházka

Abstract

This thesis utilizes reinforcement learning, particularly Q-learning, to develop a self-learning
algorithm for an intelligent thermostat. The algorithm is able to find an optimal controller solely
based on provided data. The data available for learning include room temperature, reference
temperature, outside temperature, and applied input (heat flow generated by the boiler). The
research part of this work explains in depth the principle of Q-learning and shows on several
examples the learning process itself. The advantage of using Q-learning is its capability to
incorporate a priori known information. In our case, it can be shown that the Q-function
learned by the algorithm will be quadratic and positive definite, which substantially reduces the
required amount of training data. The Q-learning approach is also able to deal with constraints
introduced by the boiler if merged with MPC. The final chapter includes several experiments
verifying the three major developed techniques (controllers comparison, optimal controller
generation and merging Q-learning and MPC) on a realistic thermal model.

Keywords:
Control theory; optimal control; adaptive control; MPC; reinforcement learning, Q-learning

iv

Martin Procházka

Abstrakt

Tato práce používá zpětnovazební učení, konkrétně Q-learning, k vytvoření algoritmu pro
inteligentní termostat. Algoritmus je schopen nalézt optimální regulátor pouze na základě
poskytnutých dat. Data, která jsou k dispozici pro učení, zahrnují pokojovou teplotu, referenční
teplotu, venkovní teplotu a aplikovaný vstup (tepelný tok generovaný kotlem). Výzkumná
část této práce podrobně vysvětluje princip Q-learningu a ukazuje na několika příkladech
samotný proces učení. Výhodou použití Q-learningu je jeho schopnost využít předem známé
informace. V našem případě lze dokázat, že Q-funkce nalezená algoritmem bude kvadratická
a pozitivně definitní, což podstatně snižuje požadované množství trénovacích dat. Q-learning
je také schopen se vyrovnat omezeními způsobenými kotlem, pokud je sloučen s prediktivním
řízením (MPC). Závěrečná kapitola obsahuje několik experimentů ověřujících tři hlavní vyvinuté
techniky (porovnání reglátorů, generování optimálních regulátorů a sloučení Q-learningu a MPC)
na realistickém modelu.

Klíčová slova:
Teorie řízení, optimální řízení, adaptivní řízení, prediktivní řízení (MPC), zpětnovazební učení,
Q-learning

v

Martin Procházka

Acknowledgments

I would like to thank my supervisor prof. Ing. Vladimír Havlena, CSc. for his guidance, support
and constructive criticism during consultations. I would also like to thank all the members of
staff at Honeywell Prague Laboratory and everyone who has supported me during my work on
this thesis.

vii

Contents Martin Procházka

Contents

1 Introduction 1

2 Research 3
2.1 Reinforcement Learning . 3

2.1.1 Markov Decision Processes . 3
2.1.2 Bellman Optimality Equation . 3
2.1.3 Dynamic Programming . 5
2.1.4 Policy Evaluation . 5

2.2 Q-Learning . 6
2.2.1 Q-Function Identification – Learning . 7
2.2.2 Policy Iteration . 7
2.2.3 Value Iteration . 9
2.2.4 Problems with Policy and Value Iteration 10
2.2.5 Relation with Algebraic Riccati Equation 12
2.2.6 Q-Learning for Stochastic Systems . 15

2.3 Model Predictive Control (MPC) . 16
2.3.1 MPC Without Constraints . 17
2.3.2 Constraints on the Input Vector . 18
2.3.3 Quadratic Programming . 19
2.3.4 Receding Horizon . 21

3 Problem Description 23
3.1 Controlled System . 23
3.2 Demands on the Control Quality . 23
3.3 Constraints Introduced by the Boiler . 24

4 Thermal Model Description 25
4.1 Capabilities and Settings . 25

5 Solution 27
5.1 Major Derived Techniques . 27

5.1.1 Controllers Comparison . 27
5.1.2 Multi-Component Reward . 29
5.1.3 Optimal Controller . 30
5.1.4 Merging Q-Learning and MPC . 30

5.2 Partial Problems Solutions . 32

viii

Contents Martin Procházka

5.2.1 Policy Choosing During Off-Policy Learning 32
5.2.2 Q-Function Evaluation . 33

5.3 Tests . 35
5.3.1 Q-Learning – Motivation . 36
5.3.2 Q-Learning Versus Lyapunov Equation 38
5.3.3 Biased Versus Unbiased Estimator . 39
5.3.4 Constrained Control – Motivation . 41

5.4 Additional Requirements on the Learning Policy 42

6 Results 45
6.1 Controllers Comparison . 45
6.2 Optimal Controller . 46
6.3 Merging Q-Learning and MPC . 47

7 Conclusion 51
7.1 Unsolved Problems and Other Future Improvements 52

8 References 53

ix

Introduction Martin Procházka

1 Introduction

Modeling dynamical systems using the first principles for later controller design is long and
tedious work. First, a set of differential and algebraic equations have to be created with respect
to physical laws describing the dynamical system in question. Those equations include loads of
constants that need to be estimated based on data measured on the real system. This is where
the main complication comes. Because of transportation delays and long time constants of some
systems, it is difficult to obtain sufficient amount of data in a reasonable amount of time to
accurately estimate constants in the model. This problem combined with many others resulted
in the search for an alternative approach.
The first significant breakthrough was achieved by using adaptive controllers, which could be
described as dynamic systems with on-line parameter estimation. Adaptive control was first
used in the 1950’s to design autopilots for high-performance aircraft. Since then, the theory
was found useful in lots of other fields. Self-Tuning Controllers (STC) as a part of the adaptive
control theory were found to be a suitable substitution for the modeling of dynamic systems.
STCs simultaneously identify parameters and design controllers accordingly. [3, 4]
Parameter estimation usually utilizes the black box approach, where model parameters are
estimated based on input and output data. The model structure can take several forms.
Auto regressive models (ARX – Auto Regressive model with eXternal input, ARMAX – Auto
Regressive Moving Average model with eXternal input, OE – Output Error model, ...) are one
of the simplest, yet often sufficient model structures used in system identification. Those models
have a simple transfer function form and work under the assumption that the current output
value depends on finite number of previous outputs, inputs and some stochastic term e(t). [3]
The role of classical adaptive control was later taken over by artificial intelligence, especially by
Neural Networks (NN). Various neural network architectures with differing transfer function
types are used to learn the system dynamics and even to generate appropriate control action.
Application of NNs in this manner can be seen for example in P. Henaff, M. Milgram, J. Rabit
(1994), C. Chen, Z. Liu, K. Xie, Y. Zhang, C. L. P. Chen (2017) or H. Leeghim, D. Kim (2015).
Although the neural network approach undoubtedly works, it has several properties that could
be seen as problematic. One of those properties is the black-box approach, which does not
allow us to see how the training and prediction itself works. Another problem of NNs is a large
amount of data required for training. [4]
The Q-learning method used in this thesis does not suffer from those problems. The research
part of this work explains in depth the principle of Q-learning and shows on several examples the
learning process itself. Q-learning is also capable of incorporating a priori known information.
In our case, it can be shown that the Q-function learned by the algorithm is quadratic and
positive definite, which substantially reduces the required amount of training data.
The goal of this thesis is to develop a self-learning algorithm for an intelligent thermostat. The
algorithm should be able to find an optimal controller based on the provided data. The data
available for learning include room temperature, reference temperature, outside temperature,
and applied input (heat flow generated by the boiler).
The first chapter explores and describes the already known theory of optimal control and
Q-learning, which was found useful for later use. It mostly includes a description of Q-learning,
machine learning in general and Model Predictive Control (MPC). Then, the problem of
developing the self-learning thermostat with all limitations and constraints is introduced. This
chapter also contains a short general description of the controlled system. The next section
introduces the realistic thermal model, which is later used to evaluate and test all major results

1

https://ieeexplore.ieee.org/document/399997/
https://ieeexplore.ieee.org/document/399997/
https://www.sciencedirect.com/science/article/pii/S0020025517308782
https://www.sciencedirect.com/science/article/pii/S0273117714004189

Introduction Martin Procházka

of this thesis. The following chapter is related to the first one as it shows how were the already
known theoretical results modified, combined and applied to the problem to derive the three main
techniques of this thesis: Controllers comparison, optimal controller generation and merging
Q-learning and MPC. This section also includes a solution to a series of partial problems that
had to be addressed. The chapter ends with several tests proving the concept, justifying the
use of Q-learning, showing its advantages and exposing few complications. The final chapter
includes several experiments verifying the three major developed techniques on the thermal
model. The evaluation of achieved results is summarized in conclusion.

2

Research Martin Procházka

2 Research

This chapter describes the ideas, techniques, and methods used later in the text as a solution to
given problems. Those solutions are heavily based on Q-learning and reinforcement learning in
general. Therefore, those techniques will be described more in detail. The chapter ends with
the description of the Model Predictive Control (MPC).

2.1 Reinforcement Learning

Reinforcement learning is a type of machine learning inspired by learning in nature. Animals are
given some rewards or punishments from the environment and modify their behavioral strategies
accordingly. From the control engineering point of view, it can be classified as both optimal and
adaptive control, since given sufficient amount of exploration data, the reinforcement learning
methods converge to an optimal control law without knowing the system dynamics beforehand
[2].

2.1.1 Markov Decision Processes

Markov decision processes (MDP) are used when a decision-making situation has to be modeled
in a way that in a state x, the decision maker has several inputs1 (actions) u to choose from,
and after applying one of them, the system randomly moves to a state x′. The Markov decision
process is defined as a (X,U, P,R), where X is the set of all states and U is the set of all inputs.
P or P u

x,x′ are the transition probabilities for every state x ∈ X and input u ∈ U of transitioning
from x to x′ ∈ X. R or Ru

x,x′ is the reward gained after transitioning from x ∈ X to x′ ∈ X
using the input u ∈ U . If sets X and U are finite, then it is called a finite Markov decision
process. Most of the reinforcement learning theory was developed for the finite Markov decision
processes framework. Therefore, using this theory for continuous systems with an infinite state
and input space may (and will) cause some problems, which will be described as they come
later in the text [1, 2].

2.1.2 Bellman Optimality Equation

To explain the reinforcement learning in the most understandable way, it will be first explained
on a simple example, and generalizations will come later.

Suppose first that we have a deterministic discrete time-invariant model, which can be described
by a set of linear difference equations written in a simple form as

xt+1 = f(xt, ut), (1)

where x is the system state, and u is the input to the system. The model can be seen as a
special case of the MDP, where the transition probabilities are replaced by a transition law (1).

1The terminology and labeling used for the values to be applied to a system differ from field to field. Control
engineers use “inputs u”, but “actions a” are used in machine learning and artificial intelligence in general. Since
this thesis utilizes machine learning methods for control purposes, the “inputs u” notation will be used from now
on.

3

Research Martin Procházka

Now a cost2 r(xt, ut) can be defined as a function of x and u at time t, which is the expected
immediate cost paid after a transition from xt to xt+1 using the input ut. How exactly does r
depend on xt and ut will be defined later.
Next, a deterministic policy has to be defined. Suppose X is the set of all states and U is the
set of all inputs. Policy u = π(x) then defines which u from U should be applied when the
system is in state x for every x ∈ X.
The value of a policy π as a function of xt is defined as a sum of all future costs when starting
in state xt and using the input u given by policy π from now on

V π(xt) =
∞∑
k=0

γkr(xt+k, uπt+k). (2)

Notice that the future costs are reduced by the discount factor γ (0 ≤ γ < 1). The optimal
policy π∗ is defined as

π∗(xt) = arg min
π
V π(xt) (3)

and its corresponding optimal value is defined as

V ∗(xt) = min
π
V π(xt). (4)

Since the value of a policy π is defined as a sum, equation (2) can also be written as

V π(xt) = r(xt, uπt) + γ
∞∑
k=1

γkr(xt+k, uπt+k), (5)

V π(xt) = r(xt, uπt) + γV π(xt+1). (6)

Equation (6) is called the Bellman equation. Using (3),(4) and (6), the Bellman optimality
equations can be derived

V ∗(xt) = min
ut

[r(xt, ut) + γV ∗(xt+1)] , (7)

π∗(xt) = arg min
ut

[r(xt, ut) + γV ∗(xt+1)] . (8)

If the finite MDP framework is considered, the function V can be represented as an n-dimensional
vector (since the state and input spaces are finite and discrete), where n is the dimension of the
vector xt. n can also be called the order of the system. On the other hand, if the state and
input spaces were to be infinite and continuous, the V function would then be represented by a
n-dimensional continuous function. This generalization makes the identification of such function
way more complex, and some reinforcement learning methods cannot be used at all.

2Typical problems solved by artificial intelligence are defined so that the goal is to maximize a reward (labeled
as r). On the contrary, typical control engineering problem is designed in a way that the goal is to minimize
certain cost. Since those concepts are to some extent similar, the labeling from the artificial intelligence persists
even in this context.

4

Research Martin Procházka

2.1.3 Dynamic Programming

Dynamic programming is closely related to the Bellman equation and Bellman optimality
equation. It is a backward-in-time offline method for finding an optimal policy for given problem.
This approach requires knowledge of the system dynamics and expected costs.
Since the method runs offline backward in time, some finite horizon h has to be set. Therefore,
the optimization will be performed on a finite set of time steps between times t and t+ h. Since
the time t+ h is “last” for the optimization, a reward rh(xt+h) depending only on the state xt+h
at time t+ h has to be defined.
As stated before, dynamic programming runs backward in time and uses the Bellman equation,
therefore, the value has to be computed at time t+ h first. Since there is no “t+ 1” time, the
equation (7) for time t+ h can be written as

V (xt+h) = rh(xt+h). (9)

The value is computed as some function of xt+h for every x ∈ X. Then the algorithm runs
backward in time computing optimal input u∗ and value V (xt+k) for each state x ∈ X according
to the Bellman optimality equation (10) and equation (11) at every time step k between times t
and t+ h.

V ∗(xk) = min
uk

[r(xk, uk) + γV ∗(xk+1)] (10)

u∗ = arg min
uk

[r(xk, uk) + γV ∗(xk+1)] (11)

Example of a simple problem solved by dynamic programming is shown in Figure 1.

2.1.4 Policy Evaluation

Considering the MDP framework, a way to compute the value function V π for given policy π has
to be found. This process is called a policy evaluation, and it utilizes the dynamic programming
approach. The Bellman equation (6) can be understood in a way that its left side is at iteration
k + 1 and the right side is at iteration k

V π
k+1(xt) = r(xt, uπt) + γV π

k (xt+1). (12)

Indices k and k + 1 are related to iterations of the policy evaluation, indices t and t+ 1 relate
to time. The initial approximation of V π can be chosen arbitrarily. If it is then updated using
equation (12), it can be shown that as k →∞, the sequence of V π approximations converges to
the true V π, if the steady-state V π exists. This iterative process is usually stopped once the
difference between V π

k and V π
k+1 is lower than some threshold.

The update from V π
k to V π

k+1 can be performed in at least two ways. Either the V π
k is kept intact

as it is and it is used to separately compute V π
k+1 for all x ∈ X, or V π

k and V π
k+1 merge as V π

k is
updated for all x ∈ X and the old value is immediately rewritten by the new one. Both of these
two approaches converge to V π as k →∞. [1]
This value function computation approach can be used without the knowledge of transition
probabilities between states (system dynamics) only if, as so far considered, the system is

5

Research Martin Procházka

(a) The reward r(xt+h) is computed for every x ∈ X. (b) Reward for all u ∈ U is computed at each state
x ∈ X.

(c) u∗ (from all u ∈ U) and value V (xt+k) is found
for each state x ∈ X.

(d) Once the value is computed for all x ∈ X at
every time step k between times t and t + h, the
optimal policy for each x ∈ X at time t (red) can
be shown.

Figure 1: Dynamic programming example

deterministic. However, it cannot be used without known system dynamics, if the system has a
stochastic part (see 2.2.6). Therefore, some other way to obtain the value function has to be
found.

2.2 Q-Learning

Q-learning is a type of reinforcement learning. It is a data-driven approach, where the system
dynamics is unknown. The Bellman equation (6) can be modified and used in Q-learning. First,
a new function has to be defined using the Bellman function (6)

Qπ(xt, ut) = r(xt, ut) + γV π(xt+1). (13)

This new Q-function (also called “action-value function”) has a similar meaning as the V-function
defined by (2), but it is a function of xt and ut as opposed to only being function of xt in the
case of the V-function. The Q-function tells us how would the value of strategy π change if the
input ut was applied at time t and then the policy π would be used from time t + 1 onward.
Since

V π(xt) ≡ Qπ(xt, uπt), (14)

the equation (13) can be written as the Bellman equation

Qπ(xt, ut) = r(xt, ut) + γQπ(xt+1, u
π
t+1). (15)

6

Research Martin Procházka

The Bellman optimality equation as a Q-function equivalent of (7) is

Q∗(xt, ut) = r(xt, ut) + γmin
ut+1

Q∗(xt+1, ut+1). (16)

2.2.1 Q-Function Identification – Learning

Considering a Q-learning problem, the only information given by the system after applying
the input ut, is the state xt, reward r(xt, ut), and state xt+1. Therefore, the Q-function has to
be identified using only these values

{
ut, xt, xt+1, r(xt, ut)

}
. The equation (15) can be

rewritten to fit a temporal difference form

r(xt, ut) = Qπ(xt, ut)− γQπ(xt+1, u
π
t+1). (17)

This equation only holds for a deterministic system and already identified Q-function. Generally,
there is a temporal difference error et defined as

et = r(xt, ut)−Qπ(xt, ut) + γQπ(xt+1, u
π
t+1). (18)

During the learning period, such et is obtained at each time step t. The goal now is to find such
Q that the et at each time t is minimized, which can be achieved for instance by the Recursive
Least Squares (RLS) method.

On-Policy Learning
If the equation (17) uses ut chosen by the policy π as in (19), then the Q-function identification
method is described as on-policy learning. Therefore, the state xt+1 is a result of π.

r(xt, uπt) = Qπ(xt, uπt)− γQπ(xt+1, u
π
t+1) (19)

Off-Policy Learning
On the other hand, the Q-function of a policy π1 can be evaluated while inputs given by some
other policy π0 are applied. This method is called off-policy learning and is described by equation
(20). In this case, the state xt+1 is a result of using policy π0 even though policy π1 is being
evaluated.

r(xt, uπ0
t) = Qπ1(xt, uπ0

t)− γQπ1(xt+1, u
π1
t+1) (20)

2.2.2 Policy Iteration

Policy iteration and value iteration are dynamic programming based methods used to obtain
the optimal value function V ∗ or optimal Q-function Q∗, and their corresponding optimal policy
π∗. As the name of those methods suggests, the process of finding such optimal function and
policy is iterative. Let us start with the policy iteration method.
Suppose we have some policy π0. Its corresponding value function V π0 (or Q-function Qπ0 since
V π0(xt) = Qπ0(xt, uπ0

t)) can be computed either by the policy evaluation method (2.1.4), which

7

Research Martin Procházka

can only be performed “on-policy” or on/off-policy learning (2.2.1). The policy improvement
theorem then states that

(
Qπ0(xt, uπ1

t) ≤ Qπ0(xt, uπ0
t)
)
⇒

(
Qπ1(xt, uπ1

t) ≤ Qπ0(xt, uπ0
t)
)
∀xt ∈ X. (21)

In other words, if the Q-function corresponding to the policy π0 has lower or equal value for all
states xt ∈ X after the input given by the policy π1 was applied, than if the input given by the
policy π0 was applied, then the policy π1 is as good as, or better than policy π0. The proof of
this theorem is trivial, and it is given in [1]. This shows that given some policies π0 and π1, it
can be easily evaluated if the policy π1 lowers the value at some state xt.

Now, a way has to be found to find a policy which lowers (or at least not increases) the value at
all states. This is achieved by

π1(xt) = arg min
ut

Qπ0(xt, ut). (22)

Equation (22) has to be computed for all states x ∈ X, and each computation is done over all
u ∈ U . This way a new policy π1 is obtained. Simply put, this new policy does what is best
at one step look-ahead. As proved by the policy improvement theorem, the newly obtained
policy π1 is as good as, or better than the original policy π0. This process is called a policy
improvement.

Once a policy improvement has been applied to obtain a policy π1, a value of such policy can
be evaluated and then improved again to get even better policy π2. This method, where policy
improvement alternates with policy evaluation is called a policy iteration. Since each policy πi+1
is better (or as good as) πi, inevitably a point, where the optimal π∗ is found, has to be reached.
This occurs when V πi+1 = V πi = V ∗. This convergence is conditioned by the finite input and
state spaces of the MDP framework, which results in a finite number of policies. Using the
infinite continuous input and state spaces, resulting in an infinite number of policies, no such
convergence can be guaranteed in a finite number of steps. This topic will be discussed more in
section 2.2.4.

The policy iteration theory will be supported by a simple example. The convergence will be
tested on a simple, stable discrete second-order system, with known optimal (with respect to
some criterion) policy in the form of state feedback controller u = π(x) = −Kx. The policy
iteration will be used to find the same optimal policy. The gain K consists of five individual
values, corresponding to the augmented state vector xaug =

[
1 xt st ut−1

]
, where xt is the

state of the second-order system (therefore, two values), st is the set-point at time t and ut−1 is
the input at time t− 1. The iteration starts from a K0 =

[
0 0 0 0 0

]
, which is stabilizing

since the system itself is stable. The algorithm is stopped if

‖Ki −Ki−1‖2 ≤ 1× 10−10, (23)

where i denotes the iteration step.

Figure 2 shows, how the values of the optimized policy converged to those of the known optimal
gain. The stopping condition (23) was met at the seventh iteration. Since the policy was
evaluated using the least squares method and the policy evaluation method as described in 2.1.4
was not used, no “inner iterations” are present.

8

Research Martin Procházka

1 2 3 4 5 6 7

Iteration

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Optimized Gain Values
Known Optimal Gain Values

Figure 2: Policy Iteration Example

2.2.3 Value Iteration

The value iteration algorithm is similar to the policy iteration. The policy evaluation step (2.1.4)
of the policy iteration algorithm is actually an iterative process itself. The value of a policy V π

is in theory found in an infinite number of steps. The idea behind value iteration is stopping
this policy evaluation only after one step and combining it with the policy improvement. The
idea comes from the Bellman optimality equation (7), except that it is seen as an update of
some value V , similarly as in policy evaluation (2.1.4).

V ∗k+1(xt) = min
ut

[r(xt, ut) + γV ∗k (xt+1)] . (24)

The equation (24) has to be yet again computed for all states x ∈ X, and each computation is
done over all u ∈ U . Considering the LQ problem, the value iteration turns into the Riccati
differential equation. This will be shown in a section 2.2.5.

Same as policy iteration, value iteration theory, too, will be supported by a simple example.
The setup stays the same, except this time, the policy u = π(x) = −Kx will be found using the
value iteration.

Figure 3, again, shows the convergence of the value iteration algorithm. Using value iteration,
the stopping condition (23) was met at the 62nd iteration.

9

Research Martin Procházka

0 10 20 30 40 50 60

Iteration

-0.2

0

0.2

0.4

0.6

0.8

1 Optimized Gain Values
Known Optimal Gain Values

Figure 3: Value Iteration Example

2.2.4 Problems with Policy and Value Iteration

The first problem arises when the policy iteration is applied to the infinite continuous state and
input spaces framework. The value function cannot be simply evaluated by the policy evaluation
method (2.1.4). It has to be evaluated in the form of a Q-function by the on/off-policy learning
(2.2.1).
As said before, the Bellman equation can be viewed either as an update rule (25) or as an
equation (26) or set of equations, which can be solved to obtain some value V π.

V π
k+1(xt) = r(xt, ut) + γV π

k (xt+1) (25)

V π(xt) = r(xt, ut) + γV π(xt+1) (26)

The Bellman equation (25) can be also seen as a functional equation, where V π
k (xt+1) is mapped

into V π
k+1(xt). Then for 0 ≤ γ < 1 and V π finite, it can be shown that such mapping is so-called

contraction mapping with a unique fixed point [11]. This means that given some two initial
guesses on V π, let us denote them V π

0a and V π
0b, their values get closer and closer (contraction) as

the iteration converges. The fact that the contraction mapping has a unique fixed point means
that if the iteration converges, it always converges to the same final V π = V π

ka = V π
kb, no matter

what the initial V π
0 was.

The same V π can be obtained by solving the equation or set of equations given by (26).
Considering the MDP framework, where the state and input spaces are finite, and also the
rewards are finite, this holds for any initial policy π0 as long as 0 ≤ γ < 1. If the state and

10

Research Martin Procházka

input spaces are not finite, and the initial policy is destabilizing, the iterative way to obtain the
value function will not generally converge. It may diverge to the infinity even if the discount
factor gamma is bounded as before. Using the second approach (26), some value function will
be identified, but it will be wrong, and it will not have any physical meaning. Therefore, policy
iteration requires the initial policy to be stabilizing to ensure convergence to the optimal value
function.

On the other hand, value iteration does not require the initial policy to be stabilizing; however,
its convergence is significantly slower compared to the policy iteration, as demonstrated by tests
in 2.2.2 and 2.2.3.

An example, supporting the need for stabilizing initial policy for policy iteration and conversely
that it is not needed while using the value iteration, will be given here. The setup remains
identical to the one used in 2.2.2 and 2.2.3 with one exception. The system is now unstable,
which in turn makes the initial policy K0 =

[
0 0 0 0 0

]
not stabilizing.

As expected, policy iteration did converge to some policy (Figure 4), but it was not the optimal
one and maybe not even a stabilizing one. Value iteration did find the optimal policy. However,
it took nearly 3000 iterations to converge (Figure 5).

Usually, this convergence speed versus need for stabilizing initial policy trade-off creates a
dilemma: Which approach should be used? Fortunately, in our case, the system itself is stable.
The room temperature will tend to decrease to the ambient temperature. Therefore, the initial
policy K0 =

[
0 0 0 0 0

]
is undoubtedly stabilizing and the faster approach – policy

iteration – can be used here without any concerns.

1 2 3 4 5 6 7

Iteration

-20

0

20

40

60

80

100

120

140

Optimized Gain Values
Known Optimal Gain Values

Figure 4: Policy Iteration Example with Not Stabilizing Initial Policy

11

Research Martin Procházka

100 101 102 103

Iteration

-20

0

20

40

60

80

100

120

140

Optimized Gain Values
Known Optimal Gain Values

Figure 5: Value Iteration Example with Not Stabilizing Initial Policy

2.2.5 Relation with Algebraic Riccati Equation

Let us assume that the problem to be solved by the Q-learning methods will be given in an LQ
(Linear Quadratic) form. Therefore, the system description is linear and given by

xt+1 = f(xt, ut) = Axt +But (27)

and the quadratic criterion is given by

Jt = 1
2

∞∑
i=t

(
xTi Qxi + uTi Rui + 2xTi Nui

)
, (28)

where Q, R and N are weight matrices. For our purposes the last term with the weight matrix
N can be omitted. The reward will also take quadratic form

r(xt, ut) = 1
2
(
xTt Qxt + uTt Rut

)
. (29)

Considering this new form of reward, the value function corresponding to a policy π given by
ut = π(xt) changes for γ = 1 from (2) to

V π(xt) = 1
2

∞∑
i=t

(
xTi Qxi + uTi Rui

)
. (30)

12

Research Martin Procházka

Analogically to (5) and (6) we then get

V π(xt) = 1
2
(
xTt Qxt + uTt Rut

)
+ 1

2

∞∑
i=t+1

(
xTi Qxi + uTi Rui

)
, (31)

V π(xt) = 1
2
(
xTt Qxt + uTt Rut

)
+ V π(xt+1). (32)

The result of an LQR problem is a controller in a form of

ut = f(xt) = −Kxt. (33)

Since ut = −Kxt, then according to (30), V π(xt) is an infinite sum of quadratic functions
depending on xt therefore, the value will also have a quadratic form depending only on xt with
a symmetric kernel matrix P , such as

V π(xt) = 1
2x

T
t Pxt, (34)

which changes (32) to

1
2x

T
t Pxt = 1

2
(
xTt Qxt + uTt Rut

)
+ 1

2x
T
t+1Pxt+1. (35)

By substituting (27) and (33) into (35), we get

1
2x

T
t Pxt = 1

2
(
xTt Qxt + uTt Rut

)
+ 1

2 (Axt +But)T P (Axt +But) , (36)

xTt Pxt = xTt Qxt + (−Kxt)T R (−Kxt) + (Axt +B (−Kxt))T P (Axt +B (−Kxt)) , (37)

xTt Pxt = xTt Qxt + (Kxt)T RKxt + (Axt −BKxt)T P (Axt −BKxt) , (38)

xTt Pxt = xTt Qxt + xTt K
TRKxt +

(
xTt A

T − xTt KTBT
)
P (Axt −BKxt) , (39)

xTt Pxt = xTt
(
Q+KTRK

)
xt + xTt

(
AT −KTBT

)
P (A−BK)xt, (40)

P = Q+KTRK +
(
AT −KTBT

)
P (A−BK) , (41)

(A−BK)T P (A−BK)− P = −
(
Q+KTRK

)
, (42)

where (42) is a Lyapunov equation. Therefore, for a given K (or π), the Lyapunov equation is
an LQR equivalent of the Bellman equation (6).
By taking (36) and subtracting 1

2x
T
t Pxt from the left side, we get

13

Research Martin Procházka

0 = xTt Qxt + uTt Rut + (Axt +But)T P (Axt +But)− xTt Pxt, (43)

which only holds for ut = −Kxt, with one concrete K. Generally, (43) has nonzero left side

H(xt, ut) = xTt Qxt + uTt Rut + (Axt +But)T P (Axt +But)− xTt Pxt, (44)

where H(xt, ut) is a Hamiltonian function, which is an LQR equivalent to the temporal difference
error et, used in (18). [2]
The similarity between (17), (18) and (43), (44) is caused by the fact that (43) is a Bellman
equation (17) for the LQR version of this problem. [2]
To find the gain K, the necessary optimality condition ∂H(xt, ut)/∂ut = 0 has to be fulfilled.
The procedure is shown below, starting by modifying (44).

H(xt, ut) = xTt Qxt + uTt Rut +
(
xTt A

T + uTt B
T
)
P (Axt +But)− xTt Pxt, (45)

H(xt, ut) = xTt Qxt+uTt Rut+xTt ATPAxt+xTt ATPBut+uTt BTPAxt+uTt BTPBut−xTt Pxt, (46)

∂H(xt, ut)
∂ut

= 2Rut + 2BTPAxt + 2BTPBut. (47)

Then by setting ∂H(xt, ut)/∂ut != 0, we get

0 = 2Rut + 2BTPAxt + 2BTPBut, (48)

0 =
(
R +BTPB

)
ut +BTPAxt, (49)

ut = −
(
R +BTPB

)−1
BTPAxt = −Kxt. (50)

Therefore, the optimal strategy π with gain

K =
(
R +BTPB

)−1
BTPA (51)

was found.
By evaluating K using the Lyapunov equation (42), we are performing policy evaluation. If
P obtained by such evaluation is used to generate new K (using (51)), policy improvement is
being executed. Therefore, by alternating between (42) and (51), we are performing the policy
iteration algorithm (2.2.2), which is in control theory known as Kleinman algorithm [17].
By modifying the Lyapunov equation (42) and substituting the gain (51) into it, we get

0 = ATPA− ATPBK −KTBTPA+KTBTPBK − P +Q+KTRK, (52)

14

Research Martin Procházka

0 = ATPA− P +Q− ATPBK +KT
(
BTPBK +RK −BTPA

)
, (53)

0 = ATPA− P +Q− ATPBK +KT
((
BTPB +R

)
K −BTPA

)
, (54)

0 = ATPA− P +Q− ATPB
(
R +BTPB

)−1
BTPA

+KT
((
BTPB +R

) (
R +BTPB

)−1
BTPA−BTPA

)
, (55)

0 = ATPA− P +Q− ATPB
(
R +BTPB

)−1
BTPA, (56)

where (56) is an Algebraic Riccati Equation, which is an LQR equivalent of the Bellman
optimality equation (7).
This result, combined with (34) shows that the value of a policy given by ut = π(xt) = −Kxt
can be obtained by solving the Algebraic Riccati Equation, given the system dynamics are
known. In other words, if the system dynamics are known, there are two ways to obtain the
value of a policy. One is to use the Algebraic Riccati or Lyapunov equation and the second one
was described in section 2.2.1. The fact that there is more than one way to obtain the value
of a policy can be used to verify that the machine learning approach gives the same results as
the already known and rigorous approach in the form of the Algebraic Riccati or Lyapunov
equation. Such comparison will be given in section 5.3.2.

2.2.6 Q-Learning for Stochastic Systems

For simplicity, stochastic systems were not considered until now. Although Q-learning or
reinforcement learning methods in general are perfectly usable for deterministic systems, they
are intended to be used on stochastic systems. There are several reasons supporting it, one of
them being that there already are simpler methods for deterministic systems, which achieve the
same goal as reinforcement learning. Simply put, using reinforcement learning on deterministic
systems is a bit of an overkill.
The main characteristic of stochastic systems is that, even though the current state of the
system or Markov decision process and the applied action are known, the next state cannot be
predicted with 100 % certainty.
In Markov decision processes this means that there are some transition probabilities of tran-
sitioning from the current state xt to all states xt+1 ∈ X, given the applied input at time t,
as described in section 2.1.1. If we were to use the discrete time-invariant model (27), the
stochastic part et would have to be added (57).

xt+1 = Axt +But + et, (57)

The Bellman equation (6) and Bellman optimality equation (7) change their forms to (58) and
(59) respectively. Notice the newly added expected value operator,

V π(xt) = r(xt, uπt) + γE {V π(xt+1) | xt, ut} , (58)

15

Research Martin Procházka

V ∗(xt) = min
ut

[r(xt, ut) + γE {V ∗(xt+1) | xt, ut}] . (59)

Using the Q-function, their respective forms are

Qπ(xt, ut) = r(xt, ut) + γE
{
Qπ(xt+1, u

π
t+1) | xt, ut

}
, (60)

Q∗(xt, ut) = r(xt, ut) + γE
{

min
ut+1

Q∗(xt+1, ut+1) | xt, ut
}
. (61)

The transition from deterministic to stochastic systems has a significant influence on the Q-
function identification (2.2.1). If the system is deterministic, only a finite number of equations
(18) (time steps) has to be obtained to find the Q-function, which minimizes et in each equation.
On the other hand, if the system is stochastic, one would need an infinite number of time steps
to truly identify the Q-function.

2.3 Model Predictive Control (MPC)

The main reason for the use of Model Predictive Control in this thesis is its ability to deal with
hard constraints, which are generally caused by physical limitations of actuators. In our case,
the need for constraint support rises mostly from the fact that while controlling the temperature
in a room, a negative action input (cooling) is often not possible and certainly not wanted, as
such cooling would be seen as a waste of energy. This chapter includes information acquired
from [5].

The MPC works on a finite horizon of length N from time 0 to time N . Its goal is to minimize
given criterion J(x, u) over the set of inputs and states

J∗(x0) = min
u0, u1, . . . , uN−1
x0, x1, . . . , xN

J(x, u) = min
u0, u1, . . . , uN−1
x0, x1, . . . , xN

φ(xN)+
N−1∑
k=0

Lk(xk, uk). (62)

The minimization can be performed with respect to constraints, such as

xk+1 = f(xk, uk), (63)

x0 = given initial state, (64)

umin ≤ uk ≤ umax, (65)

xmin ≤ xk ≤ xmax, (66)

where (63) describes the system dynamics, (64) is the initial state, and (65) and (66) are
constraints on input and state.

16

Research Martin Procházka

2.3.1 MPC Without Constraints

If the controlled system is linear and there are no constraints on state and input, equations
(63–66) take the form

xk+1 = Axk +Buk, (67)

x0 = constant. (68)

Then we consider a quadratic criterion, such as

J(x, u) = 1
2x

T
NQNxN + 1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
= 1

2X̄
T Q̄X̄ + 1

2 Ū
T R̄Ū + 1

2x
T
0Qx0. (69)

The minimization problem then changes to

min
X̄,Ū

J(X̄, Ū) = min
X̄,Ū

1
2X̄

T Q̄X̄ + 1
2 Ū

T R̄Ū + 1
2x

T
0Qx0, (70)

where

X̄ =


x1
x2
...
xN

 , Ū =


u0
u1
...

uN−1

 ,

Q̄ = diag
([

Q Q . . . Q QN

])
, R̄ = diag

([
R R . . . R

])
,

(71)

and 1
2x

T
0Qx0 is a constant. Since the constant does not change the position of the minimal value,

this term can be omitted. Constraints, as described in (67), can be written as

X̄ = ĀX̄ + B̄Ū + A0x0, (72)

where

Ā =



0
A 0

A
. . .
.

A 0

 , B̄ = diag
([

B B . . . B
])
, A0 =


A
0
...
0

 . (73)

Equation (72) can be further rewritten as

0 =
(
Ā− I

)
X̄ + B̄Ū + A0x0, (74)

17

Research Martin Procházka

0 =
[(

Ā− I
)

B̄
] [X̄

Ū

]
+ A0x0, (75)

0 = Ãw + b̃. (76)

If we rewrite the minimization criterion (69), the minimization problem without constraints on
the input or state can be written as

min
w

wT
[
Q̄ 0
0 R̄

]
w. (77)

Subject to 0 = Ãw + b̃, (78)

which is a problem which can be solved by quadratic programming (Section 2.3.3).

2.3.2 Constraints on the Input Vector

For us to be able to add constraints on the input, the set of state vectors X̄ has to be eliminated
from the criterion. Fortunately, X̄ can be eliminated in a simple step-by-step way, as shown
below.

x1 = Ax0 +Bu0, (79)

x2 = Ax1 +Bu1 = A2x0 + ABu0 +Bu1, (80)

xk = Akx0 +
[
Ak−1B Ak−1B . . . AB B

]
Ū . (81)

Therefore, X̄ can be written as

X̄ = B̂Ū + Âx0 =



B
AB B
A2B AB B
...

AN−1B AN−2B . . . AB B

 Ū +


A
A2

...
AN

x0. (82)

By substituting (82) into (69) we get

J(Ū , x0) = 1
2
(
B̂Ū + Âx0

)T
Q̄
(
B̂Ū + Âx0

)
+ 1

2 Ū
T R̄Ū , (83)

J(Ū , x0) = 1
2 Ū

T B̂T Q̄B̂Ū + xT0 Â
T Q̄B̂Ū + xT0 Â

T Q̄Âx0 + 1
2 Ū

T R̄Ū , (84)

J(Ū , x0) = 1
2 Ū

T
(
B̂T Q̄B̂ + R̄

)
Ū + xT0 Â

T Q̄B̂Ū + xT0 Â
T Q̄Âx0, (85)

18

Research Martin Procházka

J(Ū , x0) = 1
2 Ū

T
(
B̂T Q̄B̂ + R̄

)
Ū + xT0 Â

T Q̄B̂Ū . (86)

J(Ū , x0) = 1
2 Ū

THŪ + xT0 F
T Ū . (87)

Because xT0 ÂT Q̄Âx0 is a constant and does not change the position of the minimal value, it
could be omitted. The minimization problem then changes to

min
Ū

1
2 Ū

THŪ + xT0 F
T Ū . (88)

With constraints

uk ≤ umax and uk ≥ umin, (89)

which is also a problem which can be solved by quadratic programming.

2.3.3 Quadratic Programming

Quadratic programming is a general term denoting a set of algorithms solving the quadratic
optimization (minimization for M > 0 or maximization for M < 0) problem with linear
constraints. Since our goal is to minimize the reward, then without loss of generality, only the
minimization problem will be considered henceforth. The optimization problem can be written
as

min
x

1
2x

TMx+ nTx, (90)

subject to the constraints

Ax ≤ b, (91)

Aeqx = beq, (92)

bl ≤ x ≤ bu, (93)

where (91) represents inequality constraints, (92) are equality constraints and bl and bu in (93)
represent the lower and upper bounds respectively.

19

Research Martin Procházka

Unconstrained Optimization
There are many algorithms able to solve such optimization problems. If only the easiest form of
this problem is considered, which is just the optimization problem (90) without any constraints,
the solution is simple (provided the function f(x) is convex). The first order necessary condition
of optimality states that the gradient of the optimized function equals zero. In our case, if we
denote

f (x) = 1
2x

TMx+ nTx, (94)

then

∇f (x) != 0, (95)

df = ∇Tf (x) dx, (96)

df = 1
2
(
dxTMx+ xTMdx

)
+ nTdx, (97)

df = 1
2
(
xTMTdx+ xTMdx

)
+ nTdx, (98)

df =
(
xT
MT +M

2 + nT
)
dx. (99)

Therefore, according to (96) and (99),

∇f (x) = MT +M

2 x+ n. (100)

Under the assumption of MT = M , which is satisfied in our case, (100) further simplifies to

∇f (x) = Mx+ n. (101)

Since the initial condition (95) has to be fulfilled, equation (101) can be rewritten as

Mx+ n = 0, (102)

which is just a set of linear equations, whose solution is denoted as the critical point, where the
minimum of f (x) may be found. The second order necessary and sufficient conditions are given
by the Hessian

∇2f (x) = M. (103)

The so-called “second derivative test” states that if the Hessian is positive definite, the critical
point is the minimum of the optimized function f (x). On the other hand, if the Hessian is
negative definite, the critical point forms the maximum of the function f (x). If there are both
positive and negative eigenvalues of the Hessian, then the critical point is a saddle point. In all
other cases, the test does not give an answer.

20

Research Martin Procházka

Constrained Optimization
The constrained optimization problem is usually more complex than the unconstrained one,
and its solution cannot be obtained just by solving a set of linear equations. Therefore, more
sophisticated methods have to be used. Since most, if not all, of the work done on this thesis,
was done using the Matlab [6] or Matlab/Simulink environment [7], this section will concentrate
on the constrained quadratic optimization solving algorithms used by the Matlab environment.
According to [8], Matlab uses three algorithms to solve quadratic programming problems
described by (90-93). Those algorithms are:

• Interior-point-convex: solves convex problems with any combination of constraints

• Trust-region-reflective: solves bound constrained or linear equality constrained problems

• Active-set: solves problems with any combination of constraints

A detailed description of those algorithms is given in the Matlab documentation [9]. Even
though there are three distinct algorithms used by Matlab, there is only one function for solving
quadratic programming problems. The function is called quadprog, and its description can be
found in the documentation [10].

2.3.4 Receding Horizon

Notice that the solution to the minimization problem, the control sequence, does not use any
feedback from the controlled system besides the initial state x0. It purely relies on the model.
Such control is called a feed-forward control. The most significant disadvantage of this approach
is a possible divergence between the state vector predicted by the model and the state of the
real controlled system. This divergence is caused by some combination of the inaccuracy of the
model and the process noise of the system.
The MPC works on a principle called “receding horizon”. This principle solves this problem
in an elegant way. The quadratic programming solves the given optimization problem on the
horizon of length N and produces an input sequence u. Then, only the first input from this
sequence is actually applied, and the state of the system is measured. This new state is used as
an initial state for the optimization problem in the next step.
The receding horizon approach ensures that the aforementioned divergence does not affect control
of the system. This approach of using the receding horizon is sometimes called “open-loop
feedback”.

21

Problem Description Martin Procházka

3 Problem Description

As stated in the introduction, the goal of this thesis is to develop an automatic self-tuning
controller for regulating temperature (thermostat). Such controller should be able to find an
optimal control law solely based on the system’s input, output and predefined reward, which
itself is a function of the input and output. The final control law should be able to deal with
constraints on the input introduced by the boiler.

3.1 Controlled System

For simplicity, the performance of our controllers will be tested on one zone (room) only, which
is a SISO problem. However, all results developed in this thesis are applicable to the whole
building (MIMO problem). The temperature regulation in a building depends on several factors.
The first one is the heat capacity (C

[
J
K = kg m2

K s2

]
), which says how much heat is required to

be added to the system to change the temperature by 1 K. This quantity is mostly affected
by proportions of the building, by the material used during the construction and also by the
furnishing.

The second important factor is the heat transfer coefficient (U
[

W
m2 K = kg

K s3

]
), which is in our

case used to determine how much heat transfers through 1 m2 area of some object (e.g. a wall)
from one side to the other if the difference in temperature between those sides is 1 K. Since the
heat transfer coefficient is just an inverse of the thermal resistance, the value is mostly affected
by the amount and type of insulation used on the building and the insulation properties of the
construction material itself.

Apart from the control input, the temperature regulation can also be affected by additional
inputs, such as solar heat gain (increase in temperature as the solar radiation is absorbed),
number of people in the building or even the presence of powerful computers or servers.

3.2 Demands on the Control Quality

The difference between typical control and reinforcement learning problem does not lie only in
maximizing or minimizing reward or cost. There are differences in the demanded performance
and convergence speed. Most of the algorithms applied to machine learning problems, which
had been proved to be optimal need a massive amount of data (which takes time to generate) to
reach the convergence. Therefore, these approaches cannot be used in the intelligent thermostat.
The thermostat has to be able to control the room temperature since the moment of installation.
There definitely cannot be a week, month or even a year-long learning period.

As mentioned above, the learning period has to be few days long at maximum (given those days
contain enough useful data – more in section 5.4). However, this is not the only requirement
on the learning period. The thermostat has to be able to control the system even during the
learning period, though obviously, the control does not have to be optimal. There are only two
mild demands on the control during the learning phase. The controller has to be stabilizing,
and its actions must not cause the room temperature to diverge from the reference temperature
to a degree which could be recognized by the residents.

23

Problem Description Martin Procházka

3.3 Constraints Introduced by the Boiler

In a typical control problem, the applicable control input is usually bounded equally around
the origin. While controlling the altitude of an aircraft, the controller can increase or decrease
the plane’s altitude by applying an elevator defection in a range between e.g. −30◦ and 30◦.
The controller inside a self-driving car can turn the front wheels e.g. from −45◦ to 45◦. On the
other hand, (as mentioned in section 2.3) while controlling a temperature in a room, a negative
action input (active or passive cooling) is often not possible and certainly not wanted, as such
cooling would be seen as a waste of energy. Therefore, the first constraint introduced by the
boiler is the fact that the lower bound of a set of applicable action inputs would be 0 kW (The
heat flow generated by the boiler to the system is measured in kilowatts (kW).). The upper
bound is given by the maximum power capability of the boiler.
The second type of constraints introduced by the boiler is given by the fact that most of the
commonly used boilers can only operate in a range of circa 30 % to 100 % of their maximum
power potential. If the demanded power value would be under the 30 %, the boiler shuts
down to 0 %. Therefore, the boiler can be regulated by action inputs from a disconnected set
{0, 〈30, 100〉}%.

24

Thermal Model Description Martin Procházka

4 Thermal Model Description

Successful testing of the theoretical results requires a realistic model. The model used in this
thesis was developed by Honeywell Prague Laboratory. It utilizes a Hydronic Heating Library
(personal communication, August, 2017) specially developed for modeling heating systems in
the Matlab/Simulink framework.
The model can be divided into two parts. The first part includes the hydronic network and
all components placed in it. Simply said, the first part is the one responsible for heat supply
via water in the pipes. Therefore, components in this section include a pump, boiler, pipes,
radiators, and valves. The pump simulates a hydraulic pressure source. It can work either in
an ideal pressure source mode or in a real pump mode, where the water pressure is modeled
as a quadratic function of flow. The boiler block simulates a hot water source. Again, two
modes are available. Either the boiler behaves as an ideal hot water source, supplying hot water
of set temperature to the network or it models a real hot water source, where the returning
water with some temperature is heated in a water tank to a set temperature by a burner, which
is controlled by a PI controller. Either way, the boiler introduces a pressure drop caused by
fluid friction as a quadratic function of water flow. Finally, the radiator block simulates the
hydraulic and thermodynamic behavior of a radiator, a control valve, and connecting pipes.
The thermodynamic behavior of the radiator depends mostly on the heat exchange area of the
radiator and the total heat exchange coefficient from water to air. The valve can work either
in a linear mode, where the flow through the valve is a linear function of the opening or as
(Semi-)Equal-percentage valve mode. Pipes are modeled as pressure drop, which is a quadratic
function of the flow, proportional to the inner diameter and length of the pipe.
The second part models the thermal dynamics of the room or building. In other words, how is
the heat gained from the radiators distributed and lost in the building. There are three main
important components from the thermodynamic point of view: room, wall, and vent. The
inputs and outputs of the room block represent the in and out heat flow. The room is defined
by its area, height, part of space occupied by furniture and its initial temperature. There are
three types of wall in the Hydronic Heating Library. The simplest one is the wall between two
rooms. Aside from its dimensions, the wall has three additional parameters to be set: thermal
conductivity of the material the wall is built of, the heat transfer on the boundary between the
wall itself and the air in the room and thermal capacity of the material the wall is built of. The
“neighbors wall” is same as the wall between two rooms, except the temperature in the other
(neighbor) room is not controlled and is modeled as constant. Next is the external wall, which
in addition to the parameters of the simple wall has other parameters. Those describe if the
wall is exposed to solar radiation, the area of the wall occupied by a window, heat transmission
and solar radiation transmittance of the window and several other parameters describing the
interior and exterior facing (insulation thickness and conductivity). The vent represents an
interface between two thermal zones without any barrier.

4.1 Capabilities and Settings

The Hydronic Heating Library enables the creation of a whole range of possible floor plans with
various room heights, areas, radiator types, construction materials, insulation types and boiler
settings. The setting used for our purposes (Figure 6) consists of two neighboring rooms (A
and B), each having two external walls and one “neighbors wall”. The only difference is that
room A has only one window and one radiator, whereas room B has two windows and two
radiators. Area of each room is 60 m2, height of the room is 3 m with initial temperature of

25

Thermal Model Description Martin Procházka

A B

N

7500 150 7500

8
0

0
0

3
0

0
6

0
0

1
5

0

Figure 6: Thermal Model Floor Plan

12 ◦C. The construction material of the external wall is bricks with 60 cm thickness, and 15 cm
thick mineral wool insulation is added on the exterior. The inner wall between the two rooms is
15 cm thick and the “neighbor wall” is 30 cm thick with a constant neighbor (labeled as “N” in
Figure 6) temperature of 18 ◦C. Mean ambient temperature is initially set to 0 ◦C, although it
can be changed later to facilitate specific needs of conducted experiments.

26

Solution Martin Procházka

5 Solution

This part shows how were the theories described in chapter 2 modified, combined and applied to
the problem. This section includes the description of the major techniques, which were achieved
by combining machine learning with classical control approach. Selection of tests needed to
produce those techniques is also demonstrated here. This section also includes solutions to a
selection of minor problems which had to be solved. The chapter ends with several complications
which were found during the testing phase.

5.1 Major Derived Techniques

There are three main solutions produced by this thesis. All of them will be presented in this
chapter. Those solutions can be further combined to create the final intelligent thermostat.

5.1.1 Controllers Comparison

The first approach chosen for the intelligent thermostat has the following format. Suppose the
thermostat is started with a finite number of seed controllers and its goal is to find the best
one. The performance of a given controller is computed using the quadratic reward which was
introduced in section 2.2.5 as

r(xt, ut) = 1
2
(
xTt Qxt + uTt Rut

)
. (104)

First, the Q-function for each controller (policy) has to be evaluated, using the off-policy learning.
As shown in 2.2.1, during the off-policy learning, one policy (controller) has to be used to actually
control the system, while the Q-function of all controllers can be evaluated. The problem of
choosing the right policy to be controlling the system during the off-policy learning is not trivial
and will be dealt with later (5.2.1). Let us denote the number of time steps needed to identify
Q-functions as N .
Once all Q-functions are evaluated, they (and with them the controllers themselves) have to be
compared. For us to be able to compare Q-functions, some measure has to be defined first. Let
us define value Cπ (cost) of given policy π as

Cπ = 1
N

N∑
t=1

Qπ(xt, uπt) = 1
N

N∑
t=1

∞∑
k=0

γkr(xt+k, uπt+k). (105)

Assume that some policy π0 was used to control the system during the N steps of off-policy
learning. At each step, there was an opportunity to switch to the policy π and use it (and
generate reward – cost) from that point onward. The newly defined cost Cπ states the average
(over all N steps) cost, which would be paid after switching from π0 to π.
The quadratic form of value V π(xt) was proved in 2.2.5. The quadratic form of Qπ(xt, uπt) can
be proved analogically and results in

Qπ(xt, uπt) = 1
2

 1
xt
uπt


T

P

 1
xt
uπt

 = 1
2z

T
t Pzt, (106)

27

Solution Martin Procházka

with some quadratic kernel matrix P . If we substitute (106) into (105), we get

Cπ = 1
N

N∑
t=1

1
2z

T
t Pzt = 1

2N

N∑
t=1

zTt Pzt, (107)

which can be further rewritten as

Cπ = 1
2N

∑
t,i,j

zTt,iPi,jzt,j, (108)

where Pi,j denotes value on i-th row and j-th column of matrix P . An analogical notation
is used for vectors z and zT . Apparently, the kernel matrix P does not directly depend on
time. On the contrary, the data vector z does. The outer product of the data vector and its
transposition forms a new matrix, which will be denoted as data kernel D.

Di,j = 1
N

N∑
t=1

zt,iz
T
t,j (109)

The advantage of this approach is that the data kernel D can be updated online as

Dt = t− 1
t

Dt−1 + 1
t
ztz

T
t . (110)

If we then substitute (109) into (108) and rearrange the equation, we get

Cπ = 1
2
∑
i,j

Pi,jDi,j = 1
2tr (PD) . (111)

Since the goal is to minimize the cost, the policy (or controller) with the lowest Cπ is considered
to be the best one. As mentioned before, this method brings a problem. How to choose the
policy, which will control the process during the off-policy learning. The most straightforward
solution is random switching between all compared controllers. This problem will be further
addressed in section 5.2.1.
However, there is another problem associated with this approach, which was not solved yet. The
cost of some policy π is computed as an average reward which would be gained after switching
from the controlling policy to the policy π at some state x. The problem is that if the policy
π would be used since the beginning, it may not drive the system to that particular state x.
Therefore, calculating how good is the policy π at continuing from the state x onward may be
biased towards those policies which would go through state x if used from the beginning.
From a different point of view, the bias could be caused by the fact that some policies may be
better at starting from various initial conditions, than others. Therefore, a situation may occur
when a policy π1 is optimal, but has problems with starting from miscellaneous initial states
and would not naturally drive the system through state x. Suppose further that a policy π2
is not optimal, but better at dealing with various initial conditions and would not go through
state x if used from the beginning either. If the measure mentioned above were used to compare
those two policies, π2 would be deemed as better, even though it is not.
Unfortunately, the effect of this bias does not decrease with increasing amount of learning data.
However, it does not increase either.

28

Solution Martin Procházka

5.1.2 Multi-Component Reward

The reward, introduced at the beginning of this thesis can be defined as a weighted sum of
elementary rewards

r(xt, ut) = ω1ρ1(xt, ut) + ω2ρ2(xt, ut) + . . . ωLρL(xt, ut) =
L∑
l=1

ωlρl(xt, ut), (112)

where ωl represents the weight of the elementary reward ρl(xt, ut). By substituting (112) into
(2), we get a definition of the value function, which supports the idea of multi-component reward.

V π(xt) =
∞∑
k=0

γk
L∑
l=1

ωlρl(xt+k, uπt+k), (113)

V π(xt) =
L∑
l=1

ωl
∞∑
k=0

γkρl(xt+k, uπt+k), (114)

V π(xt) =
L∑
l=1

ωlv
π
l (xt), (115)

where vπl (xt) represents elementary value function of the policy π. Analogically, the Q-function
can be defined as a weighted sum of partial Q-functions (qπl)

Qπ(xt, ut) =
L∑
l=1

ωlq
π
l (xt, uπt). (116)

Therefore, partial Q-functions can be evaluated each using only its respective partial reward.
The final Q-function can then be obtained by summing the partial Q-functions with the same
weights as those, used to sum the partial rewards.

This approach can be further applied to the result of the previous section. The constant Cπ used
to compare individual controllers can be divided into partial costs, where each cπl is computed
in a manner described in 5.1.1 as a cost of its respective partial Q-function qπl . Then, the total
cost can be again computed as the weighted sum of partial costs.

Cπ =
L∑
l=1

ωlc
π
l (117)

If not stated otherwise, the elementary rewards ρl(xt, ut) used in this thesis further on will be
in a form:

ρ1(xt, ut) = u2
t and ρ2(xt, ut) = (st − yt)2 , (118)

where st is the set-point or reference temperature and yt is the output or in this case actual
temperature in the room. Both values are present in the xt state vector.

29

Solution Martin Procházka

Performance/Energy Trade-Off

The ability to compute the cost for each reward component is especially important for the control
engineering aspect of this thesis. The so-called “Performance/Energy Trade-off” describes a
typical control engineering problem. Simply put, the higher the control performance (a low
difference between the controlled state and reference – error), the higher is the energy needed to
obtain such results. Therefore, by lowering the control error, the used energy increases, and
vice versa.

Therefore, if one reward component is defined to show the controller’s ability to keep low error
and second reward component represents the energy used by the controller’s actions, then using
their respective partial costs, controllers can be compared based on those two measures or any
of their linear combinations.

5.1.3 Optimal Controller

The second approach to the intelligent thermostat problem utilizes the policy iteration method
described in section 2.2.2. This method had to be modified to satisfy the demands introduced
in 3.2. The only constraint on the initial policy given by the theory is that it is stabilizing.
However, a different “learning” policy has to be used during the learning period. This policy
(although most likely being sub-optimal) has to be not only stabilizing, it has to be reasonable
as well, as it will control the system during the learning period. It is assumed that this “learning”
policy will be designed by a human. After the policy iteration method converges to the optimal
policy (controller), it replaces the “learning” controller and is used from that point onward.

This method can be combined with the first approach (5.1.1) to create an algorithm which takes
the initial set of controllers, compares them, and uses them to generate new, assumably optimal
controller, which then replaces the worst controller form the initial set. Since the method used to
generate the controller is based only on data (no model is used), the controller may not actually
be optimal even if the algorithm considers it optimal as it will be optimal only with respect to
the obtained data. Therefore, this optimization and replacement of the worst controller should
be performed with adequate frequency indefinitely.

A second motivation for frequently generating new “optimal” controllers comes from the fact
that the system can be evolving in time. The evolving system causes the “optimal” controller
to be sub-optimal because it was generated based on a Q-function, which does not reflect the
new (evolved) system dynamics.

The controller produced by this method has a significant disadvantage. It is not able to follow
the reference signal with zero error. This is caused by the fact that the system state does not
include the estimate of the disturbance. The absence of the perturbation estimate is usually
solved by using the Kalman filter. Unfortunately, Kalman filter cannot be used in this context
since it uses a model of the system, which is in our case unknown.

5.1.4 Merging Q-Learning and MPC

The last challenge tackled by this thesis was to somehow incorporate constraints into the process
of generating the optimal controller. Only a few commonly used controllers are able to satisfy
constraints. One of them being the Model Predictive Control (MPC) (2.3). Unfortunately, as
the name suggests, MPC uses the model in the form of the differential equation set. Therefore,
a way how to substitute the model by a Q-function had to be found.

30

Solution Martin Procházka

Take first the Bellman equation (15) utilizing the Q-function framework

Qπ(xt, ut) = r(xt, ut) + γQπ(xt+1, u
π
t+1). (119)

There are several ways how to view this equation. Some of them had already been used in this
thesis (algebraic equation, update rule, temporal difference, etc.). Still, the Bellman equation
can also be seen as a one-step prediction. Input ut is applied at time t and state xt+1 is observed.
However, there is no need to restrict the prediction to just one step. Let us introduce the
generalized Bellman equation with the h-step prediction

Qπ
h(xt, ut, ut+1, ut+2, . . . , ut+h) =

= r(xt, ut) + γr(xt+1, ut+1) + γ2r(xt+2, ut+2) + . . .+ γhr(xt+h, ut+h)
+ γh+1Qπ(xt+h+1, u

π
t+h+1), (120)

Qπ
h(xt, ut:t+h) =

h∑
k=0

γkr(xt+k, ut+k) + γh+1Qπ(xt+h+1, u
π
t+h+1). (121)

Notice, the simplified notation ut:t+h for the {ut, ut+1, ut+2, . . . , ut+h} sequence was used in the
second version of the equation.

To find the constraints-satisfying controller, first, an optimal Q-function has to be found. For
instance, the policy iteration method 2.2.2 can be used, just as it was used in the previous
section. Once the optimal Q∗ is found, it can be extended to obtain the optimal Q-function Q∗h
as described above. The problem then changes to minimization of Q∗h(xt, ut:t+h) (122).

u∗t:t+h = arg min
ut:t+h

Q∗h(xt, ut:t+h) (122)

Such minimization can be subjected to equality and inequality constraints. However, only
inequality constraints will suffice for our purposes. The input itself can be constrained by lower
and upper bound (bl and bu)

bl ≤ ut+k ≤ bu, (123)

or the difference between two consecutive inputs ∆ut+k = ut+k+1 − ut+k can be subjected to
constraints

b∆l ≤ ∆ut+k ≤ b∆u (or b∆l ≤ |∆ut+k| ≤ b∆u). (124)

The equation containing the quadratic kernel P of the optimal extended Q-function Q∗h(xt, ut:t+h)
can be written as follows

Q∗h(xt, ut:t+h) = 1
2

 1
xt

ut:t+h


T

P

 1
xt

ut:t+h

 . (125)

31

Solution Martin Procházka

Although this problem could be solved using the explicit MPC [12], another approach involving
quadratic programming is used here. The symmetric kernel matrix P can be divided into 9
sections based on the matrix multiplication rules

Q∗h(xt, ut:t+h) = 1
2

 1
xt

ut:t+h


T  P11 P1x P1u

Px1 Pxx Pxu
Pu1 Pux Puu


 1

xt
ut:t+h

 . (126)

Using symmetry of the P matrix (P = P T ⇒ e.g. Px1 = P T
1x), result of the multiplication takes

the form

Q∗h(xt, ut:t+h) = 1
2u

T
t:t+hPuuut:t+h + xTt Pxuut:t+h + P1uut:t+h + 1

2x
T
t Pxxxt + P1xxt + 1

2P11. (127)

The minimization problem (122) then changes to

u∗t:t+h = arg min
ut:t+h

[1
2u

T
t:t+hPuuut:t+h + xTt Pxuut:t+h + P1uut:t+h + 1

2x
T
t Pxxxt + P1xxt + 1

2P11

]
.

(128)
Because xt is known at this point, 1

2x
T
t Pxxxt + P1xxt + 1

2P11 is a constant and since constant
does not change the position of the minimum, it can be omitted. Therefore, the minimization
further simplifies to

u∗t:t+h = arg min
ut:t+h

[1
2u

T
t:t+hPuuut:t+h + (Puxxt + Pu1)T ut:t+h

]
, (129)

which can be solved by the quadratic programming (2.3.3). Here, the receding horizon principle
(2.3.4) used in MPC can be applied. Therefore, only the first input from the u∗t:t+h sequence
is used, then the whole computation is repeated at time t + 1 and so forth. No learning of
the extended Q-function takes place here. To obtain new, updated extended Q-function, the
optimal normal one-step Q-function has to be found first.
As mentioned above, the Q-function used to generate the constraints satisfying input sequence
has to be optimal. Therefore, this method is suited to be used as an extension of the previous
method.

5.2 Partial Problems Solutions

While deriving the major solutions introduced in 5.1, several sub-problems had to be dealt with,
namely, which policy is to be followed during the off-policy learning and which technique is best
for Q-function evaluation. Both of these partial problems are solved in this section.

5.2.1 Policy Choosing During Off-Policy Learning

During the off-policy learning, some policy π0 has to be chosen to control the system. Regarding
this matter, [1] states the following:

32

Solution Martin Procházka

“In this case (Off-Policy Learning), the learned action-value function (Q-function
according to our notation) Q, directly approximates Q∗, the optimal action-value
function, independent of the policy being followed. (...) The policy still has an effect
in that it determines which state-action pairs are visited and updated. However, all
that is required for correct convergence is that all pairs continue to be updated.”

This statement is undoubtedly true. However, it can only be applied to the MDP framework
with finite discrete state and input spaces, where the Q-function is represented as a table, where
each cell corresponds to a state-action pair. Since in our case, the Q-function is represented by
a quadratic kernel P , the demand on the policy π0 is milder. If the off-policy learning is used to
compare n controllers, it is enough for the policy π0 to be randomly switching between those n
controllers. However, it is not enough to use each controller just once. All controllers have to be
evaluated in multiple states for us to be able to decide which controller is the best one.
Although the random switching approach works, it is certainly a primitive one. There are
many algorithms which would solve this problem better in any sense possible. One of them is
the Thompson sampling algorithm [15], which optimally solves the exploration/exploitation
dilemma and was originally used for the Multi-armed bandit problem [16].

5.2.2 Q-Function Evaluation

As stated before, considering the linear system and quadratic criterion, the Q-function has a
quadratic form

Qπ(xt, uπt) = 1
2

 1
xt
uπt


T

P

 1
xt
uπt

 = 1
2z

T
t Pzt. (130)

Therefore, it can be represented as a weighted sum of features φ

Qπ(xt, uπt) =
∑
i

wiφi(xt, uπt), (131)

where wi are the weights, associated with the features. In our case, the set of all features Φ consists
of all monomials of the quadratic or lower order, which can be created by combining 1 +nx +nu

elements from {1, xt, uπt }. The challenge is now to find the weight vectorW =
[
w1 . . . wM

]T
,

where M is the number of monomials, which can be computed as binomial coefficient

M =
(

1 + nx + nu + 1
2

)
, (132)

where nx is the length of the state vector and nu is the length of the input vector.

Recursive Least Squares Method

As stated in section 2.2.1, one way to obtain the vector is to use the recursive least squares
method. The goal of the classical least squares method is to find such θ in

yk = zTk θ + ek, (133)

33

Solution Martin Procházka

where yk is the vector of observed values at step k, zk is a regressor, which is the independent
variable, and ek is the error at step k, so that

K∑
k=1

eTk ek (134)

is minimized. Solution to this problem is expressed by equation

θ̂K =
(
ZT
KZK

)−1
ZT
KYK , (135)

where θ̂K is the estimate of vector θ, ZK =
[
z1 . . . zK

]T
and YK =

[
y1 . . . yK

]T
.

Suppose now that a new pair {zK+1, yK+1} is available. There is no need to compute the new
estimate θ̂K+1 by using all K + 1 data. The θ̂K+1 can be computed as an update of θ̂K using
the new pair {zK+1, yK+1}.
Let us denote the ZT

KZK as SK . Then SK+1 takes form

SK+1 = ZT
K+1ZK+1 =

[
ZT
K zK+1

] [ZK
zTK+1

]
= ZT

KZK + zK+1z
T
K+1 = SK + zK+1z

T
K+1. (136)

By multiplying (135) by SK , it can be derived that

SK θ̂K = SK
(
ZT
KZK

)−1
ZT
KYK = ZT

KYK . (137)

If we compute the value at K + 1, we get

SK+1θ̂K+1 = ZT
K+1YK+1 =

[
ZT
K zK+1

] [YK
yTK+1

]
= ZT

KYK + zK+1y
T
K+1. (138)

By combining (136),(137) and (138), we get

SK+1θ̂K+1 = SK θ̂K + zK+1y
T
K+1 (139)

Therefore, θ̂K+1 can be evaluated as

θ̂K+1 = S−1
K+1

(
SK θ̂K + zK+1y

T
K+1

)
=
(
SK + zK+1z

T
K+1

)−1 (
SK θ̂K + zK+1y

T
K+1

)
. (140)

Recursive Least Squares for Q-Function Evaluation
The temporal difference equation derived in 2.2.1 states

et = r(xt, ut)−Qπ(xt, ut) + γQπ(xt+1, u
π
t+1) (141)

and using the equation (131), it can be rewritten as

r(xt, ut) = Qπ(xt, ut)− γQπ(xt+1, u
π
t+1) + et, (142)

34

Solution Martin Procházka

r(xt, ut) =
∑
i

wiφi(xt, uπt)− γ
∑
i

wiφi(xt+1, u
π
t+1) + et, (143)

r(xt, ut) =
∑
i

[
wi
(
φi(xt, uπt)− γφi(xt+1, u

π
t+1)

)]
+ et, (144)

r(xt, ut) = (Φt − γΦt+1)T W + et, (145)

where Φt =
[
φ1(xt, uπt) φ2(xt, uπt) . . . φM(xt, uπt)

]T
and analogically

Φt+1 =
[
φ1(xt+1, u

π
t+1) φ2(xt+1, u

π
t+1) . . . φM(xt+1, u

π
t+1)

]T
. As mentioned before, recursive

least squares method minimizes
K∑
k=1

eTk ek by finding the best θ in equation

yk = zTk θ + ek. (146)

Apparently, recursive least squares method can be used for Q-Function evaluation, given the
connection between (145) and (146). The observed value yk becomes the reward r(xt, ut). The
regressor zk consists of the difference between sets of monomials at time t and t + 1. The
estimated vector θ is the weight vector W .

Unbiased Estimator

According to [14], the recursive least squares method described above is biased and should not be
used in this context. The reason behind the bias is that the method assumes that the stochastic
part of the problem is contained within the observed data yk, or reward r(xt, ut) in our case.
However, it is actually included in the regressor (zk), concretely in the set of monomials at time
t+ 1 (Φ(xt+1, u

π
t+1)).

The paper [14] further suggests using

Ŵ = θ̂ =
(
ΦTΦ− γΦTΨ

)−1
ΦTΓ, (147)

where Φ =
[

Φ1 Φ2 . . . ΦK

]T
, Ψ =

[
Φ2 Φ3 . . . ΦK+1

]T
and

Γ =
[
r(x1, u1) r(x2, u2) . . . r(xK , uK)

]T
instead of (135) to avoid the bias. Equation (147)

can be modified to support recursive estimation.

5.3 Tests

This section demonstrates on practical examples why is Q-learning useful for comparing con-
trollers. It is also presented here that Q-learning gives the same results as the Lyapunov equation.
Finally, this section shows why using constraints is superior to simply saturating the control
input.

35

Solution Martin Procházka

5.3.1 Q-Learning – Motivation

The first test which is worth mentioning is the “Motivation test”. This test shows the motivation
for using the Q-learning to evaluate and compare controllers.
Suppose there are two PID controllers. Those controllers obey the performance/energy trade-off
described in 5.1.2. Controller K1 keeps the control error minimal at the cost of high energy
usage. The other controller (K2) has lower energy consumption but produces a larger error.
The naive way to compare these two controllers would be to let them one by one regulate the
system for some limited time (e.g. 48 hours) and then compute their performance as pair

{
1
T

∑
t
ut,

1
T

∑
t
|st − yt|

}
, (148)

where T is the total time duration in seconds, ut is the controller’s output (input to the system),
st is the set-point or reference temperature and yt is the output or in this case actual temperature
in the room. Therefore, the performance is computed as a sum of energy used to control the
system and accumulated error.
The other approach would be to use the Q-learning and its cost (Cπ) measure introduced in
5.1.1 to compare K1 and K2. Particularly, the multi-component cost described in 5.1.2 with
partial rewards defined as (118) would be used here so that a pair similar to (148) is obtained.
First, a control (or reference) test is performed. Both controllers are successively let to control
the system under identical conditions, i.e. the set-point and outside temperature sequences
are identical. Then, under the same conditions, the Q-learning comparing approach is applied.
Both controllers are evaluated during only one 48-hour period using the off-policy learning. The
policy used to control the system during the evaluation is a random mixture of K1 and K2 (see
5.2.1).

Naive Approach Q-Learning
1
T

∑
t
ut [kW] 1

T

∑
t
|st − yt| [◦C] Energy Cost

Component [-]
Error Cost

Component [-]
K1 4.49 1.14 252.8 232.6
K2 4.42 1.42 192.5 235.7

Table 1: Q-Learning Motivation (Control) Test – Results

Since both methods give results in different units (mostly as a result of discounting in (105)),
they are not directly comparable to each other. However, because the goal is to minimize both
input energy consumption and control error, lower values (green in the table) always mean
better controller. As expected, both techniques give the same final results (Table 1). Controller
K1 wins at keeping the error minimal but loses at energy usage and vice versa.
Now, a similar test is performed. This time, however, the difference between the mean outside
temperature during the first (K1) and second (K2) run will be 2 ◦C, which certainly could occur
during a real test. The Q-learning run will experience this two-degree shift in the middle of its
48-hour period. Outside temperatures used during all experiments are shown in Figure 8.

36

Solution Martin Procházka

0 1 2

time [days]

10

15

20

25

°C

Room Temperature

Reference
Naive Approach - K

2

Naive Approach - K
1

Q-Learning

0 1 2

time [days]

0

5

10

15

20

25

30

35

kW

System Input

Q-Learning Naive Approach - K
1

Naive Approach - K
2

Figure 7: Room Temperature and System Input During Control by K1, K2 and Q-Learning
(Control Test)

Naive Approach Q-Learning
1
T

∑
t
ut [kW] 1

T

∑
t
|st − yt| [◦C] Energy Cost

Component [-]
Error Cost

Component [-]
K1 4.37 1.16 246.6 220.9
K2 4.54 1.4 171.9 223

Table 2: Q-Learning Motivation Test – Results

Apparently, there is no way to decide which controller is better, just by looking at the room
temperature development. In both cases (naive approach and Q-learning), the test results graph
(Figure 9) looks very similar to the control test results graph (Figure 7). However, if the actual
results are compared (Table 2), it is apparent that according to the naive approach, K1 is better
at both energy and error costs, which is definitely not true, if compared with the control test.
On the other hand, Q-learning approach correctly concluded that controller K1 is better at
keeping the error minimal but worse at energy usage and vice versa, as in the control test.
In conclusion, there are several factors which can affect the comparison of n controllers if
performed in the naive way. Those factors include the outside temperature and many others,
such as solar heat gain, wind or even presence/absence of people in the room. One can never
assure identical conditions of those factors during the run of all n controllers. Therefore, the
comparison will never be fair to all controllers. The Q-learning solves this problem by comparing

37

Solution Martin Procházka

0 1 2

time [days]

-5

0

5
°C

Outside Temperature

Naive Approach - K
2

Naive Approach - K
1

Q-Learning

Figure 8: Outside Temperature During Controllers Comparison

the controllers on the same set of data, which assures the fairness. A pleasant side-effect of
the Q-learning approach is its time-saving aspect. Since all controllers are evaluated at once,
the total time needed to perform the comparison using the Q-learning is only 1/n of the time
needed to compare the controllers using the naive approach.

5.3.2 Q-Learning Versus Lyapunov Equation

As indicated in section 2.2.5, the purpose of this test is to verify that Q-learning gives the
same result as the already known and rigorous approach in the form of the Lyapunov equation.
Since knowledge of the system dynamics is essential for this test, a random discrete stable
second-order system will be generated for this test instead of using our realistic thermal model.
The test will be performed in the following way. A set of 100 controllers (Ki with i ∈

[
1, 100

]
)

with quadratic criterion (149) will be tested, and therefore 100 tests will be performed in total.
Weight matrices of said controllers are given by the rules specified in (150).

Ji = 1
2
(
xTQix+ uTRiu+ 2xTNiu

)
(149)

Qi ∈
[

0.01, 0.99
]
, Ri = 1−Qi, Ni = 0 (150)

Two evaluation methods will be applied. First, the Ci value derived in 5.1.1, which uses the
quadratic kernel Pi obtained using Q-learning will be used to evaluate the performance of each
controller over a 500-second period. Next, a solution of a Lyapunov equation (42) P̄i for given
system dynamics and all controllers Ki will be computed. Then, the Pi kernel will be substituted
by P̄i, and C̄i will be computed for each controller.
This way, a set of 100 Ci and C̄i values was obtained. Ideally, |∆Ci| =

∣∣∣Ci − C̄i∣∣∣ should equal zero
for each i, or at least be as small as possible. Table 3 displays several important characteristics
of |∆C| =

[
|∆C1| , . . . , |∆C100|

]
. Although |∆C| does not equal zero, this test clearly

confirms that Q-learning gives the same result as the Lyapunov equation when the system
dynamics is known and therefore can be used even for problems, where the system dynamics
are unknown.

Mean value of |∆C| Median value of |∆C| Min. value of |∆C| Max. value of |∆C|
8.68× 10−15 7.13× 10−15 1.73× 10−18 3.69× 10−14

Table 3: Q-Learning Versus Lyapunov Equation – Results

38

Solution Martin Procházka

0 1 2

time [days]

10

15

20

25

°C

Room Temperature

Reference
Naive Approach - K

2

Naive Approach - K
1

Q-Learning

0 1 2

time [days]

0

5

10

15

20

25

30

35

kW

System Input

Q-Learning Naive Approach - K
1

Naive Approach - K
2

Figure 9: Room Temperature and System Input During Control by K1, K2 and Q-Learning

5.3.3 Biased Versus Unbiased Estimator

As the title suggests, this section compares Q-function estimations using the biased (Least
Squares Method) and unbiased estimators.
For this test a white noise with standard deviation σ = 1 is considered, modeling the stochastic
part of the regressor as mentioned in 5.2.2. For us to be able to plot the results of the experiment,
a first order system with one input and known dynamics was used to generate the data. Identified
Q-functions and corresponding derived control gains obtained by both methods were compared
to the true Q-function and control gain.
The result is shown in Figure 10. It can be seen that using the biased estimator, the gain
obtained by using the Q-learning is not the same as the already known ideal gain. However,
using the unbiased estimator results in a gain that is an accurate representation of the known
ideal gain.
A second test shows how the bias progresses with increasing standard deviation of the white
noise (σ ∈

[
0, 0.25

]
). Figure 11 shows individual elements of the Q matrix after being

estimated using both biased and unbiased estimator.

39

Solution Martin Procházka

-8 -6 -4 -2 0 2 4 6 8

Action Space U

-6

-4

-2

0

2

4

6
S

ta
te

 S
pa

ce
 X

100

150

200

250

300

350

Q
-F

un
ct

io
n

V
al

ue

Q-Function Obtained by Q-Learning
Known Q-Function
Gain Obtained by Q-Learning
Known Ideal Gain

(a) Known and Obtained Q-function and Control Gain Using Biased Estimator

-8 -6 -4 -2 0 2 4 6 8

Action Space U

-6

-4

-2

0

2

4

6

S
ta

te
 S

pa
ce

 X

200

250

300

350

400

450

500

Q
-F

un
ct

io
n

V
al

ue

Q-Function Obtained by Q-Learning
Known Q-Function
Gain Obtained by Q-Learning
Known Ideal Gain

(b) Known and Obtained Q-function and Control Gain Using Unbiased Estimator

Figure 10: Biased versus Unbiased Estimator

40

Solution Martin Procházka

0 0.05 0.1 0.15 0.2 0.25

σ process noise

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Q
 m

at
rix

 e
st

im
at

e

Two estimators compared

Biased Estimator
Unbiased Estimator

Figure 11: Bias Progression with Increasing Standard Deviation σ

5.3.4 Constrained Control – Motivation

The last test shows motivation for merging the Q-learning with MPC to include constraints and
reference preview in the controller design. Once again, the MPC approach will be compared to
a naive one. In this case, the naive approach consists of saturating simple LQR-designed state
feedback controller.

The test will be performed on a simple discrete second-order system. In both cases, the controller
will be designed with weight matrices Q = 10 and R = 0.1. Allowed input values represented as
constraints for the MPC and saturation for the LQR will lie in the interval

[
0, 35

]
.

The performance of both controllers will be compared based on a simple quadratic metrics

Cost = 1
N

N∑
i=1

(si − yi)T Q (si − yi) + uTi Rui, (151)

where N is number of samples, si is set-point (reference) at sample i, yi is output value and ui
is input.

Results of the experiment are summarized in Table 4 and example of the control can be found
in Figure 12. The figure shows the performance of MPC and both saturated and unsaturated
LQR control. As expected, the saturated LQR, although being designed with the same weight
matrices as MPC, results in higher cost. It is also clearly visible, how the MPC “prepares” for
the reference shift in advance, instead of acting when it actually occurs. This behavior results
in reducing both error and control input energy.

41

Solution Martin Procházka

Controller Saturated LQR MPC
Cost 136.2 109.7

Table 4: Constrained Control Motivation Test – Results

0 0.5 1 1.5 2 2.5

Time [s]

0

5

10

15

20

25
Output

Reference
MPC
LQR
Saturated LQR

0 0.5 1 1.5 2 2.5

Time [s]

-40

-20

0

20

40

60

80

Control Input

Constraints
MPC
LQR
Saturated LQR

Figure 12: Constrained Control Motivation Test

5.4 Additional Requirements on the Learning Policy

The policy used during the learning period has to have certain properties. As explained in
5.2.1, while comparing n controllers, a random mixture of those controllers is enough to be
used during the off-policy learning. However, if our goal is to find the optimal controller, the
requirements on the policy are more strict.

Starting from the obvious ones, the boiler must be active during the learning period. Therefore,
for example, data obtained during summer are not useful.

The second requirement is that the policy cannot be a linear combination of state values.
Therefore, a state feedback controller without any modifications is not useful here. Figure 13
shows the result of using such controller on a simple first-order system. Data obtained during
the learning period all lie on the line representing the state feedback controller used during
that period. As a result of this, the Q-learning is able to identify the Q-function only on that

42

Solution Martin Procházka

particular line and the rest of the Q-function is chosen randomly, because there is an infinite
number of quadratic Q-functions, which fit the data.
A seemingly simple solution to this problem is to add an exploration noise to the input generated
by the state feedback controller (or any other controller used during the learning period). This
solution does in fact work, but only under the condition that the exploration noise is larger
than the process noise of the system. Therefore, another problem arises: How large should the
exploration noise be to exceed the unknown process noise of the system? This question does
not have a definitive answer yet. A series of tests on the realistic thermal model suggests that
even a slight exploration noise, which does not affect the room temperature by more than 1 ◦C
as opposed to control with zero exploration noise is enough for the Q-learning to identify the
Q-function well enough to produce a satisfying optimal controller.
Figure 14 demonstrates how the use or absence of exploration noise affects the optimized state
feedback controller. The effect increases with growing temperature difference between learning
data and actual later use of optimized controller. This is shown in Figure 14, where the set-point
stays around 16.5 ◦C during the learning period, but rises to circa 24.5 ◦C during the comparison
of optimized controllers. It is apparent that even if the exploration noise does not affect the
temperature during the learning period by more than 1 ◦C, the optimized controller has no
problem following set-point that is 8 ◦C higher. The cost of the optimized controller obtained
by using the exploration noise reaches only 19 % of the cost of the controller obtained without
the exploration noise. However, it is not a rigorous conclusion and this question remains open.

-10 -8 -6 -4 -2 0 2 4 6 8 10

Action Space U

-10

-8

-6

-4

-2

0

2

4

6

8

10

S
ta

te
 S

pa
ce

 X

150

200

250

300

350

400

Q
-F

un
ct

io
n

V
al

ue

Optimal Q-Function
Optimal Control Gain
Control Gain - Learning Period
Data Obtained During Learning Period

Figure 13: Example of Using State Feedback Controller During the Learning Period

43

Solution Martin Procházka

0 1 2

Time [days]

14

16

18

20

T
em

pe
ra

tu
re

 [°
C

]

Learning Period

Reference Temperature
Policy without Exploration Noise
Policy with Exploration Noise

0 1 2

Time [days]

22

24

26

28

30

T
em

pe
ra

tu
re

 [°
C

]

Optimized Controllers

Reference Temperature
Policy without Exploration Noise
Policy with Exploration Noise

Figure 14: Result of Using and Not Using Exploration Noise During the Learning Period

44

Results Martin Procházka

6 Results

This chapter contains examples of the three main results of this thesis: controllers comparison,
generating an optimal controller and merging Q-learning and MPC. All examples in this chapter
will be performed using the realistic thermal model introduced in chapter 4.

6.1 Controllers Comparison

The first technique derived in 5.1.1 is the ability to compare controllers based on their performance.
One of many advantages of the Q-learning is its capability to compare different types of
controllers. For instance PIDs with state feedback controllers. Let us start by comparing three
PID controllers.
To compare the performance of said PID controllers, the multi-component cost described in
5.1.2 with partial rewards defined as

ρ1(xt, ut) = (ut − ut−1)2 = ∆u2
t and ρ2(xt, ut) = (st − yt)2 = e2

t , (152)
where st and yt are included in xt and st is the set-point or reference temperature and yt is the
output or in this case actual temperature in the room, with corresponding weights ω1 = ω2 = 10
was used here.

PID1 PID2 PID3
P 4 100 0.2
I 2× 10−3 5× 10−3 1× 10−4

D 0 1× 10−3 1× 10−4

Table 5: PID Controllers To Be Compared

As displayed in Table 5, the controllers were purposely set so that one controller is extremely
fast (PID2), one is extremely slow (PID3), and one is in the middle (PID1). Therefore, given
the weights, PID1 should be chosen as the best one.
Figure 15 demonstrates how was the system regulated by those controllers. It also displays how
were the controllers switched. Table 6 reveals results of the test. Columns c1 and c2 denote
partial costs corresponding to partial rewards ρ1 and ρ2. The final column C presents the final
cost, computed as

C = ω1c1 + ω2c2. (153)

As expected, PID2 is the worst in the c1 column, PID3 is the worst in the c2 column, and the
final order from best to worst is PID1, PID2 and PID3.

Controller c1 (∆u2) c2 (e2) C
PID1 – middle 148.9 24.8 1736
PID2 – fast 292.9 16.4 3094
PID3 – slow 16.2 297.2 3134

Table 6: Comparing PID Controllers – Results

45

Results Martin Procházka

0 1 2 3 4

Time [days]

15

16

17

18

19

20

21

22

23

T
em

pe
ra

tu
re

 [°
C

]

PID
1

PID
2

PID
3

Reference Temperature
Room Temperature

Figure 15: Comparing PIDs

The process of comparing n state feedback controllers among themselves is identical to comparing
PIDs. Therefore, it will not be demonstrated here. However, the ability to compare PIDs with
state feedback controller will be presented in the next section.

6.2 Optimal Controller

To demonstrate that the Q–learning is able to generate the optimal controller, a similar setup as
in the previous section will be used. The definition of partial rewards and their corresponding
weights will remain the same. Also, the same three controllers will be used to control the system
during the 48-hour learning period. Additionally, an exploration noise will be added to the
applied system input to ensure correct Q-function identification (as described in 5.4). The
optimal controller will then be compared with the same three PIDs, which were used to its
generation.

Results of the comparison are displayed in Table 7. As expected, the total cost C of the optimal
state feedback controller is the lowest one among all compared controllers.

46

Results Martin Procházka

Controller c1 (∆u2) c2 (e2) C
PID1 – middle 36 24.2 602.4
PID2 – fast 163.4 19.5 1829.3
PID3 – slow 21.3 224.4 2456.9

Optimal State Feedback Controller 3.7 22.9 265.9

Table 7: Comparing Optimal State Feedback Controller with PIDs – Results

Figure 16 shows how was the room temperature regulated by all four controllers during the
comparing phase. However, it does not demonstrate the performance of the optimal state
feedback controller well. Therefore, Figure 17 is presented, containing an example of control
performed by the optimized state feedback controller over the period of 48 hours. It is clearly
visible that the controller easily follows the reference. The only exceptions are the slight
perturbations, like the one marked by the red circle, caused by our simple outside temperature
model – step changes in outside temperature.

0 1 2 3 4

Time [days]

15

16

17

18

19

20

21

22

23

T
em

pe
ra

tu
re

 [°
C

]

PID
1

PID
2

PID
3

Optimized State Feedback
Reference Temperature
Room Temperature

Figure 16: Comparing Optimal State Feedback Controller with PIDs

6.3 Merging Q-Learning and MPC

The final important result of this thesis is the incorporation of constraints and reference preview
into the controller design. The theory behind it was explained in 5.1.4. The example shown in
5.3.4 demonstrates how the MPC goes through the reference shift in the middle. For example,

47

Results Martin Procházka

0 1 2

Time [days]

16

18

20

22

T
em

pe
ra

tu
re

 [°
C

]

Reference Temperature
Room Temperature

0 1 2

Time [days]

-4

-2

0

2

4

6

T
em

pe
ra

tu
re

 [°
C

]

Outside Temperature

Figure 17: Example of Control Performed by the Optimized State Feedback Controller

if a reference would shift from 18 ◦C to 22 ◦C at 8 am, the MPC would control the boiler so that
the temperature at 8 am would be 20 ◦C.

Although this approach indeed minimizes the cost (151), it is not desired when the room
temperature is being controlled. The preferred behavior, in this case, is for the room temperature
to start increasing soon enough to reach the desired value at the same time the reference does.
Similar logic applies for decreasing the reference. The temperature should be the same as the
reference until the reference lowers. Therefore, the necessary condition for the desired behavior
is for the room temperature to be always higher or equal to the reference temperature.

This behavior can be obtained by lowering the cost of the positive control error (when the room
temperature is higher than the reference temperature).

Figure 18 demonstrates the behavior on the realistic thermal model using a boiler with 24 kW max-
imum power and compares it to an LQ control. The sample time Ts was chosen to be 9 minutes.
The whole reference preview set consists of 9 reference previews, where the time difference
between each two is Ts. Therefore the reference preview set is

{
9 min, 18 min, . . . , 81 min

}
prior to the reference. Figure 18 (as well as Figure 19) displays only the 81-minute reference
preview. It can be seen that the room temperature controlled by the MPC indeed follows the
desired behavior. However, there is a slight positive error (circa 0.4 ◦C) when the reference
is at 15 ◦C. This error is caused by the fact that was already explained in 5.1.3. The system
state does not include the estimate of the disturbance, which is usually solved by using the
Kalman filter, which cannot be used in this case. The LQR is not able to accomplish the desired
behavior, but only if the reference increases. If we were to compare those two controllers only
when the reference decreases, the performance would be the same.

Figure 19 shows, how is the room temperature controlled by MPC using several boilers with the

48

Results Martin Procházka

maximum power ranging from 8 kW to 24 kW. The preview setting and outside temperature
stay the same as in the previous test. As the figure shows, the reference shift from 15 ◦C to
17.5 ◦C (labeled by “A” in the figure) does not cause any problems for any boiler. As expected,
it can be seen in “B” that the less power the boiler has, the sooner it begins to heat. The
problem with low-power boiler settings is shown in regions labeled as “C” and “D”, where both
8 kW and 12 kW boilers are not able to heat the air in the room from 15 ◦C to 25 ◦C in time,
even though they start at the beginning of the whole 81-minute preview period. It is clearly
visible especially in the region “D”, where 16 kW, 20 kW and 24 kW boilers finish their full
power heating exactly as the reference shifts, but 8 kW and 12 kW boilers have to use their full
potential even beyond this point. This phenomenon, for obvious reasons, grows stronger with
increasing shift in reference temperature and decreasing maximum boiler power. Therefore, the
length of the preview period should be, to some extent, inversely proportional to the maximum
boiler power.

15

17.5

20

22.5

25

T
em

pe
ra

tu
re

 [°
C

]

Room Temperature - 24 kW Boiler

Reference Reference Preview MPC LQR

-8

-6

-4

-2

0

T
em

pe
ra

tu
re

 [°
C

]

Outside Temperature

0 1 2 3

Time [days]

0

5

10

15

20

25

P
ow

er
 [k

W
] Input (MPC)

Input (LQR)

Figure 18: Example of Merging Q-Learning and MPC Compared with LQR – Maximum Boiler
Power Constrained at 24 kW

49

Results Martin Procházka

15

17.5

20

22.5

25

T
em

pe
ra

tu
re

 [°
C

]

Room Temperature

A

C

Reference Preview 24 kW 20 kW 16 kW 12 kW 8 kW

0 1 2 3

Time [days]

0

5

10

15

20

25

P
ow

er
 [k

W
]

Input

B D

Figure 19: Example of Merging Q-Learning and MPC Using Various Maximum Boiler Power
(Constraints)

50

Conclusion Martin Procházka

7 Conclusion

The goal of this thesis was to develop a self-learning algorithm for an intelligent thermostat. The
requirement was for the algorithm to be able to find an optimal controller without knowledge of
the system dynamics, only from the observed data. From the multitude of artificial intelligence
methods, the Q-learning was chosen to accomplish this task. A realistic thermal model was
used to test all results and control algorithms mentioned in this thesis.

Before trying to find an optimal controller, the Q-learning was used for an easier task: comparing
n controllers (policies). The solution of this problem is presented in section 5.1.1, where a cost
Cπ was defined for us to be able to compare Q-functions corresponding to individual controllers.
Examples of using the solution on the realistic thermal model are shown in 6.1.

The Q-learning was then used for the task of finding an optimal controller. The solution of this
problem introduced in 5.1.3 involves using the policy iteration method, which was chosen over
the value iteration method mostly for its superior convergence speed. The process of determining
the optimal controller needs to undergo a certain learning period during which another controller
is used to control the system and provide the data needed for the policy iteration method.
A connection with the first task is possible here as n controllers may be compared among
themselves and a new optimal controller can be designed from the data acquired during the
comparing. Such example is presented in 6.2.

The last challenge tackled by this thesis was to somehow incorporate constraints into the process
of generating the optimal controller. The need for constraint support rises mostly from the fact
that while controlling the temperature in a room, a negative action input (cooling) is often not
possible and certainly not wanted, as such cooling would be seen as a waste of energy Therefore,
a connection of Q-learning and Model Predictive Control (5.1.4) was needed. This problem was
solved by expanding the dimension of Q-function to incorporate the prediction horizon h and
using its kernel as an input to the quadratic programming algorithm. An example of control
using this modified MPC is displayed in 6.3.

The whole process of developing a smart thermostat from start to finish or in our case from
requirements and known theory to fully functional device takes an extensive amount of time.
Therefore, the scope of this thesis was limited to the proof of concept. Although this thesis clearly
shows that this concept has practical potential, it is not (at least yet) possible to determine
its exact energy saving and reference following abilities as it is highly affected by the potential
customer settings and configuration of the base-line controller to be compared to.

However, the Q-learning approach definitely brings many benefits. The biggest one being the
independence on a model and its ability to find an optimal controller using only real-time data.
Compared to a current thermostat, the advantage here is that the initial man-designed controller
does not have to be even remotely optimal. Its only role is to stabilize the system during the
learning period until the optimal controller is obtained. Although the efficiency of the optimal
controller cannot be easily determined, it will surely be at least the same as the one of the
initial controller, but most likely higher. This can be seen in 6.2, where the optimal controller
reached only 44 % of the best man-designed controller’s cost. The Q-learning control concept as
described in this thesis can be used in various other fields where the model of the system either
cannot or would be hard to obtain.

51

Conclusion Martin Procházka

7.1 Unsolved Problems and Other Future Improvements

The biggest problem yet to be solved is the necessity of adding an exploration noise to the
input generated by the controller used during the learning period. And more importantly: How
large should the exploration noise be to exceed the unknown process noise of the system? This
problem is introduced in section 5.4.
Another unsolved problem concerns the controllers comparison (5.1.1). The policy used during
the off-policy learning is created by randomly switching between the compared controllers.
Therefore, the comparing technique may be biased towards those controllers that are better at
starting from various initial conditions.
Addressing these issues will be the subject of future work. Apart from the unsolved problems,
there are other improvements that need to be implemented.
As mentioned multiple times (e.g. 6.3), the state used in the Q-function does not include the
estimate of the disturbance. It is usually estimated using the Kalman filter, which cannot be
used here because it needs a model of the system. The current solution causes a non-zero
steady-state error. Therefore a way to incorporate integral action to the controller has to be
found.
Another improvement that should be implemented is the Thompson sampling method mentioned
in 5.2.1. This approach will optimally solve the exploration/exploitation trade-off regarding
switching between controllers during the off-policy learning.

52

References Martin Procházka

8 References

[1] R. S. Sutton, A. G. Barto, “Reinforcement Learning - an Introduction”, Cambridge, MA:
MIT Press, 1998.

[2] F. L. Lewis, D. Vrabie, K. G. Vamvoudakis, “Reinforcement Learning and Feedback Control:
Using Natural Decision Methods to Design Optimal Adaptive Controllers”, IEEE Control
Systems Magazine, vol. 32, no. 6, pp. 76-105, December 2012.

[3] K. J. Åström, B. Wittenmark, “Adaptive Control”, Dover, Second edition, 2008, https://
books.google.cz/books?id=L0m_CR-IK24C&printsec=frontcover#v=onepage&q&f=
false, accessed: 2018-05-07.

[4] E. Lavretsky, “Adaptive Control: Introduction, Overview, and Applications”, https:
//www.cds.caltech.edu/archive/help/uploads/wiki/files/140/IEEE_WorkShop_
Slides_Lavretsky.pdf, accessed: 2018-05-07.

[5] Z. Hurák, “Optimal and Robust Control”, CTU Course, https://moodle.fel.cvut.cz/
mod/folder/view.php?id=63655, accessed: 2018-05-07.

[6] Matlab environment, https://www.mathworks.com/products/matlab.html, accessed:
2018-03-01.

[7] Matlab/Simulink environment, https://www.mathworks.com/products/simulink.
html, accessed: 2018-03-01.

[8] Quadratic programming by Matlab, https://www.mathworks.com/discovery/quadratic-
programming.html, accessed: 2018-03-01.

[9] Quadratic programming algorithms by Matlab, https://www.mathworks.com/help/
optim/ug/quadratic-programming-algorithms.html, accessed: 2018-03-01.

[10] Quadprog function documentation, https://www.mathworks.com/help/optim/ug/
quadprog.html, accessed: 2018-03-01.

[11] Dynamic programming theorems, http://lhendricks.org/econ720/ih1/DP_SL.pdf,
accessed: 2018-03-01.

[12] A. Alessio, A. Bemporad, “A Survey on Explicit Model Predictive Control”, http://cse.
lab.imtlucca.it/~bemporad/publications/papers/nmpc08-survey-explicit.pdf,
accessed: 2018-05-20.

[13] G. Bontempi, S. B. Taieb, “Statistical Foundations of Machine Learning”, https://www.
otexts.org/1582, accessed: 2018-03-15.

[14] S. J. Bradtke, A. G. Barto, “Linear Least-Squares Algorithms for Temporal Difference
Learning”, http://www.incompleteideas.net/bradtke-barto-96.pdf, accessed: 2018-
03-15.

[15] D. J. Russo, B. V. Roy, A. Kazerouni, I. Osband, Z. Wen, “A Tutorial on Thompson
Sampling”, https://web.stanford.edu/~bvr/pubs/TS_Tutorial.pdf, accessed: 2018-
04-05.

53

https://books.google.cz/books?id=L0m_CR-IK24C&printsec=frontcover##v=onepage&q&f=false
https://books.google.cz/books?id=L0m_CR-IK24C&printsec=frontcover##v=onepage&q&f=false
https://books.google.cz/books?id=L0m_CR-IK24C&printsec=frontcover##v=onepage&q&f=false
https://www.cds.caltech.edu/archive/help/uploads/wiki/files/140/IEEE_WorkShop_Slides_Lavretsky.pdf
https://www.cds.caltech.edu/archive/help/uploads/wiki/files/140/IEEE_WorkShop_Slides_Lavretsky.pdf
https://www.cds.caltech.edu/archive/help/uploads/wiki/files/140/IEEE_WorkShop_Slides_Lavretsky.pdf
https://moodle.fel.cvut.cz/mod/folder/view.php?id=63655
https://moodle.fel.cvut.cz/mod/folder/view.php?id=63655
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/discovery/quadratic-programming.html
https://www.mathworks.com/discovery/quadratic-programming.html
https://www.mathworks.com/help/optim/ug/quadratic-programming-algorithms.html
https://www.mathworks.com/help/optim/ug/quadratic-programming-algorithms.html
https://www.mathworks.com/help/optim/ug/quadprog.html
https://www.mathworks.com/help/optim/ug/quadprog.html
http://lhendricks.org/econ720/ih1/DP_SL.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/nmpc08-survey-explicit.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/nmpc08-survey-explicit.pdf
https://www.otexts.org/1582
https://www.otexts.org/1582
http://www.incompleteideas.net/bradtke-barto-96.pdf
https://web.stanford.edu/~bvr/pubs/TS_Tutorial.pdf

References Martin Procházka

[16] J. Duchi, “The Multi-Armed Bandit Problem”, https://web.stanford.edu/class/
cs229t/Lectures/bandits.pdf, accessed: 2018-04-05.

[17] D. L Kleinman, “On an Iterative Technique for Riccati Equation Computation”, http:
//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1098829, accessed: 2018-04-05.

54

https://web.stanford.edu/class/cs229t/Lectures/bandits.pdf
https://web.stanford.edu/class/cs229t/Lectures/bandits.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1098829
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1098829

	1 Introduction
	2 Research
	2.1 Reinforcement Learning
	2.1.1 Markov Decision Processes
	2.1.2 Bellman Optimality Equation
	2.1.3 Dynamic Programming
	2.1.4 Policy Evaluation

	2.2 Q-Learning
	2.2.1 Q-Function Identification – Learning
	2.2.2 Policy Iteration
	2.2.3 Value Iteration
	2.2.4 Problems with Policy and Value Iteration
	2.2.5 Relation with Algebraic Riccati Equation
	2.2.6 Q-Learning for Stochastic Systems

	2.3 Model Predictive Control (MPC)
	2.3.1 MPC Without Constraints
	2.3.2 Constraints on the Input Vector
	2.3.3 Quadratic Programming
	2.3.4 Receding Horizon

	3 Problem Description
	3.1 Controlled System
	3.2 Demands on the Control Quality
	3.3 Constraints Introduced by the Boiler

	4 Thermal Model Description
	4.1 Capabilities and Settings

	5 Solution
	5.1 Major Derived Techniques
	5.1.1 Controllers Comparison
	5.1.2 Multi-Component Reward
	5.1.3 Optimal Controller
	5.1.4 Merging Q-Learning and MPC

	5.2 Partial Problems Solutions
	5.2.1 Policy Choosing During Off-Policy Learning
	5.2.2 Q-Function Evaluation

	5.3 Tests
	5.3.1 Q-Learning – Motivation
	5.3.2 Q-Learning Versus Lyapunov Equation
	5.3.3 Biased Versus Unbiased Estimator
	5.3.4 Constrained Control – Motivation

	5.4 Additional Requirements on the Learning Policy

	6 Results
	6.1 Controllers Comparison
	6.2 Optimal Controller
	6.3 Merging Q-Learning and MPC

	7 Conclusion
	7.1 Unsolved Problems and Other Future Improvements

	8 References

